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PREFACE TO THE THIRD EDITION

Since its first publication,Theory of Plasticity has been well received by both students
and instructors across the world, and has been generally recognized as a useful
exposition of the mechanics of plastic deformation of metals. The many encouraging
comments I have received over the years from professors and researchers in the
field of plasticity have prompted me to prepare a revised third edition of the book.
Although several other works on plasticity have appeared since the first publication
of this book, there is apparently none that deals with the specific areas of application
treated in this book with comparable degrees of completeness.

The major addition to this third edition consists of the addition of a new Chap-
ter 9 that deals with numerical methods of solving elastic/plastic problems, using
both the finite difference and finite element methods. A new section has been added
to Chapter 4 to discuss the limit analysis of space frames, including grillages, which
involve beams under combined loading. A number of recent references to the pub-
lished literature on plasticity are made in appropriate footnotes throughout the book.
A set of new homework problems is also included at the end of several chapters for
the benefit of both the student and the instructor, and worked solutions for instructors
are provided on the accompanying website at http://textbooks.elsevier.com.

It is hoped that this new edition will continue to be useful for teaching and
research in the field of plasticity. Though intended primarily for graduate students,
there is also material in the book that could be used for senior undergraduate students
and by practicing engineers. The book will also serve as a suitable reference work
for numerous other courses related to solid mechanics.

I would like to express my sincere gratitude to Professor J. M. Alexander, who
has always encouraged me with his admiration for this work. I am also grateful to
Professor W. Johnson for his support. It is a great pleasure to express my sincere
thanks to Mr. J. Simpson of Elsevier for his unfailing support and cooperation in
bringing out the revised third edition of the book.Above all, I am profoundly grateful
to Ma Indira Devi, who graciously provided the inspiration that was so necessary
for the satisfactory completion of this work.

J. Chakrabarty
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PREFACE TO THE FIRST EDITION

During recent years, there has been considerable interest in the application of the
macroscopic theory of plasticity to engineering problems associated with structural
designs and the technological forming of metals. The need for a comprehensive text
book on plasticity, incorporating the most recent developments of the subject, has
been strongly felt for some years. This book has been written primarily to meet
the needs of graduate and research students of Mechanical, Civil, and Metallurgical
Engineering, although some of the material in the book is also suitable for under-
graduate students and practicing engineers. In order to discuss the various topics
as fully as possible, it has been found necessary to treat the subject matter in two
volumes, of which the first one is now presented to the reader.

The first chapter of the book deals with the analysis of stress and strain rate, and
introduces the definition of the stress rate. The second chapter discusses the yield cri-
teria, stress–strain relations, uniqueness theorems, and extremum principles.A series
of physical problems where elastic and plastic strains are simultaneously important
are discussed in Chaps. 3 and 5. A detailed account of the limit analysis of framed
structures is given in Chap. 4 as a logical continuation of the treatment of the bending
of beams. The remaining chapters of the book deal with the theory and application
of slipline fields, an area that has received the greatest attention in the literature.
The basic theory is explained in Chap. 6, which includes the recent analytical and
numerical methods of solution of the plane strain problem. A variety of practical
problems involving steady, pseudosteady, and nonsteady states of plastic flow are
thoroughly discussed in Chaps. 7 and 8. Several numerical tables are presented in
the Appendix to facilitate the computation of slipline field solutions.

Tensor or suffix notation is introduced in the first chapter, where the summation
convention and the associated algebraic operations have been explained for the bene-
fit of those readers who are unfamiliar with them. The suffix notation is a convenient

xi
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xii preface to the first edition

shorthand for writing the general equations, and is practically indispensable in the
derivation of general theorems. Bessel functions are extensively used in the latter
half of Chap. 6 for the analytical solution of boundary-value problems involving
slipline fields. These sections may be omitted during the first reading, provided the
results used in the subsequent chapters for the solution of special problems are taken
for granted. I have made an earnest endeavor to make the treatment of each problem
as complete as is warranted by the present state of knowledge. A large number of
exercise problems are provided at the end of each chapter to enable the student to
test his or her mastery of the subject. There is more material in this book than can be
covered in a one-semester course on plasticity, so that the instructor has sufficient
flexibility in the selection of topics.

References to original papers and books relating to plasticity and its applications
have been given in numerous footnotes throughout the book. The literature in the
field of plasticity is so extensive that I have been compelled to restrict myself mainly
to publications that appeared in English. The reader would be able to form a list of
publications in other languages from some of the references cited in this book.
Although an exhaustive bibliography has not been attempted, I wish to express my
sincere regrets for any inadvertent omission of important publications.

I would like to thank the following professors for reviewing the manuscript:
David H. Allen, Texas A & M University; Nicholas J. Altiero, Michigan State Uni-
versity; James M. Gere, Stanford University; Kerry S. Havner, North Carolina State
University; Philip G. Hodge, University of Minnesota; Francis T. C. Loo, Clarkson
University; Huseyin Sehitoglu, University of Illinois; and David J. Unger, Ohio State
University.

I take this opportunity to record my profound appreciation of the cooperation
offered by the officers of McGraw-Hill Book Company during the planning and
production of the book. I am indebted to Albert Harrison, Harley Editorial Services
for his ready cooperation while dealing with the proofs.

J. Chakrabarty
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CHAPTER

ONE
STRESSES AND STRAINS

1.1 Introduction

The theory of plasticity is the branch of mechanics that deals with the calculation
of stresses and strains in a body, made of ductile material, permanently deformed
by a set of applied forces. The theory is based on certain experimental observations
on the macroscopic behavior of metals in uniform states of combined stresses. The
observed results are then idealized into a mathematical formulation to describe the
behavior of metals under complex stresses. Unlike elastic solids, in which the state of
strain depends only on the final state of stress, the deformation that occurs in a plastic
solid is determined by the complete history of the loading. The plasticity problem
is, therefore, essentially incremental in nature, the final distortion of the solid being
obtained as the sum total of the incremental distortions following the strain path.

A metal may be regarded as macroscopically homogeneous and isotropic when
the small crystal grains forming the aggregate are distributed with random orienta-
tions. As a result of plastic deformation, the crystallographic directions gradually
rotate toward a common axis, producing a preferred orientation. An initially
isotropic material thereby becomes anisotropic, and its mechanical properties vary
with direction. The development of anisotropy with progressive cold work and the
resulting strain-hardening are too complex to be successfully incorporated in the the-
oretical framework. In the mathematical theory of plasticity, it is generally assumed
that the material remains isotropic throughout the deformation irrespective of the
degree of cold work. Since the strain-hardening characteristic of a metal in a complex
state of stress can be related to that in uniaxial tension or compression, it is necessary
to examine the uniaxial stress–strain behavior in some detail before considering the
general theory of plasticity.

1
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The plastic deformation in a single crystal is generally produced by slip, which
is the sliding of adjacent blocks of the crystal along definite crystallographic planes,
called slip planes. The boundary line separating the slipped region of a crystal from
the neighboring unslipped region is called a dislocation. The movement of the dis-
location, which is responsible for the slip, is initiated by a line defect causing a local
concentration of stress. Slip usually occurs on those planes which are most densely
packed with atoms. The magnitude and direction of the relative movement in a slip
is specified by a vector known as the Burgers vector. A dislocation is said to be one
of unit strength when the magnitude of the Burgers vector is equal to one atomic
spacing. The terms edge dislocation and screw dislocation are used to describe the
situations where the Burgers vector is normal and parallel respectively to the dis-
location line. In general, a dislocation is partly edge and partly screw in character,
and the dislocation line forms a curve or a closed loop.†

In a polycrystalline metal, the crystallographic orientation changes from one
grain to the next through a narrow transition zone, or grain boundary, which acts as
an effective barrier to slip. Dislocations pile up along the active slip planes at the
grain boundaries, the effect of which is to oppose the generations of new dislocations.
When the applied stress is increased to a critical value, the shear stress developed
at the head of the dislocation pile-up becomes large enough to cause dislocation
movement across the boundary. The dislocation pile-up is mainly responsible for
strain-hardening of the metal in the early stages of plastic deformation. The rate
of hardening of the polycrystalline metal is always higher than that of the single
crystal, where the increase in yield stress is caused by dislocations interacting with
one another and with foreign atoms serving as barriers. The dislocation interactions
control the yield strength of a polycrystalline metal only in the later stages of the
deformation.

If the temperature of the strain-hardened metal is progressively increased, the
cold-worked state becomes more and more unstable, and the material eventually
reverts to the unstrained state. The overall process of heat treatment that restores
the ductility to the cold-worked metal is known as annealing. The temperature
at which there is a marked decrease in hardness of the metal is known as the
recrystallization temperature. The dislocation density decreases considerably on
recrystallization, and the cold-worked structure is replaced by a set of new strain-
free grains. The greater the degree of cold-work, the lower the temperature necessary
for recrystallization, and smaller the resulting grain size.‡

In ductile metals, under favorable conditions, plastic deformation can con-
tinue to a very large extent without failure by fracture. Large plastic strains do occur

† For a complete discussion, see A. H. Cottrell, Dislocations and Plastic Flow in Crystals,
Clarendon Press, Oxford (1953); W. T. Read, Dislocations in Crystals, McGraw-Hill Book
Company, New York (1953); J. Friedel, Dislocations, Addison-Wesley Publishing Company, Read-
ing, Mass. (1964); F. R. N. Nabarro, Theory of Crystal Dislocations, Clarendon Press, Oxford (1967);
D. Hull, Introduction to Dislocations, 2d ed., Pergamon Press, Oxford (1975).

‡ See, for example, G. E. Dieter, Mechanical Metallurgy, Chap. 5, 2d ed., McGraw-Hill Book
Company, New York (1976). See also R. W. K. Honeycombe, The Plastic Deformation of Metals, 2d
ed., Edward Arnold, London (1984).
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in many metal-working processes, which constitute an important area of application
of the theory of plasticity. While elastic strains may be neglected in such problems,
the continued change in geometry of the workpiece must be allowed for in the the-
oretical treatment. Severe plastic strains are produced locally in certain mechanical
tests such as the hardness test and the notch tensile test. The significance of these
tests cannot be fully appreciated without a knowledge of the extent of the plastic
zone and the associated state of stress. Situations in which elastic and plastic strains
are comparable in magnitude arise in a number of important structural problems
when the loading is continued beyond the elastic limit. Structural designs based on
the estimation of collapse loads are more economical than elastic designs, since the
plastic method takes full advantage of the available ductility of the material.

1.2 The Stress–Strain Behavior

(i) The true stress–strain curve The stress–strain curve of an annealed material
in simple tension is found to coincide with that in simple compression when the true
stress σ is plotted against the true or natural strain ε. The true stress, defined as the
load divided by the current cross-sectional area of the specimen, can be significantly
different from the nominal stress, which is the load per unit original area of cross-
section. Let l denote the current length of a tensile specimen and dl the increase in
length produced by a small increment of the stress. Then the true strain increases by
the amount dε= dl/l. If the initial length is l0, the total strain is ε= ln(l0/l), called
the true or natural strain.† For a specimen uniformly compressed from an initial
height h0 to a final height h, the magnitude of the natural strain is ε= ln(h0/h). The
conventional or engineering strain e, on the other hand, is the amount of extension
or contraction per unit original length or height. It follows that ε= ln(l + e) in the
case of tension, and ε= −ln(l − e) in the case of compression. Thus ε becomes
progressively lower than e in tension, and higher than e in compression, as the
deformation is continued in the plastic range.

Figure 1.1 shows the true stress–strain curve of a typical annealed material
in simple tension. So long as the stress is sufficiently small, the material behaves
elastically, and the original size of the specimen is regained on removal of the
applied load. The initial part of the stress–strain curve is a straight line of slope
E, which is known as Young’s modulus. The point A represents the proportional
limit at which the linear relationship between the stress and the strain ceases to
hold. The elastic range generally extends slightly beyond the proportional limit.
For most metals, the transition from elastic to plastic behavior is gradual, owing to
successive yielding of the individual crystal grains. The location of the yield point
B is, therefore, largely a matter of convention. The corresponding stress Y , known
as the yield stress, is generally defined as that for which a specified small amount of
permanent deformation is observed. For theoretical purposes, it is often convenient

† The concept of natural strain has been introduced by P. Ludwik, Elemente der Technologischen
Mechanik, Springer Verlag, Berlin (1909). The natural strains associated with successive deformations
are additive, but the engineering strains are not.
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Figure 1.1 True stress–strain curve
of metals with effects of unloading
and reversed loading.

to assume a sharp yield point defined by the intersection of a pair of straight lines,
one of which is a continuation of OA and the other a tangent to the stress–strain
curve at a point slightly above B.

Beyond the yield point, the stress continually increases with further plastic
strain, while the slope of the stress–strain curve, representing the rate of strain-
hardening, steadily decreases with increasing stress. If the specimen is stressed to
some point C in the plastic range and the load is subsequently released, there is an
elastic recovery following the path CD which is very nearly a straight line† of slope
E. The permanent strain that remains on complete unloading is equal to OE. On
reapplication of the load, the specimen deforms elasticity until a new yield point
F is reached. Neglecting the hysteresis loop of narrow width formed during the
loading and unloading, F may be taken as coincident with C. On further loading,
the stress–strain curve proceeds along FG, virtually as a continuation of the curve
BC. The curve EFG may be regarded as the stress–strain curve of the metal when
prestrained by the amount OE. The greater the degree of prestrain, the higher the
new yield point and the flatter the strain-hardening curve. For a heavily prestrained
metal, the rate of strain-hardening is so small that the material may be regarded as
approximately nonhardening or ideally plastic.

A generic point on the stress–strain curve in the plastic range corresponds to
a recoverable elastic strain equal to σ/E, and an irrecoverable plastic strain equal

† L. Prandtl, Z. angew. Math. Mech., 8: 85 (1928).
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to ε− σ/E. If the stress is plotted against the plastic strain only, and the material
is assumed to have a sharp yield point, the resulting curve will begin at σ= Y . Let
H be the slope of the true stress–strain curve excluding the elastic strain, and T
the slope of the curve including the elastic strain, for a given value of the stress σ.
The quantities H and T are known as the plastic modulus and the tangent modulus
respectively. A stress increment dσ produces an elastic strain increment dσ/E and
a plastic strain increment dσ/H, while the total strain increment is dσ/T . Hence the
relationship between H and T is

1

T
= 1

E
+ 1

H
(1)

In an annealed material, H is considerably greater than T at the initial yielding, but
these two moduli rapidly approach one another as the strain is increased. The differ-
ence between H and T becomes insignificant when the slope is only a few times the
yield stress. At this stage, the elastic strain increment becomes negligible in com-
parison with the plastic strain increment. When the total strain is sufficiently large,
the elastic strain itself is negligible. The stress–strain behavior at sufficiently large
strains is identical to that of a hypothetical material in which E is infinitely large. Such
a material is regarded as rigid/plastic, since it remains undeformed so long as the
stress is below the yield point, while the subsequent deformation is entirely plastic.

Suppose that a specimen that has been completely unloaded from a tensile plas-
tic state, represented by the point C, is reloaded in simple compression (Fig. 1.1).
The stress–strain curve will then follow the path DF ′, where the new yield point
F ′ corresponds to a stress that is appreciably smaller in magnitude than that at C.
This phenomenon is known as the Bauschinger effect,† which occurs in real metals
whenever there is a reversal of the stress. The subsequent strain-hardening follows
the path F ′G′, and approaches the stress–strain curve in compression as the loading
is continued. The lowering of the yield stress in reversed loading is mainly caused by
residual stresses that are left in the specimen on a microscopic scale due to the differ-
ent stress states in the individual crystals. The Bauschinger effect can, therefore, be
largely removed by a mild annealing. In the theory of plasticity, it is generally neces-
sary to neglect the Bauschinger effect, the material being assumed to have identical
yield stresses in tension and compression irrespective of the previous cold-work.

Some metals, such as annealed mild steel, exhibit a sharp yield point followed
by a sudden drop in the stress, which remains approximately constant during a
small amount of further straining. The sharp peak is known as the upper yield point,
which is usually 10 to 20 percent higher than the lower yield point represented
by the constant stress. At the upper yield point, a lamellar plastic zone, known as
Lüder’s band, inclined at approximately 45◦ to the tensile axis, appears at a local
stress concentration. During the subsequent elongation under constant stress, several
Lüder’s bands appear and gradually spread over the entire specimen. After a total
yield point elongation of about 10 percent, the stress begins to rise again due to

† J. Bauschinger, Zivilingenieur, 27: 289 (1881).
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strain-hardening, and the stress–strain curve then continues as before. The yield
point drop is suppressed by a light cold-work, but the phenomenon reappears after
the metal has been rested for several days at room temperature, or several hours at
a relatively high temperature.†

(ii) Some consequences of work-hardening A longitudinal extension in the tensile
test is accompanied by a contraction in the lateral direction. The ratio of the mag-
nitude of the lateral strain increment to that of the longitudinal strain increment is
known as the contraction ratio, denoted by η. In the elastic range of deformation, the
contraction ratio has a constant value equal to Poisson’s ratio ν.When the yield point
is exceeded, the plastic part of the lateral strain increment for an isotropic material
is numerically equal to one-half of the longitudinal plastic strain increment. Since
the ratio of the elastic parts of the lateral and longitudinal strain increments is equal
to −ν, the total lateral strain increment in uniaxial tension is

dε′ = − 1
2 dε+ ( 1

2 − ν)dεe

where dεe is the elastic part of the longitudinal strain increment dε. In view of the
relationship dεe = dσ/E = (T/E)dε, the contraction ratio becomes

η = −dε′

dε
= 1

2 − ( 1
2 − ν)

T

E
(2)

Since the slope of the stress–strain curve decreases fairly rapidly in the early stages
of strain-hardening, the contraction ratio rapidly approaches the asymptotic value
of 0.5 as the strain is increased in the plastic range.‡ For a material having a sharp
yield point, the contraction ratio changes discontinuously at this point to a value that
depends on the initial rate of strain-hardening. When the tangent modulus becomes
of the same order as that of the current yield stress, η� 0.5, and the incremental
change in volume becomes negligible.

The standard tensile test is unsuitable for obtaining the stress–strain curve of
metals up to large values of the strain, since the specimen begins to neck when the
rate of hardening decreases to a critical value. At this stage, the increase in load
due to strain-hardening is exactly balanced by the decrease in load caused by the
diminution of the area of cross section. Consequently, the load attains a maximum
at the onset of necking. The longitudinal load at any stage is P = σA, where A is the
current cross-sectional area and σ the current stress, and the corresponding volume
of the specimen is lA, where l is the current length. Using the constancy of volume,
the maximum load condition dP = 0 may be written as

dσ

σ
= −dA

A
= dl

l

† In addition to low-carbon steel, yield point phenomenon has been observed in aluminum,
molybdenum, and titanium alloys.

‡ For an experimental investigation on the variation of the contraction ratio, see A. Shelton,
J. Mech. Eng. Sci., 3: 89 (1961).
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Figure 1.2 Peculiarities in tension and compression. (a) Location of point of tensile necking;
(b) nominal stress versus engineering strain.

Since dl/l is equal to dε, the condition for the onset of necking becomes

dσ

dε
= σ (3)

When the true stress–strain curve is given, the point on the curve that corresponds to
the tensile necking can be located graphically from the fact that the slope at this point
is equal to the current stress (Fig. 1.2a). A heavily prestrained metal will obviously
neck as soon as the yield point is exceeded. Since dε= de/(1 + e), the condition for
necking can be expressed in the alternative form

dσ

de
= σ

1 + e

It follows that the maximum load corresponds to the point of contact of the tangent
to the (σ, e) curve from the point (−1, 0) on the negative strain axis.† The tensile
test becomes unstable when the load reaches its maximum. The deformation is
confined locally in the neck, while the remainder of the specimen recovers elastically
under decreasing load until fracture intervenes. The stress distribution in the neck
assumes a triaxial state which varies through the cross section of the neck. The
test no longer provides a direct measure of the stress–strain behavior. Although the
stress–strain curve may be continued by introducing a correction factor that requires

† A Considere, Ann. ponts et chausses, 6: 574 (1885). An interesting discussion has been given by
C. R. Calladine, Engineering Plasticity, Chap. 2, Pergamon Press, Oxford (1969).
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careful measurements of the geometry of the neck,† the experimental difficulties
render the method unsuitable for practical purposes.‡

The strain-hardening characteristic of metals at large strains is most conveniently
obtained by compressing a solid cylindrical specimen between a pair of parallel
platens. In the absence of efficient lubrication, the compression test is complicated
by the fact that the friction at the platens restricts the metal flow at the ends of
the specimen, causing barreling as the compression proceeds. Since homogeneous
compression is thus prevented by friction, the stress–strain curve cannot be derived
by the direct measurement of the load and the change in height of the specimen. In
actual practice, the difficulty is overcome by using several cylinders with different
initial diameter/height ratios, subjecting them to the same load each time on an
incremental basis, and then extrapolating the results at each stage to obtain the strain
corresponding to zero diameter/height ratio.§ Since the barreling would theoretically
disappear for a specimen of infinite height, the extrapolation method eliminates the
frictional effect.

Homogeneous deformation in the simple compression test can be achieved by
inserting PTFE (polytetra fluoroethylene) films of suitable thickness between the
specimen and the compression platens. As well as producing effective lubrication,
the PTFE films are themselves compressed so as to exert radial pressure to the
material near the periphery. This inhibits the barreling tendency, except when the
film thickness is too small. An excessive film thickness, on the other hand, produces
bollarding in which the diameter of the specimen becomes bigger at the ends than
at the middle. For a given specimen, there is an optimum film thickness for which
neither barreling nor bollarding would occur. The compression should be carried
out incrementally, renewing the PTFE films after each load application. Using the
constancy of volume, the load required during the homogeneous compression may
be written as

P = σA = σA0h0

h
= σA0

1 − e

where A0 is the original area of cross section of the specimen. The graph for P against
e shows an upward inflection and rises continuously without limit (Fig. 1.2b). Setting
d2P/de2 = 0, and using the fact that d/dε= (1 − e)d/de, the condition for inflection
is found as (

d

dε
+ 2

)(
dσ

dε
+ σ

)
= 0 (4)

† P. W. Bridgman, Trans. A.S.M.E., 32: 553 (1944); N. N. Davidenkov and N. I. Spiridonova, Proc.
Am. Soc. Test. Mat., 46: 1147 (1946). See also E. R. Marshall and M. C. Shaw, Trans. A.S.M.E., 44:
716 (1952); J. D. Lubahn and R. P. Felgar, Plasticity and Creep of Metals, p. 114, Wiley and Sons, New
York (1961).

‡ A dynamic analysis for the development of the neck has been given by N. K. Gupta and B. Karunes,
Int. J. Mech. Sci., 21: 387 (1979).

§ The extrapolation method has been developed by G. Sachs, Zeit. Metallkunde, 16: 55 (1924),
M. Cook and E. C. Larke, J. Inst. Metals, 71: 371 (1945), A. B. Watts and H. Ford, Proc. Inst. Mech.
Eng., 169: 1141 (1955).
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which defines the corresponding point on the true stress–strain curve. This point is
most conveniently located if the stress–strain curve is represented by an empirical
equation. In view of the incompressibility of the material, the nominal stress is
s = σ exp(ε) in compression and s = σ exp(−ε) in tension.

The work done in changing the height of a specimen from h to h + dh in simple
compression is −P dh, where P is the current axial load. The incremental work done
per unit volume of the specimen is therefore equal to −P dh/Ah or σ dε. It follows
that during the homogeneous compression of a specimen from an initial height h0
to a current height h, the work done per unit volume is given by the area under the
true stress–strain curve up to a total strain of ln(h0/h).

(iii) Empirical stress–strain equations For theoretical computations, it is often
necessary to represent an experimentally determined stress–strain curve by an empir-
ical equation of suitable form. When the material is rigid/plastic, it is frequently
convenient to employ the Ludwik power law†

σ = Cεn (5)

where C is a constant stress, and n is a strain-hardening exponent usually lying
between zero and 0.5. The equation predicts a zero initial stress and an infinite initial
slope, except for n = 0 which represents a nonhardening rigid/plastic material. The
higher the value of n, the more pronounced is the strain-hardening characteristic of
the material (Fig. 1.3a). Since dσ/dε= nσ/ε in view of (5), it follows from (3) that
the magnitude of the true strain at the onset of necking in simple tension is equal to
n. The work done per unit volume during a homogeneous extension or contraction
is easily shown to be σε/(1 + n), where σ and ε are the final values of stress and
strain.

The simple power law (5) may be readily modified by including a constant term
Y representing the initial yield stress. The stress–strain equation then becomes

σ = Y (1 + mεn) (6)

where m and n are dimensionless constants. Although this formula represents the
strict rigid/plastic behavior of metals, it does not give a better fit for an actual stress–
strain curve over a wide range of strains. When n = 1, the above equation represents a
linear strain-hardening, which is a reasonable approximation for heavily prestrained
metals. A more successful formula, due to Swift,‡ is the generalized power law

σ = C(m + ε)n (7)

where C, m, and n are empirical constants. The stress–strain curve represented by
(7) can be obtained from that given by (5) if the stress axis is move along the positive
strain axis through a distance m. Hence m may be regarded as the amount of prestrain

† P. Ludwik, Elem. Technol. Mech., Springer Verlag, Berlin (1909).
‡ H. W. Swift, J. Mech. Phys. Solids, 1: 1 (1952).
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Figure 1.3 Empirical stress–strain curves for rigid/plastic materials. (a) Ludwik equation; (b) Voce
equation.

in a material whose stress–strain curve in the annealed state corresponds to m = 0,
the value of n remaining the same. If a given prestrained metal is represented by both
(5) and (7), the value of n in the two cases will of course be different. The instability
strain in simple tension according to the Swift equation is n − m for m� n and zero
for m� n.

For certain applications involving rigid/plastic materials, it is convenient to use
an equation suggested by Voce.† In its simplest form, the Voce equation may be
written as

σ = C(1 − me−nε) (8)

where e is the exponential constant. The curves corresponding to varying m and n
approach the asymptote σ= C (Fig. 1.3b). However, C is unlikely to be the satu-
ration stress of a given metal as the rate of hardening becomes vanishingly small.
The rapidity with which the asymptotic value is approached is represented by n.
The coefficient m defines the initial state of hardening, the fully hardened material
corresponding to m = 0. The slope of the stress–strain curve given by (8) is equal to
n(C − σ), which varies linearly with the stress.

When the elastic and plastic strains are of comparable magnitudes, it is necessary
to replace ε in the preceding equations by the plastic strain εp. Considering the power
law (5), the plastic part of the strain may be assumed to vary as σm, where m = 1/n,
Since the elastic part of the strain is equal to σ/E, the total strain may be expressed

† E. Voce, J. Inst. Metals, 74: 537 (1948). See also J. H. Palm, Appl. Sci. Res., A-2: 198 (1948).
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Figure 1.4 Empirical stress–strain curves for elastic/plastic materials. (a) Modified Ludwik equation;
(b) Ramberg-Osgood equation.

by the Ramberg-Osgood equation†

ε = σ

E

{
1 + α

(
σ

σ0

)m−1
}

(9)

where σ0 is a nominal yield stress and α a dimensionless constant. The slope of
the stress–strain curve given by the above equation continuously decreases from
the value E at the origin (Fig. 1.4b). At the nominal yield point σ= σ0, the plastic
strain is α times the elastic strain, and the secant modulus is E/(1 +α). The tangent
modulus at any point of the curve is given by

E

T
= 1 + αm

(
σ

σ0

)m−1

(10)

The second term on the right-hand side is equal to E/H in view of (1). The stress–
strain curve for a range of materials can be reasonably fitted by Equation (9) with
α= 3/7. For a nonhardening material (m = ∞), the equation degenerates into a pair
of straight lines meeting at the yield point σ= σ0.

The contraction ratio η determined from (2) and (10) is plotted against Eε/σ0
in Fig. 1.5, assuming α= 3/7. Due to the nature of the Ramberg-Osgood equation,
a variation of η is predicted even in the elastic range of straining. The contraction

† W. Ramberg and W. R. Osgood, NACA Tech. Note, 902 (1943).
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Figure 1.5 Variation of the contraction ratio with longitudinal strain in uniaxial tension according to
the Ramberg-Osgood stress–strain equation (ν= 0.3).

ratio increases very rapidly in the neighborhood of the yield point, following which
η approaches the value 0.5 in an asymptotic manner. The actual value of η is seen
to be reasonably close to 0.5 while the total strain is still of the elastic order of
magnitude.

It is sometimes more convenient to employ a stress–strain equation where the
curve in the plastic range is expressed by a simple power law, the material being
assumed to have a definite yield point at σ= Y . The empirical representation then
becomes

σ =




Eε ε � Y

E

Y

(
Eε

Y

)n

ε � Y

E

(11)

where n is generally less than 0.5. The slope of the stress–strain curve given by (11)
changes discontinuously from E to nE at the yield point (Fig. 1.4a). The tangent
modulus at any point in the plastic range is n times the secant modulus. The empirical
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curve is effectively the Ludwik curve whose initial part is replaced by a chord of
slope E.

The Ramberg-Osgood curve represents a continuous transition from the elastic
to the plastic behavior expressed by a single equation when the material work-
hardens. A similar curve for the ideally plastic material is given by the equation

σ = Y tanh

(
Eε

Y

)

which is due to Prager.† The curve having an initial slope E gradually bends over
to approach the yield stress Y in an asymptotic manner. The approach is so rapid
that σ is within 1 percent of Y when ε is only 4Y/E. The tangent modulus at any
point on the curve is equal to E(1 − σ2/Y2), and the corresponding plastic modulus
is E(Y2/σ2 − 1). These moduli soon become negligible while the strain is still quite
small.‡

(iv) Influence of pressure, strain rate, and temperature The tensile test of ductile
materials under superimposed hydrostatic pressure has revealed that the yield point
and the uniform elongation are unaffected by the applied pressure, but the strain to
fracture increases with the intensity of the pressure. The increased ductility of the
material is caused by the lateral compressive stresses which inhibit the formation of
microcracks that lead to fracture. Test results for both tension and compression of
brittle materials under fluid pressure indicate that there is a certain critical pressure
above which the material behaves in a ductile manner.§ The stress–strain curves
for axially compressed limestone cylinders under uniform fluid pressures acting on
the curved surface are shown in Fig. 1.6, where σ denotes the axial compressive
stress in excess of the confining pressure p. Each curve corresponds to a particular
confining pressure expressed in atmospheres.¶ Some materials are found to suffer
a certain amount of permanent volume change when subjected to hydrostatic pres-
sures of exceedingly high magnitude, although the change is negligible in ordinary
situations.‖

† W. Prager, Rev. Fac. Sci., Univ. Istanbul, 5: 215 (1941); Duke Math. J., 9: 228 (1942).
‡ Other forms of stress–strain equation are sometimes used for the derivation of special solutions.

See, for example, R. Hill, Phil. Mag., 41: 1133 (1950), and J. Chakrabarty, Int. J. Mech. Sci., 12: 315
(1970).

§ The pressure can be accurately measured from the change in resistance of a manganin wire
immersed in the pressurized fluid. A detailed account of the experimental investigations regarding the
effect of hydrostatic pressure on metals has been presented by P. W. Bridgman, Studies in Large Plastic
Flow and Fracture, McGraw-Hill Book Company, New York (1952), and by H. Ll. D. Pugh (ed.),
Mechanical Behavior of Materials under Pressure, Elsevier, Amsterdam (1970).

¶ Experimental results on the compression of marble and limestone cylinders under fluid pressure
have been reported by Th. von Karman, Z. Ver. deut. Ing., 55: 1749 (1911), and by D. T. Griggs,
J. Geol., 44: 541 (1936).

‖ P. W. Bridgman, J. Appl. Phys., 18: 246 (1947). The effect of hydrolastic pressure on the shear
properties of metals has been investigated by B. Crossland, Proc. Inst. Mech. Eng., 169: 935 (1954);
B. Crossland and W. H. Dearden, ibid., 172, 805 (1958). See also M. C. Shaw, Int. J. Mech. Sci., 22:
673 (1980).
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Figure 1.6 Behavior of limestone cylinders under axial thrust and lateral pressure (after Griggs).

Plastic instability is found to occur in cylindrical bars when subjected to lateral
fluid pressures of sufficient magnitude.† The phenomenon is caused by a slight
non-uniformity in distortion of the unconstrained surface which is exposed to fluid
pressure. When the material is ductile, the longitudinal strain at the onset of necking
is exactly the same as that in uniaxial tension, but the cross section of the neck is
greatly reduced before fracture. Brittle materials, which normally fracture with no
significant plastic strain under simple tension, are found to deform beyond the point
of necking when tested under lateral fluid pressure. Moreover, the uniform strain at
the onset of necking is found to be identical to that given by (3), with the stress–strain
curve obtained in simple compression. For extremely brittle materials, the fracture
mode seems to remain brittle even under a fluid pressure acting on the lateral surface.‡

At room temperature, the stress–strain curve of metals is practically indepen-
dent of the rate of straining attainable in ordinary testing machines. High-speed
tensile tests have shown that the yield stress increases with the strain rate, and this
effect is more pronounced at elevated temperatures. The true strain rate in simple
compression is defined as ε̇= −ḣ/h, where h is the current specimen height and ḣ its
rate of change. To obtain a constant strain rate during a test, it is therefore necessary
to decrease the platen speed in proportion to the specimen height. This is achieved
by using a cam plastometer in which one of the compression platens is actuated by
a cam of logarithmic profile.§ Maintaining a constant temperature during a test is

† J. Chakrabarty. Proc. 13th Int. M.T.D.R. Conf., p. 565, Pergamon Press, Oxford (1972).
‡ P. W. Bridgman, Phil. Mag., July, 63 (1912).
§ The cam plastometer has been devised by E. Orowan, Brit. Iron and Steel Res. Assoc. Rep.,

MW/F/22 (1950).
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Figure 1.7 Effects of strain rate and temperature on the stress–strain curve of metals. (a) EN25 steel at
1000◦C (after Cook); (b) annealed copper at a strain rate of 10−3/s (after Mahtab et al.).

more difficult, since the heat generated during the test raises the temperature of the
specimen adiabatically. Figure 1.7 shows typical stress–strain curves of metals in
compression, obtained under constant temperatures and strain rates.†

For a given value of the strain, the combined effect of strain rate and temperature
on the yield stress may be expressed by the functional relationship‡

σ = f

{
ε̇ exp

(
Q

RT

)}
(12)

where Q is an activation energy for plastic flow, T the absolute testing temperature,
and R the universal gas constant equal to 8.314 J/g mol ◦K. The above relationship
has been experimentally confirmed for several metals over wide ranges of strain rate

† For experimental methods and results on the high-speed compression at elevated temperatures,
see P. M. Cook, Proc. Conf. Properties of Materials at High Rates of Strain, Inst. Mech. Eng., 86
(1957); F. U. Mahtab, W. Johnson, and R. A. C. Slater, Proc. Inst. Mech. Eng., 180: 285 (1965);
S. K. Samanta, Int. J. Mech. Sci., 10: 613 (1968), J. Mech. Phys. Solids, 19: 117 (1971); T. A. Dean and
C. E. N. Sturgess, Proc. Inst. Mech. Eng., 187: 523 (1973). See also R. A. C. Slater, Engineering
Plasticity, Chap. 6, Wiley and Sons, London (1977); M. S. J. Hashmi, J. Strain Anal., 15: 201 (1980).

‡ C. Zener and J. H. Hollomon, J. Appl. Phys., 15: 22 (1944); T. Trozera, O. D. Sherby, and
J. L. Dorn, Trans. ASME, 49: 173 (1957). The expression in the curly bracket of (12) is often called the
Zener-Hollomon parameter, which is also useful in the theory of high-temperature creep. A generalized
constitutive equation, including the effect of strain, has been discussed by J. M. Alexander, Plasticity
Today (Ed. H. Sawczick), Elsevier, Amsterdam (1986).
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and temperature. When the temperature is held constant, the test results can be fitted
by the power law†

σ = Cεnε̇m (13)

where C, m and n depend on the operating temperature. The exponent m is known as
the strain-rate sensitivity, which generally increases with temperature, particularly
when it is above the recrystallization temperature. The strain-hardening exponent
n, on the other hand, rapidly decreases with increasing values of the elevated
temperature.

The dependence of the flow stress on strain rate and temperature for a given
strain is sometimes expressed in the alternative form‡

σ = f

{
T

(
1 − m ln

ε̇

ε̇0

)}
(14)

where m and ε̇0 are constants, the quantity in the curly bracket being known as the
velocity modified temperature. It is consistent with the fact that an increase in strain
rate is in effect equivalent to a decrease in temperature. Equation (14) agrees with
test data for a fairly wide range of values of the strain rate and temperature.

Above the recrystallization temperature, the yield stress attains a saturation
value after a small amount of strain, as a result of the work-hardening rate being
balanced by the rate of thermal softening. The dependence of the saturation stress
on strain rate and temperature can be expressed with reasonable accuracy by the
empirical equation§

σ = C sinh−1
(

mε̇n exp
b

T

)

where b, C, m, and n are material constants. The activation energy Q is then indepen-
dent of the temperature, and is approximately equal to Rb/n.A distinction between
cold- and hot-working of metals is usually made on the basis of the recrystalliza-
tion temperature, whose absolute value is roughly one-half of the absolute melting
temperature. The above equation reduces to a power law when the expression in the
parenthesis is sufficiently small.¶

† W. F. Hosford and R. M. Caddell, Metal Forming Mechanics and Metallurgy, 2d ed., Chap. 5,
Prentice-Hall, Englewood Cliffs, NJ (1993).

‡ C. W. MacGregor and J. C. Fisher, J. Appl. Mech., 13: 11 (1946).
§ C. M. Sellars and W. J. McG. Tegart, Mem. Sci. Rev. Met., 63: 731 (1966); S. K. Samanta, Proc.

11th Int. M.T.D.R. Conf., Pergamon Press, Oxford (1970).
¶ Large neck-free extensions are possible in certain highly rate-sensitive alloys, called superplastic

alloys. See W. A. Backofen, I. Turner and H. Avery, Trans. Q. ASM, 57: 981 (1966); J. W. Edington,
K. N. Melton, and C. P. Cutler, Prog. Mater. Sci., 21: 63 (1976); K. A. Padmanabhan and G. J. Davies,
Superplasticity, Springer-Verlag, Berlin (1980); T. G. Nieh, J. Wadsworth, and O. D. Sherby,
Superplasticity in Metals and Ceramics, Cambridge University Press, Cambridge (1997).
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1.3 Analysis of Stress

(i) Stress tensor When a body is subjected to a set of external forces, internal forces
are produced in different parts of the body so that each element of the body is in
a state of statical equilibrium. Through any point O within the body, consider a
small surface element δS whose orientation is specified by the unit vector l along the
normal drawn on one side of the element (Fig. 1.8a). The material on this side of δS
may be regarded as exerting a force δP across the surface element upon the material
on the other side. The limit of the ratio δP/δS as δS tends to zero is the stress vector
T at O associated with the direction I. For given external loading, the stress acting
across any plane passing through a given point O depends on the orientation of the
plane. The resolved component of the stress vector along the unit normal l is called
the direct or normal stress denoted by σ, while the component tangential to the plane
is known as the shear stress denoted by τ.

Consider now a set of rectangular axes Ox, Oy, and Oz emanating from a
typical point O, and imagines a small rectangular parallelepiped at O having its
edges parallel to the axes of reference (Fig. 1.8b). The normal stresses across the
faces of the block are denoted by σx, σy, and σz, where the subscripts denote the
directions of the normal to the faces. The shear stress acting on the faces normal to
the x axis is resolved into the components τxy and τxz parallel to the y and z axes
respectively. The first suffix denotes the direction of the normal to the face and the
second suffix the direction of the component. In a similar way, the shear stresses
on the faces normal to the y axis are denoted by τyx and τyz, and those on the faces
normal to the z axis by τzx and τzy. The stresses are taken as positive if they are
directed as shown in the figure, when the outward normals to the faces are in the
positive directions of the coordinate axes. The positive directions are all reversed
on the remaining faces of the block where the outward normals are in the negative
directions of the axes of reference. The nine components of the stress at any point
form a second-order tensor σij, known as the stress tensor, where i and j take integral

Figure 1.8 Definition of stress. (a) Normal and shear stresses; (b) components of stress tensor.



Chakra-01.tex 26/12/2005 12: 41 Page 18

18 theory of plasticity

values 1, 2, and 3. The stress components may be displayed as elements of the square
matrix

σij =

σx τxy τxz
τyx σy τyz
τzx τzy σz


 =


σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33




The forces acting on the faces of the parallelepiped are clearly in equilibrium.
To examine the couple equilibrium, let δx, δy, δz denote the lengths of these faces
along the respective coordinate axes. Then the resultant couple about the z axis is
(τxy − τyx)δx δy δz, which must vanish for equilibrium. This gives τxy = τyx. Simi-
larly, the conditions for couple equilibrium about the other two axes give τyz = τzy
and τzx = τxz. These identities may be expressed as σij = σji, implying that the stress
tensor is symmetric with respect to its subscripts. Thus there are six independent
stress components, three normal components σx, σy, σz, and three shear components
τxy, τyz, τzx, which completely specify the state of stress at each point of the body.
The matrix representing the stress tensor is evidently symmetrical.

The mean of the three normal stresses, equal to (σx + σy + σz)/3, is known as
the hydrostatic stress denoted by σ0. A deviatoric or reduced stress tensor sij is
defined as that which is obtained from σij by reducing the normal stress components
by σ0. This gives the deviatoric stresses as

sij =

sx sxy sxz

syx sy syz
szx szy sz


 =


(σx − σ0) τxy τxz

τyx (σy − σ0) τyz
τzx τzy (σz − σ0)




The deviatoric normal stresses are therefore given by

3sx = 2σx − σy − σz, 3sy = 2σy − σz − σx, 3sz = 2σz − σx − σy

The deviatoric shear stresses are the same as the actual shear stresses. Since sx + sy +
sz = 0, the deviatoric normal stresses cannot all have the same sign. The difference
between any two normal components of the deviatoric stress is the same as that
between the corresponding components of the actual stress. Expressed in suffix
notation, the relationship between sij and σij is

sij = σij − σ0δij = σij − 1
3σkkδij (15)

where δij is the Kronecker delta whose value is unity when i = j and zero when
i 
= j. Evidently, δij = δji. Any repeated or dummy suffix indicates a summation of all
terms obtainable by assigning the values 1, 2, and 3 to this suffix in succession. Thus
σkk = σx + σy + σz. It follows from the definition of the delta symbol thatσijδjk = σik ,
where j is a dummy suffix and i, k are free suffixes. Each term of a tensor equation
must have the same free suffixes, but a dummy suffix can be replaced by any other
letter different from the free suffixes.
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(ii) Stresses on an oblique plane Consider the equilibrium of a small tetrahedron
OABC of which the edges OA, OB, and OC are along the coordinate axes (Fig. 1.9).
Let (l, m, n) be the directions cosines of a straight line drawn along the exterior
normal to the oblique plane ABC. These are the components of the unit normal 1
with respect to Ox, Oy, and Oz. If the area of the face ABC is denoted by δS, the
faces OAB, OBC, and OCA have areas n δS, l δS, and m δS respectively. The stress
vector T acting across the face ABC has components Tx, Ty, and Tz along the axes
of reference. Resolving the forces in the directions Ox, Oy, and Oz, we get

Tx = lσx + mτxy + nτzx

Ty = lτxy + mσy + nτyz (16)

Tz = lτzx + mτyz + nσz

on cancelling out δS from each equation of force equilibrium. When δS tends to zero,
these equations give the components of the stress vector at O, associated with the
direction (l, m, n), in terms of the components of the stress tensor. Using the suffix
notation and the summation convention, (16) can be expressed as

Tj = liσij

where l1 = l, l2 = m, l3 = n. The above equation is equivalent to three equations
corresponding to the three possible values of the free suffix j. A single free suffix
therefore characterizes a vector. The normal stress across the plane specified by its

Figure 1.9 Stresses across an oblique
plane in a three-dimensional state of stress.
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normal (l, m, n) is

σ = lTx + mTy + nTz = ljTj = liljσij

= l2σx + m2σy + n2σz + 2lmτxy + 2mnτyz + 2nlτzx (17)

The shear stress across the plane can be resolved into two components in a pair of
mutually perpendicular directions in the plane. Denoting one of these directions by
(l′, m′, n′), the corresponding shear component is obtained as

τ′ = l′Tx + m′Ty + n′Tz = l′jTj = lil
′
jσij

= ll′σx + mm′σy + nn′σz + (lm′ + ml′)τxy + (mn′ + nm′)τyz + (nl′ + ln′)τzx
(18)

This evidently is the resolved component of the resultant stress in the direction
(l′, m′, n′). The direction cosines satisfy the well-known geometrical relations

l2 + m2 + n2 = 1 l′2 + m′2 + n′2 = 1 ll′ + mm′ + nn′ = 0 (19)

The first two equations express the fact (l, m, n) and (l′, m′, n′) represent unit vectors,
while the last relation expresses the orthogonality of these vectors. The shear stress
is most conveniently found from the fact that its magnitude is

√
T2 − σ2, and its

direction cosines are proportional to its rectangular components

Tx − lσ Ty − mσ Tz − nσ

Let xi and x′
i represent two sets of rectangular axes through a common origin O, and

aij denote the direction cosine of the x′
i axis with respect to the xj axis. The direction

cosine of the xi axis with respect to the x′
j axis is then equal to aji. It follows from

geometry that the coordinates of any point in space referred to the two sets of axes
are related by the equations

x′
i = aijxj xj = aijx

′
i (20)

The components of any vector transform† according to the same law as (20). Let
σ′

ij denote the components of the stress tensor when referred to the set of axes x′
i. A

defining property of tensors is the transformation law

σ′
ij = aikajlσkl (21)

Let us suppose that a11 = l, a12 = m, a13 = n, and a21 = l′, a22 = m′, a23 = n′. The
normal stress across the plane (l, m, n) is then equal to σ′

11, and the corresponding
expression (17) can be readily verified from (21). Similarly, the component of the
shear stress across the plane resolved in the direction (l′, m′, n′) is equal to σ′

12 which
can be shown to be that given by (18).

† It follows from (20) that x′
i = aikxk = aikajkx′

j , indicating that aikajk = δij , which furnishes six
independent relations of types (19).
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(iii) Principal stresses The normal stress σ has maximum and minimum values for
varying orientations of the oblique plane. Regarding l and m as the independent direc-
tion cosines, the conditions for stationary σ may be written as ∂σ/∂l = 0, ∂σ/∂m = 0.
Differentiating the first equation of (19) partially with respect to l and m, we get
∂n/∂l = −l/n and ∂n/∂m = −m/n. Inserting these results into the partial derivatives
of (17), and using (16), the stationary condition can be expressed as

Tx

l
= Ty

m
= Tz

n

This shows that the resultant stress across the plane acts in the direction of the normal
when the normal stress has a stationary value. Each of the above ratios is therefore
equal to the normal stress σ. The substitution into (16) gives

l(σx − σ) + mτxy + nτzx = 0

lτxy + m(σy − σ) + nτyz = 0 (22)

lτzx + mτyz + n(σz − σ) = 0

In suffix notation, these relations are equivalent to li(σij − σδij) = 0, which follows
directly from the fact that Tj = σlj across a principal plane. The set of linear homo-
geneous equations (22) would have a nonzero solution for l, m, n if the determinant
of their coefficients vanishes. Thus∣∣∣∣∣∣

σx − σ τxy τzx
τxy σy − σ τyz
τzx τyz σz − σ

∣∣∣∣∣∣ = 0

Expanding this determinant, we obtain a cubic equation in σ having three real roots
σ1, σ2, σ3, which are known as the principal stresses. These stresses act across
planes on which the shear stresses are zero. The cubic may be expressed in the form

σ3 − I1σ
2 − I2σ − I3 = 0 (23)

where

I1 = σx + σy + σz = σ1 + σ2 + σ3 = σii (24)

I2 = −(σxσy + σyσz + σzσx) + τ2
xy + τ2

yz + τ2
zx

= −(σ1σ2 + σ2σ3 + σ3σ1) = 1
2 (σijσij − σiiσjj) (25)

I3 = σxσyσz + 2τxyτyzτzx − σxτ
2
yz − σyτ

2
zx − σzτ

2
xy

=
∣∣∣∣∣∣
σx τxy τzx
τxy σy τyz
τzx τyz σz

∣∣∣∣∣∣ = σ1σ2σ3 (26)
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The expressions for I1, I2, I3 in terms of the principal stresses follow from the fact that
(23) is equivalent to the equation (σ− σ1)(σ− σ2)(σ− σ3) = 0. Since the stationary
values of the normal stress do not depend on the orientation of the coordinate axes, the
coefficients of (23) must also be independent of the choice of the axes of references.
The quantities I1, I2, I3 are therefore known as the invariants of the stress tensor.†

The direction cosines corresponding to each principal stress can be found from
the first equation of (19) and any two equations of (22) with the appropriate value of
σ. Let (l1, m1, n1) and (l2, m2, n2) represent the directions of σ1 and σ2 respectively.
If we express (22) in terms of l1, m1, n1, and σ1, multiply these equations by l2, m2, n2
in order and add them together, and then subtract the resulting equation from that
obtained by interchanging the subscripts, we arrive at the result

(σ1 − σ2)(l1l2 + m1m2 + n1n2) = 0

If σ1 
= σ2, the above equation indicates that the directions (l1, m1, n1) and (l2, m2, n2)
are perpendicular to one another. It follows, therefore, that the principal directions
corresponding to distinct values of the principal stresses are mutually orthogonal.
These directions are known as the principal axes of the stress. When two of the
principal stresses are equal to one another, the direction of the third principal stress
is uniquely determined, but all directions perpendicular to this principal axis are
principal directions. When σ1 = σ2 = σ3, representing a hydrostatic state of stress,
any direction in space is a principal direction.

The invariants of the deviatoric stress tensor are obtained by replacing the actual
stress components in (24) to (26) by the corresponding deviatoric components. The
first deviatoric stress invariant is

J1 = sx + sy + sz = s1 + s2 + s3 = sii = 0

where s1, s2, s3 are the principal deviatoric stresses. These principal values are the
roots of the cubic equation

s3 − J2s − J3 = 0 (27)

where

J2 = −(sxsy + sysz + szsx) + τ2
xy + τ2

yz + τ2
zx

= 1
2 (s2

x + s2
y + s2

z ) + τ2
xy + τ2

yz + τ2
zx

= 1
6 [(σx − σy)2 + (σy − σz)

2 + (σz − σx)2] + τ2
xy + τ2

yz + τ2
zx (28)

J3 = sxsysz + 2τxyτyzτzx − sxτ
2
yz − syτ

2
zx − szτ

2
xy

=
∣∣∣∣∣∣
sx τxy τzx
τxy sy τyz
τzx τyz sz

∣∣∣∣∣∣ = s1s2s3 = 1
3 (s3

1 + s3
2 + s3

3) (29)

† Any symmetric tensor of second order has three real principal values, the basic invariants of the
tensor being identical in form to those for the stress.
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The last two expressions for J2 are obtained from the first expression by adding the
identically zero terms 1

2 (sx + sy + sz)2 and 1
3 (sx + sy + sz)2 respectively, and noting

the fact that sx − sy = σx − σy etc. Similarly, the last expression for J3 follows from
the preceding one on adding the term 1

3 (s1 + s2 + s3)3. In suffix notation, these
invariants can be written as

J2 = 1
2 sijsij J3 = 1

3 sijsjkski (30)

The repetition of all suffixes is a characteristic of invariants, which are scalars.
Substituting σ= s + I1/3 in (23) and comparing the coefficients of the resulting
equation with those of (27), we obtain

J2 = I2 + 1
3 I2

1 J3 = I3 + 1
3 I1I2 + 2

27 I3
1

When J2 and J3 have been found, equation (27) may be solved by means of the
substitution s = 2

√
J2/3 cosφ, which reduces the cubic to

cos 3φ = J3

2

(
3

J2

)3/2

(31)

Since 4J3
2 � 27J2

3 , the right-hand side† of (31) lies between −1 and 1, and one
value of φ lies between 0 and π/3. The principal deviatoric stresses may therefore
be written as

s1 = 2

√
J2

3
cosφ s2, s3 = −2

√
J2

3
cos

(π
3

± φ
)

(32)

where 0�φ�π/3. Any function of these principal components is also a function
of the invariants, which play an important part in the mathematical development of
the theory of plasticity.

(iv) Principal shear stresses When the principal stresses and their directions are
known, it is convenient to take the principal axes as the axes of reference. If Ox,
Oy, Oz denote the coordinate axes associated with the principal stresses σ1, σ2, σ3
respectively, the components of the stress vector across a plane whose normal is in
the direction (l, m, n) are

Tx = lσ1 Ty = mσ2 Tz = nσ3

The normal stress across the oblique plane therefore becomes

σ = l2σ1 + m2σ2 + n2σ3 (33)

† Using (32) and (31), it can be shown that 4J3
2 − 27J2

3 = (σ1 − σ2)2(σ2 − σ3)2(σ3 − σ1)2, which
is a positive quantity for distinct values of the principal stresses.
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If the magnitude of the shear stress across the plane is denoted by τ, then

τ2 = T2 − σ2 = (l2σ2
1 + m2σ2

2 + n2σ2
3 ) − (l2σ1 + m2σ2 + n2σ3)2

= (σ1 − σ2)2l2m2 + (σ2 − σ3)2m2n2 + (σ3 − σ1)2n2l2 (34)

in view of the relation l2 + m2 + n2 = 1. Since the components of the normal stress
along the coordinate axes are (lσ, mσ, nσ), the components of the shear stress are
l(σ1 − σ), m(σ2 − σ), n(σ3 − σ). Hence the direction cosines of the shear stress are

ls = l

(
σ1 − σ

τ

)
ms = m

(
σ2 − σ

τ

)
ns = n

(
σ3 − σ

τ

)
(35)

A plane which is equally inclined to the three principal axes is known as the octa-
hedral plane, the direction cosines of its normal being given by l2 = m2 = n2 = 1/3.
These relations are satisfied by four pairs of parallel planes forming a regular octa-
hedron having its vertices on the principal axes. By (33) and (34), the octahedral
normal stress is equal to the hydrostatic stress σ0, and the octahedral shear stress is
of the magnitude

τ0 = 1
3

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 =

√
2
3 J2

The components of the octahedral shear stress along the principal axes are
numerically equal to 1/

√
3 times the deviatoric principal stresses.

We now proceed to determine the stationary values of the shear stress for varying
orientations of the oblique plane. To this end, we put n2 = 1 − l2 − m2 in (34), and
express it in the form

τ2 = l2(σ2
1 − σ2

3 ) + m2(σ2
2 − σ2

3 ) + σ2
3 − {l2(σ1 − σ3) + m2(σ2 − σ3) + σ3}2

where l and m are treated as the independent variables. We shall follow the convention
σ1>σ2>σ3. Equating to zero the derivatives of τ2 with respect to l and m, we obtain

l(σ1 − σ3)[(1 − 2l2)(σ1 − σ3) − 2m2(σ2 − σ3)] = 0

m(σ2 − σ3)[(1 − 2m2)(σ2 − σ3) − 2l2(σ1 − σ3)] = 0
(36)

These equations are obviously satisfied for l = m = 0, and hence n = 1, which cor-
responds to a principal stress direction for which the shear stress has a minimum
value of zero. To obtain a maximum value of the shear stress, we set l = 0 sat-
isfying the first equation of (36), and use this value in the second equation to get
l − 2m2 = 0. This gives l = 0, m2 = n2 = 1/2 corresponding to maximum shear stress
equal to 1

2 (σ2 − σ3) according to (34). Similarly, the direction represented by m = 0,
n2 = l2 = 1/2 satisfies (36), and furnishes a maximum value of 1

2 (σ1 − σ3) for the
shear stress. Finally, setting n = 0 and hence l2 + m2 = 1, we find that τ is a max-
imum for l2 = m2 = 1/2, giving a stationary value equal to 1

2 (σ1 − σ2). The three



Chakra-01.tex 26/12/2005 12: 41 Page 25

stresses and strains 25

Figure 1.10 Construction for the normal stress and the direction of the shear stress.

stationary shear stresses, known as the principal shear stresses, may therefore be
written as

τ1 = 1
2 (σ2 − σ3) τ2 = 1

2 (σ1 − σ3) τ3 = 1
2 (σ1 − σ2) (37)

These stresses act in directions which bisect the angles between the principal axes.
By (33), the normal stresses acting on the planes of τ1, τ2, τ3 are immediately found
to be, respectively,

1
2 (σ2 + σ3) 1

2 (σ1 + σ3) 1
2 (σ1 + σ2)

In view of the assumption σ1>σ2>σ3, the greatest shear stress is of magnitude
1
2 (σ1 − σ3), and it acts across a plane whose normal bisects the angle between the
directions of σ1 and σ3. It follows from (32) that the greatest shear stress is equal to√

J2 cos(π/6 −φ), where φ lies between zero and π/3 satisfying (31).

(v) Shear stress and the oblique triangle Consider now the direction of the shear
stress on an inclined plane in relation to the true shape of the oblique triangle. It
is assumed for simplicity that the direction cosines (l, m, n) are all positive.† Let
δh denote the perpendicular distance from the origin O to the oblique plane ABC
(Fig. 1.10a). Then the distances of the vertices A, B, C from O are δh/l, δh/m, δh/n
respectively, their ratios being

OA:OB:OC = mn:nl:lm (38)

The sides of the triangle are readily found from the right-angled triangles AOB,
BOC, and COA. The true shape of the oblique triangle ABC is therefore defined by
the ratios

AB:BC:CA = n
√

1 − n2:l
√

1 − l2:m
√

1 − m2 (39)

† No generality is lost in this assumption, since the positive directions of the axes of reference can
be arbitrarily chosen, and the expressions for σ and τ involve only the squares of the direction cosines.
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The vertical angles of the triangle follow from (39) and the well-known cosine law.
The results can be conveniently put in the form

tan A = l

mn
tan B = m

nl
tan C = n

lm
(40)

The coordinate axes in Fig. 1.10a are in the directions of the principal stresses.
A line BD is drawn from the apex B to meet the opposite side of AC at D, such
that BD is perpendicular to the direction of the shear stress across the plane. The
components of the vector BD along the axes Ox, Oy, Oz are equal to ED, –OB, OE
respectively. Since BD is orthogonal to both the directions (l, m, n) and (ls, ms, ns),
the scalar products of BD with the unit vectors representing these directions must
vanish. Using (35) and (33), it is easily shown that

ED:OB:OE = mn(σ2 − σ3):nl(σ1 − σ3):lm(σ1 − σ2) (41)

If σ1>σ2>σ3, the line BD must meet AC internally as shown. Indeed, from the
similar triangles CDE and CAO, we have

CD

CA
= ED

OA
= ED

OB

OB

OA
= σ2 − σ3

σ1 − σ3
(42)

in view of (38) and (41). If points A, D, C, and G are located along a straight line, such
that GA = σ1, GD = σ2, and GC = σ3, and the true shape triangle ABC is constructed
on CA as base (Fig. 1.10b), then in view of (42), the shear stress is directed at right
angles to the line joining B and D. Since ns< 0 by (35), the direction of the shear
stress vector is obtained by a 90◦ counterclockwise rotation from the direction BD.
If R is the orthocenter of the triangle ABC, and BM is drawn perpendicular to CA,
then by Eqs. (40),

CM

AM
= cot C

cot A
= l2

n2

MR

MB
= cot A

tan C
= m2 (43)

since angle MRC is equal to the vertical angle A. If RN is drawn parallel to BD,
meeting CA at N , then MN/MD = MR/MB = m2, which gives

GN = GM + MN = (l2 + m2 + n2)GM + m2MD

= l2(GA − MA) + m2GD + n2(GC + CM) = l2GA + m2GD + n2GC

The expression on the right-hand side is equal to σ in view of (33). Hence GN
represents the magnitude of the normal stress transmitted across the plane.† It
follows from (34) and (41) that if OB represents the quantity nl(σ1 − σ3) to a certain
scale, then BD will represent the shear stress τ to the same scale. Hence

OB

BD
= nl

(
σ1 − σ3

τ

)
= nl

τ
CA

† The constructions for the normal stress and the direction of the shear stress are due to H. W.
Swift, Engineering, 162: 381 (1946).
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Figure 1.11 An element in a state of plane stress.

with reference to Fig. 1.10. Since RN/BD = MR/MB = m2 by (43), and
CA = √

OC2 + OA2, we have

RN = m2 · BD = m2τ

nl

OB

CA
= mτ√

1 − m2

in view of (38). It follows that the magnitude of the shear stress on the plane is
τ= RN tan β, where β is the angle made by the normal to the plane with the direction
of the intermediate principal stress σ2.

(vi) Plane stress A state of plane stress is defined by σz = τyz = τzx = 0. The z
axis then coincides with a principal axis, and the corresponding principal stress
vanishes.† The orientation of Ox and Oy with respect to the other two principal
axes is, however, arbitrary. Consider a plane AB perpendicular to the xy plane, and
let φ be the counterclockwise angle made by the normal to the plane with the x
axis (Fig. 1.11). The shear stress τ will be reckoned positive when it is directed to
the left of the exterior normal. Setting l = cosφ, m = sin φ, and n = 0 in (16), the
components of the stress vector across AB are obtained as

Tx = σx cosφ + τxy sin φ Ty = τxy cosφ + σy sin φ (44)

The resolved components of the resultant stress along the normal and the tangent to
the plane are

σ = Tx cosφ + Ty sin φ τ = −Tx sin φ + Ty cosφ

† The results for plane stress are directly applicable to the more general situation where the z axis
coincides with the direction of any nonzero principal stress.
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Substituting for Tx and Ty in the above equations, the normal and shear stresses
across the plane are obtained as

σ = σx cos2φ + σy sin2φ + 2τxy sin φ cosφ

= 1
2 (σx + σy) + 1

2 (σx − σy)cos 2φ + τxy sin 2φ (45)

τ = −(σx − σy)sin φ cosφ + τxy(cos2φ − sin2φ)

= − 1
2 (σx − σy)sin 2φ + τxy cos 2φ (46)

These results may be directly obtained from (16) and (17) by setting l = m′ = cosφ,
m = −l′ = sin φ and n = n′ = 0. Since dσ/dφ= 2τ, which is readily verified from
above, the shear stress vanishes on the plane for which the normal stress has a
stationary value. This corresponds to φ=α, where

tan 2α = 2τxy

σx − σy
(47)

which defines two directions at right angles to one another, giving the principal axes
in the plane of Ox and Oy. The principal stresses σ1, σ2 are the roots of the equation

(σ − σx)(σ − σy) = τ2
xy

which is obtained by writing Tx = σ cosφ and Ty = σ sin φ in (44), and then
eliminating φ between the two equations. The solution is

σ1, σ2 = 1
2 (σx + σy) ± 1

2

√
(σx − σy)2 + 4τ2

xy (48)

The acute angle made by the direction of the algebraically greater principal stress
σ1 with the x axis is measured in the counterclockwise sense when τxy is positive,
and in the clockwise sense when τxy is negative. It follows from (48) that

σx + σy = σ1 + σ2 σxσy − τ2
xy = σ1σ2 (49)

These are the basic invariants of the stress tensor in a state of plane stress. Evidently,
any function of these invariants is also an invariant.

Let Oξ, and Oη represent a new pair of rectangular axes in the (x, y) plane,
and let φ be the angle of inclination of the ξ axis to the x axis measured in the
counterclockwise sense. Then the stress components σξ and τξη, referred to the
new axes, are directly given by the right-hand sides of (45) and (46) respectively.
The remaining stress component ση is obtained by writing π/2 +φ for φ in (45),
resulting in

ση = σx sin2φ + σy cos2φ − 2τxy sin φ cosφ

= 1
2 (σx + σy) − 1

2 (σx − σy)cos 2φ − τxy sin 2φ (50)
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It immediately follows thatσξ + ση= σx + σy, which shows the invariance of the first
expression of (49). The invariance of the second expression may be similarly verified.

Considering the principal axes as the axes of reference, the shear stress across
an inclined plane can be written as τ= − 1

2 (σ1 − σ2)sin 2φ, which indicates that the
shear stress is directed to the right of the outward normal to the plane when σ1>σ2
and 0<φ<π/2. The shear stress has its greatest magnitude when φ= ±π/4, the
maximum value of the shear stress being

τmax = 1
2 |σ1 − σ2| = 1

2

√
(σx − σy)2 + 4τ2

xy (51)

There are two other principal shear stresses, having magnitudes 1
2 |σ1| and 1

2 |σ2|, and
bisecting the angles between the z axis and the directions of σ1 and σ2 respectively.
A little examination of the three principal values reveals that the numerically greatest
shear stress occurs in the plane of the applied stresses when σ1 and σ2 have opposite
signs, and out of the plane of the applied stresses when they are of the same sign.
In view of (49), the former corresponds to σxσy<τ

2
xy and the latter to σxσy>τ

2
xy. A

state of pure shear is given by σ1 = −σ2, since the normal stress then vanishes on
the planes of maximum shear.

1.4 Mohr’s Representation of Stress

(i) Two-dimensional stress state A useful graphical method of analyzing the state
of stress has been developed by Mohr.† In this method, the normal and shear stresses
across any plane are represented by a point on a plane diagram in which σ and τ are
taken as rectangular coordinates. For the present purpose, it is necessary to regard
the shear stress as positive when it has a clockwise moment about a point within the
element. In Fig. 1.12, the stresses acting on planes perpendicular to the x and y axes
are represented by the points X and Y on the (σ, τ) plane. The circle drawn on XY
as diameter, and having its center C on the σ axis, is called the Mohr circle for the
considered state of stress. The points A and B, where the circle is intersected by the
σ axis, define the principal stresses, since OA = σ1 and OB = σ2 in view of (48) and
the geometry of Mohr’s diagram. By (47), the angle made by CA with CX is twice
the angle α which the direction of σ1 makes with the x axis in the physical plane.
The normal and shear stresses transmitted across a plane, whose normal is inclined
at a counterclockwise angle φ to the x axis, correspond to the point L on the Mohr
circle, where CL is inclined to CX at an angle 2φ measured in the same sense. The
proof of the construction follows from the fact that CD = CL cos 2α and XD = CL
sin 2α, where XD is perpendicular to OA. Then from the geometry of the figure,

ON = OC + CL cos 2(α− φ) = OC + CD cos 2φ + XD sin 2φ

LN = CL sin 2(α− φ) = −CD sin 2φ + XD cos 2φ

These expressions are equivalent to (45) and (46) in view of the present sign conven-
tion. If LC is produced to meet the circle again at M, then the coordinates of M give

† O. Mohr, Zivilingenieur, 28: 112 (1882). See also his book, Technische Mechanik, Berlin (1906).
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Figure 1.12 Mohr’s construction for a two-dimensional state of stress. (a) Physical plane; (b) stress
plane.

the stresses across a plane perpendicular to that corresponding to L. The maximum
shear stress is evidently equal to the radius of the Mohr circle, and acts on planes
that correspond to the extremities of the vertical diameter. The normal stress across
these planes is equal to the distance of the center of the circle from the origin of the
stress plane.

It is instructive to consider the following alternative construction, also due to
Mohr. Let a generic point P, the state of stress at which is being discussed, be taken
as the origin of coordinates in the physical plane (Fig. 1.12a). All planes passing
through P and containing the z axis are denoted by their traces in the xy plane. The
normal and shear stresses corresponding to the points X and Y on the Mohr circle
are transmitted across the planes Py and Px respectively. The lines through X and
Y drawn parallel to these planes intersect the circle at a common point P*, which is
called the pole of the Mohr circle. When the stress circle and the pole are given, the
stresses acting across any plane Pλ through P are found by locating the point L on
the circle such that P*L is parallel to Pλ, the angle XCL at the center being twice the
peripheral angle XP*L over the arc XL. The planes corresponding to the principal
stresses are parallel to P*A and P*B, and those corresponding to the maximum
shear stress are parallel to P*S and P*T . It may be noted that the magnitude of the
resultant stress across any plane is equal to the distance of the corresponding stress
point on the Mohr circle from the origin of the stress plane.

(ii) Three-dimensional stress state Suppose that the principal stresses σ1, σ2, σ3
are known in magnitude and direction for a three-dimensional state of stress. These
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principal values are assumed as distinct, and so labeled thatσ1>σ2>σ3.A graphical
method developed by Mohr can be used to find the variation of normal and shear
stresses with the direction (l, m, n). We begin with the relations

l2σ1 + m2σ2 + n2σ3 = σ

l2σ2
1 + m2σ2

2 + n2σ2
3 = σ2 + τ2 (52)

l2 + m2 + n2 = 1

This is a set of three linear equations for the squares of the direction cosines. The
solution is most conveniently obtained by eliminating n2 from the first two equations
by means of the third, resulting in

l2 = (σ − σ2)(σ − σ3) + τ2

(σ1 − σ2)(σ1 − σ3)
(53)

m2 = (σ − σ3)(σ − σ1) + τ2

(σ2 − σ3)(σ2 − σ1)
(54)

n2 = (σ − σ1)(σ − σ2) + τ2

(σ3 − σ1)(σ3 − σ2)
(55)

Let one of the direction cosines, say n, be held constant while the other two are
varied. By (55), the normal and shear stresses then vary according to the equation

τ2 + {σ − 1
2 (σ1 + σ2)}2 = 1

4 (σ1 − σ2)2 + n2(σ1 − σ3)(σ2 − σ3) (56)

In the stress plane, σ and τ therefore lie on a circle whose center is on the σ axis
at a distance 1

2 (σ1 + σ2) from the origin. The square of the radius of the circle is
given by the right-hand side of (56). The radius varies from 1

2 (σ1 − σ2) for n = 0 to
1
2 (σ1 + σ2) − σ3 for n = 1.

In Fig. 1.13, the points A, B, C with coordinates (σ1, 0), (σ2, 0), (σ3, 0) are the
principal points of the Mohr diagram. The centers of the segments AB, BC, and CA
are denoted by the points P, Q, and R. The upper semicircle drawn on the diameter
AB corresponds to n = 0. As n increases from 0 to 1, the radius of the semicircle
varies from PB to PC. Similarly, the upper semicircles with BC and CA as diameters
correspond to l = 0 and m = 0 respectively. For constant values of l, (53) defines a
family of circles having the equation

τ2 + {σ − 1
2 (σ2 + σ3)}2 = 1

4 (σ2 − σ3)2 + l2(σ1 − σ2)(σ1 − σ3) (57)

The center of these circles is at Q, while the radius varies from QB for l = 0 to QA
for l = 1. Finally, considering constant values of m, we have the family of circles

τ2 + {σ − 1
2 (σ1 + σ3)}2 = 1

4 (σ1 − σ3)2 + m2(σ1 − σ2)(σ3 − σ2) (58)
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Figure 1.13 Mohr’s representation of stress in three dimensions.

with the center at R, and the radius decreasing from RC for m = 0 to RB for m = 1.
For arbitrary values of (l, m, n), the state of stress will correspond to a point in the
space between the three semicircles drawn on the diameters AB, BC, and CA.

