 -,

$\therefore \mathrm{S}_{1} 10^{\mathrm{m}}=\mathrm{C}$ bile
 קراهر
(v)

/1, Jo
, J, w $j(6)$ siv

Cob 2 -

 . Fipsthel (U),

(.) $K=1600 \mathrm{~N} / \mathrm{maj}\rangle=\mathrm{cos} 10 \mathrm{~kg}$ p?

 (
 grib.
$(58$ sprout $)$

"rboutí'
157 Mparict

C: $\omega=18,22$ rats Cew @Academic Librany

(gुilacoú) 188 dedarfüh)

$$
\begin{aligned}
& \text { e: } \quad \vec{v}_{0}=\frac{1}{2} v_{0} \\
& \text { ' نुula जü') } \\
& V^{\prime}=\frac{3}{4} V_{0}
\end{aligned}
$$

बiligivitas $=12.5 \%$
@Academic Library

insciatores.

(14 , 4 dision)

Lis saliás

$$
\text { E. } \tan _{\mu_{1}-1}^{\mu_{1}} \leqslant \theta \leqslant \frac{n}{2}
$$

'phecaíl 172 ctd? mutu

\qquad C. V.S.92 At/ 75° @ Acadlemic: I inrany
@Academic Library

$$
(a=f(p)) \sim V<p
$$

 rpm alev，En，（ ＇

－تlle：JひOND
ご小

$$
\begin{aligned}
& \left\{\begin{array}{l}
v_{t}=\rho \dot{\theta} \\
a_{n}=\rho \dot{\theta}^{2} \\
a
\end{array}\right. \\
& e=\frac{\left(v_{B}^{\prime}\right)_{n}-\left(2 e_{n}^{\prime}\right)_{n}}{@\left(Q_{a}\right)} \\
& =(\cos \pi) \text { こね }
\end{aligned}
$$

$$
\begin{aligned}
2, & a_{1} \\
=\frac{2}{7} & \frac{p}{4}=1 \\
a_{1} & =\frac{22}{7} \frac{p}{n}
\end{aligned}
$$

'Şak wivi

e.

$(88,14$ prate)
 8-1.7

 - $2.5 \mathrm{~m} / \mathrm{se}=, ~ C C, A$,
 ~トT OB, BD
 ノDC

 $\left(\begin{array}{c}\bar{y}_{ \pm} \\ \omega_{1}\end{array}\right.$

 $\because, r=i+1(e=3 / 4)-L_{1}$
 2
\vdots
0

$L \prod_{B}$
Eucuty $\sum m_{A}=\Sigma \mu_{A} \quad f \times r=\frac{1}{r} m r^{r} \alpha$
$\Rightarrow f=\frac{1}{r} m r \alpha_{1} \quad a_{x}=r \alpha_{1}$

- $P L=\frac{1}{\pi} m L^{r} \alpha+m\left(r \alpha_{1}-\frac{L}{r} \alpha\right) \frac{L}{r}$

e $\frac{1}{r} m r^{r} \alpha_{1}+\rho L=$

$$
A x+P=\frac{m}{2} \alpha \frac{l}{r} \alpha-m a_{x}
$$

es \quad Y $=\frac{1}{1 x} m Z_{\alpha}+m\left(-a_{x}+\frac{L}{r} \alpha\right) \frac{1}{r}$

C $\frac{8}{1 r} L \alpha$

$$
a_{x}=\frac{1}{r} L \alpha-\frac{p}{m}=r \alpha_{1}
$$

- \&Acaddemis, Library

$$
m g-T=m a_{y}
$$

$$
\begin{aligned}
& T-M g=M\left(\frac{L}{r} \alpha+a_{y}\right) \\
& -T \frac{L}{7}=\frac{L}{r} M L \alpha \\
& T=-\frac{1}{4} L M \alpha \\
& \left(-g+a_{y}\right)=-\frac{1}{4} L \frac{\mu}{m} \alpha \\
& a_{y}=\frac{L M}{r m} \alpha+g \\
& -\frac{1}{r} M L \alpha-M g=M \frac{L}{r} \alpha+\frac{L M}{r m} \alpha+g
\end{aligned}
$$

