Structural Engineering and Res	earch (SER)	
	Project Name Spaulik	Project No ST- LOO
Calculations - Spacelink Frame Systems	Calc. by	Date Oct 16
	Checked	Date
Item/Member		

SPACELINK TRUSSES DEMONSTRATION CALCULATIONS

	Project Name	Project No	
Calculations - Spacelink Frame Systems	Calc. by	Date	
	Checked	Date	
Item/Member			

INTRODUCTORY STATEMENT

This following sections outline demonstration calculations for the Spacelink prototype truss frame that was tested under four point loading arrangement. The calculations consider the frame behaviour under ultimate and service limit conditions. The calculations are broadly undertaken in accordance to the requirements of EUROCOMP Design code ad closely follows the design procedure outlined in Fibreline Composite Design Manual.

Sample proof calculations for the proposed series of truss configuration are also outlined. In this section, the calculation assumes that serviceability limit state criteria would govern the performance of the frames.

In the calculation of deflections, the Euler–Bernoulli beam equations are used. However, the contributions are shear and axial distortions are taken into account. This is done by including the reduced modulus of elasticity in the closed form equations. For a simply supported truss frames, three load cases are considered: uniformly distributed load (UDL), central point load (CPL) and point loads at third points.

tructural Engineering	and Research	(SER)
-----------------------	--------------	-------

	Project Name	Project No	
Calculations - Spacelink Frame Systems	Calc. by	Date	
Calculations - Spacelink Frame Systems	Checked	Date	
Item/Member			

PROTOTYPE SPACELINK TRUSS-FRAME DEMONSTRATION CALCULATIONS TEST FRAME

	Project Name	Project No
	Calc. by	Date
Calculations - Spacelink Frame Systems	Checked	Date
Item/Member		TAB. I

 Table 1: Material properties taken from EUROCOMP Design Code and Handbook

 Conform to the minimum values for grade E17 in the European Standard EN 13706-3:2002

Property	Units	Longitudinal	Transverse
Tensile Strength	N/mm ²	207	48
Tensile Modulus	kN/mm ²	17.2 (30)	5.5 (14)
Compressive Strength	N/mm ²	207 (200.7 [#])	103
Compressive Modulus	kN/mm ²	17.2	6.9
Shear Strength (in-plane)	N/mm ²	31	,
Shear Modulus (in-plane)	kN/mm ²	2.9 (4.5)	-
Flexural Strength	N/mm ²	207	69
Flexural modulus	kN/mm ²	13.8	5.5
Poisson's Ratio		0.33 (0.33)	0.11

Note: Values in brackets were obtained through resin burn-off tests and micromechanical modelling using the 60 × 60 × 4.5 mm square profile. Value marked with # was determined by the first author via axial compression tests on lengths for failure by flexural buckling.

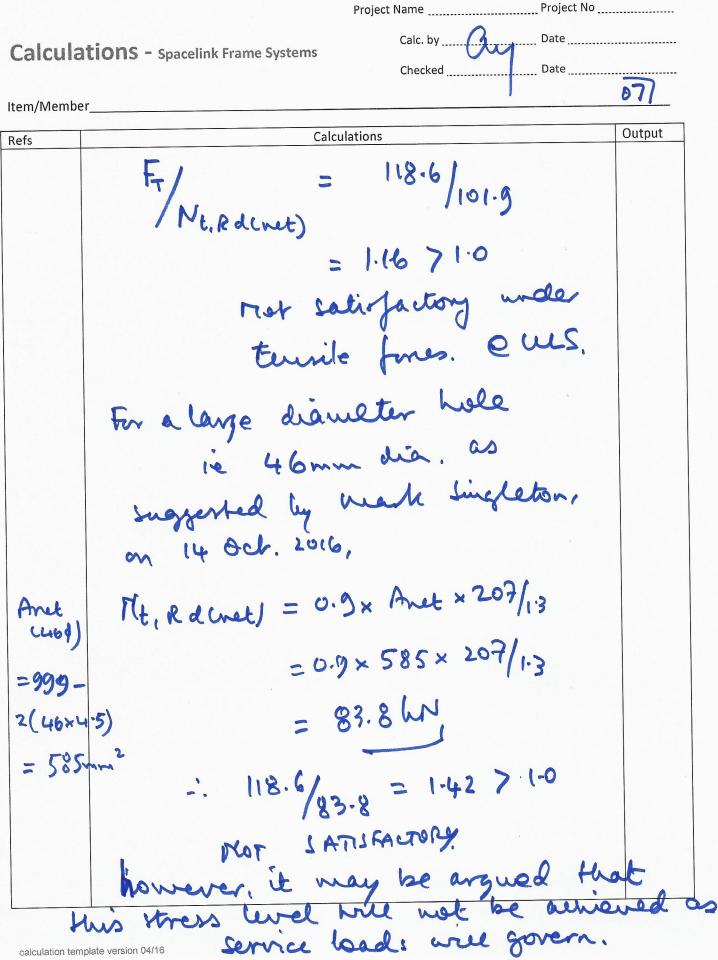
	Project Name	Project No
Calculations - Spacelink Frame Systems	Calc. by	Date
	Checked	Date
ltem/Member		TA8.2