To find the values of σ and τ across any given plane, let α= cos−1 l and
γ = cos−1 n be the angles made by the normal to the plane with the directions
of σ1 and σ3 respectively. Set off angles APD and CQE equal to 2α and 2γ respec-
tively, by drawing the radii PD and QE to the appropriate semicircles. The circular
arcs DHF and EHG, drawn with centers Q and P respectively, intersect one another
at H giving the required stress point.† If the lines AD and CE are produced, they
will meet the outermost semicircle at F and G respectively. Since the angle ABD is
equal to α, and BD = (σ1 − σ2)cosα, the triangle BDQ furnishes

QD2 = QB2 + BD2 + 2QB · BD cosα

= 1
4 (σ2 − σ3)2 + (σ1 − σ2)(σ1 − σ3)cos2α

Hence QD is identical to the radius of the circle (57) corresponding to the given
value of l. Similarly, the radius PE is equal to that of the circle (56) corresponding
to the given value of n. This completes the proof of the construction for the stress
point H. It can be shown that the circular arc drawn through H with center at R cuts
the semicircles on AB and BC at J and K respectively, where BJ and BK are each
inclined at an angle β= cos−1 m to the vertical through B.

† Numerical examples have been given by J. M. Alexander, Strength of Materials, Chap. 4, Ellis
Horwood Limited, Chichester, U.K. (1981).
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Figure 1.14 Instantaneous veloci-
ties of three neighboring particles in
a deforming region.

The semicircles with centers P, Q, R are in fact one-half of the two-
dimensional Mohr circles for the planes perpendicular to the directions of σ3, σ1, σ2
respectively. Considering the first semicircle, the coordinates of any point such as
D are easily shown to be those given by (45) and (46) with the principal axes taken
as the axes of reference. For three-dimensional stress states, there is no graphical
construction for finding the principal stresses and their directions from given com-
ponents of the stress. When one of the axes of reference coincides with a principal
axis, the problem of finding the remaining principal stresses and their directions is
essentially two-dimensional in character.

1.5 Analysis of Strain Rate

(i) Rates of deformation and rotation A body is said to be deformed or strained
when changes occur in the relative positions of the particles forming the body. The
instantaneous rate of straining at any point of the body is specified by the velocity
field in the neighborhood of this point. Let vi denote the components (u, v, w) of the
velocity of a typical particle P whose instantaneous coordinates are denoted by xi
(Fig. 1.14). Consider a neighboring particle Q situated at an infinitesimal distance
from P, the coordinates of Q being xi + δxi. Then the relative velocity of Q with
respect to P is given by

δvi = ∂vi

∂xj
δxj

which is equivalent to three equations corresponding to the three components (δu,
δv, δw) of the relative velocity. The velocity gradient tensor ∂vi/∂xj may be regarded
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as the sum of its symmetric part ε̇ij and antisymmetric part ωij, where

ε̇ij = 1

2

(
∂vi

∂xj
+ ∂vj

∂xi

)
ωij = 1

2

(
∂vi

∂xj
+ ∂vj

∂xi

)
(59)

Evidently, ε̇ij = ε̇ji and ωij = −ωji, indicating the properties of symmetry and anti-
symmetry of the respective tensors. The expression for the relative velocity therefore
becomes

δvi = ε̇ij δxj + ωij δxj (60)

To obtain the physical significance of the decomposed parts of the relative veloc-
ity, let ω21 = −ω12 =ωz, ω32 = −ω23 =ωx, and ω13 = −ω31 =ωy, the remaining
components of ωij being identically zero. The second equation of (59) then gives

ωx = 1

2

(
∂w

∂y
− ∂v

∂z

)
ωy = 1

2

(
∂u

∂z
− ∂w

∂x

)
ωz = 1

2

(
∂v

∂x
− ∂u

∂y

)
(61)

It follows from above that the quantities ωx, ωy, ωz form the components of the
vector†

ω = 1
2 curl v

where v is the velocity vector of the particle P. The components of the relative
velocity given by the second term on the right-hand side of (60) are ωy δz −ωz δy,
ωz δx −ωx δz, ωx δy −ωy δx. They form the components of the vector product
ω× δs, where δs denotes the infinitesimal vector PQ. The second part of the relative
velocity therefore corresponds to an instantaneous rigid body rotation of the neigh-
borhood of P with an angular velocity ω. The antisymmetric tensor ωij is known
as the spin tensor. The relationship between the tensor ωij and the associated spin
vector ωk may be written as

ωij = −eijkωk 2ωk = −ekijωij = ekij
∂vj

∂xi
(62)

where eijk is the permutation symbol whose value is +1 or −1 according to whether
i, j, k form an even or odd permutation‡ of 1, 2, 3. When two of the suffixes i, j, k
are equal, eijk is identically zero. It follows from the definition that

eijk = ejki = ekij = −eikj = −ekji = −ejik

If the neighborhood of P undergoes an instantaneous deformation, the first term
on the right-hand side of (60) must be nonzero. The symmetric tensor ε̇ij is there-
fore called the rate of deformation or the true strain rate at P at the instant under

† The direction of ω is parallel to the direction of advancement of a right-handed screw turning in
the same sense as that of the rigid body rotation.

‡ This means that e123 = e231 = e312 = 1 and e213 = e132 = e321 = −1, while all other components
are zero. The permutation tensor has the important property emijemkl = δikδjl − δilδjk , which may be
obtained by eliminating ωk between the two relations (62), and comparing the result for ωij with that
given by (59).
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consideration. The rectangular components of the strain rate are

ε̇x = ∂u

∂x
ε̇y = ∂v

∂y
ε̇z = ∂w

∂z

γ̇xy = 1

2

(
∂u

∂y
+ ∂v

∂x

)
γ̇yz = 1

2

(
∂w

∂y
+ ∂v

∂z

)
γ̇zx = 1

2

(
∂w

∂x
+ ∂u

∂z

) (63)

The first three are the normal components and the last three are the shear components
of the strain rate. When the total deformation is small, the expressions on the right-
hand sides of (63) give the components of the strain itself with u, v, w regarded as
the components of the displacement of the particle.†

For the mechanical interpretation of the components of the tensor ε̇ij, consider
first the rate of change of the instantaneous length δs of the material line element
PQ. The square of this line element is δs2 = δxi δxi, which gives

δs(δs)̇ = δvi δxi = ∂vi

∂xj
δxi δxj = ∂vj

∂xi
δxi δxj

where the dot denotes the material derivative, specifying the rate of change following
the motion of the particles. Using the expression for ε̇ij given by (59), the above
relation may be written as

δs(δs)̇ = 1

2

(
∂vi

∂xi
+ ∂vj

∂xi

)
δxi δxj = ε̇ij δxi δxj

If the unit vector in the direction PQ is denoted by li, then δxi = li δs. The ratio
(δs)̇/δs, called the rate of extension ε̇ in the direction PQ, is then obtained as

ε̇ = lilj ε̇ij

= l2ε̇x + m2ε̇y + n2ε̇z + 2lmγ̇xy + 2mnγ̇yz + 2nlγ̇zx (64)

where (l, m, n) are the direction cosines of PQ. It follows that the components ε̇x,
ε̇y, ε̇z are the rates of extension at the particle P in the coordinate directions.

Consider, now, a second material line element PQ′ emanating from P, the
instantaneous coordinates of Q′ being xi + δx′

i. Then the velocity of Q′ relative to
that of P is

δv′i = ∂vi

∂xj
δx′

j

The scalar product of the infinitesimal vectors PQ and PQ′ is δxi δx′
i, and its material

rate of change is

(δxi δx
′
i )̇ = δxi δv

′
i + δx′

i δvi =
(
∂vi

∂xj
+ ∂vj

∂xi

)
δxi δx

′
j = 2ε̇ij δxi δx

′
j

† The expressions for the strain rates and the components of spin in cylindrical and spherical
coordinates are given in App. B.
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Let the instantaneous length of the line element PQ′ be denoted by δs′, and the rate
of extension in this direction by ε̇′. If the included angle between PQ and PQ′ is
denoted by θ, the scalar product δxi δx′

i is equal to δs δs′ cos θ. The above equation
therefore becomes

[(ε̇+ ε̇′)cos θ − θ̇ sin θ]δs δs′ = 2ε̇ij δxi δx
′
j (65)

If the neighborhood of P undergoes an instantaneous rigid body motion, the mate-
rial triangle PQQ′ retains its shape following the motion, giving ε̇= ε̇′ = θ̇= 0. It
follows from (65) that ε̇ij then vanishes identically as expected. The rate at which
an instantaneous right angle between a pair of material line elements decreases is
twice the rate of shear, denoted by γ̇ . Setting δxi = li δs, δx′

j = l′j δs′, and θ=π/2 in
(65), the rate of shear associated with the directions li and l′i is obtained as

γ̇ = lil
′
j ε̇ij = ll′ε̇x + mm′ε̇y + nn′ε̇z + (lm′ + ml′)γ̇xy

+ (mn′ + m′n)γ̇yz + (nl′ + ln′)γ̇zx (66)

where (l′, m′, n′) are the direction cosines of PQ′. It follows from (66) that γ̇xy, γ̇yz,
and γ̇zx are the rates of shear associated with the appropriate coordinate directions.
In the engineering literature, the shear rate is taken as equal to the rate of decrease of
the angle formed by an instantaneous pair of orthogonal material line elements. The
engineering components of the rate of shear are therefore twice the corresponding
tensor components. During a finite deformation, the engineering shear strain asso-
ciated with a pair of orthogonal line elements in the unstrained state is the tangent
of the angle by which the right angle decreases.

(ii) Principal strain rates The relative velocity of Q with respect to P, correspond-
ing to pure deformation in the neighborhood of P, may be resolved into a component
along PQ and a component perpendicular to PQ. These resolved components are
equal to ε̇ δs and γ̇ δs respectively, as may be seen from (60), (64), and (66), the unit
vector l′i being considered in the appropriate perpendicular direction. The direction
PQ represents a principal direction of the rate of deformation, if the relative velocity
of pure deformation is directed along PQ. In this case γ̇ = 0, and ε̇ij δxj is equal to
ε̇ δxi, where δxi = li δs. Hence

ε̇ijlj = ε̇li or (ε̇ij − ε̇ δij)lj = 0 (67)

This consists of three scalar equations, analogous to (22), for the components of the
unit vector lj. Equating to zero the determinant of the coefficients formed by the
expression in the parenthesis of (67), we obtain the cubic equation

ε̇3 − N1ε̇
2 − N2ε̇− N3 = 0

whose roots are the principal strain rates ε̇1, ε̇2, ε̇3. The coefficients N1, N2, N3
are the basic invariants of the strain rate tensor, their expressions in terms of the
components of ε̇ij being

N1 = ε̇ii N2 = 1
2 (ε̇ij ε̇ij − ε̇iiε̇jj) N3 = |ε̇ij| (68)
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where the last expression denotes the determinant of the matrix of the tensor ε̇ij.
When the principal values of the strain rate are distinct, each principal strain rate
is associated with a unique principal direction. The three principal directions are
mutually orthogonal and are known as the principal axes of the strain rate. In analogy
with (15), a deviatoric strain rate ėij is defined as

ėij = ε̇ij − ε̇0δij = ε̇ij − 1
3 ε̇kkδij (69)

The principal axes of ėij are the same as those of ε̇ij. The principal components of
the deviatoric strain rate are obtained by subtracting the mean extension rate ε̇0 from
the corresponding principal strain rates. The principal shear rates have the values

1
2 |ε̇1 − ε̇2| 1

2 |ε̇2 − ε̇3| 1
2 |ε̇3 − ε̇1|

These are the maximum values of the magnitude of γ̇ at the considered particle. Each
principal shear rate is associated with directions which bisect the angles between
the corresponding pair of principal axes of the rate of deformation.

The first invariant N1 is equal to the rate of change of volume per unit volume
in the neighborhood of a typical particle P. This may be shown by considering a
small rectangular parallelepiped at P with its edges parallel to the principal axes. If
the instantaneous lengths of the edges are denoted by δa, δb, δc, the rates at which
these lengths change following the motion are ε̇1 δa, ε̇2 δb, ε̇3 δc respectively. The
instantaneous volume δa δb δc of the parallelepiped therefore changes at the rate
(ε̇1 + ε̇2 + ε̇3)δa δb δc. If the local density of the material is denoted by ρ, the mass
of the parallelepiped is ρ δa δb δc, which remains constant following the motion.
Setting the rate of change of this mass to zero, we have

ρ̇/ρ = −(ε̇1 + ε̇2 + ε̇3) = −(ε̇x + ε̇y + ε̇z) = −ε̇ii

Expressing the rates of extension in terms of the velocity gradients, the above relation
can be written as

ρ̇ + ρ
∂vi

∂xi
= ρ̇ + ρ

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
= 0 (70)

For an incompressible material, the density remains constant, and consequently ε̇ii
must vanish. In this case, the components of the deviatoric strain rate are identical
to those of the actual strain rate.

Consider the situation where the principal axes of the strain rate remain fixed
with respect to an element as it continues to deform. The axes of reference are
assumed to take part in the rotation of the element so that they are parallel to the prin-
cipal axes at each stage. Let x, y, z denote the coordinates of the center of the element
at any instant t, measured in the directions of ε̇1, ε̇2, ε̇3 respectively. If the initial coor-
dinates x0, y0, z0 are taken as independent space variables, which do not change fol-
lowing the motion, the material rate of change of each variable is given by its partial
derivative with respect to t. The first principal strain rate may therefore be written as

∂ε1

∂t
= ∂u/∂x0

∂x/∂x0
= (∂/∂t)(∂x/∂x0)

∂x/∂x0
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Similar expressions may be written down for the other two principal strain rates.
These equations are immediately integrated to give the total principal strains

ε1 = ln

(
∂x

∂x0

)
ε2 = ln

(
∂y

∂y0

)
ε3 = ln

(
∂z

∂z0

)

which are the logarithms of the ratios of the final and initial lengths of the material
line elements along the principal axes. When the principal axes of the strain rate
rotate with respect to the element, the principal components of the successive strain
increments cannot be interpreted as increments of principal strains.†

(iii) Instantaneous plane strain The instantaneous state of strain is called plane
if one of the principal strain rates vanishes at each point of the deforming body.
If the z axis is taken along this principal axis, we have ε̇z = γ̇yz = γ̇zx = 0 for an
instantaneous plane strain condition. The velocity field therefore has the form

u = u(x, y) v = v(x, y) w = 0

and the nonzero strain rates ε̇x, ε̇y, and γ̇xy are all independent of z. A typical
material line element PQ in the plane z = const instantaneously extends and rotates
in the same plane. A part of the instantaneous rotation corresponds to a local rigid
body spin of the material about an axis through P with an angular velocity ωz =ω,
which is reckoned positive when the rotation is counterclockwise. The condition of
compatibility of the components of strain rate is

∂2ε̇x

∂y2 + ∂2ε̇y

∂x2 = 2
∂2γ̇xy

∂x ∂y
(71)

which is readily verified on direct substitution from (63). It is a consequence of the
fact that three strain-rate components are defined by two velocity components.‡

Let φ denote the counterclockwise orientation of a line element PQ with respect
to the x axis. Then the instantaneous coordinate differences between the particles P
and Q are δx = δs cosφ and δy = δs sin φ, where δs is the length of the element PQ.
Let (δu∗, δv∗) denote the relative velocity of Q with respect to P corresponding to
pure deformation. Then

δu∗ = (ε̇x cosφ + γ̇xy sin φ)δs

δv∗ = (γ̇xy cosφ + ε̇y sin φ)δs

† For a discussion of finite homogeneous strains, in which all straight lines remain straight during
straining, see J. C. Jaeger, Elasticity, Fracture, and Flow, Chap. 1, Methuen and Company, London
(1969).

‡ For a three-dimensional velocity field, there are six equations of compatibility, three of which are
of type (71). They are necessary and sufficient conditions for the existence of single-valued velocities.
See, for example, L. E. Malvern, Introduction to Mechanics of a Continuous Medium, p. 189, Prentice-
Hall, Englewood Cliffs, N.J. (1969).
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in view of the first term on the right-hand side of (60). The resolved component
of this relative velocity in the direction PQ is equal to ε̇ δs, where ε̇ is the rate of
extension along PQ. Hence

ε̇ = δu∗ cosφ + δv∗ sin φ

δs

= ε̇ cos2φ + ε̇y sin2φ + 2γ̇xy sin φ cosφ (72)

The expression for ε̇ is also obtained from (65) by setting l = cosφ, m = sin φ, n = 0.
The shear strain rate γ̇ associated with the directions φ and π/2 +φ is given by the
resolved component of the relative velocity (δu∗, δv∗) in the direction perpendicular
to PQ. Thus

γ̇ = −δu∗ sin φ + δv∗ cosφ

δs

= −(ε̇x − ε̇y)sin φ cosφ + γ̇xy(cos2φ − sin2θ) (73)

It follows from the nature of the derivation that γ̇ is the counterclockwise angular
velocity of PQ corresponding to pure deformation of the neighborhood of P. An
element PR inclined at π/2 +φ to the x axis has a clockwise angular velocity equal
to γ̇ . The right angle between PQ and PR therefore decreases at the rate 2γ̇ , which
is the engineering shear rate at P associated with these directions. It follows that the
total angular velocities of PQ and PR are ω+ γ̇ and ω− γ̇ respectively measured in
the counterclockwise sense.

The direction φ corresponds to a principal direction of the strain rate if the
corresponding shear rate vanishes. Since dε̇/dφ= 2γ̇ in view of (72) and (73), the
longitudinal strain rate has a stationary value in the principal direction. The condition
γ̇ = 0 gives

tan 2φ = 2γ̇xy

ε̇x − ε̇y
(74)

which defines two mutually perpendicular directions representing the principal axes
in the xy plane. The principal axes of stress and strain rate coincide if the ratios on
the right-hand sides of (47) and (74) are equal to one another. The principal strain
rates are expressed as

ε̇1, ε̇2 = 1
2 (ε̇x + ε̇y) ± 1

2

√
(ε̇x − ε̇y)2 + 4γ̇2

xy (75)

The second term on the right-hand side represents the maximum rate of shear in the
plane of the instantaneous motion. Choosing the principal axes in this plane as the
new axes of reference, the rate of extension ε̇ and the total angular velocity φ̇ of a
material line element PQ may be written from (72) and (73) as

ε̇= 1
2 (ε̇1 + ε̇2) + 1

2 (ε̇1 − ε̇2)cos 2φ

φ= ω − 1
2 (ε̇1 − ε̇2)sin 2φ

(76)
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Figure 1.15 Geometrical representation of the rates of extension and rotation in plane strain.

where ω is the component of spin at P. It follows that ε̇ and φ̇ can be represented
by a point whose locus is a circle with parametric equations (76). If ε̇ is taken as
the ordinate and φ̇ as the abscissa (Fig. 1.15), the coordinates of the center C of the
circle are ω, 1

2 (ε̇1 + ε̇2), and the radius of the circle is 1
2 (ε̇1 − ε̇2), where ε̇1> ε̇2. The

highest and lowest points of the circle, denoted by A and B, represent the maximum
and minimum rates of extension, together with an angular velocity equal to ω.

Let a point Q* on the circle correspond to the direction φ with respect to the
first principal axis. Then in view of (76), the angle ACQ* is equal to 2φ. The line
Q*P* drawn parallel to the direction PQ meets the circle again at P* which may
be regarded as the pole of the circle. Since the peripheral angle AP*Q* is equal
to φ, the line P*A is parallel to the first principal direction at P. To find the point
on the circle corresponding to any given direction in the plane of motion, it is only
necessary to draw a line in this direction through P* and locate its second intersection
with the circle. Let P*R* be drawn parallel to some given direction PR through
P. Then the rate of change of the material angle QPR is equal to the difference
between the abscissas of the corresponding points R* and Q* on the circle. For the
considered orientation of the line elements PQ and PR, the angle between them
instantaneously decreases. The difference between the abscissas of the points D and
E, which correspond to the maximum shear directions at P, is greater than that of any
other pair of points on the circle. It follows, therefore, that the right angle formed by
the material line elements in the maximum shear directions changes at a rate which
is numerically greater than that for any other material angle in the plane of motion.†

† The above construction is due to W. Prager, Introduction to Mechanics of Continua, p. 69, Ginn
and Company, Boston (1961). Mohr’s construction for the rates of extension and shear associated with
any angle φ is identical to that for the normal and shear stresses.
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(iv) Equilibrium and virtual work Consider a mass of material occupying a finite
volume V and bounded by a surface S at a generic instant t. The material is in
equilibrium under surface forces distributed over S, and body forces (such as grav-
itational and centrifugal forces) distributed throughout V . The body force acting on
a typical volume element dV is equal to ρgj dV , where gj denotes the body force per
unit mass and ρ the current density. The force Tj acting on a typical surface element
dS, specified by its exterior unit normal li, is equal to σijli dS. The condition of force
equilibrium requires the resultant of these forces to vanish, leading to∫

σijli dS +
∫
ρgj dV = 0

where the surface integral extends over S and the volume integral over V . Using
Green’s theorem, the surface integral can be transformed into a volume integral,
reducing the above expression to∫ (

∂σij

∂xi
+ ρgj

)
dV = 0

The vanishing of the above integral requires that the expression in the parenthesis
must vanish identically. The equilibrium condition therefore becomes

∂σij

∂xi
+ ρgj = 0 (77)

which is equivalent to three equations corresponding to the three coordinate direc-
tions. In view of the symmetry of the stress tensor, (77) also ensures that the resultant
moment of the surface and body forces is identically zero.†

Equation (77) must be satisfied throughout the interior of the body. At the
boundary of the body, the force Tj per unit area acting on a typical surface element
must be equal to the stress vector across this element. The boundary condition may
therefore be written as

Tj = liσij (78)

where li is the unit vector along the exterior normal to the surface at the consid-
ered point. In general, (77) and (78) must be supplemented by other equations to
determine the stress components uniquely.

Consider, now, a continuous velocity field vj, which is chosen independently of
an equilibrium distribution of stress σij. The rate of work done by the distribution
of surface traction Tj (in the absence of body forces) is∫

Tjvj dS =
∫

liσijvj dS =
∫

∂

∂xi
(σijvj)dV =

∫
σij
∂vj

∂xi
dV

† See, for example, W. Prager, Introduction to Mechanics of Continua, p. 46, Ginn and Company,
Boston (1961).
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in view of (77). The transformation of the surface integral into the volume integral
follows from Gauss’ divergence theorem (or Green’s theorem) applied to the vector
σijvj. Since

σij
∂vj

∂xi
= σji

∂vj

∂xi
= σij

∂vi

∂xj
= 1

2
σij

(
∂vi

∂xj
+ ∂vj

∂xi

)
= σij ε̇ij

by the symmetry of the stress tensor and the interchangeability of dummy suffixes,
we obtain the principle of virtual work in the form∫

Tjvj dS =
∫
σij ε̇ij dV (79)

where ε̇ij is the rate of deformation associated with the velocity vj. Equation (79)
states that the rate of work done by the external forces on any virtual velocity field is
equal to the rate of dissipation of internal energy. If the velocity field is discontinuous,
the energy dissipated due to shearing across the discontinuities must be included on
the right-hand side of (79).

1.6 Concepts of Stress Rate

(i) Objective stress rates The rate of deformation of a solid, for a given state of
stress, is generally a function of the instantaneous rate of change of the stress. The
stress rate tensor used in this relation, known as the constitutive relation, must be
defined in such a way that it vanishes in the event of an instantaneous rigid body rota-
tion. Such a stress rate is called an objective stress rate. From the physical standpoint,
it is natural to consider the rate of change of the stress referred to a set of axes that
participates in the instantaneous rotation of a typical element. Although the stress
components with respect to a fixed coordinate system are changed by the rotation of
the element, the components with respect to the rotating system remain unaffected.

Consider two sets of rectangular axes xi and x′
i, which have a common origin

O, and which are coincident at an instant t. During a small interval of time dt, the
first set of axes is assumed to remain fixed, while the second set of axes takes part
in the rigid-body rotation of the given element. An infinitesimal vector PQ drawn
in the element from its center P is denoted by δxj and δx′

j with respect to the two
coordinate systems at the instant t + dt. The difference δxj − δx′

j is equal to δvj dt,
where δvj denotes the relative velocity of rotation of Q with respect to P at the
instant t. Recalling that δvj =ωji δx′

i, where ωij denotes the rate of rotation of the
neighborhood of P, we have

δxj = δx′
j + (ωji dt)δx′

i = (δij − ωij dt)δx′
i (80)

The angle which the xj axis makes with the x′
i axis instantaneously changes at the rate

ωij when i 
= j. Let σij denote the true (or Cauchy) stress at the particle P when dt = 0.
The material rates of change of the stress referred to the fixed and the rotating axes are
denoted by σ̇ij and σ̊ij respectively. At the time t + dt, the primed and the unprimed
stress components become σij + σ̊ij dt and σij + σ̇ij dt respectively. In view of (20),
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expressed in the infinitesimal form, aij is given by the expression in the parenthesis
of (80). The transformed stress tensor may therefore be written from (21) as

σij + σ̊ij dt = (δik − ωik dt)(δjl − ωjl dt)(σkl + σ̇kl dt)

Neglecting the terms containing squares and cubes of dt, and using the symmetry
of the stress tensor, the relationship between σ̇ij and σ̊ij, which is due to Jaumann,†
is obtained as

σ̊ij = σ̇ij − σikωjk − σjkωik (81)

The quantity σ̊ij may be regarded as the rigid body derivative of the true stress at
the instant under consideration. It can be significantly different from the material
derivative σ̇ij whenever the rate of rotation is important.

Consider now the scalar triple product pijσjkωik where pij is an arbitrary tensor
having the same principal axes as those of σij. Since this expression is an invariant, it
is convenient to take the common principal axes as the axes of reference. The tensor
pijσjk then corresponds to a diagonal matrix, while the diagonal components of ωik
are always zero. Consequently, the scalar product of these two tensors is identically
zero. It is similarly shown that the triple product pijσikωjk also vanishes. It follows,
therefore, from (81) that

pijσ̊ij = pijσ̇ij

Thus σ̊ij and σ̇ij have the same scalar product with any second-order tensor whose
principal axes coincide with those ofσij. This property has an important consequence
in the theory of plasticity.

Various other definitions of the stress rate, vanishing for an instantaneous
rigid-body rotation, have been proposed in the literature. An objective stress rate
sometimes used in the literature to replace σ̊ij is the material rate of change of the
modified stress tensor

τij = ∂ai

∂xk

∂aj

∂xl
σkl

where ai are the initial coordinates of the particle which is currently at xi. The
material derivative of τij, when the initial state coincides with that at the generic
instant t, is easily shown to be‡

τ̇ij = σ̇ij − σik
∂vj

∂xk
− σjk

∂vi

∂xk
(82)

† G. Jaumann, Sitz. Akad. Wiss. Wien 120: 385 (1911). The result has been rederived by H. Fromm,
Ing.-Arch., 4: 452 (1933); S. Zaremba, Mem. Sci. Math., No. 82, Paris (1937); W. Noll, J. Rat. Mech.
Anal., 4: 3 (1955); R. Hill, J. Mech. Phys. Solids, 7: 209 (1959). See also W. Prager, Q. Appl. Math.,
18: 403 (1961); A. J. M. Spencer, Continuum Mechanics, Longman, London (1980).

‡ The derivation of (82) is very similar to that of (87). The tensor (ρo/ρ)τij , where ρo and ρ are
the initial and final densities of the material, is called the Kirchhoff stress. The material rate of change
of the Kirchhoff stress at the initial state is τ̇ij + ε̇kkσij .
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It follows from (81) and (82) that τ̇ij differs from σ̊ij by the quantity σik ε̇jk + σjk ε̇ik ,
which is appreciable when the rate of deformation becomes significant. It is impor-
tant to note that τ̇ij and σ̇ij do not have the same scalar product with any tensor pij
which is coaxial with σij.

(ii) Nominal stress rate Through a typical particle P in the deforming material,
consider a small surface element represented by the vector δSi at any instant t. The
magnitude of this vector is the current area δS, and the direction of this vector is that
of the normal to the surface in the current state. The coordinates of P are denoted
by xi in the instantaneous state, and by ai in some initial reference state with respect
to a fixed set of rectangular axes. The initial area of the surface element is δS0, the
corresponding vector being denoted by δSo

i . Consider now a material line element
PQ emanating from the particle P. If the instantaneous components of the vector
PQ are denoted by δxi, the corresponding components in the initial state are given
by

δai = ∂ai

∂xj
δxj

The volume of the material cylinder, specified by the axial vector PQ and having the
given surface element as its base, changes from δSo

i δai in the initial state to δSi δxi
in the current state. The conservation of mass requires

ρ δSj δxj = ρ0 δS
o
i δai

where ρ0 and ρ are the initial and current densities of the material at the particle P.
Substituting for δai, we have(

ρ

ρ0
δSj − ∂ai

∂xj
δSo

i

)
δxj = 0

Since this equation must be satisfied for any arbitrary vector δxj, the expression in
the parenthesis must vanish. Hence

ρ

ρ0
δSj = ∂ai

∂xj
δSo

i (83)

The infinitesimal force δPj transmitted in the current state may be referred to the
surface element in the initial state through a nominal stress tensor tij. The true stress
tensor σij, on the other hand, is associated with the surface element in the current
state to give the same infinitesimal force. Expressed mathematically,

δPj = tij δS
o
i = σkj δSk (84)

Thus tij δS0 is the jth component of the force currently acting on a surface element
which was initially perpendicular to the ith axis. Substitution for δSk from (83) leads
to the relationship between tij and σij as

tij = ρ0

ρ

∂ai

∂xk
σkj (85)
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This relation shows that the nominal stress tensor tij is not symmetric. Nevertheless,
it is convenient to introduce this tensor for treating the problems of uniqueness and
stability. The material derivative of tij is obtained by applying the operator.

d

dt
= ∂

∂t
+ vm

∂

xm

where vm is the instantaneous velocity of the considered particle. The first term on
the right-hand side represents the local part and the second term the convective part
of the derivative. Since the initial coordinates do not change following the particle,
dai/dt = 0, in view of which the material rate of change of the tensor ∂ai/∂xk is
obtained as

d

dt

(
∂ai

∂xk

)
= ∂

∂xk

(
∂ai

∂t

)
+ vm

∂

∂xk

(
∂ai

∂xm

)
= −∂vm

∂xk

∂ai

∂xm
(86)

Considering the material derivative of (85), and using (70) and (86), it is easily
shown that

dtij
dt

= ρ0

ρ

(
dσmj

dt
+ σmj

∂vk

∂xk
− σkj

∂vm

∂xk

)
∂ai

∂xm

where a dummy suffix has been replaced by another. If the initial state is now
assumed to coincide with the instantaneous state, ρ0 = ρ, ai = xi, and consequently
∂ai/∂xm = δim. Denoting the instantaneous rate of change by a dot as usual, we
finally obtain†

ṫij = σ̇ij + σij
∂vk

∂xk
− σjk

∂vi

∂xk
(87)

which relates the nominal stress rate ṫij to the true stress rate σ̇ij with respect to a
fixed set of rectangular axes. It follows from (84) that when ṫij vanishes, the force
transmitted across the surface element instantaneously remains constant, despite the
deformation and the rotation of the element.

(iii) Equilibrium equations and boundary conditions Let V0 be the initial volume
and S0 the initial surface of the material which instantaneously fills the volume V with
surface S.Denote by loi the unit vector along the exterior normal to an initial surface
element of area dS0. The forces currently acting on typical surface and volume
elements of the material may be expressed as tijloi dS0 and ρ0gj dV0 respectively.
Equating the resultant of these forces over the entire body to zero, we get∫

tijl
◦
i dS0 +

∫
ρ0gj dV0 = 0

† The expression (87) is due to R. Hill, J. Mech. Phys. Solids, 6: 236 (1958).
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where the integrands are considered as functions of the initial coordinates ai and the
time t. The transformation by Green’s theorem furnishes the result∫ (

∂tij
∂ai

+ ρ0gj

)
dV0 = 0

Since this equation holds for any arbitrary region V0, the integrand must vanish. The
equation of equilibrium in terms of the nominal stress therefore becomes

∂tij
∂ai

+ ρ0gj = 0

The material derivative of this equation is simply the partial derivative with respect
to t, since the initial coordinates are taken as the space variables. Denoting the mate-
rial rate of change of the nominal stress by ṫij when the initial state is assumed as
that at the instant t, we obtain

∂ṫij
∂xi

+ ρġj = 0 (88)

This is the rate equation of equilibrium expressed in its simplest form. Inserting from
(87), the equation may be written down in terms of the true stress rate σ̇ij. When body
forces are neglected (as is usual with gravitational forces), the rate equation becomes

∂σ̇ij

∂xi
− ∂vi

∂xk

∂σjk

∂xi
= 0 (89)

This expression is also obtained if we apply the operator d/dt on equation (77). The
second term on the left-hand side of (89) represents the effect of the instantaneous
motion of the element.

The components of the stress rate must be in equilibrium with the instantaneous
rate of change of boundary tractions. Since the future position of a typical surface
element is not known in advance, when positional changes are taken into account,
it is convenient to express the boundary condition in terms of the traction rate based
on the initial configuration. If δPj denotes the current load vector acting on a surface
element of initial area δS0, then the ratio δPj/δS0 as δS0 tends to zero is the nominal
traction Fj. It follows from (84) that

Fj = loi tij

If the material rate of change of the nominal traction is denoted by Ḟj when the
initial state is taken as that at the instant considered (loi = li), then

Ḟj = li ṫij (90)

A different situation arises when a part of the boundary surface is subjected to a
uniform normal pressure p through an inviscid fluid. In this case, the infinitesimal
load vector on the surface element is

δPj = −p δSj = −p

(
ρ0

ρ

∂ai

∂xj

)
loi δS0
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in view of (83). The load per unit initial area of the element therefore becomes

Fj = −p

(
ρ0

ρ

∂ai

∂xj

)
loi (91)

Taking the material derivative of the nominal traction (91), and using the relations
(70) and (86), we obtain

dFj

dt
= ρ0

ρ

{
−
(

ṗ + p
∂vk

∂xk

)
∂ai

∂xj
+ p

∂vk

∂xj

∂ai

∂xk

}
loi

since the unit vector loi does not change during the motion of the surface. If the initial
state is regarded as identical to the instantaneous state, ρ0 = ρ, ai = xi, loi = li, and
the nominal traction rate becomes†

Ḟj = −ṗlj + p

(
lk
∂vk

∂xj
− lj

∂vk

∂xk

)
(92)

It follows that even when the pressure remains constant, the nominal traction changes
as a result of the instantaneous distortion of the unconstrained surface. The equi-
librium equation and the boundary condition, expressed in the rate form, must be
supplemented by the constitutive equation for the particular solid in formulating the
boundary value problem of the incremental type.

Problems

1.1 In a certain annealed material, the yield point is taken as that for which the permanent strain is
one-quarter of the recoverable elastic strain. The true stress–strain curve for the material in the plastic
range may be represented by the empirical equation

σ = E

180
ε0.25

where E is Young’s modulus. Determine the stress Y at the yield point as a fraction of E, and compute
the true and nominal values of the uniaxial instability stress in terms of Y .

Answer: Y = E/943, σ= 3.71 Y , s = 2.89 Y .

1.2 The true stress/engineering strain curve of a material in simple tension may be represented by the
equation σ= Cen, where C and n are empirical constants. Show that the value of e at the onset of
necking in uniaxial tension is n/(1 − n). Suppose that a bar of material is axially compressed to a strain
of e< n, and is subsequently extended to the point of necking. Assuming no buckling, and neglecting
Bauschinger effect, show that the ratio of the final and initial lengths of the bar is (1 − e)2/(1 − n).

1.3 Prove that according to the Voce equation for the stress–strain curve, the true stress and the natural
strain at the onset of instability in uniaxial tension are

σ = Cn

1 + n
ε = ln[m(1 + n)]

n

† J. Chakrabarty, Z. angew. Math. Phys., 24: 270 (1973). A more general type of loading has been
examined by R. Hill, J. Mech. Phys. Solids, 10: 185 (1962).
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What would be the instability strain when m(1 + n) is less than unity? Show that the stress–strain curve
can be linearized by introducing a new strain measure ε∗ defined as

ε∗ = 1

n

{
1 −

(
l0
l

)n}
where l0 and l are the initial and final lengths of a tension bar.

1.4 In the simple compression of a short cylinder, the curve representing the variation of the load with
the amount of compression shows a point of inflection. If the true stress–strain curve of the material is
expressed by the empirical equation σ= Cεn, show that the natural strain corresponding to the point of
inflection is

ε = 1
4

[√
n(8 + n) − 3n

]
For what range of values of n will this strain exceed the instability strain in simple tension?

Answer: 0< n< 1/6.

1.5 In the homogeneous compression of a cylindrical specimen, the curve for the nominal stress against
the natural strain has a point of inflection. Show that the corresponding point on the true stress–strain
curve is given by (

d

dε
+ 1

)2

σ = 0

Assuming the empirical equation σ= Cεn, show that the true strain is
√

n − n at the point of inflection.
For what values of n will this strain exceed the uniaxial instability strain?

Answer: 0< n< 0.25.

1.6 The effect of elastic deformation of the material on the instability strain may be estimated by
considering the stress–strain equation in the Ramberg-Osgood form

ε = σ

E
+ 3σ0

7E

(
σ

σ0

)1/n

where σ0 is the nominal yield stress and n is the strain-hardening exponent. Show that the true strain at
the onset of necking in simple tension becomes

ε � n +
(

7n

3

)n(σ0

E

)1−n

to a close approximation. Assuming n = 0.05 and σ0/E = 0.002, compute the percentage error involved
in using the simple power law σ= Cεn.

Answer: 4.76%.

1.7 The plane structure shown in Fig. A consists of three bars pin-jointed at their ends. The central bar
OB is made of a material whose stress–strain curve is represented by σ= C1ε

n1 . The inclined bars OA
and OC are made of a different material, having its stress–strain law expressed by σ= C2ε

n2 , where
n2 < n1. If the initial angle of inclinations ψ is such that plastic instability occurs simultaneously in the
three bars on the application of a vertical load at O, show that

cosψ =
√

exp(2n2) − 1

exp(2n1) − 1

1.8 Suppose that the bars of Fig. A have the same cross-sectional area A, and are made of a material
that strain-hardens according to the law σ/Y = (Eε/Y )n. Show that the relationship between the applied
load P and the deflection δ of point O, for sufficiently small strains in the fully plastic range, is given by

P

AY
= (1 + 2 cos2n+1ψ)

(
Eδ

Yl

)n Eδ

Yl
� sec2ψ
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Figure A

How is this equation modified when OB is plastic while OA and OC are still elastic? Obtain a graphical
plot of P/AY against Eδ/Yl over the range 0<Eδ/Yl< 5, assuming n = 0.25 and ψ= 45◦.

1.9 The stress–strain curve of a rigid/plastic metal can be accurately fitted (except for very small strains)
by the Ludwik equation σ= Cεn. It is required to approximate this curve by the straight line σ= Y + Hε,
giving the same plastic work over a total strain of ε0 (Fig. B). If the difference between the stresses
predicted by the two equations at ε= 1

2 ε0 is exactly one-half of that at ε= ε0, show that

Y

σ0
= 3 − n

1 + n
− 21−n Hε0

2σ0
= 21−n − 2 − n

1 + n

where σ0 = Cεn
0. Assuming n = 0.3, estimate the maximum percentage error in the linear approximation

where the straight line falls below the curve.
Answer: 7.8%.

Figure B Figure C

1.10 Derive an expression for the hoop stress that exists in a thin circular ring of mean radius r, thickness
t, and density ρ, rotating about its own axis with an angular velocity ω. If the deformation is continued
in the plastic range, tensile instability would occur when the angular velocity attains a maximum.
Representing the true stress–strain curve by the empirical equation σ= Cεn, show that the instability
or bursting speed is given by

ρω2r2
0 = C

(n

2

)n
exp(−n)

where r0 is the mean radius of the undeformed ring.
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1.11 In a thin-walled spherical shell under a uniform internal pressure p, the state of stress is a balanced
biaxial tension σ, which is related to the compressive thickness strain ε by the uniaxial stress–strain law
for the material. If plastic instability occurs in the shell when the internal pressure attains a maximum,
show that dσ/dε= 3

2σ at the onset of instability. Assuming the empirical stress–strain equation σ= Cεn,
obtain the dimensionless bursting pressure

p

C
= 2t0

r0

(
2

3
n

)n

exp(−n)

where t0 and r0 are the initial wall thickness and mean radius respectively.

1.12 A compound bar is made up of a solid cylinder which just fits into a hollow one, the two cylinders
being firmly bonded at their common interface. The true stress–strain curve is given by σ= C1ε

n1 for
the inner cylinder and by σ= C2ε

n2 for the outer cylinder. If the two cylinders carry equal loads at the
onset of instability, when the compound bar is subjected to longitudinal tension, show that the ratio of
the cross-sectional areas of the outer and inner cylinders is

A2

A1
= C1

C2

(
n1 + n2

2

)n1−n2

1.13 Fig. C illustrates the perforation of a uniform plate of thickness t0 by a smooth cylindrical drift of
radius a having a conical end. Each element of the raised lip may be assumed to form under a uniaxial
tensile hoop stress of varying intensity. Show that the height of the lip is h = 2

3 a, and that its thickness
varies as the cube root of the distance from the outer edge. If the material strain-hardens according to
the law σ= Cεn, show that the plastic work done during the process is

W = πt0a2C
�(1 + n)

21+n

where �(x) is the gamma function of any positive variable x. Find the numerical value of W/t0a2C
when n = 0.5.

Answer: 0.984.

Figure D

1.14 A plate of uniform thickness t0 is perforated by a smooth conical drift of semiangle α as shown in
Fig. D. The axis of the drift moves perpendicular to the plane of the plate and develops a conical lip of
base radius a. Assuming a uniaxial state of stress to exist in each element, show that the radius of the
outer cross section of the lip is b = a(1 − sin α)2/3. Show also that the thickness t of an element that
was situated at a radius r0 in the undeformed state is given by

t

t0
=
( r0

b

)1/2
{

1 +
( r0

b

)3/2
sin α

}−1/3
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1.15 Suppose that the structure shown in Fig. A is loaded in the fully plastic range to produce a small
vertical deflection δ of the joint O. The bars are identical in material and cross section, and the strain-
hardening of each bar is given by σ/Y = (Eε/Y )n. If the residual stresses left in the vertical and the
inclined bars are σ′

1 and σ′
2 respectively on complete unloading from the plastic state, show that

σ′
2

Y
= − σ′

1

2Y
secψ = cos2n ψ − cos2 ψ

1 + 2cos3ψ

(
Eδ

Yl

)n

Assuming δ to be three times that at the initial yielding, calculate σ′
1 and the residual deflection δ′ when

n = 0.25 and ψ= 45◦.
Answer: σ′

1/Y = −0.372, Eδ′/Yl = 1.312.

1.16 Two uniform vertical wires AB and CD, shown in Fig. E, support a load W acting at the free end
of an initially horizontal rigid bar hinged at O. The lower ends of the wires are attached to blocks which
can slide along a frictionless groove in the rigid bar. The strain-hardening exponents for the wires AB
and CD are n and 2n respectively. If plastic instability occurs simultaneously in them when the load is
increased to a critical value, show that

b

a
= en + (en − 1)(e2n − 1)

1 − en
√

2 − e2n

Figure E

1.17 Let σ1 >σ2 >σ3 be the principal stresses at any point P in a stressed body, and consider a straight
line through P having direction cosines

√
σ1 − σ2

σ1 − σ3
, 0,

√
σ2 − σ3

σ1 − σ3

with respect to the principal axes. Show that the resultant shear stress at P across any plane containing
the given straight line is in the direction of this line.

1.18 At a typical point O in a stressed body, the normal stress across a certain plane is equal to the
intermediate principal stress, while the shear stress is the geometric mean of the principal shear stresses
other than the absolute maximum. Assuming σ1 >σ2 >σ3, show that the direction cosines of the normal
to the plane with respect to the principal axes are

1

2

√
σ2 − σ3

σ1 − σ3
,

√
3

2
,

1

2

√
σ1 − σ2

σ1 − σ3

Find the direction of the shear stress across the plane, and show that it coincides with that of the greatest
shear stress at O when σ1 + σ3 = 2σ2.
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1.19 Referring to the oblique triangle of Fig. 1.10a, where CF is drawn along the shear stress vector to
meet the side AB at F, show that

AF

AB
=
(
σ2 − σ

σ − σ3

)
m2

n2

Show also that AB is divided internally or externally at F according as the ratio (σ2 − σ3)/(σ1 − σ2) is
greater or less than l2/n2.

1.20 A typical point O in a stressed body is taken as the origin of coordinates with rectangular axes in
the directions of the principal stresses σ1, σ2, and σ3. If P is any point on the surface of the quadric

σ1x2 + σ2y2 + σ3z2 = ±c2

where c is a constant, show that the normal stress at O acting on the plane perpendicular to OP has the
magnitude c2/r2, where OP = r. Show also that the resultant stress across this plane is directed along
the normal to the quadric surface at P, and is of magnitude c2/hr, where h is the perpendicular distance
of O from the tangent plane through P.

1.21 The rectangular components of the stress tensor at a certain point are found to be proportional to
the elements of the square matrix 

2 3 2
3 2 1
2 1 c




Find the value of c for which there will be a traction-free plane passing through the given point. Compute
the direction cosines of the normal to the traction-free plane.

Answer: c = 0.4, l = 0.154, m = −0.617, n = 0.772.

1.22 If OP represents the resultant stress vector across a plane passing through O, show that P will lie
on the surface of an ellipsoid, known as stress ellipsoid, whose principal axes coincide with those of
the stress at O. Prove that the given plane is parallel to the tangent plane of the stress director surface

x2

σ1
+ y2

σ2
+ z2

σ3
= const

at the point where it is intersected by OP, the coordinate axes being taken through O along the principal
stress axes.

1.23 The resultant stress at a given point O across an oblique plane is 135 MPa, acting in the direction
(1/3, 2/3, −1/3) with respect to a set of rectangular axes. If the normal to the plane is inclined at 45◦
to the x axis, and makes equal acute angles with the y and z axes, find the normal and shear components
of the stress. Assuming the state of stress at O to correspond to σx = σy, τxy = τyz, and τzx = 0, determine
the nonzero components of the stress tensor.

Answer: In units of MPa, σ= 86.13, τ= 103.95, σx = σy = 105.44, σz = −120.88, τxy = τyz = 30.88.

1.24 The state of stress at a certain point in a material body is defined by the following rectangular
components:

σx = 64 MPa σy = −76 MPa σz = 48 MPa

τxy = 30 MPa τyz = −25 MPa τzx = 55 MPa

Determine the normal and shear stresses acting on a plane whose normal in inclined at 40 and 70◦ to the
x and y axes respectively. Find also the direction cosines of the shear stress, assuming an acute angle
between the normal and the z axis.

Answer: σ= 95.12 MPa, τ= 52.42 MPa, ls = 0.312, ms = −0.937, ns = 0.152.
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1.25 In a prismatic beam subjected to combined bending and twisting, the components of the stress
tensor at a given point are

σx = 72.5 MPa σy = −12.8 MPa σz = 0

τxy = 62.3 MPa τyz = 0 τzx = −45.4 MPa

where the x axis is along the centroidal axis of the beam. Find the values of the principal stresses, the
greatest shear stress, and the direction cosines of the largest principal stress.

Answer: σ1 = 119.2 MPa, σ2 = −4.0 MPa, σ3 = −55.5 MPa, l1 = 0.855, m1 = 0.404, n1 = −0.326.

1.26 A strain rosette, consisting of three strain gauges OP, OQ, and OR (Fig. F), is constructed to
measure simultaneously three extensional small strains εP , εQ, and εR along the surface of a strained
body. Using the transformation formula for ε, show that the directions of the principal surface strains
make angles α and π/2 +α with OQ in the counterclockwise sense, where

tan 2α = (εP − εR)tanψ

εP + εR − 2εQ

In the special case of an equiangular rosette (ψ=π/3), show that the principal values of the surface
strain are

1
3 (εP + εQ + εR) ± 1

3

√
3(εP − εR)2 + (εP + εR − 2εQ)2

Figure F

1.27 A simple shear is a state of plane strain in which the final coordinates (x, y) of a typical particle
are related to the initial coordinates (x0, y0) by the transformation

x = x0 + y0 tan φ y = y0

where tan φ is the amount of shear. Show that the straight lines which suffer the maximum extension
and contraction are inclined to the x axis at angles ±π/4 −α/2 in the strained state, where

α = tan−1( 1
2 tan φ

)
Show also that the logarithms of the length ratios associated with maximum extension and contraction
are ±sinh−1(tanα).

1.28 A state of uniform plane strain of arbitrary magnitude is given by the coordinate transformation

x = cx0 y = dy0

where c and d are positive constants. Assuming c> 1> d, show that the straight lines whose lengths
remain unchanged make angles ±β and ±β0 with the x-axis in the final and initial states respectively,
where

tan β = d

c

√
c2 − 1

1 − d2 = d

c
tan β0
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Prove that the deformation is associated with a change in volume unless cd = 1, which corresponds to
pure shear. Show also that the maximum engineering shear strain is (c2 − d2)/(2cd), associated with
lines that are inclined at ±π/4 with the x axis in the unstrained state.

1.29 Find the relationship between the constants A, B, and C in the following expressions, which
represent a possible deformation rate in a two-dimensional field:

ε̇x = Ax2(x2 + y2) ε̇y = By2(x2 + y2)

γ̇xy = Cxy(x2 + y2)

Show that the associated velocity field, to within a rigid-body motion, is given by

u = Cx3
(

3
5 x2 + y2

)
+ Dy

v = Cy3
(

x2 + 3
5 y2

)
− Dx

where D is an arbitrary constant. Obtain an expression for the component of spin in the xy plane, if a
rigid body rotation of the material as a whole is excluded.

1.30 An element of material deforms in plane strain such that the principal axes of the strain rate remain
fixed in the element as it rotates during its motion. The directions of ε̇1 and ε̇2 are assumed to be parallel
to the x and y axes respectively in the initial state. Show that the principal natural strains produced by
an arbitrary small deformation of the element are

ε1 = ∂u

∂x
+ 1

2

{(
∂u

∂y

)2

−
(
∂u

∂x

)2
}

ε2 = ∂v

∂y
+ 1

2

{(
∂v

∂x

)2

−
(
∂v

∂y

)2
}

to second order, where u and v are the components of the displacement of the center of the element
whose initial coordinates are x and y.

1.31 Let ai and xi be the initial and final coordinates of a typical particle P with respect to a fixed set of
rectangular axes. Show that the ratio of the final and initial squared lengths of the material line elements
through P, parallel to the coordinate axes in the initial state, are equal to the diagonal elements of the
matrix of the tensor

gij = ∂xk

∂ai

∂xk

∂aj

Prove that the ratio of the initial and final densities of the material in the neighborhood of the considered
particle is equal to the jacobian |∂xi/∂aj| of the transformation of coordinates.

1.32 Green’s strain tensor γij at a typical particle in a finitely deformed body, having initial coordinates
ai, is defined as that whose scalar product with the tensor 2dai daj is equal to the difference between
the final and initial squared lengths of a material line element emanating from the particle. Show that

γij = 1

2

(
∂ui

∂aj
+ ∂uj

∂ai
+ ∂uk

∂ai

∂uk

∂aj

)

where ui is the displacement of the principle. Show also that the material rate of change of γij , when
the initial reference state coincides with the instantaneous state, is identical to the rate of deformation.

1.33 The curve obtained by plotting the nominal stress against the engineering strain in simple tension
may be represented by the empirical equations s = Bem/(1 + e), where B and m are constants. If a
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specimen of the same material is loaded in simple compression, show that the relationship between the
nominal stress and the engineering strain becomes

s = B

1 − e

(
e

1 − e

)m

Also show that the magnitude of the engineering strain at the point of inflection on the (s, e) curve is
e = [m(1 + m)/2]1/2 − m.

1.34 A compound bar is composed of a solid cylinder exactly fitting into a hollow cylinder of identi-
cal length and cross-sectional area, the two cylinders being firmly bonded at their interface. If the true
stress–strain curves for the inner and outer cylinders are given by σ= C1ε

n1 and σ= C2ε
n2 , respectively,

show that the longitudinal true strain at the onset of instability, when the compound bar is subjected to
axial tension, is given by (

ε− n1

n2 − ε

)
εn1−n2 = C2

C1

Assuming n1 = 0.2, n2 = 0.3, and C2/C1 = 1.5, compute the value of the instability strain.
Answer: ε= 0.257.

1.35 A thin-walled cylindrical tube with open ends in subjected to a gradually increasing internal
pressure p, the initial thickness and mean radius of the tube being t0 and r0 respectively. Show that
the condition for plastic instability, which occurs when the pressure attains a maximum, is given by
dσ/dε= 3σ/2, where σ and ε are the stress and strain in the circumferential direction. If the true stress–
strain curve of the material is expressed by the power law σ= Cεn, show that the instability or bursting
pressure is given by

p

C
= t0

r0

(
2n

3

)n

exp(−n)

1.36 Considering small elastic/plastic deformation of the vertical wires in the configuration of Fig. E,
let the line of action of the load W be situated at a distance c from the vertical wall. Each wire is assumed
to be of length l, cross-sectional area A, and made of a material whose stress–strain curve in the plastic
range is given by σ= Y (Eε/Y )n, where n is constant. Show that the relationship between the applied
load W and the deflection δ of its point of application is given by

W

AY
= a

c

(
Eaδ

Ycl

)m

+ b

c

(
Ebδ

Ycl

)n

where m = 1 for cY/bE� δ/l� cY/aE, and m = n for δ/l� cY/aE. Taking b = 2a, c = 3a and n = 0.25,
obtain a graphical plot of W/AY against Eδ/Yl� 1.5.
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CHAPTER

TWO
FOUNDATIONS OF PLASTICITY

2.1 The Criterion of Yielding

Suppose that an element of material is subjected to a system of stresses of gradually
increasing magnitude. The initial deformation of the element is entirely elastic and
the original shape of the element is recovered on complete unloading. For certain
critical combinations of the applied stresses, plastic deformation first appears in the
element. A law defining the limit of elastic behavior under any possible combination
of stresses is called yield criterion. The law applies not only to loading directly from
the annealed state, but also to reloading of an element unloaded from a previous
plastic state. In developing a mathematical theory, it is necessary to take into account
a number of idealizations at the outset. Firstly, it is assumed that the conditions of
loading are such that all strain rate and thermal effects can be neglected. Secondly, the
Bauschinger effect and the hysteresis loop, which arise from nonuniformity on the
microscope scale, are disregarded. Finally, the material is assumed to be isotropic,
so that its properties at each point are the same in all directions. There is a useful
and immediate simplification resulting from the experimental fact that yielding is
practically unaffected by a uniform hydrostatic tension or compression.† The effects
of these restrictions on the nature of the yield criterion will be first examined in
geometrical terms.

(i) A geometrical representation Consider a system of three mutually perpendi-
cular axes with the principal stresses taken as rectangular coordinates (Fig. 2.1). The

† P. W. Bridgman, Metals Technology, Tech. Pub. 1782 (1944); B. Crossland, Proc. Inst. Mech.
Eng., 168: 935 (1954).

56
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Figure 2.1 Geometrical representation of the yield criterion in the principal stress space.

state of stress at any point in a body may be represented by a vector† emanating from
the origin O. Imagine a line OH equally inclined to the three axes, so that its direction
cosines are (1/

√
3, 1/

√
3, 1/

√
3). The stress vector OQ, whose components are (σ1,

σ2, σ3), may be resolved into a vector OG along OH and a vector OP perpendicular
to OH. The vector OG is of magnitude

√
3σ0 and represents the hydrostatic stress

with components (σ0, σ0, σ0). The vector OP represents the deviatoric stress with
components (s1, s2, s3) and its magnitude is

√
2J2 by Eq. (28), Chap. 1. For any given

state of stress, the deviatoric stress vector will lie in the plane passing through O and
perpendicular to OH. This plane is known as the deviatoric plane and its equation is
σ1 + σ2 + σ3 = 0 in the principal stress space. Since a uniform hydrostatic stress has
no effect on yielding, it follows that yielding can depend only on the magnitude and
direction of the deviatoric stress vector OP. The yield surface is therefore a right
cylinder whose generators are perpendicular to the deviatoric plane. Any stress state
in which the stress point lies on the surface of the cylinder corresponds to a state of
yielding. Any point inside the cylinder represents an elastic state of stress. The curve
� in which the yield surface is intersected by the deviatoric plane is called the yield

† H. M. Westergaard, J. Franklin Institute, 189: 627 (1920); W. W. Sokolovsky, Dok, Akad. Nauk,
USSR, 61: 223 (1946); R. Hill, The Mathematical Theory of Plasticity, p. 17, Clarendon Press, Oxford
(1950).
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locus. The equation to a possible yield locus, which is assumed to be convex (i.e.,
concave to the origin), is a possible yield criterion.

Consider now the yield locus together with the orthogonal projections of the
stress axes on the deviatoric plane, which is taken in the plane of the paper (Fig. 2.2).
It is evident that the yielding of isotropic materials can depend only on the values
of principal stresses and not on their directions. Thus if the stresses (p, q, r) cause
yielding, so will the stresses (p, r, q), implying that the yield locus is symmetrical
about the projected σ1 axis. It similarly follows that the yield locus is symmetrical
with respect to the projections of the σ2 and σ3 axes. This amounts to the fact that
the yield criterion is a function of the invariants of the deviatoric stress tensor. A
further restriction on the form of the yield locus is imposed by the assumption that
the Bauschinger effect is absent. Thus if (p, q, r) is a plastic state, (−p, −q, −r)
is also a plastic state. In other words, a radial line drawn from any point on the
yield locus must meet the locus again at the same distance from the origin. Hence
the yield locus must also be symmetrical about the lines orthogonal to the projected
axes. The shape of the yield locus is therefore repeated over the twelve 30◦ segments
formed by the six diameters as shown in the figure. Stated mathematically, the yield
criterion is expressible in the form

f (J2, J3) = const (1)

where f is an even function of J3, which changes sign with the stresses. The yield
criterion is called regular if the locus has a continuously turning tangent everywhere,
and singular when the locus has sharp corners. The yield surface is considered as
strictly convex when a straight line joining any two points on the yield locus lies

Figure 2.2 General appearance
of the deviatoric yield locus
having six axes of symmetry.
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Figure 2.3 Deviatoric stress vector and its components along the projected axes.

completely inside the locus. A flat on the yield surface can be regarded as a limiting
state of convexity.

(ii) General considerations The deviatoric stress vector OP may be regarded as the
sum of the projections on the deviatoric plane of the component vectors of OQ along
the axes of reference (Fig. 2.3). Since each stress axis is inclined to the deviatoric
plane at an angle sin−1(1/

√
3) in the original stress space, each projected length

along the axes is
√

2
3 times the actual length. Hence the lengths of the component

vectors in the deviatoric plane are OL =
√

2
3σ1, LM =

√
2
3σ2, MP =

√
2
3σ3. From

geometry, the rectangular components of OP with respect to the horizontal and
vertical through O are

ON = σ1 − σ3√
2

= r cos θ PN = 2σ2 − σ3 − σ1√
6

= r sin θ (2)

where (r, θ) are the polar coordinates of P. For the experimental determination of
the yield criterion, it is convenient to introduce the Lode† parameter µ defined as

µ = 2σ2 − σ3 − σ1

σ3 − σ1
= −√

3 tan θ σ1 > σ2 > σ3 (3)

To obtain the yield locus, it is only necessary to apply stresses for which θ covers
the range from 0 to ±π/6, µ varying from 0 to ∓1. When µ = 0, σ2 = 1

2 (σ3 + σ1)

† W. Lode, Z. angew. Math. Mech., 5: 142 (1925), and Z . Phys., 36: 913 (1926).
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and we have a state of pure shear denoted by 1
2 (σ3 − σ1, σ1 − σ3, 0) together with

a hydrostatic stress 1
2 (σ3 + σ1). When µ = −1, σ1 = σ2 and the state of stress is

equivalent to a uniaxial compression (σ3 − σ1, 0, 0) and a hydrostatic stress σ1. Let
the yield stresses in pure shear and uniaxial tension (or compression) be denoted

by k and Y respectively. Then it follows from (2) that r = √
2k at θ = 0 and r =

√
2
3 Y

at θ = π/6. For most metals k lies between Y/2 and Y/
√

3. Equations (2) may be
written alternatively in the form

s1 − s3 = √
2r cos θ s1 + s3 = −s2 = −

√
2
3 r sin θ

from which the deviatoric principal stresses can be expressed as

s1 =
√

2
3 r cos

(π

6
+ θ
)

s2 =
√

2
3 r sin θ s3 = −

√
2
3 r cos

(π

6
− θ
)

(4)

When the yield locus is given, r is a known function of θ, and equations (4) define
the yield criterion parametrically through θ.

When the vector OP is given, the deviatoric stresses can be obtained graphically

by noting the fact that s2 =
√

2
3 PN . Hence if a point M ′ is located on PN such

that PM ′/NM ′ = 2, then PM ′ =
√

2
3 s2. Let L′M ′ be drawn parallel to Oσ3. Since

L′M ′ = OL′ + PM ′ by geometry, it follows that OL′ =
√

2
3 s1 and L′M ′ = −

√
2
3 s3.

The points L′ and M ′ therefore define the deviatoric stresses. The hydrostatic stress

is of magnitude
√

2
3 LL′, but it is not defined by the vector OP. The ratios of the

deviatoric stresses are

s1:s2:s3 = (
√

3 − tan θ):2 tan θ:−(
√

3 + tan θ) (5)

in view of (4). Multiplying the three equations in (4), and remembering that
s1s2s3 = J3 and r = √

2J2, we obtain

J2
3 = 4

27 J3
2 sin23θ (6)

If the polar equation of the yield locus is given, J2 is a known function of θ. Elimi-
nating θ between (6) and the given equation for the yield locus, it is possible to
obtain the yield criterion in the form (1). Alternatively, if the yield criterion is given
in terms of J2 and J3, the equation to the yield locus may be derived from it. It may
be noted that as θ varies from 0 to π/6, the value of J2 varies from k2 to Y2/3, and
that of J3 varies from 0 to − 2

27 Y3. Plastic yielding is predominantly influenced by
the magnitude of J2.

(iii) The Tresca and Mises criteria Various criteria have been suggested in the past
to predict the yielding of metals under complex stresses. Most of them are, how-
ever, only of historical interest, because they conflict with the experimental finding
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Figure 2.4 Deviatoric yield loci of Tresca and von Mises.

that a hydrostatic stress has no effect on yielding. The two entirely satisfactory and
widely used criteria are those due to Tresca and von Mises. From a series of experi-
ments on the extrusion of metals, Tresca† concluded that yielding occurred when the
maximum shear stress reached a critical value. If the stress vector lies within the sec-
tor −π/6 � θ �π/6 in the plane diagram, the Tresca yield criterion may be written as

σ1 − σ3 = 2k σ1 > σ2 > σ3 (7)

The polar equation of the yield criterion in this range, by the first equation of (2), is

r cos θ = √
2k −π

6
� θ � π

6

which means that the yield locus in this sector is a straight line parallel to the
σ2 direction. It is evident that Y = 2k according to Tresca’s yield criterion. The
consideration of all possible values of the stresses leads to a regular hexagon (Fig.
2.4) as the complete yield locus in the deviatoric plane. The yield criterion is therefore
singular, the sharp corners of the locus being at the points representing uniaxial
tension or compression. The Tresca criterion may be expressed in terms of the
invariants J2 and J3 if we observe that the polar equation of the Tresca yield locus is
equivalent to J2 cos2θ = k2. The elimination of θ between this equation and (6) gives

4(J2 − k2)(J2 − 4k2)2 = 27J2
3 (8)

Tresca’s yield criterion is piecewise linear only when it is expressed in terms of
the principal stresses. In a number of important physical problems involving high

† H. Tresca, Comptes Rendus Acad. Sci., Paris, 59: 754 (1864), and Mem. Sav. Acad. Sci., Paris, 18:
733 (1868). Tresca was probably influenced by a more general criterion for the failure of soils proposed
earlier by C. A. Coulomb, Mem. Math. Phys., 7: 343 (1773).
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degrees of symmetry, the directions of the principal stresses are known in advance.
The relative values of these principal stresses are also frequently indicated by the
nature of the applied loading. In such cases, Tresca’s criterion provides considerable
simplifications in the theoretical analysis. In general, however, the Tresca criterion
would lead to serious mathematical complexities.

Von Mises† suggested, from purely theoretical considerations, that yielding
occurred when J2 attained a critical value. It immediately follows that the Mises

yield locus is a circle of radius
√

2k or
√

2
3 Y , and the yield criterion is J2 = k2.

Evidently, Y = √
3k according to the von Mises criterion. Using the expressions for

J2 from equations (28) of Chap. 1, the yield criterion proposed by von Mises may
be written as

sijsij = s2
x + s2

y + s2
z + 2τ2

xy + 2τ2
yz + 2τ2

xz = 2k2

(σx − σy)2 + (σy − σz)2 + (σz − σx)2 + 6τ2
xy + 6τ2

yz + 6τ2
xz = 2Y2

(9)

Isotropy is implied by the symmetry of the yield function with respect to the stress
components, while absence of Bauschinger effect is indicated by the fact that only
squares of the stresses and stress differences are involved.

Nadai‡has pointed out that according to the von Mises criterion, yielding begins
when the octahedral shear stress attains a certain value. Indeed, it follows from Sec.

1.3(iv) that the octahedral shear stress has the value
√

2
3 k at the yield point. Hencky§

proposed that the Mises law implies the elastic energy of distortion reaching a certain
value at the yield point. Thus a hydrostatic stress, which only produces elastic energy
of volume change in isotropic materials, does not cause yielding. Equations (9) may
also be regarded as implying that yielding occurs when the root mean square value
of either the principal shear stresses or the principal deviatoric stresses becomes
critical. In view of (4), the Mises criterion may be written in the parametric form

s1 = 2

3
Y cos

(π

6
+ θ
)

s2 = 2

3
Y sin θ s3 = −2

3
Y cos

(π

6
− θ
)

(10)

It follows from the first equation of (2) that the maximum shear stress in any
plastic state according to the von Mises yield criterion is cos θ times that in pure shear.
The Tresca criterion, on the other hand, predicts the same maximum shear stress in
all plastic states. It is customary to make the two criteria agree with each other in
uniaxial tension or compression, so that the Mises circle passes through the corners
of the Tresca hexagon (Fig. 2.4). The two yield criteria then have the same value of
Y , but the value of k in the Mises criterion is 2/

√
3 times that in the Tresca criterion.

† R. von Mises, Göttinger Nachrichten Math. Phys. Klasse, 582 (1913). It was apparently
anticipated by M. T. Huber, Czas. Tech., Lemberg, 22: 81 (1940).

‡ A. Nadai, J. Appl. Phys., 8: 205 (1937). See also The Theory of Flow and Fracture of Solids,
p. 402, McGraw-Hill Book Co., New York (1950).

§ H. Hencky, Z . angew. Math. Mech., 4: 323 (1924).
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The two yield loci therefore differ most in a state of pure shear. For most metals, the
yield criterion of von Mises defines the yield limit more accurately than does that of
Tresca. If the latter is adopted for simplicity, the overall accuracy can be improved by
replacing 2k in (7) by mY, where m is an empirically assigned number lying between
1.0 and 1.155. Then the error in the calculated stresses can be limited to ±7.5 percent.

(iv) The plane stress yield locus In a number of important physical problems, one
of the principal stresses may be assumed to vanish. The yield criterion may then be
represented by a closed curve where the nonzero principal stresses are plotted as
rectangular coordinates. According to Tresca’s yield criterion, the magnitude of the
numerically greater of the two principal stresses is equal to Y when these stresses
are of the same sign, while the principal stress difference is of magnitude Y when
the stresses have opposite signs. Assuming σ3 = 0, the Tresca yield locus in the (σ1,
σ2) plane is represented by a hexagon defined by the straight lines

σ1 = ±Y σ2 = ±Y σ1 − σ2 = ±Y (11)

When σ3 = 0, the von Mises yield criterion (9), expressed in terms of the principal
stresses, reduces to

σ2
1 − σ1σ2 + σ2

2 = Y2 (12)

which is the equation to an ellipse whose major and minor axes are inclined at an
angle of 45◦ with the σ1 and σ2 axes (Fig. 2.5). The Mises ellipse circumscribes the
Tresca hexagon for a given uniaxial yield stress Y .

Figure 2.5 Tresca and Mises yield loci on the (σ1, σ2) plane when σ3 = 0.
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Consider, now, the general plane stress components σx, σy, and τxy, referred to
a pair of rectangular axes. The numerically greatest shear stress occurs in or out of
the plane of the applied stresses according as σxσy is less or greater than τ2

xy. In the
former situation, the maximum shear stress criterion of Tresca becomes

(σx − σy)2 + 4τ2
xy = Y2 σxσy � τ2

xy (13)

When σxσy � τ2
xy, either of the first two equations of (11) must be satisfied for

yielding. Consequently

(σ1 ∓ Y )(σ2 ∓ Y ) = 0

Expanding this product and expressing it in terms of the general stress components,
we obtain the Tresca criterion in the form

τ2
xy − σxσy ± Y (σx + σy) = Y2 σxσy � τ2

xy

where the upper sign holds when σx and σy are both positive and the lower sign
when they are both negative. The Mises criterion, on the other hand, reduces to the
unique expression

σ2
x − σxσy + σ2

y + 3τ2
xy = Y2 (14)

In the combined tension and torsion of a thin-walled tube, each element of the tube
wall is subjected to a longitudinal stress σ and a shear stress τ. In view of (13) and
(14), the yield criterion may be expressed as

σ2 + ατ2 = Y2

where α = 4 for the Tresca criterion and α = 3 for the von Mises criterion.† In the
(σ, τ) plane, these criteria are represented by ellipses having the same length of the
major axis (Fig. 2.6). Taylor and Quinney‡ in their classical experiments of this kind
observed that the experimental points fell between the two ellipses, but were more
inclined toward the Mises ellipse. For the considered stress state, it is easy to derive
the associated Lode variable as

µ = σ√
σ2 + 4τ2

Hence it is only necessary to apply longitudinal stresses in the range 0 � σ � Y in
order to cover a 30◦ segment of the experimental yield locus plotted in the deviatoric
plane.