$$
\text { i) } \sum_{M_{A}}=\sum_{M A}^{M} \quad \Rightarrow K \theta+\frac{K L^{r}}{T^{r}} \theta+K L_{\theta}^{r}+K L^{\zeta} \dot{\theta}
$$

$$
=-\frac{1}{N} m L^{r} \ddot{\theta}
$$30indiker18

$$
T_{d}=\frac{r \pi}{w_{d}}
$$

$$
\begin{aligned}
& \text { a) } \omega=\mathrm{F} \cdot \mathrm{x} \times \pi \times \frac{1}{5}=F \pi \\
& \frac{k N}{T}=0, \rightarrow T=\frac{1}{r} \text { Fraidi हो }
\end{aligned}
$$

$$
\theta+\frac{2}{l} \theta=0
$$

$1,2-31, T$
$m \ddot{x}+k x+c \dot{x}=$.
$\dot{x}+\underline{\frac{k}{m}} x+\frac{c}{m} \dot{x}=$
$r \zeta_{m_{n}}=\frac{c}{m} \quad \operatorname{c\zeta } \omega_{n}=c$

$$
\begin{aligned}
& \lambda=A_{1} e^{\lambda_{1} t}+A_{r} e^{\lambda t} \\
& A_{1}=\sin _{n}\left(-\zeta \pm \sqrt{s^{3}-1}\right) \\
& x=c e^{-S \omega_{n} t} \sin (6 d t+\not) \quad S<1 \\
& w_{c}=\omega_{n} \sqrt{1-S^{2}} \quad \tau_{d}=\frac{r_{x}}{\omega_{d}} \\
& \ddot{x}+r \operatorname{S} \omega_{n} \dot{x}+\omega_{n} x=\frac{\Gamma \sin x t}{m} \\
& \text { - } x^{-}+r S \omega_{n} \dot{x}+v_{n} x=\frac{k b \sin n t}{m} \\
& \ddot{x}+w_{n}^{r} x=\frac{\text { F. } \sin \omega t}{w}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2.b } \\
& S=1 \quad \omega \\
& \square 10
\end{aligned}
$$

$$
\begin{aligned}
& \text { @Academic _kibrary }
\end{aligned}
$$

$$
p L=\frac{1}{1 r} m L^{\prime} \alpha_{r}+\left(\frac{L^{\prime}}{r} \alpha_{r}-m r \alpha_{1} \frac{L}{r}\right)
$$

$$
P-i_{n}=m\left(\frac{L}{r} \alpha_{r}-r \alpha_{1}\right)
$$

$f v r=\frac{1}{r} m \gamma^{\gamma} \alpha_{1}=\frac{1}{r} m r \alpha_{1}$

$$
A_{x}-\frac{1}{r} m r \alpha_{1}=m r \alpha_{1}
$$

$$
\begin{aligned}
& p-\frac{1}{r} m r \alpha_{1}=\frac{m L}{r} \alpha_{r}-m / \alpha_{1}+m y \alpha_{1} \\
& L P=\frac{1}{r} m r L \alpha_{1}+\frac{m L^{r}}{r} \alpha_{r}=\frac{1}{1 r} m L^{r} \alpha_{r}+\frac{1}{r} m L^{r} \alpha_{r} \\
& \text { n/r } V \alpha_{1}=\left(\frac{1}{r} m L^{r}-\frac{1}{r} m L^{r}\right) \alpha_{r} \\
&=-\frac{1}{4} m r \alpha_{1} L \\
& r
\end{aligned}
$$

$$
\begin{aligned}
p L= & \frac{1}{r} m L a_{n}+\frac{m L^{r}}{r}\left(\frac{+4 a_{n}}{L}\right) \\
& =\frac{1}{r} m L a_{n}+\frac{-m L^{3}}{r} a_{n} \\
& -\frac{\Delta}{r} m k \quad-\frac{p}{r^{2}}=a_{\beta}
\end{aligned}
$$

