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CONSULTING EDITORS’ FOREWORD

McGraw-Hill's University Series in Civil Engineering has been planned to
make available to students and lecturers a number of textpooks that reflect
the philosophy of the Consul}!ing Editors and the Company, namely that the
=!11phnsis of engineering degree courses should be on the fundamental prin-
ciples. Therefore, the primary aim of the books in the Series is to develop a
sound understanding of the subject matters and an ability to apply the
relef’s’nt scientific principles to the solution of engineering problems. Where
famlll_arily with a Code of Practice or an empirical method is desirable, the
technical background is explained, so that the student understands the why
-5 well as the whar and the how of the subject.

) The Mechanics of Soils, by Atkinson and Bransby, is the first book in the
Series, It explains in simple terms the thearies of critical state soil mechanics
anfi conveys a fund I und ding of the hanjcal behaviour of
soils. _Il brings together in a unified manner much of what previously exists
only in the form of lecture notes or technical papers, and serves also as a
useful introduction to Scholleld and Wroth's Critical State Soil Mechanics,
published earlier by McGraw-Hill. :

:I'he Consulting Editors wish to thank their colleagues in the universities
i and. industry for their valuable advice concerning the development of the
Series. In particular, they wish to record the exemplary care and attention

devoted to the Series by McGraw-Hill's Editor Stephen Wellings and his
predecessor lan Pringle.

F. K. KONG and R. H. EVANS

PREFACE

0
y

This book is about the mechanical behaviour of soil when it is compressed,
sheared, pr when water flows through it. It covers the first half of the essential
soil meclanics content of a degree course in civil engineering.

The k is based on material taught in undergraduate coutses at

' Cambridge University for the past decade and this material in turn flows

from fundamental research into theories of soil behaviour which has been
in progress in Cimbridge and elsewhere for over twenty years. The book
concentrates on the mechanical behaviour of saturated soils; it does not
cover the practical aspects of geotechnical engineering. Although the book
is primarily aimed at students taking first degree courses in civil engineering,
it should also appeal to postgrad tudents wishing for a simple intro-
duction to recent work on the stress—strain behaviour of soils,

Ours is a modi pproach to soil hanics, and our purpose in this
book is to convey a fundamental understanding of the mechanical behaviour
of soil. Our treatment is intended to be simple and ially non-mathe-
matical, and we develop our ideas of soil behaviour by observing the response
of clay and sand soils to loading in laboratory tests. We believe that our
approach to soil behaviour through the theories of critical state soil mechanics
nat only provides a simple and logical method of teaching the subject, but
also forms the basis of rational design methods. Although the discussion of
soil behaviour is developed against a critical state framework, we draw
into our discussions at appropriate points the ideas of the Mohr-Coulomb
strength and Terzaghi consolidation theories familiar in classical soil
mechanics.

We are conscious that we have drawn a bold picture using a broad brush
and perhaps a few of our interpretations may be controversial. Our concern,
however, is to develop a simple framework of ideas within which we may
view the mechanical behaviour of soil under a:wide range of states of
compression and shear. To do so we must make bold generalizations and we
must accept that modifications of detail may be necessary to account for
particular vil conditions found in nature. Our generalizations are of the
Lind familiar to engineers: for ple, civil engineers are used to assuming
that steel is an ideal elasto-plastic material or that concrete cannot sustain
tensile stress. }

As the book develops we will find that the concepts of consolidation,
compression, yielding, and failure of soils can be drawn Logether into a single
unifying framework. It is this unification of ideas which is the cornerstone
of the critical state theories and which provides the foundation for a proper
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understanding of soil behaviour. We hope that by adopting an essentially
non-mathematical approach we are able to convey clearly the underlying
simplicity of soil behaviour.

The first five chapters of the book introduce basic ideas concerning the
nature of soil, states of stress and strain in soil, and laboratory testing
techniques. The topics of seepage, compression, and consolidation are
introduced in Chapters 6-8 and an extended discussion is given of the shear
behaviour of clays and sands in Chapters 9-12. A distinction is made b
clastic and plastic strains in Chapter 13, and a simple introduction given to
the Cam-clay stress-strain theory for soil. This Chapter is intended as a link
between this book and Critical State Soil Mechanics by Schofield and Wroth
which includes a detailed mathematical treatment of the Cam-clay theory.
The ideas di d in Chapters 10-13 are related to ine testing and
design in Chapters 14 and 15. The book closes with Chapter 16 which is
intended, very briefly, to relate the topics discussed both to engineering
practice and to current research work.

We assume that our readers are familiar with the basic principles of the

hanics of deformable bodies (including simple elasticity and plasticity
theory), and the analysis of states of stress and strain using the Mohr's
circle method. We assume also that, as part of an undergraduate course in
soil mechanics, a student will have the opportunity of performing standard
laboratory tests such as permeameter, shear box, triaxial, and cedometer
tests, and determination of the Atterberg limits and gradings of soil samples.

We have adopled a nomenclature similar to that in Critical State Soil
Mechanics by Schofield and Wroth, but with minor differences. In particular,
we have used the name ‘Roscoe surface’ for the state boundary surface on
the wet side of critical corresponding to the ‘Hvorslev surface’ on the dry side.
This nomenclature follows standard usage in powder technology and
acknowledges the part played by K. H. Roscoe and his colleagues A, N.
Schofield and C. P. Wroth in extending the classic work of Rendulic and of
Henkel.

We wish to acknowledge that the research which led to the theory of
critical state soil mechanics was carried out by others and in particular by the
late Professor K. H. Roscoe and his students and colleagues in the University
Engineering Department, Cambridge. We consider ourselves fortunate to
have been members of the Cambridge Soil Mechanics Group. We are grateful
to all those, in Cambridge and elsewhere, with whom we have discussed the
behaviour of soils and who have helped to clarify our ideas. We are particu-
larly grateful to Dr C. P. Wroth, to Dr D. M. Wood, and to Dr D. M. Potts
for reading and criticizing parts of our book and to Ruth Stock for typing

our ripts. We, | , not they, are responsible for what is written.
March 1977 * J. H. ATKINSON
P. L. BRANSBY

GLOSSARY OF SYMBOLS

S waS w

activity
area
Skemplon's pore p !
width or breadth
compression index
swelling index
relative density
Young's modulus in terms of effective stresses
Young's modulus for undrained loading in terms of total stresses
force
normal force
shear force
elastic shear modulus
specific gravity of soil grains
height, thickness
maximum drainage path
clastic bulk modulus
bulk modulus of soil
bulk modulus of water
cocfficient of earth pressure at rest
liquid limit L
liquidity index
number of potential drops
number of flow channels
potential
plastic limit
plasticity index
seepage flow (volume)
force (on a footing) '
lidation ratio for one-di ional P
overconsolidation ratio for isotropic compression
time factor
average degree of consolidation
artificial velocity (of seepage flow)
seepage velocity
volume
volume of water
volume of soil grains

-
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W work

W weight

W, weight of soil grains

W,  weight ol water 5
Z  depth below ground surface

a = [,J(10)/3]q", distance up the drained plane from ¢’ = 0
a,b  pore pressure parameters

1
*

a
b ] coordinate axes (a = axial)

c
b width or breadth
¢’ cohesion

¢, undrained shear strength
¢y coefficient of consolidation
d  differential operator

¢ voids ratio

i ] soil constants defining the Hvorslev surface

h  (subscript) horizontal
h  height of water in a standpipe
i hydraulic gradient
i, critical hydraulic gradient
k  coefficient of permeability
In  natural logarithm
m, coefficient of e
n  porosity
P =Alei+oy+ay)
p. equivalent pressure: value of p’ at the point on the normal consoli-
dation line at the same specific volume
ps  value of p’ at the start of a drained test
py value of p’ at failure
pw  value of p’ at the point on the critical state line at the same specific
volume
p = i(oy+20)
g ={(o—0y)
q' = (o}—03)
g¢ = (oy—03);, value of ¢’ at failure
qu = q, for undrained loading
q flow rate
r  (subscript) residual (c}, ;)
r (subscript) radial
5 length along a Aowline
5 slope of an isochrone

ility for one-di ional compression

stress parameters for oy = a5

. © OLOSSARY OF sYmBoLs xvil

5= {{oy+ay) |
1= {(o,~0y)
s’ = j(o)+0y) v
' = i(oj~a}) i
1 timer
u  pore pressure
uy, pore pressure at failure
u, steady-state pore pressure
uy back pressure i
i excess pore pressure '
v (subscript) vertical
v specific volume
vy initial specific volume
vy specific volume at failure
v, specific volume of isotropically overconsolidated soil swelled to
p'=1.OkN m-? -
v,, specific volume of 4i ionally liduted soil led
top' = 1.0 kN m-?
vy = v+ Alnp’, specific vol on reft i
vy, = vy+ Alnpg, value of v, at the start of loading
w - water content
w  width (of a footing)
x
¥ | coordinate axes (z = vertical)

stress parameters for plane strain
.

effective stress (e.g. o)

specific volume of soil at critical state with p' = 1.0 kN m~?
large increment of . . .

slope of critical state line when it is projected on to a
volume plane

value of M for triaxial compression tests

value of M for triaxial extension tests

specific volume of isotropically normally consolidated soil at
p=10kNm?

sumof. ..

potentiad, function

flow function

angle

engineers' shear strain
unit weight -

dry unit weight

unit weight of water
small increment of . . .

et Rww g EOM 22E Too.ow
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3
lf
‘8

-

-

Toet
d

$ud

strain
= (&, + &4+ &), volumetric strain
= §(e,—&y), shear strain for &y = ¢,
= (&,—&,), shear strain for plane strain
angle o
slope of overconsolidation line (negative)
slope of normal consolidation line (negative)
coeflicient of friction
Poisson's ratio
(=10.5), Poisson's ratiofor constant volume (undrained) loading
settlement ’
normal stress
normal stress
octahedral normal stress
seecpage stress
. shear stress
oclahedral shear siress
angle of internal friction
angle of internal friction for triaxial extension and p

tests, respectively

A NOTE ON UNITS

The S.1. system of units has been used throughout this book. The basic
units of measurement are:

Iength m  (metre),
time s (second),

force N (Newton);
multiples

kilo = 10, e.g. kiloNewton, 1 kN = 109 N,
mega = 10%, e.g. megaNewton, | MN = 10° N.
Some useful derived units are:

velocity m s,
acceleration m L
: stress or pressure kN m-1,
unit weight kN m-2,

Unit force (1 N) gives unit mass (1 kg) unit acceleration (I ms~2), The
acceleration duc to Earth's gravity is g = 9,81 ms~*; hence, the force due to
& mass of 1 kg at rest on Earth is 9.8] N,

Conversions from Imperial units:

1 ft = 0.3048 m,
11bf = 4,448 N,
11b in~? = 6.895 kN m-?,
Llb fi= = 0,157 kN m-2,
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CHAPTER

ONE
AN IN’I‘RODUC'I‘ION TO ENGINEERING SOILS

1-1 INTRODUCTION

As a civil engineering material, soll is just as important as steel and concrete.
It may be dug into, heaped up, or spread out in the construction of civil
engineering works. All man made structures, except those which float or ﬂy,
are supported by natural soil or rock deposits, and many civil engineering

- structures, such as water-retaining banks, roads, and airfield pavements,

are constructed from soil and rock materials.

Civil engineers are concetned with the design and construction of civil
engineering works and are obliged to perform calculations which d
strate the safety and serviceability of any new structure. But, before these
calculations can be performed, the mechanical behaviour of engineering
materials such as steel, concrete, and soil must be understood.

This book is concerned with the mechanical behaviour of engineering
soils when they are sheared or compressed or when water flows through them.
There are topics in soil mechanics that are relevant to allied subjects, for
cuample the strength of soil and the stabnllly of soil slopes are of interest
in phology and theories of soil deformation and flow relate to the
dmchatge of granular materials from slurage bunkers and to materials
handling. Consequently, although this book is written primarily from the
point of view of the civil engineer concerned with the design of soil structures,
there may be parts that are of interest to others.

1-2 ENGINEERING MATERIALS AND THEIR BEHAVIOUR

Engineering structures are required to support laads safely. These loads may
be applied externally of they may be due to the weight of the structure
itself. No material is perfectly rigid and any change in the loadirig must
produce deflections and distortions in the structure; this is as true of a smatl
machine component as it is of a large civil engj g structure. Engi g
involves assessing the possibility of collapse and lhe deflections and dls
tortions of the structure in service. The necessary links between load and
stability and between load and distortion are usually found using physical
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theories for the mechanical behaviour of the ials in the structure and
a knowledge of its geometry, -

A-physical theory for material behaviour, whether it be for soil, steel,
concrete, foam rubber, sailcloth, or whatever, must describe adequutcfy all
the relevant aspects of the mechanical behaviour of the material and it must
- be arranged in such a way that real engineering problems may be solved.
Since real materials do not behave in & simple way, it is usually fruitless to
atlempt to obtain a physical theory for material behaviour that is, at the
same time, simple and exact; this is certainly true for soil. What we must
aim for is a physical theory ffor the mechanical behaviour of soil which
balances simplicity and truth; with a satisfactory physical theory engineering

leulations are bly straightforward and the results of these
calculations are sufficiently accurate for the particular purpose for which
they are intended.t .

The major objective of this book is to present physical theories which
describe dilferent aspects of soil behaviour. These theories are, of necessity,
idealizations of the behaviour of the wide variety of soils met in civil
engineering practice. Nevertheless, these physical theories are sufficiently
accurate for many engineering purposes and for many soils; refinements
and modifications can be incory d into the theories to allow for special
applications or for soils whose behaviour is not typical. The physical
theories discussed in this book form the basis on which experienced

gi will superimpose their judgement, and so these theories must be
well understood.

1-3 THE MEANING OF ‘ENGINEERING SOIL’

Many people reserve the word 'soil' for the relatively thin surface covering
capable of supporting plant life; to a civil engineer this material is known as
topsoil and in many cases it is removed before any engineering work is
started. Consequently it will be as well, at the outset, to define what is meant
by an ‘engineering soil’ and, in particular, to distinguish between soil and
rock.

For a definition of an engineering soil we may quote from Terzaghi and
Peck (1948, p. 4): :

Soil is a natural aggregate of mineral grains that can be separated by such gentle

hanical means as agitation in waler. Rock, on the other hand, is a natural

aggregale of minerals connected by strong and permanent cohesive forces. Since

the terms ‘sirong’ mnd ‘permanent’ are subject to different interpretations the

boundary between soil and rock Is necessarily an arbitrary one. ‘

t The point is elaborated by Calladine (1969, pp. 5-10).

ICTION TO solLs 3

or from R. F, Scott (1963, p. 1): !

In its most gencral sense, soil refers to the unaggregated or uncemented granular
material consisting of both mineral and organic particles; . . . , In many materials
classified by i as soils, ing b grains may exis! 1o some slight
degree and therefore may ibute to the hanical ch istics of the I

mass. This cementation should not be such as 1o cause the granular material 1o
assume a hard, rocklike form, however, if the substance is to be classified as soil . . . .

These definitions are quite satisfactory as far as they go but they deal
only with the composition of the solid part of soil and we must consider as
well the fluid filling the pore spaces between the mineral grains, We will
discover that the pressure in the pore fluid, which we will call the pore
pressure, has a very important infl on the mechanical behaviour of
soil. The pore fluid may be water or gas such as air or water vapour or a
combination of these; if the pore spaces are completely filled with water
the soil is known as saturated. In nature, the level of water in the ground
is often close to the surface and, hence, most engineering soils ure saturated,
at least in temperate zones. '

Throughout this book, unless we specifically stale otherwise, we will
consider only saturated soils, !

-

1-4 THE OCCURRENCE OF NATURAL SOILS

The natural cycle of weathering of the Earth's crust by mechanical or
chemical agents, erosion, transportation, deposition, and compression by
later sediments has been appreciated by geologists for many years (e.g.,
Holmes, 1965). The remainder of the cycle, that of loss of crustal material
to the mantle and supply of fresh mantle material to the crust, has recently
been explained by continental drift and plate tectonics (e.g., Hallam, 1973).
That part of the geological cycle which includes weathering, deposition,
and, up to a point, compression leads to the formation of engineering soils.

Under large compressions due to great depths of overlying sediment,
soils may be altered to become what are known as rocks in the engineering
sense; on the other hand, near to the Earth’s surface rocks may weather
In situ to form enginecring soils. Most texts on soil mechanics and engineering
geology discuss the place of soil in the geological cycle and deal with the
formation of soils by deposition and compression of eroded rock or by the
weathering of raek in situ,

Civil engineers may be concerned with naturally occurring soils in the
design of slopes and foundations or may excavate and rework soils during
construction of an embankment. In any case, whether the soil is undisturbed
or reworked, the civil engineer will be concerned with the engineering
behaviour of an uncemented, or only slightly cemented, aggregate of mineral
grains with water contained in the pore spaces.
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Since soils are formed by the weathering of rocks, the soil grains will
nsist of the basic rock-forming minerals or their products after chemical
= iteration. 1f rocks are only physically degraded by the motion of ice, water,
r air, the soil grains will have the same composition as the parent rock;
the size, shape, and texture of the mineral grains will depend primarily on
¥ the history of degradation, {ransportation, and deposition. When chemical
S changes occur, the basic rock-forming inerals may be chapged to the clay
* minerals, of which the apes are kaolinite, illite, and montmorillonite.
The precise products of chemical alteration of soils and rocks depend more
on the local conditions of climate and drainage than on the mineral
composition of the parent rock, The physics and chemijstry of the clay
. minerals and their importance in the manufacture of ceramics and-in other
common applications are cavered in texts on clay mineralbgy (e.g., Grim,
1962). For engineering purposes, the presence of only relatively small

quantities of clay in a soil may have a substantial effect on its behaviour,
Engineers are concerned more with the mechanical behaviour of masses
of soil than with the microscopic properties of individual grains; the chemical
nature of the soil gruins will not, therefore, be considered here. We shall,
however, examine the range and variation of particle sizes and the effects

of surface forces between grains on the behaviour of soil masses,

P

1-5 SOIL PARTICLE SIZES, SHAPES, AND GRADINGS

The range of particle sizes in engineering soils is very large. Several systems
for the classification of particle sizes exist in current use; these are all basically
similar and differ only in detail. The system proposed by the Massachusetts
Institute of Technology and adopted in Britain and in the United States of
America is shown in Table 1-1. As a g | guide, individual sand-sized
and coarser particles are visible to the naked eye, individual sjlt-sized particles
are visible through an optical microscope, but not with the paked eye, while
individual clay-sized particlds can be seen only with clectrqn microscopes.

Particle shapes differ considerably. Clay particles occur as very thin
plates (perhaps only a few molecules thick) while silt, sand, and coarse-
grained particles are more rotund.

It is important to appreciate that in the classification of particle sizes
the words ‘sand’, 'silt’, etc., are used to describe a particular range of particle
sizes. However, a soil which is described as ‘sand’ may also contain lesser
quantities of gravel, silt, and clay-sized particles. The distribution of particle
sizes in a soil sample is conveniently shown as a grading curve on a particle
size distribution chart; grading curves are usually S-shaped, as indicated in
Fig. 1-1 which shows the grading curves for some typical engineering soils.
If the grading curve is flat and the soil sample contains a wide variety of
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Table 1-1 Partlicle size classification
(after BS 1377 : 1975)

Description : : Diameter (mm)
LY
Cobbles =60
Gravel
Coarse 60-20
Medium . 20-6
Fine 62
Sand :
* Coarse 2-0.6
Medium 0.6-0.2
Fine 0.2-0.06
Silt ;
Coarse 0.06-0.02
Medium 0.02-0.006
Fine 0.006-0,002
Cluy <0.002 f

particle sizes the soil is known as well graded; if the curve is steep and one
size predominates the soil is poorly graded.

The grading of a soil often reflects its origin. Soils deposited by rivers or
by wind tend to be poorly graded while boulder clays and glacial tills
deposited by ice tend to be well graded with a wide distribution of sizes.

1-6 SURFACE EFFECTS

The surface of a soil grain carries a negative electrical charge the intensity of
which depends on the particular soil mineral und which muy be modified by
the presengee of an electrolyte in the pore water, These surface charges give rise
to interparticle forces in addition to those due to the sell weight of the soil
grains. For a.given mineral and electrolyte, the magnitudes of the surface
forces arg proportional to the surface areas of the grains while the self
weight forces are proportional to the volumes of the grains.

As partic'le‘!izea decrease, surface forces diminish with the square of the
effective particle diameter whereas self weight forces diminish with the cube;
consequently, the effects of surface forces are relatively more important in
fine-grained than in coarse-grained soils.

For a given soil with a given pore water electrolyte, the relative importance
of the surface forces may be described by the specific area of the soil. The
specific area is defined as the total surface area of all grains in unit mass of
soil. Table 1-2 lists typical values for the specific surface of the three common
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Figore 1-1 Grading curves plotted on a particle size distribution chart (after BS 1377: 1975)
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Table 1-2 Approximate values for the
surface of some common sofl grains (after Mitchell, 1976)

Specific surface
Soll grain - (m¥g)
Clay minerals
Montmorillonite Up to 840
Tilite 65-200
Kaolinlte 10-20
Clean sand . o~ 2x10

clay minerals and of clean sand; the differences in the values of specific
surface for sand and clay are very large. For engineering purposes the effects
of surface forces in sands are negligible, but in clays they may play an
important part in the behaviour of a soil mass.

1-7 SOME BASIC RELATIONSHIPS FOR SOIL

Many important mechanical properties of a soil —such as unit weight,
strength, compressibility, and permeability — depend on the closeness of the
packing of the mincral grains, The packing of the grains may be measured
by the voids ratio, the ratio of the volumes of the void spaces and the mineral
grains. In a saturated soil, the void spaces are completely filled with water
and so the voids ratio may be expressed in terms of the warter confent,
which is a property simply determined by weighiny, the soil and then drying
it in an oven and reweighing. Voids ratio, unit weight, and water content
may be related to each other and to the specific gravity of the mineral grains,

Figure 1-2 represents a sample of saturated soil with o volume ¥ and
weight W; the sample contains only water and soil grains. The volume of
the sample occupicd by the soil grains is ¥, and that occupied by the water-
filled voids is V,,. The weight of soil grains and water in the sample may be
calculated from the unit weight of water y,, and the specific gravity of the
grains G, as indicated in the diagram. . i

Water content, voids ratio, and unit weight are defined as follows:

‘ Weight of water W,
Wi = -
Al Weight of soil grains W,

Volume of voids Ve

Yoids ratio, e = m Hvu'

. Weight of sample W
Uit wolght; .= Volume of sample . ¥
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Volumes Weights
Water {1 W =Y ¥y
Pl v, W,= 1.6,k
Totals v W

Figure 1-2 Division of wntc'r_ and soil grains in saturated soils

L
¥

From these and from Fig. 1-2 we obtain the basic relationships

¢=WG, (-1
Gyt e
It is i ient ially when idering unsaturated

soils, to define a dry umt we;sht Yar This is the weight of the soil grains in a
unit volume of the soil sample and y, may be found by putting W,, =0 in
Fig. 1-2 giving

G,
o= (o
We will make considerable use later of the specific volume v, where v is

defined as the volume of the soil sample containing unit volume of soil
grains, as illustrated in Fig. 1-3. Then,

om=1te, (1-4)
waizt, : (1-9)
v= (5. )

Volumes Weights :

Water Vy=u=1 W.--f.'[u—lj

el b=t W,=1.G,

Totals v Way, +;—1:

Figure 1-3 Specific volume of saturated soil
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Example 1-1 Calculation of water content and unit weight
1

A cylinder of undisturbed saturated soil is 38 mm in diameter and
78 mm lopg and its mass is 142 g. After oven drying, its mass is 86 g.
Calcul ‘t[‘le water and unit weight of the soil.

Mass of water = 14286 = 56 g,
Mass of dry soil = 86 g.

Hence,
Water content, w = §§ = 0.651

w = 65.1 per cent.
Weight of saturated soil = 142x 9,81 x 10-¢ kN,
Volumé of cylinder = }ar x 38% x 78 x 10-* m?,
Hence, g

Weight
Volume’

¥ =1575kNm-,

Unit weight, y =

Example 1-2 Calculation of specific volume and specific gravity

The water content of a sample of saturated soil is 65.1 per cent and its
unit weight is 15.75 kN m=3, Calculate the specific volume of the sample
and the specific gravity of the grains.

From Egs (1-5) and (1-6),

L)

%’1!'(' 1)(05151“)

le.,

Hence,
= Spec.iﬂc volume » = 272,
From Eq, (1-5) the specific gravity of the soil grains is
v—1 172
G = =T
Hence,

G, = 2.65.
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1-8 SPECIFIC VOLUMES OF SANDS AND CLAYS

The state of packing of the grains in a particular soil can be conveniently
described by its current specific volume, The specific .volume cannot be
measured *directly but it may be calculated from m ts of water
content or unit weight from Eqa (1-1) or (1-2) and (1-4); for most eqmmon
soils the specific gravity of the minergl grains lies between 2.65 and 2,75.

In coarser-grained sand and gravel soils, the specific surface of the
grains is relatively small and surfact forces are negligible compared with
sell weight forces; in soils such ag these the grains will pack together in a
fashion similar to the random packing of spheres, Uniform spheres may be
packed in different ways but in the densest possible state the specific volume
is 1.35 and in the loosest state the spegific vol is 1.92. C ly, sand
soils exist in nature with specific volumes in the range v = 1.3 to v = 2.0,

For a particular sand or gravel soil, it is convenient to define the relative
density D,, which is a measure of the state of packing of the grains in terms

of the loosest and the d¢ possible states of packing. The relative density
is given by
D, = Ltmax—? 17

umu_”mh’
where v,,, and v, are the specific volumes corresponding to the loosest
and densest states of packing and v is the current specific volume. Thus,
when D, = 1.0 the soil is dense and strong; when D, = 0 the soil is loose and
relatively weak.

In clays, on the other hand, the specific surface is relatively large and
surface forces play an appreciable role in the arrangement of the clay plates
during sedimentation. The structure of a natural clay deposited in an
electrolyte (e.g., sea water) tends to be flocculared with many of the particle
contacts edge to face. The structure of a clay deposited through fresh water
tends to be dispersed with few particles in contact, most being separated by
molecular water bound to the clay mineral. Nevertheless, in either case the
specific volume of a clay soil may be relatively large. The specific volume of
a recently sedimented clay will also depend on, among other things, the
mineral composition of the clay. Montmorillonite clays with large specific
surfaces may exist with specific volumes in excess of 10 while kaolinite clays
with smaller specific surfaces are rarely found with specific volumes in excess
of 3.0. With external loading, frec water may be squeezed from the clay
structure and the specific vol will be reduced substantially. Under
relatively large engineering loadings the specific volume of' a clay can be
reduced to as little as v = 1.2 and the clay plates tend to become parallel.

1-9 SOIL CLASSIFICATION TESTS

The mechanical behaviour of soil varies considerably and engineers have

e
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found it convenient to devise a set of rapid and simple tests for classifying
soils into groups which have similar engineering behaviour.
The factors primarily responsible for determining the mechanical

. behaviour of soil are grain size and mineralogy and the way in which the

grains are packed together. The common classification tests provide rapid
lnc_l relatively simple measurements of the grading of a soil sample, its unit
weight and water lE:nteat, and, where appropriate, its Atterberg limits.
In addition, there are tests which involve rapid strength measurement of soil
samples; these will be discussed in Chapter 14.

The common #pil “classification tests are specified in detail in the
appropriate British and American standards (BS 1377: 1975 and ASTM
Part II). The grading and Atterberg limits of a soil describe its character
and, to some extent, the mineralogy of the clay present; the water content
and unit weight provide measurements of the current state of a given soil
and the way that the grains are packed together, !

1-10 MEASUREMENT OF UNIT WEIGHT AND WATER
CONTENT

The tests to determine the unit weight and water content are very simple.
To measure the unit weight of a soil, an undisturbed sample is weighed and
its volume measured; the unit weight is defined as

_ Weight of sample
Volume of sample” (-8
For'most common engineering soils the unit weight will be between 15
and 22 kN m~? depending on the voids ratio of the soil and whether or not
it is saturated. If it is impossible to obtain an undisturbed sample of a soil
its unit weight must be measured in situ by other means.
The water content of a soil is 1 by weighing a sample before and
after it is heated to 105 °C for sufficient time for it tb reach constant weight;
the water content is defined as

Weight of water lost
¥ = ~Weight of dry soll = (-9
-

The water content is often expressed as a percentage and we should note
that w may exceed 100 per cent. It is worth remarking that in all soils some
water exists as molecular water bound to the grains and this water will not
be evaporated at 105 °C. Consequently, the water content test should be
regurded more us an indexing or clussilicution test thun us un nbsolute
measure of the quantity of water present in a soil sample.
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1-11 MEASUREMENT OF PARTICLE SIZE DISTRIBUTION

e distribution of particle sizes in a soil sample is found by sieving and by
" sedimentation. The coarse particles are separated by passing the sample
", through a set of sieves and weighing the fraction retained on each sieve.
i The smallest practical sieve has an aperture size of approyimately 0.07 mm,
corresponding roughly to the division between silt and sund sizes. Particles
passing this sieve are separated by sedimentation. The separation occurs
S because, by Stoke's law far theerminal velocity of a sphere sinking through
. a fluid, smaller particles settle more slowly than larger ones. Of course,
soil particles are not spherical and so particles are clasljﬁed as having the
same diameter as spheres that settle at the same rate; the diameter is that

" of the cquivalent sedimenting sphere. In contrast, for sieve analysis the

prevents the particles passing through.
The distribution of particle sizes in a soil sample is shown as a grading

curve on a particle size distribution chart, as shown in Fig. 1-1.

1-12 THE ATTERBERG LIMIT TESTS

When a soil does not contain a substantial proportion of clay and its specific
surface is relatively small, the grading and specific volume are often enough to
classify the soil for engipeering purposes. When, however, a soil contains a
i considerable quantity of clay, additional tests are necessary to classify the
nature of the clay minerals and the importance of surface forces. The tests
- used for this purpose measure the Atterberg limits, The Atterberg limit
tests are intended to investigate the clay minerals present in a soil and they
5 are carried out on the fraction of the soil passing a 0.43 mm aperture sieve.
The Atterberg limit tesis provide measurements of the water content of
2 clayey soils at two strengths which are specified rather crudely, As the water
= content of a clay soil is raised, its strength falls; as the water content is
reduced, so the soil strengthens, If the water content is large, the soil will
become very weak and it will flow 23 a liquid; if, on the other hand, the
Water content is relatively small, the soil will become relatively strong, but
it may be brittle and crumble on failure. The Atterberg limits measure the
Water content at which the soil becomes so weak that it is liquid-like and the
Waler conlent at which it strengthens sufficiently to become brittle.

The precise points at which a clayey soil becomes liquid-like or becomes
brittle are defined. by the spécial conditions of the Atterberg limits tests.
The liquid limit, at which the:mil weakens and flows, is the water content at
which a small slope in the sample collapses under the action of a standard
shock caused by bumping the'soil ple in a standard way. In the United
Kingdom the preferred test to determine the liquid limit is now the cone

P4
g' diameter of the particles is defined by the aperture size of the sieve that just -
¢
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penetrometer test, in which a standard 30° cone causes failure as it penetrates
a sample ppder its own weight. The plastic limit is determined by rolling a
thread of the soil sample and adjusting its water content until the thread
just splits and’crumbles when its diameter is 3 mmi;: the failure of the thread
of soil is al[uilu' to that observed in concrete samples subjected to the Brazil
or split cylinder test, N
The liquid limit (LL) and the plastic limit (PL) are the Atterberg limits:
they are oxpressed as integers equal to the water contents in percentages at
which the appropriate changes of behaviour occur. For example, if a soil
just becomes liquid-like at a water content of w = 0.562, the liquid limit is 56.
As we shpll discuss in Chapter 14, it turns out, conveniently, that the strength
of a'soil at its plastic limit is very nearly one hundred times its strength at
its liquid limit,
Three further index values may be obtained from the Altterberg limits:

Plasticity index, Pl=LL—PL (1-10)
is the range over which the soil remains plastic, as defined by the Atterberg
limits. In soils containing little clay the PI will approach zero, while in o
pure montmorillonite clay, the PI may exceed 500.

L

Liquidity index, L1 = ¥%=FL (1-11)
(where w is the water content) describes the current state of a soil in terms of
its Atterberg limits, In the ground, soft, normally consolidated clays often
have liquidity indices near 1.0 while in stiff, heavily overconsolidated clays
the- liquidity index will be neas zero. In special circumstances, some clays
(e.g., ‘quick’ clays) may have liquidity indices greater than 1.0.

PI :
Per cent by weight of clay

is a measure of the plasticity Index of the clay fraction in a particular soil
sample containing both coarse and fine grains. ‘The activity of a clay is
related to the mineralogy of the clay grains and to the chemistry of the

pore water. i b

Activity, 'd =

(1-12)

* Example 1-3 Calculation of plasticity index, activity, and liquidity index

The Atterberg limits of a soil are LL = 74, PL = 27 and the soil contains
43 per cent by weight of day. The water content of the soil is w = 65.1
per cent. Calculate the plasticity index, activity, and liquidity index of
the soil.

Plasticity indéx, PI=74-27,

PI=47.
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Activity, A =4
A =109
' o 651-27
7 B
LI=0381.

Liquidity index, LI =

1-13 SUMMARY

1. An engineering soil is an un&emented, or only slightly cemented, aggregate
of mineral grains with a fluid filling the pore spaces.

2. The mineral grains consist of the basic rock-forming minerals or their
products after chemical alteration. In a saturated soil, water completely
fills the pore spaces; the pressure in the pore water is known as the pore

ure.

3. The character of a soil may be classified by its grading (particle size
distribution) and by its Atterberg limits.

4, The current state of a soil may be described by its unit weight, its water
content or by its specific volume, These are related by

v—1

= . (1-5)

y= (@) Yo -6
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CHAFTER

e TWO
STRESSES AND STRAINS IN SOILS |

2-1 INTRODUCTION

We will assume that our readers are familiar with the basic concepts of
stress and strain whereby stress may be thought of as an Intensity of loading
and strain as a measure of defor These pts are perfectly satis-
factory for most enginecring materials but, for soils, when the particle sizes
may be relatively large, familiar ideas of stress and strain may need re-
examination. In addition, we have to make allowance for pressures that may
exist in the pore waler and which may modify the stress in the soil; con-

sideration of pore pressures leads on to the important principle of effective
stress,

2-2 NORMAL STRESS AND STRAIN

Figure 2-1(a) shows a small cube of material of cross-sectional area 54 and
of height 8Z. A load 8F; is applied across the cube in a direction normal to
the area 84 and the element elongates so that the new length is (82 + 3L)
as shown in Fig. 2.1(b). Following conventional definitions of stress and
strain, we define a normal stress o and & normal linear strain & by

g=— umT. (1)

gm=— li.m aL (2-2)

Tensile stresses occur only rarely in soils and so the negative signs have
been introduced into Eqgs (2-1) and (2-2) in order that compressive stresses
and compressive strains are positive quantities; this is usual practice in soil
mechanics. -

2-3 SHEAR STRESS AND STRAIN

If a load 5F is applied across the cube in the plane of 84, the cube will

15
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!aru

le— Arca 5.4--| . u_J—

(2) I 5Fy

P -

o
T — —_———
5F s
{c) (d)
Flgure 2-1 Siress and strain in an el {a) Dimenslons. (b) N I stress and strain,

(c) Shear stress and strain. (d) Positive shear

distort as initially vertical fibres rotate as shown in Fig. 2-1(c). The shear
stress 7 and the shear strain y are defined by

8F,
== lim 52, 23
¥ uTv A Zal
PR @24
120 02

Strictly, in Eq. (2-4) we should write tany instead of y, but the difference
is negligible for small deformations. In Eqs (2-3) and (2-4) we follow con-
ventional soil mechanics practice and introduce the negative signs so that
positive shear stresses and positive shear strains are iated with i
in the angles in the positive quadrants of the element, as illustrated in
Fig. 2-1(d). e Lolda i L Yok

The definition of shear strain in Eq. (2-4) is that usually taught to engineers
and y is known as engineers’ shear strain. Later, in Chapter 3, we will
discover that y includes a component of rigid body rotation as well as a
component of shear distortion and we will have to modify our definition of
shear strain to make the analysis of states of strain possible. For the present,
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however, we may continue to use Eq. (2-4) as a definition of engineers’
shear strain,

Example 2-1 Calculation of stress and strain

L]
Loads M; = 30 kg and M, = 10 kg applied to the soil sample in Fig. E2-1
cause displacements 8, = 0.9 mm downwards and 8, =2.3 mm to the
right. The sides of the cubical sample are ach 40 mm long. Calculate
the normal stresses and strains and the shear stresses and strains in the
sample.

Flgure E2-1

Referring to Fig, 2-1 and from Eqs (2-1) to (2-4), noting that the directions
of M, and 8, are such that 8Fy; = —M, g and 8L = —3§,,

_Mg__-30x98l
Normal stress, o y .04

o=183.9kNm%

M,g= -10x9.81
Shear stress, Sl i {0-'3_'4)’

r=—61.3kNm2,

%10-2,

x iﬂ".

Normal strain, s=———te=—,

Shear sln.in; y= —% = —E,

y = —0.0575,
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The sample deforms so that the angles in the positive quadrants decrease;

hence, shear stresses and shear strains are negative,

24 SOIL AS A CONTINUUM

On the atomic scale, all materials have a particulate nature for they are
constructed from the basic particles of matter, and, as we have seen, soils
are particulate materials where the size of the particles may be much larger
than atoms or even molecules, B ials are particulate, we are not
Justified in taking the limits as $4 and 52 approach zero since we will not
know whether the elemental areh 54 or the elemental length 8Z are centred
on a particle or on & void space. i

There are two possibilities for avoiding this difficulty, First, we may
accept the particulate nature of materials and recognize that the basic
definitions of stress and strain have little meaning. In this case we are obliged
to investigate the distribution of interparticle contact forces and the relative
movements of the particles, .

Alternatively, we may approximate the behaviour of a particulate
material to that of an ideal continuum. In a continuum all elements merge
continuously into their neighbouring elements, infinitesimal elements have
the same properties as the mass, and there are no difficulties in using Eqs
(2-1) to (24) to define stresses and strains, There can be no such thing as a
real continuum, because all materials, at least on the atomic scale, are
particulate; a continuum is an imaginary material which has the same bulk
behaviour as a real particulate material, ;

In most branches of engineering, materials are regarded as continua and
stresses and strains are defined by equations like Eqs (2-1) to (2-4). This is
g Ily so in soil hanics as well, although a few workers ‘adopt the
particulate approach and examine the interactions between particles,

In this book we adopt the conventional continuum approach to soil
mechanics. We will examine the behaviour of ideal continua whose properties
are the same as soil in bulk and we define stresses and strains by equations
like (2-1) to (24). This approach to the mechanics of soils i quite satis-
factory so long as the dimensions of the particles are considerably smaller
than the dimensions of the mass of soil (e.g., & test specimen) that we are
examining,

2-5 PORE PRESSURE AND TOTAL STRESS

Although we will regard soils as ideal continua, we must not forget that, in
reality, they are particulate materials and that water in the void spaces may
be under some pressure. We must now examine whether any modifications
are necessary to our ideas of a soil continuum to account for pore pressure,
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An element of our ideal soil continuum will have a set of total stresses
acting on the boundaries of the element and a pore pressure acting within
the element. Following usual conventions, we write total normal and shear
Stresses as o and 7, respectively, and the pore pressure as u. As an example,
Fig. 2-2 shows an element of soil at a depth Z below the surface of a soil
mass; the soil to a depth Z,, is dry and has unit weight y,, while the rest of

:”:i{ z,,] ' Hy  Unit weight = 4,

F: H, Unit weight = y

olI'

Flgure 2-2 Stress and pore pressure In the ground

the soil is saturated with water and has unit weight y, The relationships
between y, y4, and other soil parameters have already been examined in
Chapter 1. We may just note here that the unit weight of a soil is the weight
of everything ~ mineral grains and water ~ contained in unit volume, If we
regard the soil as composed of layers of thickness Hy, each of unit weight
Y1 the total vertical stress is

o, =T Hy (2-5)
or, for the two layers in Fig. 2.2, o, =Z.va+(Z-Z,)y.

The total vertical stress is simply the intensity of loading due to the
weight of all the material above the element.

If, as shown in Fig. 2-2, an open-ended standpipe is inserted into the
ground, water will rise in the standpipe until the water pressure at the tip
of the standpipe exactly balances the pore pressure in the saturated soil,
Hence, the pore pressure u in the element in Fig. 2-2 is given by

U= Hyyy=(Z-Zy)yy 26)

Example 2-2 Calculation of vertical stress in the g'r.mmd

The soil profile shown in Fig, E2-2 consists of 3 m of dense sund, unit
weight y=17.5kNm- overlying saturated clay, unit weight
15.75 KNm=2, The level of water in a standpipe driven into the clay to

»
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3m  Dense sand

ng

le
f

&m Saturated clay

“ Figure E2.2

any depth coincides with the sand-clay interface. Calculate the total
vertical stress and the pore pressure at a depth of 8 m bolow ground level.

Total vertical stress, o, =¥ yiH, = (17.5%3)+(15.75% 5),
o, =131L25kNm-*.

Pore pressure, i = Y Hy = 9.81x5,
u=49.05kNm-*,

2-6 THE PRINCIPLE OF EFFECTIVE STRESS

For a soil subjected to a given total stress, it is intuitively obvious that the
behaviour of the soil will, in some way, be dependent on the magnitude of
the pore pressure. 2

The principle of effective stress determines the effect of a pore pressure
on the behaviour of a soil with a given total stress. The principle is probably
the single most important concept in soil mechanics and its importance
cannot be overstated. ) :

We begin with a simple statement of the principle of effective stress and
we then proceed to examine some of the consequences, i

The principle of effective stress was first stated. in English by Terzaghi
in 1936. The statement is in two parts, the effective stress is defined first.

The stresses in any point of a section through a mass of soil can be computed from
the total principal stressest oy, @y, and o, which act at this point. If the voids of the

t  We will assume for the present that our readers'are familiar with principal stresses;

they will be further discussed in Chapter 3.
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soil are filled with water under a stress u the total principal stresses consist of two
paris. One part u acts in the water and in the solid in every direction with equal
Intensity. It is called the neutral stress (or the pore pressure). The balance

1= 0y~m.0; = ay—u and o} = oy~ u represents an excess over the neutral stress
wand It QI’.I Its seat exclusively in the solid phase of the soil. This fraction of the
total prinicipal stress will be called the effective priccipal stress,

Thus, Terzaghi wrote the fundamental effective stress equation,
g =g— u.l (2-7)

The prime in o’ is used to denote an effective stress and this is now con-
ventional practice which will be followed in this book. It should be noted
that some authors prefer to use & instead of ',

The second part of Terzaghi's statement defines the importance of the
elfective stress,

All measurable effects of & change of stress, such as compression, distortion and a
changg of shearing resi are exclusi due to changes in the eifective stresses,

In engineering we are concerned with the compression, distortion, and
strength of materials and so, when dealing with soil, we must always consider
effective stresses and changes in effective stress.

ALT. LIBRARY

2-7 THE SIGNIFICANCE OF EFFECTIVE STRESS

Assstated by Terzaghi, the principle of effective stress is deceptively simple;
nevertheless it is of extreme importance and must be understood properly.
In order to illustrate the principle of effective stress we will consider three

1l i wilh LoOr di !

-3 ¥
Fi

Carollary 1 The engineering behaviour of two soils with the same structure
and mineralogy will be the same if they have the same effective stress.
-

Example 2-3 Calculation of vertical effective stresses in estuarine and
deep-sea sediments T

Figure E2-3 shows elements of soil 1.0 m below the surface of (a) an
estuarine sediment and (b) a deep-sea sedimént, In the estuarine sediment,
the water table is at the surface of the soil and the depth of water above
the deep-sea sediment is 10%-m. The unit weight of each sediment is
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{a) (b)
Figure E2-3 Vertical stresses in (a) estuarine and (b) deep-sea sediments

17 kN'm~ and the unit weight of sea water is 10 kN m>. Calculate the
vertical effective stresses acting on each element.
(a) For the estuarine sediment,
oy = X Hy =17.0x10=17.0kNm=,
u=H,y,=100x10=100kNm"?,
o), = o,—u=17.00~10.0,
o) =T.0kNm.
(b) For the deep-sea sediment,
0y =T Hy, = (17.0% 1.0)+(10.0 % 10) = 100 017 kN m2,
w=H,y,=10.0%10001 = 100010 kNm™?,
oy, = oy—u =100 017-100 010,
o, =7.0kNm-*,

Shivadded it Goivnling ki e

The effective stresses in the estuarine sediment and in the deep-sea
sediment are the same and, provided that the structure and mineralogy
of the sediments are the same, they will have the same enginesring
properties,

Corollary 2 If & soil is Joaded or unloaded without any change of volume
and without any distortion there will be no change of effective stress.