The testing of thin-walled tubes requires complicated apparatus and entails great
difficulty in ensuring that the material of the tube is isotropic. Hill,§ on the other
hand, has shown that arbitrary uniform states of combined stresses can be produced

† The influence of J3 on the shape of the yield locus has been discussed by J. Betten,Acta Mechanica,
25: 79 (1976).

‡ G. I. Taylor and H. Quinney, Phil. Trans. Roy. Soc., A230: 323 (1931).
§ R. Hill, J . Mech. Phys. Solids, 1: 271 (1953).
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Figure 2.6 Tresca and Mises ellipses on the (σ, τ) plane together with the experimental results of Taylor
and Quinney.

by pulling a thin rectangular strip having a pair of asymmetrical notches. The method
has the advantage that anisotropy can be either eliminated or effectively controlled.
Using such a notched specimen, Lianis and Ford† carried out experiments on the
yielding of commercially pure aluminum, specially treated to give a sharp yield, to
obtain plastic stress states covering the required 30◦ segment in the deviatoric plane.
The results, displayed in Fig. 2.7, provide sufficient evidence for yielding taking
place according to the von Mises criterion.

2.2 Strain-Hardening Postulates

(i) Isotropic hardening We have seen that an element of material yields when the
magnitude of the deviatoric stress vector is increased to a value such that the stress
point reaches the yield locus. Unless the locus is a circle (as for the Mises criterion),
the magnitude of the stress vector causing yielding depends on its final direction in the
deviatoric plane. If the material is nonhardening, the plastic stress state can change
in such a way that the stress point always lies on a constant yield locus. For a strain-
hardening material, the size and shape of the yield locus depend on the complete
history of plastic deformation since the previous annealing. It is assumed that the
material is isotropic at the annealed state and that the anisotropy and the Bauschinger
effect developed during the cold work may be neglected. The preceding discussion of
the yield criterion is then appropriate for any given state of hardening of the material.

† G. Lianis and H. Ford, J . Mech. Phys. Solids, 5: 215 (1957). For a similar experimental confir-
mation, using combined bending and torsion of thin tubes, see M. P. L. Siebel, J. Mech. Phys. Solids,
1: 189 (1953).
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Figure 2.7 Experimental verification of the yield locus considered in the deviatoric plane (due to Lianis
and Ford).

A convenient mathematical formulation for strain-hardening is obtained by
assuming further that the yield surface uniformly expands without change in shape,
as the state of stress changes along a certain path P0P in the stress space (Fig. 2.8),
the amount of hardening being given by the final plastic state. Since the yield locus
merely increases in size, any given state of hardening may be defined by the current
yield stress in uniaxial tension. It is, therefore, necessary to relate the current yield
stress to the amount of plastic deformation following a given initial state of yielding.
To this end, we replace Y in the yield criterion by σ, which is known as the equi-
valent stress, effective stress, or generalized stress. Referring to the von Mises yield
criterion, we write

σ =
√

3
2 (sijsij)

1/2 =
√

3
2 {s2

x + s2
y + s2

z + 2τ2
xy + 2τ2

yz + 2τ2
zx}1/2

=
√

1
2 {(σx − σy)2 + (σy − σz)

2 + (σz − σx)2 + 6τ2
xy + 6τ2

yz + 6τ2
zx}1/2 (15)

Consider first the hypothesis in which the amount of hardening is taken as a function
of the total plastic work per unit volume.† This assumption is obviously consistent

† R. Hill, The Mathematical Theory of Plasticity, p. 26, Clarendon Press, Oxford (1950). For
rigid/plastic materials, the work-hardening hypothesis was suggested by R. Schmidt, Ing.-Archiv., 3:
215 (1932). See also H. Lippmann, Mechanik des plastischen Fliessen, Springer-Verlag, Berlin (1981).
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Figure 2.8 Geometrical representation of the isotropic hardening rule.

with the fact that no hardening is produced by purely elastic strains. If the plastic
part of the strain increment tensor is denoted by dε

p
ij = ε̇

p
ij dt, where ε̇ij is the rate of

deformation and dt the time element, the increment of plastic work per unit volume is

dWp = σij dε
p
ij = (sij + σ0δij)dε

p
ij = sij dε

p
ij

where the last step follows from the condition dε
p
ij = 0, implying that there is no

plastic volume change. Plastic incompressibility of metals is in close agreement
with experimental observations, and is also consistent with the fact that a uniform
hydrostatic stress produces no plastic strain. The work-hardening hypothesis may
be stated mathematically as

σ = 	

(∫
dWp

)
= 	

(∫
σij dε

p
ij

)
(16)

where the integral is taken over the actual strain path starting from some initial
state. The function 	 can be determined from the true stress–strain curve in uniaxial
tension or compression. If the true stress σ is plotted against the plastic part of the
strain, then Wp is equal to the area under the curve up to the ordinate σ. Since σ = σ

in this case, the area directly gives the argument of 	 in (16).
In an alternative hypothesis, more frequently in use, σ is regarded a function

of a certain measure of the total plastic strain. Considering the second invariant
of the plastic strain increment tensor, an equivalent (or generalized) plastic strain
increment is defined as

dε
p =

√
2
3 (dε

p
ij dε

p
ij )

1/2

=
√

2
3 {(dεp

x )2 + (dεp
y )2 + (dεp

z )2 + 2(dγ p
xy)2 + 2(dγ p

yz)
2 + 2(dγ p

zx)2}1/2 (17)
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where only the positive root is implied. The numerical factor in the above expres-
sion is so chosen that in uniaxial tension, dε

p
equals the longitudinal plastic strain

increment. This follows from the fact that the magnitude of the lateral compressive
plastic strain in the tensile test of an isotropic bar is half the longitudinal tensile
plastic strain. The strain-hardening hypothesis may now be expressed as†

σ = F

(∫
dε

p
)

= F

(∫ √
2
3 dε

p
ij dε

p
ij

)
(18)

where the integral is taken along the strain path as before. The integrated strain,
known as the total equivalent plastic strain, provides a suitable measure of the plastic
deformation. The function F is given by the relationship between the true stress and
the plastic strain in uniaxial tension or compression. Equation (18) implies that the
amount of hardening is determined by every infinitesimal plastic distortion leading
to the final shape of an element, and not merely by the difference between the initial
and final shapes of the element.

Both (16) and (18) imply that the stress–strain curves in tension and compression
coincide only when the stresses are plotted against the logarithmic strains, but not
when they are plotted against the engineering strain. It is evident that the compressive
stress is the same function of the height ratio (h0/h) as the tensile stress is of the
length ratio (l/l0). The stress–strain curves obtained under different stress systems
can be compared on the basis of either (16) or (18). Consider, as an example, a thin-
walled circular cylinder under pure torsion. A line on the tube, originally parallel
to the axis, becomes a helix making an angle φ with the axis when the shear stress
is τ. The shear strain in the tube is γ = tan φ in engineering measure, and the total
equivalent plastic strain is (tan φ − τ/G)/

√
3, where G is the shear modulus. Since

σ = √
3τ, it follows from (18) that

√
3τ is the same function of (tan φ − τ/G)/

√
3 as

the tensile stress σ is of ln(l/l0) − σ/E in uniaxial tension.‡ In the plastic range, the
uniaxial stress–strain curve can be derived from the engineering shear stress–strain
curve by plotting σ = √

3τ against

ε = 1√
3

[
γ + (1 − 2ν)

τ

E

]

where E isYoung’s modulus and ν Poisson’s ratio. The correspondence between the
uniaxial stress–strain curve and the shear stress–strain curve is indicated in Fig. 2.9.
The strain-hardening hypothesis would generally give results different from those
obtained from the work-hardening hypothesis. However, the stress–strain relations
for metals are usually such that the two hypotheses will lead approximately to the
same result.

† In the special case where the elastic strains are negligible, this was proposed by F. K. G. Odquist,
Z. angew. Math. Mech., 13: 360 (1933).

‡ This is confirmed by the results of an experimental investigation by W. M. Shepherd, Proc. Inst.
Mech. Eng., 159: 95 (1948). See also C. Zener and J. H. Hollomon, J . Appl. Phys., 17: 2 (1946).
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Figure 2.9 Correspondence between the strain-hardening characteristics in simple tension and pure
torsion for an isotropic material.

(ii) Anisotropic hardening We shall now consider hardening rules that account
for anisotropy and Bauschinger effect exhibited by real materials.† It is assumed
that the material is initially isotropic, having identical yield stresses in tension and
compression. In the kinematic hardening rule, due to Prager, the yield surface is
assumed to undergo translation in a nine-dimensional stress space. The initial yield
surface is represented by the equation f (σij) = k2, where k is a constant. If the
resultant displacement of the yield surface at any stage is denoted by a symmetric
tensor αij, the current yield surface is given by

f (σij − αij) = k2 (19)

Since αij is not a scalar multiple of the isotropic tensor δij, which represents a
hydrostatic change in stress, the material becomes anisotropic as a result of the
hardening process. It is reasonable to suppose that the incremental translation of the
yield surface is in the direction of the plastic strain increment dε

p
ij , considered as a

† Experimental investigations on subsequent yield surface have been carried out by P. M. Naghdi,
F. Essenberg, and W. Koff, J . Appl. Mech., 25: 201 (1958); H. J. Ivy, J. Mech. Eng. Sci., 3: 15 (1961); W.
M. Mair and H. Ll. D. Pugh, J. Mech. Eng. Sci., 6: 93 (1964); P. S. Theocaris and C. R. Hazell, J. Mech.
Phys. Solids, 13: 281 (1965); J. Rogan and A. Shelton, J. Strain Anal., 4: 138 (1969).
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Figure 2.10 Stress-space representation of
Prager’s hardening rule.

vector in the 9-space. Then†
dαij = c dε

p
ij (20)

where c is a scalar quantity characterizing the material behavior. The deformation
is assumed small, so that the effect of rotation of the element on dαij may be disre-
garded. Since dαij = 0, the translation of the yield surface is always parallel to the
deviatoric hyperplane. The hardening rule is represented in Fig. 2.10, where O is the
origin of the stress space and C the current center of the yield surface. The incre-
mental translation of the yield surface, during a stress increment PP′, is represented
by CC′, which is equal and parallel to PQ.

When c is a constant, (20) immediately integrates to αij = cεp
ij , indicating that

the total translation of the yield surface is a measure of the total plastic strain. If, in
addition, the initial surface is that of von Mises, the yield criterion becomes

(sij − cεp
ij )(sij − cεp

ij ) = 2k2 (21)

where k is now the initial yield stress in pure shear. A constant value of c represents
linear strain-hardening with a plastic modulus H = 3

2 c, whatever the yield function.
If a specimen is loaded in simple tension until the longitudinal plastic strain is εp,
the current yield stress is Y + Hεp, but subsequent loading in simple compression
will produce yielding when the intensity of the stress becomes Y − Hεp. The sum
of the predicted yield stresses in tension and compression is therefore independent
of the plastic strain, and is equal to twice the initial yield stress Y .

According to (20), and the associated flow rule (Sec. 2.3(ii)), the yield sur-
face translates in the direction of the exterior normal at the stress point in a

† W. Prager, Proc. Inst. Mech. Eng., 169: 41 (1955), and J . Appl. Mech., 23: 93 (1956). See also I.
U. Ishlinsky, Ukr. Mat. Zh., 6: 314 (1954).
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Figure 2.11 Stress-space represen-
tation of Ziegler’s hardening rule.

nine-dimensional space. Many practical problems, on the other hand, are con-
veniently treated in appropriate subspaces. In most subspaces the yield surface
undergoes translation but in a direction different from the outward normal. If the
material obeys Tresca’s yield criterion, the yield surface tends to deform in certain
subspaces.† The difficulty can be avoided if we replace (20) by

dαij = (σij − αij)dµ (22)

where dµ is a positive scalar.‡ This equation states that the yield surface translates in
the direction of the line connecting the center of the yield surface to the current stress
point P. In Fig. 2.11, the incremental translation of the yield surface is represented
by the vector CC′, equal to the vector PQ, where Q lies on CP extended. The
multiplying factor dµ is determined from the condition that the infinitesimal chord
QP′ is perpendicular to the plastic strain increment vector. Thus

(dσij − dαij)dε
p
ij = 0

which expresses the fact that the stress point remains on the yield surface. On
substitution from (22), we get

dµ = dσij dε
p
ij

(σkl − αkl)dε
p
kl

(23)

A disadvantage of the modified hardening rule is that the path traced by the center of
the yield surface does not, in general, represent the strain path. The two hardening

† R. T. Shield and H. Ziegler, Z. angew. Math. Phys., 9: 260 (1958).
‡ The modified hardening rule has been proposed by H. Ziegler, Q. Appl. Math., 17: 55 (1959).

See also C. C. Clavot and H. Ziegler, Ing.-Archiv., 28: 13 (1959). A different type of modification has
been proposed by W. Jiang, J. Pressure Vessel Technol., 117: 365 and 371 (1995).
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rules coincide in uniaxial tension and compression, as well as in simple and pure
shears.

A more realistic hardening process should involve simultaneous translation and
expansion of the yield surface.† The simplest yield criterion of this type is (19)
with k2 replaced by σ2/3, where σ is a function of the total equivalent plastic strain
defined in (18). It should be noted that σ is only the isotropic part of the current
uniaxial yield stress of the material. In the case of a monotonic simple tension σ,
we have dσ = dσ − 3

2 c dεp and dε
p = dεp. Denoting dσ/dε

p
by 3

2 h, the plastic
modulus may be written as

H = 3
2 (h + c)

When h and c have constant values, implying a linear strain-hardening law, the
yield stress in tension is increased by the amount 3

2 (h + c)εp when the longitudinal
strain is εp. The yield stress in compression, due to a subsequent reversal of loading,
exceeds the initial yield Y by the amount 3

2 (h − c)εp, which can take both positive
and negative value. The same conclusion holds when a specimen is loaded in tension
with a compressive prestrain in the plastic range. The variation of the parameter c
may be allowed for by assuming it to depend only on the total equivalent plastic
strain. Suitable empirical relations may be used to express h and c as functions
of
∫

dε
p
, involving arbitrary constants that can be determined from experimental

measurements.‡

2.3 The Rule of Plastic Flow

When an element of material is unloaded from a certain plastic state, it recovers elas-
ticity and the stress point moves inside the yield locus. If anisotropy is disregarded,
the elastic behavior of the material is characterized by two independent elastic con-
stants which retain their initial values. When the element is reloaded along a certain
strain-path, yielding will again occur when the stress point reaches the current yield
locus. For a work-hardening material, a further plastic flow can be enforced only by
increasing the stress to a point outside the yield locus. If the stress increment is such
that the stress point remains on the same yield locus, no hardening is produced and
the plastic strain increments are zero. Such changes in stress are called neutral since

† The combined hardening rule has been discussed by P. G. Hodge, Jr., J. Appl. Mech., 24:
482 (1957); I. Kadashevich and V. V. Novozhilov, Prikl. Mat. Mekh., 22: 104 (1959); Z. Mroz,
H. P. Shrivastava, and R. N. Dubey, Acta Mech., 25: 51 (1976). For an extension of the hardening
rule to large strains, see E. H. Lee, R. L. Mallett, and T. B. Wertheimer, J. Appl. Mech., 50: 554 (1983).

‡ More complex hardening rules, predicting rotations of the yield surface in addition to expansion
and translation, have been considered by A. Baltov and A. Sawczuk, Acta Mech., 1: 81 (1965); J. F.
Williams and N. L. Svensson, Meccanica, 6: 104 (1971); H. P. Shrivastava, Z. Mroz, and R. N. Dubey,
Z. angew, Math. Mech., 53: 625 (1973); M. Tanaka and Y. Miyagawa, Ing. Archiv., 44: 255 (1975); A.
Phillips and G. J. Weng, J. Appl. Mech., Trans. ASME, 42: 315 (1975); D. W. A. Rees, J. Strain Anal.,
16: 85 (1981); J. J. Skrzypek and R. B. Hetnarski, Plasticity and Creep, CRC Press, Boca Raton, CA
(1993).
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they represent neither loading nor unloading. The elastic part of the strain increment
corresponding to any plastic flow is directly related to the stress increment by means
of Hooke’s law. It is therefore necessary to relate the increment of plastic strain to
the stress increment and the current stress.

(i) The plastic potential The observed plastic behavior of polycrystalline metals
clearly indicates that for isotropic materials, the principal axes of the plastic strain
increment coincide with those of the stress.† The plastic strain increment may there-
fore be regarded as a vector 2G (dε

p
1 , dε

p
2 , dε

p
3 ) in the principal stress space, the factor

2G being introduced to obtain the dimension of stress. Since dε
p
1 + dε

p
2 + dε

p
3 = 0,

the plastic strain-increment vector may be regarded as normal to a right cylinder
perpendicular to the deviatoric plane. The curve  in which the cylinder is inter-
sected by the deviatoric plane is a level curve of a scalar function of the deviatoric
principal stresses (s1, s2, s3). It is reasonable to stipulate that the ratios of the com-
ponents of the plastic strain increment depend on the current stress and not on the
stress increment. The magnitude of the strain increment is, however, determined by
the stress increment through the strain-hardening characteristic of the material. The
plastic strain-increment vector is therefore parallel to the normal to the curve  at
the point where it is intersected by the deviatoric stress vector. Since, in an isotropic
material, the strain increments are interchanged when the stresses are so, the curve
 must be symmetrical with respect to the stress axes. Moreover, the reversal of the
sign of the applied stresses in our idealized material should merely change the sign
of the strain increments. Hence the slope of the curve  at the opposite ends of a
diameter must be the same. This is possible if the curve is also symmetrical about
diameters perpendicular to the three axes. Thus the curve , like the yield locus �,
is identical in each of the 30◦ segments marked off by the directions representing the
states of uniaxial stress and pure shear. It follows that the equation of the potential
surface, whose size is immaterial, may be written in the form

g(J2, J3) = const (24)

The function g, defining the ratios of the components of the plastic strain increment,
is known as the plastic potential.‡ In a nine-dimensional space, the plastic strain
increment may be expressed by the flow rule

dε
p
ij = ∂g

∂σij
dλ (25)

where dλ is a positive scalar that depends on the stress increment, and is generally
a function of the space variables as well as the time scale. Since g is independent of

† This was recognized by B. de Saint-Venant, Comptes Rendus Acad. Sci., Paris, 70: 473 (1870);
J. Math. Pures et Appl., 16: 308 (1871).

‡ The concept of plastic potential is due to R. von Mises, Z. angew. Math. Mech., 8: 161 (1928). A
generalization has been made by W. Prager, Proc. 8th Int. Congr. Appl. Mech., Istanbul, 2: 65 (1952). See
also H. Ziegler, Q. Appl. Math., 19: 39 (1961). The present discussion follows R. Hill, The Mathematical
Theory of Plasticity, p. 35, Clarendon Press, Oxford (1950).
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Figure 2.12 Geometrical representation of the plastic flow rule in the deviatoric plane.

the hydrostatic stress, the plastic incompressibility condition dε
p
ii = 0 is identically

satisfied. If g is assumed to be a homogeneous function of degree n, involving the
stress components, the increment of plastic work per unit volume may be written as

dWp = ∂g

∂σij
σij dλ = ng dλ (26)

by Euler’s theorem. Since plastic deformation is irreversible, dλ is necessary positive
during plastic flow.

Figure 2.12 shows the yield locus and the plastic potential curve over a typical
30◦ segment bounded by the radial lines θ = 0 and θ = π/6. The deviatoric stress
vector OP meets the curve  at R, and the vector RS drawn normal to  represents
the plastic strain increment. If ψ is the angle made by the vector RS with the direction
θ = 0, the associated Lode parameter† is

ν = 2dε
p
2 − dε

p
3 − dε

p
1

dε
p
3 − dε

p
1

= −√
3 tan ψ (27)

The new parameter ν should not be confused with Poisson’s ratio. Now, for an
isotropic material in uniaxial tension, dε

p
2 = dε

p
3 = − 1

2 dε
p
1 from symmetry, giving

ν = −1 when µ = −1. Moreover, a pure shear stress in an ideal element must produce
a pure shear strain, for which dε

p
1 = −dε

p
2 , dε

p
3 = 0; hence ν = 0 when µ = 0. In other

words, the vector RS is along the radial line for both uniaxial stress and pure shear.
It follows that the curve  must intersect the bounding radii of each 30◦ segment

orthogonally. The magnitude of the vector RS is 2G
√

3
2 dεp in view of (17), while

vector OP is of magnitude
√

2
3σ in view of (15). Hence, for the von Mises criterion,

the increment of plastic work per unit volume is

dWp = sij dε
p
ij = OP · RS

2G
= σ dεp cos(ψ − θ) (28)

† W. Lode, Z. Phys., 36: 913 (1926).
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For a general yield criterion, σ in the above expression must be replaced by√
3J2.

Since the material is isotropic, the dependence of the yield locus on the strain
history appears through a single parameter that determines its size. The yield criterion
may therefore be put in the form

f (J2, J3) = c

where c is assumed to be a function of the total plastic work per unit volume of the
considered element. During continued loading,

df = dc = hσij dε
p
ij = ngh dλ

in view of (26), the parameter h being a function of the stress and strain history. The
substitution for dλ from above into the flow rule (25) furnishes†

h dε
p
ij = 1

ng

∂g

∂σij
df (29)

This expression is consistent with the fact that no plastic strain can occur during a
neutral loading for which df = 0.

The plastic stress–strain relation becomes more revealing when expressed in
terms of the partial derivatives of g with respect to J2 and J3. Using the fact that

∂skl

∂σij
= δikδjl − 1

3
δijδkl

it is easy to show from Eqs. (30), Chap. 1, that

∂J2

∂σij
= skl

∂skl

∂σij
= sij

∂J3

∂σij
= sklskm

∂slm

∂σij
= pij

where
pij = sikskj − 2

3 J2δij

Equation (29) may therefore be written in terms of a new parameter η = ngh as

η dε
p
ij =

(
∂g

∂J2
sij + ∂g

∂J3
pij

)
df (30)

which holds for df � 0. Since the principal axes of pij are identical to those of σij,
the flow rule implies that the principal axes of stress and plastic strain increment
coincide.

† The flow rule expressed in the form (29) is essentially due to E. Melan, Ing.-Arch., 9: 116 (1938).
See also W. Prager, J. Appl. Phys., 20: 235 (1949); P. M. Naghdi, Plasticity, Proc. 2nd Symp. Naval
Struct. Mech., p. 121, Pergamon Press, New York (1960).



Chakra-02.tex 12/1/2006 17: 21 Page 76

76 theory of plasticity

(ii) The associated flow rule In view of the similarity of the properties of the yield
function and the plastic potential, it may be assumed that they are actually identical.
The flow rule obtained on the basis of the identity of g and f is known as the associ-
ated flow rule for the given yield criterion. The partial derivatives ∂f /∂σij correspond
to a specified position of the stress point on the yield surface, and are uniquely defined
at all points when the yield criterion is regular. The assumption g = f follows from
considerations of the plastic deformation of polycrystalline aggregates in which
individual crystals deform by slipping over preferred planes.† When the curves �

and  are similar, the plastic strain increment vector is directed along the normal to
the yield locus at P making an angle ψ with the line θ = 0. The polar equation of
the yield locus may therefore be written as

dr/dθ = r tan(θ − ψ)

or r = r0 exp

{∫ θ

0
tan(θ − ψ)dθ

}
(31)

where r0 is the length of the radius at θ = 0. When the (µ, ν) relation is experimen-
tally determined, ψ is a known function of θ, and the yield locus can be derived from
(31) using numerical integration.‡

Suppose that the plastic strain increment dε
p
ij is given. The corresponding stress

σij, determined from the normality rule and the yield criterion, is represented by a
point P in the stress space (Fig. 2.13a). If σ∗

ij is an arbitrary state of stress represented
by a point P∗ on or inside the yield surface, the difference between the incremental
plastic works done by the two stress states is

δWp = (σij − σ∗
ij)dε

p
ij

which represents the scalar product of the vectors P∗P and PQ. If the yield surface
is strictly convex, the angle between these vectors is acute and the scalar product is
positive. Hence

(σij − σ∗
ij)dε

p
ij � 0 (32)

where the equality holds when P∗ coincides with P. This is the maximum work
theorem, due to von Mises,§ which states that the actual work done in a given plastic
strain increment is greater than the fictitious work done by an arbitrary state of stress
not exceeding the yield limit. If the yield surface contains a flat, the equality in (32)
holds for all stress points P and P∗ lying on this flat.

Consider an element of material that has been deformed by taking it along a
certain strain path, the current stress in the element being σij. For a work-hardening
material, a further increment of plastic strain dε

p
ij requires the stress to be increased

† J. F. W. Bishop and R. Hill, Phil. Mag., 42: Ser. 7: 414 (1951).
‡ G. I. Taylor, Proc. Roy. Soc., A191: 441 (1947).
§ R. von Mises, Z. angew. Math. Mech., 8: 161 (1928).
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Figure 2.13 Stress increment and strain increment vectors for a given state of stress. (a) Regular yield
surface; (b) singular yield surface.

in such a way that the infinitesimal vector dσij lies outside the current yield surface.
For a nonhardening material, the stress increment is always tangential to the yield
surface. In view of (25) with g = f , we have

dσij dε
p
ij = ∂f

∂σij
dσij dλ = df dλ � 0 (33)

during the plastic deformation. The equality holds only for a perfectly plastic
material. Inequality (33) states that the plastic strain increment vector makes an
acute angle with the stress increment vector during the loading of an element of
work-hardening material.

The above inequalities may be obtained from a different standpoint, which
also furnishes the associated flow rule.† Consider an external agency that applies
additional stresses to an element having an initial stress σ∗

ij . The element is first
brought to the yield point by increasing the stress to σij, and this is followed by
a plastic strain increment dε

p
ij produced by a further increment of stress dσij. The

agency subsequently releases dσij, and returns the state of stress to σ∗
ij along an

elastic path (Fig. 2.13a). For a work-hardening material, it is reasonable to assert
that the work done by the external agency over the complete cycle is positive. Since
all the elastic energy is recovered on closing the cycle, the net work done by the
external agency may be written as

(σij − σ∗
ij)dε

p
ij + 1

2 dσij dε
p
ij > 0

† D. C. Drucker, Q. Appl. Math., 7: 411 (1950); Proc. 1st U.S. Nat. Congr. Appl. Mech., 487 (1951).
See also D. R. Bland, J. Mech. Phys. Solids, 6: 71 (1957).
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to second order. Inequality (33) follows on setting σ∗
ij = σij. This brings us to

Drucker’s first postulate, which states that the plastic work done by an external
agency during the application of additional stresses is positive for a work-hardening
material and zero for a nonhardening material.

If σ∗
ij is distinct from σij, the magnitude of the difference σij − σ∗

ij may be made
as large as we please compared to dσij. The above inequality then reduces to (32).
Drucker’s second postulate therefore states that the net work done by an external
agency during a cycle of addition and removal of stresses is nonnegative. An imme-
diate consequence of this postulate is that the angle between the vectors representing
dε

p
ij and σij − σ∗

ij cannot be obtuse, so that all points σ∗
ij lie on one side of the plane

perpendicular to dε
p
ij and passing through the point σij. The yield surface must there-

fore be convex. At any point σij on the yield surface, with a uniquely defined normal,
the only direction of dε

p
ij that satisfies inequality (32) for all possible points σ∗

ij is
that of the exterior normal.

When the yield criterion is singular, the normal is not uniquely defined at an
edge of the yield surface, but inequalities (32) and (33) continue to hold if Drucker’s
postulates are accepted. The first inequality indicates that the plastic strain increment
vector lies between the exterior normals to the regular faces meeting at the edge (Fig.
2.13b). For a work-hardening material, the second inequality allows the plastic strain
increment vector to lie anywhere in the angle NPM formed by the normals at P, so
long as the stress increment vector lies in the angle SPT formed by the tangents at P.
If, on the other hand, dσij falls outside the angle SPT, the direction of dε

p
ij is further

restricted by the requirement that the angle between the two incremental vectors
must be acute. When the material is nonhardening, dε

p
ij can lie anywhere between

the normals PN and PM so long as the stress point remains on the considered edge
of the yield surface.

(iii) Constitutive equations For physical reasons, the stress increment that enters
into the stress–strain relation must be based on an objective rate of change of the true
stress (see Sec. 1.6(i)). In the theory of plasticity, the objective stress rate should be
such that the yield function has a stationary value whenever the stress point remains
on the same yield surface. It turns out that only the Jaumann stress rate σ̊ij is capable
of satisfying this condition. Indeed, the material rate of change of the yield function is

ḟ = ∂f

∂σij
σ̇ij = ∂f

∂σij
σ̊ij

in view of the fact that ∂f /∂σij is coaxial with σij for an isotropic material. This shows
that ḟ = 0 when σ̊ij is tangential to the yield surface.† In the following discussion,
therefore, the stress increment dσij will denote σ̊ij dt, where dt is the increment of
time scale.

† The yield function has a stationary value when σ̊ij itself vanishes. No other objective stress rate
satisfies this requirement.
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When the material work-hardens, the magnitude of the plastic strain increment
depends only on the component of the stress increment along the normal to the yield
surface. Let nij denote the outward drawn unit normal to the yield surface at the
current stress point σij in a nine-dimensional space. Since the vector representing
the plastic strain increment is in the direction of nij, the plastic stress–strain relation
may be expressed as†

h dε
p
ij = nijnkl dσkl nkl dσkl � 0 (34)

where h is a positive scalar representing the rate of hardening. For any given yield
function f (σij), the unit normal nij can be found from the relation nijnij = 1, and
the fact that the components of nij are proportional to those of ∂f /∂σij. The scalar
products of (34) with dσij and dε

p
ij lead to the relationship

dσij dε
p
ij = h−1(nij dσij)

2 = h dε
p
ij dε

p
ij (35)

during plastic deformation. In the case of a uniaxial tension represented by the

principal stresses (σ, 0, 0), the unit normal in the principal stress space is
√

2
3 (1, − 1

2 ,

− 1
2 ), and (34) gives h = 2

3 H, where H is the plastic modulus at the current state of
hardening.

For a nonhardening material (h = 0), the scalar product nij dσij vanishes during
plastic flow, and the magnitude of the plastic strain increment is indeterminate by
(34). The stress–strain relation in this case is more conveniently written as

dε
p
ij = nij dλ nkl dσkl = 0 dλ > 0

If the stress increment is such that the scalar produce nkl dσkl is negative, the element
unloads from the plastic state, and dε

p
ij is identically zero whether the material

work-hardens or not.
The stress–strain relation (34) can be modified for a singular yield criterion when

the plastic state of stress is represented by a point on an edge common to two or more
regular faces. In a nine-dimensional space, the exterior normal to each face at the
considered point is conveniently represented by a unit vector nα (α = 1, 2, . . .). If the
stress increment is denoted by the vector dσ, the associated plastic strain increment
for a work-hardening material is‡

dεp =
∑

h−1
α (nα · dσ)nα nα · dσ � 0 (36)

where hα is a positive scalar function of the stress and strain history, and the sum-
mation includes the contributions from all the operative yield mechanisms. When

† R. Hill, J. Mech. Phys. Solids, 4: 247 (1956).
‡ W. T. Koiter, Q. Appl. Math., 11: 350 (1953); W. E. Boyce and W. Prager, J. Mech. Phys. Solids,

6: 9 (1957); W. F. Chen and D. J. Han, Plasticity for Structural Engineers, Springer-Verlag, NY (1988).
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nα · dσ � 0 for all α, the plastic strain increment vanishes. For a non-hardening
material, dεp = � nα dλα, where the summation is taken over the normal to those
surfaces on which dσ lies.

The complete stress–strain relation for an elastic/plastic material is obtained by
adding the plastic strain increment dε

p
ij to the elastic strain increment dεe

ij correspond-
ing to a stress increment dσij. For an isotropic material, there are two independent
elastic constants, the shear modulus G being related to Young’s modulus E and
Poisson’s ratio ν by E = 2(1 + ν)G. The elastic part of the strain increment may be
written as

dεe
ij = dsij

2G
+ 1 − 2ν

3E
δij dσkk (37)

The first term on the right-hand represents the deviatoric part and the second term
the hydrostatic part. In terms of the actual stress increment,

dεe
ij = 1

2G

(
dσij − ν

1 + ν
δij dσkk

)
(37a)

The right-hand sides of above equations give the total strain increment when the
element unloads from a current plastic state. The incremental change in volume,
which is entirely elastic, is expressed by the equation

dεii = 1 − 2ν

E
dσii

When the flow rule is associated with the yield criterion, which is assumed to be
regular, Eqs. (34) and (37a) furnish the complete stress–strain relation

dεij = 1

2G

(
dσij − ν

1 + ν
δij dσkk

)
+ 3

2H
nijnkl dσkl (38)

for a work-hardening material, whenever nkl dσkl � 0. Taking the scalar product of
(38) with nij, and remembering that nijnij = 1 and nii = 0, we obtain

nij dεij = 3G + H

2GH
nij dσij

which indicates that nij dεij ≷ 0 for nij dσij ≷ 0 when H > 0. In view of this, the
stress–strain relation may be written in the inverted form

dσij = 2G

[
dεij + ν

1 − 2ν
δij dεkk − 3G

3G + H
nijnkl dεkl

]
(39)

whenever nkl dεkl � 0. If there is unloading represented by nkl dεkl < 0, the last term
of (39) must be omitted. Equation (39) applies equally well to nonhardening materi-
als (H = 0) and strain-softening materials (H < 0) during plastic deformation. Since
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nij dσij < 0 for both loading and unloading when H < 0, the restriction nij dεij � 0
must be applied when using (38) for a strain-softening material.† When H = 0, (38)
must be modified to

dεij = 1

2G

(
dσij − ν

1 + ν
δij dσkk

)
+ nij dλ (40)

where dλ > 0 for nij dσij = 0 and dλ = 0 for nij dσij < 0. When a strain increment
is prescribed such that nij dεij > 0, the corresponding stress increment dσij can be
uniquely determined from (39), whether the material work-hardens or not. If, on the
other hand, a stress increment satisfying nij dσij = 0 is prescribed, and the material is
nonhardening, the plastic part of the strain increment cannot be determined without
considering the applied constraints.‡

2.4 Particular Stress–Strain Relations

(i) Lévy-Mises and Prandtl-Reuss equations The plastic flow rule corresponding
to any particular choice of the plastic potential may be readily obtained. The sim-
plest form of the potential curve, having all the properties described in the preceding
section, is obviously a circle. In this case θ = ψ, or equivalently µ = ν, whatever the
form of the yield locus. Taking g = J2 = 1

2 sijsij, and employing (25), we obtain the
corresponding flow rule

dε
p
ij = sij dλ

or
dε

p
x

sx
= dε

p
y

sy
= dε

p
z

sz
= dγ

p
xy

τxy
= dγ

p
yz

τyz
= dγ

p
xz

τzx
= dλ (41)

The stress–strain relation in this form was suggested independently by Lévy and
von Mises, who used the total strain increments instead of the plastic strain incre-
ments.§ The modified equations (41), which allow for the elastic strain increments,
were proposed by Prandtl for plane strain and by Reuss for an arbitrary state of
strain.¶ Since the plastic shear strain increments, according to (41), vanish with the

† Evidently, the restriction nij dεij < 0 must be used for unloading. With this modification of loading
and unloading criteria, the constitutive equations become structurally equivalent to those obtained from
a strain space formulation by P. M. Naghdi and J. A. Trapp, Int. J. Eng. Sci., 13: 785 (1975); J. Casey
and P. M. Naghdi, J. Appl. Mech., 48: 285 (1981).

‡ A theory of plasticity in which both elastic and plastic strains are of finite magnitude has been
developed by E. H. Lee, J. Appl. Mech., 36: 1 (1969); J. Mandel, Plasticité Classique et Viscoplasticité,
Springer-Verlag,Vienna (1972); P. M. Naghdi, Z. angew. Math. Phys., 41: 315 (1990). See also J. Lubiner,
Plasticity Theory, Collier Macmillan, New York (1990).

§ M. Lévy, J. Math. Pures et Appl., 16: 369 (1871); R. von Mises, Göttinger Nachrichten Math.
Phys. Klasse, 582 (1913).

¶ L. Prandtl, Proc. First Int. Congr. Appl. Mech., Delft, 43 (1924);A. Reuss, Z. angew. Math. Mech.,
10: 266 (1930).
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corresponding shear stresses, the principal axes of the stress and the plastic strain
increment coincide. Equations (41) also indicate that the Mohr circle for the stress
can be used for the plastic strain increment, provided the origin is moved in the
appropriate direction of the σ axis by an amount equal to the hydrostatic stress.

If, in addition, the yield function is taken to be that of von Mises, then the
above flow rule is associated with the yield criterion, which is given by f = J2. Since
the increment of plastic work per unit volume is σ dεp in view of equation (28), it
immediately follows from (16) that σ is the same function of

∫
dεp as the stress is

of the plastic strain in uniaxial tension. Thus the work-hardening hypothesis is in
this case equivalent to the strain-hardening hypothesis. Since g is a homogeneous
function of degree two having the magnitude σ2/3, it follows from equations (26)
and (28) that

dWp = 2
3σ2 dλ = σ dεp

which gives

dλ = 3dεp

2σ
= 3dσ

2Hσ
(42)

The Prandtl-Reuss flow rule is completely defined by (41) and (42). The principal
plastic strain increments may be expressed by the right-hand sides of (10) with 2Y/3
replaced by dεp or dσ/H. During continued loading of a plastic element,

σ dσ = 3
2 sij dsij = 3

2 sij dσij dσij dε
p
ij = dσ dεp � 0

in view of (15), (41), and (42), where the equality holds for a nonhardening material.
From the last expression, we have

dσ

σ
= dσij dε

p
ij

σkl dε
p
kl

The flow rule may be derived from (34) by noting the fact that the exterior unit
normal to the yield surface is in the direction of the deviatoric stress vector, and the
stress increment normal to the yield surface is equal to the increase in radius of the
Mises cylinder. Thus

nij =
√

3
2 (sij/σ) nkl dσkl =

√
2
3 dσ

With these substitutions, the expression on the right-hand side of (34) reduces to
(dσ/σ)sij, which completes the proof.

From (37a) and (41), the complete Prandtl-Reuss equation for an elastic/plastic
material may be expressed as

dεij = 1

E
[(1 + ν)dσij − νδij dσkk] + (σij − 1

3σkkδij)dλ (43)
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where dλ is given by (42). For a nonhardening material, dλ may be treated as a basic
unknown of the problem. Equation (43) consists of three equations of each of the
two types

dεx = 1

E
[dσx − ν(dσy + dσz)] + 2

3 dλ[σx − 1
2 (σy + σz)]

dγxy = dτxy

2G
+ τxy dλ

In a number of practical problems, the loading paths are such that the elastic strains
are small in comparison with the plastic strains. The Prandtl-Reuss equations may
then be replaced by the more tractable Lévy-Mises equations, which correspond to
(41) with the superscripts omitted. This is equivalent to assuming the material to be
rigid/plastic.†

The early experimental investigation by Lode on the combined tension and inter-
nal pressure of thin tubes, and by Taylor and Quinney on the combined tension and
torsion of thin tubes, verified the relation µ = ν only to a first approximation.‡ How-
ever, since the strain ratios are far more sensitive to anisotropy than the stress ratios
are, the estimation of ν is somewhat unreliable in experiments with the thin-walled
tubes where some degree of anisotropy is likely to remain undetected. Following
a method suggested by Hill, involving the tension of a thin rectangular strip with
asymmetrical notches, the identity of µ and ν has been experimentally verified§
to a close approximation (Fig. 2.14). There is at present sufficient evidence to con-
clude that the von Mises yield criterion and the Prandtl-Reuss flow rule constitute
the most realistic description of the plastic behavior of metals, when anisotropy and
Bauschinger effect are of secondary importance.¶

(ii) A matrix formulation For the numerical solution of elastic/plastic problems,
using the Prandtl-Reuss theory, it is useful to consider the incremental stress–strain

relation in the matrix form. To this end, we write
√

3
2 sij/σ for nij in (39), and obtain

the Prandtl-Reuss stress–strain relation for a work-hardening material in the form

dσij = cijkl dεkl

† For small strains, the field equations for a Prandtl-Reuss material can be expressed as a set of
ordinary differential equations. See H. K. Hong and C. S. Liou, Int. J. Nonlinear Mech., 35: 447 (2000);
S. Mukherjee and C. S. Liou, J. Appl. Mech., 70: 644 (2003).

‡ W. Lode, Z. Phys., 36: 913 (1926); G. I. Taylor and H. Quinney, Phil. Trans. R. Soc., A230: 323
(1931).

§ B. B. Hundy and A. P. Green, J. Mech. Phys. Solids, 3: 16 (1954), and G. Lianis and H. Ford,
ibid., 5: 215 (1957), provided the experimental confirmation. Similar agreement has also been found
by M. P. L. Siebel, J. Mech. Phys. Solids, 1: 189 (1953), using the combined bending and twisting of
thin-walled tubes.

¶ For an account of the various experimental investigations on the verification of the laws of
plasticity, see E. Mroz andA. H. Olszak, Recent Advancements in the Mathematical Theory of Plasticity,
Pergamon Press (1963).
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Figure 2.14 Experimental verification of the (µ, ν) relationship by Hundy and Green (+), and Lianis
and Ford (◦).

where dσij is considered in the Jaumann sense,

cijkl = 2G

[
δikδjl + ν

1 − 2ν
δijδkl − 1

ασ2 sijskl

]
(44)

in the loading part of the plastic region (dσ > 0), and

α = 2

3

(
1 + H

3G

)

Let {dσ} and {dε} denote column vectors whose elements are given by the compo-
nents of dσij and dεij respectively. The stress–strain equation, which gives a linear
relationship between the increments of stress and strain, can be expressed in the
matrix notation

{dσ} = [C]{dε}
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where [C] is a symmetric square matrix, known as the constitutive matrix. In the
case of plane strain (dεz = 0), the matrix equation becomes


dσx

dσy

dτxy




= 2G




1 − ν

1 − 2ν
− s2

x

ασ2

ν

1 − 2ν
− sxsy

ασ2 −sxτxy

ασ2

ν

1 − 2ν
− sxsy

ασ2

1 − ν

1 − 2ν
− s2

y

ασ2 −syτxy

ασ2

−sxτxy

ασ2 −syτxy

ασ2

1

2
− τ2

xy

ασ2







dεx

dεy

dγxy




(45)

where dγxy is the engineering component, not the tensor component. The remaining
stress–strain equation (for dσz), not included in (45), can be separately written down.
In general, when the nonzero components of the strain increment are capable of
being independently prescribed, the constitutive matrix is given by (45), expanded
as necessary. In the case of plane stress (σz = 0), the strain increments cannot be
independently chosen, as they are required to satisfy the equation(

ν

1 − 2ν
− sxsz

ασ2

)
dεx +

(
ν

1 − 2ν
− sysz

ασ2

)
dεy

+
(

1 − ν

1 − 2ν
− s2

z

ασ2

)
dεz − szτxy

ασ2 dγxy = 0

which ensures dσz = 0. Using the above relation, dεz can be eliminated from the
remaining stress–strain equations. After some algebraic manipulation, using the
relation sx + sy + sz = 0 and the yield criterion

3(s2
x + sxsy + s2

y + τ2
xy) = σ2

the matrix equation can be put in the form of (45) with the constitutive matrix
modified to†

[C] = 2G

N




(1 + ν)
s2

y

σ2 + 2M −(1 + ν)
sxsy

σ2 + 2νM − (sx + νsy)τxy

σ2

−(1 + ν)
sxsy

σ2 + 2νM (1 + ν)
s2

x

σ2 + 2M − (sy + νsx)τxy

σ2

− (sx + νsy)τxy

σ2 − (sy + νsx)τxy

σ2

N

2
− (1 − ν)

τ2
xy

σ2




(46)

where

M = H

9G
+ τ2

xy

σ2 N = 2
3 (1 − ν)

(
1 + H

3G

)
− (1 − 2ν)

s2
z

σ2 (47)

† Y. Yamada, N. Yoshimura, and T. Sakurai, Int. J. Mech. Sci., 10: 343 (1968). For a somewhat
different formulation, see P. V. Marcal and I. P. King, Int. J. Mech. Sci., 9: 143 (1967).
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and dγxy is again the engineering shear component. If the element remains elas-
tic (σ < Y ), or unloads from a plastic state (dσ < 0), the constitutive matrix [C]
should correspond to Hooke’s law. It may be noted that an elastic material is
indistinguishable from an elastic/plastic material for which H is infinitely large.

A plastically deforming body generally contains one or more boundaries sepa-
rating elastic and plastic regions. These boundaries are themselves unknown and are
usually so complicated in shape that a complete solution of the elastic/plastic prob-
lem would involve tedious computations. The determination of the elastic/plastic
boundary can be avoided by using the Ramberg-Osgood equation (Sec. 1.2(iii)) for
the uniaxial stress–strain curve, the entire body being regarded as plastic during
continued loading due to the nature of the empirical equation, which involves a zero
initial yield stress.

(iii) Geometrical representation of stress and strain We have seen that the princi-
pal axes of the plastic strain increment coincide with those of the current stress, while
the principal axes of the elastic strain increment coincide with those of the stress
increment. If the principal axes of the stress do not rotate with respect to the element
while it deforms, the principal components of the stress increment are the same as
the increments of the principal stress components. In this special case, the princi-
pal axes of the total strain-increment coincide with the principal axes of the stress.
The stresses and strains at any stage may therefore be represented by vectors in the
principal stress space, a factor of 2G being used for the strains to have the dimen-
sion of stress. Since the hydrostatic parts of the stress and the strain are related to
one another by the equation ε0 = (1 − 2ν)σ0/E, it is only necessary to consider the
deviatoric stresses and strains on a plane diagram. The Prandtl-Reuss stress–strain
relation will be assumed in what follows.†

Let OP and OS represent the current stress and strain vectors in the deviatoric
plane (Fig. 2.15), the coordinates of S in the stress space being 2G times the com-
ponents of the deviatoric strain. In view of (37), the vector OP also represents the
deviatoric elastic strain. The vector PS therefore represents the total plastic strain.
Let PP′ represent a change in the deviatoric stress such that P′ is outside the current
yield locus, the new yield locus being represented by the dotted curve through P′.
The corresponding strain-increment vector SS′ is the sum of the vectors SR and
RS′ representing the elastic and plastic strain increments respectively. The elastic
strain-increment vector SR is equal to the stress-increment vector PP′ and the plas-
tic strain-increment vector RS′ is parallel to the current stress vector OP. If ST is
drawn perpendicular to S′R produced, the angle SRT is the same as the acute angle
between OP and PP′. Since SR = PP′, TR is equal to the increment in the radius of

the von Mises circle and is therefore of length
√

2
3 dσ. Now the length of the plastic

† R. Hill, The Mathematical Theory of Plasticity, p. 41, Clarendon Press, Oxford (1950). In general,
a five-dimensional space will be necessary for the complete geometrical representation. See A. Ilyushin,
Prikl. Mat. Mekh., 18: 641 (1954).
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Figure 2.15 Geometrical representation of the Prandtl-Reuss relation for a work-hardening material.

strain-increment vector is

RS′ = 2G

√
3

2
dεp =

√
3

2

2G

H
dσ

and it is defined on the plane diagram by the ratio

RS′

RT
= 3G

H
= 3(E/T − 1)

2(1 + ν)
(48)

where T is the tangent modulus to the uniaxial stress–strain curve at σ = σ. During
the continued plastic flow, the points P and S describe curves representing the stress
and strain paths respectively, starting from a common initial point P0. These curves
are the projections on the deviatoric plane of the paths traced by the stress and strain
points in the principal stress space. The sum of the lengths of the vector RS′ along
the strain path is

√
6G times the total equivalent plastic strain

∫
dε

p
.

In the initial stages of plastic deformation of an annealed material, the elastic
and plastic strain increments are comparable, since H is then of the order G. Even
when H is small compared to G, the elastic and plastic strain increments may be
comparable if SS′ makes a large angle with OP. In the limiting case of neutral loading
the plastic strain increment is zero and SS′ is perpendicular to OP, the points S′ and
R then coinciding with T . In the other extreme case when the stress point moves
outward along a radial line, the strain point moves parallel to it and the elastic strain
increment is a minimum. When the material is slightly prestrained and the stress
path does not depart greatly from the radial direction, the elastic component of the
strain is negligible.

(iv) Tresca’s associated flow rule If the material obeys Tresca’s yield criterion,
the plastic potential may be represented by a regular hexagon similar to the yield
hexagon. When the stress point lies on one of the sides of the hexagon, the plastic
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strain-increment vector is directed along the normal to the side. The plastic defor-
mation is therefore a pure shear in the direction of the maximum shear stress. When
the stress corresponds to a corner, it is customary to assume that the stress point
remains at the corner during a finite strain. The plastic strain-increment vector then
lies within the 60◦ angle formed by the normals to the sides meeting at the corner.
The strain increment may, however, be uniquely determined from the conditions of
constraint of the problem. It follows that ν = 0 while µ varies from 0 to −1, and ν

varies from 0 to −1 when µ = −1. Considering the side AB of the deviatoric hexagon
(Fig. 2.16), Tresca’s yield criterion and the associated flow rule may be written as

σ1 − σ3 = σ, σ1 > σ2 > σ3 dε
p
1 = −dε

p
3 > 0, dε

p
2 = 0

where σ is the current uniaxial yield stress. At the corner B, we have σ1 = σ2, and
the ratios of the plastic strain increments can lie between those corresponding to the
sides AB and BC. The yield criterion and the flow rule corresponding to the corner
B may therefore be written as

σ1 − σ3 = σ2 − σ3 = σ dε
p
1 > 0, dε

p
2 > 0, dε

p
3 < 0

which must be supplemented by the incompressibility equation dε
p
ii = 0. Similar

results hold for the other sides and corners of the hexagon. An assumed plastic
regime (side or corner) will be acceptable if all the inequalities are found to be
satisfied. During the continued plastic flow, the stress point may, of course, move
from one regime to another. The flow rule can be written in the integrated form
when the stress point moves in regular progression. This includes plastic states in
which the stress point remains on a side, remains at a corner, or moves from a side
to a corner, while the principal axes of the stress remain fixed in the element. If

Figure 2.16 Plastic strain increment vectors associated with the Tresca and Mises criteria.
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the stress point moves from one side to another or from a corner to a side, only the
incompressibility condition may be written in the integrated form.

It may be noted that a strain-increment vector normal to a side of the hexagon
does not uniquely define the stress point. The increment of plastic work is, however,
uniquely determined, since the projection of the stress vector on the normal to the
side is constant along the side. This work is greater than that done by the stress
state represented by any other side of the hexagon. Using the yield criterion and
the flow rule, it is easy to show that the increment of plastic work per unit volume
corresponding to any plastic regime is σ|dεp|, where dεp is the numerically largest
principal plastic strain increment. This suggests that the work-hardening hypothe-
sis is a convenient basis for relating σ to the degree of cold work. Then σ is the
same function of

∫ |dεp| as the stress is of the plastic strain in uniaxial tension or
compression. Stated mathematically, the work-hardening hypothesis according to
the Tresca theory is reduced to

σ = F

{∫
|dεp|

}

where the integral is taken along the strain path. It follows that the magnitude of the
plastic strain-increment vector is equal to dσ/H. If the stress path is such that the
stress point moves between any two consecutive sides of the hexagon, dεp represents
the same principal plastic strain increment throughout the deformation. In this case,
the above integral represents the magnitude of the numerically largest principal
plastic strain, provided the principal axes do not rotate with respect to the element.
For other stress paths, the value of the integral will depend on the complete stress
and strain history, not merely on the final state of strain.†

(v) Anisotropic flow rule Consider a material that is initially isotropic and obeys the
von Mises criterion for yielding. The material is assumed to harden anisotropically
by a combined expansion and translation of the yield surface in stress space. After
a certain amount of plastic deformation, the yield criterion assumes the form

(sij − αij)(sij − αij) = 2
3σ2 (49)

where αij are the components of the total translation of the yield surface. The right-
hand side of (49) is the square of the radius of the current deviatoric yield locus.

Adopting the associated flow rule of plasticity, and denoting the left-hand side
of (49) by 2f , the plastic strain increment may be written as

dε
p
ij = ∂f

∂σij
dλ = (sij − αij)dλ (50)

where dλ is a positive factor of proportionality. Let us assume that the physical
coordinate axes initially coincide with the principal stress axes, so that σij = 0 (i �= j)

† A theory of piecewise linear plasticity has been developed by P. G. Hodge, J. Franklin Inst., 263:
13 (1957), J. Mech. Phys. Solids, 5: 242 (1957), Int. J. Mech. Sci., 22: 21 (1980).
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when αij = 0. It follows from (50) and (20) that dε
p
ij = 0 (i �= j) and dαij = 0 (i �= j)

in the initial state, implying that dε
p
ij is coaxial with σij. The result does not continue

to hold unless the principal axes of stress remain fixed in the element. Thus, due to
the anisotropy caused by strain-hardening, the principal axes of stress and plastic
strain increment do not generally coincide.

The quantity σ represents the isotropic part of the yield stress, and is assumed
to depend on the equivalent plastic strain

∫
dεp, where dεp is given by (17). The

relationship between dεp and dλ can be established by substituting for dε
p
ij into

(17). Since √
3
2 dε

p = dλ
√

(sij − αij)(sij − αij) =
√

2
3σ dλ

in view of (50) and (49), we have

dλ = 3dε
p

2σ
= dσ

hσ

where h is a measure of the isotropic part of the rate of strain-hardening. The
anisotropic part of the hardening rate is given by the parameter c in Eq. (20). In
view of the above relation, the plastic strain increment becomes

dε
p
ij = (sij − αij)

dσ

hσ
(51)

For the combined hardening process, dσ must be positive during continued plastic
flow. Since dsii = dαii = 0, Eq. (49) gives

σ dσ = 3
2 (sij − αij)(dσij − dαij)

Substituting from (20) and (51), and using (49), the above relation is reduced to

(
1 + c

h

)
dσ = 3

2σ
(skl − αkl)dσkl > 0 (52)

For purely isotropic hardening (c = 0), the stress–strain relation reduces to that given
by (41) and (42).

When the hardening is purely kinematic (h = 0), σ has a constant value, equal to√
3k, where k is the initial yield stress in pure shear. The loading condition dσ = 0

is equivalent to

(sij − αij)(dσij − dαij) = 0

where dαij is given by (20). Substituting from (50) and using (49), whose right-hand
side is now equal to 2k2, we obtain

dλ = 1

2ck2 (skl − αkl)dσkl > 0 (53)
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Figure 2.17 Uniaxial stress and strain cycles in a cyclic hardening material: diagrammatic (a) constant
strain cycles, (b) constant stress cycles.

The stress–strain relation for kinematic hardening is completely defined by (50)
and (53). When c is a constant, αij can be replaced by cεp

ij in the above equations.
The cyclic stress–strain curve for such a material forms a closed loop in a single
application of the load cycle.†

The complexity of the plastic behavior of materials under cyclic loading can be
appreciated by considering the observed material response under uniaxial cycles of
tension and compression. When the process is strain controlled with a given ampli-
tude of the longitudinal strain, and the material exhibits cyclic hardening, the stress
increases in magnitude at the end of each cycle, and the stress–strain curve eventually
attains a closed stable loop, as shown diagrammatically in Fig. 2.17(a). A cyclically
softening material shows a similar behavior, except that the stress decreases in mag-
nitude at the end of each cycle untill the stabilization occurs. If, on the other hand,
the process is stress controlled with a constant stress amplitude, a cyclic hardening of
the material results in a decrease in magnitude of the strain at the end of each cycle,
untill a stable stress–strain loop is finally attained, as indicated in Fig. 2.17(b). For a
cyclic softening material, the strain increases in magnitude at the end of each stress
cycle, leading eventually to a stable closed loop. Such a material may also exhibit
ratchetting behavior, in which the stress–strain loop progressively moves outward
along the strain axis, causing an excessive accumulation of plastic strain.

† Plastic stress–strain relations for cyclic loading have been discussed by D. C. Drucker and
L. Palgen, J. Appl. Mech., 48: 479 (1981); J. L. Chaboche and G. Rousselier, J. Pressure Vessel Technol.,
105: 153 and 159 (1983); W. Jiang, J. Eng. Mech., Trans. ASCE, 120: 2179 (1994), along with a number
of other investigators. See also J. Lemaitre and J. L. Chaboche, Mechanics of Solid Materials, Cambridge
University Press, Cambridge (1989).
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2.5 The Total Strain Theory

(i) Hencky’s stress–strain relation Although the Prandtl-Reuss stress–strain rela-
tion provides the most satisfactory basis for treating plasticity problems, the theory
is incremental and generally leads to mathematical complexities. Considerable sim-
plifications are often achieved by using a system of equations due to Hencky,† who
postulated a one-to-one correspondence between the stress and the strain. Thus, the
components of the total plastic strain are taken to be proportional to the correspond-
ing deviatoric stresses. Assuming small strains, the plastic stress–strain relation
proposed by Hencky may be written as

ε
p
ij = λsij (54)

where λ is positive during loading and zero during unloading. When the material
work-hardens, λ depends on the equivalent stress σ, which may be regarded as a
function of an equivalent total plastic strain εp defined as

εp =
√

2
3ε

p
ijε

p
ij (55)

the relationship between σ and εp being given by the uniaxial stress–plastic–strain
curve. Substituting from (54), and using (15) for σ, which implies the von Mises
yield criterion, we have √

3
2εp = λ

√
sijsij = λ

√
2
3σ

giving λ = 3εp/2σ. The stress–strain relation (54) may therefore be expressed as

ε
p
ij = 3εp

2σ
sij = 3

2

(
1

S
− 1

E

)
sij (56)

where S is the secant modulus of the uniaxial stress–strain curve at σ = σ. For
an incompressible material, εe

ij = 3sij/2E by Hooke’s law, and (56) then furnishes
εij = 3sij/2S. The incremental form of (56) is

dε
p
ij = 3

2σ

{(
dεp − εp dσ

σ

)
sij + εp dsij

}
(57)

The Hencky equation is equivalent to the Prandtl-Reuss equation when the
ratios of the deviatoric stress components are held constant. This may be shown
by writing sij = (σ/Y )s0

ij, where s0
ij is the deviatoric stress at the initial yielding.

Since dsij = (dσ/σ)sij, the above equation reduces to that given by (41) and (42),

† H. Hencky, Z . angew. Math. Mech. 4: 323 (1924). The Hencky stress–strain relation has been
extensively used by A. Nadai, Theory of Flow and Fracture of Solids, McGraw-Hill Book Co. (1950),
and W. W. Sokolovsky, Theory of Plasticity, Moscow (1969).
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Figure 2.18 Geometrical rep-
resentation of the Hencky
stress–strain relation in the
deviatoric plane.

the quantity dε
p

in this case being identical to dεp. When the stress–plastic–strain
relationship in uniaxial tension is represented by a power law, the Hencky equation
is initially equivalent to the Prandtl-Reuss equation.† Indeed, if σ varies as the nth
power of εp, it is easily shown that dσ/σ = n(dεp/εp), while εp/σ → 0 as εp tends
to zero. The complete equivalence of the two equations is established by setting
dε

p = (1 − n)dεp at the initial stage.
The Hencky theory can be extended to large strains by using a suitable definition

of the strain tensor εij, the most natural definition in this context being εij =
∫

dεij,
where the integral is taken along the path of the particle. When the principal axes
of strain increment remain fixed in the element, it leads to the logarithmic strains in
the principal directions.

If the principal axes of the stress do not rotate with respect to the element, a
geometrical representation of stresses and strains is again possible. The vectors OP
and PS, representing the deviatoric stress and the plastic strain respectively (Fig.
2.18), are directed along the same radial line whatever the stress path. According
to the Prandtl-Reuss theory, this happens only when the stress path is a straight
line through the origin. The vector OP also represents the deviatoric elastic strain,
and the vector OS represents the total deviatoric strain. The magnitudes of the vectors

OP and PS are
√

2
3σ and 2G

√
3
2εp respectively. Hence

PS

OP
= 3G

(
1

S
− 1

E

)
= 3(E/S − 1)

2(1 + ν)

When the point S describes a certain curved strain path, the stress vector rotates
so that it is always along OS. The stress increment PP′ corresponding to a strain
increment SS′ is obtained by locating P′ on OS′ by the above relation. The vector SR,
equal to PP′, represents the elastic strain increment, and the vector RS′ represents

† A. A. Ilyushin, Prikl. Mat. Mekh., 10: 347 (1946); ibid., 11: 293 (1947); F. Edelman, Proc. 1st
U.S. Nat. Congr. Appl. Mech., 493 (1951); L. M. Kachanov, Foundations of the Theory of Plasticity,
p. 68, North Holland Pub. Co. (1971).
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the plastic strain increment. This is evidently incompatible with the Prandtl-Reuss
flow rule which requires RS′ to be parallel to OP. The stress path corresponding to
the Hencky equation therefore differs from that given by the Prandtl-Reuss equation.

The projection of RS′ on a line through R parallel to OS is RT = 2G
√

3
2 dεp, where

dεp, is the increment of the equivalent total plastic strain. The scalar product of the
vectors OP and RS′ gives the increment of plastic work dWp = σ dεp, which agrees
with that obtained from the scalar product of (57) with the deviatoric stress sij.

The Hencky theory is unsuitable for describing the complete plastic behavior
of metals, as can be seen by considering the unloading of the element after a certain
amount of plastic deformation. If the element is reloaded to a different stress state
on the current yield locus, the ratios of the plastic strain components will be entirely
different. This is absurd, since only elastic changes in strain can occur while the stress
point is inside the yield locus.† Nevertheless, when the loading is continuous and
the deviatoric stress ratios do not vary significantly during the loading, the Hencky
equation should lead to approximately correct results. Unloading can be permitted,
provided the element is not reloaded to a plastic state different from that at the time
of unloading.

(ii) A range of validity The total strain theory of Hencky is, in general, theoretically
unacceptable, since it violates the fundamental rule of plastic flow of metals. Except
for proportional loading, the Hencky stress–strain relation cannot be associated with
a plastic potential with continuously turning normal. Consider now the situation in
which a corner is formed in the yield locus at the current stress point during the
ensuing plastic deformation.‡ The Hencky stress–strain relation is then compatible
with the associated flow rule at the corner for a certain range of nonproportional
loadings. It is assumed that the yield locus changes in such a way that the stress
point continues to be at the corner during the deformation. It is also supposed that
the shape of the yield locus in the neighborhood of the corner at each stage is
symmetrical about the current deviatoric stress vector.§

Let β denote the acute angle made by the deviatoric stress vector OP with either
of the limiting tangents to the yield locus at a given stage (Fig. 2.19). According
to the associated flow rule, the plastic strain-increment vector PQ = RS′ can lie
anywhere between the exterior normals PA and PB so long as the stress-increment

† The physical shortcomings of the Hencky theory have been demonstrated by G. H. Handelman,
C. C. Lin, and W. Prager, Q. Appl. Math., 4: 397 (1947).

‡ The analysis presented here is much simpler than that originally given by B. Budiansky, J. Appl.
Mech., 26: 259 (1959). For another approach to the problem, see V. D. Kliushnikov, Prikl. Mat. Mekh.,
23: 405 (1959).

§ This is a feature of a slip theory of plasticity developed by S. B. Batdorf and B. Budiansky, NACA
Tech. Note, 1971 (1949), and J. Appl. Mech., 15: 323 (1954). A similar theory, based on linear loading
surfaces, has been put forward by J. L. Sanders, Proc. 2d U.S. Nat. Cong. Appl. Mech., p. 445 (1954).
For experimental evidences, see A. Phillips and G. A. Gray, J. Basic Eng., 83: 275 (1961). The slip
theory has been further developed by T. H. Lin and M. Ito, J. Mech. Phys. Solids, 13: 103 (1965); Int. J.
Engng. Sci., 1: 543 (1966). See also T. H. Lin, Theory of Inelastic Structures, Chap. 4, John Wiley and
Sons, New York (1968).



Chakra-02.tex 12/1/2006 17: 21 Page 95

foundations of plasticity 95

Figure 2.19 Development of a corner on the yield locus and its influence on the Hencky theory.

vector PP′ falls between the tangents produced. If α and δ are the angles made by
the stress and plastic strain increments respectively with the current stress vector,
the plastic stress–strain relation at the corner requires

α < β δ <
π

2
− β (58)

Let L denote the foot of the perpendicular drawn from P′ on OS. Then from geometry,

PL =
√

2
3 dσ, and RT = 2G

√
3
2 dεp, giving

RT

PL
= 3G

H
= 3G

(
1

T
− 1

E

)

Also, from the similar triangles P′OL and S′P′T ′, we have

S′T
P′L

= P′S′

OP′ = 3G

(
1

S
− 1

E

)

Since S′T = RT tan δ and P′L = PL tan α, the above equations give the relationship
between the angles α and δ as

tan α cot δ = E/T − 1

E/S − 1

Denoting the right-hand side of this equation by N , which is obtained from the given
stress–strain curve, inequalities (58) may be expressed as

tan α < tan β <
N

tan α
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The angle α represents the deviation from proportional loading. It will be assumed
that the value of β at each stage is such that it allows the maximum variation of
α. For a given stage, as α is increased, tan α increases and N/ tan α decreases. So
long as tan α is less than

√
N , the above inequalities will be satisfied if tan β has an

optimum value equal to
√

N . All other values of β will further restrict the variation
of α. Hence the condition for validity of the Hencky theory becomes

α < tan−1
√

N = tan−1

√
E/T − 1

E/S − 1
(59)

For a work-hardening material with a definite yield point, β decreases from the
initial value of π/2 as the loading proceeds. When the stresses at each stage of the
loading are known, σ may be plotted as a function of the polar angle θ given by
Eq. (3). The acute angle made by the tangent at a generic point of the curve with
the radius vector is α, and tan α is equal to the magnitude of σ(dθ/dσ). The loading

curve may also be plotted in rectangular coordinates using (2), where a factor of
√

3
2

may be introduced to make the length of the radius vector equal to σ. For practical
applications, it is sometimes convenient to express (59) in an alternative form, using
the result

PP′ = PL sec α <

√
2
3 dσ

√
1 + N

But PP′ is equal to
√

dsij dsij, which is the magnitude of the deviatoric stress-
increment vector. In terms of the principal components of the actual stress increment,
the above inequality may be written as

(dσ1 − dσ2)2 + (dσ2 − dσ3)2 + (dσ3 − dσ1)2 < 2(1 + N)dσ2 (60)

When the material work-hardens, the inequality (60) will be satisfied in a large
number of practical problems where the stress ratios vary during the deformation.
The parameter N is in fact the ratio of the slopes of the radius vector and the tangent
at any point of the uniaxial stress–plastic-strain curve. If the stress–strain curve is
represented by the Ramberg-Osgood equation, in which the plastic strain varies as
the mth power of the true stress, N has a constant value equal to m. For a nonhardening
material, the yield locus does not change during the deformation, and the Hencky
theory is strictly valid when the stress point remains fixed during the deformation.

2.6 Theorems of Limit Analysis

(i) Significance of the yield point The yield point of a rigid/plastic body is defined
as the moment when the deformation first becomes possible as the load is increased
beyond the stage of initial yielding. During the loading interval marked by the
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beginnings of plastic yielding and plastic deformation, the body remains entirely
rigid even though partly plastic. The rate at which the load must be increased to
produce further distortion following the yield point depends on the rate of strain-
hardening and the change in geometry. When the rate of hardening is of the order
of the yield stress, and geometry changes are disregarded, only a slight increase in
load is sufficient to produce strains of appreciable magnitude. In a slowly hardening
elastic/plastic body, such strains generally occur under loads differing marginally
from the rigid/plastic yield point load. More precisely, in a nonhardening deformable
body, the load rapidly approaches an asymptotic value which is identical to the
rigid/plastic yield point load.

Consider the state of stress at the yield point of a rigid/plastic body under given
tractions Tj over a part SF of the surface, and given velocities vj over the remainder
Sv. Let (σij, vj) and (σ∗

ij , v∗
j ) be any two consistent solutions for the stress and

associated velocity distributions corresponding to the same boundary conditions.
Across certain internal surfaces, the velocity may be tangentially discontinuous.
Such a surface may be considered as the limit of a narrow layer through which the
velocity changes rapidly but continuously. Since the material is isotropic, the state
of stress at the discontinuity is a pure shear k tangential to the surface, together with
a hydrostatic stress. Let τ be the shear component of σij along a discontinuity of v∗

j ,
and τ∗ the shear component of σ∗

ij along a discontinuity of vj. Then, by the principle
of virtual work, expressed by (79), Chap. 1, with the field quantities replaced by the
corresponding differences, we have

∫
(Tj − T∗

j )(vj − v∗
j )dS =

∫
(σij − σ∗

ij)(ε̇ij − ε̇∗
ij)dV

+
∫

(k − τ∗)[v]dSD +
∫

(k − τ)[v∗]dS∗
D (61)

where the square brackets denote the magnitudes of the velocity discontinuities
across the respective internal surfaces SD and S∗

D. Since no shear-stress component
can be numerically greater than k, the surface integrals on the right-hand side are
nonnegative. By the maximum work inequality, and the fact that the strain rate
vanishes in a rigid region,

(σij − σ∗
ij)(ε̇ij − ε̇∗

ij) = (σij − σ∗
ij)ε̇ij + (σ∗

ij − σij)ε̇
∗
ij � 0

which indicates that the volume integral in (61) is also nonnegative. Since Tj = T∗
j on

SF and vj = v∗
j on Sv, the integrand on the left-hand side of (61) vanishes at each point

of the boundary. Hence the integrals on the right-hand side must separately vanish.
It follows that for a strictly convex yield surface, wherever ε̇ij or ε̇∗

ij is nonzero,
σij and σ∗

ij can only differ from one another by a hydrostatic stress which must
be uniform for equilibrium. In other words, the state of stress at the yield point is
uniquely defined in a region where the material can deform under given boundary
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conditions.† The present analysis says nothing, however, about the possible modes
of deformation, nor the extent of the deforming zone.