Table 2: Material properties taken from EUROCOMP Design Code and Handbook

Conform to the minimum values for grade E23 in the European Standard EN 13706-3:2002 76 × 76 × 6.35 mm and 102 × 102 × 6.35 square profiles

Property	Units	Longitudinal	Transverse
Tensile Strength	N/mm ²	410	44
Tensile Modulus	kN/mm ²	27	3.5
Compressive Strength	N/mm ²	270	-
Compressive Modulus	kN/mm ²	24	4.5
Shear Strength (in-plane)	N/mm ²	15	• -
Shear Modulus (in-plane)	kN/mm ²	4.2	-
Flexural Strength	N/mm ²	400	115
Flexural modulus	kN/mm ²	14	8
Poisson's Ratio		0.2	0.1

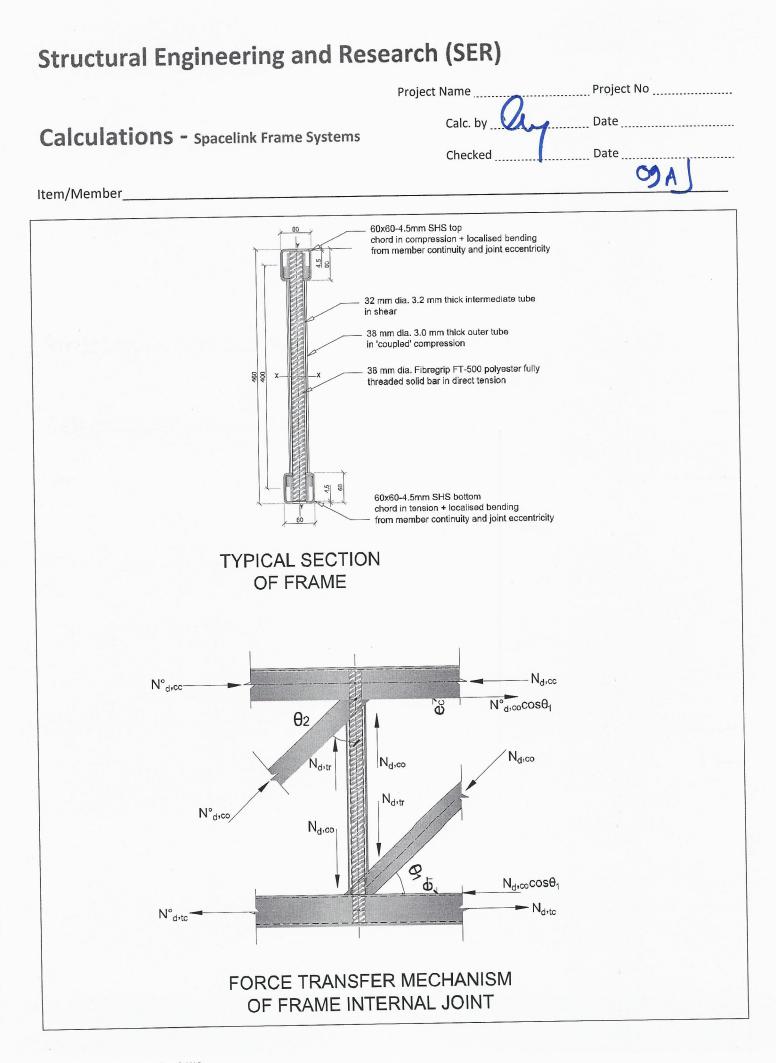
Structural Engineering and Research (SER) Project Name Space Like Project No ST/100 Calc. by Org Date Orf 16, Calculations - Spacelink Frame Systems Checked Date 01 Item/Member LOAD-BEARING CAPACITY of COMPRESSION TO "EUROMP CHORD. DEMAN GUIDE "Assumed pin-jointed" = Ceccentric moment & secondary effects to chord continuity ignored) 1800 Lx= 1200 >> 1800 FF Ly = 400 200 Ly = 400 200 60x60-4.5mm SHS top 38 mm dia. - 3 mm thick CHS in 'coupled' compression + threaded rod in tension chord in compression 9001 38x38-3 or 5 mm SHS diagonal member in compression 60x60-4.5mm SHS bottom chord in tension * denotes position of lateral restraint braced support frame All dimensions are in millimetres COX60 X 4 5 CHI PART ELEVATION OF TEST FRAME GUX60 - 4. Smm SHS. = 999mm² Lxx = Iyy = 516233-E = 17200 mPa fc.o" = 200 mPa. Vm.f = 1.3 cassured) ft.0° = 207 mPa Fig. 002