Example 2-4 Stresses and pore pressures in a constant volume isotropic
loading test

Figure E2-4 illustrates a simple experiment. A cylindrical soil sample
seated on o smooth base Is sealed in a thin rubber membrane and
enclosed in a vessel which is filled with a fluid. The fluid pressure applies
an equal all-round total stress o to the sample. The total stress o and the
pore pressure u may be changed independently and the dimensions of
the sample observed by n sel of digplacement tinnslneers auch na
A and B,

Water —__ | |

— Pressure vessel
Rubber
membrane -

Rubber (T Soil sample

sealing ring ~——={

o= Pore pressure u

Figure E2-4 Constant volume lsotroplc compression test

At the start of a test the total stress is o = 17 kNm~? and the pore
pressure is u = 10 kN m~2, The total stress is raised to ¢ = 1000 kKN m~*
and the pore presgure changed simultaneously so that the transducers

gister no displ t of the ple; calculate the magnitude of the
final pore pressure. :

Since there has been no volume change or distortion of the soil the
effective siress must remain constant.
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Al the start of the test,
o' =0—u=17-10=TkNm-2;
at the end of the test,

o' =og—u=1000-u=7kNm-?
Hence, ;
u=1000-7,
=993 kNm-?,

Corollary 3 Soil will expand in volume (and weaken) or compress (and

strengthen) if the pore pressure alone is raised or lowered.

Example 2-5 Effects of changes of pore pressure with constant total stress
Figure E2-5 illustrates a simple experiment; the apparatus is similar to

that described in Ex. 2-4 except that now the volume aof water entering
or leaving the sample can be measured by means of a graduated vessel,

Pore,
——————-+— pressure
u

Volume gauge

Total
hiias RN

7)) \\ V.
s \\\\\\\\\\\\\k\\\ ey

Figure E2-5 Isotropic compression test

The total stress o is held constant while the pore pressure u is changed
and the change of volume of the sample observed.
At the start of the test, ¢ = 17 kNm™2, u = 10 kN m-3, Hence,
o' =TkNm-2, i
The pore pressure u is raised to 15 kN m=* while the total stress is held
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constant; the level of water in the graduated vessel falls, indicating that
the volume of the sample has increased.
At the end of the test, o = 17 kNm=3, u = 15 kN m~?. Hence,

3 o' =2kNm-2,

¥ B
If the effective stress is reduced then, as di 1 in Chapter 7, the
* soil will swell (i.e., increase in volume) and, as discussed in Chapters 10
and 11, its strength will reduce. Conversely, if the effective stress is

increased, the soil will compress and its strength will increase.

I 2-8 EXAMINATIONS OF THE PRINCIPLE OF EFFECTIVE

STRESS

Because of its importance in soil mechanics, the principle of effective stress
often assumes the status of a physical law and attempts are made to examine
the pringjple th ically. These inations of the principle of effective
stress, uhi of the physical meaning of effective stress, encounter difficulties
when forges at interpurticle contacts have to be expressed in the torm of &
stress; the problems are similar to those we encountered in defining the
meaning pf stress in a granular material.

However, if we examine Terzaghi's 1936 statement of the principle of
effective stress, we note, first, that he does not assign any physical meaning
to the effective stress other than ‘it has its seat exclusively in the solid phase
of the soil’ and, second, that he limits the principle to ‘all measurable effects’.
Indeed, Terzaghi arrived at the principle of effective stress from the results
of laboratory experiments and it is evident thdt he viewed the principle as
a working hypothesis that was sufficiently accurate for practical engineering
purposes.

Although most texts on soil mechanics examine the validity of the
principle and the meaning of effective stress by considering the interparticle
forces and the intergranular contact areas, there really is no need to do this,
and the pecessary assumptions are not always supported by experimental
evid tailed theoretical and experimental examinations of the principle
of effectiyp stress have been published by Skempton (1960) and by Bishop,
Webb, apd Skinner (1965) and no conclusive evidence has yet been found
which invalidates Terzaghi’s original postulate, at least for saturated soils
at normal levels of engineering stress.

2-9 DISCUSSION OF THE PRINCIPLE OF EFFECTIVE STRESS

It is importanit that we should be clear about the principle of effective stress
and its consequences. Intuitively, it is fairly obvious that, if the total stress
or the pore pressure - or both - are varied, the behaviour of the soil will
depend only on some combination of the two and not on the individual
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values of total stress and pore pressure. The principle of effective stress
states, quite simply, that the relevant combination of total stress and pore
pressure is the difference (o—u) and this difference is defined as the effective
stress o'. The principle goes further and states that all measurable effects
of a change of stress are exclusively due.to changes in the value of (o —w).

2-10 INCREMENTS OF STRESS AND STRAIN

It was convenient for our definitions ‘of stress and strain in Secs 2-2 and 2-3
to ider loads applied to an el t which was initially unstressed and
unstrained. In general, however, we will be more concerned with additions
of lond causing chunges in the states of stress and strain in elements which
are already stressed and which have already suffered some strain. We must
be careful, therefore, to distinguish between pre-existing states of stress and
strain and increments of stress and strain. :

We shall adopt the convention that pre-existing total and effective stresses
are written as o and o, respectively, while small additions of stress are
written as o and 8¢’, and, in the limit, as do and do’, If a succession of small
increments of stress are applied so that & large change of stress occurs we
will write

Ao =3 8o = Idﬂ, (2-8)

where Ao rep the large change in total stress.

A similar convention serves to distinguish between strain (e), small
strain increments (8¢), and large changes in strain (Ag). An analogous
notation is used for other variables.

2-11 SUMMARY

1. Soil is idealized as a continuum and normal and shear stresses and strains

are defined, at the limits as §4 and 8Z tend to zero, as
. B8Fy _8Fy
E7 LA 7 &
= _ﬁ' ) - —S—Z.
2. Comg ive normal str and compressive normal strains are taken
to be positive quantities. Positive shear stresses and positive shear strains

are both associated with increases in the angles in the positive quadrants
of elements.
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3. The effective stress is defined as ~ * . SO
' o' =o—u, 20
4. "All measurable effects of a change of stress, such as compression, dis-
tortion and a change of shearing resi are exclusively due to ct

in the effective stress.”
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CHAPTER

THREE
STATES OF STRESS AND STRAIN IN SOILS

=4

3-1 INTRODUCTION

Every point within the idealized continuum which we use to represent a
body of soil will be stressed, and it may have suffered some strain measured
from a reference state. The stresses and strains in some directions may be
known and we may wish to calculate the stresses and strains in other

- directions; in other words, we wish to analyse the states of stress and strain,

It is easiest to begin with the study of two-dimensional states of stress
and strain. Accordingly, we will examine stresses and strains in a plane
section through the soil and we will assume that these are independent of the
stresses and strains normal to the section.

The simplest method of stress and strain analysis is to make use of the
Mohr's circle construction. We will assume that our readers are familiar
with the basic theory of Mohr's circles and we will not derive the analysis
here; this is covered fully in many texts (e.g., Crandall, Dahl and Lardner,
1972, Chapter 4; Case and Chilver, 1971, Chapter 5). Instead we will describe
briefly the application of Mohr's circles to states of stress and strain
commonly met in soil mechanics and we will use this Chapter principally
to define some parameters for stress and strain.

3-2 TWO-DIMENSIONAL STATES OF STRESS

If we imagine a small plane element such as OABC in Fig. 3-1(a), there will,
in general, be normal and shear stresses on all four faces of the element.
In the limit, as the element becomes very small, all the stresses act at the
point O in the appropriate directions, The normal stress o, acts on planes
OA and BC, the normals to which are parallel with the x-axis, and the
shear stresses 7, act on the same planés, but in a direction parallel with the
z-axis. The directions of o, and r,, are defined similarly.

Since the element is in equilibrium, it follows, by taking moments about
any corner, that 7, = r,,. In soils, normal stresses will, in general, be com-
pressive and the stresses marked in Fig. 3-1(a) are, therefore, positive
quaatities; the shear stresses marked in Fig. 3-1(a) are also positive quantities
by the convention of Sec. 2-3.
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(c)
Figure 3-1 States of stress in t di ional el and the ding Mohr's

circle of stress

Suppose, for example, that the magnitudes of o, o,, and T, are known,
and we wish to calculate normal and shear stresses (o4, 74) on some arbitrary
plane at an angle 6 to the x-axis. If the element is rotated about O through
an angle @ to a new position OEFG in Fig. 3-1(b), o, and r, will be the
normal and shear stresses on the planes OG and EF at an angle @ to the
x-axis. - )

3-3 MOHR’S CIRCLE OF STRESS
The Mohr’s circle of stress .('aonésponding to the state of stress in Fig. 3-1(a)

is shown in Fig. 3-1(c). The circle is plotted with axes T and ¢ and it passes
through the points R (o, —1,,) and Q (o, 7,,). For plotting Mohr's circles,
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and for this purpose alone we adopt the convention that counter-clockwise
shear stresses arc taken as positive quantities. Thus, the counter-clockwise
shear stress 7,, in Fig. ‘3-1(a) is positive in Fig. 3-1(c) and the clock-
wise shear stress 7., is negative, The Mohr's circle may be constructed, and

hence the plete two-dimensional stress state defined, once the normal and
shear stresses on any two planes are known.
There are | method ilable for working with Mohr's circles to

calculate the state of stress on other planes; we will employ the pole method
to locate planes, The pole of a' Mohr's circle is defined thus:
if a line is drawn from the pole to a point on the circle where the siresses are
v, and o, then, in the (x,z) plane thie line is parallel to the plane on which =¢
and oy act.

By reversing the definition we may diaw the line QP (or the line RP) to
locate the ‘pole at P in Fig. 3-1(c). The line QP is parallel to the plane on
which o, and 7, act and is parallel with the x-axis in Fig. 3-1(a); similarly
RP is _pnmllel'with the z-axis. We may now use the pole of the circle to
calculate the state of stress on any plane through the material, and, in
particular, the normal and shear stresses (g 7s) on the plane EF in Fig.
3-1(b). The plane is at an angle f to the x-axis and, hence, in Fig. 3-1(c) we
may draw PN at an angle f to PQ. The stresses at the point N are the stresses
acting on the planes EF and OG in Fig. 3-1(b). By varying the arbitrary
angle 0 between the planes EF and 0OG and the x-axis, we may calculate
the stresses on any plane in Fig. 3-1(a) by drawing the corresponding line
on Fig. 3-1(c).

3.4 PRINCIPAL STRESSES AND PRINCIPAL PLANES

There must always be two points where a Mohr's circle crosses the o-axis.
_ These points represent planes on which the shear stress is zero and the
normal stress is either a maximum or a minimum. These planes are known

as principal planes and the corresponding normal stresses as principal
slresses. X

Figure 3-2(b) is the Mohr's circle of stress corresponding to the state of
stress in Fig. 3-1(a). The principal stresses o, and oy occur at T and 8 in
Fig. 3-2(b) and we may locate principal planes (JK and OL, and JO and KL)
in Fig. 3-2(a), where JK and OL are at an angle 0p (measured from Fig.
3-2(b)) to the x-axis. From the geometry of the Mohr's circle, the principal
planes are orthogonal and so the directions of the principal stresses must
also be orthogonal. In the limit, as the element OJKL becomes small, we
observe only two orthogonal principal planes, OJ and OL.

It turns out that in three-dimensional stress analysis there will be three
principal planes and three principal stresses. These will be denoted by
0y, 0y, and oy, and it is usual practice to define oy > 03> 3; 0, 18 the major
principal stress, o, the intermediate, and a4 the minor.
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Figure 3-2 Principal planes and principal siresses

Thus, in summary, the major and minor principal stresses are the largest
and smallest normal stresses in a given state of stress and they occur on two
orthogonal planes which are free from shear stresses.

Example 3-1 Mohr's circle of total stress
»

In Fig. E3-1 the normal loads applied to the faces of'a soil cube are
F,=45kg and F, = 30kg and the shear loads are Fy = F, = 10 kg. The
sides of the soil cube are each 40 mm. Construct the Mohr's circle of
total stress and find the magnitudes of the principal total stresses and the
directions of the principal planes in the soil.
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fF Figure E3-1

Defining axes (x,z) as shown in Fig. E3-1, and taking account of the
directions of the forces, the total stresses are

o %‘ = 183.9 KNm-,
o= %{_3 =2759kNm™1,

o= Teg = 38 o 613KNm-,

A

The Mohr's circle of total stress is shown in Fig. E3-2: for plotting the
Mohr's circle the counter-clockwise shear stress .. is plotted positively,

-

100
& sof
£
z
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S0
£
=
"]
@ 0, = 183.9
1y, =613
1

=100 L :

2+ Normal stress, o (kN m~2)
Figure E3-2 Mohr's circle of total stress
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while the clockwise shear stress r, is pldtted negatively. Scaling from the
diagram, the principal total stresses are

0, =306kNm~* and o, = 154kNm-2,

The pole of the Mohr's circle is located at P and the major principal
plane maftes an angle of 26° to the x-axis.

3-5 MOHR'S CIRCLES OF TOTAL AND EFFECTIVE STRESS

So far in considering stresses and Mohr's circles we have not differentiated
between total and effective stress,

If the stresses acting on the faces of the element in Fig. 3-1(a) are total
stresses, the corresponding Mohr’s circle of total stress is shown in Fig.
3-1(c); this Mohr's circle is shown again as the right-hand circle in Fig. 3-3,

0 t . '
1 9 9y L

Effective Total
stress circle stress circle

Flgure 3-3 Mohr's circles of total and effective stress
L]
The stresses 7y and o, are the total stresses acting on the planes EF and OG
in Fig. 3-1(b). We will now assume that there is a pore pressure of magnitude
u in the soil and we will construct the Mohr's circle of effective stress.
The principal effective stresses, given by Eq. (2-7), are
o= oy=oy—u, (3-n
oy = oy—1U, (3-2)
and the Mohr’s circle of effective stress is shown as the !:!_‘l—ilnnd circle in
Fig. 3-3. The effective stress circle has the same diameter as the total stress
circle and is separated from it by the pore water pressure. The stresses 7,

and oy are the effective stresses acting on the same planes EF and OG in
Fig. 3-1(b).
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By examining the circles we note that
1-' =Ta . (3'3}
c, =Op—U. . . (34)

Thu.s ‘for a given state of total stress,’changes in pore pressure have no
effect on the effective shear stresses, they alter only the effective normal
stresses.

We may use the pole construction on the effective stress Mohr's circle
to calculate the effective stresses on any plane in exactly the same way as
we used the pole construction to calciflate the total stresses.

Example 3-2 Mohr's circle of effective stress

The total stresses on the faces of a cube of soil are the same as those in
the previous-example (Ex. 3-1) and the pore pressure is v = 50 kNm™?,
Construct the Mohr's circle of effective stress,

™ Principal effective stresses are given by oj=o—u and oy = oy—u.
Hence,
oy =256kNm~* and oj=104kNm-%
The Mohr's circles of total and effective stress are shown in Fig. E3-3.

100 T T T T T T
Total stress circle
= ; P P
T 50 -
E
z
£
: o
5 -sof .
= Effective stress circle : :
=100 |- =
u=S0KkN m™?
L 1 1 1 1 L
50 100 150 200 250 300 350

Normal stress, v, o' (kN m™2)
Flgure E3-3 Mohr's circles of total and effective stress

The position of the pole in the Mohr's circle of effective stress is the same
as in the Mohr's circle of total stress and the locations of the principal
planes of total and effective stress in the soil are identical,
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3-6 TWO-DIMENSIONAL STATES OF STRAIN - PLANE
STRAIN

Just as we did with stress analysis, we will examine two-dimensional states
of strain in order to keep the analysis simple. We will, therefore, examine the

state of strain in the x:z plane and we will not censuier strains im the
direction normal to lbn plane, !

There is a special case of a | three-di ional state of strain
which has practical importance in soil mechanics. This special case is when
£, =0 and it is known as plane strain; the conditions in the soil bedow &

long wall or behind a long slope (Fig. 3-4) approximate closely to plane
strain,

Fe [
Ll

Zero strain
=0

Figure 3-4 Illustrations of plane strain
£y

3-7 GENERAL PLANE STRAIN DEFORMATIONS

Figure 3-5(z) shows a small element OABC, lying in the x: z plane which,
as a result of some change in the state of effective stress, moves and distorts
in plane strain (i.e. &, = 0) and takes up a new position 0".A'B'C’. Before we

N

L
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& (a)

(b)

Figure 3-5 Componenis of deformation (a) Body displacement and rotation. (b) Strain
#nd distortion

Gty v i B R

can investigate the state of strain in the element, it is necessary to separate
.. Components of body rotation and displacement from strains and distortions.
" First, there has been a displacement of the element as a whole given by
- the vector 00", Second, there has been a rotation of the element as a whole
-~ given by the rotation « of the diagonal OB to O'B’. All other effects are due
* 1o normal and shear strains.

In order to examine the state of strain it is necessary to remove the
Components of rotation and displacement by rotating O’A'B'C’ through
—@ and moving it along the vector 0’0 so that O and O’ coincide and OB

. and O'B’ are collinear, as shown in'Fig. 3-5(b). Shear strains and normal

+ which shows the distorted element O"A’B'C’ from Fig. 3-5(b).

=-$lrains can now be distinguished. The. strains are indicated in Fig. 3-6(a)-

STATES OF STRESS AND STRAIN IN SOILS k7
3-8 NORMAL AND SHEAR STRAIN

Normal strains defined by Eq. (2-2) are simply brought about by changes
in the x- and 2-di ions of the el - If the sides of the element OABC
were originally of unit length then, for small strains, the dimensions of the
distorted element O'A’B'C’ are

A'B'=C0 =1 —£),

A'Q = B'C' = (1-¢).
. Shear strains ¢, and &, in Fig. 3-6(a) are brought about by rotations of
the sides of the element which remain after the mean rotation « of the element
as a whole has been removed: from the geometry of Fig. 3-5(b) it follows

that e, = ¢,.. The index ahd sign notation adopted are such that a shear
strain e, is associated with a shear stress Tz and so positive values of ¢,

x
Al "
‘ (1-g)
o= :
[
"IC'
(1-e)
x
(a)
z
ll
'!‘ ;
——
‘ni A B
:-'-h- - --2
€ur
4] C
t!' Cox
x
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Figure 3-6 Components of normal and shear strain
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and g, imply that the angle between the sides OA and OC increases. Thus,
in Fig. 3-6(a), the shear strains are positive as defined in Sec. 2-3.

It is important to note that &, is a pure shear strain and it is not the
same as the engineers’ shear sirain y, defined by Eq. (2-4); the point will be
discussed further in Sec. 3-10.

19 REPRESENTATION OF A STATE OF STRAIN
b

The state of strain in the element OABC is shown in Fig. 3-6(a); this may be
represented more simply by drawing the undeformed element as in Fig.
3-6(b) and marking normal and shear strains on the four faces.

Figure 3-6(b) is like Fig. 3-1(a), which shows the state of stress in an
element, but we must be careful not to think of strains in quite the same
way that we think of stresses. Although we may regard stresses as acting
on individual planes, it is ingless to try to imagine a strain on a plane.
Thus, in Fig. 3-6(b), e, and e, are the normal and shear strains in the
material between the planes AO and BC.

3-10 PURE SHEAR STRAIN AND ENGINEERS' SHEAR
STRAIN

Figure 3-7(a) shows the strained clement O'A'B'C’ of Fig. 3-6(a). The shear
distortions of the element are ¢, and ¢,. If the element is rotated counter-
clockwise about O through an angle e, we obtain Fig. 3-7(b), which is
identical to Fig. 2-1(c) for e, = ¢, = 0. Comparing Figs 3-7(b) and 2-1(c),
we have '

Yoz = ExzF Ezns (3-5)
but
oy ™= Eyzs (3-6)
therefore,
Yz = 26,2, (3-7)

Alternatively, we may rotate the element clockwise about O' through an
angle ¢, and we obtain Fig. 3-7(c). Comparing Figs 3-.'?{c) and 2-1(c),
we have

Yar = Emat Eem (3-8)
but .
[ * ' s (3-9)
therefore,
Yoz = 262ee (3-10)
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Flgun‘a-‘! Pure shear strain and engineers' shear strain

Hence, engineers’ shear strain is simply twice the pure shear strain; the
engineers’ shear strain y,, consists of a component of pure shear strain £,
together with a numerically equal component of body rotation.

Engineers' shear strain is the change in the angle between two fibres
embedded in the x:z plane which were originally at right angles to one
another, as shown in Fig. 2-1(c). For the analysis of states of strain, however,
it turns out that it is appropriate to work with the pure shear strains together
with the normal strains. It Is simplest, and conventional, to consider normal
strains e, and &, associated with shear strains y., and }y,. and to plot
Mohe's circles of strain with axes denoting normal strain ¢ and pure shear
strain }y as shown in Fig. 3-8(c).

-

311 MOIIR'S CIRCLE OF STRAIN

Figure 3-8(a) shows the state of strain in a small planc element OABC.
If the strcins &, €, and y., are known, we may wish to calculate the strains
in the element OEFG in Fig. 3-8(b) rotated through an angle 6 about O.
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(a)

[
\

Riey, = 3 7e:)

(c)
Figure 3-8 States of strain in t di ional el and the cor jing Mohr's

circle of strain

We make use of the Mohr's circle of strain in exactly the same way as that
for stress.

The Mohr's circle of strain corresponding to the state of strain in Fig.
3-8(a) is shown in Fig, 3-8(c). The circle of strain is plotted on a diagram with
axes 4y (= pure shear strain) and £ (= normal strain) and is drawn to pass
through the points R (e, —1y.,) and Q (g, }y,), which represent the known
strains. For plotting Mohr's circles of strain, and for this purpose only, we
adopt the convention, compatible with that adopted for Mohr's circles of
stress, that counter-clockwise shear strains are taken as positive. Hence the
counter-clockwise shear strains }y,. in Fig. 3-8(a) are positive in Fig. 3-8(c)
and the clockwise shear strains }y,, are negative.

In exactly the same way as for Mohr's circles of stress, we locate the pole
at P by drawing RP or QP parallel with the planes OA or OC in Fig. 3-8(a).
We may then draw PN at an angle 8 to PQ and the strains at N (g, tva)
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are the values of the respective strain I in the el OEFG
in Fig. 3-8(b).

3-12 PRINCIPAL PLANES AND PRINCIPAL STRAINS
¥

There are two points where the Mohr's circle of strain crosses the e-axis.
These pojnts represent planes in the x:z plane across which the normal
strain is either a maximum or a minimum and the shear strain is zera, These
muximum and minimum normal strains are the principal strains ¢, and &5
and the planes are principal planes. The magnitudes of ¢, and &, may be found
from Fig. 3-9(b) and the directions of the principal planes, shown in Fig.
3-9(a), are fixed by the value of 0 determined from Fig. 3-9(b).

I

/-

(a)

)
Flgure 3-9 Principal planes and principal sfrains
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Principal strains have the same meaning in strain analysis as principal
stresses have in stress analysis. For general three-dimensional states of strain,
there will be three principal planes and three principal stresses &> &> &;
¢, is the major principal strain, &, the intermediate, and &, the minor,

Example 3-3 Mohr's circle of strain

Figure E3-4 shows a section of a 40 mm cube of soil OABC which is
distorted in plane strain (i.e., zero.strain out of the page) to O’'A'B'C.
The coordinates of the corners of the distorted cube are A'(—2,36),
B'(41,36), C'(43,0), 0(0,0). Construct the Mohr's circle of strain and

find the magnitudes of the principal strains and the directions of the
principal planes. '

0,0 c

Figure E3-4

Defining axes (x, z) as shown in Fig. E3-4, the normal and shear strains
across the faces of the cube are

£, = — g5 =—0.075,
g, =+ =0.100,
Ves = V2s = + 75 = 0.050,
£ = Egx = §y = 0.025.
Note that e, is a tensile strain and is, therefore, negative, &, is a com-
pressive strain and is, therefore, positive, and the shear strains &, and

£, are positive because the angles in the positive quadrants of the cube
increase. ! i

The Mohr's circle of strain is shown in Fig. E3-5; for plotting the
Mohr's circle, the counter-clockwise shear strain £, is plotted positively
and the clockwise shear strain e, is plotied negatively. Scaling from the
diagram, the principal strains are 4

£, =0104 and g =—0.079.

STATES OF STRESS AND STRAIN IN SOILS £3

- 0.15

~ 0.10

Figure E3-5 Mohr's circle of strain

F

The pole of the Mohr's circle is located at P and the major principal
plane makes an angle of 8° to the x-axis.

313 MOHR’S CIRCLES FOR INCREMENTS OF STRESS
AND STRAIN Y

A!thoughﬁwe have considered Mohr's circles for states of stress and strain
the analyses are equally applicable for increments of stress and strain,

3.14 RELATIONSHIPS BETWEEN STATES OF STRESS AND -
STATES OF STRAIN

Although the Mohr's Nele of stress in Fig. 3-1(c) is similar to the Mohr's
circle of strain in Fig. 3-8(c) and similar lettering has been used on each
diagram, we have done this purely to bring out the similarities between
stress analysis and strain analysis and it must not be assumed that the state
of stress shown in Fig. 3-1(a) will give rise to the state of strain shown in
Fig. 3-8(a).
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The state of strain that occurs in a soil as a result of some state of stress
depends on many factors and, in particular, on the special rules that govern
the mechanical behaviour of soil. As engineers, we should be familiar with
the theories of elasticity and plasticity. Both of these theories can relate
stresses with strains (or strain increments) in loaded bodies, and they provide
sets of rules for material behaviour under load, An important part of
theoretical soil mechanics is to describe a set of rules governing the relation-
ships between stresses and strains in loaded bodies of engineering soil.

3-15 SUMMARY

1. Mohr's circles may be used to analyse states of stress and of strain; a
simple method of analysis is to use the pole construction.

2. Mohr’s circles of total and effective stress have the same diameter and
are scparated by a distance equal to the magnitude of the pore pressure,

3. Pure shear strains sych as e, must be distinguished from engineers’
shear strains such as y_,(= 2¢,,). 5

4. Shear stresses are zero on principal planes of stress; shear strains are zero
across principal planes of strain.
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FOUR

t STRESS AND STRAIN PATHS
AND INVARIANTS

4-1 INTRODUCTION

An element of soil, whether it is part of 4 laboratory test specimen or a
soil Structure, will experience changes in its state of stress and in its state of
strain as the laboratory test Pprogresses or as the structure is built and loaded
in service, We have already seen how Mohr's circles may be employed to
analyse the state of stress or the state of strain at a particular instant during
the luading, but we may need to trace the history of the changes in the
states of stress and strain,

If a perfectly elastic material is loaded or unloaded within its elastic
range the behaviour of the material is dependent only on the initial and final

states of stress but also on the way in which the states of stress and strain are
changed and on the previous history of loading; we will need, therefore,
to be able to trace the state of a soil element throughout its loading history,

4-2 STRESS PATHS

In a general cubical element of material, there are six independent stresses,
i.¢., three shear stresses and three normal stresses. If the element is rotated
so_that the faces become principal planes, the shear stresses on the faces
vanish and the normal stresses become principal stresses. For a soil, the state

_Of stress is completely defined by the three principal total stresses and their

directions and the pore pressure; the three principal effective stresses may be
calculated simply,from Eq. (2-7). @/==in
We may draw axes o}, oy, and o} as shown in Fig. 4-1 to define an effective

points of instantancous states of effective stress js defined as the effective

t The point represents only the magnitudes of the principal stresses: it does not
record their directions and the stress path does not record any rotation of the principal
planes.
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-

Figure 4-1 Stress path in a three-dimensional effective stress space

I
stress path. We could equally well define a total stress space with axes oy,
oy, and g, and plot a toral stress path. It is often convenient to superimpose
the total and effective stress axes. The total stress path and the effective
stress path will then be separated by a distance repr g the magnitud
of the pore pressure.

In similar fashion we could also lrace the history of the state of strain
in an element by defining axes &,, &, and e, and plotting a strain path as the
line joining the instantaneous states of strain,

As an example we will consider the effective stress path illustrated in
Fig. 4-1. The path represents a sequence of loading consisting of:

Q'A’, = o), oy, and oy increased equally from zero;
A'B', o} increased, o and oy held constant;
B'C, oyandoyi 1, o} held t

If A’B’ and B'C’ represent equal increments of o}, and of of and o}, the
point C' will lie on the projection of O'A’; the line O’A’C’ is known as the
space diagonal. The state of stress represented by a point on the space
diagonal is isotropic (equal all-round) with o} = o} = o,

The methed of plolting stress puths in three dimensions shown in Fig, 4-1
is rather cumbersome and the paths are not easy to follow or to manipulate.
Under various circumstances we may select different axes to give simpler
pictures of the history of loading of an element.

-
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4-3 STRESS PATHS WITH o}:0; AND a,:0, AXES

It is sometimes convenient to ignore the intermediate prinplpal stress oy
and plor. effective stress paths in the two-dimensional effective stress plane
0y: 0y, a5 shown in Fig. 4-2-We may also superimpose the two-dimensional
total stress plane o,: o, and plot total stress palhs/

Oy U
4 ooy 2
A s

VT

o 03,03
Flgure 4-2 Stress path with o}, o}- and oy, og-axes

In Fig. 42, O'A’B'C’ is the same effective stress path as that shown in
Fig. 4-1. If the pore pressure at B’ has some value u, the point B represents
the instantaneous total stress; by | ion, points of instant total

and effective stress are separated hy .J(Z}u along lines inclined at 45° to the
axes, as shown in Fig. 4.2,

Example 4-1 Stress paths with o,: 0, and o}:0; axes

Table E4-1 records the variation of the total pnnmpa[ stresses and the
pore pressure during a drained loading test on a sample of soil in which
both the pore pressure w and the minor principal total stress o, were
held constant and the umple was loaded by increasing the major principal
total stress o,.

Table E4-1 Dralned loading test

o oy u o o

300 300 i 200 200
400 300 100 0 200
500 300 100 400 200
565 300 100 465 200
590 300 100 4%0 200

All stresses given in kiloNewtons per square metre.
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Table E4-2 shows similar data from an undrained loading test in
which the minor principal total stress oy was held copstant and the pore
pressure u changed as fhe soil responded to i of major principal
total stress o, without volume change.

Table E4-2 Undrained loading test

o L] " o o

300 300 10 200 200
350 300 165 183 135
380 300 200 180 100
39 300 224 172 7%
98 300 232 166 68

All stresses given in kiloNewtons per square melre,

For cach test, plot total and effective stress paths using al.: oy and
ooy Axes,

Values for the major and minor principal effective stresses are simply

calculated from Eq. (2-7) and values for o} and of are given in the tables.
The required total and effective stress paths are shown in Fig. Ed-1.

600 T T

. 500 -

Total stress path
(drained and’
undrained tests)

400 - [ / -
Drained o) =gy

e test ’ o\ =d}
Z ;
- A Effective -] : ]
- stress paths
it ’
=r "'Lf / 3
Undrained
test
1
100 |- / 2
o
0 /. : . ‘
100. - 100 300 400

. 03,05 (kNm?)

Figure E4-1 Stress paths for drai

4

and undexined loadl
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4-4 STRESS PATHS WITH r':s' AND r:s AXES

The instar'umeous two-dimensional state of stress may be represented by a
Mohr's cifgle of stress as shown in Fig. 4-3, The position of the Mohr's
circis and i3 Size may be identified by the coordinates (s',1') of its apex M’
and we co{r!&_tmce the loading of an element by plotting the path of M’ on
axes ' and t', We could equally well consider total stresses and plot a total

stress path on axes s and ¢ by tracing the path of the apex of the Mohr's
circle of total stress,

]

Mis', 1)

[LHEAS ]

oy, -1,,) b

f——— ¢

Figure 4-3 Definition of stress t and &'

By inspection of Fig, 4-3, we see that ' is the radius of the Mohr's circle
of effective stress and is equal to the maximum shear stress, while 5' is the
distance from the origin to the centre of the Mohr's circle of effective stress
and is equal to the mean of ¢} and o, .

From the geometry of Fig. 4-3, and noting that the magnitude of r,,
and 7, are equal, we have -

= ol — a4, 1)
5" = H{o’,+a)), : (4-2)
or, in terms of principal effective stresses,
» t'={j-0), @)
8 = j(oy+ay), S )

In the same way, for total stresses we d:ﬂ_ne

o pm oy, G
5= (o + ). (4-6)
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Simple calculation and use of the cffective stress equation (2-7), then
gives ‘
=t &7
sy -8

and, if the total and effective stress paths are plotted with axes 1:3 and t':s'
superimposed, the paths are separated horizontally by a distance equal to u,
the pore pressure. -

Figure 4-4 shows the stress path of Fig. 4-1 plotted with axes 1":5°. To
calculate the slopes of the parts A’B’ and B'C’ we may write Eqs (4-3) and
(44) as

51" = §(50}—8ap), (4-9)

8s' = }(50}+80p). (4-10)

o
Figure 44 Stress paths with 1/, 5= and 1, s-axes

For A'B’ 80} =0 and dt'[ds" =1, and for B'C’ 80} =0 and dr'|ds' =—1.
The point B represents the state of total stress corresponding to effective
stresses at B and so it is separated horizontally from B’ by a distance equal
to u, the pore pressure.

Example 4-2 Stress paths with 135 and f':5" axes

Plot total and effective stress paths using f:5 and 1':s' axes for the
drained and undrained loading tests in Ex. 4-1.

Table E4-3 Drained loading test

o oy u t F] ! 7
300 300 100 0 300 0 200
400 300 100 50 350 50 250
500 300 100 100 400 100 300

565 300 100 133 433 133 ELE]
590 300 100 145 445 145 - M5

All stresses given in kiloNewtons per square metre.
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Values of ¢ and s and of 1’ and s’ may'be found from the principal total

stresses and pore pressures given in Tables E4-1 and F4-2, making use
of Eqs (4-3) to (4-6) and the results are listed in Tables E4-3 and E4-4.

Table E44 Undrained loading test

o o u ] F] r {3

300 300 100 o 300 0 200
350 300 - 165 25 325 28 160
380 300 200 40 340 40 140
396 300 224 48 k21 48 124
398 300 32 49 349 49 n7

All siresses given in kiloNewtons per square metre,

The required total and effective stress paths are shown in Fig. E4-2.

200
T
5 Effective
100 stress
E path
- Total stress
path
0 1 b, !
100 200 300 400
5,5 (kNm™ 1)
(a)
200 :
&
Z w00
~ - Effective stress path . .
\ )}dffmnl stress path
0 ] = !
100 200 300 400

55 (kNm™?)

(®) L

Flgure E4-2 Stress paths for (2) drained and (b) undrained loading tests
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INVARIANTS OF STRESS

he parameters ¢’ and s (and ¢ and 5) are rather special bepause, for a given
te of stress, their values-are independent of the arbitrgry choice of the
Forientation of the reference axes. It is easy to see why thid must be so; the
two-dimensional state of uffective stress in an element Is described by a
. unique Mohr's circle of effective stress and the parameters ¢ and s simply
# locate the apex of this unique circle. Parameters like o}, o, and 7.,, which
' depend on the orientation of the reference axes as well as on the state of
stress, are not entirely suitable on their own as measures of the stress state,
b their magnitudes depend on the choice of axes. We would do better,
at least for isotropic soils, to choose stress parameters which are independent
of the choice of reference pxes and which are unique for a given state of
stress. As we have seen, the magnitudes of the p ters 1’ and 5* do not
depend on the choice of axes and, for this reason, they are appropriate
. measures of the state of stress for the two-dimensional stress states con-
sidered.

Stress parameters the magnitudes of which are independent of the choice
of reference axes are usually known as stress invariants; they are invariant
In the sense that their magnitudes do not ch as the yeference axes are
varied. We should.note, however, that the term ‘stress ipvariant’ is strictly
reserved for parameters appropriate to general states of stress and, further,
that the parameters (', 5" are not entirely satisfactory as complete measures of
a two-dimensional state of stress as the value of the intermediate principal
stress oy has been ignored, Nevertheless, use of the parameters 1 and 5* is
often convenient when, for example, the value of the intermediate principal
stress is not known.

We will not cover the theory of invari here;t instead, we will only
state that the octahedral normal effective stress of, and the octahedral
shear stress =, are invariants and these are defined by

Ooee = (04 +3) +0)), @10
7k = M= o (0~ (0o 6(r, e TR (4-12)

or, in terms of principal stresses,

Toet = Y(o1+03+0Y), @)

Toot = H(o1 =0 +(03 ~ o' + (o3 — o). (414
The corresponding octghedral tc‘u-;l stresses are, similarly,

oot = Yoy + 0y +ay),. % (4-15)

Toet = (0= 0" + (030" + (93— 0"} (4-16)

t See, for example, Ford (1963), chaplers 2 and 8.
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and, by simple calculation, total and effective octahedral stresses are
related by

Thet = Toots 17)
‘ Ol = T — (4-18)
The ing of the parameters =, and o}, is illustrated in Fig. 4-5,
oy, 0} M !
l/'
L Viu/
. 7 .
e /R y
M 9 .
ﬁ'r‘m N
Violy ;
o s
R 0,0y
~Jy

03,03

Figure 4-5 Representation of octahedral stress

The state of effective stress at M’ may be described by a distance O'N’
along the space diagonal O'R together with a dist N'M' normal to
O'R; the vgctor O'N’ is equal to 4[(3) oy 8nd the vector N'M’ is equal to
V(3) 7hes. In order to describe the location of M’ completely, we require a
third in\rn.rrqnt; this may conveniently take the form of an angle « measuring
the rotatiop of the vector N'M’ from the plane OPRS. The state of total
stress at M Is equjvalent to a state of effective stress M plus a pore pressure u;
the vector M'M has magnitude y(3)u and is parallel to the space diagonal.

For thq special case where of = of, points such as M’ and M plot in the
OPRS plane with « = 0, Also, for o = o},

e = §(of+20)), @19)

Thy = %oi'- o). @)
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To avoid the recurring /2 term, we will define new invariants ¢’ and
p', where, for oy = oy,

P’ = o) +20D) = ofcp (4-21)
= (= oD) = o “n
For a general three-dimensional state of stress, g' and p’ become

P =i(oy+oy+o), (4-23)

¢ -jli[(o;—- NG oD, (429)

and the third invariant & will be non-zero. The corresponding total stress

parameters are written (4-25)
p = {0y +oy+og)

g= ;lli (o= 09+ (03— o) +(og—a)'IV%, (4-26)

and simple calculation shows that the total stress and effective stress invariants
are related by

p=p-u, (4-27)

q'=q (4-28)

Throughout the book we will be careful to distinguish ¢’ from g and

{* from t; of course ¢' =g and ' =1, but, h we are idering

effective stresses, we will write ¢’ or 1’ and whenever we are considering total
stresses we will write g or 1.

4-6 STRESS PATHS WITH g':p' AND g:p AXES

The invariants ¢’ and p' may be used as axes for plotting effective stress
paths. Figure 4-6 shows the stress path of Fig. 4-1; to calculate the slopes of

9.9

o

Figure 4-6 Stress paths with g', p’- and g, p-axes
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the parts A’B’ and B'C’ we may write Eqs (4-21) and (4-22), whi
for the special case oj=o}, as it e
8p' = §(80}+250)), (@29)
8" = (30} —3a)). - 4-30)
For A'B’, 8oy = Soy =0 and dq'{.ldp" =3 and, for B'C’; 80| = 0, S0y = 8o},

and dg';dp' -—f '[‘l}e point B represents the state of total stress corre-
sponding to an effective stress state at B’ together with a pore pressure u.

]

Example 4-3 Stress paths with ¢:p and ¢': p’ axes -

l:lof total and effective stress paths using axes g:p and ¢':p’ for the
d and undrained loading tests in Ex. 4-1. ’

Values of g and p and of ¢’ and p’ may be found from the principal total
and pore p given in Tables E4-1 and E4-2 making use

r.Ei:" Esq:n [:-ég.&(ll-n). (4-27), and (4-28), The results are listed in Tables

Table E4-5 Drained loading test

L L " q P 7 P
300 300 100 [} 300 0 200
400 - 300, 100 100 33 100 233

500 300 100 200 167 200 267
565 300 100 265 388 265 288
590 300 100 290 397 290 297

All stresses given in kiloNewlons per square metre.

Table E4-6 Undrained loading test

o L u q P ¢ r

300 300 100 0 300 0 200
150 300 165 50 m 50 152
380 300 E 80 nr 80 127
396 300 96 kR 96 108
398 300 232 98 n 98 101

All stresses glven in kiloNewtons per square melre.

The required total and effective stress paths are shown in Fig. E4-3.
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300

Effective

stress
—~ L path
: 5 200
E
Z
= Total stress
: 100 |- path
0 ! 4 L
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p.p' (kN m=)
(a)
200
e Effective
Z o} stress path
-‘; Total stress
s Pah
0 | 4 1
100 200 300 400
pop (KN m™?)
(b)
Figure E4-3 Stress paths for (a) drained and (b) undrained loading tests

4-7 INVARIANTS OF STRAIN

The history of strain in an element may be recorded by drawing axes &,
£,, and &, and tracing a strain path as the line joining instantaneous states
of strain; a strain path plotted in this way will appear like the stress path
shown in Fig. 4-1. Alternatively, we may seek invariants of strain and use
these as axes for plotting strain paths, but then we must take care that we
select invariants of strain which corr d to those already chosen for
siress,

The correct choice of strain invariants may be found by noting that, as
an element of soil deforms under load, the work done by the external loads
is invariant (i.c., the magnitude of the work is independent of the arbitrary
choice of referenice axes), and when corresponding stress and strain invariants
are multiplied together the products must always equal the work done by the
external loads. For the present, we will simply state our choice of invariants
for plotting strain paths'and we will perform the necessary checks that these

“rarresnand tn the chosen stress invariants later.
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4-8 STRAIN PATHS

In an clemgnt deforming in plane strain, one of the principal strains will be
zero by definition and we need only consider normal and shear strains in
two dime, Eaﬁ:. The instantaneous state of strain may be represented by a
Mohr's cr le of strain as shown in Fig. 4-7. We may recall that Mohr's
circles of Hrrrain are plotted with axes of normal strain and pure shear strain
and that e_, = }y.,, Where y,, Is the engincers’ shear strain.

The position and size of the Mohr's circle may be defined by the co-
ordinates of its apex M; we define parameters e, = 2.NM and ¢, = 2.0N
and, from the geometry of Fig. 4-7,

e, = [(e,— &) +4e5]'7, (4-31)
gy = (g +8g) (4-32)

Since e, and e, simply locate the position of M in Fig. 4-7, their magni-
tudes will not vary as the axes (x, z) are rotated. :
In terms of principal strains,

e, =(e—2), (4-33)

8, = (g +2). (4-34)

In defining ¢, and e,, we introduced a factor of 2 so that the strain

parameters (s,, &y) correctly correspond to the stress parameters (1',5').

The inclusion of the factor 2 is convenient because ¢, and e, have familiar
meanings. We may show quite simply that

8, = Yoaxs . (4-35)

ey =—dV|V, (4-36)

where g,y is the maximum value of engineers' shear strain and 4V is a

small increase in a volume V. Thus &, is simply the (compressive) volumetric

strain.,

I

Fleure 4-7 Definition of strain par r.and £,
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The parameters &, and &, may be used as axes for plottng strain paths;
such strain paths will appear similar to the stress paths plotted with axes
(t',5) as shown in Fig. 4-4. Use of the paramelers ¢, and e, when & = 0is
often very convenient; nevertheless, it must be appreciated that &, and &y
are not invariants, for their magnitudes depend on the choice of a refercnce
axis aligned in the direction of zero strain. We must, therefore, examine the
strain invariants which correspond with the stress invariapts g'andp'. .