In a nonhardening rigid/plastic body, the deformation following the yield point
occurs under constant loads so long as the changes in geometry are negligible.
This may be shown by considering the equilibrium equations ∂σ̇ij/∂xi = 0 and the
boundary conditions Ṫj = liσ̇ij satisfied by the stress rate σ̇ij. The transformation by
Green’s theorem furnishes∫

Ṫjvj dS =
∫

∂

∂xi
(σ̇ijvj)dV =

∫
σ̇ij

∂vj

∂xi
dV =

∫
σ̇ij ε̇ij dV

in view of the symmetry of the tensor σ̇ij. Since σ̇ij and ε̇ij are mutually orthogonal
in the vector representation wherever ε̇ij �= 0, the scalar product σ̇ij ε̇ij is zero at each
point. It follows that each component of the traction rate Ṫj must also vanish unless
the corresponding component of the surface velocity is zero. In an elastic/plastic
solid, on the other hand, the loads do not generally attain constant values for any finite
strain, but the rate of change of the loads becomes insignificant after a permanent
strain which is still of an elastic order of magnitude. As the asymptotic values of the
loads are approached, the deformation increases so rapidly that in an actual structure
the result is tantamount to plastic collapse. The elastic part of the strain rate then
becomes negligible compared to the plastic part.

(ii) Lower and upper bound theorems We now proceed to develop the extremum
principles associated with the uniqueness theorem. An assumed stress field will be
called statically admissible if it satisfies the equilibrium equations and the stress
boundary conditions without violating the yield criterion. Let (σij, ε̇ij) now refer to
the actual stress and the associated strain rate corresponding to any yield point state.
If σ∗

ij is any other statically admissible state of stress,‡ then by the principle of virtual
work, ∫

(Tj − T∗
j )vj dS =

∫
(σij − σ∗

ij)ε̇ij dV +
∫

(k − τ∗)[v] dSD (62)

The second integral on the right-hand side, representing the contribution from any
velocity discontinuity in the actual state, is definitely nonnegative since τ∗ � k.
The first integral on the right-hand side is also nonnegative by the maximum work
inequality and the fact that ε̇ij vanishes in any rigid region. If some or all of the traction
components are prescribed on SF , while the complementary velocity components
are zero, the left-hand side of (62) vanishes over SF . Then∫

Tjvj dSv �
∫

T∗
j vj dSv =

∫
liσ

∗
ijvjdSv (63)

† The uniqueness theorem is due to R. Hill, Phil. Mag., 42: 868 (1951). It is a generalization of an
earlier result by R. Hill, Q. J. Mech. Appl. Math., 1: 18 (1948). See also E. H. Lee, Phil. Mag., Ser. 7,
43: 549 (1952).

‡ The assumed stress field may include surfaces of stress discontinuity provided the tractions across
them are continuous.
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The result provides the lower bound theorem, which states that the rate of work
done by the actual surface tractions on Sv is greater than or equal to that done by the
surface tractions in any statically admissible stress field.† If the prescribed velocity
on Sv is uniform, a knowledge of the rate of work is equivalent to a knowledge of the
overall load acting on Sv. The theorem then gives a lower bound on the load itself
at the yield point. Similarly, when the velocity on Sv corresponds to a rigid-body
rotation, a lower bound on the yield couple can be estimated.

For the complementary minimum principle, let v∗
j denote any piecewise contin-

uous velocity field satisfying the incompressibility condition. Let σ∗
ij be the stress

that would be compatible with the strain rate ε̇∗
ij according to the normality rule. If

the actual stress at the yield point is σij as before, then by the virtual work principle,∫
Tjv

∗
j dS =

∫
σij ε̇

∗
ij dV +

∫
τ[v∗]dS∗

D (64)

which includes the contribution to the rate of energy dissipation from any discon-
tinuity S∗

D in the virtual velocity field. The distribution σ∗
ij is not necessarily in

equilibrium, and is undefined where ε̇∗
ij = 0. Since τ � k, and σij ε̇

∗
ij � σ∗

ij ε̇
∗
ij, by the

maximum work inequality, we have∫
Tjv

∗
j dSv �

∫
σ∗

ij ε̇
∗
ij dV +

∫
k[v∗]dS∗

D −
∫

Tjv
∗
j dSF (65)

The virtual velocity field is regarded as kinematically admissible if it also satisfies
the velocity boundary conditions on Sv. For a kinematically admissible field, there-
fore, we may write v∗

j = vj on the left-hand side of (65). The result is generally
known as the upper bound theorem which states that the rate of work done by the
unknown surface tractions on Sv is less than or equal to the rate of internal energy
dissipated in any kinematically admissible velocity field.‡ The theorem gives an
upper bound on the yield point load itself in the special case when the velocity on
Sv is constant in magnitude and direction.§

A slightly different situation arises when several loads are applied to a structure,
their ratios at the yield point being given. These ratios may be regarded as maintained
constant as the loads are gradually increased to their collapse values (proportional
loading). The absolute magnitude of the loads can be specified by a single parameter

† R. Hill, op. cit. A heuristic principle of maximum plastic resistance was proposed earlier by
M. A. Sadowsky, J. Appl. Mech., 10: A-65 (1943), on the basis of its success in a few special cases. The
theorem also holds for an incompressible material when the Hencky equations are used, and the body
is assumed entirely plastic. See A. H. Philippidis, J. Appl. Mech., 15: 241 (1948), and H. J. Greenberg,
ibid., 16: 103 (1949).

‡ R. Hill, Phil. Mag., 42: 868 (1951). For a Mises material, the theorem was proved earlier by
A. A. Markov, Prikl. Mat. Mekh., 11: 339 (1947), and R. Hill. J. Appl. Mech., 17: 64 (1950), under the
restriction that the entire body is deforming plastically.

§ Assuming that the load remains constant at the moment of collapse in a non-hardening elastic/
plastic material, while geometry changes are still negligible, the theorems of limit analysis have been
proved by D. C. Drucker, W. Prager, and H. J. Greenberg, Q. Appl. Math., 9: 381 (1952).
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T at the yield point. Each load corresponds to a surface traction Tj = Trj, where rj
is a given vector specifying the load. Let SR denote the part of the surface where
the load ratios are given, the remaining surface being assumed partly traction-free
and partly attached with rigid constraints (vj = 0). If an assumed stress field is such
that T∗

j = T∗rj on SR, then (62) immediately shows that T � T∗, providing a lower
bound on the loading parameter. Equation (64), together with the maximum work
inequality, furnishes

T
∫

rjv
∗
j dSR �

∫
σ∗

ij ε̇
∗
ij dV +

∫
k[v∗]dS∗

D (66)

from which an upper bound on T can be estimated by using a trial velocity field v∗
j

vanishing at the specified constraints. With a judicious choice, these bounds can be
brought close enough to provide a useful approximation to the collapse load.

The magnitude of the yield point load evidently depends on the particular choice
of the yield function and the plastic potential. Suppose that the von Mises yield cri-
terion and the Lévy-Mises flow rule constitute a standard for comparison. When
Tresca’s yield function and potential are used for an approximation, the correspond-
ing hexagonal yield prism may be regarded as either inscribed or circumscribed with
respect to the Mises cylinder. Considering a mean of the two corresponding load
values, which are in the ratio 2/

√
3, the error in the approximation can be limited

to ±7.5 percent.† The Tresca theory has been extensively used in the literature for
the estimation of limit loads of structures.

(iii) Influence of Coulomb friction Suppose, now, that the surface Sv represents
the interface between a workpiece and a rigid die. The boundary conditions on Sv

require the normal component of velocity to be compatible with the rigid motion of
the die, and the tangential traction to satisfy a prescribed frictional law. We begin
with the situation where the tangential traction has a constant value along the inter-
face. If (v∗

n, v∗
t ) are the normal and tangential components of the trial velocity at the

interface, and (Tn, Tt) the corresponding components of the actual traction, then∫
Tjv

∗
j dSv =

∫
Tnv

∗
n dSv +

∫
Ttv

∗
t dSv

where Tt = 0 for a perfectly smooth die and Tt = −k for a perfectly rough die, both
v∗

n and v∗
t being considered positive. If the interface is planar, a velocity field for

which v∗
n is equal to the prescribed normal velocity vn provides an upper bound on

the total normal load. The trial velocity field is then kinematically admissible.
In the case of Coulomb friction existing at the interface, the resultant traction

on Sv, having a magnitude Tr , acts in a direction making an angle λ = tan−1µ with
the inward normal to the surface, where µ is the coefficient of friction along the
interface. If v∗

r denotes the component of the trial velocity vector in the direction of
the resultant traction, then Tjv

∗
j = Trv

∗
r . When Sv is planar, and the trial velocity

† R. Hill, Phil. Mag., Ser. 7, 43: 353 (1952).
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field is such that v∗
r is constant on Sv, (65) furnishes an upper bound on the resultant

force transmitted across the interface.† The assumed velocity field is not kinemat-
ically admissible, unless the corresponding resultant velocity on Sv is constant in
magnitude and direction.

Suppose, now, that the interface Sv is nonplanar, and we are required to find an
upper bound on the component of the resultant force in a fixed direction ν. Then the
trial velocity field should be such that its component in the direction of the resultant
traction is v∗

r = V0 cos θ, where V0 is a constant, and θ is the acute angle between ν

and the direction of the resultant traction. Since∫
Tjv

∗
j dSv =

∫
Trv

∗
r dSv = V0

∫
Tr cos θ dSv

the integral on the left-hand side of (65) is equal to V0 times the required load at
the yield point. The trial velocity field is not kinematically admissible, but it does
provide an upper bound.

In actual practice, Coulomb’s law may be operative over a part of the interface
between the material and the die. The remaining part of the interface Sv generally
consists of two sections, with sticking friction existing on one and zero relative
motion on the other. The magnitude of the tangential traction is less than µTn on
both these sections. If Sv is a single surface, an upper bound on the total normal load
can be obtained by setting v∗

r = V0 cos λ over the Coulomb part, and v∗
n = V0 over

the remainder of the interface.
The limit theorems are equally relevant to steady state problems, involving

nonhardening materials, where the external configuration of the body is specified.
Since the deformed state of the body may be regarded as the sum total of incremental
distortions due to a succession of yield points, lower and upper bounds on the load
required to maintain the steady state can be found from (63) and (65). When the
problem is nonsteady, the continually changing external configuration is not known
in advance, and the present approximation methods are not directly applicable for a
finitely deformed body.

(iv) A shakedown theorem An elastic/plastic structure subjected to a cyclic loading
program may fail due to excessive deformation, even though the extreme values of
the load may be lower than that corresponding to plastic collapse. The plastic strains
produced in a critical load cycle progressively increase as the cycle is repeated, and
the structure eventually becomes unserviceable. In some cases, cycles of plastic flow
may occur in alternating directions causing an early fatigue failure. The structure
will be safe, however, if the load varies in such a way that the stress distribution
remains within the yield limit after an initial period of plastic flow. The structure
is then said to shake down to a state of residual stress, the change in strain being
entirely elastic as the load is subsequently varied between the prescribed limits.

Consider a nonhardening elastic/plastic body in which the deformation is small
enough for changes in geometry to be negligible. Let (σij, εij) denote the actual stress

† I. F. Collins, J. Mech. Phys. Solids, 17: 323 (1969).
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and strain distributions at any instant, and (σ′
ij, ε′

ij) those which would exist under
the same boundary conditions if the body behaved elastically. It is convenient to
write

σij = σ′
ij + ρij ε̇e

ij = ε̇′
ij + γ̇ij

where ρij denotes a self-equilibrilating distribution of residual stress, and γij the
corresponding elastic strain. The residual stress may be regarded as that remaining
in the body on complete removal of the external load by an elastic process. The
plastic strain ε

p
ij produced by ρij is identical to that by σij. It can be shown that

not more than one residual stress distribution can exist for a given plastic strain
distribution with zero displacement at the constraints.†

Suppose it is possible to find a time-independent residual stress ρ∗
ij such that

the superposition of this stress on σ′
ij gives a safe state of stress σ∗

ij that is always
below the yield limit. The elastic strain energy of the body associated with the stress
difference ρij − ρ∗

ij may be written as

W = 1

2

∫
(ρij − ρ∗

ij)(γij − γ∗
ij )dV = 1

2

∫
cijkl(ρij − ρ∗

ij)(ρkl − ρ∗
kl)dV

where cijkl is the tensor of elastic constants having the symmetry properties cijkl =
cjikl = cijlk = cklij. Since ρ∗

ij does not vary with time, the rate of change of W is

Ẇ =
∫

cijkl(ρij − ρ∗
ij)ρ̇kl dV =

∫
(ρij − ρ∗

ij)γ̇ij dV (67)

Let Tj and T∗
j denote the surface tractions associated with the stresses σij and σ∗

ij
respectively. If vj and v′

j are continuous velocity distributions associated with the
strain rates ε̇ij and ε̇′

ij, it follows from the virtual work principle that∫
(σij − σ∗

ij)(ε̇ij − ε̇′
ij)dV =

∫
(Tj − T∗

j )(vj − v′
j)dV = 0

in view of the fact that Tj = T∗
j on SF and vj = v′

j on Sv. Since ε̇ij − ε̇′
ij = γ̇ij + ε̇

p
ij ,

the above equation becomes∫
(σij − σ∗

ij)γ̇ij dV = −
∫

(σij − σ∗
ij)ε̇

p
ij dV

The integral on the right-hand side is positive by the maximum work inequality,
whenever plastic flow occurs in the actual loading program. Hence (67) gives

Ẇ =
∫

(ρij − ρ∗
ij)γ̇ij dV =

∫
(σij − σ∗

ij)γ̇ij dV � 0 (68)

† The proof is based on the differences �ρij and �γij between the residual stresses and strains
in two possible solutions. The integral of the scalar product �ρij �γij taken over the entire volume of
the body vanishes by the principle of virtual work. Since �γij = �γe

ij , the integrand is positive unless
�ρij = 0, which completes the proof.
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with equality only when there is no plastic flow. Since W can never become nega-
tive, (68) indicates that plastic flow cannot continue indefinitely, and the body will
ultimately shake down to a steady distribution of residual stress. This completes
the proof of the shakedown theorem which states that an elastic/perfectly plastic
structure will shake down for given extreme values of the load if there exists a time-
independent distribution of residual stress that nowhere leads to stresses beyond the
yield limit when superimposed on the stress distribution corresponding to the elastic
response of the structure.† The theorem says nothing about the amount of plastic
deformation that may occur before the shakedown state is attained.

2.7 Uniqueness Theorems

(i) Small elastic/plastic deformation Consider an elastic/plastic body undergoing
deformation under prescribed surface tractions and surface displacements. In gen-
eral, a part of the body will be plastic and a part will be elastic. The current distribution
of stresses and strains in the entire body is assumed to be known. Consider now a
further infinitesimal distortion produced by prescribed traction rates on a part of the
boundary, and prescribed velocities on the remainder. We propose to examine the
conditions under which the stress and strain rates throughout the body are uniquely
determined from the given boundary conditions. When positional changes and rota-
tions of all material elements are disregarded, and the material is work-hardening,
the bilinear constitutive equation may be written as

ε̇ij = 1

2G

(
σ̇ij − ν

1 + ν
σ̇kkδij

)
+ 3

2H
σ̇klnklnij σ̇klnkl � 0

ε̇ij = 1

2G

(
σ̇ij − ν

1 + ν
σ̇kkδij

)
σ̇klnkl � 0

(69)

whenever an element is currently plastic. The unit normal nij to the yield surface,
which is assumed regular, corresponds to the current state of stressσij. The conditions
σ̇ijnij > 0, σ̇ijnij = 0, and σ̇ijnij < 0 represent loading, neutral loading, and unloading
respectively. The second relation of (69) also applies to an elastic element which
may or may not have been previously plastic.

Let (σ̇ij, ε̇ij) and (σ̇∗
ij , ε̇∗

ij) represent two distinct distributions of stress and strain
rates under prescribed traction rates and surface velocities. The strain rates ε̇ij and
ε̇∗

ij are derivable from continuous velocity distributions vj and v∗
j respectively. The

stress rates σ̇ij and σ̇∗
ij separately satisfy the equation of equilibrium, and give rise to

† The static shakedown theorem is due to E. Melan, Ing.-Arch., 9: 116 (1938). See also
P. S. Symonds, J. Appl. Mech., 18: 85 (1951). For a kinematic counterpart of Melan’s theorem,
see W. T. Koiter, Proc. Kon. Ned. Ak. Wet., B59: 24 (1956), Progress in Solid Mechanics (Eds.
I. N. Sneddon and R. Hill), 1: 167, North-Holland Publishing Co. (1960). See also G. Maier, Meccanica,
6: 250 (1969). An extension of Melan’s theorem to work-hardening materials is due to J. Mandel, Mech.
Res. Comm., 3: 251 (1976).
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traction rates Ṫj and Ṫ∗
j respectively. The field equations satisfied by the differences

�σ̇ij = σ̇ij − σ̇∗
ij and �ε̇ij = ε̇ij − ε̇∗

ij are

∂

∂xi
(�σ̇ij) = 0 �Ṫj = li�σ̇ij

2�ε̇ij = ∂

∂xj
(�vi) + ∂

∂xi
(�vj)

where �Ṫj and �vj denote the differences Tj − T∗
j and vj − v∗

j respectively, while li
is the exterior unit normal to a typical surface element. Using Green’s theorem for
the transformation of a surface integral into a volume integral, we get∫

�Ṫi �vj dS =
∫

∂

∂xi
(�σ̇ij �vj)dV =

∫
�σ̇ij

∂

∂xi
(�vj )dV

Since �Ṫj = 0 on the part of the boundary where the traction rate is prescribed, and
�vj = 0 on the part of the boundary where the velocity is prescribed, the surface
integral is identically zero. In view of the symmetry of the stress-rate tensor, the
integrand on the right-hand side is equal to �σ̇ij �ε̇ij. Hence∫

�σ̇ij �ε̇ij dV =
∫

(σ̇ij − σ̇∗
ij)(ε̇ij − ε̇∗

ij)dV = 0 (70)

The relationship between �ε̇ij and �σ̇ij is identical in form to the first equation
of (69) when σ̇ijnij � 0 and σ̇∗

ijnij � 0, and to the second equation of (69) when
σ̇ijnij � 0 and σ̇∗

ijnij � 0. Under these conditions, it is immediate that

�σ̇ij �ε̇ij � 1

2G

(
�σ̇ij �σ̇ij − ν

1 + ν
�σ̇ii �σ̇jj

)
(71)

since (nij �σ̇ij)2 � 0. If, on the other hand, the stress changes in such a way that
either σ̇ijnij � 0 and σ̇∗

ijnij � 0, or σ̇ijnij � 0 and σ̇∗
ijnij � 0, the scalar products of (69)

with σ̇ij and σ̇∗
ij indicate that

σ̇ij ε̇ij � 1

2G

(
σ̇ijσ̇ij − ν

1 + ν
σ̇iiσ̇jj

)

σ̇∗
ij ε̇ij � 1

2G

(
σ̇∗

ijσ̇ij − ν

1 + ν
σ̇∗

iiσ̇jj

) (72)

The first inequality, in fact, applies in all cases. The inequality satisfied by σ̇ij ε̇
∗
ij is

identical to the second of (72), while that satisfied by σ̇∗
ij ε̇

∗
ij is similar to the first of

(72). Thus

(σ̇ij − σ̇∗
ij)(ε̇ij − ε̇∗

ij) = (σ̇ij ε̇ij + σ̇∗
ij ε̇

∗
ij) − (σ̇∗

ij ε̇ij + σ̇ij ε̇
∗
ij)

� 1

2G

(
(σ̇ij − σ̇∗

ij)(σ̇ij − σ̇∗
ij) − ν

1 + ν
(σ̇ii − σ̇∗

ii)
2
)
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Since the equality always holds in an element that is currently elastic, (71) is satisfied
at each point of the body. The right-hand side of (71) is definitely positive unless
σ̇∗

ij = σ̇ij, as is evident from the fact that the expression in the parenthesis is equal to

�ṡij �ṡij + 1

3

(
1 − 2ν

1 + ν

)
�σ̇ii �σ̇jj

where �ṡij is the deviatoric part of �ṡij. It follows that the integrand of (70) is
positive except when σ̇∗

ij = σ̇ij, indicating that the distribution of stress rate is unique
when the strains are small.† The uniqueness theorem holds equally good for a
nonhardening material, since (70) and (71) are independent of the rate of hardening.
Whereas in a work-hardening material uniqueness of the stress rate also ensures
uniqueness of the strain rate, the plastic part of the strain rate in a nonhardening
material is indeterminate from the constitutive equation alone. The distribution of
velocities in a nonhardening material is, therefore, not necessarily unique.

(ii) Large elastic/plastic deformation When large plastic strains are possible under
given boundary conditions, the preceding analysis must be modified by including
changes in geometry of the deforming element. As explained earlier, the stress rate
appearing in the constitutive equation must be considered in Jaumann’s sense, the
instantaneous rotation of the axes of reference being associated with the local spin
tensor ωij = −eijkωk , where ωk are the components of the vector 1

2 curl v. The
relationship between the stress rate and the strain rate is

σ̊ij = 2G

(
ε̇ij + ν

1 − 2ν
ε̇kkδij − 3G

3G + H
ε̇klnklnij

)
ε̇klnkl � 0

σ̊ij = 2G

(
ε̇ij + ν

1 − 2ν
ε̇kkδij

)
ε̇klnkl � 0

(73)

whenever an element is currently plastic. The second expression also holds in an
element that is stressed below the yield limit. The Jaumann stress rate σ̊ij is related
to the material derivative σ̇ij by Eq. (81), Chap. 1 Thus

σ̇ij = σ̊ij + σikωjk + σjkωik (74)

When geometry changes are taken into account, it is convenient to formulate
the boundary-value problem in terms of the rate of change of the nominal traction,
based on the current configuration of the body. Denoting the nominal stress rate by
ṫij, and the nominal traction rate by Ḟj, the equilibrium equations and the boundary
conditions may be written as

∂ṫij
∂xi

+ ġj = 0 Ḟj = li ṫij (75)

† This uniqueness theorem is due to E. Melan, Ing.-Arch., 9: 116 (1938). For a nonhardening Prandtl-
Reuss material, the uniqueness of the stress-rate distribution has been proved by H. J. Greenberg, Q.
Appl. Math., 7: 85 (1949). See also W. T. Koiter, Q. Appl. Math., 11: 350 (1953).
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where ġj is the body force rate per unit current volume, xi the current position
vector, and li the unit outward normal to the surface at the current configuration. If
the instantaneous velocity is denoted by vj, the relationship between ṫij and σ̇ij is

ṫij = σ̇ij + σij
∂vk

∂xk
− σjk

∂vi

∂xk
(76)

Suppose, now, that there could be two distinct solutions to the boundary-value
problem for given nominal traction rates Ḟj on a part SF of the boundary, given
velocities vj on the remainder Sv, and given body force rates ġj throughout the
volume V . If the difference between the corresponding quantities in the two possible
solutions is denoted by a prefix �, Eqs. (75) and (76) provide

∂

∂xi
(�ṫij) = 0 �Ḟj = li �ṫij

�ṫij = �σ̇ij + σij
∂

∂xk
(�vk) − σjk

∂

∂xk
(�vi)

(77)

In view of the given boundary conditions, �Ḟj = 0 on SF and �vj = 0 on Sv. The
application of Green’s theorem to integrals involving the surface S and the volume
V in the current state gives∫

�Ḟj �vj dS =
∫

∂

∂xi
(�ṫij �vj)dV =

∫
�ṫij

∂

∂xi
(�vj)dV

by (77). Since the surface integral vanishes throughout the boundary, the condi-
tion for having two possible solutions, constituting the phenomenon of bifurcation,
becomes† ∫

�ṫij
∂

∂xi
(�vj)dV = 0

Substituting for �ṫij, and using the symmetry of the stress tensor, the above condition
can be expressed as∫ {

�σ̇ij�ε̇ij + σij
∂

∂xk
(�vk)

∂

∂xi
(�vj) − σij

∂

∂xk
(�vi)

∂

∂xj
(�vk)

}
dV = 0 (78)

after suitable interchanging of dummy suffixes. It follows from (74) that

�σ̇ij = �σ̊ij + σik�ωjk + σjk �ωik

From the symmetry of σij and ε̇ij, and the antisymmetry of ωij, it is easy to show
that

�σ̇ij �ε̇ij = �σ̊ij �ε̇ij − 2σij�ε̇jk �ωik

† The principles of uniqueness and stability in elastic/plastic solids, using a generalized constitutive
law, have been discussed by R. Hill, J. Mech. Phys. Solids, 6: 637 (1958). More general boundary
conditions have been examined by R. Hill, J. Mech. Phys. Solids, 10: 185 (1962).
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which gives the leading term of the integrand in terms of the stress rates that appear
in the constitutive equations. A sufficient condition for uniqueness of the boundary-
value problem may therefore be written as

∫ {
�σ̊ij�ε̇ij + σij

[
�ε̇kk �ε̇ij − 2�ε̇jk �ωik − ∂

∂xk
(�vi)

∂

∂xj
(�vk)

]}
dV > 0

for every distinct pair of continuous differentiable velocity fields taking prescribed
values on Sv.

Consider, now, a hypothetical solid whose constitutive law is given by the first
equation of (73) regardless of the sign of ε̇ijnij, whenever the element is currently
plastic. Since the stress rate is then a unique linear function of the strain rate with
identical loading and unloading responses, the new solid may be regarded as a
linearized elastic/plastic solid.† If the true stress rate for the linearized solid is
denoted by τ̊ ij, corresponding to a given strain rate ε̇ij, it follows from (73) that

σ̊ij ε̇ij � τ̊ ij ε̇ij = 2G

{
ε̇ij ε̇ij + ν

1 − 2ν
(ε̇kk)2 − 3G

3G + H
(ε̇ijnij)

2
}

(79)

where the equality holds only in the loading part of the plastic region. In the elastic
region, the linearized solid behaves identically to the actual elastic/plastic solid,
giving

σ̊ij ε̇ij = τ̊ ij ε̇ij = 2G

{
ε̇ij ε̇ij + ν

1 − 2ν
(ε̇kk)2

}
(79a)

Let (ε̇ij, ε̇∗
ij) denote two distinct strain rates and (σ̊ij, σ̊∗

ij) the corresponding stress
rates in the actual elastic/plastic solid. If the element is currently plastic, each of
these strain rates will produce either unloading or further loading. The stress rates
in the linearized solid corresponding to ε̇ij and ε̇∗

ij may be denoted by τ̊ ij and τ̇∗
ij

respectively. Considering the various combinations of loading and unloading, it is
easily shown from the scalar product of (73) with ε̇∗

ij that

σ̊ij ε̇
∗
ij � τ̊ ij ε̇

∗
ij = 2G

{
ε̇ij ε̇

∗
ij + ν

1 − 2ν
ε̇iiε̇

∗
kk − 3G

3G + H
ε̇ij ε̇

∗
klnijnkl

}
(80)

except when both ε̇ij and ε̇∗
ij correspond to instantaneous unloading. The equality in

(80) holds when ε̇ij calls for additional loading, whatever the nature of ε̇∗
ij. It follows

from (79) and (80), and similar inequalities satisfied by σ̊∗
ij ε̇

∗
ij and σ̊∗

ij ε̇ij, that

(σ̊ij − σ̊∗
ij)(ε̇ij − ε̇∗

ij) � (τ̊ ij − τ̊∗
ij)(ε̇ij − ε̇∗

ij)

† The concept of linearization of a general nonlinear solid has been discussed by R. Hill, J. Mech.
Phys. Solids, 7: 209 (1959).
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or

�σ̊ij �ε̇ij � �τ̊ ij �ε̇ij = 2G

{
�ε̇ij �ε̇ij + ν

1 − 2ν
(�ε̇kk)2 − 3G

3G + H
(nij �ε̇ij)

2
}

(81)

for a plastic element, with equality for loading caused by both ε̇ij and ε̇∗
ij. When

both the states call for unloading, �τ̊ ij and �σ̊ij are given by the first and second
equations respectively of (73) with ε̇ij replaced by �ε̇ij, leading to the inequal-
ity �σ̊ij �ε̇ij > �τ̊ ij �ε̇ij. For an elastic element, we have the immediate identity
�σ̊ij �ε̇ij = �τ̊ ij �ε̇ij, the expression for which is obtained from (81) by omitting the
last term. Since �σ̊ij �ε̇ij ��τ̊ ij �ε̇ij. throughout the body, uniqueness is ensured
by the slightly oversufficient criterion

∫ {
�τ̊ ij �ε̇ij + σij

[
�ε̇kk �ε̇ij − 2�ε̇jk �ωik − ∂

∂xk
(�vi)

∂

∂xj
(�vk)

]}
dV > 0

(82)

which is more useful for practical applications. It follows that uniqueness of the
linearized solid also ensures uniqueness for the nonlinear elastic/plastic solid. If the
constraints are rigid, so that vj = 0 on Sv, then every difference field �vj is a member
of the admissible field vj for the linearized solid. The uniqueness criterion then
becomes ∫ {

τ̊ ij ε̇ij + σij

(
ε̇kk ε̇ij − 2ε̇jkωik − ∂vi

∂xk

∂vk

∂xj

)}
dV > 0

for all continuous differentiable fields vanishing on Sv. If the constraints are not
rigid, the inequality still holds, but vj is no longer an admissible field for the
actual boundary-value problem. Splitting the tensor ∂vi/∂xk into its symmetric and
antisymmetric parts, it can be shown that

σij
∂vi

∂xk

∂vk

∂xj
= σij(ε̇jk ε̇ik − ωjkωik)

The remaining triple products cancel one another on account of the symmetry and
antisymmetry properties of their factors. Discarding the term in ε̇kk , which always
makes an insignificant contribution, we have∫

[τ̊ ij ε̇ij − σij(2ε̇jkωik + ε̇jk ε̇ik − ωjkωik)] dV > 0 (83)

The leading term in the square bracket is given by (79) over the plastic part and
(79a) over the elastic part. When curvilinear coordinates are employed, it is only
necessary to interpret ε̇ij, etc., in (83) as the curvilinear components. If the integral in
(83) vanishes for some nonzero field vj, bifurcation in the linearized solid can occur
for any value of the traction rate on SF . In the actual elastic/plastic solid, however,
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bifurcation will occur under those traction rates for which there is no unloading of
the current plastic region.

In a class of problems, such as those involving elastic/plastic buckling, the
elastic and plastic parts of the strain rate are generally of comparable magnitudes. A
useful simplification then results from the fact that the quantity σij ε̇ik ε̇jk is negligible
compared to similar terms in the expression for τ̊ ij ε̇ij. The necking type problems,
on the other hand, generally involve strain rates whose elastic parts are negligible.
The strain rate vector in such cases is nearly normal to the yield surface, giving
τ̊ ij ε̇ij � 2

3 H ε̇ij ε̇ij to a close approximation.
As an elementary application of the uniqueness criterion, consider the longi-

tudinal tension of a cylindrical specimen of uniform cross section. The existing
state of stress is a uniaxial tension defined by the principal components σ1 = σ and
σ2 = σ3 = 0. If the elastic part of the strain rate is disregarded, then for an isotropic
material the principal strain rates are ε̇1 = ε̇ and ε̇2 = ε̇3 = − 1

2 ε̇. Choosing coordi-
nate axes along the common principal axes of stress and strain rate, the integrand
of (83) is found to be (H − σ)ε̇2 + σ(ω2

2 + ω2
3), where ω2 and ω3 are two of the

components of the spin vector. The uniqueness functional is certainly positive when
H > σ, irrespective of the possible spin. At the critical value H = σ, the load attains
its maximum, and either a further uniform extension or local necking can occur in
principle.†

(iii) Rigid/plastic materials A material is considered as rigid/plastic when the mod-
ulus of elasticity is assigned an indefinitely large value. The elastic strains are zero
in the limit, and consequently the change in volume also disappears. If the plastic
zone is fully constrained by the nonplastic material, the entire body is rigid in the
limit. The distribution of stress rate is then uniquely determined for a prescribed
distribution of traction rates, provided G is assumed to be large but finite. If, on
the other hand, a distribution of surface velocities is prescribed, the behavior of the
rigid/plastic material must be distinguished from that of the elastic/plastic material.
When the existing state of stress in the rigid/plastic body is regarded as given, the
prescribed velocity distribution will be consistent if the corresponding strain rate
vector is normal to the yield surface at the given stress point. In general, the existing
stress would change discontinuously so as to become consistent with the strain rate
at all points.

The material is assumed to be isotropic, so that the unit normal nij to the yield sur-
face (which is regular) has principal axes coinciding with those of the current stress
σij. Since σ̊ijnij = σ̇ijnij, the constitutive equations for a work-hardening rigid/plastic

† Detailed investigations of the bifurcation in uniaxial tension have been carried out by S.Y. Cheng,
S. T. Ariaratnam, and R. N. Dubey, Q. Appl. Math., 29: 41 (1971); A Needleman, J. Mech. Phys. Solids,
20: 111 (1972); J. W. Hutchinson and J. P. Miles, ibid., 22: 61 (1974); L. G. Chen, Int. J. Mech. Sci.,
25: 47 (1983). The bifurcation problem in plane strain tension has been treated by S. T. Ariaratnam and
R. N. Dubey, Q. Appl. Math., 27: 349 (1969); R. Hill and J. W. Hutchinson, J. Mech. Phys. Solids, 23:
239 (1975). For axisymmetric bifurcation, see also D. Durban and P. Papanastasion, J. Appl. Mech., 67:
550 (2000).
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solid become

ε̇ij = (3/2H)σ̇klnklnij σ̇klnkl � 0

ε̇ij = 0, σ̇klnkl � 0
(84)

whenever an element is stressed to the yield point. Taking scalar products of the first
relation of (84) with σ̇ij and ε̇ij in turn, and remembering that nijnij = 1, it is easily
shown that

σ̇ij ε̇ij = 3

2H
(σ̇ijnij)

2 = 2

3
H ε̇ij ε̇ij (85)

The last expression also holds in a plastic element that instantaneously unloads, as
well as in an element that is currently nonplastic, the strain rate being identically
zero in both cases.

Suppose there could be two physically possible modes ε̇ij and ε̇∗
ij associated

with equilibrium distribution of stress rates σ̇ij and σ̇∗
ij , under prescribed nominal

traction rates on SF and velocities on Sv. When ε̇ij is nonzero, the scalar product of
(84) with σ̇∗

ij gives

σ̇∗
ij ε̇ij = 3

2H
(σ̇∗

ijnij)(σ̇klnkl) � 2

3
H ε̇ij ε̇

∗
ij (86)

in view of the constitutive relations for ε̇∗
ij, with equality if and only if ε̇∗

ij is also
nonzero. The result follows from the fact that σ̇∗

ij ε̇ij � 0 when ε̇ij �= 0 and ε̇∗
ij = 0,

implied by σ̇ijnij > 0 and σ̇∗
ijnij � 0. Starting with the equation for ε∗

ij �= 0 it is easily
shown that σ̇ij ε̇

∗
ij satisfies the same inequality as (86), while σ̇∗

ij ε̇
∗
ij is given by an

expression similar to (85). Hence

�σ̇ij �ε̇ij = (σ̇ij − σ̇∗
ij)(ε̇ij − ε̇∗

ij) � 2

3
H �ε̇ij �ε̇ij (87)

Since the equality is identically satisfied in those regions where ε̇ij and ε̇∗
ij are both

zero, (87) holds throughout the body. The existing stress is known in principle
wherever ε̇ij or ε̇∗

ij is nonzero.
The analysis for the occurrence of bifurcation for the rigid/plastic material fol-

lows that for the elastic/plastic material. In view of the incompressibility condition
∂vk/∂xk = 0, the condition for having two possible solutions can be written down
directly from (78) as

∫ {
�σ̇ij �ε̇ij − σij

∂

∂xk
(�vi)

∂

∂xj
(�vk)

}
dV = 0 (88)

The integral really extends over the region where the existing stress is uniquely
known, but may be formally extended over the entire body on the understanding
that the motion of the rigid zones is known in advance (�vj = 0). In view of (87),
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a sufficient condition for uniqueness of the deformation mode is†

∫ {
2

3
H �ε̇ij �ε̇ij − σij

∂

∂xk
(�vi)

∂

∂xj
(�vk)

}
dV > 0 (89)

for all incompressible difference fields �vj vanishing on Sv. Setting �vj = wj and
�ε̇ij = η̇ij, the uniqueness criterion may be written as

∫ {
2

3
Hη̇ijη̇ij − σij

∂wi

∂xk

∂wk

∂xj

}
dV > 0

for all incompressible velocity fields wj vanishing on the constraints.‡ The corre-
sponding strain rate ηij is nonzero in the uniquely stressed zone where it is parallel
to nij, though not necessarily in the same sense. When the constraints are rigid, wj
may be regarded as an actual field for a linearized rigid/plastic solid in which the
constitutive law is given by the first equation of (84) whenever the existing stress is
uniquely defined. If the second term of the above integral is negative for all nonzero
fields wj, the inequality is certainly satisfied for all H � 0, indicating that there is not
more than one physically possible mode whatever the rate of hardening. When all
positional changes and rotations of material elements are disregarded (the second
term discarded), there is a unique deformation mode for a work-hardening material,
although the corresponding stress rate is not necessarily unique.§

(iv) Pressure type loading The preceding discussion of uniqueness is based on the
assumption that the change in the load vector on an infinitesimal surface element is
assigned, irrespective of changes in its area and orientation. An important special
case is that of dead loading where the load remains constant during an infinitesimal
distortion of the deforming body. In a variety of practical situations, the actual
traction is given to be a uniform fluid pressure acting over a part of the boundary,
where the nominal traction rate is given by the equation

Ḟj = ṗlj + p

(
lk

∂vk

∂xj
− lj

∂vk

∂xk

)
(90)

where lj is the unit vector along the outward normal to the surface at the instant when
the applied fluid pressure is p. It may be noted that the part of the nominal traction
rate given by only the first term can be prescribed. Consider now the possibility of

† R. Hill, J. Mech. Phys. Solids, 5: 153 and 302 (1957).
‡ The most general velocity field for a uniform plastic state has been given by W. Prager, Rev. Fac.

Sci., Univ. Istanbul, 19: 23 (1954).
§ A detailed analysis for the bifurcation in a rigid/plastic bar under plane strain tension has been

presented by G. R. Cowper and E. T. Onat, Proc. 4th U.S. Nat. Congr. Appl. Mech., 1023 (1962). An
approximate solution for the plane stress buckling has been given by J. Chakrabarty, Int. J. Mech. Sci.,
11: 659 (1969).
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two distinct solutions of the boundary value problem under given nominal traction
rate Ḟj on SF , velocity vj on Sv, and pressure rate ṗ on the remainder Sf . Then

�Ḟj = p

[
lk

∂

∂xj
(�vk) − lj

∂

∂xk
(�vk)

]
on Sf (91)

since �ṗ = 0 in view of the boundary condition. The natural starting point is the
transformation∫

�Ḟj �vj dS =
∫

li �ṫij �vj dS =
∫

�ṫij
∂

∂xi
(�vj)dV

where �Ḟj vanishes on SF and �vj vanishes on Sv. In view of (91), the above
equation becomes

∫
�ṫij

∂

∂xi
(�vj)dV − p

∫
�vj

[
lk

∂

∂xj
(�vk) − lj

∂

∂xk
(�vk)

]
dSf = 0

Inserting the expression for �ṫij from (77) gives the condition for bifurcation in
terms of �σ̇ij. Proceeding as before, a sufficient condition for uniqueness in the
elastic/plastic material, when a part of the boundary is subjected to uniform normal
pressure p, may be expressed as†∫ {

τ̊ ij ε̇ij + σij

(
ε̇kk ε̇ij + 2ε̇jkωki − ∂vi

∂xk

∂vk

∂xj

)}
dV

− p
∫ (

lk
∂vk

∂xj
− lj

∂vk

∂xk

)
vj dSf > 0 (92)

where vj is any continuous differentiable velocity field vanishing on Sv. The leading
term in the volume integral is given by (79) in the plastic region and (79a) in the
elastic region. When SF = 0, the surface integral in (92) may be formally extended
over the entire surface of the body, since vj = 0 on the remainder Sv. Transformation
of the surface into volume integral by Green’s theorem then furnishes

∫ {
τ̊ ij ε̇ij + 2σij ε̇jkωki + (σij + pδij)

(
ε̇kk ε̇ij − ∂vi

∂xk

∂vk

∂xj

)}
dV > 0 (93)

The second term of the integrand is unaffected by the addition of a quantity pδij to
the current stress tensor σij. It follows from (93) that in a body partly constrained
and having a uniform fluid pressure p acting on the remaining surface, the condition
for the occurrence of bifurcation is the same as that without the pressure provided

† J. Chakrabarty, Z. angew. Math. Phys., 24: 270 (1973).
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the actual normal stresses are augmented by the amount p. Thus, in the simple
tensile test, if the specimen begins to neck when the applied tensile stress is σ, the
application of a uniform fluid pressure p on the lateral surface would reduce the
tensile stress to σ − p at the onset of necking, but the critical rate of hardening and
hence the amount of uniform strain is unaffected by the pressure.

In the case of rigid/plastics solids, ε̇kk is identically zero, and the scalar product
σij ε̇jkωki also vanishes on account of the coincidence of the principal axes of stress
and strain rate. Since τ̊ ij ε̇ij then reduces to 2

3 H ε̇ij ε̇ij, the deformation mode will be
unique if†

∫ (
2
3 H ε̇ij ε̇ij − σij

∂vi

∂xk

∂vk

∂xj

)
dV − p

∫ (
lk

∂vk

∂xj
vj

)
dSf > 0 (94)

where vj is any incompressible velocity field vanishing on Sv, and producing a
strain rate ε̇ij that is parallel to nij in the plastically deforming region. Although
the rigid/plastic assumption is a useful approximation in problems involving large
plastic strains, the limitation imposed by the normality rule on the choice of admis-
sible velocity fields is sometimes too severe to permit an effective analysis. A more
realistic approximation would be accomplished, when the entire body is plastic,
by considering (92) for an incompressible velocity field vj such that the associated
strain rate has a small elastic part. Then (92) approximately reduces to (94) with
the addition of the term σij ε̇jkωki, which is not necessarily negligible in the volume
integral.

The problem of uniqueness is closely related to that of stability of a solid under
given boundary conditions. In the dynamic sense, a sufficient condition of stability is
that the internal energy dissipated in any geometrically possible small displacement
from the position of equilibrium must exceed the work done by the external forces.
Calculating the internal energy and the external work to the second order for an
additional infinitesimal displacement, it can be shown that the criterion for stability
for an elastic/plastic solid under pressure-type loading is (92) with τ̊ ij replaced by
σ̊ij. Since σ̊ij ε̇ij � τ̊ ij ε̇ij, a boundary-value problem that has a unique solution is
certainly stable.‡ For a rigid/plastic solid, the stability functional is identical to (94),
but the velocity field vj is subject to the further restriction that the associated strain
rate has the same sense as that of nij. Since the class of fields for uniqueness then
contains that for stability, a point of bifurcation is again possible before an actual
loss of stability. Moreover, at such a stable bifurcation, the load must increase with
continuing deformation.§

† J. Chakrabarty, Int. J. Mech. Sci., 11: 723 (1969); J. Miles, J. Mech. Phys. Solids, 17: 303 (1969).
Inequality (93) is an extension of one given earlier by R. Hill, J. Mech. Phys. Solids, 5: 153 (1957).

‡ The stability of solids in the plastic range has been discussed by R. Hill, J. Mech. Phys. Solids, 6:
1 (1957), 6: 236 (1958); J. Chakrabarty, Applied Plasticity, Chap. 1, Springer-Verlag, NewYork (2000).

§ For a different approach to uniqueness, see D. C. Drucker, Q. Appl. Math., 14: 35 (1956). The
material stability has been examined by D. C. Drucker, J. Appl. Mech., 26: 101 (1959).
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2.8 Extremum Principles

(i) Elastic/plastic solids for small strains It is assumed at the outset that the existing
state of stress is such that the increment of the plastic strain is constrained to be of
the elastic order of magnitude. Let (σ̇ij, ε̇ij) be the actual stress and strain rates in
an elastic/plastic body which is subjected to prescribed traction rates Ṫj on a part
SF of the surface, and prescribed velocities vj on the remainder Sv. When geometry
changes are disregarded, the equilibrium equations (in the absence of body forces)
and the boundary conditions in terms of σ̇ij are

∂σ̇ij

∂xi
= 0 Ṫj = ljσ̇ij

The strain rate ε̇ij must be derivable from a continuous velocity field vj satisfying
the boundary conditions.

Let σ̇∗
ij denote any statically admissible state of stress rate that satisfies the

equilibrium equations and the stresses boundary conditions, the corresponding strain
rate ε̇∗

ij being given by the stress–strain relations. The application of Green’s theorem
furnishes ∫

(Ṫ∗
j − Ṫj)vj dS =

∫
li(σ̇

∗
ij − σ̇ij)vj dS =

∫
(σ̇∗

ij − σ̇ij)
∂vj

∂xi
dV

The surface integral vanishes on SF where Ṫ∗
j = Ṫj. In view of the symmetry of σ̇ij

and σ̇∗
ij , we get ∫

(σ̇∗
ij − σ̇ij)ε̇ij dV =

∫
(Ṫ∗

j − Ṫj)vj dS (95)

When the material is nonhardening, the constitutive equation for an element stressed
to the yield point is

ε̇ij = 1

2G

(
σ̇ij − ν

1 + ν
σ̇kkδij

)
+ λ̇nij (96)

where λ̇ > 0 for loading (σ̇ijnij = 0) and λ̇ = 0 for unloading (σ̇ijnij < 0). The scalar
product of (96) with σ̇ij and σ̇∗

ij indicates that (72) is satisfied under all conditions of
loading and unloading. It follows from (72), and a similar inequality for σ̇∗

ij ε̇
∗
ij, that

σ̇∗
ij ε̇

∗
ij − 2σ̇∗

ij ε̇ij + σ̇ij ε̇ij � 1

2G

{
(σ̇∗

ij − σ̇ij)(σ̇
∗
ij − σ̇ij) − ν

1 + ν
(σ̇∗

kk − σ̇kk)2
}

(97)

For a work-hardening material, the second inequality of (72) does not hold when both
σ̇ij and σ̇∗

ij correspond to further loading, but an independent calculation shows that
(97) still holds with a strict inequality. Since the equality always holds in any non-
plastic element, (97) is satisfied throughout the elastic/plastic body. The expression
on the right-hand side is definitely positive unless σ̇∗

ij = σij. Hence∫
(σ̇∗

ij ε̇
∗
ij − σ̇ij ε̇ij)dV > 2

∫
(σ̇∗

ij − σ̇ij)ε̇ij dV
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which is equivalent to∫
σ̇∗

ij ε̇
∗
ij dV − 2

∫
Ṫ∗

j vj dSv >

∫
σ̇ij ε̇ij dV − 2

∫
Ṫjvj dSv

in view of (95). Transformation of the volume integral on the right-hand side by
Green’s theorem then furnishes∫

σ̇∗
ij ε̇

∗
ij dV − 2

∫
Ṫ∗

j vj dSv >

∫
Ṫjvj dSF −

∫
Ṫjvj dSv (98)

unless σ̇∗
ij = σ̇ij. Thus, among all statically admissible distributions of stress rate,

the actual one minimizes† the left-hand side of (98). The left-hand side has in fact
a stationary value in the actual state,‡ as may be shown by writing this expression
in the form ∫

(σ̇∗
ij ε̇

∗
ij − 2σ̇∗

ij ε̇ij)dV + 2
∫

Ṫ∗
j vj dSF

Since Ṫ∗
j = Ṫj on SF , the last integral is independent of σ̇∗

ij . The expression will
therefore have a stationary value if a variation of the first integrand vanishes at
every point of the body. Considering equations (69) and (96), it can be shown in a
straightforward manner that

δ(σ̇∗
ij ε̇

∗
ij) = 2ε̇∗

ij δσ̇
∗
ij δ(σ̇∗

ij ε̇ij) = ε̇ij δσ̇
∗
ij

in both elastic and plastic regions, under all conditions of loading and unloading,
and for all H � 0. Hence

δ(σ̇∗
ij ε̇

∗
ij − 2σ̇∗

ij ε̇ij) = 2(ε̇∗
ij − ε̇ij)δσ̇

∗
ij

which evidently vanishes when ε̇∗
ij = ε̇ij, or σ̇∗

ij = σ̇ij, thus establishing the condition
of a stationary value in the actual state.§

A second extremum principle is associated with any distribution of kinematically
admissible strain rate ε̇∗

ij, obtained from a velocity field v∗
j satisfying the boundary

conditions on Sv. The corresponding stress rate σ̇∗
ij satisfies the stress–strain relations,

but it is not necessarily in equilibrium.The usual transformation of integrals furnishes∫
(v∗

j − vj)Ṫj dS =
∫

li(v
∗
j − vj)σ̇ij dS =

∫
σ̇ij

∂

∂xi
(v∗

j − vj)dV

† The minimum principle for the stress rate is substantially due to P. G. Hodge, Jr., and W. Prager,
J. Math. Phys., 27: 1 (1948). See also H. J. Greenberg, Q. Appl. Math., 7: 85 (1949).

‡ For a Prandtl-Reuss material, this was proved by W. Prager, Proc. 6th Int. Congr. Appl. Mech.,
Paris (1946).

§ The Hencky stress–strain relations for a nonhardening material are associated with a variational
principle suggested by A. Haar and Th. von Karman, Göttinger Nachrichten, Math. Phys. Klasse, 204
(1909). The Haar-Karman principle involves the minimization of the left-hand side of (98) with σ̇∗

ij , ε̇
∗
ij ,

and Ṫ∗
j replaced by σ∗

ij , ε∗
ij , and T∗

j respectively. The theorem was proved by H. J. Greenberg, Report
A11-S4, Grad. Div. Appl. Math., Brown University (1949), under the assumption that the state of stress
remains constant at any point where the yield limit has once been reached.
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Since v∗
j = vj on Sv, the above result may be written as∫

(ε̇∗
ij − ε̇ij)σ̇ij dV =

∫
(v∗

j − vj)Ṫj dSF (99)

on account of the symmetry of σ̇ij. Using inequalities similar to (72), and proceeding
as before, it can be shown that

σ̇∗
ij ε̇

∗
ij − 2σ̇ij ε̇

∗
ij + σ̇ij ε̇ij > 0

for both nonhardening and work-hardening materials, except when σ̇∗
ij = σ̇ij. This

leads to the inequality

2
∫

(ε̇∗
ij − ε̇ij)σ̇ij dV <

∫
(σ̇∗

ij ε̇
∗
ij − σ̇ij ε̇ij)dV

or

2
∫

Ṫjv
∗
j dSF −

∫
σ̇∗

ij ε̇
∗
ij dV <

∫
Ṫjvj dSF −

∫
σ̇ij ε̇ij dV

by (99). Transforming the volume integral on the right-hand side into surface integral,
the result may be expressed as

2
∫

Ṫjv
∗
j dSF −

∫
σ̇∗

ij ε̇
∗
ij dV <

∫
Ṫjvj dSF −

∫
Ṫjvj dSv (100)

unless σ̇∗
ij = σij. Thus, among all kinematically admissible distributions of strain rate,

the actual one maximizes† the left-hand side of (100). The right-hand side is the
same in both (98) and (100), which provide the means of obtaining upper and lower
bounds in the approximate solution of elastic/plastic problems.‡

(ii) Rigid/plastic solids for small strains The following discussion is restricted
to the situation where changes in geometry are again negligible. The material is
assumed to be work-hardening and rigid/plastic with identical yield function and
plastic potential. For given surface tractions Tj over a part SF and velocitiesvj over the
remainder Sv, the stress is uniquely defined in the deforming part of the plastic zone.
The mode of deformation, on the other hand, may not be uniquely determined by
these boundary conditions alone. In order to define the deformation mode uniquely,
it is also necessary to specify the traction rate on the boundary SF. The unique

† This theorem has been proved by H. J. Greenberg, Q. Appl. Math., 7: 85 (1949). A weaker
variational principle, asserting the existence of a stationary value of the left-hand side of (100), was
given earlier by W. Prager, op. cit. The generalization of both (98) and (100) to materials with a singular
yield surface is due to W. T. Koiter, Q. Appl. Math., 11: 350 (1953).

‡ For other bounding theorems related to both incremental and total strain theories of plasticity, see
P. G. Hodge, Jr., Engineering Plasticity (Eds. J. Heyman and F. A. Leckie), 237, Cambridge University
Press (1968); G. Maier, J. Mech., 8: 5 (1969); J. F. Soechting and R. H. Lance, J. Appl. Mech., 36: 228
(1969); A. R. Ponter and J. B. Martin, J. Mech. Phys. Solids, 20: 281 (1972).
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mode is then singled out by the existence of an equilibrium distribution of stress
rate compatible with the rate of hardening. All other modes are only kinematically
possible virtual modes of deformation.†

Let ε̇ij denote the actual mode derivable from a continuous velocity vj, and ε̇∗
ij

any virtual mode derivable from a velocity v∗
j , which is equal to vj on Sv. If σ̇ij is the

actual stress rate satisfying the equilibrium equations and the boundary conditions,
then ∫

Ṫjvj dS =
∫

σ̇ij ε̇ij dV =
∫

hε̇ij ε̇ij dV =
∫

h−1(σ̇ijnij)
2 dV (101)

in view of (85) with h = 2
3 H. The last integral should extend only over the region

where ε̇ij is nonzero. From (85) and (86), it follows that

(ε̇∗
ij − ε̇ij)σ̇ij � h(ε̇∗

ij − ε̇ij)ε̇ij � 1
2 h(ε̇∗

ij ε̇
∗
ij − ε̇ij ε̇ij)

with equality if and only if ε̇∗
ij = ε̇ij. The last inequality follows from the fact

that the expression on the right-hand side exceeds the preceding one by the
amount 1

2 h(ε̇∗
ij − ε̇ij)(ε̇∗

ij − ε̇ij), which is always positive unless ε̇∗
ij = ε̇ij. Equation

(99) therefore gives

2
∫

(v∗
j − vj)Ṫj dSF �

∫
hε̇∗

ij ε̇
∗
ij dV −

∫
hε̇ij ε̇ij dV

Expressing the second volume integral as surface integral using (101), we finally
obtain ∫

hε̇∗
ij ε̇

∗
ij dV − 2

∫
Ṫjv

∗
j dSF �

∫
Ṫjvj dSv −

∫
Tjvj dSF (102)

with equality if and only if ε̇∗
ij coincides with the actual mode ε̇ij. The inequality

(102) gives a minimum characterization of the unique strain rate and velocity fields
of the solution.

Consider now an equilibrium distribution of stress rate σ̇∗
ij such that Ṫ∗

j = Tj on
SF . In the region where ε̇ij is nonzero, the constitutive equation (84), and the fact
that [(σ∗

ij − σij) · nij]2 � 0, furnish

(σ̇∗
ij − σ̇ij)ε̇ij = h−1σ̇klnkl(σ̇

∗
ij − σ̇ij)nij � 1

2 h−1[(σ̇∗
ijnij)

2 − (σ̇ijnij)
2]

The equality holds when (σ̇∗
ij − σ̇ij)nij = 0, and this could be satisfied with σ̇∗

ij �= σ̇ij.
In view of the above inequality, (95) may be written as

2
∫

Ṫ∗
j vj dSv −

∫
h−1(σ̇∗

ijnij)
2 dV � 2

∫
Ṫjvj dSv −

∫
h−1(σ̇ijnij)

2 dV

† The extremum principles of this subsection, corresponding to a regular yield surface, have been
obtained by R. Hill, J. Mech. Phys. Solids, 4: 247 (1956). An extension of these results to a singular
yield surface has been made by W. E. Boyce and W. Prager, ibid., 6: 9 (1957).
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where the volume integrals are taken over the zone where ε̇ij �= 0. Using (101), the
inequality can be expressed as

2
∫

Ṫ∗
J vj dSv −

∫
h−1(σ̇∗

ijnij)
2 dV �

∫
Ṫjvj dSv −

∫
Ṫjvj dSF (103)

Since the actual deforming zone is usually not known in advance the volume integral
would have to be taken over the deformable zone defined by Tj on SF and vj on
Sv, thereby weakening the inequality to some extent. The inequality (103) gives a
maximum characterization of the stress rate field of the solution. Combining (102)
and (103), we have a means of obtaining upper and lower bound approximations for
the expression on the right-hand side of each of these inequalities.

If the plastic state of stress is represented by a point on an edge of a singular
yield surface, it is only necessary to replace the expressions in the volume integrals
of (102) and (103) by � hαε2

α and � h−1
α (σ̇ · nα)2 respectively, in view of (36), where

the summation includes the contributions of the yield mechanisms associated with
all the faces meeting in the considered edge of the yield surface.

(iii) Elastic/plastic solids with large strains At any stage of the deformation of
an elastic/plastic body, the internal distribution of stress and the current external
configuration are supposed to be known. A sufficient condition for uniqueness of
the solution, when changes in geometry are duly allowed for, has already been
established. The extremum principle that characterizes the unique solution is now
considered for the typical boundary-value problem involving a regular yield surface.
Let vj denote the actual velocity field in the elastic/plastic body, and v∗

j any other
distinct field satisfying the velocity boundary conditions. If the differences between
starred and unstarred quantities are denoted by �, so that �vj = v∗

j − vj, etc., the
usual transformation of integrals for the surface S and volume V in the current state
furnishes ∫

Ḟj�vj dS =
∫

∂

∂xi
(ṫij �vj)dV =

∫
ṫij�

(
∂vj

∂xi

)
dV (104)

in view of (75), body forces being disregarded. The nominal traction rate Ḟj is given
on a part SF of the boundary, and the velocity vj is given on the remainder Sv. By
(74) and (76), the relationship between the nominal stress rate ṫij and the Jaumann
stress rate σ̊ij is

ṫij = σ̊ij + σij
∂vk

∂xk
− (σik ε̇jk + σjk ε̇ik) + σik

∂vj

∂xk
(105)

in view of the identity ωij = ∂vi/∂xj − ε̇ij. Consider now the scalar product of (105)
with �(∂vj/∂xi). Using the symmetry of the stress tensor, and the standard method



Chakra-02.tex 12/1/2006 17: 21 Page 119

foundations of plasticity 119

of interchanging dummy suffixes, it can be shown that†

ṫij�

(
∂vj

∂xi

)
= σ̊ij �ε̇ij + σij

{
ε̇kk �ε̇ij − 2ε̇ik �ε̇jk + ∂vk

∂xi
�

(
∂vk

∂xj

)}

Since the elastic moduli are always large compared to the stress supportable by the
material, there is hardly any point in retaining the first term in the curly bracket.
Inserting into (104), and noting that �vj = 0 on Sv, while Ḟj is prescribed on SF ,
we get

�

∫
Ḟjvj dSF =

∫ {
σ̊ij �ε̇ij − σij

[
2ε̇ik �ε̇jk − ∂vk

∂xi
�

(
∂vk

∂xj

)]}
dV (106)

From inequalities (79) and (80), and the fact that τ̊ ij ε̇
∗
ij = τ̊∗

ij ε̇ij, we have the immediate
result

σ̊∗
ij ε̇

∗
ij − 2σ̊ij ε̇

∗
ij + σ̊ij ε̇ij � (τ̊∗

ij − τ̊ ij)(ε̇
∗
ij − ε̇ij)

The equality arises in the elastic region and the loading part of the plastic region
common to both the actual and varied fields. Then

�

∫
σ̊ij ε̇ij dV � 2

∫
σ̊ij�ε̇ij dV +

∫
�τ̊ ij �ε̇ij dV (107)

Writing down the starred and unstarred terms explicitly, it can be shown in a
straightforward manner that

σij�

(
2ε̇ikεjk − ∂vk

∂xi

∂vk

∂xj

)
= 2σij

[
2ε̇ik �ε̇jk − ∂vk

∂xi
�

(
∂vk

∂xj

)]

+ σij

[
2�ε̇ik �ε̇jk − �

(
∂vk

∂xi

)
�

(
∂vk

∂xj

)]

Since the existing stress is given, the prefix � on the left-hand side can be equally
applied to the product of σij and the expression in the curved bracket. Combining
the last result with (106) and (107) gives

�

{∫ [
σ̊ij ε̇ij − σij

(
2ε̇ik ε̇jk − ∂vk

∂xi

∂vk

∂xj

)]
dV − 2

∫
Ḟjvj dSF

}
> 0 (108)

in view of the uniqueness criterion (82), which is expressible in the alternative form∫ {
�τ̊ ij �ε̇ij − σij

[
2�ε̇ik �ε̇jk − �

(
∂vk

∂xi

)
�

(
∂vk

∂xj

)]}
dV > 0

when the insignificant term σij �ε̇ij �ε̇kk is neglected. The functional in the curly
bracket of (108) evidently has a minimum value in the actual state. The minimum

† The analysis given here is essentially due to R. Hill, J. Mech. Phys. Solids, 6: 236 (1958).
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is also analytic and absolute in the sense that the first variation of the functional
vanishes when the velocity field is actual. Thus

δ

{∫ [
σ̊ij ε̇ij − σij

(
2ε̇ik ε̇jk − ∂vk

∂xi

∂vk

∂xj

)]
dV − 2

∫
Ḟjvj dSF

}
= 0 (109)

Even when the solution is not unique, the variational principle holds for each solu-
tion, though the extremum principle may not exist. It is important to remember that
σ̊ij ε̇ij differs from τ̊ ij ε̇ij in that part of the plastic zone which instantaneously unloads
from the plastic state.When geometry changes are disregarded, so that the terms in σij
are considered negligible, the extremum principle reduces to that implied by (100).

(iv) Rigid/plastic solids with large strains It is instructive to treat the rigid/plastic
solid purely on its own merits rather than as a limiting case of the elastic/plastic solid.
Since the constitutive law (84) cannot be written in the inverted form, the boundary-
value problem does not, in general, define the stress rate uniquely. Consider the
typical problem in which the nominal traction rate Ḟj is given on a part SF of the
external surface, and the velocity vj on the remainder Sv. Broadly speaking, a unique
solution exists for the deformation mode only when the rate of hardening exceeds
a certain critical value. To obtain the associated extremum principle, the natural
starting point is (104), where

ṫij = σ̇ij − σjk
∂vi

∂xk

and �vj is the difference v∗
j − vj between the virtual and actual velocities of a typical

particle. The substitution for ṫij into (104) gives†

∫
Ḟj(v

∗
j − vj)dV =

∫ {
σ̇ij(ε̇

∗
ij − ε̇ij) − σij

∂vk

∂xj

∂

∂xk
(v∗

i − vi)

}
dV (110)

in view of the symmetry of the stress and stress-rate tensors, and the interchange-
ability of dummy suffixes. From (85) and (86), we get

2σ̇ij(ε̇
∗
ij − ε̇ij) + 2

3 H(ε̇∗
ij − ε̇ij)(ε̇

∗
ij − ε̇ij) � 2

3 H(ε̇∗
ij ε̇

∗
ij − ε̇ij ε̇ij) (111)

for H � 0. The inequality arises in those elements which are deforming in the virtual
mode but unloading in the actual mode. To the right-hand side of equation (110),
multiplied by 2, we add the positive uniqueness functional (89), and use (111), the
result being

2
∫

Ḟj(v
∗
j − vj) dS <

∫ {
2

3
H(ε̇∗

ij ε̇
∗
ij − ε̇ij ε̇ij) − σij

∂

∂xj
(v∗

k + vk)
∂

∂xk
(v∗

i − vi)

}
dV

(112)

† R. Hill, J. Mech. Phys. Solids, 5: 229 (1957). This paper includes an extremum principle for the
modified boundary-value problem in which SF is submitted to a uniform fluid pressure.
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The second integrand on the right-hand side can be simplified by splitting the tensors
∂vi/∂xj and ∂v∗

i /∂xj into their symmetric and antisymmetric parts. Then

σij

(
∂v∗

i

∂xk

∂vk

∂xj
− ∂vi

∂xk

∂v∗
k

∂xj

)
= −2σij(ε̇

∗
ikωjk − ε̇ikω

∗
jk)

The other triple products vanish in pairs due to symmetry and antisymmetry prop-
erties of their factors. Since the tensors σij and ε̇ij are coaxial (the material being
isotropic), the triple products σij ε̇ikω

∗
jk and σij ε̇

∗
ikωjk individually vanish (see Sec.

1.6(i)). Inequality (112) therefore reduces to

∫ {
2

3
H(ε̇∗

ij ε̇
∗
ij − ε̇ij ε̇ij) −σij

(
∂v∗

i

∂xk

∂v∗
k

∂xj
− ∂vi

∂xk

∂vk

∂xj

)}
dV > 2

∫
Ḟj(v

∗
j − vj) dSF

since v∗
j = vj on Sv. Now, for the actual field vj, the transformation of integrals by

Green’s theorem gives

∫
Ḟjvj dS =

∫
ṫij

∂vj

∂xi
dV =

∫ (
2

3
H ε̇ij ε̇ij − σij

∂vi

∂xk

∂vk

∂xj

)
dV

in view of (85). Using this result to eliminate the unstarred part of the volume integral
in the preceding inequality, we finally obtain

∫ (
2

3
H ε̇∗

ij ε̇
∗
ij − σij

∂v∗
i

∂xk

∂v∗
k

∂xj

)
dV−2

∫
Ḟjv

∗
j dSF >

∫
Ḟjvj dSv−

∫
Ḟjvj dSF (113)

The expression on the left-hand side of (113) therefore has a minimum value in the
actual state. It can be shown that the minimum is analytic only when no unloading
occurs in the actual state. The term in σij gives a finite contribution at a velocity
discontinuity, which can be allowed only when H = 0. The minimum principle is
directly obtainable from (108) by letting the shear modulus tend to infinity, and
using the coaxiality of the stress and strain rate tensors.

Problems

2.1 An isotropic material exhibiting no Bauschinger effect is found to yield under biaxial stresses of
p and q. Show that the plane stress yield locus must pass through the stress points (p, q), (−p, −q),
(p − q, p), (p − q, −q), (q − p, −p), (q − p, q), as well as those obtained by interchanging each pair of
coordinates, whatever the form of the yield criterion. Assuming p > 0 > q, find the ratio of the uniaxial
yield stress predicted by the Tresca criterion to that by the Mises criterion.

Answer: (p − q)/
√

p2 − pq + q2.

2.2 Show that the strain energy per unit volume for an isotropic elastic solid consists of a volumetric
resilience that depends on the bulk modulus K , and a shear resilience that depends on the shear modulus
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G. Establish the fact that yielding occurs according to the von Mises criterion when the shear resilience
attains the value Y2/6G. If the Mises criterion is approximated by the Tresca criterion with Y replaced
by mY, what value of m will make the percentage error in uniaxial tension identical to that in pure shear?

Answer: m = 1.071.

2.3 A closed-ended thin-walled tube of thickness t and mean radius r is subjected to an axial tensile
force P, which is less than the value P0 necessary to cause yielding. If a gradually increasing internal
pressure p is now applied, show that the tube will yield according to the Tresca criterion when

pr

Yt
=




1
P

P0
� 1

2

2

(
1 − P

P0

)
P

P0
� 1

2

and according to the von Mises criterion when

pr

Yt
= 2√

3

{
1 −

(
P

P0

)2
}1/2

2.4 A closed-ended thin-walled tube of initial mean radius r0 is subjected to an internal pressure p,
and an external pressure αp on the cylindrical surface. The loading is continued into the plastic range
by maintaining a constant value of α > 0. Assuming the deformation to be uniform, and using the
Lévy-Mises flow rate, show that the total equivalent strain at any stage is

ε = 2
√

3 − 6α + 4α2

3 − 4α
ln

(
r

r0

)

where r is the current mean radius. Considering a radial expansion of the tube, show that the condition
for plastic instability which corresponds to a pressure maximum is given by

dσ

dε
= 3(1 − α)σ√

3 − 6α + 4α2
, α <

3

4

2.5 A uniform cylindrical bar is rendered plastic by the application of a longitudinal tensile force. The
material is isotropic rigid/plastic, obeying an arbitrary regular yield criterion. Assuming the deformation
mode to be axially symmetrical, show that the distribution of radial and axial velocities has the general
form

vr = −r(Az + B) vz = A( 1
2 r2 + z2) + 2Bz

where A and B are arbitrary constants, the z axis being taken along the longitudinal axis of the bar.

2.6 A thin-walled tube, subjected to combined tension and torsion in the plastic range, hardens kine-
matically according to Prager’s hardening rule. The tube is initially isotropic and yields according to
the von Mises criterion. Assuming a linear strain-hardening law with a plastic modulus H, show that
the yield criterion at any stage of the loading is

(σ − Hεp)2 + 3(τ − 2
3 Hγp)2 = Y2

where (σ, τ) are the applied tensile and shear stresses and (ε p, γ p) the corresponding plastic strain
components at a generic stage.
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2.7 A solid circular cylinder of radius a and height h is axially compressed by a pair of partially rough
platens. The stresses acting on an element, bounded by radial planes and concentric cylindrical surfaces,
are shown in Fig. A. Assuming σθ = σr , obtain the radial equilibrium equation

dσr

dr
= −2µp

h

where µ is the coefficient of friction between the cylinder and the platens. Neglecting the effect of
friction on the yield criterion, show that the load P required to bring the cylinder to the yield point is
given by

P

πa2 � Y

(
1 + 2µa

3h

)

Figure A

2.8 Figure B shows the stresses acting on an element in the meridian plane of a necked cylindrical bar
subjected to an axial force P. The element is bounded by principal stress trajectories in the neighborhood
of a typical point in the minimum section. Show that the condition for radial equilibrium is

dσr

dr
+ σz − σr

ρ
= 0

where ρ is the local radius of curvature of the longitudinal trajectory. Assuming ρ = R(a/r), where R is
the radius of curvature of the neck, and setting σθ = σr in the yield criterion, show that

P

πa2 = σ
(

1 + a

4R

)
where σ is the current uniaxial yield stress of the material in the minimum section.
2.9 As a possible yield criterion for isotropic metals, it is postulated that the numerically largest devi-
atoric principal stress attains a critical value at yielding. Show that the yield locus is a regular hexagon
whose sides are inclined at 30◦ to those of the Tresca hexagon. If the new hexagon is made to circumscribe
the Mises circle, prove that the new yield criterion is expressible in the form

k2(J2 − k2)2 = J2
3

where k is the yield stress in pure shear. What is the corresponding relationship between k and Y?
Answer: Y = 1.5k.
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Figure B

2.10 From the observed experimental results of Taylor and Quinney, Prager suggested the plastic
potential

g = J2

(
1 − 3J2

3

4J3
2

)

Show that the polar equation of its level curve in the deviatoric plane is

r2(9 − sin23θ) = const

Assuming the yield locus to be a geometrically similar curve, find the ratio of the yield stress in pure
shear to that in uniaxial tension or compression.