	P	roject Name	Project No	
Calculat	tions - Spacelink Frame Systems	Calc. by	Date	
Item/Member				02)
Refs	Calculati	ions		Output
Refs	Compressive load = 999 = 153 Nel, $x = \pi^2 \cdot E_0$ Sm, f.	$F_{d} = \frac{A}{x}$ $x = 200$ x 1.3 7 kN J_{x00} L_{x}^{2} $0 = 516233$ 1800^{2} 153.7	-3 ×10 3.7/20.8	Output

		Project Name	Project No
Calcula	tions - Spacelink Frame Systems	Calc. by By Checked	Date
Item/Membe	r		03)
Refs	Calcu	lations	Output
	1.3 = 520.3 Nor, $y = Fd$	$\frac{200 \times 516233}{\times (0.5 \times 400)^2}$ $\frac{1}{1+}$ $\frac{1}{1}$ $\frac{1}{1+}$ $\frac{1}{1}$ $\frac{1}{1+}$ $\frac{1}{1}$ $\frac{1}{1+}$ $\frac{1}{1}$ $\frac{1}{1+}$	

	Project Name	
Calculations - Spacelink Frame Systems	Calc. by	Date
Concurations Spacemik Frame Systems	Checked	Date
Item/Member		04
Refs Ca	lculations	Output
From back	analysis. 1	ettuete
load to ca		
compression c	hard: Hu	<i>s</i> .
assuming t	\rightarrow Fc	
frame compression		
chord is	d=	
restrained at	400	
medal points	Fr	
. Mor, y= Nor, *		M=47.4
= 178.64	N	kilm
K	* 800	Fr= Fc
		+800-800 = 118.6kN
	1 22	2 applied.
	$2P = f_c(d)$	
average.	$P = \frac{118.6(0.4)}{2}$	·)_ 23.7 w
2P	= 47.4 hr Ro	n Lobo,
calculation template version 04/16	rling load to ce	use failure = 47.4 hN ; SF

		Project Name	Project No
Calcula	Ations - Spacelink Frame Systems	Calc. by	Date
ltem/Membe	er		057
Refs	Calcu	ulations	Output
	Sundanlig : wor cause wrige	knig ubl ssion chard	
	<u>4</u>		
	$M = w e_{/8}^2 =$		
		$(118.6 \times 0.4) 8$ $(4.8)^2$	
	w =	16.5 kr/m/8	
	2	16.5/1.425	
	3	11.6hr/m	


		Project Name	Project No		
Calculations - spa	celink Frame Systems	Calc. by	Date		
	,		Date		
Item/Member			C	767	
Refs	Calcı	ulations		Output	
	ENSITE (CAPACITY i	r F		
	TENSUOM		•		
	1 CM SWL				
Dene	à tancion	Nonsitanio	0		
	i cerestin	resistance	σ		
cons	section				
	$M_{t,Rd} =$	A. ft.0°			
	•	Sm, f			
	2	999 × 207 1.3			
		1.3			
	= \	59.1 hN,			
Red	ne tensile	e resistau	e z		
net	cross-sect	ion at hol	les.		
F	L 9 0	$a \rightarrow Fr$			
· · · · · · · · · · · · · · · · · · ·					
		320. Lole top	x loo How		
Anet - Mg	voss - 2(atxt)	say where top			
=99)-2(32×4·5)	Je 4 Sm		Anet	2
				- ((1m	w
	tired (net) = 0.	9 Anet ft. 0/x	= 0.9x7U	* 207/	
		2 00		KN1211	2.6

calculation template version 04/16

	Pr	roject Name Project No	
Calcula Item/Membe	Itions - Spacelink Frame Systems	Calc. by Date Checked Date	B)
Refs	Calculatio	ons	Output
	C 83.8km M	469 = 83.8 × 0.4 = 33.5 hrm	
		= 16.8 hr	
	and working ram		-0.1
	▲	= 23.52 k	
	~ 23.2 KN	close to the	e
		fail ve bee	d g
		the protol	ype.