. The general state of strain in an | t s defined completely by three
direct strains (5, 2,,¢,) and three ghear straios (¢, e, 2,,), and we require
combinations of these that are inviriant. Without derivation, we will simply
state that the octahedral normal strain £, 8nd the octahedral shear strain
Vet Br¢ invariant, where

ot = Hea T8+ ), (4-37)

¥, = $leg— )t + (6= e+ (B =t + (e, + ), £ (4-38)
There_is an obvious similarity between octahedral stresscs, defined by
Eqs (4-11) and (4-12), and octahedral strainy, Strictly, we should define &

third strain invariant corresponding to o in Fig. 4-5, but we have already
dealt- with strain paths for plan

¢ strain and, for axial symmetry, o =0.
If The axes are rotated so that the faces of the element are principal
_ planes, Eqs (4-37) and (4-38) become
to = Herteate (4-39)
Yoo = Hl(ey— e+ (o= 2" + (g —2)* T (4-40)
We mmust now find invariants_of strain which correspond to the. stress

jnvariants ¢’ and p' such that both together sutisfy the work condition stated
in Sec. 4-7. We will denote these invariants ns e, and €, and it turns out that

8y =3t @A
c.-;}iy...- | @4)

Thus, -
Ey -(e:+‘r+¢-]’ (4-43)

e = L, gt 4 (ey— &) HE— e+ Heh, el @H4)
and, in terms of principal strains,

ey = (ey+ &gt &)y ; (4-45)
LT e Y (&46)

It should be noted that, in Eqs (4-43) and (4-45), the invariant &y is
simply the volumetric strain as defined by Eq. (4-36) and, further, that by
putting £, = 0 for plane strain into Eq. (4-45) we recover Eq. (4-34).
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 The invariants ¢, and e, may be used as axes for plotting gencral three-
dimensional strain paths; such paths will appear similar to the stress paths
plotted with axes (¢',p") as shown in Fig. 4-6.

For the special case, where e, = &, the strain invariants become

oy (e +2e), o (447
&= f(s,— 2. (4-48)

49 YOLUMETRIC STRAINS

The volumetric strain e, has appeared as an invariant and as an axis for
plotting strain paths for general states of strain, for axial symmetry, and for
plane strain. Volumetric strains play an important part in soil behaviour;
they may be expressed and m d in a number of ways, and it is pertinent
to examine these here. )

If the volume ¥ of an ¢l t of soil i by 8V as a result of some
change of effective stress, the change in the volumetric strain is given by

Se, =—8V[V. : (4-49)
As usual we introduce the negative sign so that compressive strains are
positive.
The volume ¥ of a soil element is made up of a volume of water Vy and
a volume of soil grains ¥, as shown in Fig. 4-8(a). If the soil grains and the
pore water arc assumed to be incompressible, the volume of the element

can only change if water is squeezed from, or drawn into, the soil element;
thus, 4

5V = =8V, ' (4-50)
where 5V is the increase in the volume of the element and 8V, is the volume
of water expelled. We may, therefore, calculate volumetric strains by
measuring the quantity of water crossing the boundaries of a sample; such
measurements are usually simple to arrange in laboratory tests.

The voids ratio, defined in Chapter 1, is e = V[V, and, since the soil
grains are incompressible (i.e., 4¥, = 0),

be = K[V, .
Therefore,
5V =V,8¢ (4-51)

and, from Eqg. (449, ’

Se, = i .l',ﬁe

v Ve
with the result that
s "
8ty v —17e (4-52)
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: i
. Volume V= ¥y + ¥, ‘l
. e . e ESETT sV
Water ¥,
Soil | ¥,
e
r
(a) (b)
C o
Specific volume
u=]+e 1
1 By = Je
e
K=1 |1 ¥=1
(c) (d)

Figure 4-8 Volume changes in soils. (a) Yolume of soil sample. (b) Yolume change.
(c) Specific volume. (d) Change of specific volume

The voids ratio is related to the water content and specific gravity of the
soil grains by Eq. (1-1), e = wG, and so
be = G, &w
and
Sw

58‘ = —m

(4-53)

Volumetric strains may, therefore, be calculated from water content .

measurements. .
" In order that we may comg lume changes of different sized soil
les, it is convenient to introduce the specific volume v. The specific

volume is defined as the volume of an element of soil containing unit volume
of mineral grains, as indicated in Fig, 4-8(c); i.e., ¥, = | and, from Chapter I,
v=1+e, ) (1-4)

If, due to some change of effective stress, the specific volume changes
by &u, then

8v = e
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"

and

8! 89
Bty =m0 i
i F i (4-54)

1
- 410 CORRESPONDENCE BETWEEN PARAMETERS FOR

STRESS AND STRAIN

We must now show that the stress and strain parameters have been chosen
correctly by demonstratihg that the products of corresponding parameters
of stress und of strain correctly give the work done by the external loads.
First, we calculate the work done by the external loads and pressures
per unit volume of soil. We consider an el with di i (a,b,¢),
as shown in Fig. 4-9; the faces of the element are principal planes and the
pore pressure has a constant value u. If, during a small time interval, the

Fy

Fléuwt-s Diagram to illustrate the ponds b Invari of stress and
strain
di ions of the el i by 8a, 8b, and 8¢, and the volume of water

expelled is 8V, then the work 8W done by the cxlcrnal loads and pressures
is gh':a by w

W= Fl(~3a)+f‘,(_5&}+F,f—8c)-=u8?, ) (4-55)
and, making use of Eq. (4-50), the, wurk done per unit volume is
8W _k 8a b\ Fyf &\, 6 &V
. = e ':)"m(-_ b)*E(“?)*"‘“F
Hence, = p o ; .
SWV.= a, 8¢, +0, 56, + 0y 56y —1uBe,, © (4-56)
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but ude, = u(Se, + Sey+ 8¢,) and, therefore,
BV = oidet it ol f #50)

The work done per unit volume, may also be calculated in terms of the
two-dimensional stress and strain parameters:

SWV = t'be, +5'Be, '(4-58)

= (o} -0 (56— 5=a)+i(¢;+=.)(3¢1+5=.) G

= o} 8e,+ 0} 38y, - : (4-59)

But for plane strain, 8¢, = 0 and Eq. (4-57) becomes :
8W|V = o} 8e, +0ydey. (4-60)

Since Eqs (4-59) and (4-60) lead to identical expressions for §W/V, we have
confirmed that the strain parameters e, ¢, are correctly associated with the
stress parameters (', ' for conditions of plane strain.

The work done per unit volume may also be calculated in terms of the
general three-dimensional stress and strain invariants as

SW|V = g’ Be, +p’ Be,. (4-61)
For the special case of axial symmetry, where oy = oj and & = g,
9’ =(oj—0y, N ]
P’ = (o} +209), (4-21)
by = J(Be,— ey, (4-62)
8ty = (86, +25¢y), (4-63)
and Eq. (4-61) becomes
SW[V = o} e, + 204 8¢, (4-64)
But, for axial symmetry, oy = o3 and ¢, = 5e, and Eq. (4-57) becomes
SW|V = oy fe, + 204 8ey. (4-65)

Thus we have confirmed that e, £, are correctly associated with q p' for
conditions of axial symmetry.

4-11 STRESS-STRAIN BEHAVIOUR OF AN IDEAL ELASTIC
SOIL o

In order to illustrate the importance of invariants it is useful to examinc the
behaviour of an ideal isotropic elastic material. In this context, isotropic
means that the properties of the material are the same in all directions. We
assume that our readers are familiar with the basic theory of elasticity as
set out by, for example, Case and Chilver (1971, pp. 82-85). The ideal
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materialis taken to be like a soil in that it obeys the principle of effective
stress, and, thus, strains must depend on effective, not total, stresses,

. The stress-strain behaviour of this ideal soil-like material is given by the
gmahzed form of Hooke's law:

e, = (1/E") [80,—+' 8o}, —+' 8ol],

St, = (1/E") [50‘.',-»’ 8o, —" 8ay),

8¢, = (1/E") (80}’ 80/, b0,
Syai = GIE(14v) 2, e
8y = (QIE) (14V) 81,
8yes = (ET)(14+) 87,

where E’ and v’ are the Young’s modulus and Poisson's ratio appropriate
for changes of effective stress, The values of E' and »' are assumed to remain
constant over small increments of stress and strain and, as the material is
assumed to be linear elastic, Eqs (4-66) are also valid for large increments
of stress do’ and of strain de. Written in terms of principal stresses and
principal strains, Eqs (4-66) become

8y = (1/E") (80} ~+' oy —' 80j),
8ey = (1/E") [0y~ Soy~v'8ai], | (4-67)
bey = (1/E") [80}—»' 80y —+' Boy), -

since shear stresses and shear strains are zero on principal planes,
For the special case of axial symmetry, where o} = oj and & = ¢,
Eqs (4-67) become

ey = (1/E") [60y— 2" Bay), o (4-68)
86y = bty = (1/E") [8of(1l =) ~v' ba}] ' (4-69)
and, hence,
(- m
Be, = (8e;+288y) = *——= (80} +280)) (4-70)
or
3¢, .,-ﬂ;f) 8", @)
-
Similarly,
Bty = 1086y 8ey) = 2017 80}~ o)) @12)
or
21 ++)

Bey = =0, . (4-73)
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Equations (4-71) and (4-73) are often written

Sy = % 8p', (4-74)

1 '
€= 355", (4-75)

where K’ = §E'/(1—2+") is known as the bulk modulus and G’ = }E'/(1 +)
is known as the shear modulus,

Equations (4-74) and (4-75) demonstrate an important property of an
ideal isotropic clastic material. When invariants of strain are correctly
associated with invariants of stress, increments of shear strain Se, are
dependent onJy on increments ol' the corresponding stress invariant 8g°
and, similarly, i of v ic strain 8z, are dependent only on
increments of the currcspondlnx stress invariant 8p’. To emphasize this
point, we may write

peiw I:' 8p'+0.3¢", 476)
Bea = 0.8+ 3558" @
Thus, volumetric ins e, are d with the stress invariant p'

and sepnrated from ', while shear strains ¢, are connected with the stress
invariant ¢’ and separated from p', Althuugh Egs (4-76) and (4-77) were
derived for the special case of o = of, it turns out that they are valid for
general states of stress fo materials which are isotropic and which are linear
elastic over the appropriate increments,

Example 4.1 Behaviour of an ideal isotropic elastic soil in plane strain -

Obtain expressions relalmg the strain parameters ¢, and £, to the stress”
parameters (" and 5’ for an ideal isotropic linear elastic sml loaded in
plane strain.
For plane strain, z"w 0; hence, from Eq. (4-67), 80§ = v' (80} + §03) and
1= (1/E") [8a1(1 —v™) = 8a3(" +-+ 7)),
8&, (UE )[Bol{l —v") Say(v' +v' )]
Therefore, for plane strain Ioadms.

(l+v}(1 -2)

—(Se +8e) = (80} 4803,

or

W)
Bey= ———T—S
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and
e, = (5e;— 8ey) = a +P )(Bcrl §ay),
or
3 5 A1 +"’) 5t
£y H—E,—- | 49
These may be written
’ A1+, '
Be, = =3z Bs'+0.5¢',

8¢, = 0.55" + %E:'.

A.LT. LIBRARY

4-12 SUMMARY

1

(=]

-

The history of stressing of a soil element may be recorded by tracing a
stress path and the history of straining may be traced by a strain path.

. For plane strain conditions, stress and strain paths can conveniently be
plotted with axes
) t' = {(oy—0)), ) (4-3)
s = (o}+03), (4-4)
6= (&), (4-33)
&y = (g, +2y). (4-34)
. For axial symmetry (o] = o and £ = &), the chosen axes are
‘g =(oj—0y), : (4-22)
P’ = {(o}+203), (4-21)
&= (e, —ed), (4-48)
£y = (£;+2¢). (4-47)

Stress paths"ay be plotted in terms either of total or of effective stresses;
relationships between total and effective stress parameters are

=1, : . 47
8 =s5—u, : (4-8)
¢'=q, ) (4-28)

P (4-27)
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5. For an ideal isotropic elastic soil, -

P ¥
- i€ ,:_!L-i-;ﬁp +0.8¢', (4-76)
By = 6.3;' - EI? 8q', @77
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LABORATORY TESTING OF SOILS

51 INTRODUCTION

Testing of soil samples in the laboratory plays an important role in soil
mechanics:research and in civil engineering practice.

Some soil tests are intended only to classify solls into broad groups so
that some aspects of a soil's behaviour will be known before more detailed
tests are carried out. Particle size analysis tests and Atterberg limits tests
are classification tests of this kind and were described in Chapter 1. Some
soil tests are performed to examine how easily water can flow through soil;
permeability tests will be discussed in Chapter 6 and consolidation tests in
Chapter 8. =

Other soil tests examine the mechanical behaviour of soils and, in
particular, investigate their strengths and deformati during loading
Usually, a small soil sample is placed in & loading machine and the state of
stress in the sample is changed; observations are then made of the state of
stress, the state of strain, and the pore pressure in the sample at many
i during the loading

We will make considerable use later of the results of laboratory loading
tests in the development of our ideas of soil behaviour. In this Chapter, we
will describe brizfly some of the different kinds of soil loading apparatus
commonly found in commercial and research laboratories and the kinds of
tests commonly performed in them. We assume that students will have the

it ducting triaxial, direct shear box, and oedometer tests

PP y of
for themselves, or, at least, will have seen these tests demonstrated.,

52 REQUIREMENTS OF SOIL LOADING TESTS

Figure 5-1 illustrates a set of completely genaral total stresscs on the faces
of & cubical elen®nt of soil in the ground. Below level ground there will be
symmetry about the vertical axis, s0 o, = o, and To, =Ty = T = 0, but
near building foundations and slopes this will not be the case and there will
be & completely general state of stress. 3

Ideally, we should be able to transfer the element of soil from the ground
to an apparatus without disturbance, load or unload the stresses, and

&7

i




68 THE MECHANICS OF 50ILS

Figere 5-1 Axes of stress in the ground

observe the resulting strains and pore pressures. The apparatus should be
able to impose a completely general state of stress in the sample and it
should have complete freedom to change the state of stress so that principal
planes may rotate during loading.

" These are stringent requirements and are very difficult, if not impossible,
to satisfy in practice. A serious difficulty arises in accommodating the
relatively large deformations that occur in soils as they are loaded; even
relatively stiff soils may strain by 5 per cent before failing while, in soft clays,
deformations may exceed £0 per cent of the initial sample size. With these
very large movements, it is difficult to avoid interference between adjacent
loading plates. :

53 BOUNDARY CONDITIONS

A soil loading apparatus will, in general, stress a soil sample on three pairs
of opposite faces; the stresses may be applied by rigid plslens or flexible
membranes but, as we are usually concerned only with compressive stresses,
there is no need to attach the loading platens to the soil sample.

A rigid platen is usually plane. Normal and shear forces F,, Fap
and F,, are applied to the platen and these forces are transferred into the
sample. The conventional assumption is that contact stresses arc uniform
across the face of the platen and then stresses are calculated from the npplled
loads and the area of sol in contact with the platen, as indicated in
Fig. 5-2(a). Occasionally, however, rigid platens may contain one or more
small force transducers, as indicated in Fig. 5-2(b) which can measure any
variation of stress across the face of the platen. .

If the face of a rigid platen is rough, and sometimes platens are roughemd
artificially by attaching sand grains or thix vanes to their faces, shear stresses
may be transferred from the platen into the soil sample. If, on the other
hand, the face of a platen is perfectly smooth and frictionless, there can be
no shear stress between soil and platen; in this case normal stresses on the
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Figure 5-1 Boundary conditions of soil testing machines. (a) Rigid platen. (b) Rigid

platen with force transducers. (c) Flexible membrane i

platen faces are, by definition, principal stresses and planes parallel to the
platen faces are principal planes of stress in the sample.

A flexible membrane will consist of a thin diaphragm, usually rubber,
with a fluid pressure acting on it, as indicated in Fig. 5-2(c). If the diaphragm
is thin and flexible, no shear stresses will be transmitted into the soil; planes
parallel to the faces of the membrane will be principal planes in the sample
and the fluid pressure behind the membrane will be a principal stress in the
sample. This sthess will be approximately uniform across the face of the
sample except perhaps near the edges of the b where it is attached
to a support. R

With rigld platens, normal and shear strains in the soil ma)r be found
quite simply by measuring the movements of the platens. With flexible
membranes, however, direct strain measurement is difficult and there is no
guarantee that deformations in the soil will be uniform. If all the platens in
a particular apparatus are prevented from rotating, whether they are rigid
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or flexible, planes parallel to the platen faces are principal planes of strain
in the soil and the normal strains across opposite faces of the sample are
principal strains in the soil.

54 CONTROL OF LOADING

During a test on & soil sample, we may change the state of stress by adding
loads or pressures to the sample and we may observe the resulting change
in the state of strain; this is known as stress-controlled loading. Alternatively,
we may change the state of strain b¥ moving the platens and observe the
required change in the state of stress; this is known as strain-controlled
loading.

Usually, in laboratory tests on soils, strain-controlled tests involve
driving the loading platens at t velocity, while stress-controlled tests
involve adding weights to a loading frame. In some very special tests, the
rate of loading is sometimes controlled by feedback from the state of the
sample.

5-5 CONTROL OF PORE PRESSURE AND DRAINAGE

During loading tests on soils, it is very important that we should be able to
control either the drainage of pore water or the pore pressure or both. By
controlling both total stresses and pore pressures we control the state of
-effective stress in the sample and, if we assume that soil grains and water are
incompressible, by controlling the volume of water expelled from, or drawn
into, the sample, we control the volume of the sample.

In order to control the drainage during a test, the sample must be isolated
within a waterproof membrane. In addition, a connection must be made to
ap transd o e the pore pressure, a valve to control the
drainage, and a volume gauge to record the volume of water entering or
leaving the sample, as illustrated in Fig. 5-3.

It is extremely important to distinguish between a test in which the’

drainage valve is closed and a test in which it is open.

If the valve is closed, no water can flow from (or into) the sample and
the test is known as undrained. The mass of the sample will remain constant,
but pore pressures will change as the soil responds to changes of stress.

If we assume that soil grains and water are i pressible, the sampl
volume will not change during an undrained test.
I the valve is open and the pore p i tant, water will

flow from (or into) the sample as the soil volume responds to changes of
effective stress. The test is then known as drained. Since pore pressures remain
constant, changes in total stress and changes in cffective stress are identical.
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Back pressure

I

v
Volume
gauge

+AV
Pressure
Soil transducer
sample
g A~ On-ofT valve

Figure 5-3 Apparatus for control and measurement of volumetric strain and pore
pressure

If the volume gauge is open to the atmosphere, pore pressures are zero;
often, however, it is convenient to apply a constant back pressure v, as
indicated in Fig. 5-3.

Occasionally, special tests are carried out in which the pore pressure is
changed independently of the total stresses.

5-6 CLASSIFICATION OF SOIL TESTS

Because of the technical difficulties involved in constructiog an ideal soil-
testing apparatus which is able to impose a completely general stats of stress
in which principal planes may rotate, the strategy adopted in soil mechanics
has been to have several different kinds of apparatus, each of which will
load soil samples in & special way, We will describe the more important of
these and introduce the conventional terminology for different tests.

We consider first the class of apparatus with smooth, non-rotating rigid
platens or flexible membMunes in which the sample boundarie$ ar= principal
planes of stress and of strain. An apparatus of this kind imrhedisr=ly imposes
two restrictions on the behaviour of the ple: principal planss of stress
and of strain coincide and cannot rotate.

The kind's of test available in this class of apparatus are Mustrated in
Fig. 5-4. The stresses o,, o}, and o, are prinzipal stresses, but not necessarily

v
1
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e
% Special

: Name of test Diagram
conditions d
L
True triaxial i
#hgy #0 [ H ..
% » e i P A
al
e Cylln'_&rlul ‘compression 0
o) 0 6 The "triaxial’ test s r
. -
6§ =0 ' Plane strain or biaxial @_ o
e =0
. o
ay =0 Plane stress @__ o,
E o=
e
—— One-dimensional compression
b el The oedometer test o
] =0
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o,
Uniaxial compression or
=0 =0 =0 uhconfined compression
=0 =0
]
I i ressi
O, =0y =0, "0 sotropic comp on - ‘ o
t € .

Flgure 5-4 Stress conditions in some common soil tests

in order ol maguitude. When the soil sample is cylindrical it is usual to
denote the radial stress by o, and the axial stress by o,. We cannot immediately
«calculate the magnitude of the tangential stress oo and it is usual to mn.ke the
simple assumption that o, = 0.

In the true triaxial test, all three principal stresses may differ and each
may be varied independently, while in the isotropic compression test all
principal stresses are equal; there are various other kinds of test between
these extremes. Strictly speaking; the triaxial test in which oy = g, = g, = 0y
would be better described as the cylindrical compression test or the axially
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symmetrio test, but the word ‘triaxial’ is now firmly established in soil
mechanics terminglogy. A variation of the true trinxial test is the hollow
cylinder {est, in which the radial stress inside a hollow cylinder may be
different from the radial stress outside the cylinder. In general, the state of
stress in an g¢lement of soil in the wall of a hollow cylinder is o % 0,# 05,
but the magpitudes of o, and o, vary with radius.

The second class of apparatus for soil testing consists of the shear tests
illustrated in Fig. 5~S. Here the loading plates are usually rough, and may
rotate; | the boundaries of the sample need not be either
principal planes of stress or of strain and the principal planes may rotate.

"Torsion shear samples may be solid or they may be hollow, as shown in

Fig. 5-5, and there are two versions of the latter kind, In one version, the
sample is like the hollow cylinder but with equal radial stresses inside and
outside lhe cylinder. In the other version, known as the ring shear test, the

ss-section of the lus is approximately square and there are rigid
cyliudrlcal platens inside and outside the hollow cylinder so that radial
strains are zero. The state of stress in a ring shear sample is like that in a
direct shear sample, but, in ring shear, we may apply very large shear deforma-
tions to the sample. In direct shear and simple shear tests, straint normal
to the diagram are zero and the samples deform in plane strain.

Platens Mame of test Diagram

o,
2
Rough: Direct shesr .
non-rotating The shear box test i ///////////////é
-=- 77
a,
u
Rough: .
rotating Simple shear m
-
Rough: Torsion

non-rotating The ring shear test

Figure 5-5 Shear tests for soils -
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Of the tests illustrated in Figs 5-4 and 5-5, the triaxial test, the cedomet
test, and the direct shear test are commonly used in practice to investigate
soils for engineering design purposes and apparatus for these tests can be
found in most commercial soils laboratories. OF the remainder, true triaxial,
plane strain, simple shear, and various kinds of hollow cylinder and torsion
tests are usually carried out for research purposes and apparatus t'nr these
tests can usually be found only in research labontoms

571 THE TRIAXIAL APPARATUS

The triaxial apparatus has been described in ‘detail by Bishop and Henkel
(l962 pp. 33-82) in their standard text on triaxial testing of soils.
ional triaxial apy is il d in Fig. 5-6. The soil
umple is & cylinder with height usually about twice the diameler; common
sizes for triaxial samples are 38 mm and 100 mm diameter. The top and
bottom rigid platens are assumed to be smooth and to remain horizontal
during a test, so that the top and bottom faces of the sample are principal
planes,
The sample is enclosed in a thin rubber sleeve sealed to the top and
bottom platens by rubber O-ring seals; the rubber acts both as a flexible
membrane and as a seal to separate pore p and total The

Loading ram

|, ——— Perspex cyclinder

Cell water
= Rubber sleeve
Soil s2mple
_/
// Porous filter .

O-ring seals <

Cell Pore pressure
pressure —| and volume
o, change apparatus

Figure 5-6 The triaxial apparatus
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sample is assumed to remain a right cylinder during deformation and,
consequently, the vertical sides of the sample are principal planes of stress
and of strain, .

The sealed sample is placed in a water-filled cell; the cell pressure o,
supplies a uniform radial total stress o, to the vertical sides of the sample
and an equal uniform vertical stress to the top rigid platen, as illustrated in
Fig. 5-7. A frictionless ram passes through the top of thie cell and applies an
additional force F, to the top pleten; the force is measured either by a
proving ring outside the cell or by a force transducer inside.

If the cross-sectiondl area of the sample normal to F, is A then, as
indicated in Fig. 5-7, the total axial stress o, is given by

0 = 0, +(Fa/A),
FJA = 0,0, (5-1)
As the sa!'nple deforms its dimensions change and so, s a consequence, the
cross-sectional area will change as the test progresses, It is assumed that the
sample remains a right cylinder and, if the initial cross-sectional area of

the unstrained sample was A,, its initial volume ¥, and its mitlnl length Ly,
the current area A in Eq. (5-1) is given by

33 f2)

where 4V and AL are the current changes of the volume and length of the
sample, and e, and ¢, are the current volumetric and axial strains,

The force in the loading ram is not equivalent to the axial stress but,
instead, it gives rise to a stress equal Lo (o,~o,) and is known as the deviator
stress,

Axial deformati of the ple are ed by observing the move-
ment of the ram using a displacement transducer or a dial gauge. The axial

i

(5-2)

— | Area A | g—
o,
—— + —— L
O \“ﬁ' P

.

Flgure 5-7 Stresses on & triaxial sample
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load F,, and hence the deviator stress, may be changed cither in a strain-
controlled manner using a loading frame and motor-dyiven screw feed or,
in a stress-controlled by addi ights to a hanger or pressure to a
piston. . %

A porous filter is placed between the sample and the pottom platen and &
drainage connection passes through the base of the cell {o pore pressure and
vol change ing equipment similar to that illustrated in Fig. 5-3.
It is not usual to measyre radial deformations directly, but these may be
calculated from the obsénreg volume changes and axial deformations.

The triaxial apparatus may be used to load a sample by changing the
total axial stress o, the total radial stress o, or the pur’: pressure u either
independently or together.

When the loading ram is in compression, F, is positive and 5o 05> 0,;
consequently, o, =0, and o, = g, = g5, The state of stress is known as
triaxial pression. If the loading ram is attached to the top platen, the
ram may be put into tension and F, would become negative. Then o,>o5;
in this case, o, = 0y and o, = g; = 0 and the state of stress is known as
triaxial extension. Provided the magnitude of the tensjle force in the ram
does not exceed Aa, the total axial stress remains compressive. Triaxial
extension does not, therefore, necessarily imply that tensile stresses exist
in the sample.

If the logding ram is locked so that it does not touch the top platen, the
load in the ram is zero, o, = o,, and the state of stress in the sample is
isotropic compression, as illustrated in Fig. 5-4. If the cell is emptied,
o, =0 and the state of stress is uniaxial or unconfined compression. If the
apparatus is modified slightly and provision made to re the radial
strain ¢,, we may conduct a test in which o, and o, are |ncreased together in
such a way that ¢ =0 and the sample will deform in one-dimensional
compression.

We may, therefore, duct | of the tests i|||:su'at¢d in Fig. 5-4
in a conventional triaxinl apparatus. The most common triaxial test is the
simple triaxial compression test, in which the cell pressure o, = o, is held
constant and the deviator stress (o,—a,) increased as the loading ram force
is i d. Triaxial pression tests may be drained or undrained; they
may also be stress-controlled or strain-controlled, although strain-controlled
tests, in which the ram is pushed into the cell at a constant velocity, are the
maore common, '

L 3
Example 5-1 Processing data from a drained triaxial test
The first three columns of Table E5-1 give data from a drained triaxial
compression test on a sample of soil in which the cell pressure was held

constant at o, = 300 kN m~* and the pore pressure was held constant at
u=100kNm-%. At the start of the test, the sample was 38 mm in
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Table E5-1 Data from a drained triaxial test

Yolume ' ’
Fhange of water Volu- .

Axial of * expelled, metric  Axiaf
force, ngth, AV, strain,  strain, Area q' = (g} —0})
Fq (N) fﬂ. (mm) (mm®x 10%) &y e, (m*x 10-%) (kN m~%)

0 0 0 ] 0 1134 0
115 - 195 088 0.010 0.025 1.151 100
238 - 585 I 0.042 0.075 1174 200
325 =1L70 17.07 0.080 0.150 12271 265
394 ~19.11 840 0.095 0.245 1.359 90
438 =21.30 B8.40 0.095 0.350 1.579 290

diameter and 78 mm long. Plot the test results in the form of ¢' = (o} —0y)
and volumetric strain , against axial strain e,.

The initlal volume V¥, and cross-sectional area A, of the sample were

Ay = (m[4) x380% 10~* = 1,134 x 10-* m*,

Vo= 1134 10~ x 78 x 10-* = 88.46 % 10~ m".
The increase in volume AV of the sample is equal to —AV,, where
4V, is the volume of water expelled. If the sample was initially unstrained

with injtlal volume ¥, and initial length Lo, the calculated volumetric
strain &, pnd axial strain &, are given by

ey = —AVIV, = AV, V,,

eg=—AdL[L,
At any stage of the test the cross-sectional area of the sample is given
by Eq. (5-2), $

A= AJ(1-e)/(1=2)].
For triaxial compression, o} = o}, and o} = o|; hence, g’ = (o;—0y) is
givenby » )

q' =(0,—0}) = FJA.

Values of ¢, e,, and e, are contained in Table E5-1 and plotted in Fig.
ES-1. (The data from this test were used for Ex. 4-1, 4-2, and 4-3 and the
stress paths for the drained triaxial compression test in this example are
shown in Figs E4-1, E4-2(a), and E4-3(a).)



78 THE MECHANICS OF SOILS

¢’ =gy —0y) kN m~?

300
L oy = 300 kN m~?
200 u= 100 kN m~?
100
.
r
0 1 L I
0.10 0.20 0.30
5 Axial strain, ¢,
oo
Compression S .

Figure E5-1 Results of drained triaxial test

Example 5-2 Processing data from an undrained triaxial test

The first three columns of Table E5-2 give data from an undrained
triaxial compression test on a sample of soil in which the cell pressure
was held constant at o, = 300 kN m~*. At the start of the test, the sample
was 38 mm in diameter and 78 mm long and the initial pore pressure was
g = 100 kNm~*, Plot the test results in the form of ¢’ = (o}—o}) and
pore pressure u against axial strain e,.

Table E5-2 Data from an undrained triaxial test

T

Axial Change of Fore Axial f
force,  length, pressure, straln,  Area * = (o] —of)
Fo(N)  AL{mm) u(kNm-% . (m'x 1077 (kN m=%
o o .- 100 0 1.134 0
58 —1.95 165 0.025 1.163 50
96 -4.29 200 0.055 1.200 80
124 —9.36 224 0.120 1.289 96
136 —14.04 232 0.180 .  1.383 98
148 =19.50 32 0.250 1.512 98

The calculations proceed as in Ex. 5-1; thus,
Ap=1.134x 10 m?,

g, =0 (because the test is undrained),

€a =—AL|Lq,

q' = () —0)) (N m?)
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A=Afl—e ), -
: 4’ =(o1~0) = F /4,
and the results are given in Table E5-2. Values of ¢’ and w are plotted

against e, in Fig, E5-2. (The data from this test were used for Ex. 41,
4-2, and 4-3-and the stress paths for the undrained triaxial i

test in this example are shown in Figs E4-1, E4-2(b), and E4-3(b).)

*

100 -
50
0y = 300 kN m™?
0 1 1
o.10 0.20 0.30
€
300
200 |-
1006 |
o 1 1
0.10 0.20 0.30
‘@

Flgure ES-2 Results of undrained triaxial test

Example 5-3 Failure of triaxial samples

The curves 'of ¢’ against ¢, in Figs E5-1 and E5-2 both becomie horicontal
where ¢’ reaches a Hmiting value and the samples fail by continuing to
strain without further change of stress, volume, or pore pressure. Plot
on the same diagram the Mohr's circles of total and eflective stress at
failure for both tests.

(2) In the drained test, g' at failure is approximately (o}j—op) =290 kN m-?
and first occurs after an axial strain of about e, = 0.25. Throughout
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the drained test, oy = 0, = 300 kNm~* and u = 100 kN m-2. Hence,
at failure, the principal stresses are )
oy =590kNm™?,  o;=300kNm,
oy =490kNm-, o} =200 kNm-3,
(b) In the undrained test, ¢’ at failure is approximately (o} —o}) =
98 kNm~* and first occurs after an axial strain of about £, =0.18,

where the pore pressure is u = 232 kN m~%. Throughout the undrained
test, oy = g, =300 kN m~2, Hence, at failure, the principal stresses are

oj=398kNm~?, o¢,=300kNm-3,
oy =166 kNm=2,  of= 68 kNm-%

The Mohr's circles of total and effective stress for both samples at
Tailure are shown in rig. E5-3.

200

Total stresses: drained test

100} Effective stresses:
undrained test

otal stresses?

T
5 - undrained test
Z h
: ’ U
,,E, =100 - Effective

stresses:

drained

test
L 1 b 1 1
100 200 300 400 500 600

Normal stress, o, o' (kN m™?)

Figure ES-3 Mohr's circles of total and effecti stress for drained and undrai
triaxial tests at failure

58 THE OEDOMETER

A section of a standard oedometer is shown in Fig. 5-8. The sample is
a disc of soil contained within a rigid circular metal ring and it is loaded
from top and bottom by rigid platens: The containing ring effectively
prevents any radial strain and so the state of strain in ihe sample is one-
dimensional, with ¢, = ¢, = ¢, =0, as indicated in Fig. 54. The top and
bottom platens and the containing ring do not rotate and the faces of the
sample are principal planes of strain; they are assumed to be smooth and
50 the sample faces are also principal planes of stress. '
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Flgure 5-8 The oedometer (afler BS 1377 : 1975) '
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‘The top and bottom platens consist of porous discs while the containing
ring is impermeable and ¢ | ly not only strains, but also pore water
flows, are one-di ional. Water pr in the drainage discs must
remain zero, but pore pressures within the body of the sample may change;
only very rarely is any attempt made to measure the magnitude of these
pore pressures,

During a conventional oedometer test the axial stress is varied in a
stress lled by changing the weights on a hanger supported
by the top platen. The magnitude of the axial stress o, is simply calculated
from the constant area of the sample and the current axial load. The axial
strain g, is measured by observing the settlement of the top platen using a
dial gauge or displacement transducer.

There ere several variations of the standard oedometer apparatus.
Normally, no provision is made for measuring the radial stress o, but, in
some special oedometers, force transducers or strain gauges are attached
to the containing ring to allow measurement of the radial stress. In another
variation, dye to Rowe, the rigid top platen is replaced by a flexible membrane
and provisign is made for application of a back p to the pore water,
This type of oedometer has the pacity for testing large samples and it may
also be emFluycd to measure the permeability of a sample under different
vertical stresses, Occasionally, in oedometer tests in the standard apparatus,
the sample is loaded in a strain-controlled fashion,

59 THE DIRECT SHEAR BOX

The main purpoge of the direct shear box test is to examine the strengths
of soil samples; it is unsuitable for measuring soil deformations.

The essential features of the direct shear box apparatus are illustrated in
Fig. 5-9. The sample is, typically, 60 mm square in plan and about 25 mm
thick, although ionally larger ples are used in special shear boxes
to cxa nine coarse-grained soils,

The :ample is contained within a square box split horizontally and is
loaded veriically between rigid and rough top and bottom platens, During
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Porous filters
spe_cillly roughened

Rollers
Figure 5-9 The direct shear box

a test, opposing horizontal forces are applied to the two halves of the box
which are, therefore, forced to slide apart; the top and bottom platens are
artificially roughened and so e shear stress into the soil. The stresses
imposed on the sample are, approxi , those indicated in Fig. 5-10 and,
because of the constraints of the split hox, the soil is obliged to shear along
1.he horizontal plane AB.

The total vertical stress o, is usually supplied by mlshtu on a hanger
and normally remains constant during a test. The shear load is applied by
traversing the lower half of the box, which is supported on roller bearings,
in & strain-controlled manner, The shear force transferred through the sample
to the upper half of the box is measured on & proving ring or force transducer.
During a test, measurements are usually made of the relative displacement
of the two halves of the box and the vertical displacement of the top platen
with respect to the bottom; these measurements are normally observed on
dial gauges.

The top and botlom platens are porous and the split box is usually
placed in a container and submerged in water; pore water may drain from
(or into) the sample at the top and bottom faces but there is no other control
of drainage and no provision is made for measurement of pore pressure.
Alternatively, water may be omitted and samples tested dry; it is usual to
conduct dry tests on samples of sandy soils. .

O

An

Flgure 5-10 Stresses on the boundary of a direct shear sample
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" The states of stress and strain in durect shear samples cannot be deter-
mined completely, The only stresses that are known are the normal and
shear stresses (o5, 7) on the plane AB in Fig. 5-10 and, consequently, it is
impossible to construct. a unique Mohr's circle of stress and we cannot
locate principal planes of stress nor calculate principal st B the
sample is contained in a rigid box, it is obliged to deform in a special way
and strains will be non-uniform; we can do no better than calculate the
average strain in the sample and we cannot determine the strains in elements
of the sample which are at failure,

5-10 THE SIMPLE SHEAR APPARATUS

The simple shear apparatus is similar to the direct shear box, except that in
the simple shear apparatus one pair of platens is allowed to rotate and the
sample may deform uniformly, as illustrated in Fig. 5-5.

There are, currently, two basic designs of simple shear apparatus, one
developed at Cambridge University and the other at the Norwegian Geo-
technical Institute in Oslo. The NGI type is now used in a number of
commercial laboratories; details of the machine and the method of testing
clay samples are given by Bjerrum and Landva (1966). The Cambridge
University type of simple shear apparatus is still mainjy used for research
and different versions of the apparatus are used for tests on different kinds
of soil; some details of this apparatus were given by Rgscoe (1970).

The basic design of the NGI simple shear apparatus is illustrated in
Fig. 5-11. The sample is a disc 80 mm in diameter by about 10 mm thick and

it is contained within a cylindrical rubber brane; the i is
E

ooy P

spiral wire Soil

Porous flter

N

Pore pressure and volume
change apparatus

Figure 5-11 NGI simple shear apparatus
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Figure 5-12 Cambridge Unlversity simple shear apparatus

direct strain (e, = g, = 0), but which allows rotation of the sides of the
sample, as illustrated. The rubber membrane is sealed to the top and bottom
platens which consist of rough rigid porous discs.

Normal and shear stresses (o, 7,.) are applied across the sample in a
manner similar to the application of stress in a direct shear test, and the
vertical and angular deformations of the sample are found by observing the
relative movements ofthe top and bottom platens. Drainage of pore water,
or the magnitude of the ppre pressure, may be controlled in a manner similar
to the control of drainage in the triaxial test. '

The basic design of the Cambridge simple shear apparatus is illustrated
in Fig. 5-12. The sample is a rectangular prism, nc lly 100 mm sq
in plan and 20 mm thick. It is contained within a set of interlocking rough
and rigid pl as ill d; the pl are arranged so that horizontal
direct strains are prevented (g, = e, = 0), but vertical strains and rotation
of the end platens are allowed.

Details of the platens and loading arrangements have varied as the
basic design became more sophisticated with the ge of time. Recent

-
';" . reinforced with a spiral winding of thin wire which prevents horizontal

£ models of the apparatus contain an array of force transducers in each platen
g which measure normal and shear stresses (o, o,, 7,.) as indicated in Fig. 5-12;
£ different designs are available for dry sand and for saturated clay and pore
i water drainage and pore pressure may be controlled in ihe latter.

% In the NGI apparatus, only normal and shear stresses on horizontal

planes are known and, consequently, as was the case with the direct shear
test, the state of stress in the sample cannot be determined uniquely. In the
Cambridge apparatus, however, when normal and shear stresses on the end
faces are measured directly by force tiansducers, the state of stress in the

¥ ple is pletely ; & Mohr's circle of stress can be constructed,
g: principal planes of stress identified and principal stresses calculated.
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Horizontal strains are zero (g, = 0) in any simple shear apparatus, while
axial and ‘I.“ar strains are calculated from the observed displacements and
rotations of the platens, The state of strain is, therefore, completely defined,
and a MoBL‘; circle of strain may be constructed.

During h sidfiple shear test, principal planes of stress and of strain rotate
as the stato of Stress in the sample changes, but the conditions imposed by

the apparatus do not require that the principal planes of stress and of strain
coincide,

5-11 SUMMARY

- Loading tests examine the strength and deformation of soil ples as
states of stress and of strain are changed,

. It is difficult to devise an apparatus which Is able to load = sofl sample
in a completely general manner. Different apparatuses exist in which
soil samples may be loaded in different ways,

3. The aanratuscs most commonly found in practice are the triaxial

pparafys, the oedometer, and the direct shearbox,

4. Other Tpnmtum, such as true triaxial and simple shear, are normally

used only for research purposes.
5. We distinguish a drained test from an undrained test. During a drained
test the pore pressure remains constant, but the volume of the sample

may l:!l1 ge; during an undrained test the volume of the sample remains
constant.
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CHAPTER

SIX
» - * FLOW OF WATER IN SOILS

b

6-1 INTRODUCTION '

It is common experience that water flows downhill; the water flows from a
posilion where its potential is high to a position where its potential is lower.
Flow of water from high to low potential occurs also within & porous medium
like soil, provided of course that the pores are interconnected, but now the
seepage flow is retarded by drag forces acting on the water as it flows past
the soil grains. Clearly there will be no seepage if the potential of the pore
water in a soil is everywhere the same, .

As & practical example of seepage, Fig. 6-1 shows a section of an
impermeable wall driven into the bed of a river. If the levels of water either
side of the wall are the same, pore pressures at A and at B will be equal and
there will be no flow of water below the wall. If, however, the level of water
on the right-hand side of the wall is lowered as shown, perhaps by pumping,
the pore pressures at A will exceed those at B and water will seep through the
soil below the wall. Figure 6-2 illustrates a similar le of seepage through
a soil embankment dam founded on impermeable rock. As engineers, we will
wish to calculate the leakage below the wall (or through the dam) and to
examine the distribution of pore pressure and cflective stress throughout
the soil.

If the wall (or the dam) is very long, we may neglect any small t

¥

of flow normal to the diagram and consider only the flow through a slice

v n
E 9

T i FET

Ae «B

i
S

u Sail

T

Impermeable rock

Figure 6-1 Seepage below an impermeable wall
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Flgure 6-2 Secpage through an embank dam
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of unit thickness. This corresponds to plane or two-dimensional flow and
we will consider only this case. .

If pore pressures vary with time, as they would if, for example, pumping
were halted and the lowered water level in Fig. 6-1 were allowed to rise, the
flow will be time-dependent; such non-steady flows are known as fransient

page, During transi page, pore p and effective stresses vary
with time and, as a consequence of the principle of cffective stress, soil
deformations will occur and there will be lex interrelationships bet

pore pressure, seepage, and deformation. This time-dependent process is
known as consolidation and will be considered later,

If pore pressures do not vary with time, the rate of flow will be constant
and the flow is known as steady-stale seepage. During steady-state seepage,
pore pressures remain constant and no soil deformations occur.

For the present, we will consider two-dimensional steady-state seepage;
the soil may, therefore, be regarded as rigid and stationary with a steady
flow of water through the pore spaces.

6-2 PORE PRESSURE AND POTENTIAL

The laws governing the flow of water through soils are analogous to those
governing the flow of electricity or heat through conducting bodies; all
d d on the exi of a potential gradient as the driving force. In

page, it is the hydraulic potential and, in particular, the hydraulic potential
gradient which controls the flow; these terms are usually shortened to potential
and hydraulic gradient.

Figure 6-3 shows an open-ended standpipe installed in a body of soil.
The end of the tube contains a filter to prevent soil grains entering; this
instrument is known generally as a piezometer and is the basic tool for
measuring pore pressuggs in soils. When the system is in equilibrium, the

. pore pressuges either side of the filter must be equdl and the pore pressure

in the soil is
umy h, (6-1)

where y,, is the unit weight of water and h is the head of water in the stand-
pipe.
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Inserting imaginary standpipes into a soil body is a convenient method
of visualizing the distribution of pore pressures.
Potential, denoted by the letter P, is defined as
P =(ulyy)+z, (6-2)
or
P=h+tz, (6-3)
where z is the elevation of the standpipe tip above an arbitrary datum such
as OO, Potential has the units of length. Since it is the potential gradient

which controls seepage, the placing of the arbitrary datum is of no special
importance,

6-3 SEEPAGE VELOCITY

As water seeps through soil, it must follow the tortuous passages between
the soil grains and the velocity of a small element of water will vary as it
seeps between the grains. We are not usually concerned with local flow
between the grains but, instead, with quantities of water flowing through
soil bodies. '

If the tortuous paths followed by adjacent elements of water are smoothed,
the resulting smooth path is known as a flowline. In Fig, 64, A and B are
two points on a flowline 8s apart; water flows from A to B due to an
hydraulic gradient. The flowline is surrounded by an imaginary tube of area
84 arranged so that, in a time interval 8, equal volumes of water 8Q flow
into and out from the ends of the tube.

The instantaneous rate of flow is

&;-n.::%%:%. (64)

-0

For steady-state seepage, the limit is unnecessary as the rate of flow remains
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Area 84
Figure 6-4 Seepage velocity i

constant; for transient page, h , the instantaneous rate of flow must
be found from Eq. (6-4).