$$
x=\frac{\frac{r}{r} \frac{P_{n} k}{K L}}{\left[\left(1-\left(\frac{\omega}{w_{n}}\right)^{r}\right)^{r}+\left(r S \frac{\omega}{\omega_{n}}\right)^{r}\right] \frac{1}{r}}
$$

$$
P_{m}={\underset{\tau}{l}}_{m} r \omega^{r}=
$$

 $C=b^{2} x^{\circ}$

 025 kg (er w in in w 10 kg eg N

$$
\because 4, s
$$

$@ A c a d e m i c _L i b r \partial / 3 y_{2} \omega_{n}$

$$
\begin{aligned}
& =\dot{r} \quad v_{t} * \dot{\rho} \\
& =r \theta \quad .2 \quad a_{n}=\rho \dot{\theta}^{2} \\
& e=\frac{\left(v_{B}^{\prime}\right)_{n}-\left(v_{A}^{\prime}\right)_{n}}{\left(v_{A}\right)_{n}-\left(v_{B}\right)_{n}}=(\operatorname{cosin} t)=1, \cos \\
& =r-r \dot{\theta}^{2} \\
& a_{t}=\rho \ddot{\theta}+\dot{\rho} \dot{\theta} \\
& I_{\text {bar }}=\frac{1}{12} m L^{2}, I_{\text {Disk }}=\frac{1}{2} m r^{2} \\
& =r \ddot{\theta}+2 \dot{r} \dot{\theta} \\
& g=10 \mathrm{~m} / \mathrm{sac}^{2} \\
& I_{\text {sphere }}=\frac{2}{5} m r^{2} \\
& =\vec{\omega} \times \vec{r}+\vec{v}_{\mathrm{rel}} \\
& =\vec{\omega} \times \vec{r}+\vec{\omega} \times(\vec{\omega} \times \vec{r})+2 \vec{\omega} \times \vec{v}_{\text {rel }}+\vec{a}_{\text {rel }} \\
& \left.t=e^{-\xi \omega_{n} t}\left(A \sin \omega_{d} t+B \cos \omega_{d} t\right)+x_{m} \sin (\omega t-\phi)\right) \\
& \left\{\begin{array}{l}
x_{m}=\frac{P_{0} / k}{\sqrt{\left(1-\beta^{2}\right)^{2}+(2 \xi \beta)^{2}}} \\
\operatorname{t} \phi=\frac{2 \xi \beta}{1-\beta^{2}}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \ddot{r}=r \dot{\theta} \\
& \int_{0}^{v^{\prime}} v \cdot d v=\int_{0}^{2} r^{r} d r \quad a \cdot d s=v i v \\
& \Rightarrow \frac{v^{-r}}{r}=\theta^{r}\left(\frac{(r r)^{r}}{r} \cdots\right) \Rightarrow N^{\prime}=\gamma r \dot{\theta}=\operatorname{rrc} \\
& \text { जits } \\
& \text { Nus ba } \\
& \text { かっりりパ } \\
& \frac{-1}{r} \times g \times t^{r}=-1 / A \\
& \Rightarrow t^{r}=\frac{11 \wedge x 5}{g} \\
& t=\sqrt{\frac{5 \pi r}{g}} \text { anyer; } \\
& x=V t+x=r \pi \sqrt{\frac{V V}{g}}
\end{aligned}
$$

$$
\begin{aligned}
& a_{\theta}=r \ddot{\theta}+r \dot{r} \dot{\theta}^{r} \\
& \dot{\theta}=\quad \underset{\sim}{c} \\
& \text { v. } 2 \pi \sqrt{8} \\
& \begin{array}{l}
x=V t+x= \\
=\sin \sqrt{t}=g t z
\end{array} \\
& \stackrel{i}{\square} \\
& \cdots \\
& \text { - اسْ } \\
& \frac{C_{t}}{d t}=\operatorname{sic} d s e l e v d t
\end{aligned}
$$

$$
\begin{aligned}
& \text { r. } \\
& y=-\frac{1}{x} g t^{x} \\
& x=k @ A \text { cademic } y=\frac{g}{\frac{y}{r}{ }^{r}} x^{r} \\
& \text { (A) Al }
\end{aligned}
$$