	Project Name	Project No
Coloulations	Calc. by	Date
Calculations - Spacelink Frame Systems		Date
the us /Manaham		097
Item/Member		
CAPACITY CHECK COMPRÉSSION "ON	xs Far	
1 DU PRESSUO	n BRANCH	members.
4 Q1	AGONALS"	
> Lo = 545	le = 0.75lo.	
L _y = 1200	/	
	100 200 'coupled' compression + threaded rod in tensio	n 60x60-4.5mm SHS top
*X	*	chord in compression
	on	60x60-4.5mm SHS bottom chord in tension
* denotes position of lateral restraint braced support frame All dimensions are in millimetres		
PART ELEVATION OF	×38 - 5 ~ 41.	e
28838- 2 mm ens. or		
$A = 420 \text{mm}^2$	A = 660m	Le le
I = 86380. mm4	I = 12254	
E = 17200 mPa	E =17200	mla
	6	
$f_{40}^{\circ} = 200 \text{mPa}$		
Xmf= 1.3		



	Project Name	Project No
Calcula	in crossic spacetilik i ratific systems	Date
	Checked	Date
ltem/Memb	ber	<u></u>
Refs	Calculations	Output
	CAPACITY CHECKS FOR COMPRESSION DIAGONN	r rcs,
	Compression head Fd= A For 38-3mm stts	A. Faon
	$= \frac{420 \times 200}{1.3}$	
	$= 64.6 \text{ MM}$ $38-5 \text{ MM} = 660 \times 200$ 1^{-3}	= 101.5W.
	$(38.3 \text{ Mas}) = \frac{12 \text{ TE}_{0.2} \text{ Jan}}{\text{Smif} = (Leff)}$) ²
	$= \frac{\pi^2 \times 17200 \times 8}{1.3 \times (0.75)}$	36380 x 545) ²
	Nel = 67.5 kn	
	Nel = 67.5 kn simularly for $38-38-5843$ Nel x.y = $\frac{\pi^2 \times 17200 \times 100}{1.3 \times (100)}$	122540 .75×545) ²
	- 95.8 KNI	

		Project Name	Project No	
Calcula	ations - Spacelink Frame Systems	Calc. by	Date	
		Checked	Date	
Item/Membe	er			61
Refs	Calcu	lations		Output
	Critical buckle Nor. x, y =	Fd Fd I+ Fd/Nel.x.	A	
	· · · · · · · · · · · · · · · · · · ·	64.6		
	= For 38-5mm stas	+ 64.6/67 33.0 hN		
	Noriteig =	95-8 ¹⁰¹ 1+ 101-5/ 94	5.8	
	From France analys the majoinum api	49.3 hr, is using Ou al doed re at = 14.62h	asys hit. gistered N X 8ft	1.425
calculation templ	late version 04/16	= 20.8 hN	K Nor, X.	(33 or 49.3 hs)

	Proj	ject Name	Project No
	tions - Spacelink Frame Systems		Date Date 12
Item/Membe	r		
Refs	Calculation	15	Output
	SHEAR CAPACI	TY CHECK.	
	Nd.c 43° = (0 43° = (1) 43° = (1) 43	Fd.she nodal fore iter	- t Notrc
	Horzontel compo compression fore	4 = 20.8 c = 20.8 c	m 43°
	table remined by internediate	Fulle	12 - 3. Zunn Sinchi

	P	roject Name	Project No
Calculatio	ONS - Spacelink Frame Systems	Calc. by	Date Date
item/weinber			
Refs	Calculati	ions	Output
Refs	$V_{Rd} = A_{0}T$ $A_{v} = 2A_{frr}$ $A_{v} = 2\times (\pi d)$ $A_{v} = 2\times (\pi d)$ $A_{v} = 174 \text{ mm}^{2}$ $V_{Rd} = 174 \times 10^{4} \times 10^{4}$	veristance /8mg 12 - ([di ²)/1 31/130 ATTS FACTORY]	J 32mm - Sun Frick