The artificial velocity is defined as

. 8¢ _dg

For steady-state scepage, ¥ does not vary with time, E

The artificial velocity ¥ is not the velocity of an element of water seeping
through tie tube in Fig. 6-4; it is, instead, & measure of the total quantity
of water which flows through the tube, The water actually follows a tortuous
passage through the pore spaces between the soil grains and the pore spaces
form only a part of the total cross-section. If each element of water covers a
distance 85 along its flowline in a time 8t, the seepage veloci y V, is defined by

. 8y
b= hﬂ'ﬁ = ?}' (6-6)
If we observe the velocity of flow by timing the passage of dye or trace
elements we will obtain a measure of the velocity of small elements of water,
i.e., the seepage velocity.

The water flows only through the area of soil occupied by the pore
water and shown as 84, in Fig. 6-5; the remaining area 84, is occupicd by
soil grains. If the voids ratio is e, then, from the definition of voids ratio and
on the average, 84, = e 84,. The rate of flow through the tube is given by

8q=V3d =V,54,, )
therefore,

V=Vel(l+e) =V, (—-1)p, (6-8)
where v is the specific volume, )

:The artificial velocity will always be less than the secpage velocity
determined by direct measurement,
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Figure 6-5 Artificial velocity and seepage velocity

6-4 HYDRAULIC GRADIENT

In Fig. 6-6, A and B are points on a flowline; t the p ial P, at A
is greater than the potential Py at B, water flows from A to B. The points
are spaced at a distance 85, measured positively in the direction of flow.

Datum
Figure 6-6 Hydraulic gradient

The hydraulic gradient is denoted by the letter i and is defined ti;)r
= lim e ———, (6-9)
Hydraulic gradient is a vector quantity, it has magnitude and direction

but it is dimensionless; the negative sign is introduced so that i is positive
in the direction of flow.
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Example 6-1 Calculation of pore pressure, potential, and hydraulic
gradient

Figure E6-1 shows a section along the centre-line of a pipe of square
cross-section which contains soil held between two meshes. Water flows
from left to right through the soil due to the different levels of water
in the two constant head tanks. A pair of standpipes are inserted through
the pipe into the soil with their tips at A and st B, 1.0 m apart nlong the
centre-line. The water levels in the standpipes are 2.6 m and 2.4 m above
A and B, respectively. Calculate (a) the pore pressures at A and at B,
(b) the potentials at A and at B with respect to an arbitrary datum
chosen to be at the invert of the pipe, and (c) the hydraulic gradient
between A and B.

(a) Pnré pressure, u = y, h from Eq. (6-1). Hence, at A,
. uy =9.81%2.6,
uy =255 kNm-3,

At B,
up=9.81x24,

up =23.5kNm-%,
(b) Potential, P = (u/y,)+z = h+z from Eq. (6-3). Hence, at A,
P, = (25.5/9.81)+ 1.0,
Py=3.6m.
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AtB,
Py = (23.5/9.81)+1.0,
Py =34m,

(c) Hydraulic gradient i = =dP/ds = —4P/4s from Eq. (6-9).
4P =Py—P, =—02m,
ds = 1.0m,

hence, -
i=02

Example 6-2 Calculation of seepage velocity and artificial velocity

Figure E6-2 shows a pipe of square cross-section which tains soil
and whose dimensions are similar to the pipe described in Ex. 6-1. The
water flowing through the soil collects in the graduated vessel at a rate of
0.24 m? per min. The walls of the pipe are transparent and the passage of
dye between A’ and B’, 1.0 m apart, is timed to take 8.3 min. Calculate
(a) the seepage velocity and (b) the artificial velocity. Hence, estimate
(c) the specific volume of the soil.

(a) Seepage velocity, ¥, = ds/dt = ds/A1 from Eq. (6-6). Hence,
¥, = 1.0/(8.3 x 60),
V,=2x10""ms™,

NN
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(b) Artificial velocity, ¥ = 40/Ad! from Eqs (6-4) and (6-5). Hence,
V = 0.24/(2% x 60),
V=1x10"ms"!,

(c) The segpage velocity and the artificial velocity are related to the
specific volume v of the soil by Eq. (6-8):

V=Vl{v-1)].
Hence,

=D/o =V, =}
v=20.

6-5 DARCY’S LAW

Darcy's law relates the artificial velocity to the hydraulic gradient by the
equation

V = ki, (6-10)
where the parameter k is known as the coefficient of permeability; k is a
scalar quantity with the units of velocity.

Darcy’s law is valid for the flow of water through porous media like
soils provided the flow remains laminar. The value of k is regarded as a
soil constant and has a fixed value for a particular soil in a given state; the
value of k may vary to a minor extent with changes of viscosity of the water

(e.g., due to temperature changes), but it is very dependent on the specific
volume of the soil.

Typical values of permeability for various soils are contained in Table 6-1.
The difference of approximately 10° in the values of k for gravels and clays
is of great significance and is associated with important differences in the
mechanical behaviour of coarse- and fine-grained soils.

Table 6-1 Typical values of coefficient of

permeability for various solls
Cocflicient of permeability

Soil type k (m s-1)

Gravel >10-*

Saod 107 1o 104

Sile 10 to 10—

Clay <104
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Example 6-3 Calculation of the coefficient of permeability

Use the results of Ex. 6-1 and 6-2 to calculate the coefficient of permeability
of the soil in the tube.

From Darcy’s law, the coefficient of permeability k is given by Eq.
(6-10), ¥ = ki. From Ex. 6-1, the hydraulic gradient is i =02 anq,
from Ex. 6-2, the artificial velocity is ¥ = 1x10~*ms~*, Hence, the
coefficient of permeability is ¢

k= Vji={x10%/02,

k=5x10"ms™

6-6 SEEPAGE FORCES

As water flows through soil, the potentinl of the water drops and this drop
represents a loss of energy; this energy is lost as drag on the soil grains as
water flows through the pore spaces and these drag forces will change the
effective stress.

Figure 6-7 shows a section of a small tubular element, of length 85 and
area 8, which is centred on a flowline AB. The seepage force 8F, is due toa
potential drop 8P and the force acts in the direction of flow; it is given by

8F,=—y, 8P 84 (6-11)
and, from Eq. (6-9),

8F, = y, 18584,
or

8F, = yy i ¥y, (6-12)
TR |
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Figure 6-7 Secpage force
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where i is the hydraulic gradient, which is positive in the direction of flow,
and 8V, is the volume of the element.

The seepage force, which acts over an area 84, leads to a change in the
effective stress of magnitude 8o} given by #e

and, in the limit,

80, = yul8s

do) =y ids. (6-13)

6-7 CRITICAL HYDRAULIC GRADIENT FOR VERTICAL
UPWARD FLOW .

As the hydraulic gradient i , seepage forces increase‘proportionally
until the soil grains are disturbed, The hydraulic gradient at which the soil
grains are disturbed obviously depends on the directi of flow and on the
magnitude of the effective stresses in the soil before any scepage took place,
For vertical upward flow, a critical condition known as piping or boiling,
‘which gives rise to a quicksand condition, occurs when the upward seepage
forces just balance the submerged weight of the soil grains. i

This critical hydraulic gradient for vertical upward flow is best examined
by considering the seepage force on an element, volume §¥,, just below the
soil surface, as shown in Fig. 6-8. When the hydraulic gradient is critical,
{ =i, the upward scepage force is equal to the submerged unit weight of
the soil grains, or

8F, = yyio8¥y = (y—yw) 84 55,
Io=(ylym)—1. (6-14)
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Flgure 6-8 Critical hydraulic gradient
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For many soils the unit weight is about 20 kN m~* and i, is approximately

.‘. unity.

Alternatively, we may examine the vertical effective stress on a horizontal
plane at a depth 8s below the soil surface. Noting thai, since the flow is
upward, 8s is measured negatively downward, we have, from Fig. 6-8,

Oy = —y85+ Yy iy, (6-15)
u= x_,,[BP-f—h,,—&t], (6-16)
Therelore, f
o = —(y =7y 85—y, 8P
= —yw Ss{((¥lyw)—11-i} (6-17)
=—y, 8s5(i,—1i), ) (6-18)

where i, is the critical hydraulic gradient given by Eq. (6-14).

Consequently, if the hydraulic gradient is critical, i = i, the effective
stresses will be zero: under these circumstances the soil will have no strength
and even lightly-loaded structures founded at the surface will sink into the
quicksand. Clearly, the hydraulic gradient in the region of B in Fig. 6-1
cannot be allowed to approach the critical value without jeopardizing the
stability of the wall.

So far, we have considered only vertical upward seepage near a horizontal
soil surface and we should also examine the seepage forces, whatever their
direction, throughout a soil body, and the overall stability of large blocks
of soil. In particular,;we must ensure that seepage forces acting on any
finite block of soil are less than the forces available to prevent the block
being disturbed. Forces preventing movement may be a. result of the sub-

merged weight of the soil grains, external forces, and shearing stresses in the
soil.

6-8 FLOW NET FOR ONE-DIMENSIONAL SEEPAGE

We must now begin to investigate seepage through masses of soil rather
than through small elements; it is convenient to start witp the simple case of
one-dimensional seepage to introduce the concept of flow nets.

Figure 6-9 shows a body of soil of height s and width b contained in a
parallel-sided container of unit thickness between two gauze meshes. Water
is supplied below the soil from a constant head source and overflows from
a constant level weir; the wate of flow is measured. An apparatus of this
kind is the basis of a constant head permeameter used, in practice, to measure
the coefficient of permeability of soil samples.

The permeameter in Fig. 6-9 contains several standpipes; these are spaced
at intervals of 4s and the difference of potential between adjacent stand-
minms is AP The tatal notential dron across the soil is (P,— P,) and this is
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Figure 6-9 One-dimensional seepage

simply the dilference in elevation between the constant head supply and the
overflow weir.

If the soil is homogeneous, flowlines must be parallel and vertical; lines
such as BB’ and CC' in Fig. 6-9 are equi-spaced flowlines 4b apart. If the
rate of flow between adjacent flowlines is Ag per unit thickness,

Aq = Vdb
and
2 q=Vb, i (6-19)
where V is the artificial v=|0cily. A standpipe placed anywhere at a given
levation will register the same potential and lines such as AA’, joining

points of equal potential are known us equipotentials; in Fig. 6-9, all equi-
potentials are straight horizontal lines. *

Flowlines such as BB’ and equipotentials such as AA’ make up what is
known as a flownet. Two important properties 5f the flownet in Fig. 6-9
are apparent: first, equipotentials and flowlines intersect orthogonally and,
second, if one element of the net such as CDEF is made square by suitable
choices of 4s and 4b, all other elements are squares. Later we will find that
these are properties of general plane scepage flownets.

The artlficiah velocity is given by Darcy's law,

V = ki = —k(dP[ds) (6-20)
and, for one-dimensional flow, as in Fig. 6-9,
dP|ds = (Py—Py)/s. (6-21)

Hence, the rate of flow through the permeameter is given by ,
q =—k(b/s)(Py— Py). (6-22)
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If we define Ny as the number of scparate flow channels and Ny as the
number of equipotential drops in a square flownet (in Fig. 6-9, N, =3 and
Ny = 4), then, remembering that all the individual elements of the flownet
are square, .

bjs = NyNy -
and : .
g = —k(NJ/Na)(F,— P, (6-23)
where (Py—P,) is the total change of potential across the permeameter.

Later we will show that Eq. (6-23);‘! valid for any plane secpage flownet
properly constructed from squares. i

Example 6-4 Calculation of the rate of flow for one-dimensional seepage

Figure E6-3 shows a section of the square-sectioned pipe described in
Ex. 6-1 and 6-2. The coefficient of permeability of the soil contained

- within the pipe is k = 5x 10-* ms~! and other dimensions are shown in
Fig. E6-3. Calculate the rate of flow ¢ through the soil.

The rate of flow through a strip of unit thickness normal to the page is
given by Eq. (6-23) as

g =—k(Ny/Ng)(Py—F,).

Taking an arbitrary datum for potential at the invert of the pipe, the
potentials upstream and downstream of the soil are Py =4m and
Py=3m. A square flownet is sketched in Fig. E6-3 for which Ny=2
and Ny =5 (if the squares were made smaller the ratio of Ny to Ny

%
é
/ é
e 4 z %
% % %
do 0 [ T é
: g : :
| | e
Datum g % - '
L Lo L ;: S5
Imxlm
square
cross-seclion
Figure E6-3
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would of course remain unchanged). The width of the cross-section of
the pipe normal to the page is 2 m and, hence, the rate of flow is
g=2[-5x10"*x}(3-4)],
g=4x10° w’s™ = 0.24 m*min~",

6-9 TWO-DIMENSIONAL SEEPAGE

In order to extend the simple one-dimensional flownet to the more general
case of two-dimensional scepage, we must appeal to mathematical analysis.
Figure 6-10 illustrates the conditions of steady-state, irrotational flow
through an element; by irrotational we mean that there is no rotational

component of flow completely contained within the el t. During steady-
state flow neither the effective nor the volume of the el t chang
From the condition of continuity, the net inflow is zero,
v, KA
dedz+ﬁd:dx =0,
&, o :
- a—x+5 =0 (6-24)
The requi for ir ional flow is given by
v, o, :
Oy -2
8z éx = L

Together, these two partial differential equations define the distribution
(of artificial velocity throughout the plane region (x,z) in which flow occurs,

L
(v riond
V= |dz — Y, + =
dx -
Y

x
Flgure 6-10 General conditions of two-dimensional seepage
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Next, we define a potential function ®(x,z) and a flow function ¥(x,z)
such that i

V,,E V,=— - (6-26)

g,

§

’ From Eqs (6-24) and (6-25) and Eqs (6-26) and (6-27) it follows that

i #d 2P

V==, (627)

F + ﬁ =0, (6-28]

i N 4
‘F'l'?zrhﬂ. (6-29)

These are Laplace equations and they govern the distribution of flow

~ throughout the region (x, z). If we can find functions ® and ¥ which satisfy
Eqgs (6-28) and (6-29), together with some appropriate boupdary conditions,
we can calculate the distribution of both artificial velodjty and potential
throughout the region.

The solutions may be mapped as s of the pptential functi

®(x,z) and contours of fhe ﬂn'zw function ¥(x,z); along such contours
d® = 0 and d¥ = 0. From the definition of partial differentiation,
ap il

i = dxt o di,

d¥= de +£’d1.
dx 8z
and, from Egs (6-26), along @ = constant contours,
d® =V, dx+V,dz =0 " (6-30)
and the gradient of a contour is
% = —?‘ (6-31)

L
Similarly, from Eqs (6-27), along ¥ = constant contours,
d¥ =—V, dx+V,dz =0 (6-32)
and the gradient of a contour is
%7 :,l: _ (6-33)
Lines of constant ¢ an& lines of constant ¥ must, therefore, be everywhere
orthogonal, since the product of their gradients is —1. In any problem of
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plane irrotntional seepage, contours of the potenti 1l function ®(x,z) and
contours of the flow function ¥(x, z) form a network of two familles of
orthugonal curves; the precise shape of the network is governed by the
particular boundary conditions. '

6-10 POTENTIAL FUNCTION &(x, z)

Darcy's law is valid not only for seepage along”a flowline but also for
resolved camponents of velocity and hydraulic gradient; thus, from Eqs
(6-9) and (6-10), and assuming the soil to be isotropic,

aP
‘a‘;:s
where P = P(x,2) is the distribution of potential, Equa:ling Eqs (6-26) and
(6-34) gives '

ap
Vom by Vom—kgn . (6-34)

b =—kP (6-35)
and, thus, lines of constant @ (i.c., @ = 0) are equipotentials (dP = 0),
6-11 FLOW FUNCTION ¥(x,z)

Figure 6-11 shows the flow through a small triangular element ABC adjacent
to a line d¥ = 0; the condition of continuity of flow requires that there is
zero net inflow and

~Vods+¥,dx—V,dz =0, (6-36)
Since d¥ = 0 along AB, we have, from Eq. (6-32),
V,dx =V,dz '
and, hence,
V, =0. (6-37)

x

Figure 6-11 Flow through a triangular element to illustrate the meaning of the flow
function ¥
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Thus, there is no component of flow across AB and lines of constant
Y (i.e., d¥ =0) are flowlines, - ™

We have shown already that lines of constant ¥’ and lines of constant
& form an orthogonal netwokk; consequently, throughout & region of plane
seepage, flowlines and equipotentials form a similar orthogonal network.

6-12 RATE OF FLOW THROUGH A FLOWNET

Figure 6-12 shows two flowlines W &, and ¥ = ¥, +4¥ between which
the rate of flow is dq. The rate of flow dg through the small triangular
element is

dg =V, dz—V,dx (6-38)
and, from Eqgs (6-27), .

Hence, .
dg =d¥. (6-39)

Integrating Eq. (6-39) between the flowlines,

LAY L4
Aq-J-v AP =AY, (6-40)
]

Figure 6-13 shows a portion of a flownet consisting of two flowlines and
two equipotentials. On average, the distance between the flowlines is 4b

L i .

x

Figure 6-12 Rate of flow between adjacent flowlines
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x

Flgure 6-13 Rate of flow through a portion of a lownet

and, on uverage, the distance between the equipotentials is 4s. The artificial

velocity is given by Darcy's law, V = ki, where

V = dg/4b
and
i=—4P/4s.
Hence, ! :
Ag|db = —k(4P|ds). (6-41)
But, from Eq. (6-35), —k4P = A® and, therefore,
dg = (4b]ds) 4. - (6-42)

6-13 ‘SQUARE FLOWNETS’

In Eq. 6-42, 4b and 4s simply define the geometry of the flownet and we will
choose to construct flownets with 4b = 4s, i.e., with each clement of the
flownet ‘square’. Then, from Eqgs (6-40) and (6-42), !

Aq =AY = 40, (6-43)

1f the flowlines and equipotentials are curved, a ‘square flownet’ will consist
of elements the mean length and breadth of which are equal and the sides
of which intersect orthogonally; we may check whether a flownet is square
by attempting to construct circles within the elements of the net, as shown in
Fig. 6-14. 17 we make one element in a flownet square, then all the elements
in the flownet must also be square, but they need not all be the same size.
Figure 6-15 shows a 'sq| flownet' isting of N, =2 flow channels
between flowlines each spaced A¥ apart and Ny =3 potential drops cach of
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6-14 A ‘square flownet’

ar
AP a AP
jar_ |

¥y + NAY /

q=Ndq

¥

@y +N,A0

: Flgore 615 Rate of Aow through a *square flownet®
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magnitude 4. The rate of flow through the flownet is the sum of the flows
through the individisal low channels and, from Eq. (6-43), is given by ;

g=Nydg = N, 4¥= N, 4D
or ’
T g = (NJ/Ny) Ny 49, (6-44)
However, from Eq. (6-35),
Nyd® = —kNy AP = —k(P,~P,). (6-45)
Thus, the rate of flow through the flownet is given by
g =—k(N/Ny)(P,—P), (6-46)

where (P~ P,) is the change of potential across the whole flownet. Equation
(6-46) is the same as Eq. (6-23), which we derived for the special case of one-
dimensional seepage; it may be used to calculate the rate of flow through
any ‘square flownet’ for plane seepage.

6-14 BOUNDARY CONDITIONS

Any problem of plane seepage may be solved by constructing a square
flownet; the flownet will consist of a network of flowlines (d¥ = 0) and
equjpotentials (d® = 0) int ing orthogonally. Its precise shape will
depend on the geometry of the region of seepage and the boundary conditions.

To illustrate various common boundary conditions we make use of
Fig. 6-16, which illustrates a ion of a permeabl bankment dam
resting on an impermeable rock foundation. An orth gonal Mlownet must be
constructed in the region of seepage ABCDE.

Imperm: ble rock = .

Figure 6-16 Boundary conditions for seepage through an embankment
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There are several different kinds of .boundary to this region and we

consider these in turn: . -~ ok :
(i) A-E. The rock is impermeable, there is no component of seepa
velocity normal to AE. The boundary must therefore be 8 flowline.
(i) A-B. We choose foundation level AE as an arbitrary datum for
potential. At any point such as X on AB, the potential is given by
Eq. (6-2) and is

Py =(ufyn)tz= hll+:1 =P (6-47)

and, thus, AB is an equipotential with P = P, By the same argument,
DE is an equipotential witl? P = P,. The total change in potential
is (Py—Fy). 5

(iii) C-D. Along CD the pore pressure is zero and, at a point such as Y,
the potential is given by Py =z, There is a component of flow
normal to CD and water flows freely down the surface of the slope;
consequently CD is neither a flowline nor an equipotential.

(i¥) B-C. The line BC is not fixed by the geometry of the embankment,
but it is defined by two hydraulic conditions: (a) there is no compo-
nent of flow normal to BC and it must therefore be a flowline and
(b) the pore pressure along BC is zero and at a point such as Z the
potential is given by Pz =23 A boundary like BC is known as a
phreatic surface.

The boundaries AE, AB, DE, and CD are each fixed in space by the
geometry of the embankment and for each there is only one hydraulic
boundary condition. The precise location of the boundary BC, h y I8
fixed by the geometry of the flownet and there is only one position of BC
for which a properly constructed ‘square flownet’ is possible; its position
must usually be found by trial and error.

The boundary conditions for the plane seepage below an impermeable
wall are shown in Fig. 6-17. The boundaries BCD and FG are impermeable
and are Aowlines; the boundaries AB and DE are equipotentials with
potentials Py and Py, respectively. Unlike the case shown in Fig. 6-16, there
is no phreatic surface in Fig. 6-17. The flow is known as contained, because
the boundaries of the region of flow are fixed. The boundary BC in Fig. 6-16
can be located only after the flownet has been constructed and, in this case,
the flow is known as uncontained.

615 CONSTRUCTION OF FLOWNETS BY SKETCHING
i

Once the boundary conditions have been defined, the flownet may be
constructed; this step is often the most difficult.

Several methods are available, but the simplest, and by far the most
common, is to sketch the flownet by trial and error. Flownet sketching is
principally a question of time and practice. Sketched flownets are shown for

—n e
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Im:b rock " 3
Flgure 6-17 Boundary conditions for seepage below an impermeable wall

plane seepage through an embankment (Fig. 6-18) and below an impermeable
wall (Fig. 6-19). Close inspection will reveal instances where flowlines and
equipotentials are not perfectly orthogonal and where ‘squares’ are not

. properly square; both flownets could be improved with further adjustment.

h+d
=

Impermeable rock
Figure 6-18 Flownet for secpage through an embankment

w___L_——-—-J

linpermeable rock

Flgure 6-19 Fl for seepage below an Imp ble wall
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Example 6-5 Seepage below an impermeable wall

Figure E6-4 shows a section tl"lrough a long impermeable wall driven into
the bed of a river; the river bed consists of sand ovar|ying impermeable
rock. The water level to the right of the wall is permanently lowered by
steady pumping as water flows from left to right throygh the sand below
the wall. The permegbility of the sand is k= 10*ms-! and the
dimensions are given in Fig. E6-4. Calculate the rate of flow under the
wall and estimate the pore pressure at a point A next {o the downstream
face of the wall, 1.0 m ahfmrr. the tip.

A ‘square flownet’ has peen sketched and is shown in Fig. E6-5. Choosing
the rock-sand interface as an arbitrary datum for poteptial, the boundary
conditions are: l.|
(i) the upstream river bed is an equipotential with P, = 7.5 m;

(i) the downstieam river bed is an equipotential with P, = 5.5 m;

(iii) the impermeable rock and the wall are each Aowlines.
For the flownet illustrated in Fig. E6-5, N, = 4 and N, = 8. Hence, the
rate of flow g through a strip of unit thickness normal to the page is

g =—k(N/Ny)(Py—P) = — 104 x } x (5.5-7.5),
g=10"m's"! = 0.36 m*h-'.

At the point A, the pore pressure u, may be found from the potential Py.

The point A lies approximately midway between the sixth and seventh

equipotentials, counting from zero at the upstream face. Since

(P;—P)=—2m and Ny =8, the potential difference between adjacent
equipotentials is 4P = —0.25 m. Hence, the potential at A is

Py = 7.5—(0.25% 6}) = 5.875 m.

A
25m
v
-
L 3
25m A
Sand 1”’"‘ 55m
k=10 m !
25m
TEY R
Impermeable rock

Figure E6-4 Seepage below an Imperm;.lble ﬁﬂ

Bl td L AR G UL s

Equipotential £, = 7.5 Equipotential P, =55

g ble wall

Figure E6-5 A ‘square flownet’ for below an |

The elevation of the point A above the arbitrary datum is z, = 3.5m -
and

Py = (upfyw)+2,.
Hence,

up =9.81(5.875-13.5),

I, = 23.3 kNm-2,

6-16 OTHER METHODS OF SOLUTION °

Flownets simply represent solutions of the Laplace equations (6-28) and
(6-29) and, for certain simple cases, mathematical soluti may be obtained
An analytical solution for seepage below an impermeuble wall in a deep

. bed of soil is given by Schofield and Wroth (1968, pp. 59-64), but even for

this relatively simple case the mathematics is not easy. Alternatively, the
Laplace equations may be written in finite difference form, and approxi-
mate solutions found by relaxation methods (e.g., Scott, 1963, pp. 134-156)
or they may be solved approximately using finite element techniques (e.g.,
Zienkiewicz, 1971, pp. 295-321).

An alternative method of solution is to construct a model in the
laboratory and observe flowlines and equipotentials directly. Flowlines may
be drawn by observing the passage of dye and equipotentials found by
measuring the distribution of potential using suitable pore p probes
placed in the soil,

We may notg that the coefficient of permeability k does not appear in
Eqs (6-28) and (6-29) and the geometry of a flownet is therefore independent
of the value of k. Only the rate of flow given by Eq. (6-46) is dependent on k
and, consequently, we may use any soil we like in a model intended only to
investigate the geometry of a flownet. £ 7 )

Instead of building a physical model of water flowing through soil, we
may make use of the analogy between Darcy’s law and Ohm'’s law. Ohm’s
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law, governing the flow of electricity through conducting bodics, may be
writlen as :

1, = — C(2E[ox),
. I,= = C(2EJoz),

where I, and I, are the components of the electric current in the x- and
z-directions, E is the electrical potential, and C is the conductivity of the
body. Equations (6-48) are analogous to Eqs (6-34) with equivalence between
current and artificial velocity, electrical and hydraulic potential gradients,
and conductivily and permmbilityﬁ

An analogue for two-di ional seepage may be made from electrically
conducting paper and equipotentials found by ing the distribution of
clectrical potential. With this method, the effect of varying the geometry of
the problem may be investigated rapidly simply by trimming the conducting
paper.

(6-48)

6-17 SEEPAGE THROUGH ANISOTROPIC, LAYERED, AND
NON-UNIFORM SOILS

So far we have regarded soil as isotropic and homogeneous, with a single
value of the coefficient of permeability. For compl we must i igat
seepage through soils that are anisotropic and which may be layered or
otherwise non-uniform.

6-18 SEEPAGE THROUGH LAYERED STRATA

Soils are usually deposited in successive horizontal layers and the
permeabilities of the layers may differ. It is often convenient to think of a
soil stratum as uniform and to calculate equivalent overall permeabilities in
the horizontal and vertical directions to account for the variation® of
permeability of the layers. Figure 6-20(a) shows a soil stratum depth H,
width Ax and with unit thickness normal to the diagram; it consists of n
layers of which a typical layer has thickness H, and permeability k. We
define axes x and z as shown and we will calculate equivalent permeabilities
k. and k, for flow parallel to and normal to the layers, Normally, in
nature, soil layers are horizontal and the axes x and z will be horizontal
and vertical, ’ )

For flow parallel to the layers, as shown in Fig. 6-20(b), flowlines are
horizontal and equipotentials are vertical; consequently, the hydraulic
gradient is the same for each layer and is

i = —AP|dx = constant. (6-49)
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Flgure 6-20 Flow through layered sirata, (a) Layered strata. (b) Horizontal flow.
(c) Vertical flow [




B~ 112 THE MECHANICS OF SOILS

- The rate of flow g; through a single layer is given by Darcy's law

9=k Hyi (650
g¥s and, therefare, the total flow g is
i g=iXkH, (6-51)
I. The total flow through the stratum can also be expressed in terms of k, as
3 g =ik, H =ik, T H, (6-52)
. where H is the total thickness of the stratum, Then, from Eqs (6-51) and (6-52),
ke = S ©53)

Flow normal to the layers is shown in Fig. 6-20(c). The rate of flow q
through the stratum is equal to the rate of flow through any layer, i.e.,
g =g, but the hydraulic gradients differ. For a single layor

iy=—AP/H, (6-54)
* and for the whole stratum the mean hydraulic gradient is
i=—(Z4AR)(Z 1i). (6-55)
From Darcy's law, considering the rate of flow through a single layer,
qy =k dxi; =~k Ax(AP,/H) (6-56)
and through the the whole stratum,
g=k.dxi=—k,Ax(L AP)/(Z H). (6-57)
Rewriting Eq. (6-56) and summing for all layers,
Z AP = ~(3/4x) T (Hy/k)) (6-58)
and, rewriting Eq. (6-57),
L 4P = —(g/k,4x) 3 H,. (6-39)
Thus, since g = g,
b= St =

In general, values of k, and k, will differ and seepage through a layered soil
may be approximated to the seepage through an equivalent homogeneous
but anisotropic sail.

Example 6-6 Calculation of the permeability of a layered stratum

Figure E6-6 shows part of a layered stratum consisting of. silt layers
Smm thick between clay layers 25mm thick. The coefficient of
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/ = Clay layer
L

25 mnj, thick

Silt layers
5 mm thick

Flgure E6-6 Layered stratum

permeability of the silt is k, = 10-* m s~! and of the clay is k, = 10-* ms-1,
-Caleulaty the equivalent permeability of the stratum for (a) horizontal
and (b) vertical flow.

(a) For horizontal flow, the equivalent coefficient of permeability k,, is
given by Eq. (6-53): i
ky = (B EH)(S H) = [(5x 10-%)+(25 x 10-8))/30,
ky = L75x 10~ ms-,

. (b) For vertical flow, the equivalent coefficient of permuat;ilily k, is
given by Eq. (6-60):

ey = (S H)ICE HIK) = 30/[(5 x 109+ (25 x 109,
ky = 120x 10~ ms-,

6-19 SEEPAGE THROUGH ANISOTROPIC SOILS

For an anisotropic soil with permeabilities k, s k,, Eqs (6-34) become

érP
Vem—kages Vom—kioY, (6-61)

and, from Eq. (6-24), the distribution of potential is given by

k,gu,%g =0. (6-62)

This:is not a Laplace equation and we can no longer obtain solutions to
plane seepage problems by drawing ‘square flownets’, . i

We may, however, change the geometry of the problem by defining new
axes x, and z,, where i :

£ ¥ J(i’i)x_ =z (6-63)

-
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If the soil is more permeable in the x-direction (i.e. k,>k,), the trans-
formation has the effect of reducing dimensions in the x-direction while
keeping z-dimensions unchanged. Making use of Eqgs (6-26) and (6-27) in
terms of the new axes and defining @ = —k, P, we obtain

BD AP

a—xli-a—zl " 0, ) {6'64)
-BY PY '
E“’ﬁ- 0. (6-65)

These are Laplace equations, like Eqs (6-28) and (6-29), and may be solved
exactly as before by square flownets. Thus, to analyse a problem of plane
seepage through an anisotropic soil, we must first change the geometry of
the boundaries, using Eq. (6-63) to transform the scale; we may then proceed
to construct a square flownet satisfying the hydraulic boundary conditions,
which will remain unchanged. Finally, we may transform the scale back to
the original, in which case the real flowlines and equipc ials may not
intersect orthogonally.
The rate of flow through the transformed flownet is given by

q=—K(NJ/No) (P~ Fp, (6-66)

where k' is the equivalent coefficient of permeability of the transformed

section. Figure 6-21(a) shows the flow through a gular el tof a
real flownet and Fig. 6-21(b) shows the flow through the same element with
scales transformed according to Eq. (6-63). The potential drop across the
element is AP in each case. The equivalent permeability k' is defined so that

the rate of flow dgq is the same through each element. Hence,

A4b Ab
=k, AP— = —k'dP i 6-67
4q & TS (6-67)
and, therefore,
K = kK. (6-68)

6-20 SEEPAGE ACROSS A BOUNDARY BETWEEN TWO
SOILS

Figure 6-22 illustrates the conditions of seepage across a boundary between
two soils which are homopeneous and isotropic, but which have different
permeabilities. The flownet to the left of the boundary in soil | has elements
which are square with sides da, while, because of the dillerent permeability
of soil 2 to the right of the boundary, the elements of the flownet in soil 2
are rectangular with sides As and 4b. However, as can be seen in Fig. 6-22,
flowlines and equipolentials are continuous across the boundary though
their slopes change. The rate of flow between adjacent flowlines must be the
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Figure 6-21 Flow through a single element of a real and a transformed Rownet

same everywhere and the change of potential between adjacent equi-

" potentials must also be the same everywhere. The rate of flow between a

pair of adjacent flowlines is given by Eq. (6-42):

4g = (da/Aa) AP, = (4b[A5) AD,, (6-69)
where the subscripts | and 2 refer to conditions in the soils |1 and 2. From
Eq. (6-35),

Ad, = -k, AP, APy =—ky AP, (6-70)
and, because equipotentials are continuous across the boundary, AP, = 4P,
Thus, from Eqgs (6-63) and (6-70),

Ab[ds = kyfks. (6-71)
From the geometry of Fig. 6-22,
AB = dafcos oy = Ab[cos oy (6-72)

and
CD = dafsin oy = dsfsin o, (6-73)
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: 3. Seepage of pore water produces secpage stresses in the soil; the change
K da, of effective stress due to seepage forces in a length ds along a flowline is
] do, =y, ids. (6-13)
! ! The critica['hydraulic gradient for piping is i, = [(#fye) =112 1.0.
i 4. Steady-statetseepage through a region of soil is governed by Laplace
Aa equationy and solutions may be obtained by mapping an orthogonal net
l of flowlines (d¥ =0) and equipotentials (4P = 0). If the flownet is
‘square’,
Adg=AY = AP (6-43)
and the total flow ¢ through the whole net is
g =—~k(N/Ny)(P—P). (6-46)
5. Seepage through layered and anisotropic soils may be tackled by calculating
equivalent permeabilities and using a scale transformation, ’
Soil 1 REFERENCES
Flgure 6-22 Flow across the boundary between soils with different permeabilities hh::s;‘;:_'g'&;:‘d Wroth, C. P. Critical State Soil Mechanics. McGraw-Hill Book Co.,
y Scott, R. F. Principles of Soil Mechanics. Addison-Wesley, Reading, Mass., 1963,
- Hence, from Egs (6-72) and (6-73), Zienkiewicz, 0. C. The Finite Element Method in Engineering Science. McGraw-Hill
T Ab,‘d.t itan m,jtana, (6-74) Book Co., London, 1971,
_ and, from Eq. (6-71),
: Jeykey = tan o;/tan o, (6-75)
. Equation (6-75) defines the deflection of the flowlines as they' cross the
- boundary and Eq. (6-71) defines the dimensions of the flownet to one side
" of the boundary when the flownet on the other side is square.
6-21 SUMMARY
. 1. Some useful definitions:
pore pressure u=y_h; (6-1)
potential P=hytz; (6-3) »
artificial velocity ¥ = dg/dd; (6-5)
hydraulic gradient i = —dP/ds. _ (6-9)
2. The steady-state flow of water through soil is governed by Darcy's law, .
V=ki, o (6-10)
where k is the coefficient of permeability,
- i 1
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SEVEN
" COMPRESSION

-
w

7-1 INTRODUCTION

The principle of effective stress states, among other things, that volume
changes in soils are due exclusively to changes in effective stress; this means
that if the volume of & soil changes the effective stress must also change.

Since soil grains and water are assumed to be incompressible, the volume
of a saturated soil can only change as water is squeezed from (or drawn into)
the pore space. As water flows from the innermost pores of a mass of soil
towards its beundaries the flow will be governed by Darcy's law ‘but, since
the rate of flow must be finite, the soil volume will change with time.
Consequently, the effective stress must change with time and, in general, so
will the hydraulic gradient and the rate of flow. The variation of soil volume
with time will be govetned by complex interactions between effective and
total stress, pore pressure, secpage, and compressibility.

This time-dependent process of vol hange in soil as water is squeezed
from the pores is known as consolidation. The lationship t the
volume of the soil and the effective stress, which is a relationship independent
of time, is known as compression.

7.2 COMPRESSION AND CONSOLIDATION - A SIMPLE
MODEL

The distinction between compression and lidation is best illustrated by

the simple model shown in. Fig. 7-1.

A water-filled cylinder has a close-fitting, light, and frictionless piston.
The piston is connected to the base of the cylinder by a spring and it contains
a drainage lead and a valve. The volume of water passing out through the
valve is 4V,, and a gauge measures the settlement Ap of the piston.

The resistance to flow of water due to the valve represents the resistance to
flow of water past the soil grains and so the degree of opening of the valve
models the permeability of a soil. The stiflness of the spring represents soil
compressibility; the spring ch istics corr d to those of the soil
skeleton which may or may not be linear and reversible, The piston has unit
area, so that a force o applied to the piston causes an equivalent total stress o;
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Figure 7-1 Model for soil jon and

if the pressure of water in the cylinder is u, then, for equilibrium, the force in
the spring must equal (o—u), which is equivalent to an effective stress o
If the spring compresses and the piston settles by 4p, the volume within the
cylinder changes by 4¥, but, because AV is defined as positive for an increase
in volume, 4V is negative and equal in magnitude to the volume Ay, of
water squeezed out. Since the area of the piston is unity, settlements and
volume changes are numerically equal and n

AV =4V, =—4p. a-n

A dpipe of negligible vol is d to the cylindsr £z shown
and the level of water in the dpipe (hy+4h) the por= Dressure
(u-+1) at the mid-height of the cylinder. If the valve is open, the system is
in equilibrium and the pore pressure is 1 this is known as the ecmilibrium
ot steady-state pore pressure and will not change with time. If the svstem is
disturbed so that the level of water in the standpipe is 4h above (o helow) its
equilibrium position, theee will be an excess pore pressure ii =} g4 1T there
is an cxcess pore pressure and the valve is open, water will fice Tom the
cylinder due to the potential difference across the piston and the =x==ss pore
pressure will diminish. The excess pore pressure i will, therefore, =zangs with
time. After an infinite time there will be no excess pore pressm= i=ft, the
system will once again be in equilibrium, the final pore pressurs will equal
the steady-state pore pressure, and the final excess pore pressurs wil. be 2e10:
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Figure 7-2 shows the results of applying an increment of load to the
on; the graphs illustrate the variation of total and eflective stress and
|::m: with time for various stages in the behaviour of the model.

& Stage I

The model is in equilibrium with the valve open: i.c.,
Total $ress =gy,
Pore pressure = u,,
Effective stress = of = gg—11,,
Volume =V,
Settlement =py=0.

Stage IT

The drainage valve is closed and the total stress raised by Ao; this
corresponds to sudden loading of a soil mass before any water can drain
from the pores. Since the valve is closed, 4V, =0 and AV =4p =0,
The piston has not moved, the spring has not compressed, and, thereflore,
4a’ = 0. The effective stress equation then gives

ii = do. (7-2)
og + Ao
‘ L LH_ =g
Stress - gy +":'_-_._-I e ) ¥ A0
oy g + U L,
1_"0 L’ Ao;
L
. 1, Time
% . -
ay,
——————— |y + AV
Stage 1 Stage 11 Stage 111 Stage IV
- Figure 7-2 Behaviour of the soil compression and ¢ lidation model
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Alter this (undrained) loading, the conditions are:
Total stress = 0y+do,
s Porepressure = uy+ i = wy+ Ao,
't Effective stress =o' = %, '
. Volume =V
Settlement =py=0 :
The model satisfies the principle of effective st'rcsg for soil because there
has been no volume change and no change of effective stress. There is,

however, an excess pore pressure in the cylinder so causing a hydraulic
gradient across the piston,

Stage I

At some instant f,, the drainage valve is opened, water begins to flow from
the cylinder, and the piston sinks. The rate of flow depends in part on the
opening of the valve and this may be adjusted to represent different soil
permeabilities.  After a time 1, the settlement is 4 p and the volume
within the cylinder is ¥V, + 4V, (where 4V, is negative). As the piston sinks,
the spring pompresses; after a time 1, the effective stress has increased to
o9+ daj and the pore pressure has reduced to g+ . As the pore pressure
drops, so the hydraulic gradient and the rate of flow of water through
the valve diminish; consequently, the rate of settlement slows. as time
passes. At some time ¢ the conditions are:

Total stress = 0g+do,
i Pore pressure = uy+4,
Effective stress = og+doj,
Volume =V, +4V,
Settlement = Ap,
Stage IV
After a very long time; the hydraulic gradient and the flow of water

through the valve will be negligible and the model is once again in
cquilibrium With zero excess pore pressure: i.c.,

Total stress = gy+de,
Pore pressure = u,,
Effective stress = o} +do,
Volume = k+dV,
Settlement =dp,.
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The behaviour of the model after unloading the total stress will be similar,
except that the pore pressure will fall and the volume within the container
will increase as water is drawn into the model and the piston rises.

If we apply many increments of total gtress, both loading and unloading,
allowing the excess pore pressures to dissipate completely before the next
increment is applied, we may plot the volume against the effective stress for
all points where equilibrium is reached and the excess pore pressure is zero.
Such a plot would appear like Fig. 7-3 and, for the model, this represents
the spring compression. We have shown the model compression in Fig. 7-3
as non-linear and not fully reversible Hecause the compression of real soil is
neither linear nor fully reversible. -

In certain important respects our simple model does not properly
represent the consolidation of real soil, but it does distinguish between

A A 'S

time-dep lidation and equilibrium states of compression. For
the remainder of this Chapter we will consider only the equilibrium states of
compression and we will ine the relationships bet volume and

effective stress in soils.

7.3 ISOTROPIC COMPRESSION TEST '

We will begin by looking at the behaviour of a clay soil during an isotropic
compression test, The test may be carried out either in the triaxial apparatus
with the axial loading ram locked clear of the sample top cap or in a special
apparatus. The state of stress in isotropic compression lies on the space
diagonal of Fig. 4-1 and, consequently, there are no shear stresses; the
boundary conditions are illustrated in Fig. 7-4, where o, is the cell pressure
in the triaxial apparatus. Figure 7-4 also illustrates the drainage and pore
pressure measurement arrangements required. In terms of the relevant
invariants the state of stress in isotropic compression is

g=gq'=0,
P=0a
P =0y
The soil grains and pore water are assumed to be incompressible, and a
reduction in sample volume from ¥ to ¥+ 4V, where AV is negative, causes

an increase AV, in the volume of water in the burette; the (cpmpressive)
volumetric strains given by Eq. (4-49) are

ARl I8 .3
Ae, v v (13)

As an example, consider a test where a sample is place& in the apparatus
and the cell pressure set to o, with the drainage valve open. It is left until the
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Volume, l"1 :

Compression !

SwzllinI -_:—___-_-_—_‘_ ____

Compression
(loading)

I

]

H

]

1

1 Swelling
1 {unloading)
i

I

1

' Ao’ l Effective stress, 0’

Figure 7-3 Compression and swelling of the model during loading and unloading

Back pressure,
[

Pore pressure Valve

transducer

Flgure 74 Loading and drainage arrangements fer jentropic compression
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% Jevel of water in the burette js steady and the sample is in equilibrium with
fu=0 and p=p' =0, this corresponds to Stage 1 of the simple model.
EThe valve is closed, the cell pressure raised by do,, and the resulting rise du
: in pore pressure measured; this corresponds to Stage II. The valve is then
"' opened, the pore pressure at the drainage connection is imml:diatgly reduced
‘to zero, but pore pressures within the soil do not immediately change.
¥ Hydraulic gradients due to excess pore pressures cause water to flow from
¥ the sample and the volume 4V, of water expelled into the burette is measured
f* at convenient intervals. This flgw of water from the sample is caused by the
F consolidation process and coffesponds to Stage I1I of the simple model.
" The sample is left until the Jevel of water in the burette s steady and the soil
is once again in equilibrium with u =0 and p’ = (oo +day),

74 BACK PRESSURE

“The test could be carried out with a minor variation; instead of allowing the
burette to be open to the atmosphere we could apply a constant back pressure
- This would not affect our observations of changes of effective stress and
§  volume in the slightest; it would only mean that the equijibrium effective
& stresses before loading and at the end of consolidation would be given by

_ P =p—u, (7-4)

The technique of applying a constant back pressure to the pore water is
commonly used in soil testing. The purpose of a back pressure is to saturate
the sample by dissolving any air or gas present in the pore water. Provided

that the results are expressed in terms of effective stress, the magnitude of
the back pressure will have no influence on the test.

7-5 SECONDARY COMPRESSION - CREEP

L IBUEEE B~ T B !'_‘_‘q.m

The change of sample volume 4¥ may be found from the change of volume
of water in the burette and, if we plot 4¥ against time, we will obtain a
curve like that shown in Fig. 7-5.