Answer: 0.544.

2.11 The experimentally determined (µ, ν) relationship for a certain metal may be reasonably expressed
by the equation

ν = 3µ(2 + µ2)

9 + µ2(1 − µ2)

Assuming the yield function and the plastic potential to be identical, show that the polar equation of the
deviatoric yield locus is

r = r0 sec4/3θ exp
(
− 1

2 tan2θ
)

where r0 is a constant. What value of k/Y is predicted by this equation?
Answer: 0.563.

2.12 A material yields according to the von Mises yield criterion and hardens isotropically. If the plastic
potential is the same as that of Prob. 2.10, show that the flow rule may be written as

dε
p
ij = 9

8

{
(1 + 2α2)

√
3
2 nij + α(δij − 3niknkj)

}
dσ

H
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where α = 9J3/2σ3, and nij is the unit vector in the direction of sij . Find the predicted slope of
the engineering shear stress–strain curve, excluding the elastic strain, in terms of the current plastic
modulus H.

Answer: 8H/27.

2.13 In the combined bending and twisting of a thin-walled tube, which involves longitudinal and
shearing stresses σ and τ respectively, show that the scalar parameter α of the preceding problem is

α = 1 + 9τ2/2σ2

3(1 + 3τ2/σ2)3/2

Using the above flow rule, compute the plastic strain increment ratio and the associated Lode parameter
ν when the stress ratio τ/σ is 0.5, 1.0, and 2.0. Obtain a graphical plot for the relationship between the
Lode parameters µ and ν.

2.14 A circular cylindrical bar is subjected to a uniform fluid pressure p on the lateral surface. The ends
of the bar are supported in such a way that they are free to move axially during the deformation. To
determine the condition for necking, it is convenient to use the incompressible trial velocity field

vr = − 1
2 rf ′(z) vθ = 0 vz = f (z)

in cylindrical coordinates (r, θ, z). Assuming the uniqueness functional to have a stationary value at the
bifurcation, obtain the condition H > p for uniqueness, whatever the form of f .

2.15 A rigid/plastic bar of arbitrary cross section is subjected to a uniaxial plastic state of stress in the
z direction which coincides with the longitudinal axis. If the stress is uniform throughout the bar, show
that the rectangular components of the associated velocity have the general expressions

u = − 1
4 A(x2 − y2 + 2z2) − 1

2 x(By + Cz + D)

v = − 1
4 B(y2 − x2 + 2z2) − 1

2 y(Ax + Cz + D)

w = 1
4 C(x2 + y2 + 2z2) + z(Ax + By + D)

for any regular yield surface, where A, B, C, and D are arbitrary constants.

2.16 A long slender column of uniform cross section, made of a rigid work-hardening material, is built-
in at one end and loaded axially at the other by an increasing compressive load P. Using the velocity field
of the preceding problem, show that the condition for uniqueness of the deformation mode is H > Pl2/3I
to a close approximation, where H is the current plastic modulus, l the length of the column, and I the
least moment of inertia of the cross section. Verify that the velocity field corresponding to the critical
rate of hardening reduces to that for pure bending.

2.17 A uniform rigid/plastic bar of rectangular cross-section is made of a von Mises material that
hardens isotropically. The ends of the bar, defined at any instant by x = ±l, are moved apart with equal
and opposite velocities of magnitude U, while zero tangential traction is maintained on these faces.
The initiation of necking of the bar, whose instantaneous thickness is 2h, may be represented by the
velocity field

u = U
( x

l
+ c

π
sin

πx

l
cos

πy

l

)

v = −U
( y

l
+ c

π
cos

πx

l
sin

πy

l

)
where c is a constant. Considering the field equations for the rate problem, and assuming the value of c
that corresponds to neutral loading at x = ±l, y = 0, show that the condition for necking is

√
3

σ

H
= 1 + 2πh

l
cosec

2πh

l
,

h

l
<

1

2
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2.18 Suppose that the bar of the preceding problem is axially compressed by means of a pair of
frictionless rigid platens in contact with the end faces. The velocity field at the incipient buckling, when
the bar is of length 2l and thickness 2h, may be taken as

u = U
(
− x

l
+ c

π
sin

πx

l
sin

πy

l

)

v = U
( y

l
+ c

π
cos

πx

l
cos

πy

l

)

where c is a constant. Choosing the value of c for which there is neutral loading at x = 0, y = h, show
that the critical stress is given by

√
3

σ

H
= 2πh

l
cosec

2πh

l
− 1,

h

l
<

1

2

Verify that for a sufficiently small h/l, the critical compressive stress reduces to that given by the tangent
modulus theory (Section 4.7).

2.19 Using the standard expressions for the von Mises yield function in terms of the principal stresses,
show that the yield criterion is equivalent to

(σ1 − σ2)2(σ2 − σ3)2 + (σ2 − σ3)2(σ3 − σ1)2 + (σ3 − σ1)2(σ1 − σ2)2 = Y4

(σ1 − σ2)4 + (σ2 − σ3)4 + (σ3 − σ1)4 = 9(s4
1 + s4

2 + s4
3) = 2Y4

Expressing these relations in terms of J2, and using the equation given in the footnote of p. 23, obtain
Tresca’s yield criterion in terms of J2 and J3.

2.20 A thin-walled tube with closed ends is subjected to an internal pressure p as well as a torque that
produces a shear stress τ. If po is the pressure required to produce a hoop stress equal to Y , show that
yielding occurs according to the Mises criterion when

(
p

po

)2

+ 4
( τ

Y

)2 = 4

3

and according to the Tresca criterion when

(
p

po

)2

+ 4

(
2τ

Y

)2

= 4, 0 � p

po
� 2

3

p

po

(
3 − p

po

)
+ 2

( τ

Y

)2 = 2,
2

3
� p

po
� 1

Compare the two relations by plotting τ/Y against p/po to form the interaction curves for the tube.
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CHAPTER

THREE
ELASTOPLASTIC BENDING AND TORSION

In a deformable body subjected to external loads of gradually increasing magnitude,
plastic flow begins at a stage when the yield criterion is first satisfied in the most crit-
ically stressed element. Further increase in loads causes spreading of the plastic zone
which is separated from the elastic material by an elastic/plastic boundary. The posi-
tion of this boundary is an unknown of the problem, and is generally so complicated
in shape that the solution of the boundary-value problem often involves numerical
methods. The solution must be carried out in a succession of small increments of
strain even when the deformation is restricted to an elastic order of magnitude. It is
necessary to ensure at each stage that the calculated stresses and displacements in
the elastic and plastic regions satisfy the conditions of continuity across the elastic/
plastic boundary. In this chapter, we shall be concerned mainly with the problems
of bending and torsion in the elastic/plastic range, assuming the deformation to be
sufficiently small. The related problems of limit analysis will be discussed in the next
chapter.

3.1 Plane Strain Compression and Bending

(i) Plane strain compression of a block As a simple application of the Prandtl-
Reuss theory, consider the frictionless compression of a rectangular block of metal
between a pair of rigid overlapping platens (Fig. 3.1). The edges of the block are
parallel to the rectangular axes, with the x axis taken in the direction of compres-
sion. A condition of plane strain is achieved by suppressing lateral expansion in

127
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Figure 3.1 Plastic compression of a block between smooth rigid platens under conditions of plane
strain.

the z direction with the help of rigid dies.† It is therefore a case of homogeneous
compression in which σy = 0 throughout the deformation, and σz = νσx while the
block is still elastic. If Tresca’s yield criterion is adopted, yielding begins when
σx = −Y in each element of the block. The relevant stress–strain equations in the
plastic range are

dεx = 1

E
(dσx − ν dσz) + 1

3
(2σx − σz)dλ

dεz = 1

E
(dσz − ν dσx) + 1

3
(2σz − σx)dλ = 0

(1)

If the material is nonhardening, σx = −Y throughout the plastic compression. The
elimination of dλ from (1) then gives

E dεx =
(

1

2
− ν

)
dσz + 3Y dσz

2(2σz + Y )

At the initial yielding, σz = −νY and εx = −(1 − ν2)Y/E. Under these initial
conditions, the above equation integrates to

E

Y
εx =

(
1

2
− ν

) (σz

Y
+ ν

)
− 3

4
ln

(
1 − 2ν

1 + 2σz/Y

)
− (1 − ν2) (2)

giving the variation of σz with the amount of compression. As the deformation pro-
ceeds, the first term becomes increasingly unimportant, while σz rapidly approaches
the limiting value − 1

2 Y . Taking ν = 0.3, for instace, σz is found to have the value
−0.49Y when εx is only 3.5 times that at the initial yielding.

When the material yields according to the von Mises yield criterion σ2
x −σxσz +

σ2
z = Y2, the initial yielding of the block corresponds to σx = σ0

x and σz = νσ0
x , where

σ0
x = − Y√

1 − ν + ν2

† An experimental set up of this kind has been employed by P. W. Bridgman, J. Appl. Phys., 17: 225
(1946). Since no dies are absolutely rigid, a direct experimental verification of the theory is difficult.
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During the subsequent compression, the yield criterion can be identically satisfied
by writing the stresses in terms of a parameter θ (which is the deviatoric angle) as

σx = − 2Y√
3

cos θ σz = − 2Y√
3

sin
(π

6
− θ

)
(3)

The condition σz = νσx at the initial yielding furnishes the initial value of θ as

θ0 = tan−1
(

1 − 2ν√
3

)
(4)

When ν = 0.3, we get σ0
x � −1.127Y and θ0 � 13◦. Substitution from (3) into the

stress–strain relations (1) gives

dεx = 2Y√
3E

{
sin θ − ν cos

(π

6
− θ

)}
dθ − 2Y

3
cos

(π

6
− θ

)
dλ

0 = 2Y√
3E

{
cos

(π

6
− θ

)
− ν sin θ

}
dθ + 2Y

3
sin θ dλ

Since dλ must be positive, the second equation indicates that θ decreases as the
compression proceeds. Eliminating dλ from the above equations, we get

E dεx = 2Y√
3

{
(1 − 2ν) cos

(π

6
− θ

)
+ 3

4
cosec θ

}
dθ

Using the initial condition εx = −(1 − ν2)σ0
x /E when θ = θ0, the above equation is

readily integrated to obtain†

−E

Y
εx = 2√

3
(1 − 2ν) sin

(π

6
− θ

)
+

√
3

2
ln

(
cot

θ

2
tan

θ0

2

)
+

√
1 − ν + ν2 (5)

As the deformation continues, the first term on the right-hand side soon becomes
negligible. The angle θ rapidly approaches the limiting value zero, the corresponding
values of σx and σz being −2Y/

√
3 and −Y/

√
3 respectively. It is found that σz is

within 1 percent of its limiting value when εx is only four times that at the initial
yielding, for ν = 0.3. Owing to the rapid initial change in stress, the elastic and
plastic strain increments are comparable up to a total strain which is three to four
times that at the elastic limit. A graphical comparison of the solutions based on the
Tresca and Mises criteria is made in Fig. 3.2.

† The solution given here is essentially due to R. Hill, J. Appl. Mech., 16: 295 (1949). The effects
of work-hardening and anisotropy have been examined by J. Chakrabarty, W. B. Lee, and K. C. Chan,
Int. J. Mech. Sci., 43: 1871 (2001).
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Figure 3.2 Effect of elastic compressibility on the plane strain compression of a block in the plastic
range.

Figure 3.3 Geometry and stress distribution (approximate) in the plane strain bending of a beam. The
residual stress is given by the shaded triangles.

(ii) Plane strain bending of a beam A related problem is the bending of a uniform
rectangular beam by terminal couples under conditions of plane strain (Fig. 3.3).
The radius of curvature of the bent beam is assumed large compared to its depth 2h,
so that transverse stresses may be neglected. The neutral fibre coincides with Ox,
and is bent into a circular arc of radius R. All fibres above this line are extended
and those below this line are compressed during the bending. So long as the beam
remains elastic, the longitudinal stress σx is distributed linearly across the depth of
the beam according to the relationship

σx = Ey

(1 − ν2)R
= My

Iz
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where M is the bending couple per unit width of the beam, and Iz = 2
3 h3 the moment

of inertia of the cross section per unit width about the z axis. The factor (1 − ν2)
arises from the condition of plane strain (εz = 0) during the bending. Plastic
yielding begins at the boundaries y = ±h when the longitudinal stress attains the
value ±Y/

√
1 − ν + ν2. The bending moment Me at the initial yielding, and the

corresponding radius of curvature Re of the neutral surface, are

Me = 2h2Y

3
√

1 − ν + ν2
Re = Eh

√
1 − ν + ν2

Y (1 − ν2)
(6)

where subscript e represents the elastic limit. For ν = 0.3, the numerical values of
Me and Re are 0.750 Yh2 and 0.977Eh/Y respectively.

If the bending moment is increased further, plastic zones spread inward from
the outer surfaces, the depth of the elastic part at any stage being denoted by 2c. The
stresses in the elastic region are

σx = Yy

c
√

1 − ν + ν2
σz = νσx − c � y � c (7)

The longitudinal strain at a generic point of the cross section is y/R throughout the
bending. The application of Hooke’s law to the elastic part of the beam gives

R = Ec
√

1 − ν + ν2

Y (1 − ν2)
=

( c

h

)
Re

during the elastic/plastic bending. In the lower plastic region, the stresses are given
by (3), where θ depends on y according to (5) with εx = y/R. The stresses and strains
in the upper plastic region are identical in magnitude but opposite in sign. The applied
couple per unit width is

M = 2
∫ h

0
σxy dy = 2Yc2

3
√

1 − ν + ν2
+ 4Y√

3

∫ h

c
y cos θ dy (8)

Using equation (5), with −εx replaced by y/R, the above integral can be evaluated
numerically to obtain M/h2Y for any assumed value of c/h.

For practical purposes, it is sufficiently accurate to replace the von Mises crite-
rion by the modified Tresca criterion σx = ±2Y/

√
3. Then the magnitude of the

longitudinal stress increases from zero at the neutral surface to 2Y/
√

3 at the
elastic/plastic boundary. The integration in this case is straightforward, and the
result is

M � 2Y√
3

(
h2 − 1

3
c2

)
= 1

2
Me

{
3 −

(
R

Re

)2
}

(9)
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where

Me � 4Yh2

3
√

3
Re �

√
3Eh

2Y (1 − ν2)

The maximum error in this approximation is about 2 percent, occurring at the
initial yielding. The bending moment M rapidly approaches the asymptotic value
(2/

√
3)h2Y or 3

2 Me, which is the fully plastic or collapse moment per unit width of
the beam. The limiting plastic state involves a stress discontinuity of amount 4y/

√
3

across the neutral surface.
If the beam is unloaded from the partly plastic state, there is a certain distribution

of residual stress left in the beam. The residual stress can be calculated on the
assumption that the change in stress during the unloading is purely elastic. It is
therefore necessary to superpose an elastic stress distribution due to an opposite
moment equal in magnitude to that which is released. Subtracting My/Iz from the
existing stress in the elastic/plastic beam, where M is given by (9), we obtain the
residual stress on complete unloading as

σx

Y
= 2√

3

{
y

c
− y

2h

(
3 − c2

h2

)}
|y| � c

σx

Y
= 2√

3

{
1 − y

2h

(
3 − c2

h2

)}
|y| � c

(10)

The distribution is shown diagrammatically by the shaded triangles in Fig. 3.3.
The residual stress changes sign in the region c < |y| < h, vanishing at a distance
2h/(3 − c2/h2) from the neutral surface. The stress attains its greatest magnitude at
the outer surface for c/h �

√
2 − 1, and at the plastic boundary for c/h �

√
2 − 1.As

the beam is rendered increasingly plastic, the residual stress at y = ±h approaches the
limiting value ∓Y/

√
3.

The curvature of the unloaded beam is obtained by subtracting from the elastic/
plastic curvature h/cRe the amount of elastic spring-back equal to (1−ν2)M/EIz.
Substituting for Re, M, and Iz, the residual curvature may be expressed as

1

R
= 2√

3
(1 − ν2)

Y

Ec

(
1 − 3c

2h
+ c3

2h3

)
(11)

The factor outside the bracket is the curvature of the beam at the moment of unload-
ing. The expression within the bracket is the ratio of the residual stress at y = c to
the plane strain yield stress 2Y/

√
3. For small elastic/plastic bending, the residual

curvature is comparable to the amount of elastic spring-back.

3.2 Cylindrical Bars Under Torsion and Tension

(i) Pure torsion of a bar We begin with a solid cylindrical bar of radius a, subjected
to a twisting moment T . So long as the bar is elastic, the shear stress acting over
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any cross section is proportional to the radial distance r from the central axis. The
applied torque T is the resultant moment of the stress distribution about this axis. If
the angle of twist per unit length of the bar is denoted by θ, the elastic shear stress
may be written as

τ = Grθ = 2Tr

πa4

Since the shear stress has its greatest value at r = a, the bar begins to yield at this
radius when the torque is increased to Te, the corresponding twist being θe. Setting
τ = k at r = a, we get

Te = 1

2
πka3 θe = k

Ga

If the torque is increased further, a plastic annulus forms near the boundary,
leaving a central zone of elastic material within a radius c (Fig. 3.4a). The stress
distribution in the elastic region is linear, with the shear stress reaching the value
k at r = c. For a non-hardening material, the shear stress has the constant value k
throughout the plastic region, and the stress distribution becomes

τ = k
r

c
0 � r � c

τ = k c � r � a

Since the shear stress within the elastic zone is also equal to Grθ, we have θ = k/Gc.
The twisting moment is

T = 2π

∫ a

0
τr2 dr = 2

3
πk

(
a3 − 1

4
c3

)
= 1

3
Te

{
4 −

(
θe

θ

)3
}

(12)

Figure 3.4 Torsion of a solid cylindrical bar. (a) Plastic annulus and stress distribution for H = 0;
(b) Nadai’s construction for an annealed bar.
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As the elastic/plastic torsion continues, the torque rapidly approaches the fully plastic
value 2

3πka3. Since θ tends to infinity as c tends to zero, an elastic core of material
must exist for all finite values of the angle of twist.

In the case of an annealed material, there is no well-defined yield point, and
the elastic/plastic boundary is therefore absent. Since the engineering shear strain
at any radius r is γ = rθ, the torque may be expressed as

T = 2π

∫ a

0
τr2 dr = 2π

θ3

∫ aθ

0
τγ2 dγ

When the shear stress–strain curve of the material is given, the torque can be calcu-
lated from above, using the known (τ, γ) relationship. Conversely, if the torque-twist
relationship for a solid bar has been experimentally determined, the shear stress–
strain curve can be easily derived from it. The differentiation of the above equation
with respect to θ gives

d

dθ
(Tθ3) = 2πa3θ2τ0

where τ0 is the value of τ at r = a where the shear strain is γ0 = aθ. The relationship
between τ0 and γ0 is therefore given by†

τ0 = 1

2πa3

(
θ

dT

dθ
+ 3T

)
γ0 = aθ (13)

The geometrical significance of the first term in the bracket is indicated in Fig. 3.4b.
Since dT/dθ must be obtained numerically or graphically from the measured (T , θ)
curve, the computation based on (13) is not very accurate for the initial part of the
curve. The accuracy may, however, be improved by rewriting the shear stress as‡

τ0 = 1

2πa3

{
θ2 d

dθ

(
T

θ

)
+ 4T

}
The ratio T/θ is constant in the elastic range, and decreases slowly over the initial
part of the plastic range. The contribution of the first term in the bracket is therefore
small over this part. For the latter part of the curve, where the strain-hardening is
small, the formula (13) should give more satisfactory results.

Suppose, now, that a bar of external radius a has a concentric circular hole of
radius b. The material is assumed to work-harden, the uniaxial stress–plastic strain
curve being represented by a straight line of slope H over the relevant range. If the
bar is subjected to pure torsion, yielding begins at r = a when the torque and the
specific angle of twist become

Te = 1

2
πka3

(
1 − b4

a4

)
θe = k

Ga

† A. Nadai, Theory of Flow and Fracture of Solids, vol. I, p. 349, McGraw-Hill, New York (1950).
See also H. C. Wu, Z. Y. Xu, and P. T. Wang, ASTM J. Test. Evaluation, 20: 396 (1992).

‡ R. Hill, The Mathematical Theory of Plasticity, p. 94, Clarendon Press, Oxford (1950).
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During the elastic/plastic torsion, the shear stress increases with the radius in both
elastic and plastic regions. Since the total equivalent strain in any plastic element is
equal to (1/

√
3)(rθ − τ/G), the assumed strain-hardening law gives

τ = k + H

3

(
rθ − t

G

)
θ = k

Gc

where c is the radius to the elastic/plastic boundary. Substituting for θ, the shear
stress in the plastic region is obtained as

τ = k

(
1 + Hr/3Gc

1 + H/3G

)
c � r � a

The stress in the elastic region (b � r � c) is τ = kr/c as before. The stress distribu-
tion over the entire cross section furnishes the applied torque T . A straightforward
integration results in

(
1 + H

3G

)
T = 2

3
πka3

{
1 + 1

4

[
− c3

a3

(
1 + 3b4

c4

)
+ Ha

Gc

(
1 − b4

a4

)]}
(14)

which reduces to (12) when H = 0 and b = 0. The fully plastic torque T0 for a
work-hardening hollow bar is given by

(
1 + H

3G

)
T0 = 2

3
πka3

{
1 − b3

a3 + H

4G

(
a

b
− b3

a3

)}

The variation of T/Te with θ/θe for H = 0 and H = 0.3G is shown in Fig. 3.5. The
fully plastic angle of twist per unit length has the finite value θ0 = k/Gb, which is
independent of the rate of hardening of the material.

The residual stress left in the bar on unloading from an elastic/plastic state can
be determined as in the case of bending. It is only necessary to superpose an elastic
distribution of stress produced by an opposite torque equal in magnitude to that
which is released. For a completely unloaded bar, we therefore have to subtract the
quantity 2Tr/π(a4 − b4) from the stress existing at the moment of unloading. Using
(14) for T , the residual stress distribution for H = 0 may be written as

τ

k
= r

c
− r

3a

4 − (c3/a3)(1 + 3b4/c4)

1 − b4/a4 b � r � c

τ

k
= 1 − r

3a

4 − (c3/a3)(1 + 3b4/c4)

1 − b4/a4 c � r � a

(15)

The residual stress is negative in an outer part of the plastic annulus and positive over
the remainder of the cross section. When b = 0, the numerically greatest residual
stress occurs at r = c for c/a � 0.576 and at r = a for c/a � 0.576.
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Figure 3.5 Torque-twist relationship in pure torsion of cylindrical bars in the elastic/plastic range.

The angle of elastic untwist per unit length on complete unloading is equal to
2T/πG(a4 − b4), where T is given by (14). Assuming H = 0, the residual angle of
twist per unit length may be expressed as

θ = k

Gc

{
1 − c

3a

4 − (c3/a3)(1 + 3b4/c4)

1 − b4/a4

}
(16)

The factor outside the curly bracket is the value of θ at the moment of unloading,
while the expression inside the bracket is the residual value of τ/k at the elastic/plastic
boundary. For a given elastic/plastic twist, the residual angle of twist decreases as
the rate of hardening increases.

(ii) Combined torsion and tension—I A solid cylindrical bar of radius a and length
l is subjected to any combination of twist and axial extension. While the deformation
is elastic, the longitudinal stress σ is constant over the cross section, and the shear
stress τ is directly proportional to the radial distance r from the axis. It follows that
yielding first occurs at r = a when the stresses satisfy the von Mises yield criterion

σ2 + 3τ2 = Y2 (17)
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When the loading is continued into the plastic range, so that the radius to the elastic/
plastic boundary is c, the stresses in the elastic region for an incompressible material
are

σ = 3Gε τ = Grφ

l
0 � r � c

where ε is the total longitudinal strain and φ the total angle of twist. In the plastic
region (c � r � a), the Prandtl-Reuss stress–strain equations give

dε = dl

l
= dσ

3G
+ 2

3
σ dλ

dγ = r dφ

2l
= dτ

2G
+ τ dλ

(18)

The stresses in the plastic region are also required to satisfy the yield criterion (17),
work-hardening being neglected. Eliminating dλ from (18), and using (17), it is
easily shown that

3

r

dl

dφ
= σ

τ
+ l

Gr

(
dσ

dφ
− σ

τ

dτ

dφ

)
= σ

τ
− Y2l

Gσr

(
1

τ

dτ

dφ

)

Suppose that the ratio of the rate of extension to the rate of twist is held constant
during the elastic/plastic loading.† The constant value of dl/dφ, denoted by aα/3,
would be compatible with the above equation and the yield criterion, if σ and τ are
both constant in any given plastic element. Then

σ

τ
= 3

r

dl

dφ
= aα

r
c � r � a (19)

Since ε/φ = aα/3l according to this strain path, σ/τ is continuous across the
elastic/plastic boundary. Combining (17) and (19), we have

σ = αY√
α2 + 3r2/a2

τ = (r/a)Y√
α2 + 3r2/a2

c � r � a (20)

Thus, the axial stress decreases and the shear stress increases as we move outward
from r = c. The continuity of the axial stress across the plastic boundary r = c
requires

ε

√
α2 + 3c2

a2 = αY

3G

† This solution, due to R. Hill, has been presented by F. A. Gaydon, Q. J. Mech. Appl. Math., 5:
29 (1952). The fully plastic stress distribution was given earlier by A. Nadai, Trans. A.S.M.E., 52: 93
(1930).
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giving the relationship between c/a and ε during the loading. Using the expressions
for σ and τ in the elastic and plastic regions, the axial load N and the torque T are
found by integration as

N

πa2Y
= αc2

a2

(
α2 + 3c2

a2

)−1/2

+ 2

3
α




√
α2 + 3 −

√
α2 + 3c2

a2




T

πa3Y
= c4

2a4

(
α2 + 3c2

a2

)−1/2

− 2

9
α2




√
α2 + 3 −

√
α2 + 3c2

a2


 (21)

+ 2

27

{
(α2 + 3)3/2 −

(
α2 + 3c2

a2

)3/2
}

For any given value of α, (21) defines the relationship between N and T parametri-
cally through c/a. When α = 0, the axial force vanishes, and the torque reduces to
that given by (12). The fully plastic stress distribution over the cross section for an
arbitrary strain path under combined loading is given by (20) in terms of the final
value of α.

(iii) Combined torsion and tension—II Suppose that a cylindrical bar of radius
a is first twisted elastically and then extended into the elastic/plastic range by an
increasing axial load.† The angle of twist of the bar is maintained at a constant
value θ0 per unit length during the extension. Yielding begins at the outer radius
when the longitudinal strain is ε0, the corresponding axial stress being 3Gε0 for
an incompressible material. Since the shear stress is Gaθ0 at r = a, the relationship
between θ0 and ε0 is

a2θ2
0 + 3ε2

0 = Y2

3G2 (22)

in view of the yield criterion (17). Subsequently, when the bar is plastic to a radius c,
the stresses in the elastic zone corresponding to an axial strain ε are

σ = 3Gε τ = Grθ0 0 � r � c

Since the element at r = c must be at the point of yielding, the radius to the
elastic/plastic boundary is given by

c2θ2
0 + 3ε2 = Y2

3G2

† The solutions discussed here are due to F. A. Gaydon, Q. J. Mech. Appl. Math., 5: 29 (1952). See
also W. Prager and P. G. Hodge, Jr., Theory of Perfectly Plastic Solids, Chap. 3, Wiley and Sons (1951).
Numerical solutions for strain-hardening materials with arbitrary values of ν have been discussed by
D. S. Brooks, Int. J. Mech. Sci., 11: 75 (1969).
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In the plastic region, the stresses must satisfy the yield criterion (17) and the stress–
strain equations (18), where dγ = 0. Eliminating dλ, and substituting for dτ/τ using
(17), we obtain

3G dε = Y2 dσ

Y2 − σ2

which is readily integrated to

3G

Y
ε = tanh−1

(σ

Y

)
+ const c � r � a

The constant of integration must be determined from the condition that

σ = 3Gε =
√

Y2 − 3G2r2θ2
0

when an element at radius r first becomes plastic. Hence the tensile stress in the
plastic region (c � r � a) is given by

σ

Y
= tanh


3G

Y
ε −

√
1 − 3G2

Y2 r2θ2
0 + tanh−1

√
1 − 3G2

Y2 r2θ2
0


 (23)

The shear stress in the plastic region follows from (23) and the yield criterion (17).
The variations of load and torque with extension can be calculated numerically if
required.

If the bar is initially twisted to an extent that makes it just plastic at r = a, then
Gaθ0 = Y/

√
3 and ε0 = 0. Substituting in (23), the stress distribution in the plastic

region is obtained as

σ

Y
= tanh


3G

Y
ε −

√
1 − r2

a2 + tanh−1

√
1 − r2

a2


 (24)

The bar becomes completely plastic (c = 0) when ε = Y/3G, giving σ/Y =
tanh 1 � 0.762 at r = a. If the extension is continued in the fully plastic range, (24)
holds over the entire cross section of the bar. The stresses σ and τ at the bound-
ary r = a approach their asymptotic values Y and zero respectively as the strain is
increased. The approach is so rapid that σ is within 0.5 percent of Y when ε is only
equal to Y/G.

Consider now the situation where the bar is first extended to produce an axial
strain ε0 elastically, and then twisted by a gradually increasing torque while the
extension is held constant. The bar begins to yield at the outer radius again when the
angle of twist per unit length is θ0, given by (22). When the specific angle of twist
θ is large enough to render the bar plastic to a radius c, the stresses in the elastic
region are

σ = 3Gε0 τ = Grθ 0 � r � c
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Since the material at r = c is at the point yielding,

c2θ2 + 3ε2
0 = Y2

3G2

Setting dε = 0 and dφ = l dθ in the Prandtl-Reuss equations (18), and eliminating
dλ, we obtain the differential equation

Gr dθ = Y2 dτ

Y2 − 3τ2

in view of (17). The integration of the above equation gives

√
3G

Y
rθ = tanh−1

(√
3τ

Y

)
+ const c � r � a

When an element first becomes plastic, its tensile stress is σ0 = Gε0, the corres-
ponding shear stress being given by

√
3τ =

√
Y2 − σ2

0 = √
3Grθ

The constant of integration follows from this initial condition, and the shear stress
in the plastic region (c � r � a) finally becomes

√
3τ

Y
= tanh


√

3G

Y
rθ −

√
1 − σ2

0

Y2 + tanh−1

√
1 − σ2

0

Y2


 (25)

The tensile stress in the plastic region then follows from the yield criterion. If the
bar is initially extended just to the yield point before the torque is applied, σ0 = Y
and θ0 = 0, giving

√
3τ

Y
= tanh

(√
3G

Y
rθ

)
σ

Y
= sech

(√
3G

Y
rθ

)
(26)

These expressions hold throughout the cross section of the bar, which is now com-
pletely plastic. When aθ is equal to

√
3Y/G, the value of

√
3τ at r = a is already

within 0.5 percent of Y . The torque T and the axial load N are given by

√
3T

πa3Y
= 2

∫ 1

0
ξ2 tanh

(√
3G

Y
ξaθ

)
dξ

N

πa2Y
= 2

∫ 1

0
ξ sech

(√
3G

Y
ξaθ

)
dξ

(27)
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where ξ = r/a. The variations of the dimensionless load and torque for the initially
plastic bar are shown in Fig. 3.6, which indicates that N and T rapidly approach
their asymptotic values of zero and 2πYa3/3

√
3 respectively.

The distribution of σ/Y and
√

3τ/Y for both the strain paths, expressed by
equations (24) and (26), are plotted in Fig. 3.7, assuming ε = Y/3G and aθ = Y/

√
3G

respectively. The first strain path is represented by solid curves and the second strain
path is represented by broken curves. Although the final states of deformation in the
two cases are the same, the stress distribution differs as a consequence of its path
dependence.

3.3 Thin-Walled Tubes Under Combined Loading

(i) Combined torsion and tension A thin-walled tube is first twisted to the point of
yielding and then extended longitudinally while holding the angle of twist constant.
The material is prestrained to obtain a sharp yield point, and the subsequent rate
of hardening is assumed negligible compared to the elastic modulus. The loading
path is such that the elastic and plastic strain increments are initially of comparable
magnitudes, even though the tube is fully plastic. The longitudinal stress σ and the
shear stress τ at any stage are approximately uniform through the thickness of the
tube, the relevant stress–strain equations being

dε = dσ

E
+ 2

3σ dλ dγ = dτ

2G
+ τ dλ (28)

Figure 3.6 Variation of load and torque with angle of twist in a bar initially extended to the yield point.
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Figure 3.7 Stress distribution in a circular cylindrical bar subjected to combined tension and torsion
(ε = Y/3G and aθ = Y/

√
3G).

where dγ = 0 during the extension. The elimination of dλ between the two equations
gives

dε = dσ

E
− σ

3G

dτ

τ
= dσ

E
+ σ2

Y2 − σ2

dσ

3G

where the last step follows from the yield criterion (17), the material being assumed
nonhardening. Since the shear stress decreases from its initial value Y/

√
3 as the

tensile stress increases from zero, the integration of the above equation results in

6G

Y
ε =

(
1 − 2ν

1 + ν

)
σ

Y
+ ln

(
Y + σ

Y − σ

)
(29)

in view of the relation E = 2(1 + ν)G. As the longitudinal strain is increased from
zero, σ rapidly increases to approach the value Y asymptotically. The first term on
the right-hand side of (29) soon becomes negligible. For ν = 0.3, the longitudinal
stress is within one percent of Y when ε is only equal to 3Y/E. The above theory
forms the basis of an experimental verification of the Prandtl-Reuss theory. The
experiment has been carried out by Hohenemser using prestrained tubes of mild
steel,† and reasonable agreement has been found with the theoretical prediction.

† K. Hohenemser, Z. angew. Math. Mech., 11: 15 (1931). See also K. Hohenemser and W. Prager,
ibid., 12: 1 (1932).
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Consider the related problem in which a thin-walled tube is brought to the yield
point in simple tension, and subsequently twisted in the plastic range holding the
tensile stress constant at the value Y . The loading can be continued only if the
material work-hardens, having an effective stress σ at any stage. Then

σ2 = Y2 + 3τ2 σ dσ = 3τ dτ

The stress–strain relations (28) still hold with dσ = 0, while dλ is given by

2

3
dλ = dσ

Hσ
= 3τ dτ

H(Y2 + 3τ2)

where H is the current slope of the stress–plastic strain curve. Equations (28)
therefore become

dε = 3Yτ dτ

H(Y2 + 3τ2)
dγ = dτ

2G
+ 9τ2 dτ

2H(Y2 + 3τ2)

It follows from the second of these relations that the torsional rigidity is equal to G
when τ = 0, although the tube is plastic.† Assuming H to be a constant, the above
equations can be integrated to

ε = Y

E
+ Y

2H
ln

(
1 + 3τ2

Y2

)

γ = τ

2G
+ 3

2H

[
τ − Y√

3
tan−1

(√
3τ

Y

)] (30)

The incremental shear strain dγ at any stage is equal to r dφ/2l, where φ is the total
angle of twist, l the current length of the tube, and r the current mean radius. Since r
and l are varying from stage to stage, 2γ cannot be interpreted as being the tangent
of the angle of the helix formed by an original generator of the tube.

Suppose, now, that a thin-walled tube is subjected to simultaneous torsion and
tension following a strain path which is such that the elastic part of the strain is
negligible. The Lévy-Mises flow rule furnishes the relations

dε = dl

l
= σ dσ

Hσ
dγ = r dφ

2l
= 3τ dσ

2Hσ

dr

r
= dt

t
= −dl

2l
(31)

where l, r, and t denote the current length, mean radius, and thickness of the
tube, their initial values being l0, r0, and t0 respectively. The last set of equations
immediately furnish

r

r0
= t

t0
=

√
l0
l

† This has been experimentally confirmed by J. L. M. Morrison and W. M. Shepherd, Proc. Inst.
Mech. Eng., 163: 1 (1950), who subjected thin-walled tubes to various combinations of tension and
torsion. The results were in substantial agreement with the Prandtl-Reuss theory.
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Since r2l = r2
0 l0 = const, it follows that the internal volume of the tube remains

unchanged during the deformation. This is really a consequence of the isotropy of
the material and the equality of the Lode variables µ and ν. From (31), we now obtain

3τ

σ
= r

dφ

dl
= r0

√
l0
l

dφ

dl
(32)

σ =
√

σ2 + 3τ2 = σ

{
1 + r2

0 l0
3l

(
dφ

dl

)2
}1/2

The elimination of σ between the first equation of (31) and the second equation of
(32), and the integration of the resulting differential equation, result in

∫ σ

Y

dσ

H
=

∫ l

l0

{
1 + r2

0 l0
3l

(
dφ

dl

)2
}1/2

dl

l
(33)

If dl/dφ is considered as a given function of the length of the tube, the integral on the
right-hand side can be evaluated numerically or otherwise to obtain the relationship
between σ and l. Since σ and τ then follow from (32), the axial load 2πrtσ and the
torque 2πr2tτ can be calculated at any stage of the deformation.†

(ii) Combined bending and twisting A thin-walled tube of thickness t and mean
radius a is rendered partly plastic by the simultaneous application of bending and
twisting couples (Fig. 3.8). Lateral forces being absent, the stresses and strains do
not vary along the length of the tube.‡ The shear stress τ is uniformly distributed
over the section, while the longitudinal stress σ varies along the circumference at
each stage. Let ψ denote the angle of bend and θ the angle of twist, per unit length
of the tube. While the tube is entirely elastic, the stresses are

σ = Eyψ τ = Gaθ

where y is reckoned positive in the direction of convexity of the bent tube. There is
no warping of the cross section in the elastic range, the bending couple M and the
twisting couple T being

M = πta3Eψ T = 2πta3Gθ

It is evident that plastic yielding first occurs at the extremities of the vertical diameter
when the yield criterion (17) is satisfied. Assuming ψ = ψe and θ = θe at the initial

† The combined torsion and tension of thin-walled cylinders formed the basis of an experimental
verification of the laws of plasticity by G. I. Taylor and H. Quinney, Philos. Trans. R. Soc. London,
A230: 323 (1931).

‡ Thin-walled tubes of more general shape of the cross section have been considered by R. Hill
and M. P. L. Siebel, Phil. Mag., 42: 722 (1951). For experimental confirmations, see M. P. L. Siebel,
J. Mech. Phys. Solids, 1: 149 (1953). The effects of work-hardening have been examined by R. T. Shield
and E. T. Onat, J. Appl. Mech., 20: 345 (1953).
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Figure 3.8 Combined bending and twisting of a thin-walled tube in the plastic range.

yielding, we get

1

3

(
Eaψe

k

)2

+
(

Gaθe

k

)2

= 1

Since Eψ/Gθ is equal to 2M/T throughout the elastic deformation, the values of ψ

and θ at the initial yielding may be expressed in terms of the couple ratio as

Eaψe

2k
=

(
4

3
+ T2

M2

)−1/2
Gaθe

k
=

(
1 + 4M2

3T2

)−1/2

(34)

If the deformation is continued, two identical plastic zones spread toward the neutral
axis. Let the position of the elastic/plastic boundary at any stage be specified by its
angular distance α from the neutral axis Ox. Let φ be the counterclockwise angle
defining the position of a generic point on the circumference with respect to Ox.
Neglecting work-hardening, the distribution of the axial stress may be written as

σ = Eaψ sin φ(|φ| � α) σ = ±Eaψ sin α(|φ| � α) (35a)

where the upper sign holds for positive values of φ and the lower sign for negative
values of φ. In view of (17), the shear stress at any stage is†

τ = k

√
1 − 1

3

(
Eaψ

k

)2

sin2 α −π

2
� φ � π

2
(35b)

Using the normal stress distribution, the bending couple is obtained in the
nondimensional form

M

T0
= 2

πk

∫ π/2

0
σ sin φ dφ = Eaψ

πk
(α + sin α cos α) (36)

† The use of Hencky equations and the assumption of elastic incompressibility lead to the expres-
sion τ = πGaθ/(2α + 2 cot α).The corresponding values of M and T , when θ/ψ is held constant, are
found to be in close agreement with those given by the Prandtl-Reuss theory.
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where T0 = 2πka2t is the yield point torque in pure torsion. Using the value of
Eaψ/k given by (36), the stresses in the plastic region can be expressed in terms of
the applied couples as

σ

k
= ± π sin α

α + sin α cos α

M

T0

τ

k
= T

T0

As the cross section is rendered increasingly plastic, the magnitude of σ/k rapidly
approaches the limiting value πM/2T0. Inserting from above into (17) gives

π2

3

(
sin α

α + sin α cos α

)2 (
M

T0

)2

+
(

T

T0

)2

= 1 (37)

This is the relationship between M and T for any given position of the elastic/plastic
boundary. As α decreases from π/2, the coefficient of (M/T0)2 decreases from
its initial value of 4/3, and approaches the limiting value π2/12 corresponding to
the fully plastic state. From (36) and (37), the angle of bend at any stage may be
expressed as

Eaψ

k
=

{
1

3
sin2 α + T2

π2M2 (α + sin α cos α)2
}−1/2

(38)

which reduces to that given by (34) when α = π/2. If the ratio of the applied couples
is given at each stage, (38) defines the relationship between ψ and α. Equations (35)
and (36) then uniquely determine σ, τ, and M. The variation of the bending moment
with the angle of bend is shown graphically in Fig. 3.9 for constant values of M/T .
The limiting value of M/T0, which is equal to (π2/12 + T2/M2)−1/2 in view of
(37), is indicated in each case by a broken line. The approach to the limit is seen to
be extremely rapid.†

Plane transverse sections become warped when the tube becomes partly plastic,
the warping displacement at any point on the circumference being denoted by w.
The longitudinal and shear strain increments, denoted dε and dγ , are related to dψ

and dθ by the equations

dε = a sin φ dψ 2dγ = a dθ + 1

a

∂

∂φ
(dw)

If geometry changes are disregarded, the incremental warp dw is equal to (∂w/∂ψ)
dψ. In the plastic regions, the Prandtl-Reuss stress–strain relations give

dγ − dτ/2G

dε − dσ/E
= 3τ

2σ
(|φ| � α)

† When the tube is deformed under a constant value of θ/ψ, the applied couples approach their
limiting values in an oscillatory manner. See R. Hill and M. P. L. Seibel, Phil. Mag., 42: 722 (1951).
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Figure 3.9 Variation of the bending couple with the angle of bend under constant T/M ratios. The
asymptotes are shown by broken lines.

Substituting for the strain increments, and using (17), we obtain

1

a

∂

∂φ

(
∂w

∂ψ

)
+ a

dθ

dψ
= 1

E

{
2(1 + ν) + 3τ2

k2 − τ2

}
dτ

dψ
±

√
3 τa sin φ√
k2 − τ2

Because of symmetry, ∂w/∂ψ must vanish at the extremities of the horizontal and
vertical diameters of the tube. Integration of the above equation in the upper plastic
region therefore gives

∂

∂ψ

(w

a

)
=

(π

2
− φ

){
a

dθ

dψ
−

[
2(1 + ν) + 3τ2

k2 − τ2

]
1

E

dτ

dψ

}

−
√

3 τa cos φ√
k2 − τ2

α � φ � π

2
(39a)

In the lower plastic region, ∂w/∂ψ has the same magnitude but an opposite sign. In
the elastic region, the stress–strain relation dγ = dτ/2G leads to

∂

∂ψ

(w

a

)
=

{
2

E
(1 + ν)

dτ

dψ
− a

dθ

dψ

}
φ −α � φ � α (39b)

Since w should be a continuous function of position round the periphery, ∂w/∂ψ

is necessarily continuous at each point. In view of equations (39), the continuity
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condition at φ = α furnishes

{
2(1 + ν) −

[
6α

π
− (1 − 2ν)

]
τ2

k2

}
1

Ea

dτ

dψ
=

(
1 − τ2

k2

)
dθ

dψ
− 2

√
3 τ

πk

√
1 − τ2

k2 cos α

(40)

If the loading path is prescribed, (40) gives dθ/dψ as a function of ψ or α, and θ

can be obtained by integration using the initial yield values (34). If, on the other
hand, the strain path is given, so that θ is a prescribed function of ψ, the differential
equation (40) can be solved numerically with the help of (35b) to determine τ and α.
The corresponding bending couple then follows from (36).

When θ is a known function of ψ, the warping displacement w can be determined
by the integration of (39). In the elastic region (|φ| � α), the warping function
immediately follows from (39b) and the fact that w = 0 for ψ = 0. Substituting for
dθ/dψ into equation (39a), the differential equation for the warping in the plastic
region is reduced to

∂

∂ψ

(w

a

)
= −α

E

(
1 − 2φ

π

)
3τ2

k2 − τ2

dτ

dψ
+

[(
1 − 2φ

π

)
cos α − cos φ

] √
3 aτ√

k2 − τ2

Let ψ0 and τ0 denote the values of ψ and τ when a given element, specified by the
angle φ, first becomes plastic. If θ0 is the corresponding value of θ, then

w

a
=

(τ0

G
− aθ0

)
φ − 3

E

(
1 − 2φ

π

) ∫ τ

τ0

ατ2dτ

k2 − τ2

+ √
3 a

∫ ψ

ψ0

[(
1 − 2φ

π

)
cos α − cos φ

]
τ dψ√
k2 − τ2

α � φ � π

2
(41)

For a given value of M/T , the ratio Eaψ0/k is given by the right-hand side of (38)
with α replaced by φ. The value of τ0/k is obtained from (35b), where ψ0 and φ

must be written for ψ and α respectively. Figure 3.10 shows the variation of w/a
with φ for ν = 0.3, when the ratio M/T has a constant value of unity, and the plastic
boundary corresponds to α = 25◦.

For the preceding analysis to be valid, it is essential that no plastic element
unloads during the deformation. This condition is satisfied if the rate of plastic work
is nowhere negative. In view of the flow rule, the validity of the solution requires

σ(dε − dσ/E) � 0 |φ| � α

Since ε = aψ sin φ and σ = ±Eaψ sin α, the inequality becomes

(|sin φ| − sin α) dψ − ψ cos α dα � 0 |φ| � α

The above restriction is certainly satisfied when the bending is monotonic (dψ > 0)
and the plastic zone steadily increases in size (dα < 0). These conditions are fulfilled
in the numerical solutions presented in Figs. 3.9 and 3.10.
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Figure 3.10 Distribution of axial displacement, representing warping, when α = 25◦ and M/T = 1.

(iii) Combined tension and internal pressure A thin-walled tube with closed ends
is loaded in the plastic range by the combined action of an internal pressure p and an
independent axial tensile force N . The elastic strains are negligible compared to the
plastic strains, so that a rigid/plastic model would be justified for the analysis. So
long as the rate of hardening exceeds a certain critical value, the deformation of the
tube is uniquely determined by the applied loads which are varied in a prescribed
manner. If r is the current mean radius of the tube and t the current wall thickness,
the circumferential stress σθ and the axial stress σz at any stage are given by

σθ = pr

t
σz = (1 + α)

pr

2t
(42)

where α denotes the ratio N/πr2p between the independent axial force and the
end load due to the internal pressure. According to the Lévy-Mises flow rule, the
components of the strain increment are given by

dεθ

2σθ − σz
= dεz

2σz − σθ

= − dεr

σθ + σz
= dε

2σ

where dεr is the thickness strain increment dt/t, and dε the equivalent strain
increment. Since 2σz/σθ = 1 + α, the equivalent stress is

σ =
√

σ2
θ − σθσz + σ2

z = 1
2σθ

√
3 + α2

in view of which, the principal strain increments become

dεθ = (3 − α)dε

2
√

3 + α2
dεr = − (3 + α)dε

2
√

3 + α2
dεz = α dε√

3 + α2
(43)
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Since the equivalent strain must be positive, it follows from (43) that dεθ ≷ 0 for
α≷ 3, dεz � 0 for α� 0, and dεr < 0 for all α.

The deformation of the tube ceases to be uniform when the rate of hardening
decreases to a critical value. At this stage, the internal energy dissipated during a
further infinitesimal deformation, computed to the second order of smallness, equals
the work done by the external forces. It is reasonable to suppose that both N and p
attain stationary values at the onset of instability.† The corresponding change in α

is given by

dα

α
= d

(
ln

N

r2p

)
= −2

dr

r
= −2dεθ

since dN = dp = 0 when instability sets in. The logarithmic differentiation of (42)
then gives

dσθ

σθ

= dεθ − dεr = 3dε√
3 + α2

dσz

σz
=

(
1 − α

1 + α

)
dεθ − dεr =

√
3 + α2

1 + α
dε

Differentiating the von Mises yield criterion, and eliminating 2σθ −σr and 2σr −σθ

by means of the flow rule, it is easy to show that

dσ dε = dσθ dεθ + dσz dεz

Substituting for dσθ and dσz from the preceding relations, and using the values of
dεθ and dεz given by (43), we get

1

σ

dσ

dε
=

(
9 + α3

3 + α2

)
σθ

2σ
= 9 + α3

(3 + α2)3/2 (44)

as the condition for plasticity instability when α� 0. The quantity on the left-hand
side of (44) is the reciprocal of the critical subtangent to the generalized stress–strain
curve. For a given material, the instability strain therefore depends on the final stress
ratio, which must be determined from the prescribed loading path. Since the stress
ratio remains constant for α = 0 (internal pressure alone), α = 3, and α = ∞ (axial
force alone), equation (44) provides the complete solution in these cases.

To obtain the solution for a variable stress ratio, consider the particular loading
path in which the ratio N/p is held constant. Then dα = −2α dεθ throughout the
loading, and (43) gives

dε = −
√

3 + α2

α(3 − α)
dα

† H. W. Swift, J. Mech. Phys. Solids, 1: 1 (1952); Z. Marciniak, Rozpr. Inz., 110: 529 (1958);
B. Storakers, Int. J. Mech. Sci., 10: 519 (1968). Useful experimental results have been reported by
B. H. Jones and P. B. Mellor, J. Strain Anal., 2: 62 (1967); E. A. Davis, J. Appl. Mech., 12: 13 (1945).
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It may be noted that dα≷ 0 for α≷ 3. If α0 denotes the initial value of α, integration
of the above equation results in†

ε = −
∫ α

α0

√
3 + α2

α(3 − α)
dα = f (α) − f (α0)

where

f (α) = ln(α +
√

3 + α2) + 1√
3

ln

(√
3 + √

3 + α2

α

)

− 2√
3

ln

(
±

√
3

2
+ 2

√
3 + √

3 + α2

|3 − α|

)
(45)

The upper sign holds when α > 3 and the lower sign when α < 3. Since ε is positive,
f (α) increases with the deformation of all variable stress ratios.‡

The solution is most conveniently obtained by representing the strain-hardening
characteristic by the power law σ = C εn, which makes the left-hand side of (44)
equal to n/ε. Then ε and f (α) − f (α0) can be plotted against α for various values of
n and α0 respectively, as shown in Fig. 3.11. The points of intersection define the
required values of ε and α at the onset of instability. The circumferential strain at
instability is then obtained from the fact that the ratio of the final to the initial radius
of the tube is equal to

√
α0/α for nonzero values of N and p. The ratio of the final

and initial thicknesses is obtained by the integration of the equation

dt

t
= −

(
3 + α

3 − α

)
dεθ =

(
3 + α

3 − α

)
dα

2α

which follows from the first two relations of (43). Thus§

t

t0
=

(
3 − α0

3 − α

)√
α

α0

r

r0
=

√
α0

α

When α = α0 = 0, an independent analysis gives r/r0 = t0/t = exp(n/2). Similarly,
when α = α0 = 3, it is easily shown that r/r0 = 1 and t/t0 = exp(−n). The instability
or bursting pressure is finally obtained from the first relation of (42), using the fact
that σθ is equal to 2C εn/

√
3 + α2, the values of ε and α at instability being found

from Fig. 3.11 for any given α0.

† J. Chakrabarty, METU J. Pure Appl. Sci., 3: 29 (1970).
‡ For an analysis of the instability problem based on the assumption of constant stress ratio asso-

ciated with either the internal pressure or the axial force attaining a maximum, see W. T. Lankford and
E. Saibel, Metals Technology, T. P. 2238 (1947), and P. B. Mellor, J. Mech. Eng. Sci., 1: 251 (1962).

§ Plastic instability in tubes of finite length has been examined by W. A. Weil, Int. J. Mech. Sci., 5:
487 (1963), and by J. K. Banerjee, ibid., 17: 659 (1975).
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Figure 3.11 Plastic instability of closed-ended tubes under combined internal pressure and axial tension.

3.4 Pure Bending of Prismatic Beams

(i) Symmetrical bending Consider a uniform prismatic bar bent by two equal and
opposite couples Mapplied at its ends (Fig. 3.12). The cross section of the beam
has an axis of symmetry Oy, and the axis of the bending couple is parallel to Oz,
where O is taken on the neutral plane. The plane of bending then coincides with
the xy plane, the neutral fiber Ox being bent to a circular arc of radius R. During
the elastic bending, O is situated at the centroid of the cross section, and the only
nonzero stress σx = σ is given by

σ = Ey

R
= My

Iz

where E is Young’s modulus for the material, and Iz the moment of inertia of the
cross section about the neutral axis Oz.

The longitudinal strain in the elastic beam is εx = y/R, and this is accompanied
by the transverse strains εy = εz = −νy/R, where ν is Poisson’s ratio. If the compo-
nents of the displacement are denoted by u, v, and w with respect to the coordinate
axes, then

∂u

∂x
= y

R

∂v

∂y
= ∂w

∂z
= −νy

R

∂u

∂y
+ ∂v

∂x
= ∂u

∂z
+ ∂w

∂x
= ∂v

∂z
+ ∂w

∂y
= 0
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Figure 3.12 Bending of a prismatic beam under terminal couples.

Assuming an element of the x axis and an element of the yz plane to be fixed in
space at x = y = z = 0, the solution is obtained from the conditions u = v = w = 0
and ∂v/∂x = ∂w/∂x = ∂w/∂y = 0 at the origin of coordinates. The result is†

u = xy

R
v = −x2 + ν(y2 − z2)

2R
w = −νyz

R
(46)

The deformation is such that transverse planes remain plane during the bending.
The neutral plane xz, and every parallel plane, is deformed into an anticlastic surface
having a transverse curvature ν/R with an upward convexity.

Yielding first occurs in the fiber that is farthest from the neutral surface, when
the longitudinal stress becomes numerically equal to Y . If the cross section is not
symmetrical about the neutral axis Oz, the plastic zone spreads inward from this
side before the other side begins to yield. The subsequent bending of the beam
involves two separate plastic zones, with the elastic/plastic boundaries situated at
equal distances c = (Y/E)/R from the neutral surface. The position of the neutral
surface varies with the amount of bending, and is determined from the condition of
zero resultant longitudinal force across any transverse section, namely∫

σb(y)dy = 0

where b is the width of the cross section at any distance y from Oz. If Oz is an axis
of symmetry of the cross section, the neutral axis coincides with the centroidal axis
in both elastic and plastic ranges of the bending.

It is customary to assume that the state of stress is uniaxial even when the
beam is partly plastic. This, however, is not strictly correct, as may be seen by
considering the deformation of the beam. During a small incremental distortion, the
anticlastic curvature changes by the amount νd(1/R) in the elastic region, and by
the amount ηd(1/R) in the plastic region, where η denotes the contraction ratio for
the material beyond the yield point. The elements would not therefore fit together

† See, for example, S. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd ed., Chap. 10,
McGraw-Hill Book Co., New York (1970).
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at the elastic/plastic interface except in the special case η = ν = 1
2 . It follows that

the preceding theory of elastic/plastic bending would be strictly valid only if the
material is incompressible. For ν < 1

2 , the necessary continuity restriction cannot be
maintained without introducing transverse stresses, which affect the shape of the
plastic boundaries.† The problem then becomes extremely complicated. According
to the simplified treatment,‡ the displacement in both elastic and plastic regions
is given by (46) with the appropriate value ν = 1

2 , so long as the deformation is
sufficiently small.

The stress σ in the elastic region varies linearly from zero on the neutral axis
to a magnitude Y on the elastic/plastic boundary. In a plastic fibre, the stress has
the local yield value in tension or compression, and is a given function of the strain
|y/R|. The bending moment at any stage can be calculated from the expression

M =
∫

σyb(y)dy

For an annealed material, the elastic/plastic interface disappears, but the integral can
still be evaluated from a given stress–strain law holding over the entire cross section.
For a nonhardening material, the ratio of the fully plastic moment to the initial yield
moment of a given cross section is called the shape factor.

(ii) Rectangular and circular cross sections As a first example, consider the bend-
ing of a beam whose cross section is a rectangle of depth 2h and width b, the bending
couple being applied in the vertical plane (Fig. 3.13a). In view of the symmetry of
the cross section, the neutral axis always passes through its centroid, the moment of
inertia about this axis being Iz = 2

3 bh3. Plastic yielding begins at y = ±h when the
bending moment and the radius of curvature become

Me = 2

3
bh2Y Re = Eh

Y

The radius of curvature at any stage during the elastic/plastic bending is R = Ec/Y ,
where c is the semidepth of the elastic core. It is supposed that the material strain-
hardens according to the law

σ

Y
=

(
Eε

Y

)n

ε � Y

E

where 0 � n < 1. Evidently, σ and ε are equal to the magnitudes of the longitudinal
stress and strain in the plastic regions. Since ε = |y/R|, the stress distribution on the

† R. Hill, The Mathematical Theory of Plasticity, p. 82, Clarendon Press, Oxford (1950).
‡ J. W. Roderick, Phil. Mag., 39: 529 (1948); J. W. Roderick and J. Heyman, Proc. Inst. Mech.

Eng., 165: 189 (1951). For experimental support, see J. W. Roderick and I. H. Phillipps, Research (Eng.
Struct. Suppl), Colston Papers, 2: 9 (1949). The effect of upper yield point on the bending of beams has
been discussed by C. Leblois and C. Massonnet, Int. J. Mech. Sci., 14: 95 (1972).
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Figure 3.13 Geometry and stress distribution for the elastic/plastic bending of beams of rectangular
and circular cross sections for work-hardening materials.

tension side of the cross section may be written as

σ = Y
(y

c

)
0 � y � c

σ = Y
(y

c

)n
c � y � h

(47)

In view of the symmetry of the cross section, the bending moment at any stage is
given by

M = 2b
∫ h

0
σy dy

Substituting from (47) and integrating, the relationship between the bending moment
and the curvature may be expressed as†

M

Me
= 1

2 + n

{
3

(
Re

R

)n

− (1 − n)

(
R

Re

)2
}

(48)

For a nonhardening material (n = 0), the moment-curvature relationship reduces to
that given by (9). The variation of M/Me with Re/R is shown graphically in Fig. 3.14
for several values of n. The bending moment increases steadily with the curvature,
except when n = 0, for which there is a limiting moment equal to 1.5 Me. The shape
factor for a beam of rectangular cross section is therefore 1.5.

If the bending moment of an elastic-plastic beam is released by an amount M ′, a
purely elastic stress equal to −M ′y/Iz is superposed on (47). The residual curvature
of the beam is obtained by subtracting the spring-back curvature M ′/EIz from the

† Numerical solutions for work-hardening beams of rectangular, circular and hexagonal cross
sections, based on the Ramberg-Osgood equation for the stress–strain curve, have been obtained by
J. Betten, Ing.-Archiv., 44: 199 (1975).
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Figure 3.14 Moment-curvature relationship for work-hardening beams of rectangular cross section in
pure bending.

elastic/plastic curvature 1/R. If M ′ is continued to increase in the opposite sense,
yielding will occur in compression at y = h and tension at y = −h when

M ′

Me
= 1 +

(
h

c

)n

= 1 +
(

Re

R

)n

(49)

provided there is no Bauschinger effect. Thus, for a nonhardening material (n = 0),
the elastic range of bending moment† is always equal to 2Me, as shown in Fig. 3.15a.
As the bending is continued in the negative sense, the resultant bending moment of
the nonhardening beam approaches the value −1.5 Me in an asymptotic manner.
When the magnitude of the negative curvature becomes equal to or greater than that
at the instant of unloading, the bending moment is identical to that required to bend
the beam monotonically to this curvature from the unstrained state.

† The springback on unloading has been discussed by W. Johnson and T. X. Yu, Int. J. Mech. Sci.,
23: 687 (1981). See also T. X. Yu and L. C. Zhang, Plastic Bending Theory and Applications, World
Scientific, Singapore (1996).
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Figure 3.15 Moment-curvature diagrams for rectangular sections. (a) Effects of unloading and reversed
loading without hardening; (b) Nadai’s construction for an annealed beam.

The stress–strain curve of a material in uniaxial tension or compression may
be derived from an experimentally determined relationship between the bending
moment M and the angle of bend α measured over a length l. We begin by writing
the moment in the form

M = 2bR2
∫ ε0

0
σε dε ε0 = h

R

Multiplying the expression for M by α2, and using the fact that R2α2 = l2, we obtain
the derivative

d

dα
(Mα2) = 2bh2ασ0

where σ0 is the tensile stress corresponding to the strain ε0 occurring at the boundary
y = h. The relationship between σ0 and ε0 may therefore be written as

σ0 = 1

2bh2

(
α

dM

dα
+ 2M

)
ε0 = hα

l
(50)

If a tangent is drawn at any point P on the (M, α) curve to meet the M axis at Q, then
the projection of PQ parallel to the M axis represents the first term in the parenthesis
of (50), as indicated in Fig. 3.15b. A graphical construction of a (σ0, ε0) curve on
the basis of a given (M, α) curve is therefore possible.

Consider now a beam of circular cross section subjected to pure bending in the
vertical diametral plane. The moment of inertia of the cross section about the neutral
axis, which coincides with the horizontal diameter, is equal to πa4/4, where a is the
radius of the circular boundary.Yielding first occurs at the extremities of the vertical
diameter when M and R attain the values

Me = π

4
a3Y Re = Ea

Y
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A typical elastic/plastic stage is specified by the distance c of the plastic boundary
from the neutral axis (Fig. 3.13b). The elastic/plastic bending moment is given by

M = 2
∫ a

0
σyb(y)dy = 4

∫ a

0
σy

√
a2 − y2 dy

where σ = (y/c)Y for y � c, and σx = Y for y � c, work-hardening being neglected.
Carrying out the integration, the result may be expressed as

M

Me
= 2

π


1

3

(
5 − 2c2

a2

)√
1 − c2

a2 + a

c
sin−1 c

a


 (51)

The radius of curvature of the elastic/plastic beam is c/a times that at the initial
yielding.As the cross section is rendered increasingly plastic, the ratio M/Me rapidly
approaches the asymptotic value 16/3π � 1.698, which is the shape factor for a
circular cross section.

(iii) Solution for a triangular cross section Consider, now, the pure bending of a
beam whose cross section is an isosceles triangle of height h and base width b (Fig.
3.16). While the beam is purely elastic, the stress varies linearly across the depth of
the cross section, with the neutral axis situated at a distance 2

3 h below the apex A of
the triangle. The moment of inertia of the cross section about the neutral axis is then
equal to bh3/36. The yield point is first reached in compression at the outermost
point A, the values of M and R at the initial yielding being

Me = 1

24
bh2Y Re = 2Eh

3Y

For M > Me, there is at first a single plastic zone whose inner boundary is at some
distance c from the instantaneous neutral axis Oz. If the material is nonhardening,

Figure 3.16 Elastoplastic bending of a beam of triangular cross section. (a) 1 � M/Me � 1.804;
(b) 1.804 � M/Me � 2.344.
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the stress in the plastic triangle of height d is a uniform compression of amount Y .
The stress in a typical elastic element is (y/c)Y , and the local width of the cross
section is b(d + c + y)/h. The resultant force across the section would vanish if

∫ h−c−d

−c
(c + d + y)y dy = 1

2 cd2

which leads to the relationship

c

h
= 1

3

(
2 + d3

h3

)
− d

h
(52)

The neutral axis progressively moves downward till the beam begins to yield also
on its tension side. The first elastic/plastic phase therefore continues so long as
2c � h − d, which condition is equivalent to

1 − 3d

h
+ 2d3

h3 � 0 or
d

h
�

√
3 − 1

2
� 0.366

The bending moment at any stage of the first elastic/plastic phase is†

M = bd2

2h

(
d

3
+ c

)
Y + bY

ch

∫ h−c−d

−c
(c + d + y)y2 dy

obtained by taking moment about the instantaneous neutral axis Oz. Evaluating the
integral, and using (52), we obtain

M

Me
= 2

(
1 − 4d3/h3 + 3d4/h4

2 − 3d/h + d3/h3

)
d

h
� 0.366 (53)

At the end of the first elastic/plastic phase, M/Me � 1.804 and c/h � 0.317. If the
bending moment is increased further, a second plastic zone is formed near the base of
the triangle. The neutral axis at each stage is equidistant from the two elastic/plastic
boundaries. The condition of zero resultant force across the section then becomes∫ c

−c
(c + d + y)y dy = 1

2 c[d2 − h2 + (d + 2c)2]

or

d

h
=

√
1

2
− c2

h2 − c

h
(54)

† A. Nadai, Theory of Flow and Fracture of Solids, vol. I, p. 358, McGraw-Hill Book Company,
New York (1950).
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The neutral axis slowly moves upward as the two plastic boundaries approach one
another. The bending moment during the second elastic/plastic phase is given by

M = bd2

2h

(
d

3
+ c

)
Y + bY

ch

∫ c

−c
(c + d + y)y2 dy + bY

h

∫ h−d−2c

c
(c + d + y)y dy

in view of the stress distributions in the elastic and plastic regions. Using (54), the
moment can be expressed in the form

M

Me
= 8


1 −

(
1 + 4c2

3h2

) √
1

2
− c2

3h2


 c

h
� 0.317 (55)

The radius of curvature of the neutral surface is Ec/Y throughout the elastic/plastic
bending. As the cross section becomes fully plastic, the two plastic boundaries
coincide with the neutral axis, giving d/h = 0.707 and M/Me � 2.344 in the limiting
state. The limiting value of the moment is very closely attained while the curvature
of the beam is still of the elastic order of magnitude.†

(iv) Unsymmetrical bending Consider a prismatic beam of arbitrary cross section
whose principal axes of inertia are Oy and Oz passing through the centroid O.

Suppose that the bending couple M is applied in an axial plane passing through the
line mm, inclined at a counterclockwise angle α to the y axis (Fig. 3.17a). The vector
representing the moment M can be resolved into two components of magnitudes
M cos α and M sin α along the principal axes. So long as the beam is elastic, the
resultant longitudinal stress at any point P of the cross section may be written as

σ = My

Iz
cos α + Mz

Iy
sin α (56a)

where Iy and Iz are the principal moments of inertia of the cross section. Since the
stress vanishes along the neutral axis, the equation of this axis is

y

Iz
cos α + z

Iy
sin α = 0

If θ denotes the angle which the elastic neutral axis makes with the z axis in the
counterclockwise sense, then

tan θ = −y

z
= Iz

Iy
tan α (56b)

When the principal axes are distinct, θ is different from α, except when α is either
zero or π/2. It follows that the plane of bending does not coincide with the plane of
the applied couple unless the latter coincides with one of the principal planes of the
beam. If the cross section has an axis of symmetry, which coincides with one of the

† The elastic/plastic bending of a circular plate under an all-round couple has been treated by
F. A. Gaydon and H. Nuttall, J. Mech. Phys. Solids, 5: 62 (1956).



Chakra-03.tex 13/1/2006 15: 9 Page 161

elastoplastic bending and torsion 161

Figure 3.17 Unsymmetrical bending of a beam. (a) An arbitrary cross section; (b) a typical yield locus.

principal axes of inertia, (56b) immediately furnishes the orientation of the neutral
axis corresponding to any given axis of the applied moment.

As the beam is rendered increasingly plastic by the bending couple applied in a
given plane, which is not a plane of symmetry of the beam, the neutral axis generally
rotates during the bending. The complete elastic/plastic analysis for unsymmetrical
bending leads to complicated expressions even for relatively simple cross sections.
The determination of the fully plastic moment is, however, fairly straightforward
for any cross section when the direction of the neutral axis is given. It will be
assumed, for simplicity, that the material of the beam is ideally plastic. Referring
to Fig. 3.17a, suppose the cross section is brought to the fully plastic state by a
bending couple such that the neutral axis makes an angle β with Oz. Since both
sides of the neutral axis are uniformly stressed to the yield point, the line nn must
divide the cross section into equal areas so as to give zero resultant force across the
section. The centroid O of the entire cross section therefore bisects the line TC join-
ing the centroids of the tension and compression sides. The magnitude of the fully
plastic moment is M0 = YAr, where A is the total area of the cross section and 2r
the length of the line TC, the direction of which defines the plane of the applied
moment.† The components of the bending moment and the direction of their
resultant are given by‡

Mz = YAyT My = YAzT tan α = zT

yT

where (yT , zT ) are the rectangular coordinates of point T . A graphical plot of My
against Mz defines a yield locus of the type shown in Fig. 3.17(b). The radius vector
to a generic point P on the yield locus defines the plastic moment in direction and
magnitude. The normal to the yield locus at P is in the direction of the corresponding

† E. H. Brown, Int. J. Mech. Sci., 9: 77 (1967); J. Heyman, Proc. Inst. Civ. Eng., 41: 751 (1968).
‡ The components My and Mz are taken as positive when they produce clockwise and counter-

clockwise moments respectively about the positive y and z axes.
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Figure 3.18 Unsymmetrical bending of a beam of rectangular cross section. (a) Geometry; (b) yield
locus.

neutral axis. Since My and Mz are merely reversed in sign when α is increased by
π, the yield locus is generally skew-symmetric around the origin of the moment
plane. The directions of the maximum and minimum diameters of the yield locus
correspond to α = β, and represent the plastic principal axes which are not generally
orthogonal.