$=$ 坔

 $m_{A}=50 \mathrm{~kg}, m_{B}=m_{C}=25 \mathrm{~kg}$

 $\approx \ldots \sin , 1, \frac{1}{n}$ is she
 - asizu ra revilolacis
 - ňersin rog (ins
@Academic _ Ibrayy

$$
\left.\begin{array}{l}
{\left[\left.\begin{array}{l}
N-m g=-m a \sin \theta \\
-f=m r \alpha+m a \cos \theta \\
f \times r=I \alpha
\end{array} \right\rvert\, \theta\right.} \\
\\
M_{g} \sin \theta+N \sin \theta+f \cos \theta=M a
\end{array}\right]
$$

$$
\begin{aligned}
& \left.p+A_{n}=\operatorname{mog}-a_{n}+\frac{l}{r} x\right) \\
& \rho+A_{x}=\left(-\frac{1}{r} L \alpha+\frac{p}{m}+\frac{L}{r} \alpha\right) \\
& \rightarrow+\Lambda_{x}=\frac{1}{4} L \alpha+\frac{p}{\rho}-p \rightarrow \frac{1}{p}\left(\alpha-\frac{1}{m}\right) \\
& =\sum_{i} m\left(\frac{1}{n} L \alpha-\frac{p}{m}\right) \\
& \text { (1) } \frac{1}{3} L \alpha+\frac{p}{m}=\frac{1}{r} m L \alpha-\frac{p p}{r} \\
& \text { 0- } \left.\frac{\frac{P}{r}+\frac{1}{r} p}{\frac{1}{2} m L-\frac{1}{4} L}=4 \frac{1}{r} m L-\frac{1}{5} L\right) Q\left(\frac{4}{r}+r\right)=\alpha \\
& \frac{\rho\left(\frac{r}{m}+1\right)}{e m-1}-\frac{\rho}{m} \\
& =x \\
& \text { Guis } 6 w+\text { guisGus = } \\
& \left.\theta\left(\theta_{\lambda} u: \gamma u+\sigma_{\lambda}>c\right\rangle \omega+\frac{1 \omega+\frac{1}{I}}{\theta_{\lambda}\langle \rangle \Lambda_{\lambda} \omega}-w\right)
\end{aligned}
$$

1

$$
\text { A,uis but - gus } 6 \omega=\theta+c)(\theta s c) 0 u+
$$

$$
\Rightarrow \int_{0}^{s} d s=\int_{0}^{x n \sqrt{\frac{v \pi}{2}}} \sqrt{1+3 A x} d x=\left[\frac{1}{1 A}(1+\Delta x)^{\text {F }}\right) .
$$

*

$\int \sqrt{1+\cos x} d x=\frac{1}{4}(1+\operatorname{tax})^{\frac{9}{4}}$
 $\underline{-}$

$y=h: \Delta b \sin \frac{9}{r}$

$$
x=b \cos \frac{\theta}{r}
$$

©

$$
\Rightarrow d T+d V=d v
$$

$$
\begin{array}{r}
d T=\left(\frac{1}{r} m v^{r}\right)=m v d v=m a d y \\
v d v=a d y
\end{array}
$$

$$
\begin{equation*}
=m a\left(\frac{\Delta b}{r} \cos \frac{\theta}{r} d g\right) \tag{1}
\end{equation*}
$$

$$
\begin{align*}
d v & =d(m g h)=m g d y=m g\left(\frac{\omega b}{r} \cos \frac{\theta}{r} d \theta\right) \tag{P}\\
d u & =p d x=p\left(-\frac{b}{r} \sin \frac{\theta}{r} d \theta\right) \sigma \\
\Rightarrow & m a\left(\frac{\partial b}{r} \cos \frac{\theta}{r} d \theta\right)+m g\left(\frac{c}{r} b \cos \frac{\theta}{r} d \theta\right) \\
\Rightarrow & =-p p\left(-\frac{b}{r} \sin \frac{\theta}{r} d \sigma\right)
\end{align*}
$$

(a)Academic Library