At small times the hydrpulic gradients within the sam le, and hence the
rates of flow, are relatively lyrge and the slope of the cunrejs relatively steep;
., as time passes hydraulic gradients diminish and the curvg flattens. After a
;" very long time, the hydraulic gradients should approach zero, there should
be no more flow of water I'rpfn the sample; and volume changes should cease.

AL first sight the curve jyppears to have a horizontal asymptote and the
&  sample appears to reach 3 constant volume at some point such as E in
E‘ Fig. 7-5.: This will coinci;u with zero excess pore pressure and constant

effective stress and the principle of effective stress would lead us to expect
no further volume changes. However, if we make further observitions, we
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Time, ¢

n Primary
“eompression (consolidation)

compression
Volume ; (creep)
change, AV

Figure 7-5 1'ypical time dependent compression of soil

will find that additional small volume changes occur slowly as time passes;
these are due to soil creep atl the process is often known as secondary
compression,

At is unfortunate that dll real soils seem to exhibit some degree of creep
but, luckily, in many cases, creep deformations are small pared to those
due to chunges of effective stress. For our broad view of soll behaviour we
will neglect creep, but we will have to recognize that small time-dependent
deformations that are not due exclusively to changes of effective stress do
oceur in soils. ;

7-6 ISOTROPIC COMPRESSION OF CLAY

It is convenient to record the results of an isotropic compression test by
plotting specific volume v (defined by Eq. (1-4)) against p' at points such as
E in Fig. 7-5 for each loading or unloading i t. The points plotted
will represent equilibrium states of volume and effective stress and so creep
will be neglected.

The results of an isotropic compression test on a ple of kaolin cla
are shown in Fig. 7-6; the test involved loading by i ingp'ini ¢
along A g!. unloading to D and reloading along D-B-»C. If we inspect

results frqm tests on other clay soils, we find that the isotropic compression
curves all ghow the same features.

™ . .
7-7 AN IDEALIZATION OF ISOTROPIC COMPRESSIO
OF CLAY : i,

Figure 7-7 shows the test results of Fig. 7-6 replotted as v against lnp’, where
Inp' is the natural logarithm of p’ (i.c., log,p’). If the small loop in the
unloading and reloading cycle B—+D-B is neglected, then, without serious
error, Fig. 7-7 may be idealized to two straight lines, as shown in Fig. 7-8.
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Figure 7-6 Isotropic compression of kaolin clay (afier Amerasinghe, 1973)

The results of isotropic compression tests on most clay soils can usually
be idealized to straight lines of the form shown in Fig. 7-8. Of course, the
slopes of the lines and their positions will be different for different soils.

Figure 7-8 is known as the isotropic compression diagram or the vt In P
plot, and represents the behaviour of a clay soil during isotropic compression.

28}
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Flgure 7-7 Isotropic compression of kaolin clay (data from Fig. 7-6)
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L c
. n p’
Flgure 7-8 An idealization for the I pi pression of clay

Ifi pi pression tests are conducted in which a clay is repeatedly
loaded and unloaded, it is found that the results can be represented by a single
line AC together with a family of unloading-reloading lines, of which
D,B, and D,B, in.Fig. 7-9 would be typical members. If soil has once been
loaded to B, and then unloaded, its state will be on B,D, but, if it is reloaded
beyond By, it will lie on AC provided it is not unloaded again.

7-8 OVERCONSOLIDATION

Figure 7-10 is an isotropic compression diagram for clay soil; it is essentially
the same as Fig. 7-8.

u A

Inp'

Flgure 7-9 The eflect of repeated loading and unloading on the i pic comp
of clay
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Figure 7-10 Overconsolidation

A soil which is in equilibrium with zero excess pore pressure and whose
state lies somewhere on AC is known as normally consolidated,t and AC is
known as the normal or virgin consolidation line. If the soil is in equilibrium
with zero excess pore pressure and its state lies on a line such as BD, it is
known as overconsolidated and lines such as BD are known as swelling lines.
The position of a swelling line may be defined by the maxi previous
stress p;, corresponding to the point B.

For convenience we deline the overconsolidation ratio

»

Ry = P—':'. (7-5)
where the subscript p is a reminder that R, is a ratio of mean normal stresses.
The value of R, cannot be less than 1.0 and, if Ry, = 1.0, the soil is normally
consolidated and its state lies on AC, Hence, a soil is normally consolidated
if its present state of stress has never been exceeded.

7-9 POSSIBLE STATES OF ISOTROPIC COMPRESSION

The normal consolidation line AC (Fig. 7-10) has a special significance. A
sample of soil loaded isotropically from A will follow AC:; its state may be
moved to the left of AC by unloading along a swelling line such as BD, but
it is not possible to move the state of the soil to the right of AC.

t Although this Chapter is concerned with pression rather than lidati
the terms 1l lidated and lidated are firmly blished and are

used 1o describe, respectively, the states of soils compressed along AC or swelled along
BD.
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. Inp'
Figure 7-11 A state boundary for | pl P
The line AC represents a boundary bet ible states to the left

and impossible states to the right, as indicated ianig. 7-11.

7-10 MATHEMATICAL REPRESENTATION OF ISOTROPIC
COMPRESSION !

Figure 7-12 is an isotropic compression diagram for a clay soil; it is essentially
the same as Fig, 7-8. '

v A d 2

p'=10 Ph Inp'
Figure 7-12 Isotropic compression of clay
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A soil which is in equilibrium with zero excess pore pressure and whose
state lies somewhere on AC is known as normally consolidated,t and AC is
known as the normal or virgin consolidation line. If the soil is in equilibrium
with zero excess pore pressure and its state lies on a line such as BD, it is
known as overconsolidated and lines such as BD are known as swelling lines.
The position of a swelling line may be defined by the maxi previous
stress p;, corresponding to the point B.

For convenience we deline the overconsolidation ratio

»

Ry = P—':'. (7-5)
where the subscript p is a reminder that R, is a ratio of mean normal stresses.
The value of R, cannot be less than 1.0 and, if Ry, = 1.0, the soil is normally
consolidated and its state lies on AC, Hence, a soil is normally consolidated
if its present state of stress has never been exceeded.

7-9 POSSIBLE STATES OF ISOTROPIC COMPRESSION

The normal consolidation line AC (Fig. 7-10) has a special significance. A
sample of soil loaded isotropically from A will follow AC:; its state may be
moved to the left of AC by unloading along a swelling line such as BD, but
it is not possible to move the state of the soil to the right of AC.

t Although this Chapter is concerned with pression rather than lidati
the terms 1l lidated and lidated are firmly blished and are

used 1o describe, respectively, the states of soils compressed along AC or swelled along
BD.
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The line AC represents a boundary bet ible states to the left

and impossible states to the right, as indicated ianig. 7-11.

7-10 MATHEMATICAL REPRESENTATION OF ISOTROPIC
COMPRESSION !

Figure 7-12 is an isotropic compression diagram for a clay soil; it is essentially
the same as Fig, 7-8. '
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p'=10 Ph Inp'
Figure 7-12 Isotropic compression of clay
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We define para.ar;zlm A (small Iamb;la) and » (small kappa) fnr‘lhe
(negative) slopes of the normal consolidation line and a typical swelling
line, respectively. Hence,

do. - p'dy
along AC, —A=——F="F7, 7-6
T Y o

do - pdv
and along BD, -x= Zinp) - T 7-n

Often, the normal consolidation line is known as the A-line and a swelling
line as'a x-line. v
Two further paramelters are required to define the positions of the A-
and x-lines. For the A-line we define N (capital nu) as the specific volume of a
normally consolidated soil at p’ = 1.0 kN m~%.t Thus, the equation of the
Aline is
v=N=2Alnp". . (7-8)

The position of a x-line is not unique, but depends on py,, the maximum
previous stress. For the x-line, we define v, as the specific volume of an
overconsolidated soil at p’ = 1.0 kN m-%,1 and the equation of a x-line is

v=uv—xinp. (19

), N, and x are regarded as soil constants; their values will depend on the
particular soil and must be found by experiment.

Example 7-1 Calculation of A, x, and N from isotropic compression test
results

The first two columns of Table E7-1 contain data from an isotropic
compression test on a sample of soil conducted in a triaxial cell. At the
end of the test, when the cell pressure o, = 60 kN m~%, the volume of the
sample was ¥ = 67.7cm?, and its water content was w = 0.409. The

Table E7-1 Isotropic compression test results

Volume of Volume
Cell waler of Specific
pressure, o, expelled, sample,  volume, '
(kN m~%) AV, (em®) Fiem®) o Inp
20 0 88.5 2m 1.00
60 1.2 813 2.50 4.09
200 15.0 735 226 530 I
1000 25.4 63.1 1.94 651
200 =123 651 . 202 5.30
60 208 6.7 2.08 4.09

t Although N and v, are themselves dimensionless, their values will depend on the
units chosen for p'.
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relative Uensity of the soil grains is G, = 2.65. Calculate values for A, «,
and N for the soil.

The current volume V of the sample may be found from the final volume
and the change of volume AV = — 4V, where 4V, is the volume of water
expelled. By -definition, the specific volume o = ¥/¥,, where ¥, is the
volume occupied by the soil grains and, since soil grains are incompress-
ible, ¥, = constant,
Hence, at any stage of the test, v/} = constant.

At the end of the test, from Eq. (1-5), v = 1 +wG,. Hence,

v=14(0.409 x 2,65) = 2.08,
V =67.7 cm®,

and, therefore,
u/V = constant = 0.031 cm™?,

Hence, the specific volume at each stage of the test may be calculated
directly from the current volume. The values of v are contained in
Table E7-1. : .

For Isotropic compression, where u =0, at the énd of each loading
stage o, = p = p'. The test results are shown as specific volume v plotted
against Inp’ in Fig. E7-1. The equations of the compression and swelling
lines are, respectively, Eqs (7-8) and (7-9):

p= N=Alnp',

v=v —klnp'.

2.60 |-

140

1 1 1
a0 4.0 5.0 6.0 1.0

Inp'
Figure E7-1 Isotropic compression test results
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Scaling the slopes from Fig. E7-1,
A=020 and x =005
and inserting, for example, v = 2,72 and Inp’ = 3.0 into Eq. (7-8),
"N=33. '

i 7-11 ISOTROPIC COMPRESSION OF SAND

4 (3 s
The compression of a sand soll is slightly different to that of a clay soil.

The state of an isotropically normally consolidated clay myst lie on a A-line
such as ABC in Fig. 7-12 and its specific volume is uniquely determined by
the current state of stress. In contrast, the specific volume pf a sand during
first loading is not uniquely determined by the current state of stress.

If sand is tipped rapidly into a container, the grains will pack together

relatively loosely and the specific volume will be relatively large. If the

container is then vibrated, the grains will pack together more closely and the

-+ specific volume will reduce. In both cases the state of stresy will be approxi-

mately the same; typically, {he value of #" will be 1 KNm~? at a depth of
about 100 mm below the surface of the sand.

Figure 7.13 shows the results of isotropic compression fests on initially
dense and initially loose samples of a sand. The state of the initially loose

A

Initially loose: Uy =20
D, E

2.0

b Initially dense: vy = 1.7
£ D E,
EREIS
e
E‘ L4
B,
12} : ™
C
Inp' :
- 4.0 5.0 6.0 7.0 8.0 9.0 : 100 1.0
1.0 —L r—1 y [I 1 . nl 1 —t
40 100 400 llI!ﬂ 4000 10000 40 000
P'(kNm?) ;
Figore 7-13 Isotropi pression of Chattahoochee River sand (after Vesic and
Clough, 1968)
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sample followed the line D,E,B, and the state of the initially dense sample
followed the line D,E,B,. i

Both samples were prepared at the very low stresses corresponding to the
sell weight pf the sand and, consequently, the true initial states must lie o
the left of 5, and D,; the points D, and D, are the states of the samples in
the testing npbaratus when small stresses are applied to the boundaries.

The paths D,E,B, and D,E,B, are similar in shape and their positions
depend only on the initial specific volumes of the samples; there would be a
whole t'amj'y of paths, intermediate between the two shown, each path
corresponding to a sample with a different initial specific volume. The paths
are noticeably curved and approach a common envelope AC at relatively
large stresses,

Similar fests on other sand soils will produce a pattern of behaviour
similar to that shown in Fig. 7-13; the positions of the lines will depend
principally on the grading of the soil and the shape of the grains,

At first sight, sand and clay soils appear to behave differently during
isotropic compression loading. However, for values of p' not exceeding
about 700 kN m=3, paths like DEB are approximately linear and almost
parallel with the Inp’ axis, and Fig. 7-13 may then be idealized to Fig. 7-14,
Although the idealization in Fig. 7-14 is really valid only in the range DE
and along part of AC, it is often a useful simplification and, for mathematical
analysis, it |s convenient to project DE to meet AC at points such as B,

Figure 7-14 is the same as the isotropic compression diagram for clay in
Fig. 7-12, but now « is almost equal to zero. Direct measurement of A (and N)
for sand is difficult because it requires tests at high stresses, but experimental

LJ

P’ # 700 kN m™?

Inp'
Flgure 7-14 An idealization for isotropic compression of sand
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determination of the value of « over the range of stresses of interest in civil
engineering is fairly straightforward.

If we accept Fig. 7-14 as a reasonable representation of the isotropic
compression of sand, there are obvious similarities between the behaviour
of sands and of clays. We should note, h , that at modest stresses
sands behave as though they were overconsolidated, irrespective of their
stress history, and, since x=0, they are nearly rigid during isotropic
compression. At large stresses, sands approach the Mline (AC) and behave
as though they were normally consolidated.

%

7-12 ONE-DIMENSIONAL COMPRESSION - THE
OEDOMETER TEST

Although, in principle, isotropic compression is a very simple kind of loading,
in practice isotropic compression tests are rather difficult to carry out
satisfactorily. A more convenient test, and one which is common both in

soil mechani h and in engineering practice is the one-di ional
compression test carried out in the oedometer described in Chapter 5.
The boundary conditions for one-dimensional ion are indi i

in Fig. 7-15; two principal strains are zero and horizontal pore water flow is
prevented so that both deformations and drainage are one-dimensional,
One-dimensional compression has an important practical aspect. As
sediments are deposited to form soils, they are compressed by the weight of
ive layers of sedi B of sy y there will be no horizontal
strain in any element in the ground and, in the absence of other disturbances,
the state of stress will correspond to the state of siress in one-dimensional
compression.
For one-dimensional compression, it is convenient to relabel the stresses
as of, and o}, where the subscripts denote vertical and horizontal directions,
respectively. During one-di ional compression, o}, will vary with o/, and

will adjust itself to maintain &, = 0. The relationship between ay and o}, is

usually written

' o) =Ko, (7-10)
where K, is known as the coefficient of earth pressure at rest; the value of K,
is not constant even for a particular soil, but varies with overconsolidation:
ratio. The value of K, should, therefore, be found by experiment. Never-
theless, there are various empirical expressions for estimating the value of

K, for normally consolidated soils. The most common of these is attributed
to Jaky and is

Ky=1-sing’, @-11)

where ¢' is known as the angle of internal friction with respect to eflective
stresses, a soil parameter discussed in detail in Chapter 14,
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9, =o,

uPloh

=g =0

=6 =0

Seepage

Figure 7-15 B dary ditions for di Jeaiat §

Assuming that o}, and of, are principal stresses, the stress invariants g

and p’ cor g to one ional compression are
' P = o1 42K,), _ (1-12)
g = ay(l~Ky). ' (7-13)

The conduct of an oedometer test is much the same as the conduct of an
isotropic compression test in the triaxial apparatus, The vertical total stress
is raised or lowered in incr and the ple allowed to reach a new
cquilibrium with zero exsess pore pressure afler each increment. Pore
pressures or horizontal stresses are not usually measured, although some
special oedometers exist in which horizontal stresses are measured by force
transducers or by strain gauges bonded to the containing ring.

Deformations of the sample are found by observing the settlement 4p
of the top loading platen with respect to the bottom. Conventionally,
settlements are reckoned positive downwards. Since horizontal strains are
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. gero, volumetric strains and

dimensional compression,

dp

vertical strains must be equal and, for one-

de,=—AVIV = - AH|H @14

AR -19)

For each increment of load the settlement-time relationship will have a

form similar to that shown in

Fig. 7-5; when the sample has reached a paint

such as E it may be regarded as being in equilibrium and a new increment of
load added or subtracted. As for isotropic compression, we will neglect

creep deformations.

For one-dimensional compression, we define an overconsolidation ratio

Ry as

Ry = oyfot, (7-16)

where o}, is the maximum previous value of o,. Since K, will vary during

.overconsolidation, Ry will not, in general, equal R, the overconsolidation

ratio in terms of p’,

7-13 VARIATION OF K,

IN OEDOMETER TESTS

Figure 7-16 shows the results of an oedometer test on a sample of kaolin clay
in which both o}, and o}, were measured. The sample was loaded one-
dimensionally along A—B and unloaded to D. The values of K, = a}/c’,

from Fig. 7-16(a) have been plotted

t o), and o lidation ratio

11

Ry in Fig. 7-16(b) and (c). Along AB in Fig. 7-16(a), the sample is one-
dimensionally normally consolidated and K, has a constant value; for
~ normally consolidated clays K, is typically near 0.7. Along B D the sample

one di 11
is nally overc

lidated and K, varies; for large values of

overconsolidation ratio, K, may exceed 1.0 as o}, becomes larger than of,.

- T-14 ONE-DIMENSIONAL COMPRESSION OF CLAY

Figure 7-17 shows the results of a one-dimensional compression (est on a
sample of kaolin clay plotted as specific ‘volume against vertical effective
stress for equilibrium states. Figure 7-18 shows the same results replotted as
v against Ino). The sample was Ioadcd a]ung A-»B, unloaded to D, and

reloaded along D—C.

We may idealize the one

| compression behaviour of kaolin

clay to the straight lines shown in Fig: 7.19. Data from one-dimensional
compression tests on other clay soils may usually be idealized to similar

straight lines; the slopes and
soil,

positions of the lines depend on the particular
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- 1.0 a0 5.0 70 9.0
Overconsolidation ratio, Ry ~
Flgure 7-16 Axial and radial stresses during one-dimensional compression of kadlin
clay (after Nadarajah, 1973)
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Figure 7-17 One-dimensional compression of kaolin clay (after Nadarajah, 1973)

7.15 ONE-DIMENSIONAL AND ISOTROPIC COMPRESSION
OF CLAY

I the values of o), o), and v are known throughout a unc‘dimensior.nal
compression test, the results may be shown on a v: Inp’ ploF tng‘cther with
the appropriate A-line for isotropic compression, as shown in Fig. 7-20.

2.8‘7
A
261
u D 1
g B
T 24}
g
£
2} c
]
Ino,
10 40 5.0 6.0 7.0
200 1 — ;L { T
10 40 100 . 400 1000
ol (kN m?)

Figure 7-18 One-dimensional compression of kaelin clay
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U H
A
D
N i
[of
In o
Flgure 7-19 An idealization for one-di jonal pression of clay
It turns out that the normal lid, line for one-di ional

compression has a slope close to = A and the swelling line has a slope close
to — «. It is a good approximation to assume that both normal consolidation
lines are parallel with slopes — A, and all swelling lines are parallel with
slopes —x. In order to locate the A-line for one-dimensional compression,

N

Ng

Isotropic

Onedimensional

p'=10 n":u Inp'
Flgure 7-20 Isotropic and dimensional ion of soil
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define N, as the specific volume of one-dimensionally normally consoli-

ted soil at p' = 1.0 kNm=?; the equation of the one-dimensional normal
nsolidation line is then

v=Ny—Alnp'. (7-17)
As was the case for isolropic compression, the position of the overconsoli-
dation line for one-di iopal compression is not ique put depends on

the maximum previous stress. In order to locate a x-line for gne-dimensional
compression, we define v,, us the specific volume of a one-dimensionally

overconsolidated soil at p’ = EQ kN m~%, and the equation of a x-line for
one-di ional compression is

v=0,~xlnp" CAT

Neither v, nor v, are soil constants, both depend on the value of p;,, the
maximum previous stress, as indicated in Fig. 7.20. -

Although ¢'fp’ =0 for isotropic compression, the value of q'lp' for

“one-dimensional compression is non-zero and may be found from Eqs (7-12)
and (7-13) as

7 3l-Ky)
b L2 "2 (7-19)
: P (1+2K,)
2 During normal consolidation, K, has a constant value and, consequently,
* g'Jp" = constant along either M-line in Fig, 7-20. We might guess that there
will be a family of A-lines each corresponding to a particular value of ¢'fp';
this point will be discussed further in Chapter 14,
Example 7-2 Calculation of Ky, A, and N, from oedometer test results
Table E7-2 contains data from an oedometer test on a sample of soil
in which the horizontal total stress oy, the vertical total stress o, and the
settlement p of the top platen were measured, At the start of the test,
when o, =30 kN m-? and the pore pressure was w =0, the specific
volume of the sample was v = 2.67 and its thickness was z = 20 mm.
Calculate the values of Ky A, and N, for the soil.
= Table E7-2 Oedometer test results
& Change of
sample
Vertical Horizontal Settle- | thick- Specific
siress, stress, ment ness, volume, p*
ar (kN m=%) oy (kN m-1) K p(mm) | 4z (mm) » (kNm=%) Inp’
o 15 - 05 0 0 2.67 20 .00
90 45 0.5 1.65° —L.65 245 60 4.09
300 150 " 05 30 =170 221 200 5.30
1500 750 0.5 585 —35.85 1.89 1000 691
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When the sample is in equilibrium, u = 0, total and effective stresses are

equal, hence

. Ky =o}jo, = o,/c,,

and, from lhe‘dnln,
Ky =0.5

and, at any stage of the test p’ = (o} +20}) = §o,. For one-dimensional

compression, dvfv = dz/z, where 4z is the increase in the thickness z

of the sample. At the start of the test v = 2.67 and z =20 mm. Hence,
throughout the test, ;

Av/dz = 0.134d mm-1:

Therefore, the specific volume at each stage of the test may be calculated

from the change of sample thickness. The values of v are contained in
Table E7-2, ;

The test results are shown as specific volume v’ plotted against Inp’

in Fig. E7-2, The quation of the one-di ional compression line is
Eq. (7-17)
v=Ny~Alnp'.
Scaling the slope from Fig. E7-2,
A=020 i
and inserting, for example, v = 2.67 and In P =10, :
Ny =327,
2.60 -
240+
.20
200
1 1 1 1 1

30 4.0 5.0 6.0 1.0

Inp'
Figure E7-2 Ocdometer test results
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7-16 COEFFICIENT OF VOLUME COMPRESSIBILITY m,

For many calculations involving the settlements of structures and for a
derivation of the basic equation for one-dimensional consolidation given in
Chapter 8, it is convenient to define a parameter m., the coefficient of volume
compressibility for one-dimensional compression, 2s

e, = m, 80!, (7-20)
where 8¢, is an increment of volumetric strain caused by a change of vertical
effective stress o', during jonal compression. Alternatively, we

may make use of Eq. (5-54) and define m, in terms of specific volume as
Bufv = —my8d. ' (1-21)

For one-dimensional normal consolidation, K, has a constant value and
50

8o/, = 8p'lp'. (-22)

Hence, from Eqs (7-21) and.(7-22) together with Eq. (7-6),
Jmy = Mool (7-23)
Clearly, if Ais a tant, m, t be a soil tant also; consequently,

Eqs (7-20) and (7-21) are valid only for the relatively small increments of
stress for which the normal consolidation line ABC in Fig. 7-6 may be
assumed to be linear.

7-17 COMPRESSION INDEX C, AND SWELLING INDEX Cg

In current geotechnical engineering practice, the results of one-dimensional
compression tests are usually plotted as voids ratio e against log,, o}, where
o, is the vertical effective stress. The slope Cg of the normal consolidation
line is known as the compression index and the slope Cg of a swelling line
is known as the swelling index, where

~Co= d(llo_::,uf:) for normal consolidation, (7-24)
de P
—Cg= Hiagas for overce (7-25)

Now logje o’y = 0.434In o', and de = do. Hence,

dv
=Ce = §a3ad(ine’)’ (7-26)
and, therefore, %
dv ol dv
S0k e 1-27
Mo d(inc}) do, g2

e . i

T
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Fer one-dimensional consolidation, K, has a constant value and, hence,
from Eqgs (7-22) and (7-27) together with eq. (7-6),

Co=2.303). (7-28)

‘For one-dimensional swelling, K, does not have a constant value and so

there is no simple relationship between x and Cg; however, it is usual to

an app y tant value for K,, in which case, reasoning
similar to that above leads to

Cax 2303k, (7-29)

7-18 SUMMARY

1. For both isotropic compression (g'/p’ =0) and one-dimensional com-
pression (g'/p’ > 0) the observed relationships between specific volume and
mean normal stress for soil can be represented by straight lines on a
v:lnp' diagram.

2. For isgtmpiu compression of
(i) normally consolidated clay,

p=N-2Alnp'; (7-8) ¥

(i) overconsolidated clay, '
p=up,—xlnp'. C (719)
3. For isotropic compression of sand .
(i) at very large stresses,
p=N=2Alnp';
(ii) at normal engineering stresses,
v=v,—xlnp.

But « is small.
4. For one-dimensional compression of

(i) normally mnsglidnled clay,
v = Ny—Alnp'; (7-17
(ii) overconsolidated clay, -
v=yp, —xinp’. (1-18) :

5. N, A and & are soil constants whose values must be found by experiment
for each soil.
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"._ For one-di ional comp 1
Ky = ay/ay, (7-10)
My = Avoy, (7-23)
Cg = 2,303), (7-28)

B REFERENCES

b

Amerasinghe, 5. F. The stress-strain behaviour of clay at low stress levels and high
overconsolidation ratio. PhD Thesis, Cambridge University, 1973,

Nadarajah, V. Stress—strain properties of lightly lidated clays. PhD Thesis,
Cambridge University, 1973,
Vesic, A. 5. and Clough, G. W, Behaviour of I inl urrder high stresses,

Proe. Am. Soe. Clvil Engrs, 94: SM3, 661-688, 196!

el

CHAPTER

| EIGHT
ONE-DIMENSIONAL CONSOLIDATION

8-1 INTRODUCTION

The time-dependent process as water is squeezed from a soil is known as

lidatign. The interacti between pore pressure, stress, and com-
pression in the simple model of Fig. 7-1 are illustrated in Fig. 7-2, where the
curved paths during Stage 111 represent the consolidation process, Similar
time-dependent behaviour occurs for soil.

Our objective in this Chapter is to devise an analysis for the consolidation
process'so that we may estimate the variation of pore pressure, stress, und
volume with time for any given situation. It turns out that it is not dilficult
to devise a basic dilferential consolidation equation, but analytical solutions
have only been found for cases with relatively simple boundary conditions.
The simplest solution of practical importance is that for one-dimensional
consolidation and we will consider only this special case.

8-2 THEORY OF ONE-DIMENSIONAL CONSOLIDATION

Tke following theory of one-dimensional consolidation is attributed to
Terzaghi; the necessary assumptions are that:

1. the soil is saturated and homogeneous:

2. the principle of effective stress is valid;

3. Darcy's law is valid; )

4. the pore water and soil grains ure incompressible;

5. all displacements of the soil and flow of the pore water are one-

dimensional;

6. the coefficients of permeability, k, and compressibility, m,, remain

constant. ,,

Consider the element of soil in Fig. 8-1. It has a cross-sectional area A
and thickness 8z; in a small time interval 31 the thickness increases by 3/,
The flow of water through the el is one-di ional and vertical and
the rates of flow in through the top and out through the bottom are g and
q+ 8q, respectively. The pore pressure at the top face is (uy+i1) and at the
bottom face is (u+ i+ 8a), where u, is a steady-state pore pressure and @
is an excess pore pressure. It will later be assumed that the total vertical
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iy + T+ B

q+8q
Flgure 8-1 Conditions in an el in a one-di ionall ing soil

stress remains constant over the time interval, but the effective vertical
stress changes by 8o’

The coefficient of volume compressibility m, was defined in Chapter 7 as
e, = m, 80", (8-1)

Thus, the increase 81 of thickness of the element due to a small increment
of effective stress 80’ for one dimensional compression is given by

8l = —m, 8o 8z (8-2)
and, since we assume that m, remai t, the p theory of
consolidation will be valid only for relatively small increments of stress.

As soil grains and pore waler are d to be i pressible, the
condition of continuity is
ABl=—8q5t (8-3)
and, from Eqs (8-2) and (8-3),
g = Am, % (8-4)
At the limit, noting that g and o' are both functions of z and 1, .
2—': = Am, ‘% (8-5)
The rate of flow across the element is given by Darcy’s law s
g = Aki, (8-6)
where the hydraulic gradient i is
i= -i %‘-: ; -7
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Hence, : .
8 Ak 8 Sﬁ) ¢
g EE) el
and, at the limit,
o __dk
BT ' (89)
Then, from Eqs (8-5) and (8-9), :
k #a do’
m_...'?' = i (8-10)
The effective stress is given by
: o = o—(ug+il). (8-11)
Henece, noting that u, remains constant,
80" 8o 8d
% -5 (8-12)

We now consider the simple and common case when the total stress remains
constant with time. Then 8o/2 = 0 and Eq. (8-10) becomes

#a o ; '

:"Eﬁ =3 (8-13)

where
k

Cy= - 8-14

e (8-14)

¢, is known as the coefficient of consolidation. Eq. (8-13) is the basic
differential equation for one-di ional consolidation. If we can obtain a

solution of the form @ = ii(z, t) for Eq. (8-13) which sutisfies the appropriute
boundary conditions, we will then know the variation with time of the excess
pore pressure and the effective stress at any point within a one-dimensionally
consolidating soil layer.

8-3 ISOCHRONES

It is often convenient to illustrate the solution of Eq. (8-13) graphically by
plotting the variation of excess pore pressure ‘with position at given times.
We will then obtain 2 family of curves called isochrones (from the Greek
and meaning equal time).

A simple way to visualize an isochrone is to imagine a set of standpipes
inserted into the consolidating soil. Figure 8-2 shows such a set of standpipes
in a stratum of uniform clay above an impermeable rock: a total stress da
was applied suddenly to the clay surface at a time f = 0 and was held constant
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Rock
Flgure 8-2 Standpipe levels in a bed of di ionall lidating clay

thereaflter. We assume that do is applied over a sulliciently large arca so
that the clay consolidates one-dimensionally,

Before the increment of total stress was applied to the clay surface the
levels of water in all the standpipes were at ground level and the steady-
state pore pressure u, at any depth z was Uy =y, 2. At any instant of time,
the excess pore pressure @ |s given by i =y, 4h, where 4h is the level of
water in each standpipe abave the datum at ground level. Thus, -the curve
AB in Fig. 8-2 which joins the water levels in the standpipes will give the
shape of the isochrone at that instant of time. However, the height 4k of the
curve above the datum at ground level will have to be multiplied by y,, to
give the correct magnitude of the excess pore pressure represented by the
isochrone.

Isochrones are normally shown with the datum line drawn vertically
and the excess pore pressurg plotted to the right, as illustrated in Fig. 8-3.
It is convenient to denote the value of the excess pore pressure at a depth
z and at a time ¢ by 4(z,(); thus, for example, the excess pore pressure at
the base of the clay layer at g depth H at 1 = 0 is written a(#,0).

Isochrones must satisfy the boundary conditions of the particular
oroblem considered. For the clay layer in Fig. 8-2 at ¢ = 0, no water has
been squeezed from the clay and so there has been no volume change and no
change of effective stress, After a very long time, the clay will reach a new
steady-state equilibrium with no flow of pore water and no excess pore
pressures anywhere. The boundary conditions are

1=0, #(z,0)=do;

; (8-15)
=00, ii(z,00) =0,
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Figure 8-3 Isochrones in & bed of one-dimensi Ily lidating clay

The isochrones shown in Fig. 8-3 satisfy these boundary conditions.

The slope of an isochrone is related to the instantaneous hydraulic
gradient and, hence, to the instantaneous rate of flow. We define s(z,1) as
the slope of an isochrone for time ¢ at depth z, where

s(z,1) = aiffez, (8-16)

Thus 5(z,1) = 0 when the isochrone is vertical in Fig. 8-3. The slope of the
isochrone is reluted to the instantancous hydrauli¢ gradient by
S 1) m—yi(z,1) (8-17)
and, from Darcy's law, the instantancous artificial velocity at a time ¢ and
depth z is given by '
K@) = —(klyy)s(z,1). ) ’ (8-18)
With the axes for z and @ shown in Fig. 8-3, the isochrones have positive
slopes everywhere and, hence, the seepage of pore water is everywhere upwards
as the clay compresses. N
At the base of the clay layer in Fig. 8-3 the rock is impermeable and
V(H,t) = 0; consequently s(H, 1) = 0 and an isochrone such as that at time
1, intersects the fock surface orthogonally at M. An Isachrone such as that
at time f, intersects the line ED at a point-such as L. Below L there has
been no copgsolidation and no ch ge in vol 4 quently there is no
flow of pore water below L and the isochrone 1, is vertical at L.
Since soil grains and water are assumed to be incompressible, the upward
artificial velocity at any depth must exactly balance the downward rate of
settlement at that level. Hence,

8p[0t = — V(z,1) = (kfy,,)s(z, 1), (8-19)
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where p = p(z,1) is the settlement, with r&po:t to the rock surface, of the
layer at depth z after a time 1.

84 BOUNDARY CONDITIONS FOR ONE-DIMENSIONAL
CONSOLIDATION

The one-di ional lidation equation, Eq. (8-13), is a differential
equation and its solution requires certain boundary conditions to be specified;
these are concerned with the particulag drainage and pore pressure conditions
at the top and bottom surfaces of the consolidating layer. The boundary
conditions for the layer in Fig. 8-2 are

t=0, 0<z<H, i=do;
0<t £ oo, . z=0, i=0;
0t €, z=H, 0oiféz=0;

t=c0, 0<z<H, i=0.

For different conditions of drainage at the top and bottom surfaces, the
boundary conditions will obviously be different.
We will find that it is convenient to obtain solutions for the consolidati

equation in terms of the time factor T, and the average degree of consolidation
U,

8-5 TIME FACTOR T,

Figure 8-4(a) shows a layer of consolidating soil overlying impermeable
rock; pore water can only seep upwards and the flow is known as one-way.
For this situation we define the time factor T, as

T, = ¢y I/H?, (8-20)
where 1 is the depth of the consolidating layer. If the layer overlies a very
permeable deposit, water may seep upwards and downwards as shown in
Fig. 8-4(b). This two-way drainage case contains two halves each identical
to the one-way drainage case. We may, therefore, adopt the one-way drainage
solution if we define the depth of the two-way draining layer as 2H,

We may avoid any ambiguity by redefining H as the i drainage
path; thus H in Eq. (B-12) is the longest direct path taken by any element of
waler as it is squeezed from the soil. I

8-6 AVERAGE DEGREE OF CONSOLIDATION U,

The average degree of consolidation U, which has taken place at a time 1,
is defined as

U= Apfdpe, (8-21)
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Flgure 8-4 One-way and two-way dral for one-dimensional lidation. (2) One-
way drainage. (b) Two-way dral

where 4 is the overall settlement of the surface of the clay layer in Fig. 8-2
with respect to the rock at a time 1 and dp,, is the final overall settlement

when excess pore pressures are everywhere zero. The limits of the degree
of consolidation are

(8-22)
t=00, ‘Ug= 10,

We should note lh&t at a time ¢ the excess pore pressure ii(z, 1) varies

throughout the layer, as shown by the isochrones in Fig, 8-3, and the local

degree of consolidation is, therefore, not constant throughout the layer.

We may define a local degree of consolidation Ugz) at a gepth z and a time
fas

=0, U=0; ] '

Ufz) = 1 —{ii(z, 1)/ii(z, 0)} (8-23)
and the limits of UJz) are given by Eqs (8-22).
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8-7 APPROXIMATE SOLUTION FOR ONE-DIMENSIONAL
CONSOLIDATION BY PARABOLIC ISOCHRONES

The solution of the one-di ional « lidation equation, Eq. 8-13,
together with the boundary corditions discussed in Sec. 8-4, will emerge as
a family of isochrones like those illustrated in Fig. 8-3. We may obtain an
approximate, but nevertheless reasonably accurate, solution by assuming
that the isochrones may be approximated by parabolas.

We must dislinsuish.bel.ﬁe:n two stages of consolidajion. In Fig. 8-5
there is an isochrone for a critical time ty which passes through the point D
for which

(M, 1)) = de,

and we must consider solutions for f=f,<1, separately from those for
1=1y21, The ideas behind each analysis will remain the same but the

algebra differs slightly.

i) ¢ =1x<t,

A parabolic isochrone for 1,<1, is shown in Fig. 8-6; its slope is vertical at
L and no consolidation has occurred below a depth z = |, Summing the
settlements of all elementary layers and using Eq. (8-1), the surface settle-
ment is given by

A J‘ 'y A d (8-24)
L]
=m, x (Area AEL)
= {m,dal. (8-25)
Since m, and do are d to in cc during lidati

Eq. (8-19) may be differentiated with respect to tirne to give the rate of
surface settlement as
dpy dl
5= lm,dua. (8-26)
The rate of surface settlement is also given by Eq. (8-19) with z=0.
Hence,

dp,  k
= 8-27
dt y i ( )

where 5, = 5(0,1) is the slope of the isochrone for time t at the soil surface,
From the geometry of a parabola, 5, = 2o/l and so
" dp 2%ds '

s

dt Yl (=2
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c . [}]
Flgure 8-5 Parabolic isochrones

Hence, equating the rate of surface settlement from Eqs (8-26) and (8-28),

dl k :
! @i~ 6 moye (8-29)

and integrating with the boundary condition / = 0 at 1 = 0

I=(12¢, 1), (8-30)
where ¢, s the coefficient of consolidation defined by Eq. (8-14). Equation
(8-30) rep}’uenu the rate at which the point L in Fig. 8-6 progresses down
ED; no effects of consolidation will be noticed at depths z greater than /.

The surface settlement 4 p, after some time 11, is given by substituting
for linto Eq. 8-25. Hence,

dp = km, do [(12¢,1)
or

2.
ﬁpf = m,da HFjJT\,, (8-3”

where T, is the time !'ac}or given by Eq. (8-20). The final surface settlement

Ao'(z, 1)

|-¢—~ Wiz, 1)

T

|
L]
s

Flgure 8-6 Parabolic isochrones for 1 <1,

Pl‘—"——im
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will occur when the excess pore pressure is everywhere zero and do’ = 4o,
The final surface settlement 4p,, is, therefore, given by

dpo=m,deH (8-32)
and the average degree of consolidation defined by Eq. (8-21) is simply

2
Y= JTh. (8-33)
Equnuon (8- 33) is the npproumale luti for one-di ional
g parabolic isoél . The solution is valid until the
point L in Fig. 8-6 reaches D when 1 = 1,; at this instant [ = H and
T, =y, Up=033, (8-34)

For 121, the isochrone no longer touches ED and a new analysis must be
performed. .

(i)t =131,

A parabolic isochrone for 1, = 1, is shown in Fig. 8-7; the isochrone inlersects
the base of the layer orthogonally at M with & = m de. Making use of the
geometry of a parabola and proceeding as before, the surface settlement
after a time 1,, is given by

Apy = my Ao H(1 —§m) (8-35)
The rate of surface settlement may be obtained from Eq, (8-35) as
L dpy dm
had . SRS . 8-36,
h im,doc H - (8-36)

wiz. 1

—ljl-—.-l-a- m'tz.ri—1 :
11
'y

_J M
- mio

f———— Ao ——+

Figure 8-7 Parabolic isochrones for1> 1,
1}
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and from the slope of the isochrone at the surface as

dp,  2mk Ao

= (8-37)
Hence,

1 dm 3e,

ma =T e

where ¢, is the coefficient of consolidation.

Equation (8-38) must be integrated between the Ilmils f= foand f = co,
Al the critical time f, corresponding to T, = vl the isochrone passes through
the point D in Fig. 8-5 and m = |. Integration of Eq. (8-38) between these
limits gives m as a function of time as

m=exp(}{—3T,). D (8-39)

The surface settlement after a time 1321, is obtained by substituting for m
into Eq. (8-35) to give

dpy=m,da H[l - §exp(}-3T))). (8-40)

The final surface settlement 4p,, is given by Eq. (8-32), and so the average
degree of consolidation is given by

U= l—-§exp(}—3T,). ¢ (8-41)

Equations (8-33) and (8-41) together describe the one-dimensional
consolidation of the soil stratum, for they relate the average degree of
consolidation Uj to the time factor T,,. They are, however, valid only for the
initial and final excess pore p 1 by the isoch 1, and
I in Fig. 8-5. The time factor defined by Eq. (8-20) is dimensionless and
contuins time, the maximum drainage path, the soil compressibility, and the
soil permeability. Consequently, the solutions are valid for all soils and all
layer thicknesses. The theoretical relationship between U, and T, for
parabolic isochrones assumed above is shown in Fig. 8-8; it is conventional
to plot U, positively downwards to represent settlement. The portions OD
and DE are given by

U= 54T -' (839

U= 1-fexp(}-3Ty), (8-41)
and the two parts mest at D, where

JT.= J:“z Uy =033, (8-42)

We may note that DE becomes asymptotic to Uy = | for large values of T,.
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~Figure 8-8 Solution for di ional lidatlon with bolic isochrones

Example 8-1 Calculation of the rate of foundation settlement by the
approximate solution

Figure E8-1 shows a foundation on a thin bed of sand which rests on the
surface of a clay stratum 8 m thick which overlies a layer of highly
permeable sand. The foundation is so wide that consolidation of the clay
may be assumed to be one-di ional and, i diately after
construction, excess pore pressures in the clay are everywhere equal to
the foundation pressure. The coefficient of consolidation of the clay is
¢y =2m? per year. Calculate the time after construction at which the
settlement reaches (a) 30 per cent and (b) 90 per cent of its final value.

The drainage is two-way, up to the surface and down to the lower sand
layer, and, hence, H = 4 m. Thus,

t=T,H%e, = (T, x4%/2 = 8T,.

Foundation

o — .
\Tllin bed

Bm Clay of sand

Highly permeabie sand
Flgure E8-1
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(a) For U;<0.33,
2
Ul - 35 JTv'
Hence, for U, = 0.3,

7
Ty = U} = I x 0.3% = 0,068
and
1= 0,068 x 8.
The:cfpre,
_ t = 0.54 years.
(b) For U;>0.33,
U=1-Fexp(}-3T,).

Hence, for U, = 0.9,

Ty = {-In{}(1 - )]
=ilt-In{Ix(1-09)]

=0.716
and
1=0716x8.
Therefore, :
t= 5.’?3Ayem.
The settl will, therefore, be 30 per cent complete after approxi-

mately 6 months and 90 per cent complete after nearly 6 years.

8-8 THE EXACT SOLUTION FOR ONE-DIMENSIONAL
CONSOLIDATION
The one-di ional lidation equation,

c,g':}’.. %, (8-13)

may be solved analytically for appropriate boundary conditions. The
method of solution, by separation of variables, is described in detail by
Taylor (1948, pp. 229-234) and we will do no more here than quote the
result.

The solution emerges as a Fourier series and for do = constant and for
our particular boundary conditions : :

i(z,1) = }.: &ginMZup(—M'T,), (8-43)
e ey =0 M -t .

where M = yn(2m+1), Z = 2fH, T, = ¢, t/H".
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Equation (8-43) provides an expressi 1 for the excess pore pressure
#(z,1) and so, using Eq. (8-23), the local degree of consolidation at depth z
and time 1 is given by

Uge) = 1- z %muzm(-mm L (s44)

Equation (8-44) is plotted for different values of T, in Fig. 8-9.
The average degree of consolidation of the whole stratum, defined by
Eq. (8-21), may be obtained by inlegralh!g Eq. (8-44) as

U=1- i—-&;e:p(—-”'?‘,}. (8-45)

Equatlon (8-45) relates the average degree of consolidation of a one- -

lly consolidating stratum to the time factor and it is analogous

to Eqgs (8-33) and (8-41), whlch were derived for the same case by assuming
that the isochrones could be approximated by parabolas.