We shall now derive an explicit solution for the unsymmetrical bending of a beam
of rectangular cross section† of width 2a and height 2h. In view of the symmetry
of the cross section, the neutral axis passes through the centroid in both the elastic
and plastic range of bending (Fig. 3.18a). The initial yielding of the cross sections
occurs at the opposite corners farthest from the neutral axis when the longitudinal
stress is of magnitude Y . Equations (56) therefore furnish

Me =
4
3 ah2Y

cos α + (h/a)sin α
tan θ = h2

a2 tan α (57)

The solution for the fully plastic state is most conveniently obtained by finding the
position of the centroid of the area on either side of the neutral axis, which is inclined
at an angle β to the horizontal axis of symmetry. When the neutral axis meets the
vertical sides of the cross section as shown, the coordinates of the centroid T of the
tension side are found to be

yT = h

2

(
1 − a2

3h2 tan2β

)
zT = a2

3h
tan β tan β � h

a

† This problem has been discussed by A. J. Barrett, J. R. Aeronaut, Soc., 57: 503 (1953), and
H. B. Harrison, Struct. Eng., 41: 231 (1963). For an elastic/plastic analysis of the bending problem, see
M. S. Aghbabian and E. P. Popov, Proc. First U.S. Nat. Congr. Appl. Mech., 1: 579 (1951).
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For higher values of β, the neutral axis meets the rectangle on its horizontal sides,
and the rectangular coordinates of T become

yT = h2

3a
cot β zT = a

2

(
1 − h2

3a2 cot2β

)
tan β � h

a

The two sets of equations for yT and zT completely define a centroidal locus which
is symmetrical about the coordinate axes. The direction of the applied moment is
given by

tan α = 2 tan β

3h2/a2 − tan2β
tan β � h

a

tan α =
1
2 tan β

3a2/h2 − cot2β
tan β � h

a

(58)

It may be noted that tan α≷ a/h for tan β ≷ h/a. The neutral axis is therefore along
a diagonal of the cross section when the plane of the applied moment passes through

the opposite diagonal. Since r =
√

y2
T + z2

T , the value of the fully plastic moment is
given by

M0 = 2

3
a3Y

{(
3h2

a2 − tan2β

)2

+ 4 tan2β

}1/2

tan β � h

a

M0 = 2

3
h3Y

{(
3a2

h2 − cot2β

)2

+ 4 cot2β

}1/2

tan β � h

a

(59)

Equations (58) and (59) give the relationship between M0 and α parametrically
through the angle β. From (57), (58), and (59), the shape factor M0/Me can be
expressed as

M0

Me
= 1

2

(
1 + a

h
tan β

)(
3 − a

h
tan β

)
tan β � h

a

M0

Me
= 1

2

(
1 + h

a
cot β

)(
3 − h

a
cot β

)
tan β � h

a

(60)

The shape factor has a maximum value equal to 2.0 corresponding to tan β = h/a.
Setting β = 0 or π/2 in (60) furnishes a shape factor of 1.5, in agreement with the
result for symmetrical bending. From (59), it is possible to express β in terms of α as

tan β = −cot α +
√

3h2

a2 + cot2α tan α � a

h

tan β = −tan α +
√

3a2

h2 + tan2α tan α � a

h
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The total rotation of the neutral axis during bending from the elastic to the fully
plastic state is given by the difference between the angles θ and β for any given
α. The rotation is counterclockwise for 0 < α < tan−1(a/h), and clockwise for
tan−1(a/h) < α < π/2. The rotation vanishes when the axis of bending coincides
with one of the axes of symmetry or through one of the diagonals of the rectangle.

The components Mz and My of the fully plastic moment are 4ahY times yT and
zT respectively. Eliminating β, and setting mz = Mz/2ah2Y and my = My/2ha2Y ,
we obtain the dimensionless interaction relations

mz + 3
4 m2

y = 1(my � 2
3 ) my + 3

4 m2
z = 1(my � 2

3 ) (61)

which define the first quadrant of the yield locus shown in Fig. 3.18b. As expected,
the yield locus is symmetrical about its axes of reference. The ratio of the partial
derivatives of the yield function with respect to My and Mz is equal to tan β, which
is in agreement with the normality rule for the direction of the neutral axis. The
principal axes of bending coincide with the axes of symmetry of the cross section
in both the elastic and plastic ranges.†

3.5 Bending of Beams Under Transverse Loads

(i) Basic principles When a beam is bent by transverse loads, which are assumed
here to act in a plane of symmetry, the bending moment varies along the length of the
beam. The corresponding variation of curvature along the beam usually produces
a complicated shape of the bent axis, which is known as the deflection curve. It is
assumed, as usual, that deflections due to shearing and axial forces are negligible
compared to those due to bending. The relationship between the bending moment
and the curvature is therefore identical to that for pure bending in both the elastic
and plastic ranges. If the material is nonhardening, and the cross section rectangular,
the moment-curvature relationship for continued loading may be written as

Re

R
= M

Me
|M| � Me

Re

R
= ±

(
3 − 2

∣∣∣∣ M

Me

∣∣∣∣
)−1/2

|M| � Me

(62)

where Me and Re correspond to the elastic limit. The sign of the curvature 1/R is
identical to that of the bending moment M, which is considered positive when it
has a sagging effect on the beam. Since R/Re is numerically equal to c/h for an
elastic/plastic section, where 2h is the depth of the beam and 2c that of the elastic
core, we have ∣∣∣∣ M

Me

∣∣∣∣ = 1

2

(
3 − c2

h2

)
0 � c � h (62a)

† Equations (61) approximately hold, with appropriate normalizing moments, for most other doubly
symmetric solid and closed hollow sections.
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The slope of the deflection curve changes discontinuously at a fully plastic cross
section where the curvature becomes infinitely large. In reality, the discontinuity is
the limit of a narrow region through which the slope changes rapidly in a continuous
manner.

The shearing force at any elastic/plastic cross section is carried entirely by the
elastic core, as may be seen by considering the equation of longitudinal equilibrium
and the yield criterion. If the longitudinal and shear stresses in a typical plastic
element are denoted by σ and τ respectively, then

∂σ

∂x
+ ∂τ

∂y
= 0 σ2 + 3τ2 = Y2 (63)

where the x axis is taken along the central axis of the beam, and the y and z axes
parallel to the vertical and horizontal sides of the cross section. For a beam loaded
by normal forces, τ = ∂τ/∂x = 0 along y = ±h, and it follows from (63) that

∂σ

∂x
= ∂τ

∂y
= ∂σ

∂y
= 0 at y = ±h

By successive differentiation of (63), it is easily shown that all the higher-order
derivatives of σ and τ also vanish at y = ±h. The shear stress therefore vanishes
everywhere in the plastic regions, where the longitudinal stress has the constant
magnitude Y . Since the depth of the elastic core decreases as the bending proceeds,
the maximum shear stress on a given elastic/plastic cross section must increase with
progressive bending.

The downward displacement v of any particle on the longitudinal axis of the
beam is assumed to be small compared with the dimensions of its cross section.
Then the local curvature of the bent axis is numerically equal to ∂2v/x2 to a close
approximation. If ψ denotes the counterclockwise angle which the tangent to the
deflection curve makes with the x axis, then

ψ � −∂v

∂x

1

R
� ∂ψ

∂x
= −∂2v

∂x2

The second expression is consistent with the fact the curvature is positive when the
bent beam is concave upward. If the problem is statically determined, M is a known
function of x, and the shape of the deflection curve can be determined, in view of (62),
by the direct integration of the differential equation. For a statically indeterminate
problem, the bending moment distribution cannot be determined without recourse
to the displacement.

Consider a pair of neighboring points on the deflection curve situated at hor-
izontal distances x and x + dx from a given point A as shown in Fig. 3.19a. The
counterclockwise angle turned through by this infinitesimal segment is dψ � dx/R.
The distance between the two points where the tangents at the ends of the segment
meet the vertical drawn through a selected point P is dδ = (a − x)dψ. The total angle
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Figure 3.19 Bending of a transversely loaded beam: (a) Geometry of deflected axis; (b) a uniformly
loaded segment.

�ψ turned through by AP in the counterclockwise sense, and the vertically upward
distance �δ of P away from the tangent at A, are†

�ψ =
∫ a

0

dx

R
�δ =

∫ a

0
(a − x)

dx

R
(64)

The deflection of P away from the tangent at some other point B, at a distance l from
A, may be obtained from above by an appropriate change of the limits of integration.
Assuming A and B to be situated at the same horizontal level, the deflection of P
below AB may be written as

δ = −aψA −
∫ a

0
(a − x)

dx

R
= (l − a)ψB −

∫ l

a
(x − a)

dx

R
(65)

where ψA and ψB are the slopes of the deflection curve at A and B respectively. In
an elastic beam, the slope is everywhere continuous, but local discontinuities may
exist in a beam that is elastic/plastic.

The deflection analysis for an elastic/plastic beam is greatly simplified if the
spread of the plastic zone is disregarded. This approximation is equivalent to the
assumption that the beam is made of an idealized I section of negligible web thick-
ness and having the same fully plastic moment M0 as the actual beam. The idealized
beam obviously behaves elastically except at those sections where the bending
moment attains the fully plastic value. The curvature can grow indefinitely at these
sections, permitting the formation of plastic hinges, while the bending moment
remains constant at the magnitude M0. The moment-curvature relationship for the
idealized beam is represented by the dashed lines of Fig. 3.15a.

Figure 3.19b shows a uniformly loaded member of length 2l, carrying a total
load W . It is supposed that the bending moments at the ends A and B, as well as at
the center C, are known. Let the maximum bending moment M occur at a section D,
whose distance from C is denoted by d. Since the shearing force must vanish at

† This is the basis of the well-known moment-area method used in structural mechanics for the
analysis of elastic beams.
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D, the conditions of overall moment equilibrium of the segments of AD and DB
furnish

M = MA + Wl

4

(
1 − d

l

)2

= MB + Wl

4

(
1 + d

l

)2

The elimination of M between these two relations immediately gives d. The maxi-
mum moment M is most conveniently obtained from the condition of overall vertical
equilibrium of DC. The results are

d = MA − MB

W
M = MC + Wd2

4l
(66)

The maximum bending moment occurs to the left of the central section when
MA > MB, and to the right of the central section when MA < MB.

Consider now the deflection of the uniformly loaded member at the point of
maximum bending moment. It is easy to show that the bending moment M at any
distance x from A, in terms of a = l − d, is given by

M − MA = (M − MA)
x

a

(
2 − x

a

)
For an ideal beam section with a unit shape factor, the curvature is equal to M/EI
throughout the bending, where EI is the flexural rigidity. Then the height of D above
the tangent at A is

�δ = I

EI

∫ a

0
(a − x)M dx = (M + MA)

a2

4EI
(66a)

It follows that �δ vanishes when MA = −M, implying that the tangent to the deflec-
tion curve at A in this case passes through D. This conclusion remains valid if
the loading is uniform only over a part of the member, such as AC, provided the
maximum bending moment occurs in the same part.

(ii) Cantilever with a terminal load A uniform cantilever of length l, having a
rectangular cross section of width b and height 2h, is loaded by a concentrated load
W at the free end (Fig. 3.20a). Yielding first occurs at the top and bottom corners of
the built-in end, where the bending moment has its greatest value, the corresponding
load We being such that Me = Wel. When the load W exceeds We, the plastic zones
spread symmetrically inward from the corners, and the yield moment Me is attained
at some distance a from the free end. If M is the bending moment at any section, then

We

W
= a

l

M

Me
= −x

a

where x is measured from the free end of the cantilever. If c denotes the semiheight
of the elastic core at any partially plastic section, then c/h = R/Re. The bending
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Figure 3.20 Cantilever loaded by a concentrated end load. (a) Any elastic/plastic state; (b) collapse
state.

moment relationship (62a) for the elastic/plastic region therefore furnishes

( c

h

)2 = 3 − 2x

a
= 3 − 2x

l

(
W

We

)
(67)

This shows that the plastic boundary is part of a parabola having its vertex on the
central axis at a distance 3

2 a from the free end. The beam eventually collapses when
the bending moment at the built-in cross section attains the fully plastic value 3

2 Me.
The collapse load is therefore equal to 3

2 We, and the corresponding value of a is
equal to 2

3 l.
Since the vertical deflection v decreases as x increases, ∂v/∂x is negative, and its

value algebraically increases with x. Consequently, ∂2v/∂x2 is everywhere positive,
and the differential equations for the deflection curve become

Re
∂2v

∂x2 = x

a
(x � a)

Re
∂2v

∂x2 =
(

3 − 2x

a

)−1/2

(x � a)

in view of (62). Using the facts that ∂v/∂x vanishes at x = l, and is continuous across
x = a, the above equations can be integrated to obtain the slope

∂v

∂x
= − a

Re

[√
3 − 2x

a
−

√
3 − 2l

a

]
a � x � l

∂v

∂x
= − a

Re

[
1

2

(
3 − x2

a2

)
−

√
3 − 2l

a

]
0 � x � a
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Since the displacement v vanishes at the built-in end x = l, the integration of the
above equations results in

v = a2

3Re

[(
3 − 2x

a

)3/2

−
(

3 + l − 3x

a

) √
3 − 2l

a

]
a � x � l

v = a2

3Re

[
5 − x

2a

(
9 − x2

a2

)
−

(
3 + l − 3x

a

) √
3 − 2l

a

]
0 � x � a

(68)

Setting x = 0 in the second relations for ∂v/∂x and v, the angle of rotation ψ and the
deflection δ of the free end of the cantilever may be written as†

ψ

ψe
= We

W

[
3 − 2

√
3 − 2W

We

]

δ

δe
=

(
We

W

)2 [
5 −

(
3 + W

We

) √
3 − 2W

We

] (69)

where ψe and δe are the slope and the deflection at the initial yielding, their values
being

ψe = l

2Re
= Yl

2Eh
δe = l2

3Re
= Yl2

3Eh

The results (69) may be directly obtained by using (64), with the integrals taken
over the entire length of the beam. When the load W just reaches the collapse
value 1.5We, the quantities ψ and δ are seen to have the values 2ψe and 2.22δe
respectively.‡ The distortion of the beam at the moment of collapse is therefore
only of an elastic order of magnitude. Equations (69) also hold for the terminal
slope and the central deflection of a simply supported beam of length 2l, carrying a
concentrated load 2W at the midspan.

The longitudinal stress is distributed linearly in the elastic region of the can-
tilever. This is accompanied by a parabolic distribution of shear stress satisfying the
equation of longitudinal equilibrium. Since the shear stress vanishes in the plastic
region, the longitudinal and shear stress distributions in the elastic core of a partially
plastic cross section may be written as

σ = −
(y

c

)
Y τ = −3W

4bc

(
1 − y2

c2

)
−c � y � c (70)

where y is the vertical distance below the central axis. It may be noted that

dc

dx
= −h2

ac
= −h2W

cMe
= − 3W

2bcY

† The load-deflection relationship expressed by the second equation of (69) is due to J. Fritsche,
Bauingenieur, 11: 851 (1930).

‡ For a statically determinate beam, the ratio of the collapse load to the elastic limit load is always
equal to the shape factor.
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in view of (67). The maximum shear stress at any cross section occurs on y = 0, and
its magnitude is such that the resultant shearing force over the section is equal to W .

The transverse normal stress σy vanishes in the plastic region where τ = 0.
Equilibrium requires, however, that σy must be nonzero in the elastic region. Indeed,
it follows from the condition of vertical equilibrium that

∂σy

∂y
= −∂τ

∂x
= − 3W

4bc2

(
1 − 3y2

c2

)
dc

dx

Substituting for dc/dx and integrating, we get

Yσy =
(

3W

2bc

)2 y

2c

(
1 − y2

c2

)
−c � y � c

An inner plastic zone begins to form at the center of the built-in cross section when
the shear stress at this point attains the value −Y/

√
3 according to the von Mises

yield criterion. If c0 is the value of c at x = l, it follows from (70) and (67) that
yielding occurs at x = l and y = 0 when

2√
3

= 3W

2bc0Y
= hW

lWe

(
3 − 2W

We

)−1/2

(71)

The stress distribution over the elastic part of the built-in cross section at this stage
is given by

σ = −Yy

c0
τ = − Y√

3

(
1 − y2

c2
0

)
σy = 2Yy

3c0

(
1 − y2

c2
0

)

Substitution into the von Mises yield function σ2 − σσy + σ2
y + 3τ2 shows that this

has a maximum value of 1.006 Y2 for y = ±0.68c0. Since the extent of violation
of the yield criterion is only marginal, the stress distribution may be regarded as
statistically admissible.

The shear force that corresponds to τ = −Y/
√

3 attained at each point of the
cross section is F0 = 2bhY/

√
3. Since the actual shear force F is equal to the load

W , we have F/F0 = 2c0/3h in view of (71). The magnitude of the bending moment
at the built-in end, when its center is at the point of yielding, is very closely equal
to the fully plastic moment M ′

0 in the presence of shear. It follows from (67) that†

M ′
0

M0
= 2W

3We
= 1 − c2

0

3h2 = 1 − 3

4

(
F

F0

)2 F

F0
� 2

3
(72)

The restriction F/F0 � 2/3 ensures that the shear stress in the region 0 � x � a
nowhere exceeds the yield stress in shear. If the growth of the inner plastic zone

† B. G. Neal, The Plastic Methods of Structural Analysis, 3d ed., p. 138, Chapman and Hall, London
(1977).
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Figure 3.21 Cantilever having a uniformly distributed load. (a) qe < q < 1.5qe; (b) q = 1.5 qe (shear
neglected).

(Fig. 3.20b) is taken into account,† the coefficient of (F/F0)2 in (72) is found to be
modified to 0.44 approximately, the restriction on the equation being modified to
F/F0 � 0.79.

(iii) Cantilever with a distributed load Suppose that the load carried by the can-
tilever is uniformly distributed over its length, the intensity of the normal pressure at
any stage being denoted by q (Fig. 3.21). From statical considerations, the bending
moment at any distance x from the free end is M = − 1

2 qbx2, where b is the width of
the cross section. Yielding begins at the built-in end when the pressure becomes qe,
such that

qe = 2Me

bl2 = 4

3
Y

(
h

l

)2

The effect of normal pressure on the nature of the stress distribution across the beam
is neglected. For q > qe, the plastic zones would spread symmetrically from top
and bottom to reach some distance a from the free end of the cantilever. Since the
bending moment at x = a must be of magnitude Me, we have

M

Me
= −x2

a2

qe

q
= a2

l2

In view of the assumed moment-curvature relationship, the semi-depth c of the
elastic core of any partially plastic cross section varies according to the equation( c

h

)2 + 2
(x

a

)2 = 3 (73)

The elastic/plastic boundary is therefore part of an ellipse with centre at O, and

having its semiminor and semimajor axes equal to
√

3h and
√

3
2 a respectively. Plastic

† See M. R. Horne, Proc. R. Soc., A207: 216 (1951). Lower and upper bound solutions have been
given by D. C. Drucker, J. Appl. Mech., 23: 509 (1956). The large deflection of a flexible strut has been
treated by T. X. Yu and W. Johnson, Int. J. Nonlinear Mech., 17: 195 (1982).
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collapse occurs when the semimajor axis is l, the values of q and a at this stage being
3
2 qe and

√
2
3 l respectively.

The slope and the deflection of the cantilever during the elastic/plastic loading
can be determined as before. Since the curvature 1/R at any point of the deflection
curve is equal to −∂2v/∂x2, Eqs. (62) give

Re
∂2v

∂x2 = x2

a2 (x � a)

Re
∂2v

∂x2 =
(

3 − 2x2

a2

)−1/2

(x � a)

These equations can be integrated with the boundary conditions v = ∂v/∂x = 0 at
x = l. Using the conditions of continuity of v and ∂v/∂x across x = a, it is easy to
show that

v = a2

2Re

{√
3 − 2x2

a2 −
√

3 − 2l2

a2 − √
2

x

a

(
sin−1 l

a

√
2

3
− sin−1 x

a

√
2

3

)}

a � x � l

v = a2

2Re

{
3

2
− 2x

3a

(
1 − x3

4a3

)
−

√
3 − 2l2

a2 − √
2

x

a

(
sin−1 l

a

√
2

3
− sin−1

√
2

3

)}

0 � x � a

The slope of the deflection curve is given by the derivative of v with respect to x.
At the free end x = 0, the amount of slope ψ and the deflection δ may be expressed
nondimensionally as

ψ

ψe
=

√
qe

q

[
1 + 3√

2

(
sin−1

√
2q

3qe
− sin−1

√
2

3

)]
(74)

δ

δe
= qe

q

[
3 − 2

√
3 − 2q

qe

]

where ψe = l/3Re and δe = l2/4Re are the values ψ and δ at the initial yielding.
At the moment of incipient collapse, ψ � 1.88ψe and δ = 2δe, indicating that the
deformation of the beam is still small.

The influence of shear is slightly more significant for the distributed load than
for the concentrated end load. Since the total shearing force across any section is
equal to qbx, the shear stress distribution on an elastic/plastic section is given by

τ = −3qx

4c

(
1 − y2

c2

)
a � x � l −c � y � c
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Figure 3.22 Simply supported beam carrying a uniformly distributed load q per unit area. The growth
of the plastic zone is shown by its boundaries for constant values of ρ = q/qe.

The greatest value of the shear stress occurs at the center of the built-in section
x = l. Using (73), the greatest shear stress of magnitude τ0 may be written as

τ0

Y
= 3ql

4hY

(
3 − 2l2

a2

)−1/2

= hq

lqe

(
3 − 2q

qe

)−1/2

A central plastic zone will begin at x = l when τ0 attains the value Y/
√

3, the
corresponding load ratio being readily found from the formula

qe

q
= 1

3


1 +

√
1 + 9h2

l2


 (75)

If the length of the beam is greater than about three times its depth, the value of
q/qe given by (75) differs very little from that at the instant of collapse. For shorter
beams, the additional deflection due to shear, which also affects the magnitude of
the collapse pressure, may be appreciable.†

(iv) Simply supported beam under uniform loading A simply supported beam of
rectangular cross section carries a uniformly distributed load of intensity q per unit
area on the top surface (Fig. 3.22). The bending moment is a maximum at the central
cross section x = 0, and the magnitude of this moment is 1

2 qbl2, where 2l denotes the
total length of the beam. Yielding first occurs at y = ±h on the central section when
the maximum bending moment reaches the value Me, the corresponding pressure
being qe = 2Me/bl2. For some value of q greater than qe, there will be two symmet-
rical plastic zones covering a length 2a along y = ±h of the beam. Since the statical

† The effect of shear on the fully plastic moment of an I section beam has been discussed by
A. P. Green, J. Mech. Phys. Solids, 3: 143 (1954). See also J. Heyman and V. L. Dutton, Weld. Metal
Fabr., 22: 265 (1954). A lower-bound solution has been given B. G. Neal, J. Mech. Eng. Sci., 3: 258
(1961).
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moment at any section is M = 1
2 qb(l2 − x2), and the sections x = ±a are just at the

point of yielding, we have

M

Me
= q

qe

(
1 − x2

l2

)
a

l
=

√
1 − qe

q
(76)

Substitution for M/Me into (48) furnishes the depth of the elastic core as a function
of x for any given strain-hardening index n. In the case of a nonhardening material,
the equation becomes ( c

h

)2 − 2q

qe

(x

l

)2 = 3 − 2q

qe
(77)

It follows that the elastic/plastic boundaries at each stage are hyperbolas with asymp-
totes y = ±√

3(h/l)x. The beam collapses when q = 3
2 qe, for which the two plastic

zones join at the center O. The positions of the elastic/plastic boundaries for several
values of q/qe are shown in Fig. 3.22. The plastic boundaries at the incipient collapse
coincide with the asymptotes.

Since the deflection v is an even function of x, it is necessary to consider only
one-half of the beam. Setting q/qe = ρ, the differential equation for the elastic/plastic
portion of the beam may be written as

∂2v

∂x2 = − 1

Re

{
3 − 2ρ

(
1 − x2

l2

)}−1/2

0 � x � a

in view of (62) and (76). Integrating, and using the fact that ∂v/∂x vanishing at x = 0,
we find

∂v

∂x
= − l

Re
√

2ρ
sinh−1 x

l

√
2ρ

3 − 2ρ
0 � x � a

and

v = δ − l2

Re
√

2ρ


x

l
sinh−1 x

l

√
2ρ

3 − 2ρ
−

√
3 − 2ρ

2ρ
+ x2

l2 +
√

3 − 2ρ

2ρ




0 � x � a (78)

where δ denotes the deflection at x = 0. The slope and the deflection for the elastic
portion of the beam are governed by the differential equation

∂2v

∂x2 = − ρ

Re

(
1 − x2

l2

)
a � x � l

Taking account of the continuity of ∂v/∂x at x = a, the integral of this equation may
be written as

∂v

∂x
= − l

Re

{
ρx

l

(
1 − x2

3l2

)
− 2ρ + 1

3

√
1 − 1

ρ
+ 1√

2ρ
sinh−1

√
2ρ − 2

3 − 2ρ

}

a � x � l
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Integrating again, and using the boundary condition v = 0 at x = l, we obtain

v = l2

Re

{(
1 − x

l

) [
1√
2ρ

sinh−1

√
2ρ − 2

3 − 2ρ
− 2ρ + 1

3

√
1 − 1

ρ

]

+ ρ

2

[
5

6
− x2

l2

(
1 − x2

6l2

)]}
a � x � l (79)

The central deflection δ is now obtained from (78) and (79), using the fact that v is
continuous at x = a. Thus†

δ = l2

Re

{
1√
2ρ

sinh−1

√
2ρ − 2

3 − 2ρ
+

√
3 − 2ρ

2ρ
− 2ρ + 1

3

√
1 − 1

ρ
+ 2ρ

3
− 3

4ρ

}
(80)

This result is also obtained by direct integration, using (64) with a replaced by l.
Setting ρ = 1, the terminal slope and the central deflection at the initial yielding are
found as

ψe = 2l

3Re
= 2Yl

3Eh
δe = 5l2

12Re
= 5Yl2

12Eh

As ρ approaches the collapse value 1.5, the deflection according to (80) tends to
infinity.‡ However, δ is found to have an elastic order of magnitude so long as ρ is
only 3 to 4 percent smaller than the collapse value. The load-deflection curves for
the three beams analyzed so far are plotted nondimensionally in Fig. 3.23. It may
be noted that whereas the cantilever collapses for a finite value of the deflection, the
collapse load for the simply supported beam is approached in an asymptotic manner.
For all practical purposes, the beam may be regarded as having reached the collapse
state when the deflection is only a few times that at the initial yielding.

The shear stress is distributed parabolically over the elastic part of each cross
section of the beam, the resultant shearing force to the right of any section being of
amount qbx in the upward sense. Hence

τ = −3qx

4c

(
1 − y2

c2

)
0 � x � a

τ = −3qx

4h

(
1 − y2

h2

)
a � x � l

The numerically greatest shear stress occurs at x = l, but its value for usual l/h ratios
is not sufficient to cause yielding. In the limiting state of q = 1.5qe, the maximum
shear stress becomes identical for all elastic/plastic cross sections.

† This solution has been given by W. Prager and P. G. Hodge, Jr., Theory of Perfectly Plastic Solids,
p. 49, Wiley and Sons, New York (1951).

‡ The deflection tends to infinity as the load approaches the collapse value when the plastic moment
is attained at a local maximum or over a finite length of the beam.
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Figure 3.23 Load-deflection curves for statically determinate beams. (a) Cantilever with a terminal
load; (b) uniformly loaded cantilever; (c) simply supported and uniformly loaded beam; (d) effect of
strain-hardening on case (c) when n = 0.2.

It is not difficult to establish the load-deflection relationship when the material
strain-hardens. For a given intensity of loading, the depth of penetration of the plastic
zone is decreased by strain-hardening, but the length of the plastic zone is unaffected.
In view of (76), the moment-curvature relationship (48) for the elastic/plastic portion
of the beam becomes

3

(
Re

R

)n

− (1 − n)

(
R

Re

)2

= (2 + n)ρ

(
1 − x2

l2

)
0 � x � a (81)

Thus, Re/R can be computed for any given x/l and ρ. Since the slope of the deflection
curve vanishes at x = 0, the central deflection of the beam is given by

δ = l2

Re

∫ l

0

Re

R

(
1 − x

l

) dx

l

irrespective of the material property. The integral is readily evaluated over the elastic
part a � x � l, for which Re/R is equal to ρ(1 − x2/l2). Inserting the value of a/l
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from (76), we obtain

δ = l2

Re

{
2ρ

3
− 1

4ρ
− 2ρ + 1

3

√
1 − 1

ρ
+

∫ √
(ρ−1)/ρ

0

Re

R

(
1 − x

l

)
d

(x

l

)}
(82)

In view of (81), the integral in (82) can be obtained numerically for any assumed ρ,
which is not limited to the ideally plastic collapse value. The variation of δ/δe with
q/qe for a strain-hardening index n = 0.2 is shown by the broken curve in Fig. 3.23.
Over the considered range, the load intensity for the work-hardening beam steadily
increases with the amount of deflection.

(v) Beams fixed at both ends We begin with the simple example where a concen-
trated load W is applied at the midspan of a beam which is built-in at both ends.
The terminal sections of the beam are prevented from rotation by the existence of
reactant moments Mr due to the fixed-end condition. By symmetry, each half of
the beam is under equal and opposite forces W/2 and identical couples Mr acting
at its ends. The condition of statical equilibrium for each half requires Mr = Wl/4
throughout the bending, where l is the semilength of the beam. The bending moment
varies linearly along the beam, vanishing at the midpoint of each half. The shape of
the deflected axis of the beam and the conditions of symmetry then indicate that the
central deflection of the beam is twice the deflection at the free end of a cantilever of
length l/2 and carrying an end load W/2. The variation of the terminal slope ψ and
the central deflection δ for the fixed-ended beam is therefore given by (69), where

We = 4Me

l
ψe = l

4Re
δe = l2

6Re

These are the values of W , ψ, and δ at the initial yielding of the built-in beam. The
collapse load is 3

2 We, and the corresponding deflection is 20
9 δe. The effect of fixing

the ends of the beam is to double the load-carrying capacity and halve the limiting
deflection.†

Suppose, now, that a uniformly distributed load of intensity w per unit length
is applied to a fixed-ended beam of length 2l as shown in Fig. 3.24. The bending
moment diagram and the shape of the deflection curve are symmetrical as before
about the central section. If the magnitude of the end moments is denoted by Mr ,
the bending moment at any cross section may be written as

M = 1
2 w(l2 − x2) − Mr (83)

where x is measured from the central cross section of the beam. The unknown
moment Mr can be determined from the condition that the tangent to the deflection

† The bending of fixed-ended beams under symmetrical three-point loading has been investigated
by W. Prager, Bauingenieur, 14: 65 (1933).
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Figure 3.24 Geometry and bending moment distribution for a uniformly loaded elastic/plastic beam
with fixed ends. (a) w � 1.58we; (b) w � 1.67we.

curve at the middle is parallel to that at either end. While the beam is entirely elastic,
its curvature is proportional to the bending moment, and (64) and (83) give

∫ l

0
M dx = 0 or Mr = 1

3 wl2

The bending moment has a maximum value of 1
2 Mr occurring at x = 0. The deflection

curve has inflections at x = ±l/
√

3, where the bending moment vanishes. The central
deflection of the elastically loaded beam is obtained from (65) and (83) as

δ = − l

EI

∫ l

0
Mx dx = − wl2

6EI

∫ l

0

(
1 − 3x2

l2

)
x dx = wl4

24EI

The negative sign arises before the integral because δ is measured at x = 0. Since
the bending moment has its greatest magnitude at the built-in ends, yielding begins
at these sections when the load intensity and the corresponding deflection become

we = 3Me

l2 δe = l2

8Re

For w > we, plastic zones spread out from the ends of the beam to reach the sec-
tions x = ±d where M = −Me. The bending moment M and the distance d may be
expressed in the nondimensional forms

M

Me
= 3w

2we

(
1 − x2

l2

)
− Mr

Me

d

l
=

√
1 − 2we

3w

(
Mr

Me
− 1

)
(84)
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The relationship between Mr/Me and w/we during the elastic/plastic loading is
given by ∫ d

0

(
M

Me

)
dx −

∫ l

d

(
3 + 2M

Me

)−1/2

dx = 0

in view of the conditions of zero slope at x = 0 and x = l. Denoting Mr/Me by m, the
complicated relationship resulting from the integration can be written approximately
in the more convenient form

w

we
� 2m + 1

3
+ 1√

2 + m

(
sin−1

√
3m

3 + m
− sin−1

√
2 + m

3 + m

)
m <

3

2
(85)

which is sufficiently accurate for practical purposes. The above expression is based
on the first approximation w/we � m, which is reasonable for m < 1.5. The built-in
sections become fully plastic when m = 1.5, and this corresponds to w/we � 1.58.†
In the absence of work-hardening, m has the constant value 1.5 for all higher values
of w/we. The problem then becomes statically determined, giving

M

Me
= 3

2

{
w

we

(
1 − x2

l2

)
− 1

}
d

l
=

√
1 − we

3w

w

we
� 1.58 (86)

The ends of the beam progressively rotate about the plastic hinges as the loading
is continued in this range. A new plastic zone begins to form at the central cross
section when the bending moment at x = 0 becomes equal to Me. By (86), the value
of w/we at this stage is 5

3 , and the corresponding value of d/l is 2/
√

5. A further
increase in load causes the central plastic zone to extend over a length 2a, where

a

l
=

√
1 − 5we

3w

w

we
� 5

3

The central cross section becomes fully plastic when w/we = 2, representing a state
of plastic collapse caused by simultaneous hinge actions at x = 0 and x = ±l. The
ratios a/l and d/l attain their limiting values 1

6 and 5
6 respectively at the incipient

collapse.
Consider now the deflection of the beam as w is increased from we. For

w � 1.58we, the slope of the deflection curve vanishes at x = ±l, and the central
deflection is given by

δ = − 1

Re

{∫ d

0

(
M

Me

)
x dx −

∫ l

d

(
3 + 2M

Me

)−1/2

x dx

}

† This is the solution of the exact equation (ρ − 4/3)
√

3ρ − 1 + sin−1 √
(3ρ − 1)/3ρ = π/2,

ρ = w/we obtained by the exact evaluation of the preceding integrals.
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in view of the moment-curvature relations (62). Inserting from (84) and integrating,
we obtain

δ = l2

Re

{
1

2

(
m − 3

4
ρ

)
+ 1

3ρ

[
1

2
(3 − m2) − √

3 − 2m

]}
m � 3

2
(87)

where ρ denotes the ratio w/we. When ρ is increased to 1.58, the deflection becomes
δ � 1.89δe. Since the slope at the ends of the beam is nonzero when ρ > 1.58, the
central deflection must be found from the modified expression

δ = l2

Re

{∫ d

0

M

Me

(
1 − x

l

)dx

l
−

∫ l

d

(
3 + 2M

Me

)−1/2(
1 − x

l

)dx

l

}

where M/Me is given by (86). The above expression follows from (62) and (64).
Performing the integration, and substituting for d/l, we have

δ = l2

Re

{(
ρ − 4

3

) √
1 − 1

3ρ
+ 3

8

(
5

3
− ρ

) (
1 − 1

3ρ

)
+ 1

3ρ

− 1√
3ρ

[
π

2
− sin−1

√
1 − 1

3ρ

]}
1.58 � ρ � 5

3
(88)

The beginning of yielding at x = 0 corresponds to δ � 2.33δe, obtained by setting
ρ = 5

3 in (88). For higher values of ρ, the central deflection is given by

δ = l2

Re

{∫ a

0

Re

R

(
1 − x

l

)dx

l
−

∫ d

a

M

Me

(
1 − x

l

)dx

l
+

∫ l

d

Re

R

(
1 − x

l

)dx

l

}

where Re/R is equal to (3 − 2M/Me)−1/2 for the first integral and−(3 + 2M/Me)−1/2

for the last integral, M/Me being given by (86). Using the values of a/l and d/l on
integration, we get

δ = l2

Re

{(
ρ − 4

3

) √
1 − 1

3ρ
−

(
ρ − 2

3

) √
1 − 5

3ρ
+ 1

ρ

√
2 − ρ

3

+ 1√
3ρ

[
sinh−1

√
3ρ − 5

6 − 3ρ
+ sin−1

√
1 − 1

3ρ
− π

2

]}
ρ � 5

3
(89)

The deflection tends to infinity as ρ tends to the collapse value 2, but δ is found
to be only four times that at the initial yielding when the load intensity is within
5 percent of the limiting value. The variation of δ/δe with w/we is represented by the
lower solid curve in Fig. 3.25. If the spread of the plastic zones is disregarded, the
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Figure 3.25 Load-deflection relationship for statically indeterminate beams under uniform loading.
(a) Fixed-ended beam; (b) propped cantilever. The broken lines correspond to the ideal beam section.

load-deflection curve reduces to that shown by the broken lines, predicting a finite
deflection at the instant of collapse.†

(vi) Analysis of a propped cantilever A cantilever of length l is simply supported
at its free end and loaded by a uniformly distributed load w per unit length, as shown
in Fig. 3.26. The vertical reaction at the prop and the reactant moment at the built-in
end are denoted by F and G respectively. The bending moment at a distance x from
the simply supported end may be written as

M = Fx − 1
2 wx2

During the elastic bending, the slope of the deflection curve vanishes at x = l. The
fact that the deflection vanishes at x = 0 is expressed by

∫
Mx dx = 0, where the

† The effect of strain-hardening on the deflection of fixed-ended beams has been considered by
M. R. Horne, Weld. Res., 5: 147 (1951). The increase in carrying capacity due to the prevention of axial
movement of the ends of the beam has been examined by R. M. Haythornwaite, Engineering, 183: 110
(1957).
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Figure 3.26 Elastic/plastic bending of a uniformly loaded propped cantilever. (a) w � 1.64we;
(b) w � 1.67we.

integration is carried out from x = 0 to x = l. This gives

F = 3
8 wl G = 1

8 wl2

The bending moment in the beam vanishes at x = 3
4 l, and has a maximum value at

x = 3
8 l. The central deflection of the elastic beam is

δ = − 1

EI

∫ l

l/2

(
x − l

2

)
M dx = wl4

192EI

This is marginally lower than the maximum deflection which occurs at x � 0.58l.
Yielding first occurs at the built-in end when G becomes equal to Me, the corres-
ponding values of w and δ being

we = 8Me

l2 δe = l2

24Re

As the load intensity is steadily increased from we, the bending moment at the
built-in end also increases, until G attains the fully plastic value 3

2 Me. The bending
moment distribution and the spread of the plastic zone at this stage are given by

M

Me
= x

l

[
4ρ

(
1 − x

l

)
− 3

2

]

2d

l
=

(
1 − 3

8ρ

)
+

[(
1 − 3

8ρ

)2

+ 1

ρ

]1/2 (90)
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where ρ denotes the ratio w/we. The last expression follows from the fact that
M = −Me at x = d. The value of ρ at this stage is found from the conditions of zero
slope and deflection at x = l and x = 0 respectively. By (62) and (65), we have∫ d

0

(
M

Me

)
x dx −

∫ l

d

(
3 + 2M

Me

)−1/2

x dx = 0 (91)

Substituting from (90) and integrating, we obtain a transcendental equation of which
the solution is ρ � 1.64, giving d/l � 0.934. The corresponding central deflection is
given by

δ = 1

Re

{∫ l/2

0

(
M

Me

)
x dx + l

2

∫ d

l/2

(
M

Me

)
dx − l

2

∫ l

d

(
3 + 2M

Me

)−1/2

dx

}

in view of (65) and (62), when use is made of (91). The integrals are readily evaluated
on inserting the expression for M/Me, the result being δ � 1.84δe corresponding to
ρ = 1.64.

For ρ < 1.64, the problem is not statically determined, but the preceding expres-
sion still holds for the estimation of the central deflection. The bending moment
distribution and the extent of the plastic zone may be written as

M

Me
= x

l

(
f − 4ρx

l

)
d

l
= f + √

f 2 + 16ρ

8ρ
1 � ρ � 1.64 (92)

where f = Fl/Me. Using these relations in the relevant integrals, the deflection is
obtained in the dimensionless form

δ

δe
= 2

[
2f −

√
f 2 + 16ρ

]
d2

l2 − 1

2
( f − ρ)

− 3

√
2

ρ


sin−1 8ρ − f√

f 2 + 24ρ
− sin−1

√
f 2 + 16ρ

f 2 + 24ρ


 1 � ρ � 1.64 (93)

The relationship between f and ρ can be found from (91) and (92), but the result is
rather complicated. However, for 1 � ρ � 1.5, a close approximation is achieved by
assuming f � 3ρ in (93) for the computation of the deflection.

When ρ > 1.64, the built-in end undergoes rotation under a constant bending
moment of magnitude 1.5Me. Equations (90) remain valid for this range of loading,
the reaction at x = 0 being given by f = 4ρ − 1.5. The maximum bending moment
M at any stage occurs at a distance x from the simply supported end, where

x

l
= 1

2

(
1 − 3

8ρ

)
M

Me
= ρ

(
1 − 3

8ρ

)2

ρ � 1.64 (94)

Both x and M steadily increase as ρ increases, and a second plastic zone begins to
form at x = x when M = Me. The load intensity ratio at this stage is ρ � 1.67, which
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corresponds to x � 0.39l. For a somewhat higher value of ρ, the inner plastic zone
would extend from x = a1 to x = a2, the bending moments at these two sections
being equal to Me. It follows from (90) that

a1, a2 = l

2




(
1 − 3

8ρ

)
∓

[(
1 − 3

8ρ

)2

− 1

ρ

]1/2

 ρ � 1.67 (95)

The central section of the beam begins to yield when a2 = l/2, giving ρ = 1.75.
The section x = l/2 is therefore purely elastic for ρ � 1.75 and elastic/plastic for
ρ � 1.75. When M attains the value 1.5Me, the beam collapses due to the formation
of plastic hinges at x = l and x = x. The load intensity and the position of the sagging
hinge at the incipient collapse are given by

ρ = 3

8

(
3 + 2

√
2
)

� 2.185
x

l
= √

2 − 1 � 0.414

in view of (94). The ratio Fl/Me rises to the value 3(
√

2 + 1) at collapse. The lengths
of the plastic zones near x = x and x = l have the limiting values 0.478l and 0.051l
respectively.

The deflection analysis for ρ > 1.64 is complicated by the fact that the plastic
zone near the fixed end of the beam slowly unloads as ρ increases. However, for
ρ � 1.75, it is a good approximation to neglect the small longitudinal spread of the
plastic zone near x = l. Using (65), and the condition of zero displacement at x = 0,
the central deflection of the beam for ρ � 1.75 may then be written as

δ = l2

2Re

{∫ a1

0

M

Me

(x

l

) dx

l
+

∫ l/2

a1

(
3 − 2M

Me

)−1/2(x

l

) dx

l

+
∫ a2

l/2

(
3 − 2M

Me

)−1/2(
1 − x

l

) dx

l
+

∫ l

a2

M

Me

(
1 − x

l

) dx

l

}
(96)

The integrals are easily evaluated for any given value of ρ using (90) and (95). It
is found that δ � 2.13δe when ρ = 1.75. The complete load-deflection relationship
for the propped cantilever is represented by the upper solid curve in Fig. 3.25. The
associated broken lines are based on the neglect of the spread of the plastic zones.

3.6 Torsion of Prismatic Bars

(i) Elastic torsion A prismatic bar of arbitrary cross section is twisted by equal
and opposite terminal couples T about an axis parallel to the generators. These are
deformed into helical curves as the cross sections rotate during the torsion. Except
for a circular cylindrical bar, the cross sections become warped, and the amount
of warping depends on the angle of twist θ per unit length of the bar. We choose
rectangular coordinates (x, y, z) whose origin is at an end section of the bar, the
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Figure 3.27 Stresses and displacements in the torsion of a prismatic bar of arbitrary cross section.

z axis being taken parallel to the generators. The rectangular components of the
displacement, representing the rotation and the warping of the cross sections, are
given by

u = −θyz v = θxz w = w(x, y, θ) (97)

The first two expressions are obtained from the coordinate transformation x = r cos α

and y = r sin α for a typical particle (Fig. 3.27a), and the fact that dx = u, dy = v and
dr = 0 during an infinitesimal rotation dα = θz. In the elastic range of torsion,† the
axial displacement w is proportional to θ, but the proportionality ceases to hold in the
elastic/plastic range. The nonzero components of the strain are γxz and γyz given by

2γxz = ∂w

∂x
+ ∂u

∂z
= ∂w

∂x
− θy

2γyz = ∂w

∂y
+ ∂v

∂z
= ∂w

∂y
+ θx

It follows from Hooke’s law that the only nonzero stress components are τxz = 2Gγxz
and τyz = 2Gγyz. The elimination of w from the above equations and the use of
stress–strain relations furnish

∂τyz

∂x
− ∂τxz

∂y
= 2Gθ (98)

which is the equation of strain-compatibility expressed in terms of the stresses. The
equation of equilibrium for the shear stresses is

∂τxz

∂x
+ ∂τyz

∂y
= 0

† The theory of elastic torsion of prismatic bars is due to B. Saint-Venant, Mem. savants etrangers,
Sci. Math. Phys., 14: 233 (1855).
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This equation is identically satisfied if we introduce a stress function φ(x, y) such
that the stress components are

τxz = ∂φ

∂y
τyz = −∂φ

∂x
(99)

Substituting these derivatives into (98), we obtain the governing differential equation

∂2φ

∂x2 + ∂2φ

∂y2 = −2Gθ (100)

It follows from (99) that the resultant shear stress at any point on a transverse section
is tangential to the curve of constant φ considered through the point.† The lines of
shearing stress therefore coincide with the contour lines of φ. Since the shear stress
at each point of the boundary of the section must be directed along the tangent to the
boundary, the lateral surface of the bar being stress free, the boundary curve must
be a line of constant φ. For a simply connected cross section, we may take φ = 0
along the boundary, since we are interested only in the derivatives of φ. The solution
of the torsion problem is thus reduced to the determination of the stress function φ

satisfying the differential equation (100) and vanishing on the boundary.
When the components of the shear stress have been found for a given angle of

twist, the warping function w can be determined from the relations

∂w

∂x
= τxz

G
+ θy

∂w

∂y
= τyz

G
− θx (101)

The stresses transmitted across any transverse section is statically equivalent to a
twisting moment T about the z axis, the resultant shearing force being easily shown
to vanish. Referring to Fig. 3.27b, we have

T =
∫∫

(xτyz − yτxz)dx dy = −
∫∫ (

x
∂φ

∂x
+ y

∂φ

∂y

)
dx dy

where the integration is taken over the entire cross section of the bar. Integrating by
parts, we get

T = −
∫

φ(x dy − y dx) + 2
∫∫

φ dx dy

the first integral being taken round the boundary. In view of the boundary condition
φ = 0, the expression for the torque reduces to

T = 2
∫∫

φ dx dy (102)

† The components of the unit exterior normal to the curve φ(x, y) = const with respect to the x and
y axes are proportional to ∂φ/∂x and ∂φ/∂y respectively. The scalar product of the normal vector with
the shear-stress vector therefore vanishes.
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When φ is known for a given cross section, the integral can be evaluated in a straight-
forward manner. It is apparent from the above derivation that one half of the torque
is due to the stress component τxz and the other half to the stress component τyz.

Consider, as an example, the elastic torsion of a bar whose cross section is an
ellipse with semiaxes a and b. If the origin of coordinates is taken at the center O of
the ellipse (Fig. 3.28a), the stress function may be written as

φ = C

(
1 − x2

a2 − y2

b2

)

where C is a constant. The expression in the bracket vanishes along the boundary
of the ellipse, while (100) is satisfied if

C = Gθa2b2

a2 + b2

The lines of shearing stress are therefore concentric ellipses with center at O.

Figure 3.28 Elastic torsion of a bar
of elliptical cross section. (a) Geom-
etry of the section and distribution
of resultant shear stress; (b) lines of
constant warping. The alternate con-
cave and convex areas are shown by
full and broken lines respectively.
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Substituting for φ into (99), the shear stresses are obtained as

τxz = −2Gθa2y

a2 + b2 τyz = 2Gθb2x

a2 + b2 (103)

These expressions indicate that the resultant shear stress has a constant direction for
all points on a radial line through O. By (102), the applied torque is

T = 2C
∫∫ (

1 − x2

a2 − y2

b2

)
dx dy = πGθa3b3

a2 + b2 (104)

It follows from (103) that the resultant shear stress has its greatest magnitude τ0 at
the extremities of the minor axis of the ellipse, where

τ0 = 2Gθa2b

a2 + b2 = 2T

πab2

Plastic yielding would therefore occur at these points of the cross section when
τ0 = k, the corresponding torque being 1

2πkab2. The warping of the cross section
during the elastic torsion follows from (101) and (103), the result being

w = −
(

a2 − b2

a2 + b2

)
θxy

since w = 0 at x = y = 0. The contour lines defined by w = const are therefore rect-
angular hyperbolas whose asymptotes are the principal axes of the ellipse. These
curves are shown in Fig. 3.28b, where solid lines indicate concavity and broken lines
indicate convexity of the cross-section.†

Suppose, now, that the bar has a central elliptic hole of semiaxes ρa and ρb,
where ρ < 1. The boundary of the hole then coincides with a shearing line of the solid
bar. The same stress function therefore holds for the hollow bar, giving the stress
distribution (103) in terms of θ. The torque required by the hollow bar is smaller
than that for the solid bar by an amount which is carried by the portion replaced by
the hole. The torque-twist relationship for the hollow bar is therefore obtained by
multiplying the right-hand side of (104) by the factor (1 − ρ4).

(ii) Elastic/plastic torsion When the torque is increased to a critical value, the
resultant shear stress attains the yield value k at one or more points of the cross
section. In view of (99), the shear stress has the magnitude |grad φ|, which attains its
greatest value at the boundary as a consequence of the differential equation (100).
Plastic yielding therefore begins somewhere on the boundary of the cross section,
where the yield criterion

τ2
xz + τ2

yz =
(

∂φ

∂x

)2

+
(

∂φ

∂y

)2

= k2 (105)

† For a detailed discussion of the elastic torsion of bars, reference may be made to S. Timo-
shenko and J. N. Goodier, Theory of Elasticity, 3rd ed., McGraw-Hill Book Co., New York (1970),
and I. S. Sokolnikoff, Mathematical Theory of Elasticity, 2nd ed., McGraw-Hill Book Co., New York
(1956).
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is first satisfied. As the torque is increased further, plastic zones spread inward from
such points on the boundary. If the material is nonhardening, the shear stress vector
has the constant magnitude k throughout the plastic region. The stress function φ

in the plastic region satisfies the differential equation (105), while in the elastic
region φ continues to be given by (100). The elastic/plastic boundary at each stage is
determined from the condition that the shear stress is continuous across the interface.
It is evident that the stress distribution in an elastic/plastic bar can be found without
recourse to the deformation.

Figure 3.29a shows a typical partially plastic cross section in which the elastic/
plastic interface is represented by �. On the plastic side of this boundary, the stress
is uniquely determined by the shape of the external boundary. In view of the yield
condition

|grad φ| = k

the derivative of φ along the inward normal to the contour curve is equal to k. Since
φ vanishes along the external contour, the lines of shearing stress in the plastic
region are parallel curves spaced at constant distances from the boundary. The stress
function at any point in the plastic region is therefore k times the distance from the
boundary along the normal through the point. If the boundary has a reentrant corner,
the vertex is a singularity of stress, and the contour lines in the neighborhood of the
corner are circular arcs within an angular span defined by the terminal normals at
the vertex.

Consider a typical point P in the cross section of a bar which is subjected to
a gradually increasing torque. So long as the neighborhood of P remains elastic,
the strain ratio γxz/γyz is equal to the stress ratio τxz/τyz by Hooke’s law. When the
advancing plastic boundary reaches P, the resultant shear stress has the magnitude
k and is tangential to the curve through P drawn parallel to the external boundary
of the plastic region. If geometry changes are disregarded, the shear-stress vector
remains unchanged in magnitude and direction at all subsequent stages. The elastic

Figure 3.29 Elastic/plastic torsion of a prismatic bar.
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strain increments therefore disappear, and the Prandtl-Reuss relation reduces to
dγxz/τxz = dγyz/τyz. Since the stress ratio remains constant, we get

γxz

γyz
= ∂w/∂x − θy

∂w/∂y + θx
= τxz

τyz
(106)

This equation holds in both elastic and plastic regions, and is identical to the cor-
responding relation given by the Hencky theory. The displacement system (97) is
evidently compatible with the plastic state of stress with τxz and τyz as the only
nonzero stress components.

Let ψ denote the counterclockwise angle made with the x axis by a typical
normal MN to the external boundary at N , intersecting the elastic/plastic boundary
� at M (Fig. 3.29b). At each point of MN, the resultant shear stress acts in the
perpendicular direction with components

τxz = −k sin ψ τyz = k cos ψ (107)

Substitution of these expressions into the stress–strain relation (106) furnishes

∂w

∂x
cos ψ + ∂w

∂y
sin ψ = θ(y cos ψ − x sin ψ)

This linear differential equation is hyperbolic, and its characteristics† are given by
dy/dx = tan ψ. The characteristics therefore coincide with the family of normals to
the external contour. The expression on the left-hand side of the above equation is
equal to the partial derivative ∂w/∂n, where n denotes the distance MP of a generic
point P on the considered normal. Hence

∂w

∂n
= θ(y cos ψ − x sin ψ) = θp

where p denotes the perpendicular distance of the characteristic MN from the origin
O. The sign of p will be taken as positive when the vector represented by MN has a
clockwise moment about O. Since n cos ψ = x − ξ and n sin ψ = y − η, where (ξ, η)
are the coordinates of M, the above equation furnishes‡

w(x, y) − w(ξ, η) = θ(xη − yξ) = θnp (108)

In view of the continuity of w across �, the value of w(ξ, η) is known from the
integration of (101) in the elastic region. Hence the warping displacement at any
point in the plastic region can be readily calculated. If the cross section has an axis

† For a general first-order differential equation P(∂z/∂x) + Q(∂z/∂y) = R, where z is the dependent
variable and P, Q, R are continuous functions of (x, y, z), the characteristics are the family of curves
dx/P = dy/Q. The substitution of (107) into the equilibrium equation shows that the stress equation is
also hyperbolic having the same characteristics.

‡ See, for example, P. G. Hodge, Jr., J. Appl. Mech., 16: 399 (1949), who applied the equation to
the calculation of the warping of an I beam with fillets.
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of symmetry, w vanishes along this line in both the elastic and plastic regions. In
this case w(ξ, η) can be found by direct integration along the plastic boundary �.
The variation of w along this boundary is

dw = ∂w

∂x
dx + ∂w

∂y
dy = θ(y dx − x dy) + 1

G
(τxz dx + τyz dy)

in view of (101). Let R denote the point where � is intersected by the axis of
symmetry. Since w = 0 at R, the integration of the above equation along � results in

w(ξ, η) = θ

∫ M

R
(y dx − x dy) + 1

G

∫ M

R
(τxz dx + τyz dy) (109)

The expression in the second integral is equal to τs ds, where τs is the resolved
component of the shear-stress vector along the tangent to �, and ds the corresponding
arc element. When the angle of twist is large, the contribution from the second
integral in (109) is negligible.†

Consider a point Q on the external boundary which is the first to become plastic
during the loading. Since such a point must be on the boundary, the direction of the
shear stress remains constant for all angles of twist. The magnitude of this shear
stress has a constant value k when the torque T exceeds the initial yield value Te. If
the bar is completely unloaded from the partly plastic state, a negative shear stress
of magnitude greater than k is superimposed at Q, leaving a residual shear stress
acting in the opposite sense. For T = 2Te at the instant of unloading, the magnitude
of the residual stress attains the value −k, causing yielding to restart at Q. Evidently,
a secondary yielding of this type cannot occur in a bar for which the fully plastic
torque is less than twice the torque at the initial yielding.

(iii) Solution for an oval cross section An inverse method of solution, in which
the external contour is determined from an assumed stress distribution in the elastic
region, has been applied by Sokolovsky‡ to the elastic/plastic torsion of a bar having
an oval cross section (Fig. 3.30a). Assuming that the stress components τzx and τyz
in the elastic region are proportional to −y/b and x/a respectively, where a and b
are constants, we write

τxz = ∂φ

∂y
= −ky

b
τyz = −∂φ

∂x
= kx

a
(110)

† Computer methods for elastic/plastic torsion based on the technique of nonlinear programming
have been developed by P. G. Hodge, Jr., C. T. Herakovich, and R. B. Stout, J. Appl. Mech., 35: 454
(1968); C. T. Herakovich and P. G. Hodge, Jr., Int. J. Mech. Sci., 11: 53 (1969).

‡ W. W. Sokolovsky, Prikl. Mat. Mekh., 6: 241 (1942). See also R. von Mises, Reissner Anniversary
Volume, p. 241, Ann Arbor, Mich. (1949). An alternative inverse method of solution has been described
by L. A. Galin, Prikl. Mat. Mekh., 13: 285 (1949).
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Figure 3.30 Characteristics and plastic boundaries for Sokolovsky’s oval when A = 7B.

so that the elastic/plastic boundary, where τ2
xz + τ2

yz = k2, is an ellipse with semiaxes
a and b. The stress function in the elastic region is

φ = C − k

2

(
x2

a
+ y2

b

)

where C is a constant to be determined from the condition of continuity across
the elastic/plastic boundary. The lines of shearing stress in the elastic region are
concentric ellipses with semiaxes proportional to

√
a and

√
b. The substitution of

(110) into (98) yields

θ = k(a + b)

2Gab
Using Eqs. (101), the warping displacement in the elastic region is easily found to be

w = −(a − b)
kxy

2Gab
= −

(
a − b

a + b

)
θxy (111)

The stresses in the plastic region are given by (107). Since the stresses must be
continuous across the elastic/plastic boundary, the characteristic angle ψ at any
point (ξ, η) of the ellipse is such that

ξ = a cos ψ η = b sin ψ

Hence ψ represents the eccentric angle of the ellipse. The equation of the
characteristic through (ξ, η) is

y = x tan ψ − (a − b) sin ψ (112)

which defines the angle ψ corresponding to any given point (x, y). The shearing lines
in the plastic region are the orthogonal trajectories to the family of straight lines.
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Since dy/dx = − cot ψ along any such trajectory, the differentiation of (112) with
respect to ψ gives

dx

dψ
+ x tan ψ = (a − b) sin ψ cos2 ψ

on a trajectory. The integration of this equation leads to the equation of the trajectory
in the parametric form

x = cos ψ[A + B(2 − cos 2ψ)]

y = sin ψ[A − B(2 + cos 2ψ)]
(113)

where A is an arbitrary constant and 4B = a − b. For A > 3B, the curve is a closed
oval with semiaxes A + B and A − B. The oval is very nearly an ellipse. When a and
b are given, (113) defines the external contour with any suitable value of A. If, on
the other hand, the external contour is specified, the position of the elastic/plastic
boundary for a given angle of twist can be determined from the relations

a + b

ab
= 2Gθ

k
a − b = 4B

Solving for a and b in terms of the parameters B and k/Gθ, we get

a = k

2Gθ
+ 2B +

√
4B2 + k2

4G2θ2

b = k

2Gθ
− 2B +

√
4B2 + k2

4G2θ2

(114)

For each increment of the angle of twist, a and b decrease by equal amounts. The
smallest angle of twist for which the elliptic interface lies within the external contour
corresponds to a = A + B. The solution is therefore valid only in the range

θ � θ0 = (A − B)k

(A + B)(A − 3B)G

The shape of the elastic/plastic boundary is not known for smaller angles of twist.
Figure 3.30b indicates the spread of the plastic zone with increasing twist when
A/B = 7 for the external boundary.

To obtain the functions φ and w in the plastic region, consider a generic point
P at a distance n from (ξ, η) measured along the characteristic of inclination ψ. The
coordinates of P are

x = (a + n) cos ψ y = (b + n) sin ψ (115)

It follows from (113) and (115) that the length of the characteristic between the
elliptic interface and the external boundary is

n0 = A − 1
2 (a + b) − B cos 2ψ
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Hence the stress function in the plastic region is

φ = k(n0 − n) = k


A − B cos 2ψ − k

2Gθ
−

√
4B2 + k2

4G2θ2 − n


 (116)

where ψ and n are given by (115) as functions of (x, y). Setting x = a cos ψ and
y = b sin ψ in the elastic stress function, and using (116), it is found that φ would be
continuous across the plastic boundary n = 0 if

C = A − 1
4 (a + b) = A − k

4Gθ
−

√
B2 + k2

16G2θ2

To obtain the warping in the plastic region, it is only necessary to insert the expression
for w(ξ, η) into (108). Since p = −(a − b) sin ψ cos ψ by (112), and

w(ξ, η) = −(a − b)
k

2G
sin ψ cos ψ

in view of (111), the warping displacement at any point in the plastic region may be
written as

w = −2B

(
θn + k

2G

)
sin 2ψ 0 � n � n0 (117)

The contours of constant w in the plastic region can be found by calculating a series
of values of ψ and n for selected values w, the coordinates of the corresponding
points on the curves being then obtained from (115). These curves can be continued
into the elastic region employing (111). Figure 3.31 shows the contour lines in one
quadrant of the cross section when A = 7B and θ = 4

3θ0. Using (114), the plastic
warping function (117) may be expressed alternatively as

w = θ


−2B +

√
4B2 + k2

4G2θ2


x sin ψ − θ


2B +

√
4B2 + k2

4G2θ2


y cos ψ

where ψ is given Eq. (112). For sufficiently large values of θ, the warping dis-
placement is approximately equal to −4Bθy cos ψ in most of the plastic region.

The applied torque can be obtained directly from the condition of statical equi-
librium, using the stress distributions in the elastic and plastic regions. The torque
carried by the elastic core is

T1 =
∫∫

(xτyz − yτxz)dx dy = k
∫∫ (

x2

a
+ y2

b

)
dx dy

in view of (110), the integration being taken over the central ellipse of semiaxes a
and b. It is easily shown that

T1 = 1
4πkab(a + b)
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Figure 3.31 Contours of constant warping for Sokolovsky’s oval when A = 7B, θ = 4θ0/3.

Using (107), the contribution to torque from the plastic part of the cross section may
be written as

T2 = k
∫∫

(x cos ψ + y sin ψ)dx dy

The integral extends over the region between the elliptic interface and the external
boundary. It is convenient to change the variables to n and ψ using the transformation
(115), the result being

T2 = 4k
∫ π/2

0

∫ n0

0
(a cos2ψ + b sin2ψ + n)(a sin2ψ + b cos2ψ + n)dn dψ

The expression in the second parenthesis is the jacobian of the transformation. The
integration is now carried out in a straightforward manner, and the resultant torque
T is found as

T = T1 + T2 = πk
{ 2

3

[
A3 − 1

8 (a3 + b3)
] − B2[3A − 2(a + b)

]}
(118)

Equations (114) and (118) give the torque-twist relationship for θ � θ0. The mag-
nitude of the torque corresponding to θ = θ0 is obtained by setting a = A + B and
b = A − 3B in (118). As the cross section approaches the fully plastic state, the elas-
tic region tends to be in a line of stress discontinuity of length 8B. The fully plastic
torque, which follows from (118) with a = 4B and b = 0, is rapidly approached in
an asymptotic manner as θ is increased.

In principle, we could always start with a suitable elastic distribution of stress,
and determine the elastic/plastic boundary as the curve along which the resul-
tant shear stress is equal to k. The continuity of the stress components across this
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boundary gives the inclination of the straight characteristics, of which any orthog-
onal trajectory represents a suitable external boundary of the cross section. The
success of Sokolovsky’s solution lies in the fact that the elastic/plastic boundary and
the associated stress distribution are similar for a range of values of the angle of
twist.†

(iv) The membrane analogy An analogy between the elastic torsion of a bar
and the small deflection of a laterally loaded membrane has been pointed out by
Prandtl.‡ The membrane is stretched by a uniform tension F per unit length of its
boundary, and is attached to a die whose edge plane is of the same shape as the cross
section of the twisted bar. A uniform lateral pressure q per unit area is then applied
to the membrane to produce a deflection ω at a generic point (Fig. 3.32a). Since
the curvatures of the deflected membrane in the xz and yz planes are −∂2ω/∂x2 and
−∂2ω/∂y2 respectively for small deflections, the equation of lateral equilibrium is

∂2ω

∂x2 + ∂2ω

∂y2 = − q

F

The boundary condition is ω = 0 along the edge of the die. A comparison with (100)
indicates that ω satisfies the same differential equation and boundary condition as
the ratio φ/G, provided we choose q = 2θF. The contours of constant deflection
therefore correspond with the lines of shearing of the twisted bar, while the resultant
shear stress at any point is G times the greatest slope at the corresponding point of
the deflected membrane. It follows from (102) that the applied torque is equal to 2G
times the volume bounded by the deflected membrane and the xy plane. Since the
membrane is everywhere concave to the applied pressure, the greatest value of the
shear stress must occur somewhere on the boundary.

An extension of the membrane analogy to elastic/plastic torsion has also been
suggested by Prandtl. It is necessary to erect a roof of constant slope equal to k/G and
having its base identical to the boundary of the cross section. The base is filled with a
stretched membrane which is loaded by a uniform surface pressure as before. When
the intensity of the pressure becomes sufficiently high, the membrane begins to touch
the roof, and this corresponds to a state of initial yielding of the twisted bar. As the
pressure is further increased, certain parts of the membrane come in contact with
the roof, while the remainder is still free to deflect. The supported and unsupported

† A conformal transformation method has been applied by E. Trefftz, Z. angew. Math. Mech., 5:
64 (1925), to determine the plastic region at the reentrant corner of an L beam. Relaxation methods
have been used for the elastic/plastic torsion of bars of triangular cross section by D. G. Christopherson
and R. V. Southwell, Proc. R. Soc., A, 168: 317 (1938), and I sections by D. G. Christopherson, J. Appl.
Mech., 7: 1 (1940). The torsion of hollow bars has been investigated by R. V. Southwell, Q. J. Mech.
Appl. Math., 2: 385 (1949). A finite element solution for an I-beam has been given by S. Baba and
T. Kajita, Int. J. Num. Math. Eng., 18: 927 (1982).

‡ L. Prandtl, Physik. Z. 4: 758 (1903). For experimental methods based on this analogy, see
A. A. Griffith and G. I. Taylor, Proc. Inst. Mech. Eng., Oct.–Dec. (1917 ). See also T. J. Higgins, Proc.
Soc. Exp. Stress Anal., 2: 17 (1945).
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Figure 3.32 The deflection of a stretched membranes under uniform lateral pressure.

parts of the membrane correspond to the plastic and elastic zones respectively of
the twisted bar.† The twisting moment is again equal to the volume under the entire
membrane multiplied by 2G. The membrane analogy provides a useful experimental
means of finding the stress distribution in elastic and partly plastic bars.

It is possible to obtain simple approximate solutions to certain problems using
the membrane analogy. Consider, for example, the torsion of a bar whose cross
section is a narrow rectangle of width a and length b. It is intuitively obvious that
the surface of the deflected membrane would be cylindrical except near the shorter
sides of the rectangle (Fig. 3.33). Neglecting the end effect, the deflection at any
point may be written as

ω � δ

(
1 − 4x2

a2

)
while the bar is still elastic. The central defection δ is obtained from the condition
of equilibrium of the membrane under a normal pressure q, which is 2θ times the
surface tension F. Since the slope of the membrane with respect to the x axis is of
amount 4δ/a along x = ±a, we find δ = 1

4 a2θ. The elastic stress function therefore
becomes

φ = Gω = Gθ

(
a2

4
− x2

)
and the elastic stress distribution is given by

τxz = ∂φ

∂y
= 0 τyz = −∂φ

∂x
= 2Gθx

except near the ends y = ±b/2 where τxz would be appreciable. The volume of
the region between the deflected membrane and the xy plane is equal to 2

3 abδ,

† See A. Nadai, Theory of Flow and Fracture of Solids, vol. I, Chaps. 23 and 25, McGraw-Hill
Book Co., New York (1950).
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Figure 3.33 Application of membrane analogy to the torsion of a bar of narrow rectangular cross
section. (a) Elastic torsion; (b) elastic/plastic torsion.

which gives

T = 4
3 Gabδ = 1

3 Gθa3b (119)

The greatest shear stress occurs along the longer sides of the rectangle, and has a
magnitude equal to Gθa. The initial yielding of the bar therefore corresponds to

θe = k

Ga
Te = 1

3 ka2b

For a higher value of the torque, the plastic zone spreads inward from either side,
leaving an elastic core of width c. The membrane is in contact with the roof over
the portions representing the plastic zones. The stress component τxz continues to
vanish, while

τyz = 2kx

c

(
|x| � c

2

)
τyz = k

(
|x| � c

2

)
The equilibrium of the free portion of the membrane requires θ = k/Gc, while the
parabolic shape of the deflection gives δ = kc/4G. The total torque is

T = 4

3
Gbcδ + 1

2
kb(a2 − c2) = 1

2
kb

(
a2 − c2

3

)
(120)

The solution obtained for the narrow rectangle may be employed to derive approx-
imate torque-twist relations for rolled sections (such as angles, channels, and
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I sections) by dividing the cross section into a number of rectangles. For a given
angle of twist, the torque shared by each rectangular part is obtained from either
(119) or (120), depending on whether this part is elastic or partially plastic. There
is, however, a considerable stress concentration at the reentrant corners, and the
intensity of the stress depends on the radius of the fillet.

The membrane analogy is also applicable with some modifications to the tor-
sion of hollow bars. A rigid flat plate having the same shape as the hole is attached
to the inner boundary of the stretched membrane. The plate is constrained to move
vertically during the application of the pressure, using a counterweight to balance
the weight of the plate. The height attained by the horizontal plate, giving a constant
stress function at the boundary of the hole, is governed by the condition of equilib-
rium of the plate under the action of the uniform membrane forces F and the applied
pressure q = 2θF. The torque is 2G times the total volume under the plate and the
membrane taken together.