		Project Name	Project No
		Calc. by	Date
Calculat	CIONS - Spacelink Frame Systems	Checked	Date
ltem/Member_			157
Refs	Calcu	llations	Output
	FRAME DEFI	E UTON (Ba	sed on Eq. 1)
	$A_0 = 420$ mm ²	32mm.¢.	
	$Ar = b44 mm^2$	-24m	m threader vod
	k =		
	1+ 4-97×7		4.93 × 7.99 € 7 644 × 4800 2× ton 67°
(03 ¹ 0=	420 × 480	2 x (0) ² 47° 5m47°	
$\left(\frac{1}{2}\right)$	k=	11.98 + 0.025	= = 0.874. (.
	kE= 0-874×1720	nPa = 1502	zorla.
Closed	$\therefore \delta = \frac{Pa}{Pa}$	(3L ² -4)	a) huited
form ce	mbe 24 km	510	7250
used predict H	1° -: 4800 - 1	(2000) ((3*1	(2000))
deforme	tion of -	+(15027) Io . P= 6.52E-5I	$_{0,} = 5.2 \text{ km} (9.5)$
calculation templ	qualians. Coupare	d to 20.8 mm recorded i	e &= 19-2m- i exp. 2p= 10-4, bal

Calcula	Project Name Project No Calc. by Date Date Date Checked Date
ltem/Membe	l5A(
Refs	Calculations Output
1	FRAME DEFLECTIONS (Based on Eq. 3)
	$J_{E} = \frac{J_{o}}{(1 + kJ_{o})} k = 12 \text{ factor}$ $Q = 43^{\circ}$
(- m20)	$A_{S} = \begin{pmatrix} cos \Theta \\ -\frac{1}{4} & c$
5.1 20 - 2 (3	$ \begin{aligned} & 52(43^{\circ}) = 0.45 \\ & 5(1)^{\circ} = 0.68 \\ & J_{E} = \frac{J_{\circ}}{1 + \frac{12}{12}} \\ & 1 + \frac{12}{12} \\ & 17.3 \times (4800)^{2} \end{aligned} $ $ \begin{aligned} & A_{S} = \frac{0.731}{0.00623} \\ & A_{S} = \frac{117.3 \text{ m}^{2}}{0.00623} \end{aligned} $

	Project Name	Project No
Calculations - Spacelink Frame Systems	Calc. by	Date
Spacemic rune systems	Checked	Date
Item/Member		150
Refs Calcu	lations	Output
.: S = Pa 24kESA = Pa 24E =) P= 4400 2P= 8.8 hr aemonstratin alogting Eg ogreenent	$(3l^2 - 4a^2)$ $(3l^2 - 4a^2)$ I_E $N \simeq 4.4h$ g = 8.5kN g = 8.5kN g = 8.5kN g = 8.5kN g = 8.5kN h = 1000 between	$=\frac{4800}{250}$ N N N N N N N N N N N N N N N N N N N
theory and	l'experimen	ital
pesuets.		

- P(1) The deformation of a member shall be such that it does not adversely affect its proper function or appearance.
- P(2) The sum of all relevant deformations due to short and long term loading actions shall not exceed the maximum allowable deformation.
- (3) Deformations should not exceed those which can be accommodated by other connected elements such as partitions, glazing, cladding, services or finishes. In some cases limitation may be required to ensure the proper functioning of machinery or apparatus supported by the structure or to avoid ponding on flat roofs. Vibration may also require limitation as it can cause discomfort or alarm to users of a building and, in extreme cases, structural damage.
- P(4) Appropriate limiting values of deflection taking into account the nature of the structure, finishes, partitions and fixings, and the function of the structure shall be agreed with the client or taken from Table 4.2.
- (5) The conventional engineering equations for bending of isotropic, homogeneous beams may be used for composite materials. For simple beams they take the form:

Deflection (bending) = $k_1 F_v L^3 / (EI)$

(4.12)

where:

EI=appropriate flexural rigidity of the full section

F_v=total vertical load on the beam

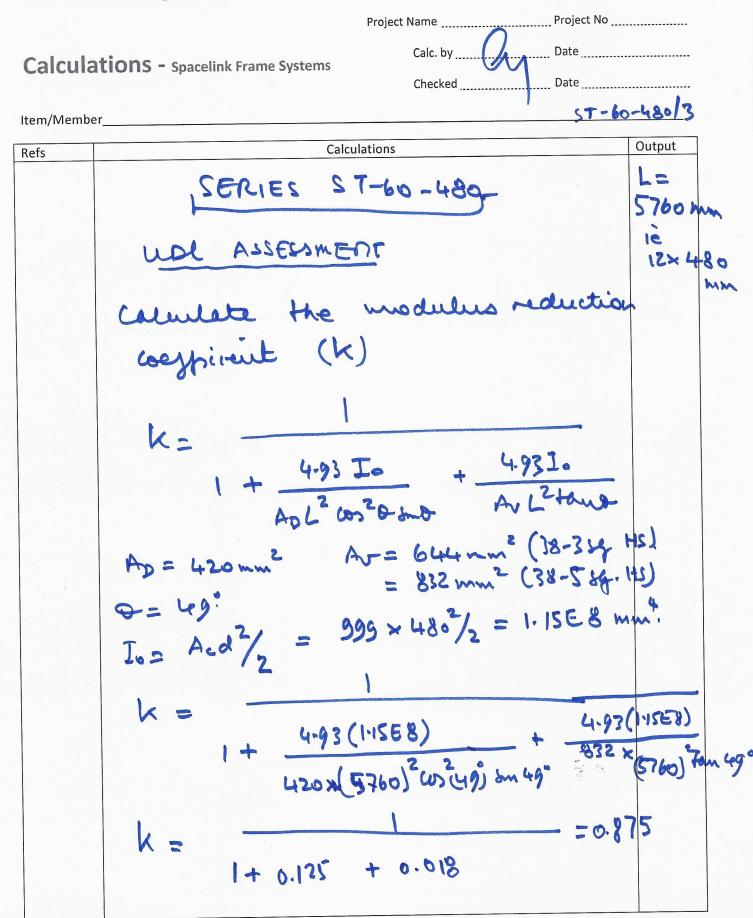
 k_1 =a factor depending on the type of loading and the end conditions. A set of factors is given in Table 4.3.

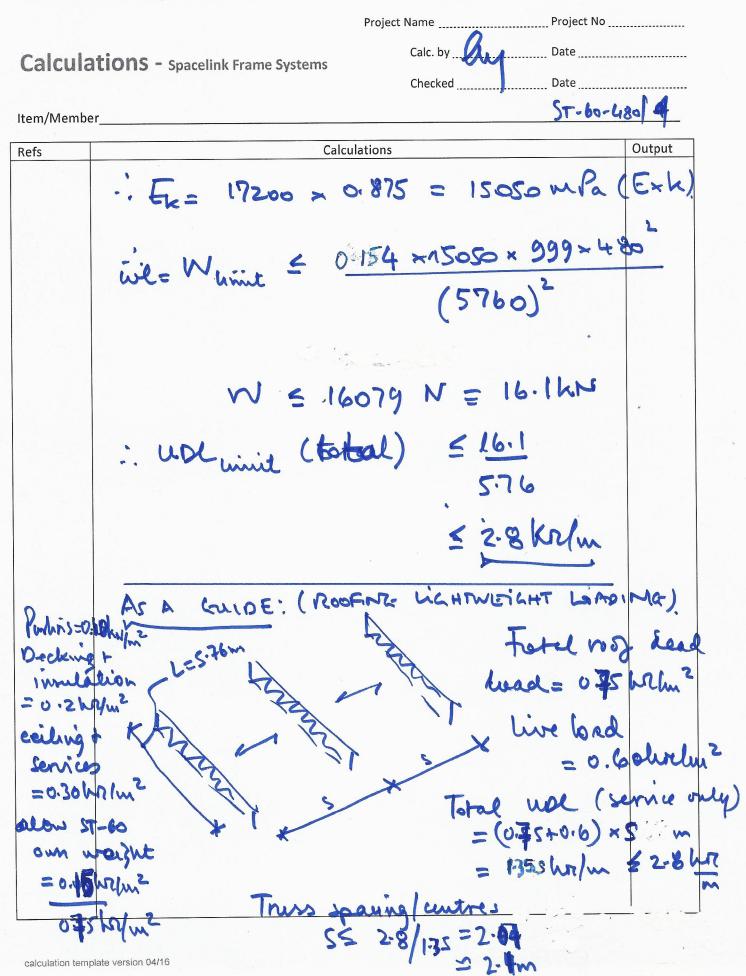
Table 4.2 Recommended limiting values for deflection.

Typical conditions		<i>Limits (see Figure 4.1)</i>	
	δ_{max}	δ2	
Walkways for occasional non-public access	L/150	L/175	
General non-specific applications	L/175	L/200	
General public access flooring	L/250	L/300	
Floors and roofs supporting plaster or other brittle finish or non-flexible partitions	L/250	L/350	
Floors supporting columns (unless the deflection has been included in the global analysis for the ultimate limit state)	L/400	L/500	
Where δ_{max} can impair the appearance of the structure	L/250	_	

Table 4.3 Selected values for k₁ and k₂.