Equation (8-45) is shown pluited as Uy against T, in Fig. 8-10, and the
line ODE from Fig. 8-8 (obtai bolic isochrones) has been
included for comparison. For values of U', not greater than 0.6, Eq. (8-45)
may be approximated to

U= T (346

. which may be compared with the. parabolic isochrone solution for U, <0.33,

U= %J‘n- (8-33)

Thus. the dlﬂ'emm:e between the approximate and the exact solutions
for | lidation is extremely small,

It should be noted that both the solutions quoted above (the exact and
the approximate) apply only to the case where the initial excess pore pressure

Z=1z/h

Figure 8-9 lsoch for di ional lidation from the exact solution
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VT,
] 0.2 04 0.6 08 _ L0_ 1.2 1.4
T T T T T T
D
=
Eq. (8-45) i
E
| I = = = e E=d
Figure B-10 Comparison of the exact solution and the parabolic isoch lution for

is constant throughout the layer and where the final excess pore pn:ssure is
everywhere zero. The exact lysis may be ded relatively easily to
allow for different initial excess pore pressures, e.g., Taylor (1948, pp. 236~
237). Relationships between average degree of consolidation and time factor
T, for three cases of initial excess pore pressure distribution (including the
case when the initial excess pore p e is tant through the layer)
are listed in Table 8-1.

Table B-l Exut solutions for one-dimensional consolidation with

¥ ge for various distributions ol' initial excess pore pressure
: —‘— "
u(z, 0)

e i T,

Impermeable Case | Case 2 Case 3

U, T

0.1 0.008 0.047 0.003

0.2 031 0.100 0.009

0.3 0.071 0.158 0.024

0.4 0.126 0.221 0.048

0.5 0.196 0.294 0.092

0.6 0.287 0.383 0.160

0.7 0.403 0500 0.271

0.8 0.567 0.665 0.440

09 . 0.848 0.940 0.720

Akl stk sl dat «

T SR BVl i St b e
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Example 8-2 Calculation of the rate of foundation settlement by the exact
solution

Repeat Ex. 8-1 using the exact solution for one-dimensional consolidation
given in Table 8-1. :

Drainage is two way and, as before, t = 8T,. Immediately after con-
struction, excess pore pressures are everywhere equal to the foundation
pressure and Case 1 of Tahble 8-1 applies.

(a) For U= 0.3 and Case I fram Table 8-1,

T, = 0071,
Hence,

1=0071x8,
t = 0.57 years.
(b) For U,= 0.9 and Case 1 from Table 8-1,
T, = 0.848,

1

Hence,
1=0848x8,

t = 6.78 years.

The results do not differ substantially from those found in Ex. 8-1 using
the approximate solution.

8-9 DETERMINATION OF ¢y FROM AN OEDOMETER TEST

The results of a single stage of consolidation of a sample in an cedometer
test may be used to estimate a value for the coefficient of consolidation of a
soil. Since the time factor T, is a function of ¢,, we cannot immediately
plot experimental results gs U, against T,. However, if the test is continued
until lidation is complete, we may find the final settlement and, hence,
the degree of consolidation at any time and so plot Uj against time .

If the experimental Uj against ¢ curve can be fitted to a theoretical U,
against T, curve, a relationship between t and T, may be obtained and so
¢y found from Eq. (8-20). Two alternative curve fitting approximations are
available. ' )

A J(time) method This method makes use of the observation that settle-
ment against |(time) .curves have an initial portion which may be
approximated by a straight line and this straight line can be fitted to
Eq. (8-46).
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Vit

(b)

Figure 8-11 Calculation of T, from ocedometer test resulis by a JJ{time) curve-fitting
method Y

Figure 8-11(a) shows the results of a single stage of consolidation of
a sample of clay in an oed test plotted as Uj against JJr. The slope
of the initially linear part of the curve is given by Jt; ns shown on Fig,
8-11(a). Figure 8-11(b) shows the theoretical consolidation curve given
by Eq. (8-45); the slope of the initially linear portion may be found from
Eq. (8-46) and is given by |/(n)/2 as shown on Fig. 8-11(b).

The two curves fit when

Ty = c,tf{H% (8-20)
Therefore,

nl4 = c 1,/ H?, (8-47)
where H is the maximum drainage path in the test sample. In practice
there is no need to draw Fig. 8-11(b); we simply plot the test results as
U, against |/t as shown in Fig. 8-11(a), construct t, and calculate ¢, from

ey =mH4t,. (8-48)
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A log,, (time) method  As an alternative, it is sometimes more convenient
to fit the experimental and theoretical consolidation curves at Up=0.5,
that is, when half of the lidation is compl

The value of T, for U;= 0.5 may be found from Eq. (8-45) and is
T, =0.196. To estimate a value for tg, the time for Uy = 0.5 during a
single stage of lidation in an oedometer test, it is convenient to
plot U; against log . Figure 8-12 shows the results of the oedometer test
on a sample of clay already shown in Fig. 8-11(a). The value for Iy May

be read directly from the experi curve,
The theoretical and experimental curves fit when
Ty = c 1/ HY, (8-20)
0.196 = ¢, 1,/ H?, (8-49)

where H is the maximum drainage path in the oedometer sample. From
Eq. (8-49) and the experimental value for Iy, the coelficient of con-
lid may be calculated from

ey = 0.196(H¥1g,). (8-50)

We must note that U, cannot be calculated until the final settlement
Ap. has been found. Ideally, settlement time curves would approach
horizontal asymptotes as illustrated in Figs 8-11 and 8-12 and it would not
be difficult to estimate a value for dp.. For most experimental settlement :
time curves, h er, these hori | asymptotes are not clearly defined
and, moreover, there is often an initial settlement which is observed
immediately after the loading increment has been applied. For most
practical cases it is necessary to estimate a value for 4 P= by means of special
constructions. A construction for estimating dp,, from a plot of 4p, against
J/t was proposed by Taylor and a construction for estimating dp, from a

0 Tso logypt

0.5

] . e

v,

Figure 8-12 Calculation of T, from oedometer fest results by the log,g(lime) curve-fitting
method

ONE-DIMENSIONAL CONSOLIDATION 163

plot of dp, against log,,t was proposed by Casagrande; both constructions
are described by Taylor (1948, pp. 238-242),

Example 8-3 Calculation of ¢, from oed test results

The first two columns of Table E8-1 contain data from a single increment
of an oed test on a ple of clay. At a time 1 = 0, when the

Table ES-1 Ocdometer test results

Time Seltlement, S logys 1
(min) Ap, (mm) U, (min¥®)  (r in min)
0 0 L] 0 s
0.25 0.206 0.107 0.50 =0.602
1o 0.414 0.216 1.00 0
2,25 0.624 0.325 1.50 0.352
4 0.829 0.432 2 0.602
9 1233 0.642 3 0.954
16 1.497 ° 0.780 4 1.204
25 1.685 0.878 5 1.398
- 36 1.807 0.941 6 ‘1.556
49 1872 0.975 7 1.690
’ 24h 1.920 1.000 — =

- sample thickness was 20 mm, the total vertical stress was suddenly raised
and the settlement of the top loading platen observed after various
intervals of time; after a period of 24 h there was no further settlement.
The sample was allowed to drain to both the top and bottom faces.

i Calculate the values of ¢, for the soil for the Ioadingfincremcnl.

For two-way drainage, the drainage path may be taken as H = 10 mm -
for the increment. The average degree of consolidation U, at any time
may be found by dividing the settlement at that time dp, by the settlement
at 1 = 24 h, which may be taken as the final settlement dp,,, and values
are given in Table E8-1.

1
(a) |J(time) method. Figure E8-2 shows Uj plotted against Jr. From the
! figure, yty =4.6 and, hence, f =21.2min. The coefficient of
consolidalion e, is given by

ey @ aHYA = 7(10 % 10-3)%/(4 % 21.2 x 60),
€, =62x10""mis?

or
¢y = 6.2 % 10~%x 60® x 24 x 365 m? per year,

€, = 1.9 m? per year.
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1
Vi (min?)

0 0 4.0 6.0 8.0
T T T

Figure E8-2 Calculation of ¢y by Jf method

(b) log,g(time) method. Figure E8-3 shows U, plotted against logof.
From the figure, logy,fe, =0.70 and, hence, fy = 5.01 min. The
coefficient of consolidation c, is given by

¢y = 0.196H*/15 = 0.196 x (10 x 10-2)%/5.01 x 60,
€y =65x10"" m¥s-L,
or
€y = 6.5%10-% % 60® x 24 x 365 m? per year,
€y = 1.1 m? per year.

The values of the coefficient of consolidation ¢, calculated by the two
curve-fitting methods do not differ appreciably and, on average, ¢, may
be taken as 6.35x 10~* m*s~! or 2.0 m? per year.

logyg ¢
¥ -1.0 o 1.0 2.0
e T T T
" |logtg = 0.70
'

Figure E8-3 Calculation of ¢, by log,, t method
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Example 8-4 Calculation of A, Ny, m,, and k from cedometer test results

For the i of the oedometer test described in Ex. 8-3, the total
vertical stress was raised from o, =90 kNm=? to o, = 300 kNm-2,
The mﬂicienl of carth pressure ut rest is K, = 0.5 and, at the start of the
increment, the specific volume v = 2.45, Calculate values of A and N,
and values of m, and k far the increment of lodding.

For one-dimensional compression,
" v=Ny—Alnp' andso dv=—Ad(Inp").

Since there is no lateral strain during one-dimerisional compression,
Avfv = Az/z, where dz is the change of thickness'z of the sample. Hence,

dv=vpdzfz=—A4(Inp")

or ;
Ae=e vdz

= T2d(npY

When the sample is in equilibrium, w=0 and' oy, = K,o, hence
p' = lo,. At the beginning of the increment p' = 60 kN m-? and at the
end of consolidation p' = 200 kN m-2, Thus,

4p' = (200—60) kN m-*
or
A(ln p') = In (200) — In (60)

= 5.30-4.09
=121,
From the test results, z = 20 mm, 4z = —1.92 mm, and v = 2.45. Hence,
A= (2.45% 1.92)/(20 % 1.21),
A= 0.20. _
From v = Ny—Alnp’ and inserting v = 2.45 and p' = 60 kNm?,
Ny = 2.45+0.20In(60),
N, =327
The coefficient of compressibility m, is given by
» 4z

From the test results, 4o, =300—90 =210 kNm™*, z =20 mm, and
A4z =—1.92 mm. Hence,

my = 1.92/(20 % 210),
m, = 4.6x 10~ mkN-1,
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The coefficient of permeability k is s:;ren by k =c,m,y,, where the
coefficient of consolidation is ¢y = 6.35x 10~ m‘ -1, from Ex. 8-3.
Hence,

k=635% ID“xdﬁxltHxH]
k-z.Dxlo-“ur'

8-10 SUMMARY

s
r
1. One-di ional lidation is governed by
#d aq
C-'a? = (8-13)
where the coefficient of consohdauon Cy= k;f[m, Vo)
. 2. Solutions of the one-di equation may be
repr ted phically by isoch ; an isochrone represents the

magnitude u!' the excess pore pressures at a particular time throughout
the consolidating soil.

. The time factor T, and degree of consolidation U, are defined as
Te=cyt/H* and U =dp/dp.,
where dp is the surface settiement and H is the maximum direct drainage
path.
4, Relauanshlps between U, and T, mny be found analytically or by
g that isoch may be approxi d by parabol,

5. Values I‘cr ¢, may be found from the results of oedometer tests by various
curve-fitting methods.

W
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CHAPTER

NINE
SHEAR TESTING

9.1 INTRODUCTION : 3

We discussed in Chapter 7 how soils behave when they are subjected to
changes in mean normal effective stress. Of course, in many situations,
clements of soil may also be subjected to changing shear and we
need, therefore, to study the response of soils to combinations of shear and
normal stresses.

92 SHEAR TESTING APPARATUS

Various kinds of apparatus for testing soil were described in Chapter 5.
The key requirement for a shear testing apparatus is that soil specimens can
be subjected to known and controllable combinations of shear and normal
stress while any strains and distortions are observed.

The simplest and earliest shear testing apparatus is the direct shear box
described in Chapter 5, but there are several difficulties with this apparatus.
First, we do not know the complete stress state in the soil contained within
the apparatus. Even if we suppose that both the effective normal stress o’ on
the failure plane is uniform, and hence equal to Fy/A in Fig. 9-1, and the
shear stress = is uniform and equal to Fu/A, we are only able to plot a single

Flgure 9-1 Forces applied to a specimen in the shear box .

Vo




J68 THE MeCHANIUS UF SUILS

point R in a Mohr stress diagram (Fig. 9-2). We can now draw an infinity
Mohr's stress circles through R, of which only three are shown. We are,
therefore, unable to determipe the principal stresses ay,05 and cannot,
= without additional assumptions, discover what combinations of oy and o}
cause failure. *
Second, we only observe the boundary displacements of the soil specimen,
. we do not observe strains. Such a distinction would be unimportant if the
~soil sample deformed unil‘ntrply. for we could then just obtgin the vertical
‘straln as the ratio between the vertical compression of the shmple and the
vertical height of the sample. In fractice, the sample only deforms in some
region such as ABCD, as shown in Fig. 9-1. As we do not know the
dimensions of the zone ABCD, we are unable to determing the strains in
the deforming region of soil.

The shear box can, therefore, be seen to be unsatisfactory as a test
apparatus il we wish to investigate the interrelation between strains and
siresses. The apparatus is better suited to the determination of stresses ‘which
cause failure on a particular plane of the soil, and it is well svited to find
the strength of pre-existing failure surfaces in a soil specimen.

Many of the difficulties asspciated with the standard shear box have been
overcome by the development of the simple shear apparatus, but this
apparatus is a sophisticated device currently mainly used for research.

The shear testing device most commonly used both fpr design and
research is the triaxial apparatus which was described in some detail in
Sec. 5-7.

The stresses on the boundaries of a cylindrical sample in the triaxial
apparatus are illustrated in Fig. 9-3. If the top and bottom rigid platens are
smooth, the axial, radial, and tangential stresses in the sample are principal

T

i SHEAR TESTING 169

Cross-sectional :
area, A :

Flgure 9-3 State of stress in a triaxial sample

stresses; il is usual to assume that the latter two are equal, i.e., 0y = o, If
the top and bottom platens do not rotate, the axial, tangential, and radial
streins are principal strains and, again, it is usual to assume that gy =¢,.
If the cell pressure is o, and. the force in the loading ram is F,, the principal
stresses in the sample are, from Eq. (5-1),

0, =gy = g, (9-1)
o, = g,+(F,/A). * (9-2)
The radial strain is not usually measured directly; instead, it is usual to

observe the volume change by means of a burette (as illustrated in Fig. 5-3)
and to calculate the radial strain from :

£y =t,+2e, 9-3)
where ¢, and e, are the volumetric and the axial strains, respectivcly. The
pore pressure u will either be zero, asina corventional drained test, or it will
be nicasured by a pressure transducer; in either case u will be known and the
effective principal stresses may be found from

o) = o,—u, (9-4)

- O =g,—u. . (9-3)

F
te

-~

When the loading ram is in compression, i.e., F, is positive, a,> o, and,
consequently, o, = o, and o, =0, = 0;. The state of stress is known as
triaxial compression. If the loading ram is attached to the top platen, the
ram may be put into tension, F, then becomes negative and a,<0,. In this
case, o, =ay, o, =0j =0, and the state 'of stress is known as triaxial
extension,
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Following the arguments of Chapter 4, it would be convenient to plot the
results of triaxial tests in terms of the paramelers

¢’ = (=0}, . @w)
P'= Yo7 +203), A o (421)
&= i(g—e), (4-48)
ey = (61+2¢y). @47)

However, if this were done, we would not be able to distinguish properly

between triaxial pression and exte since, in both cases, ¢’ must be
positive because of > oy by definition,’

We may avoid this difficulty by red fining the par of stress and
of strain as
q'=(o,—0)), (3-6)
P'= (o, +24)), (9-7)
&= I{‘:_':r)- b (9‘8]
&y = (£,+2¢,). - (9:9)

In this case, ¢" is positive for triaxial compression when a,>a], but ¢' is
negative for triaxial extension when o, <o} It would seem logical to report
test results by plotting g’ against &, but, since much published data are
plotted in terms of the axial strain 24, this variable will sometimes be used in
place of ¢, Further, the use of volumetric strain &, for interpretation of the
test data is sometimes misleading. This point may be illustrated by con-
sidering a family of simple shear tests reported by Roscoe, Schofield, and
Wroth (1958) on samples of randomly-packed steel balls. The change of
volume of the sample in the simple shear apparatus was measured as the
ple was sheared under vertical load. The progress of the test
was indicated by the relative horizontal displacement x of the top and
bottom of the apparatus. The specific volume of each sample at every stage
of each test was computed and so a family of curves was obtained as shown
in Fig. 9-4; samples with high specific volume compressed during shear
while samples with a low specific volume dilated (expanded) during shear.
The striking feature of Fig. 9-4 is that all samples reached the same specific
volume (approximately 1.64) after large shear displacements,

An alternative way of plotting the data of Fig. 9-4 is shown in Fig. 9-5,
where the ordinate is volumetric strain e, (instead of the specific volume v).
Although some sort of pattern of behaviour emerges from the fivg separate
tests, it is not evident from Fig. 9-5 alone that all samples reach the same
specific volume after large shear displacements; the essential unifying feature
is lost simply because we chose to plot volumetric strain and not specific
volume, ; o - .

It may reasonably be argued that specific volume is a more appropriate
par than vol ic strain, il we wish to correlate the behaviour of
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- samples with widely different initial conditions. The essential point is that
" the volumetric strain e, is computed not only from the volume changes that

volume of a sample is significant for that sample alone. Thus, in order to
compare directly the behaviour of two or more samples'it is essential to
take account of their specific volumes.

The behaviour of a sample during a loading test may be recorded in a
number of ways. For example, the results of standard trigxial compression
tests are usually shown as the deviator stress g =g’ = (o,—0¢,) plotted
against axial strain ¢, and g8 vdlume strain e, or pore pressure u also plotted
against axial strain. Alternatively, we could record the lpading of a soil
sample by plotting its stress path using appropriate axes, as described in
Chapter 4, and by plotting the specific volume against the stress invariant
p's as we did for the isotropic and one-dimensional i
described in Chapter 7.

For our ination of the behaviour of soils in labaratory tests in the
next few chapters we will describe the current state of the sample by the
stress invariants ¢’ and p' together with the specific volume v. Thus, we may
record the history of loading of a sample by plotting its stress path with axes
g" and p" where, for triaxial tests, -

g’ =(oz~0)) (9-6)

occur, but also from the initial volume of the sample, H%whewr, the initial

and
P = Yoy+20}), -7
and by plotting the specific volume v against p'. Later, in Chapter 10, we will

discover how we may represent the state of a sample by plotting a single
point in a space defined by axes g, p’, and v.

9-3 SIMPLE TESTS IN THE TRIAXIAL APPARATUS

The triaxial apparatus is extremely versatile and, by simultancously changing
the cell pressure and ram load, a wide variety of tests may be performed in
the apparatus. The simplest test that can be performed on a sample is that
of isotropic compression, as described in Chapter 7, in which the ram load
is zero and the cell pressure is changed.

The next simplest test to perform would be a test in which the cell
pressure was held constant but the sample was compressed axially by a
steadily increasing ram load. We might choose to allow the sample to drain
freely to a burette, and so perform a standard drained test,

(i) Standard Drained Compression Tests

We will now examine the stress path followed by the sample during the
test. Suppose that the sample is initially consolidated to p’ =a and that

p tests -
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u =0, ie., the cell pressure is a and the pore pressure is zero. The state of
the sample would be representedby point A in Fig. 9-6(a), and, because u is
zero, point 4 represents both total and effective stresses.
As the ptresses on the sample increase, both ¢’ and p’ increase; we can
relate changes 8¢, 8p" in ¢’ and p’ to the change 8o, in 0, and 8o, in o, as
I

8p’ = 8p = }(30,+280,), (9-10)
8q" = 8¢ = (80,—ba,). (s-11)
For a standard drained compressi test, we hold the cell pressure
constant (i.o., do, = 0) and so

. o' =8p=50,3, (9-12)
3¢" = 3q = 5o, C(9-13)

and the slope of the total stress path is :
dgldp = 3. (9-14)

A typical stress point at a late stage of the test is indicated as B on Fig. 9-6(a).
We may ulso investigate the path followed in ov: p' space (Fig. 9-6(b)).
Unfortunately, we cannot specify the direction of the path A'B" unless we
know the changes of specific volume which occur during the test, and this

q\q
B
3 (a)
I
A
a e '
= P
B
Al
(b)
b B3 .

; I3 :
Figure 9-6 Test paths for a drained compression test in the triaxial apparatus
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change of specific volume may be positive (e.g., path A’B}) or it -may be
negative (c.g., path A’Bj). All we can say with certainty is that p' increases,
and points B}, B; must lie here on the projection at constant p’ from
the point Bing': p’ space. - . o

The stress path is completely fixed in g": p' space for a drained com-
pression test. Samples must follow a line of slope 3 from the initial state A.
“The only question that remains is how far the samples progress up the stress
path before failure intervenes. In contrast, the path is not fixed in v: P
space and depends on the mag itutle (and sign) of the volume change that
oceurs.

(if) Standard Undrained Tests i

In a standard undrained compression test, we hold the cell pressure constant,
increase the axial stress on the specimen, but do not allow any drainage to
take place from the speci In q the pore water pressure
changes as the test pr ds and the sample responds to the cf of total
stress at constant volume.

We should note that the fatal stress path applied to the sample is identical
to that applied in a standard drained test, as indicated in Fig. 9-7. We note,
as before, that Ao, is positive but that da, = 0. If we know how u varies as
g’ increases, the effective stress path can be sketched in Fig. 9-7, for we know

" |

Fipure 9-7 Test paths for an undrained compression test in the triaxial apparatus
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that a positive pore water pressure u has the effect of shifting the effective
stress point to the left by a distance equal to u from the total stress point
(for p’ = p—u). By sketching in a line A’X of slope 3 through A’ in effective
stress space, we can mark the effective stress point B’ for any known ¢’ as
being u to the left of A’X. We may then construct the stress path A'B’ by
considering different stages of the test. :

The test path in v: p’ space is straightforward, for, by definition, the
specific volume v is constant in an undrained test. The test path is then simply
a line at constant v from A” to B, remembering again that points A", B”
must project vertically down from points A',B'ing': p' space.

(ili) Other Tests :
There are an enormous varicty of other tests that may be performed in the
triaxial apparatus, One such test might be a drained extension test, where
o, was reduced, the cell pressure o, and pore pressure u being held constant,
and so o), <o} at failure. The relevant drained stress path in g": p’ space is
indicated in Fig. 9-8; for triaxial extension, g' becomes negative since
o, <a, and the stress path is directed downwards with slope dg’/dp’ = 3.

A second unusual test might be a drained test, where g’ was increased and
' held constant; this could be achieved by r ducing the cell p e o) at
one half the rate the axial stress o} was increased (ie., do, = —40,/2,
p' = constant). 2

9-4 TYPICAL TEST RESULTS

We will now discuss the results of four typical tests on a particular soil so
that we may have a framework against which we may discuss the shear

‘behaviour of soil in more detail in the next Chapter.

We take test data from the classic series of tests performed on remoulded
Weald clay at Imperial College, London, in the 1950s, These data are well
known and will form the framework for much of our discussion of the shear

Q F'tf”

-4 B

Figure 9-8 Test paths for & drained extension test in the triaxial apparatus
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behawaur of soils, though confirmation of patterns of behaviour will be
ught by recourse to published test data on other materils.
Two of the four tests we will discuss were drained and twg were undrained,
* while two of the lesls wera performed on normally congplidated samples
and two on overce | ples. All ples were jsotropically com-
pressed after preparation by remoulding and were then either tested at once
> or allowed to swell isotropically before being tested.

(i) Normally Consolidated Sumﬁu

The two samples we shall consider were isotropically compressed to
207 kN m~? at which point their specific volumes were 1.632 (w = 23 per cent).
Sample A was then subjected to a standard drained compression test and
the observed relationships between g and e, and ¢, and e, are shown in
Fig. 9-9. The axial strain is over 20 per cent at failure, and there is a relatively
—la;ge (€} per cent) compression of the sample. We can represent the test path
ing':p' and v: p’ space as in Fig. 9-10. The ¢": p path is straight and of

substantially as p’ increases..
"The second le B was d to a standard undrained test after
consolidation to 207 kN m-%. The relationships between ¢’ and ¢, and the

p—

2 Failure
i 00
B
5 3z _,
n,= S 100 0,=207kNm
?’.
L L 1 1
0 5 10 15 20 25
Axial strain (per cent) ;
1
. 0
H
8
5 5
‘ﬂ'. ' ’
s -
10 1 N 1
5 10 15 0. 125

e

Axial strain (per cent)

Figure 99 Test data from a drained compression test on a normally consolidated
sample of Weald clay (Sample A) (after Bishop and Henkel, 1962, p. 128)

slope 3, while the compression of the pl plies that v decreases
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Flgure 9-10 Test paths in ¢":p’ and v:p’ spaces for the drained test on sample A
(see Fig. 9-9)

change du in pore water pressure and e, are shown in Fig. 9-11, Again,
there are large strains to failure (greater than 15 per cent) but now, because
the reduction in volume that occurs in the drained test is no longer permitted,
a relatively large positive pore water pressure is generated. This positive
pore water pressure reduces the effective stress p’ In the sample and so in ~
some way compensates for the reduction in volume that would have occurred
had volume change been allowed. The deviator stress at failure is 119 kN m-*
and so is about one half of that observed in the drajned test on an identical
specimen. The a:llss path is shown ing": p’ and v : p’ space in Fig. 9-12.

(i) Overconsolidated Samples . .

The two overconsolidated samples we shall dlSI’.‘llSS were |mually :so-

_tropically compressed to-827 kN m~* and then allowed to swell to a pressure

of 34.5kNm-3, The overconsolidation ratio R, was, therefore, 24. The
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g'(kNm 1)

1 L
0 5 10 15 20 15
Axial strain (per cent)

- 100}

E oy =207 kNm?
z

*

=

= 50}

i 1 1 1
0 5 10 15 20 25

Axial strain (per cent)

Figure 9-11 Test data from an undrained compression test on a normally consolidaled
sample of Weald clay (Sample B) (afier Bishop and Henkel, 1962, p. 115)

waler content of the samples was 22.7 per cent and so was almost identical
to that of the normally consolidated samples (23 per cent). The difference
between the two pairs of samples was, then, simply the difference in stress
history.

One of the lidated les (Sample C) was subjecled toa
t d drained e jon test. The rchtlonshlps between g' and &,
and e, and £, are shown in Fig. 9-13. Itisi liately obvious ghat leC

behaves very dlﬂ'erently from the normally consolidated sample -A (see
Fig. 9-9). The g": e, curve for test C shows a clear peak which occurs at the
smaller strain of e, =8 per cent. However, the most striking difference
between the tWo g’ : e, curves is that the maximum value of g’ for the test
on the overconsolidated sample (C) is 56 kN m=2, while it is 247 kNm~?
for the test on the normally consolidated sample (A).
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Flgure 9-12 Test paths in g¢': p’ and v: p’ spaces for the undrained lest on sample B
{see Fig. 9-11)

The volumetric strain curve is also distinctly different from that observed
for the normally solidated ple. The lidated sample (C)
contracts initially but then dilates strongly, so that by the end of the test,
the samplc has expanded by nearly 3 per cent. -

One consequence of the shape of the g* : e, curve is that we might expect
that the deformation of the specimen will become non-uniform after lailure
at point F, Fig. 9-13. Elements of soil which have strained more than (g,)y
will be weaker thag, elements of soil which have strained less than (g,)g
and so deformation will be concentrated in those elements of soil which
have already failed. We must, therefore, be suspicious of results obtained
using boundary measurements of force and displacement to compute the
stresses and strains in the most deforming region of the samples.

The stress paths in g": p’ and v: p’ spaces are shown in Fig. 9-14. As
before, the stress path is straight in g" : p’ space and of slope 3, but now the
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Figure 9-15 Test data from an undrained compression test on a sample of Weald clay
(Sample D) (after Bishop and Henkel, 1962, p. 116)
.
H sample follows a path which rises to a maximum value of ¢', and then
g returns to a lower value of ¢’ at the end of the test. We must, therefore, be
g ‘g careful to distinguish the failure point from the point corresponding to the
€0 | end of the test, ;
= & R The i o lidated ple (Sample D) was subjected to a
Y da % Je E g standard undrained test. Observed relationships between ¢’ and ¢, and the
- e TR g a change Au in pore water pressure and €, are shown in Fig. 9-15. The shape
E 2 E E _‘3" of the ¢': e, curve is similar to that observed for the normally consolidated
2L g i 89 . sample (B), with large strains being required to fail the specimen, and the
<s < - 338 failure value of g’ (95 kN m~?) is comparable with the value (119 kNm-?)
- ; i - E P observed for Sample B. The shape of the du ; £, CUrve is very similar to the
&3 152 e > 8¥ . shape of the e,:¢, curve observed for the drained test on the over-
g = 3 5588 consolidated sathple (C), again suggesting that the change in pore water
] 3 < a8 p 1
3 FE pressure in an undrained test is a different manifestation of the same physical
5 o '3 ]
~ i%e ‘é phenomenon which gives rise to volume changes in a drained test. 1 Laegd
= Hgz The stress paths are plotted in g’: p’ and v: p’ spaces in Fig. 9-16. As
! . L i) a % ‘E before, it is casiest to construct the effective stress path in ¢’ : p’ space by .
8 2 = D e E g oifsctting the path by u to the left of the total stress path, which risu]qt-uloﬁ
i i initi le. At failure, t
(et (100 12d)* g2 5 3 from the point representing the initial state of the sample. At failu e
|
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Figure 9-16 Test paths in ¢": p’ and o: p’ spaces for the undrained fest on Sample D
(see Fig. 9-15) s

effective stress path is to the right of the total stress path as the pore waler 3

pressure is then negative.

The stress path is easy to plot in v : p’ space, for, again, v remains constant
in an undrained test, and the p' values may be obtained by projection from
the ¢": p’ diagram.

]

9.5 PATTERNS OF BEHAVIOUR; SUMMARY OF MAIN
POINTS

We have now considered four typical triaxial compression ‘tests on samples
of clay all isotropically compressed to (nearly) the same specific volume.
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Itis st_::izl’cylg that we have observed that one sample contracts during shear,
one expands, one “'“B" causes the pore water pressure to rise during shear,
and one causes it to feduce. The maximum values of g range from 56 to
247 kNm-?, though we note that the two undrained specimens had nearly
the same strength at failure. One sample exhibited a strength which reached
a peak, and then reduced as straining continued, the rest had g': £, curves
with flat maxima. Thus, even for these simple, standard tests, we have a
wide range of stress paths in g’ : p' and v p' space; no doubt an even wider
variety would be observed had we ch to ider more plex testing
procedures. . v )

The differences in behaviour that are observed may seem bewildering in
their variety. It is the objective of the next two chapters to suggest how all
the test data we have considered may be combined into a neat and coherent
whole. ¢
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CHAPTER

TEN

THE CRITICAL STATE LINE AND THE
ROSCOE SURFACE

10-1 INTRODUCTION

The objective of this chapter is to find a way of unifying the observed shearing
behaviour of clay into a coherent whole. It is convenient at first only to
discuss normally consolidated specimens, but the same ideas will be discussed
for overconsolidated specimens in Chapter 11,

10-2 FAMILIES OF UNDRAINED TESTS
We considered a single undrained triaxial compression test on a normally

lidated i of clay in Chapter 9 (Figs 9-11 and 9-]2). We can now
consider the results of undrained triaxial tests on a Tamily of isotropically

2

1

o 5 10
€, (per cent) ’
Figure 10-1 Relati ip b devi stress g° and axial strain £, in undrained
triaxial tests on les normally lidated to p = a, 2a, Ja
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Figure 10-2 Relationship b normalized devi stress ¢'fp," and axial sirain £,
for the tests shown In Fig. 10-1

comp d sp , each speci being compressed to o dilferent initial
value of p' (equal to a, 24, and 3a, respectively) and d 1 by p.. It is

found that the stress-strain curves are of the form illustrated in Fig. 10-1,
The specirmens which were compressed to higher values of p’ sustain higher
values of g’ at failure, but the shape of the ¢': ¢, curves are similar for all
tests. Thus, it is possible to normalize the curves by plotting q'lp, against
£5, as shown in Fig. 10-2. The stress paths followed hy a family of such tests
may be represented in g’ : p’ space as indicated in Fig. 10-3(a). We find that
the shapes of the different stress paths are similar, suggesting that all curves
could be collapsed into one by plotiing q'Jp, against p'[p,. We will not

conditions af failure. The paths followed by the tests are illustrated in v: p’
space in Fig. 10-3(b). Samples start out from the normal consolidation line
Ay Ag Ay and travel to the left until failure occurs at points By, B,, B,.

The failure points B,-B, define a straight line in the ¢": p' space of Fig.
10-3(a) and a th curve, app tly of similar shape to the normal
consolidation line, in the v: p’ space of Fig. 10-3(b).

10-3 FAMHELIES OF DRAINED TESTS

We will now consider drained triaxial compression tests on a family of
samples of clay isotropically normally consolidated to different initial
values p; of the mean normal stress. The observed relationships between
q' and ¢, and ¢, and ¢, are found to be as sketched in Fig. 10-4, with the
£, &, curves being similar for all tests. Again, the ¢': e, curves are all of
the same shape, and samples which have been compressed to higher stresses



186 THE MECHANICS OF SOILS
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Figure 10-3 Stress paths in (a) ¢*: p" and (b) v : p’ space for undrained Lests on normally
consolidaled samples

exhibit higher values of g’ at failure, The curves of Fig. 10-4 may be
normalized by plotting ¢'/p; against e,, as shown in Fig. 10-5; it is found
that data obtained in tests at different pressures all fall close to 4 single curve.

Stress paths for such a series of tests are shown ing': p' and v : p' spaces
in Fig. 10-6. As expected, all the test paths are straight in ¢ : p’ space and
rise at slope 3 from the initial value pj of the mean normal effective stress for
each sample. The samples fail (i.e., there is no further ¢hange in stress, or
volume, as large shear distortions occur) at values of ¢* and p’ which define
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a straight line in g": p’ space. The test paths are curved in v : p’ space, with
each sample compressing as p’ increases. The failure poinis B,-B, define a
%, smooth curve which appears to be of similar shape to the normal consolidation

line.

(2)

A;
1 Normal consclidation line

By

Ay

(b)

Figure 10-6 Stress: paths in ti). q":p" and (b) v:p! space for.drained friaxial tests on,

normally consolidated samples

CHILICAL S1ATE LINE AGD RUILUE SURFALVE —us
10-4 THE CRITICAL STATE LINE

We have pow consldered separately the failure of clay samples which were
|mtu|]y__§ggmm1|y_mmp:mnd and then-loaded in drained and undrained
triaxial compression tests. It is striking that the lines of failure points in
Figs 10-3 any, 10-6 appear to be similar for the two families of tests and it is
instructive to compare these directly. Figure 10-7 shows the failure states of
drained and undrained triaxial compression tests on isotropically com-
pressed samples of Weald clay, 2 as reported by Parry (1960) Plotted together,
i pe
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Flgure 10-7 Failure points for drained
specimens of Weald clay (data froim Parry, 1960)
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the data points define a single straight line through the origin ing':p
space and a single curved line in v: p' space whose shape is similar to the
normal consolidation line, C ’ . ?

This single’and unique line of failure points of both' drained and un-
drained tests is defined as the critical state line. Its crucial property is‘that
failure of. initially isotropically compressed samples will occur once, the
stress states of the samples reach the line, irrespective of the test path
followed by the samples on their way to the critical state line. Failure will
be manifested as a state at which large shear distortions occur with no
change in stress, or in specific voluine.

The projection of the critical state line onto the g": p' plane in Fig. 10-7
may be described by

qi-

g'=Mp, « 6 (10-1)
where M (capital mu) is its gradient. The projection of the critical state
line onto the v p’ plane in Fig. 10-7 is curved. However, if the same data
are replotted with axes v : In p’, the points fall close toa straight line, as shown
in Fig. 10-8. It is highly convenient that the gradient of this line turns out to

be the same as the gradient of the corresponding normal lidation line
discussed in Chapter 7. The critical state line may be described by
v=T=Alnp' (10-2)

and Eq. 10-2 may be compared with Eq. 7-7 for the normal consolidation
line. In Eq. 10-2, I' (capital gamma) is defined as the value of v corresponding
to p’ = 1.0kNm~? on the critical state linet; thus I" locates the critical state
line in the v: In p’ plane in the same way that N located the normal com-
pression line. Equations (10-1) and (10:2) together define the position of the
critical state line ing”: p’ : v space; M and I', like N, A, and x are regarded
4s soil constants, Typical values of these for various clay soils are contained
in Table 10-1, '

Table 10-1 Values of soil constants for various clays
(after Schofield and Wroth, 1968, p. 157)

London clay Weald clay Kaolin
A 0.161 0.093 0.26
3 0.062 0.035 0.05
r 2759 2060 3.767 1
M 0.888 095 1.02

Note: the value of I'is that for p’ = 1.0 kN m~", .

t We should note that although I, like N, is jtself dimensionless, its value will
depend on the units chosen for the measurement of p' = 1.0; the values contained in
Table 10.1 are for p" = LOKN m-%

P
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Figure 10-8 The critical state line in o : In p’ space (data from Parry, 1960)

The position of the critical state of a soil sample is a function of q.pr,
and v, and so it is often helpful to think of the critical state line in a three-
dimensional g’ : p' : v space, as sketched in Fig. 10-9. The normal isotropic
consolidation line is shown in the g’ =0 plane, i.., on the ‘ficor” of the
g': p': v space. The critical state line rises (ie., g’ increases) as p' increases
and v deg The projections of points ABC on the critical state line are
shown as points A, B, and C, in the plane containing the g’ and p' axes
and as points A, By, and C; on the ¢’ = 0 plane.

10-5 ‘DRAINED’ AND ‘UNDRAINED’ PLANES

The test paths followed in standard triaxial tests may also be represented in
q': p' i vspace. It is easiest to consider undrained tests first. A typical sample
might be isotropically compressed to point A (Fig. 10-10) and then subjected
to a standard undrained triaxial compression test until it fails at a point B
on the critical state line. The test path can be projected into g': p space and
is shown as path A,B,. The test is undrained, and so, by definition, the
specific volume v is constant. The specific volume at point B must, thereflore,
be the same as thatwat point A, and indeed v must remain constant for the
whole test path from A to B. The test path must therefore remain in the
shaded constant n plane ACDE (Fig. 10-10) which is parallel to the plane
containing the g', p’ axes. We may jwzzaty think of plane ACDE as the
‘undrainéd plane’ through A. | :

The point B rep ts the i jon of the undrained plane ACDE
aud *he critical state line. Thus, if the initial conditions of the sample are
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Flgure 109 The critical state line in ¢’ : p* : v space
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Figure 10-10 The path followed by an undrained test in ¢’ : p’ : v space
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fixed at point A, and we know the test is to be undrained, we need only to
construct tlje undrained plane through A in order to fix the failure conditions
for the le as the intersection of the critical state line and the undrained
plane (i.c., point B), In other words, the initial state of the sample and the
test candil.lons eompletely determine the precise point on the critical state
line at which thig sample will fail. :

This argument may be expressed mathematically; Suppose that a sample
is isotropically compressed to a mean normal effective stress of pp and a
specific volume of v, and we wish to find the values of the stresses q; and p}

and specific vol vy of the ple at failure in a standard undrained
triaxial compression test. We first note that
o= 0 | (104)
We may then determine p} from Eq. (10-2) as
pe=exp[(I'=vg)fA] .. (10-5)
and the value of ¢f follows, using Eq. (10-1), as

gt = Mexp [(I'=ug)/A]. (10-6)

Example 10-1 Calculation of the failure conditions in an undraiped test

The values of the soil constants for a clny are N =325 A= 0.20,
I'=3.16, and M = 0.94. A sample of the clay is isotropically normally
consolidated 10 p’ =400 kN m-? and is then subjected to a standard
undrained triaxial compression test. Calculate the values ofg’, p', and v at
Tuilure. . @ 1

For normal consolidation, from Eq. (7-7),
vy = N=Alnpg = 3.25—0.20In (400),
vy = 2.0517.
For an undrained test, 40 = 0, Hence, vy = vy and, at failure,
) v, = 2,0517.
At failure, from Eq. (10-6),
g¢= Mexp (I~ u)/A] = 0.94exp [(3.16 - 2.0517)/0.21,
g} =240kNm2,
and, from Eq. (10-1),
Pe=qi/M =240/0.94,
p}=255kNm-2,
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The test path for a dard drained triaxial pression test (4o, = 0)
rises at a slope of 3 in g’ : p' space from the initial value p; of mean normal
effective stress at g = 0. The sample may compress (or dilate) and so the
specific volume changes. The plane in which drained tests lie must therefore
be parallel to the v-axis and must have a projection in g’ : p’ space which isa
straight line of slope 3; the ‘drained plane’ ACB,A,, is shown shaded in
Fig. 10-11. The initial state of the sample on the normal consolidation line
is shown as point A and the test path ends at failure on the critical state
line at B. The projection of the test path is shown as A, B, on the ¢": p’
plane. The exact shape of the test path within the drained plane ACB, A,
will depend on the experi | relationship b | hange and
increase of ¢ as the test proceeds. However, whatever that relationship, the
path AB must remain within the plane ACB, A,,

If the initial conditions of the sample are specified as those at A, and it
is known that the test is to be a standard drained triaxial compression test,
the point at which the specimen fails is fixed unambiguously as the inter-
section of the drained plane and the critical state line (i.c., point B). Location
of point B then becomes an exercise in simple geometry. Again, we can
proceed mathematically. Suppose that the sample is initially compressed to

MNormal consolidation
line

Critical state line

Figure 10-11 The path followed by a drained test in g": p’: v space
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Af1

PP P
Figure 10-12 The path followed by a drained test in g’ : p* space

a mean normal effective stress of pg and specific volume of v, and we wish to
find the stresses gy, pj, and the specific volume v, at fyilure. From the
geometry of Fig. 10-12 we may write

gl = 3(pi-pih (10-7)
while we have
gy = Mpy. ' (10-8)
Combination of Egs (10-7) and (10-8), eliminating pj, gi\:es f
gy = IMpy/(3—M). (10-9)
Using Eq. (10-8), we find
Pr=3p)(3—M) ‘ (10-10)
and, hence, we may obtain the specific volume v; from Eqg. (10-2) as
vy = I'=An[3py/(3—M)]. ' (1o-11)

Example 10-2 Calculation of the fallure conditions in a drained test

The values of the soil constants for a clay are N =225 A=0.20,
I'=3.16, and M = 0.94. A sample of the clay is isotropically normally
consolidated to 400 kN m~2, where v, = 2.052, and is then subjected to
a standard drained compression test. Calculate the values of ¢', p', 1,
and &, at failure.

At failure, from Eq. (10-9),
q} = IMpY(3— M) = 3 x0.94 x 400/(3—0.94),
gy =548 kNm™?
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and, from Eq. (10-1),
Pr=qi/M = 548{0.94,
P =583 kNm-t,
From Eq. (10-2), :
vg=1TI"=Alnp; = 3.16—0.201n (583),
¥y = 1.B86.
The volumetric strain e, digring the test is
&y = — vy, = —(1.886—2.052)/2.052,
gy = 509 per cent.

We have now demonstrated that given (i) the initial conditions of a
sample, (ii) the position of the critical state line (i.e., the values of the
constants M, I, and 1), and (jii) the conditions of the triaxial test (drained or

“undrained), the failure state of the sample is uniquely determined. Of course,

the ing could be extended to cover a whole range of tests (e.g.,
extension tests, p’ constant tests). Indeed, if we know the position of the
critical state line, we only need to know the value of one variable (p', ¢, or v)
at failure in order to fix the values of the other two.

It is clear, therefore, that a knowledge of the position of the critical state

* line for a particular soil allows us to predict with confidence the stresses and
specific volumes at failure of normally consolidated samples subjected to a -

variety of stress paths.

10-6 THE ROSCOE SURFACE

" We have established that for a particular value of p;, we may construct the

relevant undrained or drained plane over which the test path moves as the

sample progresses to failure, OF course, there will be different drained or

undrained planes for each different value of pg. Undrained planes are shown

for four different values of py in Fig. 10-13 and drained plapes are shown for

“wo values of p; in Fig. 10-14. In each case, the relevant test path from the

nurmal consolidation line to the critical state line is also shown. Both the,
undrained tests and the draineds tests - scem to, define -a. rved - threé-.
dimensional surface"lifikidg”the normal consolidation line: 1o: the critical;
state line. ‘The undrained test paths are especially helpful in defini g the

surface, for each test path traces out a section of the surface at constant v.

The drained tests follow paths which cut across the undrained paths, for the

samples compress as the test proceeds, see Fig. 10-15.