A solution to the torsion problem for a closed thin-walied tube of arbitrary cross
section may be obtained by the application of the membrane analogy. The resultant
shear stress τ in this case may be assumed constant across the thickness, since the
variation of the slope of the membrane across the wall is negligible (Fig. 3.32b). If
h denotes the difference in level of the two boundaries of the membrane, its slope at
any point h/t, where t is the local thickness of the tube. Since the slope is equal to
τ/G by the membrane analogy, the local shear stress is τ = Gh/t. If the mean area
enclosed by the outer and inner boundaries of the cross section is denoted by A, the
torque is T = 2GAh, giving

τ = Gh

t
= T

2At

The shear stress in the elastic tube is therefore inversely proportional to the thickness.
From the condition of vertical equilibrium of the plate,∫

τ ds = Gh
∫

ds

t
= 2GθA

where ds is an arc element of the center line of the cross section, and the integral
extends over the whole perimeter. Hence, for an elastic tube,†

θ = h

2A

∫
ds

t
= T

4GA2

∫
ds

t
(121)

As the torque is increased, the shear yield stress k is first attained in the element
whose thickness is the least. Suppose that the thickness of the tube varies between
a maximum and a minimum round the periphery. The height of the rigid plate
corresponding to an elastic/plastic torsion would be h = kt∗/G, where t∗ is the wall
thickness at the extremities of the plastic arc length s∗ of the mean periphery. Then

† This formula is due to R. Bredt, Ver. deut. Ing., 40: 815 (1896).
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the applied torque is T = 2kAt∗, and the angle of twist per unit length is

θ = k

2GA

(
s∗ + t∗

∫
ds

t

)
(122)

where the integral is taken over the elastic part of the cross section. The analysis
can be easily extended to the torsion of tubular members with multicellular cross
sections.

(v) Fully plastic torsion In a solid bar made of nonhardening material, the fully
plastic stress distribution represents a limiting state which is approached in an asymp-
totic manner as the angle of twist increases. The fully plastic value of the torque has
a physical significance, since it is very closely attained while the deformation is still
of the elastic order of magnitude. The stress surface for a fully plastic cross section
can be obtained experimentally by piling dry sand on a horizontal base whose shape
is identical to that of the cross section of the bar.† The sandhill so formed represents
a roof of constant slope determined by the internal friction of the sane. The anal-
ogy is completed by introducing a factor of proportionality that makes the slope of
the sandhill equal to k/G. The applied torque is 2G times the volume of the sand
forming the hill. It is important to note that the shear stress in a fully plastic bar is
discontinuous across lines which are projections of ridges on the sandhill surface.
The component of the shear stress normal to such a line must of course be con-
tinuous for equilibrium. A line of discontinuity therefore bisects the angle formed
by the intersecting shearing lines. The shear strain rate vanishes on a line of stress
discontinuity.

The warping of the cross section of a fully plastic bar may be obtained to a close
approximation by assuming the material to be rigid/plastic. For such a material,
no twist is at all possible before the torque attains the fully plastic value. Once the
limiting torque has been reached, the bar is free to twist in an unrestricted manner.
The warping displacement in a rigid/plastic bar is therefore obtained from (108)
and (109) by letting G tend to infinity, bearing in mind that � has now become a line
of stress discontinuity. Thus

w(x, y) = θnp + θ

∫ M

R
(y dx − x dy) (123)

where the integral is taken along the discontinuity, and w is assumed to vanish at
some point R on the discontinuity.‡ The expression in the parenthesis is equal to the
moment of a line element of � about the origin. When there are characteristics that
do not intersect a stress discontinuity, the warping function cannot be determined
uniquely without consideration of the work-hardening.

† A. Nadai, Z. angew. Math. Mech., 3: 442 (1923). The influence of work-hardening on the fully
plastic stress distribution has been discussed by R. Hill, J. Mech. Phys. Solids, 5: 1 (1956).

‡ This formula is due to J. Mandel, C. R. Acad. Sci., Paris, 222: 1205 (1946).
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Figure 3.34 Contour lines of φ and w for fully plastic torsion of bars of rectangular and square cross
sections.

Consider the torsion of a bar whose cross section is a rectangle of width 2a
and length 2b. During the elastic torsion, the maximum shear stress occurs at the
midpoints of the longer sides.† Yielding begins at these points when the applied
torque becomes

Te = 8ka2b

{
1
3 − (64a/π5b) tanh(πb/2a)

1 − (8/π2) sech(πb/2a)

}
(124)

to a close approximation. The expression in the denominator is approximately equal
to k/2Gθea.With further increase in torque, plastic zones spread inward and along the
longer sides until the shorter sides begin to yield at their centers. The cross section
becomes fully plastic when the elastic zones shrink into lines of discontinuity as
shown in Fig. 3.34a. There are four discontinuities bisecting the angles at the corners,
and another one joining their meeting points C. In each of the four regions separated
by the discontinuities, the lines of shearing stress are parallel to the corresponding
side of the rectangle.

The discontinuity CC corresponds to the central ridge of the sandhill whose
height is h = ka/G to within a scale factor. The total volume of the heaped sand is
the sum of the volume of a square pyramid of height h and base area 4a2, and the
volume of a triangular prism of length 2(b − a) and cross-sectional area ah. Hence,
the fully plastic torque for the rectangular cross section is

T0 = 2G[ 4
3 a2h + 2(b − a)ah] = 4ka2

(
b − a

3

)
(125)

† See, for example, S. Timoshenko and J. N. Goodier, Theory of Elasticity, Chap. 11, 3d ed.,
McGraw-Hill Book Co., New York (1970).
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In the case of a square cross section (b = a), the fully plastic torque is 8
3 ka3, which

is about 1.60 times that at the initial yielding.
The warping of the cross section during the fully plastic torsion can be easily

calculated from (123) using rectangular axes as shown. Due to the symmetry of the
cross section, it is only necessary to consider one quadrant of the rectangle. In the
region ACD, the straight characteristic drawn through a generic point P gives p = y
and n = x − (b − a) − y. Since x − y = b − a and dx = dy along the discontinuity CA,
it follows from (123) that

w = θy[x − y − 2(b − a)] x − y � b − a

The value of w in this region is entirely positive when b = a, and entirely negative
when b � 2a. Since p = −x in the remainder of the quadrant, while n = y − x +
(b − a) in ACE and n = y in ECOF, we have

w = −θxy 0 � x � b − a

w = −θ[xy − (x − b + a)2] b − a � x � b − a + y
(126)

The contour lines of w in the first quadrant for a square cross section are shown in
Fig. 3.34b, the elevated and depressed areas of the cross section being indicated by
the solid and broken lines respectively.

As a second example, consider a prismatic bar whose cross section is an equilat-
eral triangle, Fig. 3.35a, the length of each side of the triangle being denoted by 2a.
An elastic analysis of this problem reveals that the resultant shear stress has the max-
imum intensity (

√
3/2)Gθa, occurring at the midpoint of each side. Plastic yielding

therefore begins at these points when the specific angle of twist is θe = 2k/
√

3Ga.

Figure 3.35 Geometry and residual shearing lines in the torsion of a bar of triangular cross section.
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The corresponding torque is found to be

Te =
√

3

5
Gθea4 = 2

5
ka3 (127)

The fully plastic stress distribution involves stress discontinuities along the internal
bisectors of the angles of the triangle, the lines of shearing stress being parallel to
the sides of the triangle. The height of the sandhill that corresponds with the plastic
state of stress is h = ka/

√
3G, and the fully plastic torque is

T0 = 2G
( 1

3 h
) (√

3 a2
)

= 2
3 ka3

By Eq. (123), the warping displacement w corresponding to a specific angle of twist
θ in the fully plastic range is easily shown to be

wCOD = θy

(
x − y√

3

)
wCOE =

√
3

2
θ

(
x2 − y2

3

)
(128)

when the axes of reference are as shown. The expression for w in region AOE is
obtained by changing the sign of y in the first equation of (128). The warping in the
remaining half of the triangle follows from the condition of antisymmetry of w with
respect to the x axis.

The distributions of residual stresses on complete unloading approach a limiting
state as the cross section tends to become fully plastic during the loading.The residual
stresses can be calculated by using the expressions for the elastic stresses in the bar
corresponding to a specific angle of twist θ. For the triangular cross section shown
in Fig. 3.35a, the elastic stresses are found to be

τxz = −Gθy

(
1 −

√
3x

a

)
τyz = Gθ

[
x +

√
3

2a
(x2 − y2)

]
(129)

By (127), the angle of elastic untwist per unit length due to unloading from the fully
plastic state is

θ = 5T0√
3Ga4

= 10k

3
√

3Ga

Inserting the value of θ into the elastic stresses (129), and subtracting them from
the fully plastic stresses, we obtain the residual stress distribution. Considering the
region BOC, where τxz = 0 and τyz = k in the fully plastic state, the residual stress
function is easily shown to be

φ = k

(
a√
3

− x

) {
1 − 5

9a2

[(
x + 2a√

3

)2

− 3y2

]}
(130)

The residual stress vanishes in this region at x = 0.389a, y = 0 and at x = 0.577a,
y = ±0.632a. The stress distribution is, of course, symmetrical about the lines of
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discontinuity. The lines of shearing stress in the unloaded bar,† which are the level
curves of φ, are plotted in Fig. 3.35b, the points of zero stress being P and Q.

As a final example, consider the fully plastic torsion of a bar of elliptical cross
section of semi-axes a and b, where a � b. If φ denotes the eccentric angle of the
ellipse, the radius of curvature ρ at a generic point of the ellipse of eccentricity e,
and the length n of the characteristic lying between the external boundary and the
line of stress discontinuity, which extends from (−e2a, o) to (e2a, o), are

ρ = (a2/b)(1 − e2cos2φ)3/2, n = b(1 − e2cos2φ)1/2, e2 = 1 − b2/a2

The element of volume under a roof of constant slope k/G, extending from an arc
element ds of the ellipse to the central ridge of the roof, is easily shown to be

dV = k

2G

(
1 − 2n

3ρ

)
n2 ds = ka

2Gb

(
1 − 2n

3ρ

)
n3 dφ

By the roof analogy, the fully plastic torque is given by

T0 = 4ka

b

∫ π/2

0

(
1 − 2n

3ρ

)
n3 dφ = 4

3
kab2

[
2E(e) − b2

a2 K(e)

]
(131)

where K(e) and E(e) are the complete elliptic integrals of the first and second kinds
respectively. The ratio T0/ka3 is found to be 0.628 when b = a/2, and 1.597 when
b = 2a/3. When b = a, the above formula reduces to T0 = (2/3)πka3, which is that
of a circular cross section.‡

In an experimental determination of the fully plastic torque, the problem of
measuring the volume of the sand heap may be avoided by measuring its weight,
and using the fact that the ratio of the weight of the sand heap for any given cross
section to that for a circular cross section is equal to the ratio of the corresponding
fully plastic torques. When the prismatic bar has a symmetrical longitudinal hole, the
sandhill analogy may be extended by heaping the sand around a fixed cylinder whose
cross section has the shape of the hole, and which stands perpendicular to the base
plate from an identical hole in it. The sandhill analogy is useful for visualizing the
nature of the fully plastic stress distribution in a twisted bar, the difficulties arising
from sharp corners being overcome by considering the contour as a limiting case of
one with rounded corners. This is illustrated in Fig. 3.36 for an L-shaped contour in
which the curved discontinuity is found to remain curved when the limiting process
is completed.§ The rounding of the shearing lines at a reentrant corner is due to
the fact that the corner is the origin of a fan of characteristics whose orthogonal
trajectories are circular arcs.

† P. G. Hodge, Jr., J. Appl. Mech., 16: 399 (1949).
‡ J. J. Skrzypek, and R. B. Hetnarski, Plasticity and Creep, CRC Press, Boca Raton (1993).
§ W. Prager and P. G. Hodge, Jr., Theory of Perfectly Plastic Solids, p. 66, John Wiley and Sons,

New York (1951).
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Figure 3.36 Stress discontinuities and shearing lines for fully plastic L sections.

(vi) Inclusion of work-hardening To analyze the problem of elastic/plastic torsion
of a bar made of work-hardening material, it is convenient to employ a stress–strain
equation that corresponds to no well-defined yield point. The problem is then simpli-
fied by the absence of an elastic/plastic boundary, which permits the same equations
to apply throughout the cross section, although the governing differential equation
becomes much more complicated. We shall use the Ramberg-Osgood equation

ε = σ

E

{
1 + m

(
σ√
3k

)2n
}

(132)

for the uniaxial stress–strain curve, where m and n are dimensionless constants, and
k a nominal yield stress in simple or pure shear, the slope of the stress–strain curve
being equal to E when σ = 0. As the value of n increases, the stress–strain curve
approaches that for a nonhardening material having a uniaxial yield stress

√
3k.

Consider, first, the formulation of the torsion problem according to the Prandtl-
Reuss theory.† Since the velocity field in the twisted bar is given by the partial
derivative of (97) with respect to θ, which is taken as the time scale, the components
of the shear-strain increment are expressed as

2dγxz =
(

∂2w

∂x ∂θ
− y

)
dθ 2dγyz =

(
∂2w

∂y ∂θ
+ x

)
dθ

The elimination of w between these two relations leads to the strain compatibility
equation

∂

∂x
(dγyz) − ∂

∂y
(dγxz) = dθ (133)

† W. Prager, J. Appl. Phys., 18: 375 (1947). For a work-hardening bar, the Prandtl-Reuss and
Hencky theories lead to identical results only when the cross section is circular.
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The strain increment depends on the stress increment and the current stress according
to the relations

2G dγxz = dτxz + τxz dλ 2G dγyz = dτyz + τyz dλ

where dλ is a positive scalar depending on the plastic modulus H. Thus

dλ = 3G dσ

Hσ
= (1 + 2n)

3Gm

E

(τ

k

)2n dτ

τ

in view of (132), the resultant shear stress being denoted by τ. The above relation is
readily integrated to

λ =
∫ σ

0

3G dσ

Hσ
= 3m

4n

(
1 + 2n

1 + ν

) {(
∂φ

∂x

)2

+
(

∂φ

∂y

)2
}n

(134)

on using (99), modified by including a factor k on the right-hand side for convenience.
Substituting into (133) from the stress–strain relations, and introducing the modified
stress function, we finally obtain

∂

∂x

(
∂φ̇

∂x
+ λ̇

∂φ

∂x

)
+ ∂

∂y

(
∂φ̇

∂y
+ λ̇

∂φ

∂y

)
= −2G

k
(135)

where the dot denotes differentiation with respect to θ. This is a quasi-linear partial
differential equation in three independent variables (x, y, θ), the quantity λ̇ being
obtained from (134). The solution of (135) must be carried out numerically under
the initial condition φ = 0 and the boundary condition φ = constant. For a small
initial angle of twist per unit length, we may take the elastic solution for φ, and use
the corresponding values of φ̇ and λ̇ to continue the solution.

When the loading is monotonic, a good approximation to the Prandtl-Reuss
solution for the torsion problem would be obtained by using the Hencky stress–strain
relations, which may be written as

2Gγxz = k(1 + λ)
∂φ

∂y
2Gγyz = −k(1 + λ)

∂φ

∂x

where φ is the stress function, and λ is a positive quantity given by

λ = 3Gm

E

(τ

k

)2n = 3m

2(1 + ν)

{(
∂φ

∂x

)2

+
(

∂φ

∂y

)2
}n

(136)

The compatibility equation (98) holds in the plastic range with τxz and τyz replaced
by 2Gγxz and 2Gγyz respectively. On substitution from the Hencky equations, the
compatibility equation becomes

∂

∂x

[
(1 + λ)

∂φ

∂x

]
+ ∂

∂y

[
(1 + λ)

∂φ

∂y

]
= −2Gθ

k
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Inserting the expression for λ and rearranging, we obtain the governing differential
equation

(1 + cFn)(φxx + φyy) + 2ncFn−1(φ2
xφxx + 2φxφyφxy + φ2

yφyy) = −2Gθ

k
(137)

where c = 3m/2(1 + ν), and F denotes the quantity in the curly bracket of (136).
The subscripts refer to partial differentiation with respect to the independent vari-
ables. Equation (137) can be solved numerically starting with the elastic solution
corresponding to a small initial angle of twist.

The numerical solution is carried out by superimposing a finite square mesh upon
the cross section of the bar and replacing the partial derivatives by the corresponding
central differences.† Denoting by φ(i, j) the value of the stress function at x = ih
and y = jh, where h is the distance between two successive mesh lines, the finite
difference form of the relevant partial derivatives may be written as

2hφx(i, j) = φ(i + 1, j) − φ(i − 1, j)

2hφy(i, j) = φ(i, j + 1) − φ(i, j − 1)

h2φxx(i, j) = φ(i + 1, j) − 2φ(i, j) + φ(i − 1, j)

h2φyy(i, j) = φ(i, j + 1) − 2φ(i, j) + φ(i, j + 1)

4h2φxy(i, j) = φ(i + 1, j + 1) − φ(i − 1, j + 1) − φ(i + 1, j − 1) + φ(i − 1, j − 1)

The finite difference equation obtained by replacing the derivatives in (137) by
the above expressions can be solved explicitly for φ(i, j), using the most recently
computed values of φ at the eight neighboring mesh points.After a sufficient number
of iterations from a suitable trial solution for any given θ, the values of φ(i, j) should
converge to the solution of the difference equation. The associated torque may then
be calculated from (102) by a repeated use of the two-dimensional form of Simpson’s
rule (See Secs. 9.1 and 9.2).

Some results of the computation for a square cross section of side 2a, based
on h = a/24 and c = 1 are shown in Fig. 3.37. Choosing n = 9, which very nearly
represents a perfectly plastic material, the positions of the elastic/plastic boundary
for increasing angles of twist are obtained as contours of τ = k, and plotted in (a).
The influence of work-hardening on the torque-twist relationship is indicated in (b),
where T/ka3 is plotted against Gθa/k for n = 1 and n = 9. The validity of the Hencky
theory requires (Sec. 2.5) that the counterclockwise angle α which the radius vector
to a generic point on the loading curve, obtained by plotting τyz against τxz, makes
with the local tangent to the curve must be less than tan−1

√
1 + 2n. This condition

is indeed found to be satisfied by the solution for representative values of n.

† H. J. Greenberg, W. S. Dorn, and E. H. Wetherell, Plasticity, Proc. 2nd Symp. Naval Struct.
Mech., pp. 279–297, Pergamon Press, New York (1960). For another method of numerical solu-
tion, see A. Mendelson, Plasticity: Theory and Applications, Macmillan, New York (1968). See also
J. P. Dwivedi, P. C. Upadhyay, and N. K. Das Talukder, Int. J. Mech. Sci., 32: 863 (1990).
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Figure 3.37 Torsion of a work-hardening bar of square cross section. (a) Contours of τ = k when n = 9;
(b) torque-twist relationship.

3.7 Torsion of Bars of Variable Diameter

(i) Elastic torsion Consider the pure torsion of a nonuniform bar of circular cross
section having its radius varying along the longitudinal axis (Fig. 3.38). We begin
with the assumption that the displacement at any point is perpendicular to the axial
plane passing through the point as in the case of a bar of uniform radius. Using
cylindrical coordinates (r, θ, z), where the z axis coincides with the axis of the bar,
the components of the displacement may be written as

u = 0 v = v(r, z) w = 0

The transverse sections of the bar remain plane and circular, but radial lines gen-
erally become curved during the torsion. The only nonzero strain components
corresponding to the above displacement field are γrθ and γθz, where

2γrθ = ∂v

∂r
− v

r
2γθz = ∂v

∂z

By Hooke’s law, all stress components are identically zero except τrθ and τθz, which
are equal to 2Gγrθ and 2Gγθz respectively. It follows from the above relations that

∂

∂r

(v

r

)
= τrθ

Gr

∂

∂z

(v

r

)
= τθz

Gr
(138)

These equations must be supplemented by the condition of statical equilibrium which
requires

∂τrθ

∂r
+ ∂τθz

∂z
+ 2τrθ

r
= 0 (139)
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Figure 3.38 Torsion of a shaft of variable diameter.

This is identically satisfied by introducing a stress function φ(r, z) such that

r2τrθ = −∂φ

∂z
r2τθz = ∂φ

∂r
(140)

Substituting into (138) and eliminating v/r, we obtain the governing differential
equation†

∂2φ

∂r2 − 3

r

∂φ

∂r
+ ∂2φ

∂z2 = 0 (141)

Since the lateral surface of the bar is free from external forces, the resultant shear
stress across an axial section at the boundary must be directed along the tangent to
the boundary. Hence

τrθ dz − τθz dr = 0

along the boundary. Substituting from (140), we obtain the boundary condition

∂φ

∂z
dz + ∂φ

∂r
dr = dφ = 0

which shows that φ has a constant value φ0 along the boundary of the twisted bar.
Since τrθ must vanish along the axis of symmetry, φ is also constant along r = 0. We
may assume φ = 0 along r = 0 without loss of generality. The torque is then found
from the formula

T = 2π

∫ a

0
r2τθz dr = 2π

∫ a

0

∂φ

∂r
dr = 2πφ0 (142)

† This theory is due to J. H. Michell, Proc. London Math. Soc., 31: 141 (1899).
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where a denotes the external radius of any cross section.When φ has been determined
from the differential equation (141) and the boundary condition φ = φ0, the stresses
follow from (140) and the displacement from (138). The quantity v/r represents the
angle of rotation of an elemental ring of radius r in a transverse section. Since v is
not proportional to r, the angle of twist varies over any given cross section of the
bar. The proportionality holds only in the special case of a circular cross section,
which corresponds to φ = Tr4/2πa4.

Consider, as an example, the torsion of a bar in the form of a truncated cone
whose virtual apex is taken as the origin of coordinates. By geometry, the quantity
z/

√
r2 + z2 has the constant value cos α at the boundary, where α is the semiangle

of the cone. Any function of this parameter would therefore satisfy the boundary
condition. It is easily verified that the stress function

φ = c

{
2 − 3z√

r2 + z2
+ z3

(r2 + z2)3/2

}

where c is a constant, satisfies the differential equation (141) and vanishes on r = 0.
Substituting into (142) the boundary value of φ, we get

c = T

2π(2 − 3 cos α + cos3α)

The lines of shearing in the elastic bar are radial lines drawn through the apex. By
(140), the components of the shear stress are

τrθ = 3cr2

(r2 + z2)5/2
τθz = 3crz

(r2 + z2)5/2
(143)

The displacement is readily obtained by the integration of (138). Assuming that an
element at the centre of the smaller end z = h is prevented from rotation, we find

v = cr

Gh3

{
1 − h3

(r2 + z2)3/2

}

The angle of twist v/r is constant over any spherical surface having its centre at the
apex of the cone. The greatest resultant shear stress occurs at the pheriphery of the
smaller end of the bar, the magnitude of this stress being (3c/h3)sin α cos3α in view
of (143). Hence, plastic yielding begins at r = h tan α and z = h when the torque
becomes

Te = 2πkh3
[

2 − 3 cos α + cos3α

3 sin α cos3α

]
(144)

which is obtained by setting c = kh3/(3 sin α cos3α). Taking for instance α = 30◦,
the value of Te is found to be 0.322kh3.
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(ii) Elastic/plastic torsion When the bar is twisted beyond the elastic limit, a plastic
zone spreads inward from somewhere on the boundary. The stresses in the plastic
region must satisfy the yield criterion τ2

rθ + τ2
θz = k2, which gives

|grad φ| =
√(

∂φ

∂r

)2

+
(

∂φ

∂z

)2

= kr2

in view of (140). Let ψ denote the counterclockwise angle which the resultant shear
stress vector over an axial plane makes with the z axis. Then the stress components
in the plastic region may be written as

τrθ = k sin ψ τθz = k cos ψ (145)

Inserting these expressions into the equilibrium equation (139), we get

∂ψ

∂r
− tan ψ

∂ψ

∂z
+ 2

r
tan ψ = 0

This is a hyperbolic equation having characteristics in the directions dz/dr =
− tan ψ, which are orthogonal to the lines of shearing stress in the axial plane.
The variation of ψ along a characteristic is

dψ = ∂ψ

∂r
dr + ∂ψ

∂z
dz =

(
∂ψ

∂r
− tan ψ

∂ψ

∂z

)
dr = −2 tan ψ

dr

r

Let (r0, z0) be the coordinates of the point where a given characteristic meets the
external boundary, and α the angle of inclination of the local tangent to the boundary
with respect to the z axis. The integration of the above equation then gives†

r2 sin ψ = r2
0 sin α = ρ (say) (146)

along a characteristic, which is generally curved. In view of (145) and (146), the
stress component τrθ varies inversely as r2 along a characteristic. The shape of the
characteristic through (r0, z0) is given by

z − z0 =
∫ r0

r
tan ψ dr = ρ

∫ r0

r
(r4 − ρ2)−1/2 dr (147)

To obtain the stress function in the plastic region, we combine (140) and (145) to
write the derivatives of φ as

∂φ

∂z
= −kρ

∂φ

∂r
= k

√
r4 − ρ2

on eliminating ψ by means of (146). The variation of φ along a characteristic
therefore becomes

dφ = k(−ρ dz +
√

r4 − ρ2 dr)

† W. W. Sokolovsky, Prikl. Mat. Mekh., 9: 343 (1945).
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Since the boundary value of φ is φ0 = T/2π in view of (142), the integration of the
above equation results in

φ = T

2π
− k

{
ρ(z − z0) +

∫ r0

r

√
r4 − ρ2 dr

}
(148)

In the elastic region, the stress function is obtained from the solution of (141), using
the boundary condition φ = φ0 along the meridian, and the condition of continuity
of φ across the elastic/plastic boundary. The position of this unknown boundary is
determined from the additional requirement that the first derivatives of φ must also
be continuous. If the plastic zone is assumed to spread far enough, the characteristics
emanating from the boundary will generally form an envelope, beyond which they
cannot be continued. Consequently, the bar will not become fully plastic, no matter
how large the angle of twist. For instance, in a conical bar of 15◦ semiangle, a region
of 7◦ around the axis will never become plastic.†

The shear stress in any plastic element remains constant in magnitude and
direction so long as changes in geometry are negligible. The only non-zero
strain increments are dγrθ and dγθz whose elastic parts are identically zero. The
Prandtl-Reuss flow rule is therefore expressible in the integrated form

γrθ

γθz
= τrθ

τθz
= tan ψ

Substituting for the stress and strain components, the above relationship may be
expressed in the form

∂v

∂r
− tan ψ

∂v

∂z
− v

r
= 0

which is a hyperbolic equation having the same characteristics as those for the stress.
The variation of v along a characteristic is

dv = ∂v

∂r
dr + ∂v

∂z
dz =

(
∂v

∂r
− tan ψ

∂v

∂z

)
dr = v

dr

r
(149)

Hence v/r = const along a characteristic. It follows that the surfaces of revolution
formed by the characteristics in the plastic region undergo rotation without distor-
tion during the twisting. The surfaces of constant angle of twist v/r are therefore
orthogonal to the lines of shearing stress. This is equally true in the elastic region
as may be seen by setting the variation of v/r to zero, using (138) for the partial
derivatives.

For any given shape of the external boundary, the purely elastic distribution
of stress may be determined numerically using the finite difference form of equa-
tion (141). This gives the magnitude and position of the maximum resultant shear

† The plastic stress distribution in a conical bar and a stepped bar has been discussed by
W. W. Sokolovsky, op. cit. The elastic/plastic torsion of cylindrical bars with a circumferential notch
has been investigated by J. B. Walsh and A. C. Mackenzie, J. Mech. Phys. Solids, 7: 247 (1959).
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Figure 3.39 Yielding near a fil-
let in a cylindrical shaft provided
with a collar (after Eddy and
Shaw).

stress which must be equal to k at the commencement of plastic yielding. Choos-
ing a suitable value of T exceeding the torque Te at the elastic limit, the stress
function in an assumed plastic region is evaluated numerically from (147) and
(148). Using a trial-and-error procedure, the elastic/plastic boundary is determined
from the conditions of continuity of φ and its first derivatives. Since the solution in
the elastic region depends on the shape of the elastic/plastic boundary, an adjust-
ment of this boundary must be accompanied by a recalculation of the elastic stress
function.

Figure 3.39 shows contours of the resultant shear stress τ around the plastic zone
when a cylindrical shaft with a collar† is subjected to a torque T = 1.5Te. The width
of the collar and the radius of the fillet are taken as 3

4 a and 1
8 a respectively, where a

is the radius of the parallel portion of the shaft. Due to an elastic stress concentration
factor of 1.53 existing at the fillet, yielding beings at a torque Te � 0.327πka3,
which is 0.654 times the torque required for a uniform shaft of radius a. The plastic
zone is found to grow rapidly when T > 1.53Te, the state of full plasticity being
attained when the torque becomes 2

3πka3, which is equal to 2.04Te. Due to the
large stress gradient in the neighborhood of the stress concentration, the extent of
the plastic zone is fairly small even for a torque that is 1.5 times that at the initial
yielding.

† R. P. Eddy and F. S. Shaw, J. Appl. Mech., 16: 139 (1949).
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Figure 3.40 Plastic torsion of a ring sector under equal and opposite axial forces.

(iii) Torsion of a ring sector A somewhat similar problem arises when a circular
ring sector of uniform cross section is twisted by two equal and opposite forces
through the center of curvature and along the perpendicular to the plane of the ring.
The problem is of some importance in the design of close-coiled helical springs.†
Using cylindrical coordinates (r, θ, z) with the z axis taken in the direction of the
applied force as indicated in Fig. 3.40a, the components of the velocity may be
written as

u = 0 v = v(r, z) w = cθ

where c is a constant. The circumferential velocity v represents the warping of the
cross section. The nonzero components of strain rate associated with the velocity
field are given by

2γ̇rθ = ∂v

∂r
− v

r
2γ̇θz = ∂v

∂z
+ c

r
(150)

The torsion problem for the elastic ring sector can be solved by expressing the shear
stresses τrθ and τθz by (140), so that the equilibrium equation (139) is identically
satisfied. It is easy to show that the stress function φ satisfies the differential equation

∂2φ

∂r2 − 3

r

∂φ

∂r
+ ∂2φ

∂z2 = −2Gδ

where δ̇ is equal to c, which specifies the axial velocity of one end of the ring sector
relative to the other. Since the resultant shear stress at the boundary of the cross

† The elastic torsion of a ring sector of circular cross section has been investigated by W. Freiberger,
Aust. J. Sci. Res., A, 2: 351 (1949). The elastic/plastic torsion has been discussed by W. Freiberger,
Q. Appl. Math., 14: 259 (1956).
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section must be tangential to the boundary, φ must have a constant value at each
point of the boundary. For a solid cross section, the boundary condition may be
written as φ = 0 without loss of generality.

In the case of a completely plastic ring sector, the nonzero stresses τrθ and τθz
must satisfy the equilibrium equation (139) and the yield criterion τ2

rθ + τ2
θz = k2

throughout the cross section. The latter is identically satisfied by writing

τrθ = k cos ψ τθz = k sin ψ

where ψ is the clockwise angle made by the shear stress vector with the positive
r axis. The substitution into (139) shows that the stress equation is hyperbolic with the
characteristics dz/dr = − cot ψ. The characteristic direction at a generic point of the
cross section is therefore normal to the local stress vector. In view of the equilibrium
equation expressed in terms of ψ, the variation of ψ along a characteristic is given by

dψ

ds
=

(
∂ψ

∂r
− cot ψ

∂ψ

∂z

)
dr

ds
= 2

r
cos ψ (151)

where ds is the line element of the characteristic, whose positive direction is obtained
by rotating the stress vector through 90◦ in the counterclockwise sense. It follows
from (151) that the radius of curvature of the characteristic is (r/2) sec ψ. This
means that the center of curvature C of the characteristic at any point Q is located
on the line of action of the shear stress vector at Q, the radial distance of C from the
z axis being 1.5 times that of Q from the z axis (Fig. 3.40b). A graphical construction
of the characteristics and shearing lines is therefore possible by using a small arc
process starting from the boundary of the cross section.

Using (140) for the stress components, and the boundary condition for φ, it is
easily shown that the resultant radial shearing force over the cross section and the
resultant moment of the shearing stresses about the origin O are identically zero.
The stress distribution in the ring is therefore statically equivalent to an axial force

P =
∫∫

τθz dr dz = k
∫∫

sin ψ dr dz (152)

The double integral can be evaluated numerically by summing the contribution from
each curvilinear element of the orthogonal network formed by the characteristics
and the shearing lines.

Since the direction of the shear stress vector does not change once an element
becomes plastic, the ratio γ̇rθ/γ̇θz is equal to cot ψ by the stress–strain relation.
Equations (150) therefore give

∂v

∂r
− cot ψ

(
∂v

∂z
+ c

r

)
− v

r
= 0

This is a hyperbolic equation having the same characteristics as those of the stress
equation. The variation of v along a typical characteristic is given by

dv

ds
=

(
∂v

∂r
− cot ψ

∂v

∂z

)
dr

ds
= 1

r
(v sin ψ + c cos ψ) (153)
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Figure 3.41 Fully plastic state for a ring sector of square cross section with characteristics and shearing
lines (after Wang and Prager).

which can be integrated numerically using the condition that v is continuous across
a line of stress discontinuity. If the material is assumed rigid/plastic, the shear strain
rate vanishes along a stress discontinuity, resulting in

dv = ∂v

∂r
dr + ∂v

∂z
dz = 1

r
(v dr − c dz) (154)

along this line. Since the warping displacement is determined to within an arbitrary
constant, v may be assumed to vanish on an arbitrarily chosen point on the line of
discontinuity, which bisects the angle between the intersecting shear lines.

As an example, we consider the fully plastic torsion of a ring sector whose cross
section is a square of side 2a, the radius of the center line being taken as 4a. Fig-
ure 3.41 shows the characteristics and the shearing lines over the cross section.†
Starting from a number of equidistant points on the sides of the square, the charac-
teristics are gradually extended into the interior of the cross section by a succession
of small circular arcs of appropriate radii. The characteristics emanating from the
sides intersect in points which define the lines of discontinuity of the stress field.
Four of these discontinuities pass through the corners of the square, bisecting the
angle between the characteristics meeting on them. Using the distribution of ψ, the
external force is found to be P = 0.66ka2 by a numerical procedure. The contours
of constant warping may be obtained by the integration of (153), starting from the

† This solution is due to A. J. Wang and W. Prager, J. Mech. Phys. Solids, 8: 169 (1955). The
solution for a hollow cross section has been given by W. Freiberger and W. Prager, J. Appl. Mech., 23,
461 (1956).
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discontinuities on which v/c is given by (154), and assuming v to vanish at the center
of the cross section.

3.8 Combined Bending and Twisting of Bars

(i) The exact yield point state A prismatic bar whose cross section has two orthog-
onal axes of symmetry is rendered fully plastic by the combined action of bending
couples M and twisting couples T applied at the ends. We choose a set of rectangular
axes in which the x and y axes are along the axes of symmetry and z axis along the
centroidal axis of the bar, the axis of the bending couple being taken to coincide
with the x axis. The material is assumed to be rigid/plastic obeying the von Mises
yield criterion and the Lévy-Mises flow rule. If the rates of bending and twisting
per unit length are denoted by ψ̇ and θ̇ respectively at the incipient plastic flow, the
incompressible velocity field may be expressed as

u = − 1
2 xyψ̇ − yzθ̇

v = 1
4 (x2 − y2 − 2z2)ψ̇ + xzθ̇

w = yzψ̇ + f (x, y)

(155)

so that the strain rates are independent of z. The unknown function f specifies the rate
of warping of the cross section. The velocity field (155) is the effect of superposition
of those corresponding to pure bending and pure torsion, with the neutral plane
coinciding with the xz plane.

Since the lateral surface of the bar is stress-free, the only nonzero stress compo-
nents compatible with the velocity field (155) are σz, τxz, and τyz, which are required
to satisfy the equilibrium equation ∂τxz/∂x + ∂τyz/∂y = 0, the yield criterion

σ2
z + 3(τ2

xz + τ2
yz) = 3k2

and the flow rule. The first two equations are identically satisfied by the existence
of a stress function φ(x, y) such that

τxz = kφy τyz = −kφx σz = ±√
3k(1 − φ2

x − φ2
y )1/2 (156)

where φx and φy denote the partial derivatives ∂φ/∂x and ∂φ/∂y respectively. The
nonzero components of the strain rate corresponding to (155) are

ε̇x = ε̇y = − 1
2 yψ̇ ε̇z = yψ̇

γ̇xz = 1

2

(
∂f

∂x
− yθ̇

)
γ̇yz = 1

2

(
∂f

∂y
+ xθ̇

)
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The substitution for the stresses and the strain rates into the Lévy-Mises flow rule
furnishes the relationship between the kinematical and statical variables as

yψ̇ = ± 2√
3

kλ̇(1 − φ2
x − φ2

y )1/2

∂f

∂x
= 2kλ̇φy + yθ̇

∂f

∂y
= −2kλ̇φx − xθ̇

(157)

where λ̇ is a nonnegative factor of proportionality. The first of these relations indi-
cates that the upper sign corresponds to y > 0 and the lower sign to y < 0. The last
two relations of (157) will be compatible if

k
∂

∂x
(λ̇φx) + k

∂

∂y
(λ̇φy) + θ̇ = 0

Inserting the expression for λ̇ given by the first equation of (157), and evaluating the
partial derivatives, we obtain the nonlinear partial differential equation†

yψ̇[(1 − φ2
y )φxx + 2φxφyφxy + (1 − φ2

x )φyy]

+ ψ̇φy(1 − φ2
x − φ2

y ) ± 2√
3
θ̇(1 − φ2

x − φ2
y )3/2 = 0 (158)

For a given value of ψ̇/θ̇, this elliptic equation can be solved numerically under the
boundary condition φ = 0 to obtain the stress function φ, which specifies the stress
distribution. When ψ̇ = 0, the equation reduces to φ2

x + φ2
y = 1 obtained earlier for

pure torsion.
The stress distribution in the bar is statically equivalent to a twisting couple T

and a bending couple M. Using (156), the external couples are easily shown to be

T =
∫∫

(xτyz − yτxz)dx dy = 2k
∫∫

φ dx dx

M =
∫∫

yσz dx dy = √
3k

∫∫
±y

√
1 − φ2

x − φ2
y dx dy

(159)

These expressions define the relationship between T and M at the yield point
parametrically through the ratio ψ̇/θ̇.

Equation (158) may also be derived by a simple application of the principle of
maximum plastic work. We begin with the fact that the rate of work done by the
applied couples is

Ẇ = l(Mψ̇ + T θ̇)

† G. H. Handelman, Q. Appl. Mech., 1: 351 (1944), and R. Hill, Q. J. Mech. Appl. Math., 1:
18 (1948). A numerical solution of the equation for a bar of square section has been presented by
M. C. Steele, J. Mech. Phys. Solids, 3: 156 (1955).
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where l is the total length of the bar. Substituting from (159), we get

Ẇ = kl
∫∫

[±√
3yψ̇

√
1 − φ2

x − φ2
y + 2θ̇φ] dx dy

The function φ must be such that the integral becomes a maximum. By the Euler-
Lagrange equation of the calculus of variations, the stationary value of the integral
corresponds to

∂F

∂φ
− ∂

∂x

(
∂F

∂φx

)
− ∂

∂y

(
∂F

∂φy

)
= 0

where F represents the integrand, and the result then reduces to (158). If the varia-
tional method is adopted, it is necessary to verify that the velocity field is associated
with the stress field and that the rate of plastic work is nowhere negative.

The analysis is readily extended to include an axial force N applied to the bar.
The velocity field then contains additional terms − 1

2 xε̇, − 1
2 yε̇ and zε̇ for u, v, and

w respectively, where ε̇ denotes a uniform rate of extension. The neutral plane is
given by yψ̇ + ε̇ = 0, and Eq. (158) is modified by writing yψ̇ + ε̇ in place of yψ̇. The
applied force N is equal to

∫∫
σz dx dy, where σz is given by (156) with the upper sign

holding for yψ̇ + ε̇ > 0 and the lower sign for yψ̇ + ε̇ < 0. The relationship between
N , T , and M at the yield point depends on the ratios ψ̇/θ̇ and ε̇/θ̇.

(ii) Lower bound approximations Let T0 denote the fully plastic torque under pure
torsion, and M0 the fully plastic moment under pure bending about the considered
axes of symmetry. The former is associated with a shear stress of magnitude k
throughout the cross section, while the latter involves normal stresses ±√

3k on
opposite sides of the neutral plane. To obtain a lower bound on the yield point
couples under combined loading, we assume a distribution of constant shear stress
τ < k similar to that in pure torsion, and combine this with a distribution of normal
stress of constant magnitude σ <

√
3k similar to that in pure bending.† Then

T

T0
= τ

k

M

M0
= σ√

3k

Since the fictitious stress state must not violate the yield criterion, the best
approximation corresponds to σ2 + 3τ2 = 3k2, which gives‡(

T

T0

)2

+
(

M

M0

)2

= 1 (160)

† The lower and upper bound approximations discussed here are due to R. Hill and M. P. L. Siebel,
J. Mech. Phys. Solids, 1: 207 (1953).

‡ For applications of this equation to the plastic analysis of grillages, see J. Heyman, J. Appl.
Mech., 18: 157 (1951), 19: 153 (1952). See also R. Sankaranarayanan and P. G. Hodge, Jr., J. Mech.
Phys. Solids, 7: 22 (1959). The plastic torsion of I beams with warping restraint has been investigated
by N. S. Boulton, Int. J. Mech. Sci., 4: 491 (1962), K. S. Dinno and S. S. Gill, ibid., 6: 27 (1964), and
G. Augusti, ibid., 8: 541 (1966).
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Consider now the effect of an axial force N , whose yield point value is N0 when
the force is acting alone. In the absence of torsion, the stress state at the yield point
consists of longitudinal stresses ±√

3k on opposite sides of the neutral plane, which
is no longer a plane of symmetry of the cross section. The resultant force and moment
acting over the section can be calculated for any assumed position of the neutral axis.
The relationship between M and N at the yield point may be put in the form

f

(
M

M0
,

N

N0

)
= 0

where f is a dimensionless function depending on the shape of the cross section.
When a torque T is present, the magnitude of the longitudinal stress is reduced to
σ without changing the neutral axis. The relationship between the corresponding
bending moment and axial force becomes

f

(√
3kM

σM0
,

√
3kN

σN0

)
= 0 (161)

which must be combined with the result T/T0 = τ/k. The elimination of σ and τ

by means of the yield criterion then leads to a lower bound relationship between
M/M0, T/T0, and N/N0 at the yield point. It represents a surface lying inside that
corresponding to the actual yield point.

Consider the yield point state of a bar, whose cross section is a circle of radius
a, under the action of a bending moment M and an axial tension N . If a sin β denotes
the distance of the neutral plane and a sin φ that of any parallel plane from the
longitudinal axis, it is easily shown that

N = 4
√

3ka2
∫ β

0
cos2φ dφ = N0

π
(2β + sin 2β)

M = 4
√

3ka3
∫ π/2

β

cos2φ sin φ dφ = M0 cos3β

where N0 = √
3πka2 and M0 = 4ka3/

√
3.The relationship between N/N0 and M/M0

defined by the above expressions may be written approximately as

M

M0
+

(
N

N0

)2

= 1 (162)

which underestimates the magnitudes of M and N , for a given value of their ratio,
by less than 1.5 percent. The above formula is in fact exact for a rectangular cross
section with the appropriate values of M0 and N0 (see Sec. 4.7(i)). When a bending
moment M, a twisting moment T , and an axial force N act simultaneously, it follows
from (161) and (162) that(

N

N0

)2

+ σ√
3k

(
M

M0

)
= σ2

3k2

(
T

T0

)2

= τ2

k2 = 1 − σ2

3k2



Chakra-03.tex 13/1/2006 15: 9 Page 221

elastoplastic bending and torsion 221

where T0 = 2πka3/3 in the case of a circular cross section. Eliminating σ/
√

3k
between these two equations, we obtain the lower bound approximation(

N

N0

)2

+
(

T

T0

)2

+ M

M0

√
1 − T2

T2
0

= 1 (163)

For a circular cross section with M = 0, the exact yield point solution is obtained
from (21) by setting c = 0 and eliminating α, the result being(

T

T0

)2

+ 1

4

(
3 + N

N0

)(
N

N0

)2

= 1

The lower bound solution given by (163) with M = 0 differs from the exact solution
by less than 1.8 percent when the cross section is a circle.

(iii) Estimation of upper bounds To obtain an upper bound solution for the yield
point state, we assume a fictitious deformation consisting of a bending rate ψ̇

and a twisting rate θ̇ per unit length of the bar without any warping of the cross
section.† The velocity distribution is then given by (155) with f = 0, and the
corresponding components of the strain rate at any point are

ε̇x = ε̇y = − 1
2 yψ̇ ε̇z = yψ̇ γ̇xz = − 1

2 yθ̇ γ̇yz = 1
2 xθ̇

The rate of dissipation of internal energy per unit volume is
√

3kε̇, where ε̇ is the
equivalent strain rate expressed as

ε̇
2 = 2

3 (ε̇2
x + ε̇2

y + ε̇2
z + 2γ̇2

xz + 2γ̇2
yz) = y2ψ̇2 + 1

3 (x2 + y2)θ̇2 (164)

Since the rate of external work done per unit length of the bar is equal to Mψ̇ + T θ̇,
upper bounds on the applied couples are given by

Mψ̇ + T θ̇ = √
3k

∫
ε̇ dA = √

3k
∫ √

y2ψ̇2 + 1
3 (x2 + y2)θ̇2 dA

where the integral is taken over the whole cross section of the bar. The partial
differentiation of this equation with respect to ψ̇ and θ̇, corresponding to a given
M/T ratio, furnishes the best upper bound solution

M = 3k
∫∫

αy2 dx dy√
(1 + 3α2)y2 + x2

T = k
∫∫

(x2 + y2)dx dy√
(1 + 3α2)y2 + x2

(165)

where α = ψ̇/θ̇. The integrals can be evaluated for any given cross section to obtain
M and T in terms of the parameter α. The above expressions are precisely those
obtained as the moment resultants of the stresses associated with the fictitious strain

† Improved upper bounds can be obtained by including suitable warping functions. See F.A. Gaydon
and H. Nuttall, J. Mech. Phys. Solids, 6: 17 (1957).
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rates. According to the Lévy-Mises flow rule and the von Mises yield criterion, the
nonzero stresses are

σz = µyψ̇ τxz = − 1
3µyθ̇ τyz = 1

3µxθ̇

where µ is a positive multiplier given by

µ2[y2ψ̇2 + 1
3 (x2 + y2)θ̇2] = 1

These stresses do not satisfy the conditions of equilibrium, and give rise to trans-
verse shearing forces and tangential surface tractions which violate the boundary
conditions. Nevertheless, the resultant moments produced by these stresses coincide
with (165).

When the cross section of the bar is a circle of radius a, it is convenient to use
polar coordinates (r, φ) with the transformation x = r cos φ, y = r sin φ. Equations
(165) then reduce to

M

M0
=

∫ π/2

0

√
3α sin2φ dφ√

1 + 3α2 sin2φ

T

T0
= 2

π

∫ π/2

0

dφ√
1 + 3α2 sin2φ

(166)

These are incomplete elliptic integrals, which are more convenient to evaluate numer-
ically than from available tables. The results given in the following table indicate
that the sum of the squares of M/M0 and T/T0 exceeds the lower bound value of
unity by less than 4 percent.

ψ̇/θ̇ 0.000 0.408 0.577 1.000 1.826 5.774 ∞
M/M0 0.000 0.476 0.602 0.776 0.900 0.982 1.000

T/T0 1.000 0.904 0.835 0.688 0.502 0.235 0.000

For a square cross section with sides x = ±a and y = ±a, the values of M0 and
T0 are 2

√
3ka3 and 8ka3/3 respectively. The integrals in (165) are exactly evaluated,

and the relationship between M and T is obtained in the parametric form

M

M0
= α√

3

{√
1 + ω

ω
+ 2 ln

(
1 + √

1 + ω√
ω

)
− sinh−1√ω

ω
√

ω

}

T

T0
= 1

4

{
(1 + ω)3/2

ω
+ (2 − ω) ln

(
1 + √

1 + ω√
ω

)
+ (2ω − 1)

sinh−1√ω

ω
√

ω

}(167)

where ω = 1 + 3α2. The upper bound approximations for the circular and square
cross sections are compared with the lower bound approximation in Fig. 3.42. The
solid circles are based on the numerical solution of Eq. (158) for the square cross
section. The maximum divergence between the upper and lower bounds occurs in
pure torsion for a bar of square cross section, the corresponding error in the upper
bound being about 14 percent. In the case of a rectangular cross section with arbitrary
ratio of its sides, the maximum error in the upper bound based on (165) would be
less than 14 percent.
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Figure 3.42 Interaction curves for combined bending and torsion of bars of circular and square cross
sections.

According to the maximum work principle, ψ̇/θ̇ is equal to the ratio of ∂g/∂M
to ∂g/∂T , where g(M, T ) defines the relationship between M and T at the yield
point. In geometrical terms, the vector (ψ̇, θ̇) is directed along the exterior normal
to the interaction curve obtained by plotting T against M corresponding to the yield
point state. If (160) is taken as an approximation to g(M, T ), we immediately get
ψ̇/θ̇ = π2M/12T in the case of a circular cross section. This incidentally is the exact
value of ψ̇/θ̇ for a thin-walled cylindrical tube stressed to the yield point.

Problems

3.1 A solid cylindrical bar made of a work-hardening material with an initial shear yield stress k is
subjected to pure torsion until the torque has the fully plastic value corresponding to no work-hardening.
Assuming a constant plastic modulus H = G/3, find the associated twist ratio θ/θe. If the bar is fully
unloaded from the partly plastic state, compute the residual shear stress at the external boundary in
terms of the yield stress k.

Answer: θ/θe = 1.825, τ/k = −0.251.

3.2 A hollow cylindrical bar of external radius a and internal radius 0.5a is twisted to full plasticity
and the applied torque is subsequently released. The material is nonhardening and obeys the von Mises
yield criterion. If the unloaded bar is subjected to a sufficiently large axial tension, show that yielding
will restart at the inner radius. Compute the tensile stress σ at the yield point, and the residual twist θ

per unit length after the unloading.
Answer: σ = 0.926Y , θ = 0.756k/Ga.
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3.3 A solid circular cylinder of radius a is rendered partially plastic to a radius b in pure torsion. An
increasing axial tension is then applied to the bar while the angle of twist is held constant. Assuming an
incompressible and nonhardening Prandtl-Reuss material, show that the stress distribution in the region
b � r � a is given by

σ

Y
= tanh

(
3G

Y
ε

) √
3τ

Y
= sech

(
3G

Y
ε

)
where ε is the longitudinal strain. Show that the axial stress in the additional plastic region is given by
Eq. (24) with a replaced by b.

3.4 A thin-walled tube made of a linearly work-hardening Prandtl-Reuss material is initially twisted
to the yield point, and subsequently extended with the angle of twist held constant. Show that the
relationship between the longitudinal strain ε and the axial stress σ is given by

6G

Y
ε = 3σ

(1 + ν)Y
+ n

∫ σ

Y

σ dσ

Yσ

σ

Y
=

{(
σ

Y

)2

−
(

Y

σ

)n
}1/2

where σ is the equivalent stress and n = 6G/H. Obtain a graphical plot of σ/Y against 6Gε/Y over the
range 0 � σ/Y � 1.0, and compare it with that for a nonhardening material of yield stress Y .

3.5 A nonhardening thin-walled tube of mean radius a, made of a Prandtl-Reuss material, is subjected
to pure bending until the extreme fibers are just stressed to the yield point. The tube is then twisted with
a gradually increasing torque T holding the angle of bend constant. Show that the bending couple M
decreases according to the relation

M

T0
=

√
3

π

(
cos−1 T

T0
+ T

T0

√
1 − T2

T2
0

)

where T0 denotes the yield torque. Prove that the warping w in the plastic region, whose angular span
is specified by the core angle 2α, is given by the following increment in the plastic range:

�

(
Ew

ka

)
= 3

(
1 − 2φ

π

) {[
sin α − α cos α

]φ
α

−
∫ φ

α

α cosec α dα

}
α � φ � π

2

3.6 A thin-walled tube, whose cross section is a square of side 2a, is bent to an angle ψ = 3k/Ea per
unit length about an axis passing through the midpoints of two opposite sides. The tube is then twisted
in the plastic range while the angle of bend is kept constant. If the material is ideally plastic, show that

M

T0
= 1

6
√

3

(
13 + T2

2T2
0

) √
1 − T2

T2
0

Assuming the material to be incompressible, and using the Prandtl-Reuss flow rule, show that the
torque-twist relationship is

Gaθ

k
= tanh−1 T

T0
+ 1

2
√

3

(
T

T0

√
1 − T2

T2
0

− sin−1 T

T0

)

3.7 Consider the plastic instability of a thin-walled circular cylinder under combined internal pressure
and axial load. It may be assumed that the instability is caused by either the internal pressure or the
resultant axial force attaining a maximum. Assuming further that the stress ratio remains constant at the
onset of instability, show that the critical subtangent to the generalized stress–strain curve for a Mises
material is

s = 2

{
1 − σθ

σz
+

(
σθ

σz

)2
}1/2/(

2 − σθ

σz

)
σθ

σz
� 0.5

s = 2

3

{
1 − σz

σθ

+
(

σz

σθ

)2
}1/2

σz

σθ

� 2.0
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where σz and σθ are the axial and circumferential stresses respectively at the point of instability. Show
a graphical comparison of this solution with that given by Eq. (44).

3.8 An open-ended thin-walled tube is subjected to an internal pressure p and an axial tensile load N
in the plastic range. Plastic instability is assumed to occur when p and N simultaneously attain their
maximum values. Using the empirical equation σ = C εn, show that the total equivalent strain at the
onset of instability is

ε = 2n(1 − β + β2)3/2

(1 + β)(3 − 4β + 2β2)

where β is the final ratio of the axial stress to the hoop stress. Use the von Mises yield criterion and the
Lévy-Mises flow rule to derive the result.

3.9 In the pure bending of an elastic/plastic beam, the moment-curvature relationship approaches a
limit, which is obtained by assuming the plastic zone to spread over the whole cross section. For a
work-hardening material, it is convenient to use the empirical equation σ = Cεn for the derivation of the
limiting moment. Show that in the case of a circular cross section of radius a, the limiting moment is

M∗ = 2Ca3√π

3 + n

( a

R

)n �[(2 + n)/2]

�[(3 + n)/2]

where �(x) is the gamma function of a positive quantity x. Note that for n = 0, the above expression
reduces to the fully plastic moment of a nonhardening beam.

3.10 A nonhardening beam of rectangular cross section is bent about an axis of symmetry to an
elastic/plastic curvature equal to κ0. The beam is then unloaded and reloaded in the opposite sense
until plastic deformation again occurs. Show that the new elastic/plastic phase involves a curvature
κ � κ0 − 2κe, where κe corresponds to the initial yielding, and that the moment-curvature relationship
becomes

M

Me
= −1

2

[
3 +

(
κe

κ0

)2
]

+
(

2κe

κ0 − κ

)2

Verify that for κ � −κ0, the beam behaves as though the initial positive loading had never taken place.

3.11 A beam of rectangular cross section having a width b and depth 2h is bent about an axis parallel to
the width. The material is linearly work-hardening with an initial yield stress Y and a tangent modulus
T . Show that the moment-curvature relationship during an elastic/plastic bending may be written as

M

Me
= 1

2

(
1 − T

E

) [
3 −

(
R

Re

)2
]

+ TRe

ER

If the beam is completely unloaded from a state in which half the cross section is rendered plastic, show
that the residual curvature is 5(E − T )/8E times the curvature of the beam at the initial yielding.

3.12 A prismatic beam of square cross section, made of an ideally plastic material, is bent about a
diagonal in the elastic/plastic range. Show that the initial yield moment is Me = 2

√
2a3Y/3, where 2a is

the length of each side of the square, and that the moment-curvature relationship for the partially plastic
beam is

M

Me
= 2 − 2

(
R

Re

)2

+
(

R

Re

)3

If the applied moment is released after half the area of the cross section has become plastic, find the
limits between which a reloading moment M can vary without causing further plastic flow.

Answer: −0.147Me � M � 1.853Me.
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3.13 An I section may be regarded as a combination of three rectangles with an overall depth 2h, flange
width b, flange thickness tf and web thickness tw. Show that the fully plastic moment for bending of
the I section beam about its strong axis is

M0 = btf (2h − tf )Y + tw(h − tf )2Y

The influence of a transverse shear force F on the plastic moment may be approximately estimated by
assuming the shear stress to be zero in the flanges and uniformly distributed in the web. Show that the
reduced plastic moment according to the Tresca criterion is

M ′
0 = Mf +

{
Mw

(
Mw − F2

Ytw

)}1/2

F � Ytw(h − tf )

where Mf and Mw are the contributions of the flanges and the web to the plastic moment without shear.

3.14 A T section consists of two equal rectangles of length h and thickness t. The beam is made of a
material whose yield stresses in tension and compression are Y and 1.5Y respectively. If the beam is
bent about an axis perpendicular to the web, show that the fully plastic moment isYht(0.5h + 0.7t) when
the tip of the web is in tension and to Yht(0.7h + 0.5t) when it is in compression. Assuming h/t = 9,
determine the shape factors in the two cases.

Answer: 1.88, 1.64.

3.15 A beam of Z section shown in Fig. A is folded from a thin uniform sheet where t/a is small
compared to unity. Determine the angles α1 and α2 which define the directions of the principal axes of
plastic bending. Find also the angle α which the strong principal axis of elastic bending makes with the
z axis. Compute the angle of inclination β of the neutral axis to the y axis when the fully plastic moment
is about the z axis. Draw the yield locus and show the directions of the plastic principal axes.

Answer: α1 = 18.4◦, α2 = 17.4◦, α = 22.5◦, β = 35.3◦.

Figure A

3.16 Figure B shows an idealized angle section composed of two rectangles of uniform wall thickness t,
which is small compared to the leg lengths 2a and 2b. Show that the direction of the strong principal
axis of plastic bending is given by tan α1 = 2b2/(a2 + 2ab − b2), while that of the weak principal axis
is given by

tan α2 = 2a2(1 + tan α2)2 − (a + b)2

2b2(1 + tan α2)2 − (a + b)2 tan2α2
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Figure B

Assuming b/a = 0.75, compute the values of α1 and α2. Sketch the yield locus, indicating the directions
of the plastic principal axes.

Answer: α1 = 30.1◦, α2 = 19.4◦.

3.17 A uniform beam of length 2l is simply supported at both ends and symmetrically loaded by two
equal loads W at distances l/2 from the center. The material of the beam is nonhardening and its cross
section is rectangular. Show that the central deflection of the beam at the commencement of plastic
yielding is δe = 11l2/24Re. Sketch the shape of the elastic/plastic boundaries when W exceeds the value
We at the initial yielding, and obtain the load-deflection relationship

δ

δe
= 2

11

{
5 −

(
3 + W

We

)(
3 − 2W

We

)1/2
}(

We

W

)2

+ 9

11

(
3 − 2W

We

)−1/2

Note that δ tends to infinity as W approaches the limiting value 1.5We corresponding to plastic collapse.

3.18 A propped cantilever of length l, having a rectangular cross section, carries a concentrated load W at
the midspan. Show that yielding begins at the built-in end when the load and the central deflection become

We = 16Me

3l
δe = 7l2

144Re

Assuming that the reactant moment at the built-in end varies directly as the load in the initial stages of
elastic/plastic bending, find the value of W when the central cross section of the beam begins to yield.
Neglecting work-hardening, calculate the load for which the built-in section just becomes fully plastic,
as well as the load that corresponds to plastic collapse.

Answer: W/We = 1.20, 1.62, 1.69.

3.19 A uniform beam, built-in at both ends, carries a load W uniformly distributed overs its length 2l.
The beam is assumed to have an idealized section whose shape factor is unity and plastic moment is M0.
Show that the central deflection of the beam is equal to M0l2/8EI when plastic hinges form at the ends
of the beam, and to M0l2/3EI when it is at the point of collapse. If the beam is completely unloaded
from the state of incipient collapse, show that there will be a residual deflection of amount M0l2/6EI
at the center, and a uniform residual moment M0/3 throughout the beam.

3.20 A nonhardening beam of length 3l has built-in ends and carries a concentrated load W at a distance
l from each end. Assuming a shape factor of unity, show that yield hinges begin to form at the ends
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of the beam when the load is W = 3M0/2l and the central deflection is δ = 5M0l2/16EI , where M0 is
the plastic moment. Show also that the carrying capacity of the beam is exhausted when the load and
the central deflection become W = 2M0/l and δ = 19M0l2/24EI respectively. Verify that the residual
deflection is δ = 9M0l2/24EI when the beam is fully unloaded from the point of collapse.

3.21 A circular plate of radius a and thickness 2h is bent by an allround couple M per unit circumference.
Show that the middle plane of the plate is bent into a spherical surface with a radius of curvature R,
which is equal to 2Eh3/3(1 − ν)M in the elastic range. If the depth of the elastic core is denoted by 2c
when the plate is partially plastic, show that

R = Ec

(1 − ν)Y
M = Y

(
h2 − c2

3

)

Using cylindrical coordinates (r, z), where z = 0 represents the middle surface, show that the axial
displacement w in the plastic region is given by

Ew

Y
= (1 − ν)

(
a2 − r2

2c
− z2

c

)
+ (1 − 2ν)(2|z| − c)

if the boundary condition is assumed as w = 0 at z = 0 and r = a.

3.22 Consider the elastic torsion of a circular cylindrical bar of radius a, containing a semicircular
longitudinal groove of radius b as shown in Fig. C. Show that the torsion problem is solved by the stress
function

φ = −1

2
Gθ(r2 − b2)

(
1 − 2a

r
cos ψ

)
expressed in plane polar coordinates (r, ψ). Find the distribution of shear stress in the bar, and show
that the greatest resultant shear stress is of magnitude Gθ(2a − b) occurring at the bottom of the groove.

Figure C

3.23 The cross section of a prismatic bar is an equilateral triangle, the length of each side being 2a.
Using the coordinate system of Fig. 3.35, show that the stress function

φ = 1

2
Gθ

{
4

9
a2 − (x2 + y2) − x√

3a
(x2 − 3y2)

}

vanishes along the boundary of the cross section, and provides a valid solution for elastic torsion. Find
the stress distribution in the bar and hence derive the warping function

w =
√

3θ

2a

(
x2 − y2

3

)
y

Show that the applied torque T is 3Gθ/5 times the polar moment of inertia of the cross section.
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3.24 The stresses in the plastic region of a twisted bar may be written as τxz = k cos α and τyz = k sin α,
where α is the angle made by the shear stress vector with the x axis in the counterclockwise sense. Show
that the fully plastic stress distribution in a bar of elliptic cross section of semiaxes a and b is given
implicitly by

x cos α + y sin α = (a2 − b2) sin α cos α√
a2 sin2α + b2 cos2α

Verify that the fully plastic stress state involves a straight discontinuity extending between the centers
of curvature for the ends of the major axis. Obtain an expression for the warping of the cross section.

3.25 The problem of elastic/plastic torsion of a bar, whose cross section is approximately an equilateral
triangle, can be solved by taking the stress function in the elastic region to be identical to that in
Prob. 3.23, with a replaced by an arbitrary constant

√
3c. Using polar coordinates (r, α), show that the

elastic/plastic boundary � is given by the equation

r2
(

1 + r

c
cos 3α + r2

4c2

)
= k2

G2θ2

Assuming θ = k/Gc, draw the characteristics through suitable points on � to obtain the shape of the
external contour shown in Fig. D. What is the physical significance of c?

Figure D

3.26 A prismatic bar has a thin symmetrical cross section bounded by a pair of parabolas as shown in
Fig. E, the width of the section at a generic height y being

a = a0

(
1 − 4y2

b2

)
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Figure E

The stress function for purely elastic torsion of the bar may be written as φ =Gθ(a2/4 − x2) to a close
approximation. Show that the applied torque is T = 0.152Gθa3

0b. Find the ratio of the torque necessary
to initiate plastic yielding in the bar to that required for a rectangular section of length b and width a0.

3.27 The cross section of a thin-walled tube of uniform wall thickness t is shown in Fig. F. Using the
membrane analogy for torsion, find the distribution of shear stress when the tube is purely elastic. Hence
show that the twisting moment and the specific angle of twist at the initial yielding are given by

Te = 16
3 ka2t Gaθe = 7

6 k

Show also that the shear stress vanishes in the internal webs at the incipient collapse, and determine the
corresponding values of the torque and the twist.

Answer: T0 = 6ka2t, θ0 = 1.5k/Ga.

Figure F

3.28 A beam of rectangular cross section, whose sides are defined by x = ±b and y = ±a, is subjected
to a bending moment M about the x axis and a twisting moment T about the z axis. For b/a greater than
about 3, a good upper bound may be obtained by using the velocity field of Eqs. (155) with f = −xyθ̇.
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Show that the interaction relationship is(
M

M0

)2

+
(

1 − a

3b

)2
(

T

T0

)2

= 1

Note that this solution approaches the lower bound approximation as a/b tends to be negligible compared
to unity.

3.29 A cantilever I beam is built-in at the end z = 0, where it is prevented from warping, and is subjected
to a twisting couple T at the free end z = l (Fig. G). Any flange section is under a twisting moment Tf ,
a bending moment Mf , and a shearing force. Neglecting the effect of shear, Eq. (160) may be assumed
for the yield condition of each flange with fully plastic moments T0 and M0. Denoting the horizontal
displacement of the upper flange by u(z), and using the upper-bound theorem, show that

(T − Tw)u(l) =
∫ l

0

√
4(T0u′)2 + (M0hu′′)2 dz + M0hu′(0)

where Tw is the torque shared by the web, and the primes indicate differentiation with respect to z.
Verify that for a linear displacement function, T exceeds the sandhill torque by M0h/l.

Figure G

3.30 In the plastic torsion of a uniform rigid/plastic bar, made of a work-hardening material, let ds and
dc denote the arc elements of the shearing line and the characteristic respectively through a generic
point of the cross section. If ds is taken along the shear stress vector, and the direction of dc is obtained
from that of ds by a 90◦ counterclockwise rotation, show that the shear stress k and the engineering
shear strain rate λ must satisfy the equations

∂k

∂s
+ k

∂ψ

∂c
= 0 λ

∂ψ

∂s
− ∂λ

∂c
= 2

where ψ is the angle of inclination of the tangent to the characteristic. Denoting the local radius of
curvature of the shearing line by ρ, show that ρ(ρ − λ) is constant along a characteristic when the bar
is just fully plastic. Take the specific angle of twist as the time scale.

3.31 A rigid/plastic prismatic bar of arbitrary cross section is subjected to combined torsion and axial
tension until it is fully plastic. Choosing a set of rectangular coordinates, where the z axis is parallel to the
generators, write down the velocity field in terms of the rate of extension ε̇, and the rate of twist θ̇ per unit
length. Adopting the Mises theory, show that the stress function φ must satisfy the differential equation

∂

∂x

(
F

∂φ

∂x

)
+ ∂

∂y

(
F

∂φ

∂y

)
= − 2θ̇√

3ε̇
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where

F =
{

1 −
(

∂φ

∂x

)2

−
(

∂φ

∂y

)2
}−1/2

Assuming the cross section to be a circle of radius a, show that the differential equation is identically
satisfied by the stress function associated with equation (20) for the resultant shear stress.

3.32 The engineering shear stress–strain curve for the material of a solid cylindrical bar of circular
cross section, which is twisted beyond the elastic limit, may be represented by the empirical equation
τ = k(Gγ/k)n for τ � k, where k is the initial yield stress in shear, and n is the strain-hardening exponent.
Denoting the angle of twist per unit length by θ, derive the torque-twist relationship in the dimensionless
form

T

Te
= 1

3 + n

{
4

(
θ

θe

)n

− (1 − n)

(
θe

θ

)3
}

3.33 A compound bar is made of a solid cylinder of radius b, exactly fitting into a hollow cylinder of
outer radius a, the two cylinders being firmly bonded at their common radius. The bar is twisted in the
fully plastic range until the engineering shear strain at the outer radius is γ0. If the shear stress–strain
curve is represented by τ = k1γ

n1 for the inner cylinder and τ = k2γ
n2 for the outer cylinder, show that

the applied torque is

T = 2πa2

{
k1γ

n1
0

3 + n1

(
b

a

)3+n1

+ k2γ
n2
0

3 + n2

[
1 −

(
b

a

)3+n2
]}

3.34 A simplified relationship between the bending moment M and the radius of curvature R for a
work-hardening beam can be obtained by assuming the elastic response to continue until these quantities
coincide with those for a hypothetical material that obeys the power law σ = Y (Eε/Y )n over the whole
cross section. Letting M = M0 and R = R0 at the modified yield point, and assuming a rectangular cross
section with M = Me at the actual elastic limit, show that for M � M0,

M

M0
=

(
R0

R

)n M0

Me
=

(
3

2 + n

)1/(1−n)

3.35 A cantilever of length l, having a rectangular cross section, is loaded by a uniformly distributed
load of intensity w per unit length. If the beam is partially plastic with the same moment-curvature
relation as that given in the preceding problem when M � M0, show that the deflection δ of the free end
of the cantilever is given by

δ

δ0
=

(
1 − n

1 + n

)(w0

w

)
+ 2n

1 + n

(
w

w0

)1/n

,
w

wo
� 1

where w0 is the load intensity and δ0 the deflection when the bending moment at the built-in end is M0.

3.36 A simply supported beam of length 2l is rendered partially plastic by the application of a concen-
trated load W at the mid-span. If the beam has a moment-curvature relationship which is identical to
that of the preceding problem when M � M0, show that the central deflection δ can be expressed in the
form

δ

δ0
=

(
1 − n

1 + 2n

)(
W0

W

)2

+ 3n

1 + 2n

(
W

W0

)1/n

,
W

W0
� 1

where δ0 is the central deflection corresponding to a load W0 that gives M = M0 at the central section.
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CHAPTER

FOUR
PLASTIC ANALYSIS OF BEAMS AND FRAMES

4.1 Introduction

The conventional methods of analysis and design of engineering structures are based
on a permissible working stress whose value is well within the elastic limit. The
concentrations of stress that occur at rivet holes and sudden changes in cross section
are usually disregarded in the elastic analysis. Since the results of the elastic analysis
cease to hold when the yield limit is exceeded at the most critical cross section, the
elastic design of a structure requires a margin of safety that ensures a fully elastic
response. A limitation of structural designs based on the elastic analysis is evident
from the fact that minor structural imperfections, which are without effect on the
overall strength of the structure, when the possibility of buckling is excluded, have
a marked influence on the elastic behavior.