End conditions	Loading type	K_1	<i>k</i> ₂
Cantilever	Point load at end	1/3	1
Cantilever	Uniformly distributed	1/8	1/2

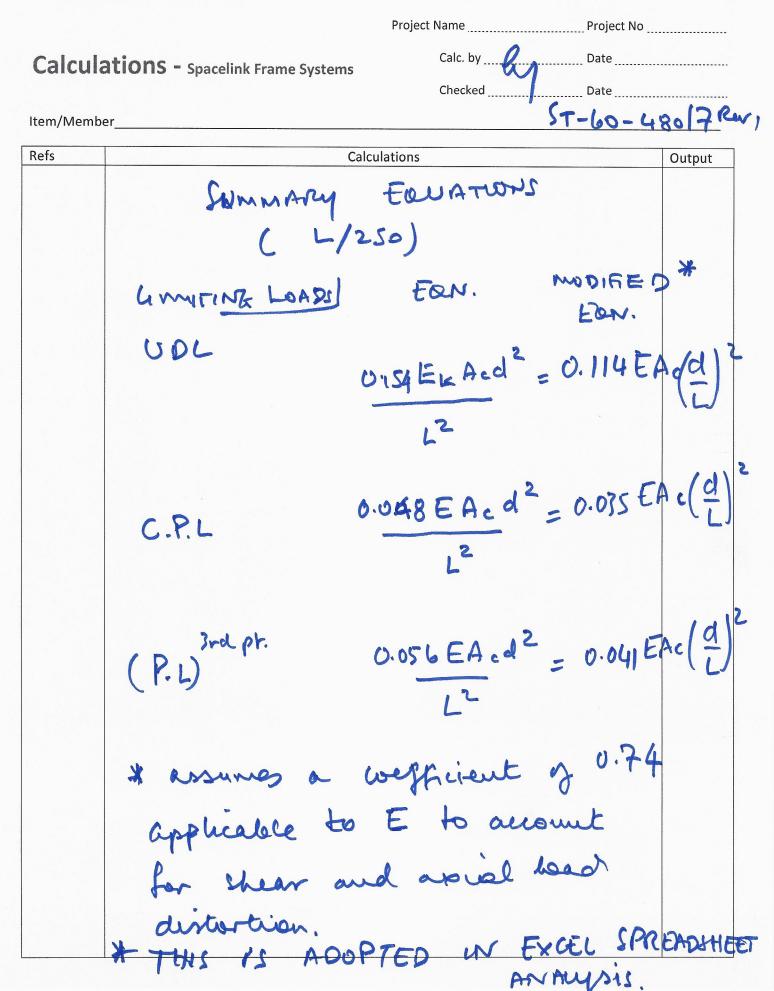

Structural Engineering	and Research	(SER)
-------------------------------	--------------	-------


	Project Name	Project No
Calculations - Spacelink Frame Systems	Calc. by	Date
	Checked	Date
Item/Member		

PROPOSED SPACELINK TRUSS-FRAMES DEMONSTRATION CALCULATIONS SERIES ST60

		Project Name	Project No
Calculations - Spacelink Frame Systems		Calc. by	Date
			Date
Item/Member			ST-60-480 1
	DEFLEGION AS	germent & 1	-2-22NICAD
	12 EQUAL BAYS AT 480 mm crs	= 5760 mm	
480	480 480	480 480 60x60-4.5mm HS3	480 480 STOP CHORD Are = 999 mm
λ.	2 38x38-5mm HSS (DIAGONALS TYP)	38-5mm TUBE (VERTICALS TYP) 60x60-4.5mm HS	S BOTTOM CHORD ABC = 999 mm
~D:	420mm 6000	Are GUUM	e tool
	GENERAL ARRANGEMENT OF SPACELINK	1R033 FRAME - 31-00-400	w total boad
D. Land	CASE, : UDL		
		P _n	÷
	5wTl 4		L
Smax =		1	đ
	384 EL I.		
2) LOAD	CASE, : CENTRA	L BINT LOAD	LP
Smajo =	= R ³ /48ELI.	-	
3) Linto			Ho Ho
S	= 23 PL3 644C T	+ · · ·	L L
way	6486LIP	1	

Project Name _____ Project No _____ Calc. by _____ Date _____ Calculations - Spacelink Frame Systems Checked Date _____ 57-60-480 2 Item/Member_ Calculations Refs Output FOR UDL CASE. $\frac{5wl^4}{384E_kT_0} = \frac{5wl^2}{384E_k}$. himiting deflection of Jo= A 1250 5WL³/384E_hIo W < 0.154 Ek Acd --[2] Ex= reduced modulus of electricity to account for thear and axial distortions Ac = cross-section area of a chord d = effective truss deprh 2 truss effective span.