It is tempting to ask if the. f ﬂb@nfamdnined.m@drained‘tat‘g.qq

normally consolidated samples define the same three-dimensional surface in
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Critical state

Normal
consolidation
. line

v
Figure 10-14 Two drained planes in g": p*: o space -



198 THE MECHANICS OF SOILS

y

Critical state line

MNormal
consolidation line

Undrained

== == == Drained

Figure 10-15 Families of drained and undrained fesis in g": p" ! v space

q':p'+ v space. Clearly, it is reasonable that they should, for both drained
and undrained tests slart from the normal consolidation line and finish at
the critical state line. One way of checking whether the surface is unique is
to investigate whetk ples in the course of drained or undrained tests
have the same specific volumes when they are subjected to the same effective
stresses. Thus, in Fig. 10-16, we should investigate whether the normally
consolidated sample tested drained with an effective stress path ABC has the

q
Critical state o
line
Drained
E
B I
Undrained
A D

Figore 10-16 Drained and undrained paths in g’ : p’ space
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same specific volume at B as the normally consolidated sample tested un-
drained along the effective stress path DBE. If the two specific volumes
were the same, we would have encouragement that the surfaces followed by
drained and undrained lests were the same, but we would then want to
check this finding for a large number of other tests. !

A more systematic procedure would be to perform a series of drained
tests on normally consolidated samples and, from the specific volumes
measured at different stage of the tests, construct a series of contours of
constant v in ¢': p' space, as sketched in Fig. 10-17. The undrained test
paths in g’ : p’ space are th | t of t v, see Fig. 10-3 for
example. The check as to wﬁl.hg.r_ there was a single surface in ¢": p': 0
space for both drained and undfained tests would then be whether the two
sets of contours (one from drained 4€sts, one from undrained) were of the
same shape and were i with one another, as shown in Fig. 10-18.

Henkel (1960), following the approach of Rendulic (1936), plotted con-
tours of constant water content in & plane with o, |/2o;-axes for both drained
and undrained tests, see Fig. 10-19. Of course, this comparison is exactly
equivalent to the pari of Fig. 10-18. It is clear that the contours

btained from drained and undrained tests are entirely consistent with each
other and are of the same shape.

We may, therefore, conclude that the curved surface traced out in

q':p':v space by families of drained and_undrained tests is identical for
boif Tamilics of tests. We may go further and hypothesize that the same
surface is followed by all isotropically normally consolidated samples which
are loaded by axial compression in the triaxial apparatus. We shall call this
surface the Roscoe surface.

q
__ Drained Critical state line f
tests !
I
3
]
/
! 2 ;
CNEY
I N\"W
= ; 1 ! !
' h 7
v Uy !
] o / !
] ! ! / /
L /] £ I L

Flgure 10-17 Contours of constant v from drained tests
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Figure 10-19 Contours of constant water content for drained and undmwt tests on
Weald clay tnfler Ilenker 1960)
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10-7 THE SHAPE OF THE ROSCOE SURFACE

The method of i igating the uniq of the Rosccc surface by com-
paring contours ol'constunl v for drained dnd undrained tests is satisf:

as far as it goes, but still no direct comparison can be made of pnlhs I‘ullowe.d
by drained and Undrained tests, The difficulty is that v changes in the drained
test, and sp the test path moves through a succession of constant v sections
of the Roscoe surface, each section being of different size, One way round this
difficulty in fo scale the 0 as to for the changes in specific
volume that occur during the test, The point can be best appreciated by
considering again the undrained test puths shown in Fig. 10-3. We note
that all paths are the same shape in g’ : p’ space, but of different size, because
the initial jsotropic stress p, and, hence, initial specific volume, is different
for each tpst. Thus, if the stresses were scaled by division by pf, all test
paths woulq reduce to the single curve of Fig. 10-20. We have, therefore,
scaled the jest paths obtained from tests at dillerent specific volumes so that
they may by directly compared. The fuctor p, which was used is simply the
isotropic siress at the start of the test. :

The specific volume changes in drained tests, and so the lest path will
move throygh an infinity of v sections of the Roscoe surface, each
of different size. We expect, though, that the shape of each constant v section
will be the same for different values of v; each section could, therefore, be
scaled down to the same form as that of Fig. 10-20 by dividing the stresses
q' and p’ by the value p of the mean normal effective stress on the normal
consolidation line at that specific volume. The parameter p;, the equivalent
pressure, at any specific vol is, thus, obtained from the equation for the
normal consolidation line (Eq. (7-7)) using the cumnt value of v for the
specimen, whatever the current stresses, as ;

Po=exp[(N=v)/AL. (10-12)

The procedure is illustrated in Fig. 10-21. Suppose that a sample at A has
stresses g, p and specific volume v,,. The relevant value of p; for the sample
is obtained by tracing a line at constant v (i.e., v = v,) from A to the normal
consolidation line, and then reading off the corresponding value of mean
normal stress to give p,. We should note that, for undrained tests, p) is
constant throughout the test.

The effect of the scaling of the stress axes can be illustrated with the aid
of Fig. 10-22. A drained test path A, D, By is shown cutting three constant v
sections of the Roscoe surface at specific volumes of vy, vy, and vy. At the
beginning of the test, point A,, the equivalent pressure p; is identical with
the value of mean normal effective stress p)y; experienced by the sample.
The parameter p’/p, is, therefore, exactly 'unity, while g’/p, is zero. The
corresponding point A, may, therefore, be plotted in the scaled axes of
Fig. 10-23, When the sample has been sheared and compressed to point D,
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q'lp,

e'lps
Figure 10-20 Path in g'/py : p'/p; space for undrained tests

in Fig. 10-22, the size of the constant v section of the Roscoe surface
through point Dy (i.e., Ay D, B, Cy) will be larger than the constant v section
through A, (i.e., A, B;C,). The value of p; corresponding to the state D,
will be given by the value of mean normal stress at A, the point on the
normal consolidation line with the same specific volume as at point D,.
Thus, although the value of p’ will be larger at D, than at A,, the value of p;
corresponding to D, will also be larger than that corresponding to A, and
so the value of p'/p,, at D, will be less than unity. The corresponding point
in ¢'/p.: p'/p, space is shown as D, in Fig. 10-23.

U \ Normal consolidation line

Critical state i
line ;
Pn Pe I3
Figure 10-21 Method of obtaining the equivalent p e
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q

v
Figure 10-22 The path for a drained test in g": p": v space

A similar argument applies when the sample has reached the critical
state line at By, The constant v section of the Roscoe surface is then larger
than the sections at A; and D, because the sample has compressed and v
reduced. The corresponding value of p is then the mean normal effective
stress at A,. The point B, may, therefore, be plotted in Fig. 10-23.

The whole test path for the drained test may, therefore, be represented
by the line A, D, By, which has the same shape as the undrained path shown
in Fig. 10-20. It should be noted that the same drained stress path A; Dy By

0.50 o )
D, :
;n‘, 0.25+
= -
1 lI‘I
0 0.5 1.0
p'lps

Figure 10-23 The path in ¢’/py : p'fpy space for a drained lest
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Figure 10-24 Test pnllls ing'lpy:p ,‘p. space for a drained test, an undrained test, and

. & lest at p' on of ] lidated kaolin clay (after

Balasubramaniam, 1969)

is a straight line of slope 3 when plotted in g’ : p' space; the curvature in

q'lp,: P'lp, space is due to the increase of p| as the sample compresses.

A precise check may now be made as to whether the Roscoe surface is
the same for drained and undrained tests by plotting data from those tests
on a single diagram, as shown in Fig. 10-24. The data shown were obtained
by Balasubramaniam (1969) from tests on remoulded kaolin, The agreement
between the drained and undrained tests (and the test at constant p) is
sufficiently good for us to make the assumption that the Roscoe surface is
unique for all compression tests, irrespective of the applied loading paths.

Example 10-3 Calculati
space for a drained test

of the normalized stress path in ¢'/p): p'Ip]

A drained triaxial compression test is performed on a sample of clay
which is isotropically normally consolidated to pj =400 kNm™?,
o = 2.052. Readings are taken of ¢', &, at values of £ equal to 0, 5, and
25 per . cent (failure). The values of the soil constants for the clay are
N =325 and A=0.2. Plot the normalized stress path in ¢'/p.: p’/p.
space,

The observed tesll. data are plotted in Fig. E10-1(a) and (b) and values
given in Table E](‘._l-i.

Calculated values were determined from the equations
v=ifl-e), . :
p=exp[(N—v)/A] (from Eq. (10-12)).
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Table E10-1
Reference letter
A B Cc

Observed

¢, (per cent) 0 5 25

¢ (kN m™) 0 358 548

&y (per cent) o 470 B.0%
Calculated __

P (kN m-t) 400 sls 583

v 2.052 1.956 1.886

Po (kN m™1) 400 646 916

¢'lpy 0 0.550 0.598

#ley 1.0 0.802 0.636

For a drained triaxial compression test du =0, go =0, and dg'/dp’ =3
and, hence,

P =ptaf3
The calculated values are plotted in Fig. E10-1(c).

10-8 THE ROSCOE SURFACE AS A STATE BOUNDARY
SURFACE

So far in this chapter we have idered isotropically normally consolidated
samples. It is now helpful to discuss the behaviour of lightly over-

lidated samples. Let us consider undrained tests on a family of samples
which have been isotropically d and unloaded to different over-

consolidation ratios, as indicated in Fig. 10-25. Sample 1 is normally
consolidated to specific volume v, and mean normal effective stress of pj,
while samples 2, 3, and 4 have each been isotropically normally consolidated
to specific volumes less than v, and then been allowed to swell until their
specific volumes are v, but their mean normal effective stresses are less than
Py Samples 2, 3, and 4 are, therefore, overconsolidated. Each sample is
subjected to a standard undrained triaxial compression test and the test
paths plotted in g’ : p’ space. Alternatively, if the initial specific volumes of
the samples are slightly different, the stress paths can be more properly
compared in ¢'[p. 1 p'[p. space. Typical test data obtained by Loudon (1967)
are shown in Fig. 10-26. We note first that the starting point for each test
path is below the Roscoe surface, for the Roscoe surface coincides with the
test path for the normally consolidated sample. The test paths must, there-
fore, deviate from the Roscoe surface, though it is clear that the lightly
overconsolidated samples fail at the same point as the normally consolidated
sample, i.c., at the critical state line. The test paths for the overconsolidated
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Normal wnmlud.llhn line

Swelling
line

Py P
Figure 10-25 Consolidation and swelling of lightly overconsolidated samples

samples rise almost vertically towards the Roscoe surface and then move
along close to the Roscoe surface towards the critical state, We can see,
therefore, that the Roscoe surface forms a boundary beyond which the test
paths do not go. There is an analogy with the normal consolidation line; at
a particular stress level, samples cannot exist at a higher specific volume
than that on the normal consolidation line at that stress. Thus, in Fig. 10-27,
samples cannot exist above and to the right of the normal consolidation

0.5

P "W' Roscoe surface
N
0.3l NN Over consolidation

) \\\J

A 3
22 E s N
08

qlr,

1.0
[

Flgure 10-26 Paths in ¢'[p} : p'/py space for undrained tests on lightly overconsolidated
samples of kaolin clay (after Loudon, 1967)
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Figure 10-27 The normal consolidation line as a state boundary surface

line AB. In fact, the analogy between the Roscoe surface and the normal
consolidation line is morg than that; the normal consol[dation line is that
part of the Roscoe surface lying in the q" =0 plane,

We may, therefore, think of the Roscoe surface as a surface which
separates states which samples can achieve from states which samples can
never achieve, Fig. 10-28. The Roscoe surface is, therefore, a state boundary
surface.

o,

Impossible
Critical state line

Roscoe surface
Possible

Normal consolidation line

e
Figure 10-28 The Roscoe surface as a state boundary surface

10-9 SUMMARY

1. There exists a critical state line'in q":p': v space on which all test paths
from triaxial compression tests on isotropically normally consolidated
samples terminate.

2. The test paths for both drained and undrained tests follow the same
curved surface (the Roscoe surface) which links the normal consolidation
line with the critical state line in q': p': v space. The intersection of the
test plano for any test with the Roscoe surface fixes the complete test
path inq' : p' : v space for that test.

3. The geometry ‘of the Roscoe surface is such that all constant o sections
of the Sl.E'er\M the same shape but are of different size. The sections
may be scaled to a single normalized curve if the stresses are divided by
the equivalent pressure p!,

4. The Roscoe surface is a state bound y surface,
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CHAPTER

ELEVEN

THE BEHAVIOUR.OF OVERCONSOLIDATED
SAMPLES : THE HVORSLEV SURFACE

11-1 INTRODUCTION

‘We found in Chapter 10 that, for normally consolidated specimens, there
exists @ critical state line at which specimens fail, and a stale boundary
surface, the Roscoe surface, which limits the state of specimens ing": p' i v
space as they move from the normel consolidation line to the critical state
line. We must now ask ourselves whetlier the same concepts, perhaps with
modification, apply for overconsolidated i

11-2 DRAINED TESTS

We will consider the behaviour of specimens which have been isotropically
consolidated to some mean normal cflective stress pi.y and then allowed
to swell isotropically to some lower mean normal stress pe, as indicated in
Fig. 11-1. The overconsolidation ratio R, is defined as pj,e./Po: and so

u

Normal consolidation line

Swelling
line

Py Poas ”
Figure 11-1 Compression and swelling lines

2
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100
0y =34.5kNm™?
o Overconsolidation ratio R, = 24
1
§ 50}
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Figure 11-2 Test data from a drained test on an overconsolidated sample of Weald clay
(afier Bishop and Henkel, 1962, p. 128)

normally consolidated samples have R, = 1 while Ry is large for heavily

A typical drained test on a heavily overconsolidated sample (R, = 24) of
Weald clay was discussed in Sec. 9-4 and q':¢, and &,:¢, curves are
reproduced in Fig. 11-2. A significant feature of the ¢": £, curve is that the
sample exhibits a peak strength, denoted by gy, after which the value of ¢
falls as £, increases. The value of g’ seems to be decreasing towards a steady
value at the end of the test, but, as discussed in Sec. 9-4, we must be suspicious
about the accuracy of the data of both stress and strain at large shear strains.
We note also that the ple initially d in volume, before it expands
substantially as the test proceeds. There is a hint that the rate of volume
expansion is decreasing towards the end of the test, but again we cannot
rely on the data at this stage of the test.

We can now plot ¥he stress path for the test in ¢’ : p’ space as shown in
Fig. 11-3, The test path moves nbove the projection of the critical state line
to the failure point before moving back along the same path towards the
projection of the critical state line. The state boundary surface for over-
consolidated specimens must therefore have a projection in g': p’ space that
lies above the projection of the critical state line,

A e e 2k e e R
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Figure 11-3 Test path followed in the drained lest of Fig. 11-2

We could consider a family of drained tests to obtain more information

about the shape of the state boundary surface. However, the difficulty with .

such a family of tests, and indeed with drained tests in general, is that the
specific volume of the speci is changing through the tests. The
projections of the test paths, or the failure point, into g : p’ space then refer
to different constant o sections of the state boundary surface, By analogy
with the Roscoe surface, we expect that each constant v section of the state
boundary surface is of different size, though we hope of the same shape. The
most convenient way of investigating the shape of the state boundary
surfuce is, therefore, to scale the stresses to allow for changes in specific
volume that occur during the tests,

11-3 THE HVORSLEV SURFACE

In order to scale the stresses, we argue as before that the size of each
constant o section of the state boundary surface will be différent for cach

value of v, and will be in proportion to the equivalent stress p]! The value

of p{ for any P elume & smplyiguton the ng iation,
line atthat Specific;volume. We can allow for differences in specific volume

by plotting stf@ﬁ‘ﬁiiﬁs‘in 4'/py: p'lp, space; drained and undrained tests

may then be compared.directly, = . ¥ whad i
This method of scaling was adopted by Hvorslev, who was concerned

with the correlation of failure strengths of specimens tested in the shear box.

© argument, ¢
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We can consider the failure states of specimens in the triaxial apparatus and
plot the dala on normalized stress axes, as shown in Fig. 11-4. The data were
obtained l'rpm a series of compression tests on overconsolidated Weald
clay and arp taken from Parry (1960). It is clear that the data of both drained
and undrajned-fests lie on a single line in ¢'/p; : p'/p! space. The line is
limited on jts right-hand end by the point representing the critical state line
at the top t:ge of the Roscoe state boundary surface. By the following

line of failure points is also limited on its left-hand end. The
maximum yulue of ¢'/p’ would be when oy was large and o} was small, If the
soil could not withstand tensile effective stresses, the highest value of q'lp

that.could be observed would correspond to o = 0. Then, for a triaxial
compression test,

g'=q, (11-1)
' P=lg, . (11-2)

and
g'lp’=3. (11-3)

The locus of failute points can then be idealized as line AB in Fig, 11-5.
The locus is limited on its left-hand side by the line OA which has slope 3,
corresponding to tensile failure, and on its right-hand side by the critical

06| ; '
b S
i x"p{,{" ~ Roscoe surface
* Undrained . ggfb NG
o 5 ~
] N\,
® N\
0.4} \
A
\
= \
= \
\
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line \‘l

1 1 1 1 %
0 0.2 04, 0.6 0.8 . 1.0

p'lp.
Flgure 11-4 Failure states of drained and undrained fests on lidated

of Weald clay (data from Parry, 1960)
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Figure 11-5 The complete state boundary surface in q'lps : P'lps space

state line (point B) and the Roscoe surface (BC). Of course, if the soil o?uld

sustain tensile effective str , the line corresponding to tensile fn_llun:e

would lie to the left of OA, and might be curved, This latter possibl]nly is

relevant for many cohesive powders whose handling is important in the
ical < "

h )

ing i
We shall call the locus ;B of failure points in Fig. 11-5 the Hvorslev
surface. The significant feature of the surface with ""*.'-i'f?!__li‘ﬂ‘!?" was
particularly concerned is that the shear strength of a specimen at failure is
a function both of the mean normal stress p', and of the specific volume v
of the specimen at failure. The specific volume appears in Fig. 11-5 through
its influence on the equivalent stress p,, which depends directly on specific
volume. The point can be illustrated if we idealize the Hvorslev surface as a
sitaight line whose equation is

q'lpy = g+h(p'lpy), (11-4)

where g and h are soil constants as shown in Fig. 11-6. Equation 11-4 may
be rewritten as

q'=gp,+hp' (11-5)

and, using Eq. (10-12),
po=cxpl(N=v)/AL (11-6)
We may substitute lo pet
q' = gexp[(N=u)/A]+hp". (11-7)

The Hvorslev surface intersects the critical state line given by Eqs (10-1) and
(10-2) at gj, p; and vy where

g = Mpyivp=T=Anp; (11-8)
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Figure 11-6 The Hvorsley surface
and hence, from Eq. (11.7)
(M—h)p = gexp [(N;Ar) + ln.ui] ' (11-9)
g-(H—h)exp(‘E-;—i)‘ (11-10)
Thus the equation of the Hvorslev surface is _
q’-(u—h}up( ;”) +hp. . (11-11)

Equation (11-11) states explicitly that the deviator stress at failure of an

lidated specimen is made up of two components. The first
component (hp') is proportional to mean normal effective stress, and so
may be thought of es being frictional by nature, while the second component
([M= h)exp [(I'-©)/A]) depends only on the current specific volume, and the
value of certain soil constants. The form of the exponential term is such that
the’ d p t of gth i as the specific volume of the
specimen decreases, Thus if two specimens were brought to failure in drained
tests at the same value of p’ but at different specific volumes v, and vy, where
vy > vy, the failure of the specimens would occur at different values of g°, as
shown in Fig. 11-7, The lines A; B, and A, B, are sections of the Hvorslev
surface corresponding to the two specific volumes v, and v,.

We might expect that samples at failure have progressed outwards as
far as they can ing": p' : v space. Therefore, we will now adopt as a working
hypothesis the idea that the Hvorslev surface is the state boundary surface

overconsolidated samples in the same way_that the Roscoe
irface is a stat indary surface for normally and lightly overconsolidated
samples, We note that the Hvorslev and Roscoe state boundary surfaces
intersect and that the line of intersection is the critical state line.
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Figure 11-7 Failure states of drained specimens at different specific volumes

E le 11-1 Calculation of the values of the deviator stress at failure

for samples which fail on the Hvorslev surface

Three samples A, B, and C are brought to failure on the Hvorslev surface
at the following combinations of v and p': Sample A, v= 190,
p'=200kNm~2; Sample B, v=1.90, p'=500kNm-?; Sample C,
v =205, p' =200 kNm~? The clay has N =325 A=0.2, I'=1.16,
M =0.94, and h = 0.675. Calculate the values of g’ at failure of each
sample.

For states on the Hvprslev surface, the devialor stress is given by
Eq. (11-11):
q' = (M — hyexp[(I'-v)/A] +hp".

Calculated values are given in Table E11-1.

Table E11-1

Sample
A B ¢
I 1.90 1:90 205
P (kNm™ 200 500 200
g’ (kN m~") 279 482 203
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11-4 THE CRITICAL STATE LINE

We must now consider what feature for overconsolidated specimens
corresponds td' the critical state line which is observed for normally
consolidated specimens. Our first task is to consider what happens during a
drained tes} on an overconsolidated specimen. We know that the deviator
stress first Jncream to a peak and then reduces from its peak value (sece
Fig. 11-2) ynd that the sample continues to dilate until the end of the test.
The has, therefore, not i a steady-state condition at the end
of the test at which the stresses are constant and there is no change in
volume as the sample shears.

We must, therefore, distinguish carefully two particular states attained
by the overconsolidated specimens. The first state is the failure state, at
which the deviator stress reaches a maximum. This state is clearly of interest
if we wish to know how much load an element of soil can sustain, and is
the state most often sought for in tests whose results are to be used in

gineeriny practice. The 1 state can be called the ultimate stare, and
it is that state at which large shear strains can occur with no change in
stresses or in volume. An ultimate state may or may not be achieved at the
end of a test, and indeed it appears from the data shown previously that
overconsolidated speci often do not reach a well-defined ultimate state.

One real difficulty in discussion of the behaviour of overconsolidated
specimens Is that the test data become unreliable at large strains. Consider
the sitvatiqn when a drained triaxial test is conducted on overconsolidated
clay which has a stress-strain relationship as illustrated in Fig. 11-8. For the
initial part of the curve, up to point F, the sample gets stronger as it deforms,
Thus, any small inhomogeneities of strain will be reduced as the sample is
loaded, for the more strained elements of soil will be stronger than those
which have strained less,

€

Flgure 11-8 Stress—strain curve for a drained test on overconsolidated clay
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In contrast, after F, the sample becomes weaker as it strains further.
Thus, any inhomogeneities of strain will become intensified, because further
strain will be concentrated in the weaker regions of the specimen, i.e., those
regions which have already suffered more strain than: the average. We
expect, therefore,, to observe the formation of thin zones of concentrated

: deformation within the specimen after failure, and we must be suspicious
of the accuracy of stresses and strains calculated from boundary measure-
ments on the assumption that conditions within the sample are uniform.

1t follows that it is difficult to establish, with confidence, where the
points ponding to end, points<of tests should be plotted In g": p': v
space. We have even more difficulty’in fixing the positions of the ultimate
points the samples would have reached had the tests been continued to large
shear strains. Of course, it is the ultimate states of overconsolidated samples
that are of interest if we wish to establish some feature comparable to the
critical state line, i )

One way of proceeding is to ask in which direction the samples were
moving in ¢': p’:v space at failure. This was the approach adopted by
Parry (1958). For drained tests, Parry examined the rate (and sign) of the
volume change at failure and, as shown in Fig. 11-9, plotted that against the
ratio pi,/p}, where p) is the mean normal stress of the point on the critical
state line at the same specific volume as that of the sample and pj is the mean
effective normal stress at failure, The rate of vol hange is expressed as
a ratio of the increment of volumetric strain 8¢, to the increment of shear
strain 8¢,. There is a clear linear relationship between 3e,/8z, and p/p; on
the semilogarithmic plot of Fig. 11-9. The line representing the trend of the
data indicates that samples which fail &1 the critical state (py = Py, point L
in Figs 11-9 and 11-10) have zero rate of volume change at failure, and that
samples which fail with pj<p) (i.c., samples which were initially heavily
o lidated) are expanding at falliire. Thus, a sample which fails at
point A on the v: Inp' plot of Fig. 11-10 is expanding and so moving towards
the critical state Tine at a higher specific volume, Similarly, a sample which
‘rdils at point B with p>p}, was observed to b contracting at failure, and
so moving down from B towards the critical state line at a lower specific
volume. It is significant that the rate of movement towards the critical state
line at failure increases as the distance between the failure state of the sample
and the critical state line increases. i h .

“ Parry reported a similar set of data for undrained tests. Obviously, in
undrained tests, the volume of the sample is constant and so, instead of
8z,/B¢,, he examined the rate of pore pressure change at failuge. He p!oit:_d
((Bu/p})/Be,) against pfp; (Fig. 11-11). The change of pore pressure is
expressed as Bufp) so that samples which fail at different mean notma_ll
effective stresses may be compared directly. The pattern of Fig. 11-11 is
clear, and exactly analogous to that of Fig. 11-9. The rate of pore water
pressure change at failure is largest for samples which fail furthest away
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Flgure 11-11 Rates of pore pressure change in undrained tests (afier Parry, 1958)

from the critical state line, and the sign of the pore pressure change is such
as to move the specimen towards the critical state line (Fig. 11-12). Sample A
has py<p}, and so, frdm Fig. 11-11, 8u/8¢, is negative; the sample is, there-
fore, moving to the right from A. The sample which fails at point B has

: Buf8e, positive and so it is moving to the left in Fig. 11-12.

We maj, therefore, conclude that at failure both drained and undrained
samples aic moving towards the critical state line at rates which are related
to the distance of samples {rom the critical state line. It should be noted that
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Figure 11-12 Failure states of undrained specimens in v : In P’ space

this conclusion applies for both overconsolidated and normally consolidated
samples, even though the position of the critical state lins was established
from the data of normally consolidated samples alone, g

As discussed previously in this section, we have to be apspicious of data
obtained after failure of the samples, and, thus, it is not worthwhile examining
the test data to see if samples approach a critical state condition after failure.

We shall, therefore, adopt the following working hypothesis suggested
by the data of Figs 11-9 and | 1-11: with continuing shear, individual elements
of clay each proceed towards the critical state line after failyre of the sample

* 2s a whole and eventually reach ultimate states on the critjcal state line.

One implication of this hypothesis is that ‘ultimate dtates' of samples
under test must refer to the condition at which the complete sample has
reached the critical state line: the term ‘ultimate’ can, therefore, only
apply to the state of a sample as a whole if the strains remain essentially
homogeneous throughout the sample. If a sample divides into distinct
blocks which slide past each other across very thin zones; there. will be very
large strains taking place in the soil within;these regions and lay particles
may become.aligned in preferred directions: In this case/ the strength of the-
soil may reduce below its critical state strength towards its residual strength
as discussed in Sec. 1535, The term ultimate state must be thought of as the
final state which would be reached by homogeneous shearing of an element

or sample of clay in which the arrangement of the particles remained -

essentially random.
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11-5 THE COMPLETE STATE BOUNDARY SURFACE

We can now di the plete state boundary surface and the position
of the critical state line on it. We know that the curved Roscoe surface joins
the normal consglidation line to the critical state line and that the Hvorslev
surface extpnds up to the critical state line from the other side. The most
precise uprfsentauan of the complete state boundary surface is to plot the
surface in g'/p; : P'[p;, space, as shown in Fig. 11-13. Any constant v section
of the state boundary surface will then have the shape shown in Fig. 11-13,
though the size of the section will be such that the point A always lies on the
normal congolidation line. The shape of the complete state boundary surface
can be rep d more graphically ing’: p’: v space, as shown in Fig. 11-14;
allowing for the change of view, the shape of any constant v section of the
surface can be-seen to be the same as that shown in Fig. 11-13. The critical
state line forms a ridge separating the Roscoe and Hvorslev surfaces, and
its height and gradient Increase as the mean normal ellective pressure
increases,

We can now find the intersection of dilferent test planes with the state
boundary surface. An undrained plane is, of course, identical with a constant
v section of the surface and has the shape illustrated in Fig. 11-13. We note
that the critical state is the state at which the maximum value of ¢’ can be
sustained by a sample if it is tested undrained. We would expect, therefore,
if conditions within a sample were uniform, that undrained tests on heavily
overconsolidated samples would follow paths which rose almost vertically
up to the sfate boundary surface, in the same way as observed for lightly
overconsolidated samples. The paths would then be expected to traverse the

q'lp.
Critical state line
Impossible '
stales
J.' Tension Normal consolidation
J  failure line
Sa] A
0 »'in}

Figure 11-13 The complete state boundary surface in q'/p, : p'lp} space
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Mormal consolidation
line

v
Figure 11-14 The complete state boundary surface in ¢*: p* : v space

surface until failure occurred at the critical state line. Of course, the
experimental difficulty arises that the conditions within the sample may not
be uniform, even in undrained tests. There is the possibility that failure of a
triaxial sample occurs pr y, probably soon after the sample reaches
the Hvorslev surface, even though the undrained paths followed by uniform
elements of clay would be those shown in Fig. 11-15.

q

Critical state line
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Hvorslev i

surface

Normal consolidation
line

<—— Increasing R, ’ R, =10 0

Figure 11-15 Expecied undrained test paths for samples at different overconsolidation
ralios
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Data from & family of undrained tests on kaolin conducted by Loudon
(1967) are illustrated in Fig. 11-16; the g | pattern of behaviour is what
we expect, except that the sharp corners of the paths in Fig. 11-15 have been
rounded off. . £ L

A drained plane, for which dg’/dp’ = 3, is illustrated in g’ p’: v space
in Fig. 11-17, and its intersection with the state boundary surface is
indicated. The intersection can be viewed much better either in g’ : p’ space
(Fig. 11-18) or on the drained plane itself (Fig. 11-19). Figure 11-18 shows
the ive constant v sections of the sfate boundary surface that are cut by
the drained plane. As v decreases, the size of the vsection i 3
while the relative position of the point of intersection of the constant v
section and the drained plane moves from the normal consolidation line (A),
round the Roscoe surface (B), through the critical state line (C), onto the
Hvorslev surface (D), and away from the critical state line (E).

Figure 11-19 shows a normal view of the drained plane itself. The Roscoe
surface now appears less sharply curved, while the Hvorslev surface rises
as p decreases, The vertical axis of Fig. 11-19 measures the distance a of a

" point up the drained plane above the i tion of the drained plane and

the floor (¢* = 0) of Fig. 11-17. We see from Fig, 11-20 that a = [(10)/3]q".
The line OA forming the horizontal axis of Fig. 11-19 is shown on a view of
the floor of ¢’ : p' : v space in Fig. 11-21. Figure 11-21 also shows a series
of swelling lines for samples which have been isotropically consolidated to
different maximum pressures and then allowed to swell isotropically until
they are all at the same mean normal effective stress p;. The sample at O

0.5
0.4}
0.3
9.2F Values of R,
ol
0 - - & < 1
0 0.2 0.4 0.6 T 08 1.0

LA
Flgure 11-16 Normalized stress paths for undrained fests on overconsolidated samples
of kaolin clay (after Loudon, 1967)
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Figure 11-18 A drained plane in ¢" : p’ space
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Figure 11-19 The i ion of the state boundary surface and the drained plane

is normally consolidated (i.e., R, =1) and samples have higher over-
consolidation ratios the closer they are to A.

The expected pattern of behaviour for drained tests on samples at
different overconsolidation ratios is shown in the drained plane in Fig. 11-22,
Initially, samples will deform so that v decrenses slightly us ¢" und p' increase
and then samples will reach the state boundary surface, and traverse across
it towards the critical state line, A significant feature of Fig. 11-22 is that the
critical state line is not the point on the state. boundary surface which has the

highest value of ¢, All samples on the Hvorslev surface to the left_of

the critical state linc in Fig. 11-22 can sustain higher values of ¢’ than that at

¢ &
Dralned
plane

Flgure 11-20 Geometry of the drained plane
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deformuﬁon becomes non-uniform andl onI)-r clements ol‘ clay in the thin

docs not soften slgg@ntly
Samples which are to the left in Fig, 11-22 (i.e., they have higher over-

consolidation ratios) will fail further ‘away from the critical state line. Thus,

the__ﬂ]_u,l:ﬁ_ll.l.lﬂ for_specimens all consolidated to the same maximum

SUESS Py um:] then allowed to swell to different overconsolidation ratios
will !‘ollow the pattern shown in Flg 11-23."The Jocus of failure’ Stites of the
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Figure 11-23 Failure states of drained tests on samples at different overconsolidation
ratios
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overconsolidated specimens will lie to the left of the critical state line in.

v p' space, with the deviation from the critical state ling increasing as R

increases. . Indeed, arguments discussed in Chapter 13 'concerning the
distinction between ‘elastic’ apd ‘plastic’ behaviour of clay, suggest that the
failure states of overconsolidated samples will lic along the swelling line in
v: p' space.

The ¢": p plot of Fig, 11-23 shows the test paths for drained tests on
samples at different values of R,; each sample fails when it reaches the
appropriate constant v section of the Hvorslev surface. We note from

Fig. 11-23 that the lightly overconsolidated samples (3,4) fail on the critical
state line.

11-6 VOLUME CHANGES AND PORE WATER PRESSURE
CHANGES

We have now discussed the shape of the state boundary surface and the
position of the critical state line; these ideas have allowed us to fix the
pattern of test paths in v: p" and ¢': p’ space, The implications for changes
in volume and pore water pressure will now be discussed.

We will first consider yndrained tests. Test paths for a typical pair of
tests, one on a normally consolidated specimen and the other on an over-
consolidated specimen, ure illustrated in Fig. 11-24. The normally con-
solidated specimen A must fail without change in specific volume at C on
the critical state line. We may project down to q": p' space to obtain the
corresponding failure point C. We can also draw the total stress path applied
to the specimen in g: p- spape (assuming that u = 0 at the beginning of the
test), noting as before that the path is of slope 3. The pore water pressure u,
at failure of specimen A is then given as the difference between pand p’ at
failure; the value of u, may be scaled from the diagram ag indicated.

In the same way, the lidated specimen B s loaded along a
total stress path of slope 3, but, if the initial specific vol of samples A
and B are the same and if the specimen deforms uniformly, the specimen
again fails at the critical state at point C. The pore water pressure at failure
of specimen B is then just the horizontal offset —ug from C to the total
stress path for specimen B. -

The normally consolidated specimen A fails with a large positive pore
waler pressure, while the overconsolidated specimen B fails with a negative
pore water pressure. The value (and sign) of the pore pressures are fixed hy
the geometry of Fig. 11-24, Examination of Fig. 11-24 indicates that the
pore waler pressures at failyre are considerably affected by the initial over-
consolidation ratios of the specimens. : ’

A prediction of the pore wate pressure at failure is clearly of con-
siderable significance if stability calculations are to be made; the topic_ will
therefore be further discussed in Chapter 14. .
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Flgure 11-24 Test paths for undrained tests on Iy lidated and over-

consolidated samples of clay

* > v . . . .
Example 11-2 Calculation of the pore pressure at failure in undrained
tests on heavily overconsolidated and normally cunso[idal:d samples

e Bia tegt | 23
A sample of clay (Sample A) is isotropically normally ‘consolidated to
Po=pg =400 kNm=* and v, =2.052. A second sample (Sample B) is
isotropically consolidated to 863 kNm—* and allowed to swell to
Py =py =40 kN m~* when v, = 2.052, Both samples are then subjected
Bl 5
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dard undrai ion tests. The values of the soil constants
fm. the clay are I'-3 16, A =0.2, and M = 0.94, Find the pore pressure
at failure of each sample.

For an undrained test, 4v =0 and, hence, v, =, the approximate
effective stress paths are shown in Fig. E11.1. The value of p; at failure

3001 Lo
i 9 “Hy 2 uy
qr
Total
200 [ stress path
100 -
1

[} 500

Figure E11-1

of both samples at the critical state may be obtained from the

for the critical state line (Eq. (10-2)):

vy= I'=Alnpg =,
or
7y = exp (M= 19)/A] = exp[(3.16-2.052)/0.2],

pp=255kN m-2,
At failure, from Eq. (10-1),
. gy = Mp} = 094 x 255,
gl =239 kNm-2,
The value of pore pressure at failure u; for Sample A is then, from
Fig. E11-1,
(s = (Po—P2)+1q) = 400255+ § %239, |
(ugy=225kNm=2, '
The value of u, for Sample B, similarly, is
—(upp = (Pi—P) —1g{ = 255— 40—} x 239,
(ug)p =—135kNm™2,
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A similar argumenl l]lnw: \rolmm nhmsu to be.estimated for drained
iutl Consider a i D and:an overconsolidated
spedmm E'wluch are hsted n.mierdnimd mdiUuns(Fg, 11-25), The total .
(and aﬂ'wﬂve) stress paths i ing": p’ and g : p space are again of slope 3; and -
the intersections of these paths with the projection of the critical state line in
q': p' space (points F, G) fix the ultimate points for the tests. Once points
Fand G are fixed ing': p’ space, we may project up to v : p' space to obtain
the relevant specific volumes. We can see that the specific volume at point F

Normal consolidation line
Wet D
H o by
Critical state line
F
; 4
¢
F
CriL'EnI state line
E D

o

Figure 11-25 Test paths for drained tests on normally consolidated and over-
consolidated samples of clay
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. is substantially lower than that at point D, i.e., the normally consolidated
sample must compress during shear, )

Similarly, the specific volpme at G is substantially higher than that at E;
-~ clearly, the overconsolidated sample E must expand during shear. We should

note that the sample will fai| af point H on the Hvorslev surface before it
reaches the critical state ling at G, The specific volume at H cannot be
specified from the geometry of Fig. 11-25 alone, but, as a consequence of
the arguments in Chapter 13, concerning the distinction bejyeen elastic and
plastic behaviour of soils, we would expect that the samp[!p would ideally
compress slightly from E to'H due to the increase of p' and, hence, the
specific volume at H might be slightly lower than that at E,

We should note the contrast in behaviour between uverconsolidated
samples, which expand (and soften). ducing_shear, and That-aof normally
consolidated samples, Which compress (and harden) during shear. W can
associate the expansion of oyerconsolidated specimens aagﬂ
with the generation of negative pore water pressure during undrained tests,
and, for normally consolidated specimeps, compression during drained tests
- can be associated with positive pore water pressures during pndrained tests.

Each phenomenon. s a consequence of the combinati n gf the_geometry
of the state boundary surfage, the initial state of the specimens, and the
applied total stress path,

1t is convenient to distinguish between samples which |je above and to
the right of the critical state line in v: p' space and those which lie below
and to the left. The first group of camples will be termed wet of critical, for
each sample has a moi tent higher than that of_y_sample on the
critical state line at the same value of p’, and the second group as dry of
critical, see Fig. 11-25. This plassification is useful in_ that it groups together
samples with similar pore pressure and volume change behaviour, and will

be discussed in detail in Chapter 15,

Example 11-3 Calculation of the ultimate conditions for drained tests on
normally consolidated and heavily overconsolidated samples

A sample of clay (Sample A) is isotropically normally consolidated to
P =Py =400 kNm~2? and ¥y = 2.052 anda second sample (Sample B)
is isotropically consolidated to ‘863 kNm—-* and allowed to swell to
Pr=py =40 kN m~*, when the specific volume is v, = 2.082. Both samples
are’ thén subjected to standard drained triaxjal compression tests. The
clay has I'=13.16, A =0.2, and M = 0.94. Find values fpr p', v, and e,,
whea the two samples reach their ultimate states on the critical state line.

Using Eq. (10-10), the \'falu:_ Py of p’ at the ultimate condition is given by

: yi. = 3pl/(3—-M).

12 drained tests.
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For Sample A, L
(PL)a = 3%400/(3-0.94),
. (Py)y=583kNm-2,
For Sample B,
(Pa)s = 3x40/(3~-0.94),
(Pl)p = 58 kNm-3, -
The value v, of v at the ultimate condition is
: vy =I'=Alnp}.
For Sample A, _
. (vy)s = 3.16—0.2In(583),
(vy)s = 1.886.
For Sample B,
(vy)p = 3.16—0.21n(58),
(Vn)g = 2.347.
The volumetric strain &y during the test is
"3 v —dufv.
For Sample A,
(ey) s = —(1.886—2.052)/2.052,
(ey)a = 8.09 per cent (compression).
For Sample B,
(e)p = —(2.347-2.052)/2.052,
(ey)p = —14.4 per cent (expansion).

11-7 SUMMARY

L. A state boundary surface, the Hvorsley surface, limits the states of over-
cumlidxted.ap:cinllelm ing':p':vspace.

2. Wehave acoepted a3 a working hypothesis that ultimates tates,ofindividual .
inents SR et thafultimaetaies oLlaglviduat

clements.of ovetconsolidated:clay lic on the same’critical bl

: d:ﬁmh‘}glumih“:m%h!son normally consolida .samplu.-?_'_}

3. The complete state boundary surface, consisting of the Roscoe and
Hvorslev surfaces, which meet at the critical state ""?' serves for drained
and undrained tests on normally consolidated and overconsolidated

samples and, hence, unifies a wide range of behaviour.
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4. Predictions may be made of the ultimate pore pressure in an undrained
test or the ultimate volume change in a drained test once the initial
conditions of the test are specified, ' |
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« =} CHAPTER

'THE BEHAVIOUR OF SANDS

12-1 INTRODUCTION

In the last two chapters we have discussed the shear behaviour of normally
consolidated and overconsolidated clay in some detail and we found a
common framework -for understanding our observations. We will now
discuss the shear behaviour of sand. We shall find that the behaviour of
sand can be fitted into the same framework that serves for clay and so it
may be argued that this same fr rk will be rel t for a wide range of
soils. \ .
It is convenient, first, to consider typical triaxial data obtained from
standard drained and undrained compression tests performed by Eldin (1951)
on loose and dense samples of Brasted sand, Data from drained tests are
shown in Fig. 12-1 and from undrained tests in Fig. 122,

A cursory glance at Figs 12-1 and 12-2 will indicate the large differences
in behaviour between the four samples. The drained fest on the loose
specimen (Fig. 12-1(b)) gives a ¢": e, curve which reaches a flat maximum
after about 20 per cent axial strain, while the sample compresses substantially
as the test proceeds. At the end of the test, the sample appears to have
reached an ultimate state, for there are negligible changes in stresses or in
volume for continuing shear distortion, 4

In trast, the dense ple (Fig. 12-1(a)) exhibits a marked peak in
its g": e, curve, and, thereafter, ¢’ decreases and is still decreasing at the end
of the test. The sample contracts slightly initially, but then expands strongly
until the end of the test, It is clear that no ultimate point has been reached at
the end of the test, for the sample is still expanding and ¢'is d ing. It is
worth noting, however, that the value of ¢’ at the end of the test on the dense
specimen seems to be decreasing towards the value (about 500 kN m~%)
observed at the ultimate point of the test on the loose specimen (Fig. 12-1(b)).

The shapes of the q"': £, curves for the undrained tests (Fig. 12-2), one
on a medium dense speci (v=1.75) lidated to p’ = 73 kN m-* and
one on a loose specimen (v = 1.84), also consolidated to 73 kNm=?, are
similar, though the values of ¢’ at failure (1270 and 121 kN m~, respectively)
are very different. The pore water pressure changes at failure in the two tests
are strikingly different; the loose specimen has a positive pore water pressure
at failure, while the pore water pressure is large and negative for the medium
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Flgure 12-1 The results of drained triaxial tests on (a) a dense sample and (b) a loose
sample of Brasted stand (aller Bishop and Henkel, 1962, p. 123)

dense specimen. The difference in pore water pressures at failure is the major *

cause of the large difference in the observed shear strength of the two
specimens, for the effective radial stress at failure in the dense specimen
(o = 550 kN m~?) is substantially larger than that for the loose specimen
(o7 = 62 kN m™?); the ratios of /o’ (3.3 and 3.0, respectively) are, however,
almost the same for the two cases, )

For both dense and loose samples, we riote the similarity between the
&y : &, curves from the drained tests and the du : ¢, curves from the undrained
tests. The loose sample contracts in the drained test and generates positive
pore water pressures in the undrained test, while the dense specimen expands
and generates negative pore water pressures. This pattern of behaviour is
similar to that observed for clay, for heavily overconsolidated specimens
of clay expand during shear and generate negative pore water pressures,
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while normally consolidated specimens of clay contract during shear and
generate positive pore water pressures. -

‘We can immediately see a similarity between the behaviour of loose sand
and that of normally consolidated clay, and between that of dense sand and
that of overconsolidated clay. The purpose of this Chapter is to pursue that
analogy further and to consider new features of soil behaviour which are
particularly relevant for sand.

122 THE CRITICAL STATE LINE FOR SAND

We saw in Chapters 10 and 11 how there were significant differences in
behaviour between normally consolidated and overconsolidated clays.
First of all, therefore, we must enquire about the initial states of sand samples
when they are at different specific volumes and stresses, for we expect that
the initial states of samples will have an important influence on their
subsequent behaviour.

One of the most obvious features about sand, as discussed in Chapter 7,
is that samples may be set up at different specific volumes at zero stress,
If a sand sample is vibrated, it can become extremely dense (say, v = 1.50)
and firm to the touch. Conversely, if & sample is set up by slumping the
sand rapidly into a container from a small height, the specific volume can
be high (¢.g., v = 2.0) and the sample will feel soft and compressible.’

If the two samples are now compressed one-dimensionally, the loose
sample will deform more than the dense sample, but the deformations of
cach will remain relatively small, as di i in Chapter 7. Typical com-
pression curves for loose and dense specimens of quartz sand are sketched
in Fig. 12-3, which is taken from Fig. 7-13. It is clear that, for the stress
levels usually adopted for laboratory testing and common in engineering
construction (say <700 kN m~2), both loose and dense samples of this sand
may be regarded as heavily overconsolidated, for they are to the left of the
estimated normal consolidation line AB shown in Fig. 12-3. However, the
geometry of Fig. 12-3 is such that the loose specimen is nearer the normal
consolidation line (i.e., it is less overconsolidated) than the dense specimen,
and, depending on the specific volume and stress level, the loose specimen
may even lic on the right (wet) side of the critical state line, which we may
expect in the approximate position CD.

Because sand samples normally exist on the left (dry) side of the critical
state line, there are considerable experi | difficulties, as there are for
overconsolidated clay, in achieving uniform siress and strain conditions in
triaxial specimens at the. large deformations that arc required to take the
states of the specimens to the critical stte line. The most convincing experi-
mental demonstration of the existerice of the critical state line for sands is,
therefore, provided by data from the (plane strain) simple shear apparatus.
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Flgure 12-3 T pi pression of Chaushooches River sand (after Vesic and

Clough, 1968)

Comparable data for randomly packed steel balls have already been shown
in Fig. 9-5. Data from ultimate points of tests on samples of Leighton
Buzzard sand initially set up at different specific volumes are shown in
Fig. 12-4 where, for plane strain, the appropriate siress paramelers are "
‘and s'. The actual specific volumes of elements of sand within the specimens
have been checked by careful radiographic techniques, while the boundary
stresses on the sample have been measured with special stress transducers
(Stroud, 1971); the data can therefore be considered to be of high reliability.
The data of Fig. 12-4 define the locus of ultimate points, the critical state
line, convincingly for this sand.

We will now adopt the existence of the critical state line for sands as 2
basis for cur subsequent discussion of the behaviour of sands. We should
note (i) that the line is relatively flat ino: Inp' space (i.e., A is small, for sand
is relatively incompressible) and (ii) that, at stress levels common in
laboratory testing, samples on the critical state line will be extremely loose,
often looser than the boosest state that can be set up by pouring sand in the
laboratory. The very loose critical states for sands can often only be reached
by dilation during shear.

We expect, therefore, that the shear behaviour of the sand samples,
especially those that are dense, will be similar to the behaviour of heavily
overconsolidated clay specimens. Thus, an undrained test on & dense sample
of sand should give the test path O'A shown in Fig. 12-5. We expect that the
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Flgure 12-4 The position of the critical state line Int’:s and v :In 5 space for Leighton

Buzzard sand tested in the simple shear apparatus (data from Stroud, 1971, and Cole,
1967) .

test path will be limited by a state boundary surface similar to the Hvorsley
surface and that the Roscoe surface will not: be relevant for this heavily
overconsolidated specimen. The position of the critical state. line is such
that we expect a very large negative pore water pressure to be generated.

The position of the loose specimen of sand as regards the critical state
line is less clear cut, and would in any case depend on the initial consolidation
stress for the sample. However, we expect a test path of the form OB
sketched in Fig, 12-5, i
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The data from the two undrained tests given in Fig. 12-2 are in no way
inconsistent with the ideas discussed above, which arise from our under-
standing of the behaviour of clay. We should note that the size of the
constant ¢ gection of the state boundary surface is larger for the denser
specimen and sthaller for the looser specimen. We expect, therefore, that,
at the ultimate¥points on the critical state line, the value of ¢’ is larger for
the dense specimen than for the looser specimen. %

4.9
A
/
/
! Dense
Tout [, -u
stress l’"“f; Critical state line
sl

p

Flgure 12-5 Test paths in ' : p’ and v p’ space for undrained tests on dense and loose
specimens of sand z
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We may now consider a draimed :test:on a heavily overconsolidated
-specimen (i.e., a dense specimen) of sand; we expect the test paths sketched
in Fig. 12-6. The peak point B in g : p’ space will lie close to the constant v
section of the Hvorslev surface through Bin v : p' space. Initially, the sample
will compress slightly between A and B and will then expand.markedly as
the test proceeds and the sample moves up towards.the critical state line.
Both fi are clearly evident in the data of Fig. 12-1(a).

The behaviour of a sand specimen which is less overconsolidated can be
illustrated either by considering & drained test on a loose specimen, or, more
convincingly, by a drained test;conducted on a dense specimen which has
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Figure 12-6 Test paths in ¢": p" and v: p’ space for a drained test on o dense sample
of sand
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been cflns?lidated to very high stresses, and so is on, or close to, the normal
consolidation line. Data from three drained tests reported by Vesic and
Clot!gh (1968) are replotted in Fig. 12-7. One of the dense specimens has a
specific volm of 1.75 (relative density, 80 per cent) afler consolidation to
98 kN n_'l"; it gives a peaked stress-strain curve with failure at about 8 per
cent axial strain, but with considerable expansion throughout {he test, This
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behaviour is entirely consistent with that shown in Fig. 12-1. The second dense
specimen has a specific volume of 1.31 after consolidation {0 62 100 kNm~%,
This specimen contracts substantially during shear, and the deviator stress
reaches a flat maximum, but only after a strain of greater than 20 per cent.
The behaviour of this specimen is comparable with the behaviour of a
normally consolidated specimen of clay. The third specimen is loose, for it
has v = 2.05(relative density, 20 per cent) when it is consolidajed to 98 kN m~2,
and shows behaviour intermediate between that of the twp dense specimens
at the different cell pressurew. The three tests clearly confirm that the dense
specimen is heavily overconsolidated at p’ = 98 kN m~, the loose specimen
is lightly overconsolidated at 98 kN m~? and the dense specimen is normally
consolidated at 62 100 kN m-2,

12-3 NORMALIZED PLOTS

We have discussed the paths followed by drained and undrained tests on
loose and dense sand in g': p’: v’ space. We ought now to represent the
same test paths in normalized plots so that different tests may easily be
compared. As before, the equivalent stress p) is used to non-dimensionalize
q" and p', for we argue that each constant v section of the state boundary
surfuce is of the same shape, but that the size of each section depends on the
value of the specific volume. Test paths for drained and undrained tests on
loose and dense samples of sand are sketched in Fig. 12-8. Only the drained
test on the dense specimen goes through a maximum value of g’fp" before
descending towards the crilical state; the other samples do not progress all
the way up to the Hvorslev surface on the dry side of the gritical state line.

The normalization of Fig. 12-8 is highly satisfactary for clay. The
difficulty for sand is that the normal consolidation line, and hence its slope A,

q'lp,

Critical state line

“'"\
Hvorslev surface ~ \RW surface
- N
Dense, h
drained un?i!:‘“ld Loose, \
i drained and \
: undrained \

ole,
Figure 12-8 Test paths in ¢'/pg:p’lps space for drained and undrained tests on loose and
dense samples of sand
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is difficult to establish, as tests have to be performed at stresses larger than
those commpnly adopted in soil testing. In any case, the slope A of the
normal consolidation line is rather low (typically, A = 0.10). The definition
of pg, " .

X Py =exp[(N—uv)/A], (12-1)
also includps the parameter N which fixes the intercept of the normal
consolidMiJu line with the line corresponding to p’ = 1 kN m~3; again the
value of N q' difficult to establish with accuracy for sand. We see, therefore,
that the ‘em: in square brackets on the right-hand side of Eq. (12-1) is
uncertain in value, is large (because A is small), and yet has an exponential
effect on the value of p;. It is unsatisfactory, therefore, to use a normalization
for sands which relies on the parameter p!.

We know that the behaviour of a sample of sand is influenced most of
all by its initial specific volume. It seems reasonable, therefore, to choose a
normalization in which the initigl specific volume has a dominant influence,
and in which the exact position and slope.of the normal consolidation line
are' less crucial. The obvious alternative to the pl-scaling (where we are
essentially considering the size of the constant v section of the state boundary
surface) is to use a scaling based on the size of the constant p’ section of the
state boundary surface. The difficulty again is that we must then define some
equivalent specific volume corresponding to the specific volume on the
normal consolidation line at that pressure; difficulties in locating the normal
consolidation line for sand make this approach unsatisfactory.

A more satisfactory alternative is to think of a reference constant p’
section of state boundary surface and then to correct the positions of
states in v: p’ space so that they lie on the reference section. The idea is
illustrated in Fig. 129, The reference section of the state boundary surface
is arbitrarily chosen to be at p'=1kNm=® to be consistent with our
definitions of N and I'. Then, on the reference section, v = ¥ for the normal
consolidation line and v = I" for the critical state line. We wish all states
on the critical state line to be represented by a single point (v = I') on the
reference section, and all states on the normal consolidation line to be
represented by a single point (v = N) on the referénce section, for, in each
case, the behaviour of all such samples will be identical. Similarly, a point
such as A, between the normal consolidation line and the critical state line,
must appear in the reference section at a value of v between N and I. The
procedure to wap A on to the reference section is obvious. Draw a line
through A at slope A (i.e., parallel to both the critical ‘state line and to the
normal consolidation line) and the intersection of that Jine with {he reference
section, point A, is used to represent point A, and indeed all othier. points
on line A’A. In the same way, the point B maps into the point B'. .

We define the value of specific volume on the reference section as v,.
Then,

n=vtAin(), S (122)
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Figure 12-9 The method of cortecling points so they lie on the constant P’ reference
section

where o and p’ are the specific volume and mean normal effective pressure
at a typical point A and v, is the specific volume of the corresponding point
A’ on the reference section. The parameter v, gives a direct measure of the
position of a sample in v: p' space with respect to the critical state line; it
depends primarily on the specific volume v of the sample, and less, because A
is small for sands, on the mean normal pressure.

We have now discussed the mapping of points onto the reference
(p' = constant) section of the state boundary surface. We note that
p'=1kNm-* on the reference section, by definition, and so the scaled
deviator stress must be appropriate to that value of p’. The mean normal
stress has been scaled in the ratio (1/p"), and so it is appropriate (o scale the
deviator stress by the same factor of (1/p"). The scaled value of deviator
stress to be plotted on the reference section at point A’ would, therefore,
be (3'/p"), where ¢’ and p' are the stresses at the typical state point A
considered.

All points on the critical state line will therefore have g'/p’ = M and all
points on the isotropic normal consolidation line will have g'[p’ = 0. A view
of the reference section will, therefore, be as shown in Fig. 12-10. The two
sections of the state boundary surface, the Hvorsley surface and the Roscoe
surface, are separated by the critical state line, while the Roscoe surface
joins the critical state line to the normal consolidation line.
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. We saw in Chapter 11 that the Hvorslev surface was straight for clays in .I
¢'lpy: P'lp, space, and had the form . R ”

) Cqlpa=g+hpp), (12-3) 3

where g and h.are soil constants. Equation (12-3) may be rewritten as

a'lp' = gloyp) +h. ' (12-4) 3

Substitution of Eq. (12-1) into Eq. (12-4) gives

. 4lP = 8lp exp[(N—o)/ N +h (12-5)
and, vsing Eq. (12-2), .
r = r N A o0 A ’ :
s wlig B (”'mg.a‘p’ &lp" exp [((N/X)—(op/N)+In p'] +h (12-6)

¢ = (M=R)exp(T~0)/\+h. * a7 3

Thus, if we assume that the Hvorslev surface has the same shape for sands
as for clays, we can skeich the Hvorslev surface in the q'lp' : v, space of
Fig. 12-10 as shown. Of course, there is no guarantee that the Hvorsley
surface has precisely the same shape for sands as for clays, but the form of
Fig. 12-10 suggests that the maximum observable value of g*/p’ for sand is a
function of vy. When v, is small the ple is heavily o lidated and
q'/p’ can be high, while, when v, is equal to I', ¢'/p’ cannot exceed M. These
sup!)osiu'ons are in accord with common experience in soil mechanics
testing; dense sands give higher values of the angle of internal friction than
do loose sands,

The pru-:i:e form of the state boundary surface for sands can be investi-
gated experimentally, although there is little published data available, We
shall quote data from triaxial tests as well as from tests in plane strain
conditions to get an indication of the likely shape of the Hvorslev surface. ‘J
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Flgure 12-10 The reference section in g7/p’: v, space :
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Figure 12-11 Test paths in 1'/s : v, space for tests on Leighton Buzzard sand in the
+ simple shear apparatus in which the vertical stress was held constant (alter Stroud, 1971)

Nevertheless it has to be accepled that the Hvorslev surface has not yet been
precisely defined for sand. fiproud (1971) performed tests in the simple shear
apparatus at different stross levels and at diferent specific volumes. He
plotted his results in ¢'[s’ : p, space (Fig. 12-1 1) for, as he was using a plane
strain testing device, it is more appropriate to use ' insiead of ¢" and &'
instead of p'. The data from drained tests (Fig. 12-11) defined a state boundary
surface which appeared curved in 1’5’ : v, space.

® Dense samples
a5l X Loose samples

25 i poie i — R A i .
10? 10? 10 10%
; P'(kN m™2)

Figure 12-12 Angle of internal friction for Chattahooches River sand tested at different
stress levels in the triaxial apparatus (after Vesic and Clough, 1968)
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In contrast, an indication that the Hvorslev surfack for sands is straight
ing'/p’: v, space is provided by the data of Vesic and Clough (1968), Vesic
and Clough plot the measured angle of internal friction for initially dense
and loose samples of Chatahoochee River sand against the logarithm of the
mean normal stress in triaxial tests (Fig. 12-12). The same data map into
4'/p" : vy space as shown in Fig. 12-13. It should also be noted that the failure
points for the loose samples all map into a region close to the critical state
point in Fig. 12-13,

We note, as for clays, that sand samples will move to the state boundary
surface, and then move along the surface as they expand or contract, until
they eventually reach the critical state condition. For samples on the right-
hand side of the critical state line (j.c., vy >T), the maximum value of ¢'/p’
will be reached at the critical state line, and so we expect failure there.

Samples on the left-hand side of the critical state line (i.e., vy<I") have
the possibility of exhibiting values of ¢'/p’ > M. Samples which have low
values of v, (i.g., they are very dense or the stress level is very low) can
resist rather higi values of g'fp'.

Example 12-1 Calculation of the peak value of ¢’[p’ for _salﬁélés of sand
at different mean normal stresses and specific volumes

Drained triaxial pression tests have been performed on samples of
sand which failed at v = 1.5 (Sample A) and v = 1.8 (Sample B). it was
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found that the maximum values of ¢'/p' were 1:85 and 1.42, respec-
tively, and both samples had p' =200 kNm~? at peak. The sand has
A= 0.03. It may be assumed that both samples failed on the dry side of
the critical state line. .«
Estimate the peak value of ¢'/p’ for samples which fail at (i) o = 1.65,
p’ = 3000 kN m~* (Sample C) and (ii) o = 1.5,p = 10 kN m~* (Sample D).
The value of v, is given by Eq. (12-2):
vjr=r0+Alnp'.

For Sample A,

vy = 1.5+0.03 In (200) = 1.659.
For Sample B,

v, = 1.8+0.03In(200) = 1.959.
For Sample C,

by = 1.65+0.031n (3000) = 1.890.
For Sample D,

vy = 1.5+0.03In(10) = 1.569.
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Figure E12-1
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Plot the data from Samples A and B in ¢'/p' : v, space, as shown in
Fig. E12-1. We shall now assume that the Hvorslev surface is approxi-
mately straight in g'[p’ : v, space and interpolate in Fig. E12-1. Hence,
for Sample C,

1.89—1.659

9l = 185555165

x (1.85—1.42),

q'[p' =152

An extrapolation is required for Sample D, and so the estimate of g'/p’
will be less reliable. For Sample D,

1.569 — 1.659

9l =185 1555165

x(1.85—1.42),

q'[p' =198

12-4 THE EFFECT OF DILATION

We have discussed the maximum possible values of ¢'[p’ that a sand may
resist at different states; it is now instructive to consider some simple
analogies which help to explain some other factors which influence the
mobilized value of ¢'/p’.

Consider a block resting on a rough plane and acted on by a vertical I

force P (Fig. 12-14). IF the coefficient of friction between the plane and the
block is p, we know that the sideways force Q must be increased until
Q = pP before the block slides horizontally sideways. It seems a reasonable
analogy to argue in the same way that at failure of a body of sand, wher;‘
one block of the soil slides across another block (Fig. 12-14(b)), there woul
be a constant ratio of the shear stress 7' to the effective normal stress o’ on
the plane pf failure. Thus, by analogy with the purely sideways sliding of the
block on the plane, we may write

7= pa’ (12-8)
for the behaviour of the sand, though we must note that this relationship
applies only for purely sideways movement of one block of soil relative to
the other, i.e., for constant yolume deformation.

We now consider a d simple analogy: in this case both the bottom
of the block and tRE top of the supporting plane arc serrated, as shown in
Fig. 12-15. We suppose, as before, that the coefficient of friction between
the contacting faces is p. Clearly now, as the block slides sideways, it will
also move up at angle « to the horizontal, so doing work against the vertical
force P. The force @ will, therefore, have to be sufficient to overcome the
friction as well as to supply work to lift the block against P. The relationship
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Figure 12-14 (a) Sliding of 2 block on a rough plane. (b) Sliding of one block of sand

with respect to another block of sand

between P and Q during sliding can be obtained by finding the sum N of
the normal forces and the sum S of the shear forces on the planes of contact,

We have
N = Pcosa+Qsinea,
S=—Psina+Qcosa.

(12-9)
(12-10)

Figure 12-15 Sliding of a serrated block on a serrated plane
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Putting § = uN for sliding and substituting gives
" Q—Ptana = uP+puQtana, (12-11)

For a small horizontal movement of 8u, the block will move. upwards by
8v, where 8u/8y = tan o, Substitution for tana and collection of terms

1VES .
¥ ¥

; ' Q_ p+(udy) . .

Y G N (1213)
The ratio Q/P for sliding of the block now exceeds y, the coefficient of
friction between the block and the plane, by an amount which depends on
the ratio of vertical to horizontal movement of the block. This analogy can
be extended so that it is more relevant for sand undergoing uniform simple
shear, Consider a stack (of area A) of serrated blocks resting on top of one
another (Fig. 12-16), with the stack being sheared under the action of a
shear force 7’4 and a normal force o'A. OF course, Eq. (12-12) will also

®) :
Figure 12-16 Deformation of (a) a stack of serrated blocks and (b) a sample in simple
shear
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apply for the extended model of Fig. 12-16(z). The mrrespondmg (simple
shear) deformation of a ump'le of sand, of height ‘H, is indicated in Fig.
12-16(b).

We can note, for the snrnple of sand, that the ratio &JJH whleh is
posltlve for expansion, is equal in magnitude to the pressive) vertical
strain in the sand, but of opposite sign. Because the horizontal strain is
zero, the vertical strain is equal to the volumetric strain 8e,. Similarly, ‘the
ratio Su/H is equal to the shear strain 8y,.. Thus, If the analogy is pursued
further, the term 8v/8u in Eq. (12-12) may be replaced by (= e, /8y,,) to give

Ty """‘.(asvl'laflg
o T ey’ (s

Equation (12-13) suggests that the ratio between the shur ltmss nnd the
normal stress in a shear box test on a sand d ds on a fricti tp
as well as the ratio between volumetric strain and shear strain, with higher
values, of 7j./o; occurring for higher ratios of mg.amfe volumetric strain
(expansion) to shear strain.

An alternative, and perhaps a simpler, hypothesis would be to argue for
a sand that the net work crossing the boundaries of a specimen is entirely
dissipated in friction. Mow, ‘for an increment of horizontal displacement
Su in a simple shear deformation, as shown in Fig. 12-16(b), the net work
transferred into the specimen during the increment is 7). A Su—oj 4 Sv.
We assume that this work is entirely dissipated in friction, and that the work
dissipated in friction is taken to be proportional to a frictional constant u,
the normal force o), A and the shear displacement 8u. Thus,

Tyed Su—ol A 8v = pay A u. (12-14)
Equation (12-14) may be rearranged as
Tyaloy = p+(8u/8u). (12-15)

Again, the ratio /o], depends on a frictional constant (i) as well as the
rate (8v/8u) at which the sample dilates (expands) during shear, with higher
values of 7./o}, given for higher values of rates of dilution.

An analysis of this form was suggested by Taylor (1948, pp. 345-347).

It is tempting to generalize Eq. (12-15) and to rewrite it in terms of the
equivalent invariant paramelers as

q'lp" = M—(8e,/8¢,), (12-16)
rcmcmbering that the sign convention for Su is such that a positive v gives
expansion, i.e., a negalwe | ic strain i t e,

Equation (12 13) is less easy to generalize, partly, at least, because of our
reservations about whether the serrated block model can adequately represent
deformation behaviour in three di Nevertheless, it is clear that the
model suggests that ¢'/p’ depends on a frictional constant as well as on the

L ale
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rate of volume change during shear (say, 8e,/8e,), though in a more

"complicated way than suggested by Eq. (12-16).

A pumber of workers have suggested relationships between paramelers
cquivalent to ¢'/p’ and 8e,/8¢, Perhaps the most notable is the stress—
dilatancy reldtionship of Rowe (1962), which has some conceptual similarities
with the serrated block model of Fig. 12-16(a) and with Eq. (12-13), and
which has much experimental evidence in its support. However, we shall
now adopt Taylor's model in its generalized form (Eq. (12-16)), since our

discussion will be only qualitatjve, and the Taylor model has the merit of
simplicity.

12-5 CONSEQUENCES OF TAYLOR’S MODEL

Equation (12-16) relates the stress ratio ¢'/p’ to the dilation rate 8e,/8¢,.
In particular, when 8e,/8¢, is zero (constant volume deformation), we
expect that q’/p’ = M. Thus, in data from a drained triaxial test on dense
sand (Fig. 12-17) we expect that g'fp’ = M at strains corresponding to the
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Figure 12-17 Typical ¢'/p°: e, and &, : £, relationships for a drained triaxial test on
dense sand
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two points (A, B) where the sample is instantaneously deforming at constant
volume. For strains less than that at A, the sample contracts and so 8e,/8¢,
is positive. We, therefore, expect that g'/p’ is less than M. The sample
expands continuously between A and B, with the maximum rate of dilation
at some point C. It followy, therefore, that ¢'fp’ would have its maximum
value at a strain corresponding to that at C. These ideas are eptirely consistent
with the data of Fig. 12-1(a). We thus conclude that there is a direct link
between the shape of the e, : e, curve and the shape of theg'/p’ : &, curve.

The curves for a loose sample of sand are sketched in Flg. 12-18.

The link between stress ratfo and dilation rate can pe shown to be
consistent with the form of the Hvorslev surface. Consider p sample at some
point A on the Hvorslev sprface shown in ¢'/p’ i v, space in Fig. 12-19.
At A, ¢'fp’ will be grenter than M and so, by Eq. (12-16), the sample will
expand during shear. If it expands, v, will increase and the sample will move
down the Hvorslev surface towards the critical state line. The same increment

_of deformation can also be represented ing’: p' and v : p’ spaces as shown in
Fig. 12-20; the constant v sections of the Hvorslev surface corresponding
to the initial and final state points are indicated by lines 1-1 and 2-2 in the
g': p' plot. 2

4w

€

€, | Compression

. £y
Flgure 12-18 Typical ¢'/p": e, and e, : e, relationships for a drained triaxial test on
loose sand .
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Flgure 12-19 The state boundary surface viewed on the referénce section
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Flgure 12-20 The path for an increment of loading of dense sand inq” : pand v : p’ spaces
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The whole stress path can be rep i on the refl section, as
shown in Fig. 12-21. It is simplest to consider a hypothetical drained test
(ABCDE) on a dense sample in which the effective mean normal stress p’
is held constant during the test. Changes in v, are then brought about only
by changes in specific volume v of the sp i For the portion of the test
for which ¢'fp’ remuins less than M (i.e.,, ABC), the sample will contract
and so the test path will move up and to the left in Fig. 12-21. As straining
continues, g'/p" will be greater than M, and so the sample will expand and
move to the right on the plot, following the Hvorslev surface down towards
the critical state line. The strains assotiated with any portion of the test
path will i as the test p ds, and, when the sample arrives at the
critical state, unlimited deformation may occur at constant volume and at
constant stresses.

A looser specimen of sand will follow a path (FGE) that shows more
initial contraction before the sample eventually arrives at the critical state
condition after large deformaticns.

We have so far considered drained tests, In undrained tests, 8e,/8e, =0
and, hence, from Eq. (12-16), ¢'/p’ should always be equal to M. Thus, on a
g'lp’ : vy plot (Fig. 12-22), the major part of the test path will be a horizontal
line BC at ¢'[p" = M. However, we appreciate that the sand will deform a
little as it mobilizes sufficient shear stresses for ¢'/p’ to be equal to M, and
so we must expect some small deformations over the path AB. In order
that the sample moves towards the critical state at C, the value of v, must
change from its initial value v, say, corresponding to a specific volume of

v, and mean normal stress of pg, to I' at the critical state when p’ = p.
Initially,

vy, = vg+Aln gy (12-17)
qlp’

Hvorslev surface

Critical state line

s LY
Figure 12-21 Stress paths for drained tests on loose and dense specimens of sand in
q'lp": va space

BEHAVIOUR OF SANDS 259

il

ae i . 5 . 8

c Critical state line

]

I
|
I
I
|
1
|
|
|
b

L
Figure 12-22 The stress path for an undrained test on dense sand in g'jp’ : v, space

and, at the critical state, where, because the sample is undrained, v = vy,

I'=vy+Alnp,. (12-18)
Subtraction of Eq. (12-17) from Eq. (12-18) gives _
Pulps=expll=u)A) (12:19)

Thus, as I'>v,, the mean normal effective stress on the specimen must
increase as the sample moves towards the critical state, i.e., there must bea
negative pore pressure generated. The value of pj increases exponentially
with the difference (I'—uv,,), and so a dense sample of sand, for which
I'—u,, is large, will reach the critical state at extremely large values of pj.
Conversely, a loose sample of sand, for which I'—v,, would be much smaller,
would reach the critical state line at rather lower values of py. The corre-
sponding test paths in g": p' and v: p’ space are illustrated in Fig. 12-23.

“The loose sample follows the path A, B and ends on the critical state with a

relatively low negative value of uy, while the dense specimen follows the path
A, C and reaches C on the critical state line with a high value of p’ and a
large negative pore pressure uy.

Figure 12.23 indicates that, for sands, the Hvorslev surface should be
thought of only as a state boundary surface beyond which samples cannot
progress. There is no guaranice that the paths followed during testing will
necessarily coincide with ghe Hvorslev surlace, and, indeed, the undrained
path is semewhat below the Hvorslev surface: nevertheless, although the
failure state may lie below the Hvorsley surface it will not fall below the
critical state line. )

" It should be noted that the interpretation of undrained tests discussed
above relies on Eq. (12-16). The equation was developed by assuming lhfll
all work which crossed the boundaries of a specimen was dissipated in
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Figure 12-13 Test paths for undrained tesis on loose and dense specimens of sand in
q':p'and v:p’ space '

friction. In reality, a certain proportion of the work will be stored in elastic

pression of the speci For undrained tests, where the volume of the
sample remains constant, this has the consequence that there will be some
(fairly small) elastic compression of the sample, which must be exactly
“tlanced by some simultaneous dilation of the sand brought about by the
wu.-ise of g'[p'. We expéct, therefore, that the stress ratio ¢'[p’ will slightly
exceed M at stages of the test when there is a rapid increase of p'. -

Example 12-2 Calculation of the ultimate conditions in undrained tests
on samples of sand with different specific volumes

Two samples of sand are consolidated to p'=p=200kNm-? and
subjected to undrained compression tests with the value of p held
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constant. Alter consolidation, Sumple A has v = 1.60 and Sample B
has v = 1.75. The sand has ' = 1.93, A = 0.03, and M = |.42, Calculate
the stresses when the samples reach their ultimate conditions on the critical

state line.

The initial \r;ﬂue of v, is given, from Eq. (12-17), as
vy, = U+ Aln pj,

Hence, for Sample A,

: vy, = 1.60+0.03In (200) = 1.7589
and, for Sample B, Ate
vy, = 1.75+0.03 In (200) = 1.9089,
The value of p’ at the ullimate condition is

Pu=poexp[("'=uy)/Al.
Hence, for Sample A,
(PL)a = 200exp [(1.93— 1.7589)/0,03],
(PL)a = 59970 kNm-?
and, for Sample B,
(Pi)p = 200exp [(1.93 - 1.9089)/0.03],
(P)p = 404 kNm™,
The value of ¢’ at the ultimate condition is
9y = Mp{,.
Hence, for Sample A,
(a4) = 1.42(59 970)
(ge)y = 85160 kNm—*
and, for Sample B, ’ w
(95)s = 1.42(d04)
(gi)s = 574 kNm-*, _
The vaule of p was held constant in each test at 200 kN m-? and so
the pore pressure u at the ultimate conditions can be calculated simply as
. ly=p—p :’ .
Hence, for Sample A,
(uy) 4 =200~59 970
(#,), =—59 770 kNm~*
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and, for Sample B,
(ug)p = 200—404 -
(u)p = —204 KNm™..
As cavitation of the pore water occurs at gbout u=— 100 kNm-?, it
would be necessary to apply a back pressure to reach the ultimate
conditions in either test. The back pressure required for Sample A is
impractically high and so the test would have to be terminated before the
ultimate conditions were reached. &

12-6 SUMMARY

1. The shear behaviour of sand may be fitted into the same framework
that served for clay.

2. Sand samples are usually on the dry side of the critical state line and their
behaviour must, theref be pared with heavily overe lidated
clay.

3. A state boundary surface similar lo the, Hvorslev surface for clays limits
the extent of stress paths in g’ : p': v space, and the shape of the surface
is such that sands, like overconsolidated clays, can support values of
g'lp' greater than M. _

4. There is a link between the stress ratio ¢'/p’ and the rate of dilation
(—8¢,/8¢,) of the sand. The highest values of ¢'[p’ will be observed for
samples which are dense, when they are tested drained at low stress levels,
since they will dilate strongly at failure.
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CHAFTER

| ~ THIRTEEN
BEHAVIOUR OF SOILS BEFORE FAILURE

13-1 INTRODUCTION

In the last three chapters we have introduced the concept of the critical
state line and the state boundary surface for sands and clays. The stress
paths followed by soils in drained and undrained tests have been identified,
and methods of calculating volumetric strains to the ultimate condition on
the critical state line have been described, So far, however, we have not
considered the magnitude of the shear strains and we have not considered
the stress-strain behaviour of a sample early on in a est.

In order ‘to consider deformations at an early stage of a test, it is
necessary, and indeed essential, to make a distinction between elastic and
plastic strains and to develop & criterion which determines whether a
particular loading path produces elastic or plastic strains. We will also
discuss the application of the theories of elasticity and plasticity to the
stress—strain behaviour of soil. We shall find that interpretation of soil
deformations in terms of these theories gives extra insight into the critical
state framework developed in the preceding chapters. It also allows
quantitative estimates to be made of the shear and volumetric strains caused
by loading.

We go on to discuss the Cam-clay theory, which uses ideas of elasticity
and plasticity expressed in quantitative mathematical terms. We have chosen
to discuss the original simple Cam-clay theory, which is described by
Schofield and Wroth (1968, pp. 134-166) in more detail, because it is simple,
it illustrates how the various concepts fit together, and it is the basis for
much recent work on the stress-strain behaviour of soil. Nevertheless, readers
should be aware that although predictions of the theory are broadly correct,
they are unsatisfactory in some respects and the simple theory has been
superseded by theories which, althéugh conceptually similar to Cam-clay,
are mathematically more complex. The reader must be referred to recent
research papers and cun{erenms for an up-to-date account

13-2 ELASTIC AND PLASTIC DEFORMATIONS: THE
ELASTIC WALL

1t is first necessary to make a dislinction between elastic (recoverable) and
plastic (irrecoverable) strains. This distinction is commonly made in the

262
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discussion of the behaviour of melals. Thus, the behaviour of metal can
often be idealized as shown jn Fig. 13-1. For uniaxial applied stresses less
than o, the deformation is linearly elastic and, if the metgl is loaded and
unloaded, the strains caused on loading are fully recovered on unloading.
However, if the metal is loaded beyond a stress o, additiopal plastic strains
oceur and the state of the metal might be represented by point G. When the
metal is unloaded it follows path GB and some (elastic) strain is recovered.
However, at B, the metal has suffered a large irrecoverahle plastic strain,
If the metal is reloaded from B the deformation is linearly ejastic for applied
stresses less than o, which'is greater than o,. The stresses o, and o, at
which the behaviour of the metal becomes plastic are known as yield stresses
and an effect of plastic straining from Y to G is to raise the yield stress from
oy 10 op; this effect is known as strain hardening. 1f the metal is loaded
beyond G it will eventually fail at F where the stress js oy

For soil, the distinction between recoverable and irrecoverable strain

_is best illustrated by behaviour during isotropic compression. The normal

consolidation line for a clay is indicated by line ABC in Fig, 13-2. If the clay
is unloaded from B, it moves along the swelling line BD, If it is reloaded
from D, the soil retraces path DB to B, after which additiopal compressions
occur as the sample moves down the normal consolidation line to C,
Similarly, if the sample is unloaded from C, it moves back along the swelling
line to E. We should note (hat, at a fixed value of mean pormal effective
stress, the sample is at a lower specific volume at E than it D, i.e., some
irrecoverable (plastic) strain ras occurred on the path DBCE. We know that
the strains are recoverable a ong the swelling lines DB and EC, and so the
plastic strains must have ‘occurred over path BC, that part of the path that
lies on the state boundary surface, There is a direct analogy with the

Axial

stress, o, F

orf : = of

ol 4

Plastic
o, b ¥ -
. Unload-reload
Elastic
B Axial strain, ¢,

Figure 13-1 Elastic-plastic behaviour of metal
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Normal consolidation line

Flgure 13-2 Elastic-plstic behaviour of clay in i i ion and swelling

occurrence of plastic strains over the path YG for the metal specimen of
Fig. 131, .
We can generalize this observation, and argue for soils that plastic
(irrecoverable) strains only occur when the sample is fraversing the stare
boundary jurface. Thus, for paths below the state boundary surface, the
strains are purely elastic and recoverable. This hypothesis leads to some
strong limifations on the paths that can be followed by specimens. For
example, because irrecoverable (plastic) strain has occurred between points
D and E of Fig. 13-2, it means that the test path followed by the sp
must have touched the state boundary surface between D and E. The path
DBCE satisfies that requirement because section BC (the normal oonsnllidatiqn
line) lies on the Roscoe surface. An alternative path for the specimen to
move from D to E is for it to be sheared at constant p'. Then, in order thaf
the necessary irrecoverable strains occur, the test path must be such that g

.increases so that the test path strikes the Roscoe state boundary surface at G

(Fig. 13-3), above D, before the path traverses the state boundary surface
to K, above E. As the value of g’ reduces, the sample then del‘on?s only
elastically as it moves to E. The value of ¢’ at G fixes the value ?f q"-which
must be applied to the sample at D (when p’ is held constant) in order to
cause irrecoverable deformation. '

There is a range of other paths by which the sample could moye from
D to E; all of them require that the sample moves across the state bqundar)‘
surface. Conversely, there is a range of paths which may be followed hy_a_
sample at D without plastic deformation occurring. All paths that remain
on the curved vertical plane above the swelling line BD, but below the state
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Critical state line

Normal consolidation  Swelling
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v
Figure 13-3 The test path from points DtoEing':p'iospace

boundary surface, will cause only elastic deformation of the soil; this curved
surface, BJIH in Fig. 13-4 is called the elastic wall. Of course there is an
infinite number of elastic walls, each elastic wall being associated with a
particular swelling line. .

If the state of a sample is below the state boundary surface, its behaviour
is assumed to be elastic and stresses and strains may be related through
the theory of elasticity. On the other hand, if the state of a sample lies on the
state boundary surface, both plastic and elastic strains may occur and the
plastic strains may be calculated from the theory of plasticity. The importance
of the distinction between elastic and plastic strains is that elastic strains are
relatively small, while plastic strains are relatively large. Thus, if a loading
on a soil stratum causes only elastic strains, we expect that the soil
deformations would be small. Conversely, soil deformations and settlements
will be large if significant amounts of plastic strain occur in the soil stratum.

For the theoretical calculation of soil deformations, the distinction

between elastic and plastic strains is important, for the two types ?I‘ strain

are computed completely differently.

13.3 CALCULATION OF ELASTIC STRAINS

The behaviour of an ideal isotropic elastic soil was discussed in Sec. 4-11.
We began with the generalized form of Hooke's law in Eqs (4-66) and we

BEHAVIOUR OF SOILS BEFORE FAILURE 167

Critical state line (R

v
Figure 13-4 The elastic wall

showed that increments of strain could be related to Increments of effective
stress more conveniently through the use of invariants by Eqs (4-76) and
(4-77). These were

1

8e, = 80/ +0.3¢", (13-1)

t l ’

8¢, =0.8p +ﬁ;8q. (13-2)
where X', the elastic bulk modulus, and G, the elustic shear modulus, were
constants over the appropriate increments of stress and strain. Equations
(13-1) and (13-2) show that, for an ideal isotropic elastic soil, volumetric
strains are connected with p’ and scparated from g and shear strains are

connected with ¢’ and separated from p'. e
We have now postulated the existence of the clastic wall BJIH in Fig.
13-4 and suggested that thewpath of an overconsolidated soil whose state lies
below the state boundary surface must remain on a particular elastic wall;
consequently, the path followed by a ple of an overc lidated soil
during loading or unloading will follow the line of intersection of the elastic
wall and the appropriate drained or undrained loading planes discussed in
Section 10.5. Thus, Fig. 13-5 shows the line of intersection DG of the elastic




. JE .

i

o=

404 THE MECHANICS OF S0ILS
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. Undrained

Elastic wall

Normal consolidation
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Figure 13-5 Intersection of an elastic wall and an undrained plane

wall and an undrained plane QRST for a constant volume loading or un-
loading test. The path DG rises vertically from D to G, which is on the state
boundary surface. If the sample is loaded beyond G it will suffer plastic
strains as its state traverses the state boundary surface along its intersection
with the undrained plane towards its ultimate state at F at the intersection
of the critical state line and the undrained plane.

For undrained loading of saturated soil, when 8¢, =0, Eq. (13-1) bas
the consequence that

8’ =0. (13-3)
This confirms that the stress path DG in Fig. 13-5 rises vertically up the
intersection of the undrained plane and the elastic wall. It was for this
reason that we sketched undrained effective stress paths on overconsolidated
samples, in Fig. 11-15 and elsewhere, as being vertical until they reached
the state boundary surface.

Figure 13-6 shows the intersection DG of an elastic wall and a drained
plane QRST, and this is the path followed by a sample of isotropic elastic
soil during loading or unloading in"a drained triaxial compression test; the
line DG is not straight because the elastic wall is curved in plan and there is
a reduction in volume associated with an increase of p’, It was for this
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reason that we showed, in Fig, 11-22 and clsewhere, that there was com-
pression of o lidated samples in drained triaxial tests before the
sample reached the state bound y surface. If the sample is loaded beyond G
(Fig. 13-6), if will suffer plastic strains as its state traverses the state boundary
surface along ifs intersection with the drained plane towards its ultimate
state at F, wjjef the critical state line and the drained plane intersect,

We now fave sufficient information to calculate the shear and volumetric
straina in a 8gmple of ideal isotropic clastic soil as it is loaded or unloaded
in drained frjaxial compression along DG. The elastic wall is vertically
above a swelling line BDF introduced in Chapter 7 and is therefore given by

v=yu~xlop' (134)
or
80 = —x(8p'/p’). (13-5)
Hence, from Eq. (4-54), Se, = —8u/v, we have )
8e, = (kfup”) 8p’. e (13-6)
Thus, the bulk modulus K” for the soil is given by )
K' =up'li, i (13-7)
Critlcal state line e
14 ¢
Drained plane

Normal edhsolidation
line

v
Figure 13- Intersection of an elastic wall and a drained plane
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and using the result for elastic materials that
' G E (=) -2

W+ E. -2+ . 18
i D .
G‘-%%. (13-9)

So, from Egq. (13-2),

21 +v) 5,

" g2 ¢ i
Equations (13-6) and (13-10) define the stress-strain behaviour of a soil
undergoing ideal isotropic elastic deformations during a drained triaxial
compression test along a path such as DG in Fig. 13-6, They are also valid
for any loading path in which the state of the soil remains below the state
boundary surface. In particular, Egs. (13-6) and (13-10) are valid for any
undrained loading path such as DF in Fig. 13-5, in which case Be,=8p' =0
and increments of shear strain are related to increments of ¢’ by Eq. (13-10).

Equation (13-7), together with the definition of bulk modulus X' in
terms of E' and ', gives
K' = vp'fic = E'[3(1-2") (13-11)
and, hence,
E" = 3pp'(1 - 2')x. (13-12)

Values for E' and v may be obtained directly from the results of a drained
triaxial compression test in which doj= 4o, =0 and axial and radial
strains are measured. From the generalized Hooke's law in Eqs (4-67),
putting 8oy = o, = 0 :
E' = Bal f8¢,, (13-13)
v = — Be,[Be,. (13-14)
In this treatment of elastic behaviour in soils, the value of Young's
modulus E' as given by Eq. (13-12) depends on the current values of p
and p', on the value of x which defines the slope of a swelling line as well
as on V. Even though we assume that »" is constant, the value of E' will
not be constant and the soil behaviour, even if it is isotropic and elastic,
will not be linear; Eqs (13-6) and (13-10) are, therefore, valid only for
increments of loading sulficiently small so that the value of E' may be
d to be t H , in many cases the change bof specific
v during a loading path which causes only elastic strains; and which
therefore, remains on a particular elastic wall, is relatively small and so the
value of E')p" will remain approximately constant. Hence, we may write

E'[p’ = 3p(] — 2')fx = constant. (13-15)
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C ly, for a drai d loading or unloading test on a soil in the elastic
range in which the value of p' changes during loading, we would expect the
stress-strain behaviour to be non-linear. On the other hand, for any un-
drained loading, or unl ding of an i ,.I-loil:!ﬂlheelul.icrauge
8p' = 0 and, hence, in theory, the stress-strain behaviour should be linear,
The treatment in this section illustrates a simple, but fairly realistic,
approach to the non-linear elastic behaviour of soils; recent work at
Cambridge and elsewhere suggests that there are certain additional mathe-
matical and theoretical restrictions on the permissible relationships between
the elastic parameters which must be allowed for in a rigorous treatment.

13-4 CALCULATION OF ELASTIC STRAINS FOR
UNDRAINED LOADING IN TERMS OF TOTAL STRESSES

So far, in accordance with the principle of effective stress, we have quite
properly related increments of elastic strain to increments of effective stress,
However, for the special case of undrained loading of saturated soil when

_there is no vol hange, it is ient to relate i of strain to

Increments of total stress, ignoring any pore pressures genmerated. This
technique of idering total st instead of effective stresses is common
in soil mechanics and it is a technique which we will consider again in
Chapter 14, in connection with the undrained strength of soils,

" For undrained elastic behaviour in terms of total stress, we define an
undrained Young's modulus E, and an undrained Poisson’s ratio vy. These
have the same meanings as £ and +', but are defined in terms of total stresses
for undrained loading of saturated soil. Hence, by analogy with Eqs (13-13)
and (13-14), for an undrained triaxial test with doy = Ao, = 0 we have

E, = 80,/8e,, . (13-16)
vy =—B¢,/Be,, (13-17)

and the generalized form of Hooke's law for undrained londing in terms of
lotal stresses becomes z

ey = (1/E,) [80y—v, 8oy —v, 8a,),
By = (1/Ey) [8ay~ vy 80y —v, 80y), (13-18)
8ty = (1/E,) [80y— v, 8oy —v,, Soy).

Following earlier argumepts, the behaviour of an ideal isotropic elastic
soil during undrained loading in terms of invariants of total stress is given by

Be, = :E,l-ﬁp+0.8q, (13-19)

§
3:,—0.5,04-3—0.' 3, (13-20)



	http://guilangeotechnical90: 
	blogfa: 
	com/: 