	Project Name Project No
Calcula	Calc. by Date Date Date
Item/Membe	er
Refs	Calculations Output
	FOR CENTRAL POINT LOAD
	CASE
	Smap = PL ³ limited to L 48Ek Eo 250
	$= P = 0.048 E_{\rm K} A_{\rm c} d^2/2$
	$\frac{P_{=}}{\frac{E_{\rm L}A_{\rm c}d^{2}}{208L^{2}}} - \dots [3]$
	. For the same truss ST-60-480
	service central point had allowable
	Pallowable = 15050 × 999 × 480 ² 20.8 × (5760) ²
	ESter cumparanolite
	to apply point heads)

-

Calculations - Spacelink Frame Systems	Calc. by Date	
Refs Ca	alculations	Dutput
POINTS. June = 23/ 648 PL Ex 17-8 For the sam allowable bo	A_{cd}^{2} B_{c}^{2} e huss ST-60-480 ad e third points $\frac{15050 \times 999 \times 480^{2}}{17.8 \times (5760)^{2}}$ 5.9 hN	

5.76m

		Project Name	Project No		
Calculations - Spacelink Frame Systems		Calc. by	Date		
Calcula	CIONS - Spacelink Frame Systems	Checked	Date		
ltem/Member			T- 60-48	0/7	
Refs		lations		Output	
INCIS		and a second		Gutput	
	DEFLECTION L	EOUMUN	5		
	DEF EURON L	AMIT TO S	PAN		
			250		
	LOAD CASE	VALUE	s Reduce	red	J.
	UNIFORMLY DISTRIBUTED	0.154 6	Ady	131 EAd	Ê
	LOD (UDL) (W)	U134 Ck			
	LOAD (UDL) (W) in [kN]210"	L 2		L	
	CENTRAL POINT				.2
		0.048 Ek	Acd ² 0	CAI EAC	d
	LUAD (P) IN,	. 2		12	
	[KN] x10-	L		h	
	FOINT LOADS				2
	AF 300 Davan	0.056 Ek A	ed 0	1048 EAC	,d,
	CD/M	3 12		,2	
	AT SRD POINTS (P) [KN] *	0 5		L .	
	from parametric				
	•				
	is appropriate				
	gueral modul	us reducti	en		
	coopjuent k	- 0.85 × Las	prelimi	ay	
	william k		1952127	0	
	design, hence l	= k(17.2) (100 =)	NOUR TO	haract	2
* den	tes reduction allowed	5	HELCAR -	-762764	ALS
calculation templa	te version 04/16 for.	Ek(27) hPa =	LL:12 Lic	102×102	SHS

	Project Name Project No
Calculatio	Calc. by Date Date Date
ltem/Member	57-60-580/1
Refs	Calculations Output
	APPLICATION OF LUMITING LOAD EQUATIONS:
	LOAD LASE (VDL).
	JERIES 15T-60-580 (L= 12×580)=6960
REF TO EXER SPREAD SHEET FOR CROSS- JECTION PARAMERORS	$W_{LIMIT} \leq \frac{0.131 \text{ EAc } d^2}{L^2}$
	< 0.131 × 17200 × 999 × 580 ² (6960) ²
	$W_{4m_{TT}} \leq 15,632 N \leq 15.6 kN.$
	w = 15.6/6.96 = 2.24 hN/m

	Project Name Project No
Calcula	Calc. by Date Date
ltem/Membe	1- 75 580/1
Refs	Calculations Output
	SERIES ST-75-580 (L=12×580=6960)
	Whinit < 0.131 EAc d ²
	L ²
	E= 27000 mPa (see table 2)
	$A_c = 1769 mm^2$
	$W_{\text{LIMIT}} = 0.131 \times 27000 \times 1769 \times 580^2$
	(6960)2
	Wumir E 43,456 N E 43.5hN.
	Wint = 43.5/ 5 6.24 hr/m
	Frame having (control 20
	Tan in the 1/5= Roof total load (1.15hoghe
N	white sit winit
try	mm : /s= 135/6.24
	± 1 K $S = 4.6m \simeq 4.6m$