The load-carrying capacity of a structure made of a ductile material is rarely
exhausted at the onset of plastic yielding, since excessive deflections do not occur
before the load is appreciably higher than that at the elastic limit. This effect is more
pronounced in statically indeterminate structures, where there is a redistribution of
stress beyond the elastic limit, resulting in a marked increase in the carrying capacity.
It follows that an economical design of a structure can be based on a suitable safety
factor applied to the load for which the overall deflection begins to increase in a
more or less unrestricted manner.† Such a load is called the collapse load, which
can be determined by the methods of plastic analysis without having to consider the
intervening elastic/plastic range of deformation. The calculations involved in the
plastic analysis are much simpler than those required in the corresponding elastic

† See, for example, J. F. Baker, J. Inst. Civ. Eng., 31: 188 (1949).

233
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analysis. The influence of work-hardening is usually neglected in the plastic analysis
so that the estimated carrying capacity is always conservative.

The strength of a structure is characterized by its collapse load which is obtained
on the basis of certain idealizations. Considering a nonhardening elastic/plastic struc-
ture, a state of plastic collapse is defined as one for which the deflections, regarded as
small, continue to increase under constant external loads. Since the bending moment
distribution remains unchanged during the collapse, the change in curvature van-
ishes everywhere except at certain critical cross sections where the bending moment
attains the fully plastic value. Infinitely large curvatures can theoretically occur at
these cross sections, permitting hinge rotations which give rise to a link-type mech-
anism for plastic collapse.† If the material is assumed as rigid/plastic, the collapse
load is precisely that for which the deformation of the structure first becomes possi-
ble as the intensity of the load is progressively increased from zero. The ratio of the
collapse load to the working load, known as the load factor, represents the margin
of safety under service conditions.

According to the lower bound theorem of limit analysis,‡ an external load in
equilibrium with a distribution of bending moment which nowhere exceeds the fully
plastic value is less than or equal to the collapse load. Such a distribution of bending
moment is referred to as statically admissible. The upper bound theorem, on the
other hand, states that the load obtained by equating the external work done by it to
the internal work absorbed at the plastic hinges in any assumed collapse mechanism
is greater than or equal to the collapse load. The deformation mode represented by a
collapse mechanism is said to be kinematically admissible. The two limit theorems
can be combined to form a uniqueness theorem which states that if any statically
admissible distribution of bending moment can be found in a structure that has
sufficient number of yield hinges to produce a mechanism, the corresponding load
is equal to the collapse load.

When a structure made of a ductile material is subjected to a number of loads
which may or may not increase in strict proportion to one another, plastic collapse
will occur at the first combination of loads for which a statically admissible bending
moment distribution that satisfies the mechanism condition can be found. The load-
carrying capacity of the structure can therefore be determined for any given ratios of
the applied loads in the state of collapse, without any reference to the loading history.
It follows that the collapse load is unaffected by initial internal stresses,§as well as by
any flexibility of support and imperfect fit of members. If the problem is not statically
determined at collapse, the distribution of bending moment will depend, however,
on such factors as the history of loading, initial stresses, and settlement of supports.

† The concept of plastic hinges has been introduced by G. Kazinczy, Betonszemle, 2: 6 (1914).
‡ Formal proofs of the limit theorems are given in Sec. 2.6 from the point of view of continuum

mechanics. In the context of beams and frames, the theorems have been proved by A. A. Gvozdev, Akad.
Nauk U.S.S.R., Moscow-Leningrad, 19 (1938); M. R. Horne, J. Inst. Civ. Eng. 34: 174 (1950); H. J.
Greenberg and W. Prager, Proc. ASCE, 77: 59 (1951).

§ This has been pointed out by G. V. Kazinczy, Bauingenieur, 19: 236 (1938). Direct experimental
confirmation was provided earlier by H. Maier-Leibnitz, Bautechnik, 6: 11 (1928).
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Figure 4.1 Plastic collapse of a fixed-ended beam. (a) Loaded beam; (b) collapse mechanism; (c)
deflection curve; (d) bending moment diagram.

An important corollary of the lower bound theorem is that the collapse load
cannot be decreased by increasing the strength of any part of the structure.† Indeed,
the bending moment distribution corresponding to the state of collapse will remain
statically admissible for the modified structure in which the fully plastic moment
is increased at one or more cross sections. Hence, the load-carrying capacity of the
modified structure is at least as high as that of the unmodified structure. The upper-
bound theorem provides the corollary that the collapse load cannot be increased by
decreasing the strength of any part of the structure. This conclusion follows from the
fact that the mechanism corresponding to the state of collapse will produce in the
modified structure an internal work that is less than or equal to that in the unmodified
structure. The resulting upper bound obtained for the weakened structure, therefore,
cannot exceed the collapse load for the original structure.

4.2 Limit Analysis of Beams

(i) Plastic collapse of simple beams A statical method of evaluating the collapse
load for single-span beams is suggested by the fact that the problem is statically
determinate at collapse. The load is associated with an equilibrium distribution
of bending moment which attains the fully plastic value at a sufficient number of
cross sections. It is usually more convenient, however, to use a kinematical method
based on the principle of virtual work. To illustrate the procedure, we consider
a uniform fixed-ended beam of length 2l, Fig. 4.1a, carrying a load W uniformly
distributed over its left-hand half. The only possible collapse mechanism, based on
the rigid/plastic model, is shown in Fig. 4.1b, the plastic hinge in the beam being

† This was first stated as an axiom without a formal proof by S. M. Feinberg, Prikl. Mat. Mekh.,
17: 63 (1948).
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assumed at a distance ξl from the left-hand end. The hinge rotations θ and α at the
ends of the beam are related to one another by

ξlθ = (2 − ξ)lα or α = θξ

2 − ξ

The work done by the load during the small mechanism motion is W/l times the
area of the polygon ADCE. The work absorbed at each plastic hinge is necessarily
positive, and is equal to the plastic moment M0 times the amount of hinge rotation.
Equating the work done to the work absorbed, we have

Wl
(
ξθ − α

2

)
= M0θ + M0(θ + α) + M0α

and the substitution for α gives

Wl = 8M0

ξ(3 − 2ξ)
(1)

Since the deformation mode is kinematically admissible, (1) provides an upper
bound on the collapse load for any assumed value of ξ. The right-hand side of (1)
has a minimum value when ξ = 3

4 , giving the collapse load parameter Wl = 64
9 M0.

The overall equilibrium of the beam requires the vertical reactions at A and B to be
3
4 W and 1

4 W respectively at the incipient collapse.
The bending moment distribution shown in Fig. 4.1d is parabolic over the left-

hand half and linear over the right-hand half of the beam. The plastic hinge conditions
M = −M0 at x = 0, M = M0 at x = 3

4 l, and M = −M0 at x = 2l furnish

M = M0

[
−1 + 16x

3l

(
1 − 2x

3l

)]
0 � x � l

M = M0

(
23

9
− 16x

9l

)
l � x � 2l

(2)

in view of the continuity of M at x = l. Since the maximum bending moment in the
beam is M0, occurring at x = 3

4 l, the yield limit is nowhere exceeded. The condition
for moment equilibrium of the segment AD provides a check on the collapse load
W = 64M0/9l, which is the actual collapse load since it is both an upper and a lower
bound.

Suppose that the plastic hinge in the beam is assumed to occur at the midpoint
of the loaded segment. The corresponding upper bound is W = 8M0/l, obtained by
setting ξ = 0.5 in (1). The associated bending moment distribution over the loaded
part of the beam is easily shown to be

M = M0

[
−1 + 2x

l

(
3 − 2x

l

)]
0 � x � l
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The maximum bending moment again occurs at x = 3
4 l, but its magnitude is 5

4 M0,
which renders the moment distribution statically inadmissible. However, if the
right-hand side of the above equation is multiplied by 4

5 , the resulting bending
moment would be statically admissible. The external load in equilibrium with the
modified moment distribution is W = 4

5 (8M0/l) = 6.4M0/l, which provides a lower
bound. The collapse load is therefore bounded by

6.4M0 < Wl < 8.0M0

If the position of the yield hinge is now assumed at ξ = 3
4 , suggested by the preceding

approximation, the exact value of the collapse load results. In general, the second
approximation would lead to an upper bound, but the corresponding lower bound
would be sufficiently close.

Under certain simplifying assumptions, the deflection of the beam at collapse
can be estimated without having to follow the development of the plastic hinges.
Firstly, the beam is assumed to be perfectly elastic everywhere except at the hinges,
where the magnitude of the bending moment is M0. Secondly, a plastic hinge that
develops at some stage is assumed to be operative at all subsequent stages, so that
the deflection curve has a continuous slope except at the hinges. The deflections
and hinge rotations at the instant of collapse may be computed from (64) and (65),
Chap. 3. Let φA, φB, and φD denote the magnitudes of the hinge rotations at A, B,
and D respectively during the plastic collapse, Fig. 4.1c. Since the sum of the angles
turned through by the segments AD and DB in the counterclockwise sense is equal
to the sum of the hinge rotations at A and B less the hinge rotation at D, we have

φA − φD + φB =
∫ 2l

0

M

EI
dx = 10

27

M0l

EI
(3)

in view of Eqs. (2). The tangent to the bent axis at A passes through the hinge at D,
the sum of the bending moments at these two sections being zero (see Sec. 3.5(i)).
Since the terminal slopes of the beam are ψA = −φA and ψB = φB, Eqs. (65), Chap. 3
furnish

δ = 3

4
lφA = 5

4
lφB + 1

EI

∫ 2l

0
M

(
x − 3

4
l

)
dx

where δ is the deflection of the beam at D. The lower limit of integration has been
extended to x = 0 for convenience without affecting the result. Substituting from
(2), and integrating, we have

δ

l
= 3

4
φA = 5

4
φB + 11

54

M0l

EI
These relations may be combined with (3) to express φA, φB and δ in the form

φA = M0l

3EI
+ 5

8
φD φB = M0l

27EI
+ 3

8
φD

δ

l
= M0l

4EI
+ 15

32
φD

(4)



Chakra-04.tex 13/1/2006 16: 5 Page 238

238 theory of plasticity

Equations (4) define the motion of the collapse mechanism with superimposed
effects of elastic deformation. At the instant of collapse, the rotation must van-
ish at the hinge that forms last. This hinge is readily identified as that at D, since φA
and φB are seen to be positive, as required, when φD is set equal to zero. That the
hinge at D is indeed the last to form is further supported by the fact that φD would
be negative if φA or φB is assumed to vanish at the point of collapse.

(ii) Plastic collapse of continuous beams The kinematical method of analysis is
readily applicable to multispan beams which generally remain statically indetermi-
nate at collapse. Possible upper bounds are obtained from the fact that any one of
the loaded spans may collapse as a beam. The correct mechanism is that which cor-
responds to the lowest value of the upper bound. Consider, for example, a two-span
beam of uniform plastic moment M0, loaded and supported as shown in Fig. 4.2a.
The left-hand span requires two yield hinges and the right-hand span three yield
hinges for the plastic collapse.† Since the two spans are of equal lengths, a smaller
load is associated with the mechanism of Fig. 4.2b, which represents the correct
mode of collapse. If θ denotes the angle of rotation of the beam at the left-hand
support, the hinge discontinuity at the central support must be θξ/(1 − ξ), where ξl
is the distance of the sagging hinge from A. The load W on this span moves through
an average distance 1

2ξlθ, leading to the work equation

1

2
Wlξθ = M0

(
ξθ

1 − ξ
+ θ

1 − ξ

)
or Wl = 2M0

ξ

(
1 + ξ

1 − ξ

)

The minimum value of W corresponds to ξ = √
2 − 1, and the collapse load is

therefore given by

Wl = 2(3 + 2
√

2)M0 � 11.65M0

This kind of collapse is known as partial collapse, since the bending moment
distribution at collapse is not statically determined throughout the beam.

In the collapsing span AB, the bending moment is easily written down from
the fact that the support reaction P at A is given by Pl = 2(

√
2 + 1)M0 in view of

the overall moment equilibrium of AB. The bending moment in the span BC can be
expressed in terms of the unknown reaction Q at the central support. Thus

M

M0
= (

√
2 + 1)

x

l

[
2 − (

√
2 + 1)

x

l

]
0 � x � l

M

M0
= (

√
2 + 1)

x

l

[
2 − (

√
2 + 1)

x

l

]
+ Q

M0
(x − l) l � x � 2l

(5)

A statically admissible bending moment distribution in BC may be constructed by
assuming Ql = (7 + 4

√
2)M0, so that M = −M0 at x = 2l. The maximum bending

† For a complete elastic/plastic analysis of this problem, based on a unit shape factor, see
B. Venkatraman and S. Patel, Structural Mechanics with Introduction to Elasticity and Plasticity,
pp. 589–594, McGraw-Hill Book Co., New York (1970).
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Figure 4.2 Plastic collapse of a continuous beam. (a) Loaded beam and bending moment diagram;
(b) collapse mechanism and deflection curve.

moment then occurs at the middle of this span, and has the value (2
√

2 − 1)M0/

4 � 0.457M0. Since the yield moment is nowhere exceeded, the collapse load found
above is confirmed as actual.

The reaction Q can be determined exactly by using the kinematical condi-
tions that the deflection vanishes at B and C, while the slope vanishes at C. These
conditions are expressed by ∫ 2l

l
M(x − l)dx = 0

where M is given by the second equation of (5). A straightforward integration
furnishes

Ql = 1
4 (31 + 14

√
2)M0 � 12.70M0

The bending moment distribution at collapse is now completely determined, and is
shown in Fig. 4.2a. At the built-in end x = 2l, the bending moment attains the value
−(2

√
2 + 1)M0/4 � −0.957M0, ensuring the static admissibility.

The slope of the beam is discontinuous at B and D during the collapse. Let ψB
denote the slope of the right-hand span of the beam at the central support. If the
spread of the plastic zone is disregarded, it follows from (64), Chap. 3 that

ψB = −
∫ 2l

l

M

EI
dx = (12 + 5

√
2)

M0l

3EI
− Ql2

2EI
= (3 − 2

√
2)

M0l

24EI
(6)

in view of (5) and the expression for Q. The slope of the left-hand span of the beam
at B is ψB + φB, where φB is the magnitude of the hinge rotation at this section.
The tangent to the corresponding centerline at B makes a counterclockwise angle
ψB + φB − φD − ψA with the tangent at A, where ψA is the slope at A, and φD the
hinge rotation at D. By equations (5), we have

ψB + φB − φD − ψA =
∫ l

0

M

EI
dx =

√
2M0l

3EI
(7)
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Since the bending moments at B and D are equal and opposite, the deflection δ of
the beam at D must be (2 − √

2)(ψB + φB)l. By (65), Chap. 3, the deflection may be
written alternatively as

δ = −(
√

2 − 1)lψA − 1

EI

∫ (
√

2−1)l

0
M[(

√
2 − 1)l − x]dx

where M is given by the first equation of (5). Carrying out the integration,

δ

l
= −(

√
2 − 1)ψA − (3 − 2

√
2)

M0l

4EI
= (2 − √

2)(ψB + φB)

Eliminating ψA by means of (7), the quantities ψB + φB and δ/l can be expressed in
terms of M0l/EI and φD. Since ψB is given by (6), the results finally become

φB = (6
√

2 − 5)
M0l

24EI
+ (

√
2 − 1)φD

δ

l
= (5

√
2 − 6)

M0l

12EI
+ (3

√
2 − 4)φD

(8)

It follows from (8) that φD vanishes at the instant of collapse, which means that the
first hinge forms at B and the second hinge forms at D, the deflection of the sagging
hinge at the incipient collapse being 0.089M0l2/EI . This deflection is identical to that
in a uniformly loaded cantilever of length l having a vertical support at the free end.
The hinge rotation in the latter beam at the point of collapse is slightly higher than
that given by (8) due to the complete fixity of the section where the rotation occurs.

(iii) Influence of deflection on collapse In the case of partial collapse, as we have
seen, the collapse load can be determined without reference to the noncollapsing
part of the beam. This may lead to paradoxical results in certain cases, unless a
displacement analysis is carried out to examine the behavior of the complete beam.
Consider a uniform beam of plastic moment M0, resting on four simple supports, and
carrying a point load W as shown in Fig. 4.3a. The central span is of length 2l, and the
two outer spans are each of length kl, where k may have any value between zero and
infinity. The kinematical method applied to the only possible collapse mechanism,
shown in Fig. 4.3b, immediately gives the collapse load

W = 4M0θ

lθ
= 4M0

l

The distribution of bending moment at collapse is shown by shaded areas in Fig. 4.3c.
The statical equilibrium of each half of the central span requires Wl/2 = 2M0, giving
W = 4M0/l, which agrees with the kinematical result. The independence of the
collapse load of the value of k seems surprising. Indeed, when k is very large,
the outer supports have negligible effect, and the beam effectively becomes simply
supported, the corresponding collapse load being 2M0/l. On the other hand, when
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Figure 4.3 Plastic collapse of a
two-span beam. (a) Loading and
deflection; (b) collapse mechanism;
(c) bending moment distribution.

k is very small, the beam is effectively clamped between the two supports, and the
collapse load 4M0/l should apply.†

The paradox can be explained by the consideration of displacements. To simplify
the analysis, we assume an ideal beam section for which plastic deformation is
confined at the yield hinges. Denoting the reaction at the inner supports by P, the
distribution of bending moment at any stage may be written as

M = −Pkl + 1
2 W [(1 + k)l − x] 0 � x � l

M =
(

W

2
− P

)
[(1 + k)l − x] l � x � (1 + k)l

(9)

where x is measured from the loading point C. In view of the symmetry of the
problem, only the right-hand half of the beam will be considered.

When the applied load is sufficiently small, the beam is entirely elastic, and the
slope of the beam vanishes at x = 0. Since the deflection of the beam vanishes at
x = l and x = (1 + k)l, the central deflection δ is given by (64), Chap. 3. Thus

EIδ =
∫ l

0
M(l − x)dx =

∫ (1+k)l

0
M[(1 + k)l − x]dx

where EI is the flexural rigidity of the beam. The integration is easily carried out on
inserting the appropriate expression for M, and the result is

EIδ

l3 = W

6

(
1 + 3

2
k

)
− kP

2
= W

6
(1 + k)3 − kP

6
(3 + 6k + 2k2)

† The paradox was pointed out by F. Stüssi and C. F. Kollbrunner, Bautechnik, 13: 264 (1935), and
was resolved with the consideration of displacements by P. S. Symonds and B. G. Neal, J. Aeronaut.
Sci., 19: 15 (1952).
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These relations furnish the reaction P and the deflection δ as

P = W

2

[
1 + 3

2k(3 + k)

]
δ =

(
3 + 4k

3 + k

)
Wl3

24EI
(10)

The above solution will hold so long as the bending moments at the critical sections
A and C are less than M0 in magnitude. It follows from (9) and (10) that the yield
moment is first attained at x = 0 for W = We and δ = δe, where

We = 4M0

l

(
3 + k

3 + 2k

)
δe = M0l2

6EI

(
3 + 4k

3 + 2k

)
When the load exceeds We, a plastic hinge forms at the central section C, and

the slope of the beam becomes discontinuous at x = 0. The yield condition M = M0
at x = 0 gives the modified moment distribution

M = M0 − 1
2 Wx 0 � x � l

M =
(

W

2k
− M0

kl

)
[(1 + k)l − x] l � x � (1 + k)l

(11)

In view of (65), Chap. 3, the condition of zero deflections at A and B can be
expressed as

klψA − 1

EI

∫ (1+k)l

l
M[(1 + k)l − x]dx = 0

where ψA denotes the continuous slope at A. Using the second equation of (11), the
above integral is readily evaluated, the result being

ψA =
(

Wl

2
− M0

)
kl

3EI

The slope is therefore proportional to k. The deflection at the center of the beam is

δ = lψA −
∫ l

0

M

EI
x dx = M0l2

6EI

[
(1 + k)

Wl

M0
− (3 + 2k)

]
(12)

in view of the first equation of (11). When the load reaches the collapse value
4M0/l, the bending moment at x = l attains the value −M0, forming a plastic hinge
at section A. The corresponding value of δ is

δ0 = (1 + 2k)
M0l2

6EI
The load-deflection relationship given by (10) and (12) is shown graphically in
Fig. 4.4 for selected values of k. The dashed curve is based on experimental
results† corresponding to k = 4. When k = 0 (fixed-end condition), the elastic limit
load coincides with the collapse load.

† The experimental results are due to F. Stüssi and C. F. Kollbrunner, op. cit. The effect of partial
end fixity has also been investigated by G. V. Kazinczy, Proc. Int. Assoc. Bridge Struct. Eng., 2: 249
(1934).



Chakra-04.tex 13/1/2006 16: 5 Page 243

plastic analysis of beams and frames 243

Figure 4.4 Load-deflection relations for a beam on four supports.

For sufficiently small values of k, the deflection at the point of collapse is of the
same order as that at the elastic limit. In this case, the collapse load 4M0/l provides
a realistic measure of the carrying capacity of the beam. When k exceeds about 6,
unacceptably large deflections occur before the theoretical collapse load is reached,
the load 4M0/l is therefore of little practical significance for large values of k.
A quantitative measure of the load-carrying capacity may be obtained on the basis
of a permissible value of δ. To be specific, we take the greatest permissible deflection
as ρ times the value of δ0 corresponding to k = 0. By Eq. (12), the highest allowable
load is then given by

Wl

M0
= 3 + 2k + ρ

1 + k
� 4

The variation of the limiting load with k is shown in Fig. 4.5 for various values of ρ.
When k is sufficiently small, the limiting load is identical to the collapse load.
When k is sufficiently large, the limiting load decreases as k increases, approaching
asymptotically the collapse load for a simply supported beam.

4.3 Limit Analysis of Plane Frames

(i) Interaction diagrams We begin with the principle of virtual work which states
that if a body is in statical equilibrium, the work done by the external loads on an
arbitrary set of small external displacements is equal to the work done by the internal
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Figure 4.5 Loading-carrying capacity of a two-span beam based on the criterion of permissible
deflection.

forces on the corresponding internal displacements. It is sufficient for the present
purpose to consider mechanism type of deformation modes involving rigid-body
rotation of members about a set of appropriate hinges. It is assumed at the outset
that the external loads are supported by the bending resistance of the members, and
that axial and shearing forces produce negligible secondary effects.

Consider a fixed-base rectangular portal frame of uniform cross section, loaded
as shown in Fig. 4.6a, the plastic moment for each member of the frame being
denoted by M0. The frame has three degrees of redundancy, because if a cut is made
at any section, and the bending moment, shearing force, and axial force are speci-
fied at this section, the problem becomes statically determinate. Since the bending
moment varies linearly along each segment of the frame, the shearing force being
constant, the distribution of bending moment is specified by its values at the five
numbered sections. Sagging bending moments will be always taken as positive when
viewed from the interior of the frame. Thus, positive values of moments, curvature,
and hinge rotation will correspond to tensile stresses and strains in the fibers adjacent
to the dashed lines.†

There are three possible mechanisms, shown in Fig. 4.6b to d, each representing
a virtual displacement pattern defined by a hinge rotation θ. In the panel mechanism
(b), the horizontal load H moves through a distance hθ producing a virtual work of
amount Hhθ. Equating this to the virtual work absorbed at the hinges, we have

M1(−θ) + M2(θ) + M4(−θ) + M5(θ) = hHθ

† A comprehensive account of the plastic methods for portal frames has been presented by
J. Heyman, Plastic Design of Portal Frames, Cambridge University Press (1957). Reinforced con-
crete frames have been treated by A. L. L. Baker, Limit State Design of Reinforced Concrete, 2d ed.,
Cement and Concrete Association, London (1970).
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Figure 4.6 Plastic collapse of a portal frame. (a) Loaded frame; (b) panel mechanism; (c) beam
mechanism; (d) combined mechanism.

or

−M1 + M2 − M4 + M5 = Hh (13)

In the beam mechanism (c), the vertical load V does work of amount Vlθ, while no
work is done by the horizontal load H. The principle of virtual work gives

M2(−θ) + M3(2θ) + M4(−θ) = Vlθ

or

−M2 + 2M3 − M4 = Vl (14)

The combined panel and beam mechanism (d) involves virtual works Hhθ and
Vlθ done by the horizontal and vertical loads respectively, and the work equation
becomes

M1(−θ) + M3(2θ) + M4(−2θ) + M5(θ) = Hhθ + Vlθ

or

−M1 + 2M3 − 2M4 + M5 = Hh + Vl (15)

Since (15) may be obtained by adding together (13) and (14), only two of these
equations are independent. This is a consequence of the fact that the frame has three
redundancies and five unknown critical moments.

We are concerned here with only positive values of H and V . If the frame
actually collapses in the mode of Fig. 4.6b, the magnitude of the bending moment
at each of the four plastic hinges must be equal to M0. Since the sign of the bending
moment must be the same as that of the corresponding hinge rotation, M1 = −M0,
M2 = M0, M4 = −M0, and M5 = M0 for this mode of collapse. The bending moment
distribution, which is linear in each segment of the frame (the shearing force being
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constant), will be statically admissible if −M0 � M3 � M0. Equations (13) and (14)
therefore furnish

Hh = 4M0 0 � Vl � 2M0 (16a)

When the mechanism of Fig. 4.6c represents the actual mode of collapse, it is neces-
sary to set M1 = −M0, M3 = M0, and M4 = −M0 in equations (13) and (14). Using
the restrictions −M0 � M1 � M0 and −M0 � M5 � M0 required by the condition of
static admissibility, we have

Vl = 4M0 0 � Hh � 2M0 (16b)

Finally, regarding the mechanism of Fig. 4.6d as actual for the state of collapse, and
setting M1 = −M0, M3 = M0, M4 = −M0 and M5 = M0 in Eqs. (14) and (15), the
relationship between H and V under the restriction −M0 � M2 � M0 is obtained as

Hh + Vl = 6M0 2M0 � Hh � 4M0 (16c)

The relationship between H and V producing plastic collapse is shown graphically
in Fig. 4.7, the mode of collapse associated with each linear segment of the diagram
being as indicated. Such a diagram, known as an interaction diagram, is always a
convex locus enclosing the origin. Any combination of H and V represented by a
point inside the diagram constitutes a safe state of external loading.

The collapse equation corresponding to any assumed mechanism of collapse
may be directly obtained by a kinematical analysis in which the work done by the

Figure 4.7 Interaction diagram for plastic collapse of a fixed-base rectangular portal frame.
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external loads is equated to the work absorbed at the plastic hinges. Since plastic
work is always positive, the sign convention may be dispensed with in writing down
the work equation, from which an upper bound can be derived. The kinematical
method is equally suitable when one of the loads is uniformly distributed as shown
in Fig. 4.8a, the total vertical load in this case being denoted by 2V for convenience.
When the frame collapses by the combined mechanism shown in Fig. 4.8b, the
position of the plastic hinge within the length of the beam may be specified by a
distance ξl from the left-hand corner. The motion of the mechanism is defined by
a clockwise rotation θ of each column. Since the vertical deflection of the plastic
hinge in the beam is equal to ξlθ, the right-hand portion of the beam of length
(2 − ξ)l rotates counterclockwise through an angle φ = ξθ/(2 − ξ). The work done
by the vertical and horizontal loads are Vlξθ and Hhθ respectively, so that the work
equation for this mode of collapse is

Hhθ + Vlξθ = 2M0θ + 2M0(θ + φ)

Substituting for φ, and simplifying, we get

Hh + Vlξ = 2M0

(
4 − ξ

2 − ξ

)

For a given ratio H/V , the value of ξ must be that which minimizes V . It is easily
shown that

ξ = 4 −
√

8 + 2Hh

Vl

and the relationship between H and V is expressed parametrically as

Vl

2M0
= 2

(2 − ξ)2

Hh

2M0
= 1 + 4(1 − ξ)

(2 − ξ)2 (17)

The interaction curve defined by (17) is shown by the dashed line in Fig. 4.7. As ξ

increases from zero, Vl/M0 increases from unity, reaching the value 4 when ξ = 1,

Figure 4.8 Influence of distributed loads. (a) Dimensions and loading; (b) collapse mechanism.
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the ratio Hh/M0 at this point being equal to 2. For lower values of the horizontal
load, Vl/M0 given by (17) exceeds the value 4 obtained for the beam mechanism,
in which case a plastic hinge always forms at ξ = 1. The panel mechanism applies
for Vl/M0 � 1, giving Hh/M0 = 4 at the instant of collapse.

(ii) Combination of mechanisms When several loads are applied to a structure, and
their ratios at the incipient collapse are given, the limiting values of these loads can be
specified by a single parameter which represents the collapse load. The actual value
of the collapse load is the lowest of all the upper bounds associated with the possi-
ble modes of collapse. For complex structures involving a large number of possible
collapse modes, it is convenient to identify a specified number of elementary mech-
anisms and consider all others as suitable combinations of the elementary ones.†
Suppose there are n critical sections at which plastic hinges may form under a given
loading system, and let r denote the degree of redundancy of the structure. Since
the bending moments at the critical sections would be completely determined if the
values of these redundancies were known, there must be n − r independent relations
connecting the n critical moments. Each of these relations is an equation of statical
equilibrium that can be associated with an elementary mechanism through the virtual
work principle. It follows, therefore, that the number of elementary mechanisms,
from which all other mechanisms of collapse can be deduced, is equal to n − r.

As a relatively simple example illustrating the method of combining mecha-
nisms, consider a two-bay rectangular portal frame whose dimensions and loading
are as shown in Fig. 4.9a. The fully plastic moments for the columns and the beams
are denoted by M0 and 2M0 respectively. It is convenient to begin with the assump-
tion that the plastic hinge in the uniformly loaded beam occurs at the midpoint of this
member. The frame has six redundancies, and there are ten possible plastic hinge
positions numbered in the figure, so that the number of independent mechanisms is
10 − 6 = 4. Three of these basic mechanisms may be identified as the panel mecha-
nism of Fig. 4.9b and the beam mechanisms of Fig. 4.9c and d, while the fourth is
taken as a simple rotation of the central joint. The last mechanism does not represent
an actual mode of collapse, but is clearly independent of the other three, and can be
combined with them to form possible collapse mechanisms.

The upper bounds associated with the elementary panel and beam mechanisms
are easily computed from the corresponding work equations, remembering the fact
that the work absorbed at the plastic hinges is always positive. Thus

2Wlθ = 2M0θ + 2M0θ + 2M0θ or Wl = 3.0M0 (18b)

2Wlθ = M0θ + 2M0(2θ) + 2M0θ or Wl = 3.5M0 (18c)

2.5Wlθ = 2M0θ + 2M0(2θ) + M0θ or Wl = 2.8M0 (18d)

† The method of combining mechanisms is due to B. G. Neal and P. S. Symonds, Proc. Inst. Civ.
Eng., 1: 58 (1952). A trial-and-error method was proposed earlier by J. F. Baker, Struct. Eng., 27: 397
(1949). A moment distribution method has been proposed by M. R. Horne, ibid, 3: 51 (1954), and
J. M. English, Trans. ASCE, 119: 1143 (1954).
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Figure 4.9 Plastic collapse of a two-bay frame. (a) Loaded frame; (b) panel mechanism; (c, d) beam
mechanisms; (e, f ) combinations of mechanisms.

The letters in the parentheses correspond with those used for the mechanisms in
Fig. 4.9. The obvious next step is to combine the two mechanisms which predict the
lowest upper bounds, these being the right-hand beam and panel mechanisms. Since
the addition of displacements and hinge rotations of the two mechanisms does not
lead to any elimination of hinges, a clockwise rotation θ of the central joint is added.
The hinge rotations at sections 5 and 6 are then cancelled, while a negative hinge
rotation of amount θ is introduced at section 4, the resulting mechanism being that
shown in Fig. 4.9e. The work absorbed at the central joint is thereby reduced by the
amount M0θ, and the work equation for this combined mechanism becomes

4.5Wlθ = 6M0θ + 7M0θ − M0θ
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or

Wl = 24
9 M0 � 2.667M0 (18e)

To explore the possibility of obtaining a still lower value of the load, the left-
hand beam mechanism is now combined with the mechanism just derived to produce
the mechanism shown in Fig. 4.9f . Since the plastic hinge at section 2 is cancelled
by this combination, resulting in a saving of internal work by an amount 2M0θ, the
work equation for the new mechanism is

6.5Wlθ = 12M0θ + 7M0θ − 2M0θ

or

Wl = 34
13 M0 � 2.615M0 (18f )

This gives the lowest value of the upper bound load, and Fig. 4.9f presumably
represents the actual collapse mechanism, subject to any adjustment of the position
of the plastic hinge under the distributed load.

The conclusion of the above kinematical analysis will now be checked by a
statical analysis, for which the equations of equilibrium can be written down from the
virtual work principle applied to the four elementary mechanisms. These equations
are easily shown to be

−M4 − M5 + M6 = 0 (19a)

−M1 + M2 + M5 − M8 + M9 − M10 = 2W (19b)

−M2 + 2M3 − M4 = 2Wl (19c)

−M6 + 2M7 − M8 = 2.5Wl (19d)

For the collapse mechanism of Fig. 4.9f , the bending moments at the plastic hinges
are M1 = −M0, M3 = 2M0, M4 = −2M0, M7 = 2M0, M8 = −M0, M9 = M0, and
M10 = −M0. Substitution into the equilibrium equations (19) then furnishes

M2 = 10
13 M0 M5 = 6

13 M0 M6 = − 20
13 M0 Wl = 34

13 M0

This confirms the value of Wl, and indicates that the magnitudes of the three remain-
ing bending moments are less than the corresponding fully plastic moments. By (66),
Chap. 3, the maximum bending moment in the right-hand beam occurs at a distance
0.041l to the right of the center of this member, the value of the maximum moment
being 2.004M0. Hence, if the load corresponding to the mechanism of Fig. 4.9f is
divided by the factor 1.002, a statically admissible distribution of bending moment
would result. The collapse load is therefore bounded by

2.610M0 < Wl < 2.615M0
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(iii) Analysis of a two-story frame In the preceding example, the statical analysis
was straightforward, since the collapse mechanism was complete, the number of
plastic hinges being one more than the number of redundancies. When the mode
of collapse involves fewer than (r + 1) plastic hinges, where r is the degree of
redundancy of the frame, we have a state of partial collapse for which the statical
check is intrinsically more difficult. Consider, as an example, a two-story rectangular
portal frame loaded as shown in Fig. 4.10a, the dimensions and relative plastic
moments of the various members being as indicated. The degree of redundancy
of the frame is six, and the number of possible plastic hinge positions is twelve,
the number of independent mechanisms being 12 − 6 = 6. Four of these elementary
mechanisms are chosen to be the panel and beam mechanisms shown in Fig. 4.10c
to f , while the remaining two are taken as the joint mechanisms shown together in
Fig. 4.10b. There are a large number of possible mechanisms, and the method of
combining mechanisms is useful for identifying the actual mode of collapse.

The collapse equations for the elementary panel and beam mechanisms will be
derived here from the corresponding equations of statical equilibrium obtained on
the basis of virtual displacements. The virtual work equations are

2Wlθ = −M4θ + M5θ − M7θ + M8θ (20c)

6Wlθ = −M1θ + M2θ − M10θ + M11θ (20d)

2Wlθ = −M5θ + 2M6θ − M7θ (20e)

6Wlθ = −M3θ + 2M12θ − M9θ (20f )

The upper bounds associated with these mechanisms are readily obtained from the
facts that each term of the work equations is positive and the bending moments at
the hinges have the appropriate fully plastic values. The results are

2Wlθ = M0θ + M0θ + M0θ + M0θ or Wl = 2M0 (21c)

6Wlθ = 2M0θ + 2M0θ + 2M0θ + 2M0θ or Wl = 4
3 M0 (21d)

2Wlθ = M0θ + 3M0θ + M0θ or Wl = 5
2 M0 (21e)

6Wlθ = 2M0θ + 4M0θ + 2M0θ or Wl = 4
3 M0 (21f )

It is natural to start with the combination of the lower beam and panel mech-
anisms, since these two elementary mechanisms give the lowest value of Wl. By
rotating the joint A clockwise through an angle θ, the plastic hinges at sections 2
and 3 are eliminated, and replaced by a positive hinge rotation of amount θ at sec-
tion 4. This produces the mechanism of Fig. 4.10g, and involves a reduction of work
absorbed at joint A from 4M0θ to M0θ, the work equation for this combination being

12Wlθ = 8M0θ + 8M0θ − 3M0θ or Wl = 13
12 M0 (21g)

The upper panel mechanism is now combined with the mechanism just obtained,
resulting in the cancellation of the hinge at section 4, and a saving of internal work
by an amount 2M0θ. A clockwise rotation of the joint B through an angle θ further
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Figure 4.10 Plastic collapse of a two-story frame. (a) Dimensions and loading; (b) joint mechanisms;
(c, d) elementary panel mechanisms; (e, f ) elementary beam mechanisms; (g, h) combined mechanisms.
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reduces the internal work by an amount M0θ, since the hinges at sections 8 and 10 are
eliminated while the hinge rotation at section 9 is increased in the negative sense. The
resulting mechanism is that shown in Fig. 4.10h, and the associated work equation is

14Wlθ = 13M0θ + 4M0θ − 3M0θ or Wl = M0 (21h)

The combined panel mechanism (not shown) furnishes the upper bound
Wl = 1.25M0, and its combination with the lower beam mechanism again gives
Wl = M0. Combinations of mechanisms involving the upper beam mechanism will
not be examined, because they are expected to give values of Wl greater than M0.
It is reasonable to conclude that the mechanism of Fig. 4.10h represents the actual
mode of collapse, but a statical check is necessary to confirm this.

Since the number of plastic hinges in the collapse mechanism is the same as the
degree of redundancy, the frame is statically indeterminate at collapse. However, it
is still possible to find a set of statically admissible bending moments that are com-
patible with the collapse mechanism. Substituting the values M1 = −2M0, M5 = M0,
M7 = −M0, M9 = −2M0, M11 = 2M0, M12 = 2M0, andWl = M0 into equations (20c)
to (20f ), and considering the condition of equilibrium of the joint A, we obtain a set
of five independent equations for the six unknown moments. These equations are

−M4 + M8 = 0 M2 − M10 = 2M0 M6 = M0 M3 = 0

−M2 + M3 + M4 = 0

Taking guidance from the mechanism of Fig. 4.10g, which gives the next higher
value of the load, the bending moment at section 4 may be arbitrarily set equal to
M0. Then the solution becomes

M2 = M0 M3 = 0 M4 = M6 = M8 = M0 M10 = −M0

The equilibrium equation M8 + M9 − M10 = 0 for joint B is also satisfied. Since none
of these bending moments exceeds the corresponding fully plastic moment in mag-
nitude, the distribution of bending moment in the frame is statically admissible. The
value W = M0/l therefore represents the actual collapse load of the considered frame.

(iv) Frames with inclined members As an example for the analysis of nonrectangu-
lar frames, consider the symmetrical gable frame shown in Fig. 4.11a. For simplicity,
the same plastic moment M0 is assumed for each member of the frame. There are
six critical bending moments and three degrees of redundancy, so that the number
of independent mechanisms must be three. One of these elementary mechanisms is
taken as the beam mechanism shown in Fig. 4.11b, the plastic hinge being initially
assumed at the mid-point of the loaded rafter. The other two basic mechanisms are
chosen to be the panel mechanisms of Fig. 4.11c and d, of which the first one is
similar to that previously encountered. All the other possible mechanisms can be
obtained by appropriate combinations of these three basic mechanisms.†

† The analysis of gable frames has been discussed by B. G. Neal and P. S. Symonds, Engineer,
194: 315, 363 (1952). Vierendeel girders have been treated by P. S. Symonds and B. G. Neal, J. Franklin
Inst., 252: 469 (1951). See also A. W. Hendry, Struct. Eng., 33: 213 (1955).
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Figure 4.11 Plastic collapse of a gable frame. (a) Dimensions and loading; (b) beam mechanism;
(c, d, e) panel mechanisms; ( f ) combined mechanism.

Consider first the mechanism of Fig. 4.11b, where θ is the angle of rotation of
each half of the rafter BC. Since the midpoint of the rafter is at a horizontal distance
a/2 from the ends, the downward displacement of the central hinge is 1

2 aθ, and the
corresponding work equation is

W ( 1
2 aθ) = M0θ + 2M0θ + M0θ or Wa = 8M0 (22b)

In the panel mechanism of Fig. 4.11c, the roof BCD undergoes a rigid body transla-
tion by a distance aθ, permitted by equal amounts of hinge rotation at joints A, B, D,
and E. The panel mechanism of Fig. 4.11d, on the other hand, involves rigid body
rotation of the rafters BC and CD about B and G respectively. Since the velocities
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of C and D are perpendicular to the members BC and ED respectively, the instan-
taneous center G of CD is the meeting point of BC and ED, the height of G above
D being twice the height of C above D. From geometry, the vertical displacement
of the apex C is aφ = aθ, and the horizontal displacement of the joint D is aψ = aθ,
indicating that φ = θ = ψ during collapse. It follows that the hinge rotations at B, C,
D, and E in this mechanism are −θ, 2θ, −2θ and θ respectively. The work equations
for the panel mechanisms (c) and (d) are easily obtained as

Waθ = M0θ + M0θ + M0θ + M0θ or Wa = 4M0 (22c)

Waθ = M0θ + 2M0θ + 2M0θ + M0θ or Wa = 6M0 (22d)

A useful combination of the elementary panel mechanisms is shown in
Fig. 4.11e. It is instructive to deduce the work equation directly from the kine-
matics of the mechanism, in which joint C moves in a direction perpendicular to
AC. The instantaneous center of rotation of the right-hand rafter is therefore at G,
whose vertical height above the base of the frame is twice that of the apex C. The
vertical motion of C gives aφ = aθ, and the horizontal motion of D gives aψ = 2aθ,
where θ is the counterclockwise rotation of the rafter CD. The hinge rotations at A,
C, D, and E are therefore equal to −θ, 2θ, −3θ, and 2θ respectively, giving

2Waθ = M0θ + 2M0θ + 3M0θ + 2M0θ or Wa = 4M0 (22e)

We may now combine the mechanisms of Fig. 4.11b, c, and e in such a way that
the plastic hinges at B and C are both eliminated. First of all, the motion of (e) is
added to twice the motion of (c) to obtain hinge rotations equal to 2θ at both B and
C. Twice the rigid body motion of (b) is next added to the resulting motion, which
involves five plastic hinges, to arrive at the mechanism shown in Fig. 4.11f . Since
the net effect of cancellation of the hinges at B and C is a reduction of internal work
by an amount 8M0θ, the work equation becomes

2Waθ + 2Waθ + Waθ = 8M0θ + 8M0θ + 8M0θ − 8M0θ

which gives the least upper bound

Wa = 16
3 M0 = 3.2M0 (22f )

It is apparent that Fig. 4.11f represents the actual collapse mechanism, subject to a
possible adjustment of the location of the plastic hinge under the distributed load.

To perform the necessary statical check, we write down the three independent
equations of equilibrium, derived from the virtual work principle applied to the
mechanisms of Fig. 4.11b, c, and d. Thus

−M2 + 2M3 − M4 = 0.5Wa

−M1 + M2 − M5 + M6 = Wa (23)

−M2 + 2M4 − 2M5 + M6 = Wa
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The collapse mechanism of Fig. 4.11f requires M1 = −M0, M3 = M0, M5 = −M0,
and M6 = M0. The above equations therefore furnish

M2 = M4 = 0.2M0 Wa = 3.2M0

It follows therefore that the plastic hinge in the left-hand rafter does in fact form at the
central section where the bending moment attains a maximum. Since the distribution
of bending moment in the frame is statically admissible, the load W = 3.2M0/a
represents the actual collapse load for the given frame.†

(v) Method of inequalities The kinematical method of analysis, used in the preced-
ing solutions, involves the estimation of the lowest of all possible upper bounds as
the true collapse load. An alternative method, in which the collapse load is obtained
as the highest possible lower bound, may also be employed. The method is based on
the conditions of statical equilibrium, which must be satisfied under the restriction
that none of the critical bending moments can exceed the local plastic moment in
magnitude. For the gable frame considered above, the problem is to determine the
highest value of Wa under the three constraints (23) imposed by statical equilibrium,
and the twelve constraints

−M0 � Mi � M0 (i = 1, 2, . . . , 6)

imposed by the yield condition. Mathematically, it represents a standard problem of
linear programming, and efficient computer techniques are available for its solution.
We shall describe here a simple method that brings out the basic features of a system
of linear inequalities.‡

Consider, as an example, a rectangular portal frame whose dimensions and load-
ing are shown in Fig. 4.12a. For simplicity, the right-hand column foot is assumed
to be hinged, so that the degree of redundancy is reduced to two. All members of the
frame are assumed to have the same fully plastic moment M0. The two independent
equations of equilibrium, obtained from the virtual works associated with the panel
and beam mechanisms, are

−M1 + M2 − M4 = 2Wl

−M2 + 3M3 − 2M4 = 5Wl
(a)

The critical bending moments must also satisfy the set of linear inequalities
−M0 � Mi � M0 (where i = 1, 2, 3, 4). Expressing M1 and M3 in terms of M2 and

† Various experimental results on the plastic collapse of structures have been reported by J. F. Baker
and J. Heyman, Struct. Eng., 28: 139 (1950); J. F. Baker and J. W. Roderick, Proc. Inst. Civ. Eng., 1:
71 (1952); C. G. Schilling, F. W. Schutz, and L. S. Beedle, Welding J., Easton, Pa., 35: 234-S (1956);
G. C. Driscoll and L. S. Beedle, Welding J., Easton, Pa., 36: 275-S (1957). See also J. F. Baker,
M. R. Horne, and J. Heyman, Steel Skeleton, vol. 2, Cambridge University Press (1956).

‡ The method of inequalities was first used by B. G. Neal and P. S. Symonds, J. Inst. Civ. Eng.,
35: 21 (1951). The problem has been identified as one of linear programming by A. Charnes and
H. J. Greenberg, Bull. Am. Math. Soc., 57: 480 (1951), and further discussed by J. Heyman, Proc. Inst.
Civ. Eng., 12: 39 (1959). See also J. Munro, Civ. Eng. Public Works Rev., 60 (1965).
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Figure 4.12 Loading and collapse mode for a rectangular portal frame.

M4 by means of Eqs. (a), these inequalities may be written as

−M0 � M2 − M4 − 2Wl � M0 −M0 � M2 � M0

−3M0 � M2 + 2M4 + 5Wl � 3M0 −M0 � M4 � M0

We consider, next, those inequalities which contain M2, and rewrite them in the
modified form

−M0 � M2 � M0

−M0 + M4 + 2Wl � M2 � M0 + M4 + 2Wl

−3M0 + 2M4 − 5Wl � M2 � 3M0 + 2M4 − 5Wl

(b)

The necessary and sufficient condition for these continued inequalities to be simul-
taneously satisfied is that each left-hand side must be less than or equal to each
right-hand side. Three of the resulting inequalities are identically satisfied, while
the remaining six are

−M0 � M0 + M4 + 2Wl −M0 � 3M0 − 2M4 − 5Wl

−M0 + M4 + 2Wl � M0 −M0 + M4 + 2Wl � 3M0 − 2M4 − 5Wl

−3M0 + 2M4 − 5Wl � M0 −3M0 − 2M4 − 5Wl � M0 + M4 + 2Wl

Solving for M4, these inequalities may be conveniently expressed in the form

−2M0 − 2Wl � M4 � 2M0 − 2Wl

−2M0 − 5
2 Wl � M4 � 2M0 − 5

2 Wl

− 4
3 M0 − 7

3 Wl � M4 � 4
3 M0 − 7

3 Wl

−M0 � M4 � M0

(c)

The last expression has been added to complete the set. We are not concerned here
with the actual value of M4 satisfying (c). Setting each left-hand side less than or
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equal to each right-hand side, the non-trivial inequities are obtained as

−8M0 � Wl � 8M0 −10M0 � Wl � 10M0

−20M0 � Wl � 20M0 −3M0 � 2Wl � 3M0

−6M0 � 5Wl � 6M0 −M0 � Wl � M0

The largest value of Wl satisfying all these inequalities is evidently equal to M0.
Hence the collapse load is W = M0/l, in view of which inequalities (c) become

−4M0 � M4 � 0 − 9
2 M0 � M4 � − 1

2 M0

− 10
3 M0 � M4 � −M0 −M0 � M4 � M0

and it follows that M4 = −M0. Substituting the values of Wl and M4 into (b), these
inequalities are found to be satisfied if M2 = 0. Equations (a) then give M1 = −M0
and M3 = M0. These bending moments correspond to a state of collapse which occurs
in the combined panel and beam mechanism, Fig. 4.12b. The work equation for this
mode is Wl = M0, in agreement with the statical analysis.

4.4 Displacements in Plane Frames

(i) Formulation of the problem The plastic analysis of structures is based on the
assumption that changes in geometry prior to collapse are negligible, so that the
equilibrium equations are essentially those for the undistorted frame. It is often
desirable to estimate the displacements at the point of collapse to ensure that they
are not large enough for the theoretical collapse load to be unrealistic. The analysis
for the deflection is greatly simplified, without introducing serious errors, if the
effects of strain-hardening and the spread of plastic zones are disregarded.† Each
cross section of the beam therefore remains elastic until the local bending moment
attains the fully plastic value. It is further assumed that the loads are increased in
strict proportion to their collapse values, so that the rotation at a plastic hinge may
never cease once it is formed.‡ In general, one or more hinges would unload during
the loading program, but the deflection based on the above assumption may still be
regarded as a reasonable approximation.§

The most convenient method of calculating the deflection involves a virtual
work approach, in which the actual deformation of the frame is combined with
arbitrary states of statical equilibrium.¶ Since the deformation is elastic/plastic, the

† See P. S. Symonds and B. G. Neal, J. Franklin Inst., 252: 383 (1951), J. Aeronaut. Sci., 19: 15
(1952). For experimental confirmation, see P. S. Symonds, Welding J., Easton, Pa., 31: 33-S (1952).

‡ This is not necessarily true even for proportional loading, as has been shown by L. Finzi, 9th Int.
Congr. Appl. Mech., Brussels (1957).

§ The effects of flexibility of joints on the deflection at collapse have been examined by B. G. Neal,
Struct. Eng., 38: 224 (1960). The influence of geometry changes on the post-collapse behavior has been
discussed by E. T. Onat, J. Aeronaut. Sci., 22: 681 (1955).

¶ The virtual work approach has been proposed by J. Heyman, Proc. Inst. Civ. Eng., 19: 39 (1961).
See also B. G. Neal, The Plastic Methods of Structural Analysis, Chap. 5, Chapman and Hall (1977).
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effect of hinge discontinuities must be included in the virtual work equation for the
distortion of the members. The actual bending moment M at any section produces
an elastic curvature κ = M/EI , so long as the magnitude of M is less than the plastic
moment M0. At a section where |M| = M0, the hinge rotation that actually occurs is
φ, having the same sign as that of M. In a statically indeterminate frame, there can
be a distribution of bending moment m in equilibrium with zero external load. Since
the work done by any virtual residual moment m∗ on the actual deformation is m∗κ
per unit length of a typical member, the equation of virtual work may be written as

∑
m∗φ +

∫
m∗M

EI
ds = 0 (24)

where the summation extends over all the hinge discontinuities, and the integral
extends over the lengths of all the members in the frame. The number of independent
distributions of self-stressing moment m∗ that can be constructed for a given frame
is equal to the degree of redundancy r. The virtual work relation (24) therefore
represents r independent equations of compatibility.

When the frame is entirely elastic, the hinge discontinuities are identically zero,
and the compatibility equations in conjunction with the equations of equilibrium are
sufficient to determine the actual bending moments. In an elastic/plastic frame prior
to the instant of collapse, some of the statical unknowns are replaced by kinematical
ones representing hinge rotations at the appropriate sections. The total number of
unknowns at each stage of the deformation is therefore identical to the number of
basic equations of equilibrium and compatibility. For a frame with straight mem-
bers, the virtual moment m∗ varies linearly along the members, and in the case of
only concentrated loads acting on the frame, the actual moment M is also linearly
distributed. Considering a typical straight segment AB of length l, the distributions
of m∗ and M may be written as

m∗ = m∗
A + (m∗

B − m∗
A)

s

l
M = MA + (MB − MA)

s

l

where s is the distance measured from A, and the subscripts refer to the end moments.
For a uniform segment AB of flexural rigidity EI, the integral in (24) is readily
evaluated as ∫ B

A

m∗M

EI
ds = 1

6EI
[m∗

A(2MA + MB) + m∗
B(2MB + MA)] (25)

Similar expressions can be developed for distributed loads acting along a given
segment of the frame, but (25) will be sufficient for our purpose.

When all bending moments and hinge rotations have been found, the deflection
at any given point of the frame can be determined from the virtual work princi-
ple. The actual deformation of the frame is combined with a distribution of virtual
moment M∗, in equilibrium with a unit load applied at the point in the direction
of the deflection δ, all other external loads being assumed zero. The virtual work
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equation then becomes

δ =
∑

M∗φ +
∫

M∗M

EI
ds (26)

which includes the contributions from all the members and plastic hinges. The value
of the integral for a typical uniform straight segment of length l, under a constant
shearing force, is given by the right-hand side of (25) with M∗

A and M∗
B replacing m∗

A
and m∗

B respectively.
As the load is gradually increased beyond the elastic limit, appropriate plastic

hinges form at different stages and continue to undergo rotation. When the collapse
load is just attained, the bending moment at the position of the last plastic hinge
reaches the fully plastic value. The rotation at the last hinge is zero at the incipient
collapse, while those at all other hinges conform in sign with the corresponding
bending moments. This condition enables us to estimate the deflection at the point
of collapse without having to carry out the complete elastic/plastic analysis. When
the frame is collapsing, the distribution of bending moment is uniquely determined,
but the hinge rotations are calculated to within one arbitrary quantity.

It is possible to carry out the analysis by assuming at the outset that a particular
hinge is the last one to form. If the assumption is incorrect, the sign of at least
one of the computed hinge rotations will be opposite to that of the corresponding
bending moment. Since any incorrect solution can be derived from the correct one
by the superposition of a backward motion of the collapse mechanism, the predicted
deflection will be smaller than the actual deflection. The displacement theorem
therefore states that if the deflection is calculated in turn by assuming each plastic
hinge to form last, the largest of the predicted deflections is the actual one, provided
no plastic hinge has ever unloaded during the process.†

(ii) Deflections of simple frames To illustrate the procedure, we consider the fixed
base rectangular portal frame shown in Fig. 4.13a. All the members are of uniform
cross section, having a plastic moment M0 and flexural rigidity EI. For sufficiently
small values of H, the frame collapses in the manner shown in Fig. 4.13b, with plastic
hinges appearing at sections 2, 3, and 4. It is a case of partial collapse in which one
redundancy remains, the vertical load at collapse being given by Vl = 4M0. The vir-
tual residual moments at the critical sections must satisfy two independent equations
of equilibrium, which can be immediately written down from (13) and (14). Thus

−m∗
1 + m∗

2 − m∗
4 + m∗

5 = 0

−m∗
2 + 2m∗

3 − m∗
4 = 0

Since the frame has three redundancies, three independent distributions of m∗ are
needed, the particular cases shown in Table 4.1 being suitable for the purpose. Using

† The displacement theorem is due to P. G. Hodge, Jr., Plastic Analysis of Structures, p. 109,
McGraw-Hill Book Co. (1959). See also C. E. Massonnet and M. A. Save, Plastic Analysis and Design,
p. 223, Blaisdell Publishing Co., Boston (1965).
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Figure 4.13 Displacements in a portal frame. (a) Loaded frame; (b) collapse mechanism for Hh � 2M0;
(c) deflected shape for M0 � Hh � 2M0; (d) deflected shape for 2M0 � Hh � 3.1M0.

Table 4.1 Distributions of actual and virtual moments in a rectangular portal
frame

Critical section
Bending moment
and hinge rotation 1 2 3 4 5

M M1 −M0 M0 −M0 M5
φ 0 φ2 φ3 φ4 0

m* (i) 1 1 0.5 0 0
(ii) 0 0 0.5 1 1
(iii) 0 1 1 1 0

M* (i) −h 0 0 0 0
(ii) −l −l 0 0 0

Eq. (25), the integral in (24) corresponding to the distribution (i) for m* is found as∫
m∗M

EI
ds = h

6EI
(3M1 − 3M0) + 1

6EI
(−M0 + M0) = h

2EI
(M1 − M0)

Similar results are obtained for the other two distributions of m∗. The substitution
of the three sets of values into (24) leads to the compatibility relations

φ2 + 0.5φ3 + h

2EI
(M1 − M0) = 0 0.5φ3 + φ4 + h

2EI
(M5 − M0) = 0

φ2 + φ3 + φ4 + h

6EI
(M1 + M5 − 4M0) = 0

(27)
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These equations must be supplemented by the independent equation of equilibrium
which may be taken as (13). To determine the unknown quantities, it is necessary to
identify the last hinge where the rotation vanishes at the instant of collapse.

One of the two equations necessary for the unknown moments M1 and M5 is
obtained by setting the values M2 = −M0, and M4 = −M0 in (13). The remaining
equation is deduced by eliminating the hinge rotations from (27). The results are

M5 − M1 = Hh M5 + M1 = M0

yielding

M1 = 1
2 (M0 − Hh) M5 = 1

2 (M0 + Hh)

As H increases from zero, M1 decreases and M5 increases, until Hh becomes equal
to M0, causing M5 to reach the fully plastic value. The present analysis will there-
fore hold only for Hh � M0. Inserting the values of M1 and M5, Eqs. (27) may be
rearranged to give

φ2 = −ψ φ3 = M0h

2EI

(
1 + Hh

M0

)
+ 2ψ φ4 = −Hh2

2EI
− ψ (28)

where ψ is positive during collapse. If we assume ψ = 0 at the incipient collapse, φ3
and φ4 are seen to be positive and negative respectively, in accord with the signs of
the bending moments at these sections. Since φ2 vanishes at the point of collapse,
the plastic hinge at this section is the last one to form.

The virtual unit load moment M∗ is most conveniently obtained by introducing
a cut at section 2 when H = 1 (with V = 0), and between sections 3 and 4 when
V = 1 (with H = 0). The values of M∗ at the critical sections for the two cases, given
in Table 4.1, enable us to calculate the integral in (26) using Eq. (25). If u and v

denote the horizontal and vertical displacements of the points of application of the
loads H and V respectively, it is easily shown that

u = h2

6EI
(M0 − 2M1) v = lψ + hl

2EI
(M0 − M1) + M0l2

6EI

Substituting for M1, and remembering that ψ = 0 at the instant of collapse, the
deflections at collapse are obtained as

u = Hh3

6EI
v = M0l2

6EI

[
1 + 3h

2l

(
1 + Hh

M0

)]
(29)

For M0 � Hh � 2M0, a plastic hinge with rotation φ5 develops at the right-
hand column foot, as shown in Fig. 4.13c, while the collapse load is still given by
Vl = 4M0. Since M5 is now equal to M0, the condition M5 − M1 = Hh required by
statical equilibrium gives M1 = M0 − Hh. Using these values of M1 and M5 in Eqs.
(27), and introducing the modification due to the rotation at section 5, we obtain the
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compatibility relations

φ2 + 0.5φ3 − Hh2

2EI
= 0 0.5φ3 + φ4 + φ5 = 0

φ2 + φ3 + φ4 − h

6EI
(2M0 + Hh) = 0

In terms of a positive angle ψ, representing the motion of the collapse mechanism,
the solution of the above equations may be expressed as

φ2 = −ψ φ3 = Hh2

EI
+ 2ψ φ5 = M0h

3EI

(
Hh

M0
− 1

2

)

φ4 = −M0h

3EI

(
5Hh

2M0
− 1

)
− ψ

(30)

Since Hh � M0, the signs of the hinge rotations conform with those of the corre-
sponding plastic moments if ψ vanishes at the point of collapse. Evidently, the last
hinge to form is again at the left-hand end of the beam. The deflections at collapse are
readily obtained by setting ψ = 0 and M1 = M0 − Hh in the previous results. Thus

u = M0h2

6EI

(
2Hh

M0
− 1

)
v = M0l2

6EI

(
1 + 3Hh2

M0l

)
(31)

It is important to note that the expression for φ5 during collapse does not involve ψ,
so that the hinge rotation at the right-hand column foot remains of the elastic order
of magnitude.†

When Hh = 2M0, the bending moment at the left-hand column foot reaches the
value −M0. For still higher values of Hh, the deformation mode at collapse involves
a hinge rotation at this section, as indicated in Fig. 4.13d. The horizontal and vertical
loads at collapse depend on one another according to (16c). The frame is statically
determinate at collapse, the bending moments and hinge rotations at the numbered
sections being as shown below

Section 1 2 3 4 5

M −M0 Hh − 3M0 M0 −M0 M0
φ φ1 0 φ3 φ4 φ5

The compatibility equations for Hh � 2M0 may be established as before, using
the same distributions of the virtual moment m∗ as those given in Table 4.1.

† For the elastic/plastic analysis of portal frames made of work-hardening materials, see
J. W. Roderick, Struct. Eng., 38: 245 (1960).
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Considering the special case l = h, the three relevant equations are easily shown
to be

φ1 + 0.5φ3 − h

6EI
(17M0 − 5.5Hh) = 0

0.5φ3 + φ4 + φ5 − h

6EI
(M0 − 0.5Hh) = 0

φ3 + φ4 − h

6EI
(14M0 − 5Hh) = 0

It is convenient to express the hinge rotations, satisfying the above relations, in terms
of an arbitrary angle ψ, the results being

φ1 = −ψ φ3 = M0h

3EI

(
17 − 5.5

Hh

M0

)
+ 2ψ

φ4 = M0h

3EI

(
10 − 3

Hh

M0

)
− 2ψ φ5 = M0h

6EI

(
4 − Hh

M0

)
+ ψ

(32)

For 2 < Hh/M0 < 34
11 � 3.09, the values of φ3 and φ5 will be positive and that of φ4

negative at the instant of collapse, if the last hinge forms at the left-hand column
foot requiring ψ = 0.

Using Table 4.1 again for the distributions of the unit load moment M∗, in con-
junction with Eq. (26), the displacements of the points of application of the loads H
and V in their directions are found as

u = hψ + M0h2

6EI

(
5 − Hh

M0

)
ν = hψ + M0h2

6EI

(
17 − 5

Hh

M0

)
(33)

When 2 � Hh/M0 � 3.09, the deflections at the incipient collapse are given by (33)
with ψ = 0. For higher values of Hh/M0 � 4, the last hinge will form at the center of
the beam. The hinge rotations at the instant of collapse are then obtained by setting
φ3 = 0 in (32), and the deflections at this point are obtained by using the correspond-
ing value of ψ in (33). Figure 4.14 indicates how the deflections at collapse vary
with the load ratio as H/V increases from zero to unity.

(iii) Deflections of complex frames The method of analysis used for simple frames
is equally applicable to complex frames. Consider, for example, the two-story rectan-
gular frame of Fig. 4.15a, having a uniform plastic moment M0 and flexural rigidity
EI. The actual mode of collapse, shown in Fig. 4.15b, is most easily found by the
method of combining mechanisms, the collapse load W being given by

12Wlθ = 10M0θ or Wl = 5
6 M0

The frame has six degrees of redundancy, and the collapse mechanism involves six
plastic hinges, so that one redundancy remains in the state of collapse. The equations



Chakra-04.tex 13/1/2006 16: 5 Page 265

plastic analysis of beams and frames 265

Figure 4.14 Deflections at collapse in a portal frame as functions of the load ratio.

Figure 4.15 Loading and collapse mechanism for a two-story rectangular frame.



Chakra-04.tex 13/1/2006 16: 5 Page 266

266 theory of plasticity

of equilibrium, based on the virtual work principle applied to the elementary panel,
beam, and joint mechanisms, are easily shown to be

−M4 + M5 − M7 + M8 = Wl

−M1 + M2 − M10 + M11 = 3Wl

−M5 + 2M6 − M7 = 4Wl

−M3 + 2M12 − M9 = 4Wl

M2 − M3 − M4 = 0

M8 + M9 − M10 = 0

(34)

Only five of these equations are independent when the value of the collapse
load is inserted. Substituting M1 = M7 = M9 = −M0, M6 = M11 = M12 = M0 and
Wl = 5M0/6 into (34), we get

M3 = M5 = − 1
3 M0 M4 = M2 + 1

3 M0

M8 = M2 + 1
2 M0 M10 = M2 − 1

2 M0

These equations are supplemented by the compatibility equation

2(M2 + M4 + M8 + M10) + M5 = M0

which is obtained from (24) by using a distribution of residual moment with the
only nonzero values m∗

2 = m∗
4 = m∗

8 = m∗
10 = 1. The assumed residual moments are

self-equilibrating since they satisfy (34) with W = 0. The actual bending moment
distribution, obtained by solving the above equations, is given by

M1 = −M6 = −M0 M2 = 1
12 M0 M3 = M5 = − 1

3 M0 M4 = 5
12 M0

(35)
M7 = M9 = −M0 M8 = 7

12 M0 M10 = − 5
12 M0 M11 = M12 = M0

To obtain the compatibility equations in terms of the hinge rotations, it is con-
venient to use the set of residual moment distributions† shown in Fig. 4.16. The
patterns of residual moment are similar to those used before for the single-story
frame. In view of (35), and the assumed distributions for m∗, the calculation based
on equations (24) and (25) furnishes

φ1 + 0.5φ12 = 13

72

M0l

EI
φ9 + φ11 + 0.5φ12 = −25

72

M0l

EI
(a, c)

φ9 + φ12 = −2

9

M0l

EI
φ1 + 0.5φ6 = 5

36

M0l

EI
(b, d)

φ6 + φ7 = 1

18

M0l

EI
0.5φ6 + φ7 + φ11 = − 5

36

M0l

EI
(e, f )

† Similar patterns of residual moments may be used for the analysis of multistory frames. See, for
example, J. Heyman, Proc. Inst. Civ. Eng., 19: 39 (1961).
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Figure 4.16 Distributions of virtual residual moments for the elastic/plastic analysis of rectangular
frames, the greatest value of m* being taken as unity.

Since the redundant moment has already been found, only five of these equations
are independent. The plastic hinge that forms last is identified by the fact that when
the corresponding hinge rotation is set equal to zero, the remaining hinge rotations
are found to have the same signs as those of the bending moments. It turns out that
the last hinge forms at section 1, and this corresponds to

φ1 = 0 φ6 = 5

18

M0l

EI
φ7 = −1

3

M0l

EI

φ9 = − 7

12

M0l

EI
φ11 = 1

18

M0l

EI
φ12 = 13

36

M0l

EI

(36)

at the incipient collapse. The rotation has the greatest magnitude at the right-hand
hinge of the lower beam.

Consider, now, the horizontal deflection u of the top of the frame at the incipient
collapse. The bending moment distribution for a unit horizontal load acting at joint 5
is readily obtained for a modified frame in which the left-hand columns can deform
as a single cantilever fixed at the base. Since φ1 = 0, M∗

1 = −2l and M∗
2 = M∗

4 = −l,
while all other virtual moments are identically zero, it follows from (26) and (25) that

u =
(

14

3
− 1

2

)
M0l2

6EI
= 25

36

M0l2

EI
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The vertical deflection v of the midpoint of the upper beam is obtained by considering
a unit vertical load acting at this point (all other loads being zero). If we intro-
duce two arbitrary cuts in the frame, one in the right-hand half of the upper beam,
and the other anywhere in the lower beam, the nonzero virtual moments become
M∗

1 = M∗
2 = M∗

4 = M∗
5 = −l. The deflection is then computed from (26) and (25) as

v =
(

11

4
− 7

12

)
M0l2

6EI
= 13

36

M0l2

EI

If any of the other plastic hinges is assumed to be the last, the value of φ1 would be
found as positive at the incipient collapse, and the corresponding deflection would
consequently be smaller than that obtained above. This conclusion is in accord with
the postulate of the displacement theorem stated in Sec. 4.4(i).

4.5 Variable Repeated Loading

(i) General considerations When a structure, made of a nonhardening material, is
loaded beyond the elastic limit, the bending moment in a part of the structure lies
between the initial yield moment Me and the fully plastic moment M0. The change
in bending moment that occurs on unloading the structure from the elastic/plastic
state will be purely elastic so long as the magnitude of this change nowhere exceeds
2Me (Sec. 3.4(ii)). If a structure is subjected to loads that are alternating in character,
yielding may occur alternately in tension and compression in one or more critical
sections. This phenomenon, known as alternating plasticity, may eventually cause
failure by low-cycle fatigue. Another type of failure, due to repeated loading, is
caused by certain critical combinations of loads being attained at definite intervals
of time. As the number of loading cycles is increased, there is a progressive buildup
of plastic deformation, and the structure eventually becomes unserviceable. This
phenomenon is known as incremental collapse which is marked by a rapid increase
in deflections with each loading cycle.

At any stage of the loading program, let M denote the actual bending moment at
a given cross section, and M the bending moment which would exist at this section
if the entire structure behaved elastically. If m is the residual moment produced
on complete removal of the loads, the unloading process being regarded as wholly
elastic, the relationship

M = m + M

will hold at each cross section.Any distribution of residual moment must be in statical
equilibrium with zero external loading. A structure is said to shake down under a
given set of variable loads if a condition is reached at some instant such that all
subsequent load applications produce only elastic changes of moments. When such
a state is attained, the residual moments remain unchanged throughout the structure.

The algebraically greatest and least elastic moments that can be induced at a
given cross section during the loading program will be denoted by M + and M −
respectively. According to the shakedown theorem (Sec. 2.6(iv)), a framed structure
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will shake down under a set of loads varying between prescribed limits if it is possi-
ble to postulate a distribution of residual moment m such that the magnitude of the
resultant bending moment m + M nowhere exceeds the local fully plastic moment
M0. The necessary and sufficient conditions for shakedown are expressed by the
inequalities†

mj + M +
j � M0j mj + M −

j � −M0j M +
j − M −

j � 2Mej (37)

which must be satisfied at every cross section j. The last inequality is necessary
to avoid the danger of alternating plasticity. The first two inequalities control the
phenomenon of incremental collapse, and imply the last inequality only when the
shape factor is unity. The residual moment in (37) need not be that which would
actually exist in the frame after it has shaken down. The shakedown state is generally
approached in an asymptotic manner, as the number of loading cycles is increased,
but the total plastic strains in the frame are usually restricted to finite values.‡

The statical conditions (37) can be used to obtain a lower bound on the shake-
down limit for any assumed distribution of the residual moment. An upper bound on
the shakedown limit, from the standpoint of alternating plasticity, can be obtained by
assuming a single plastic hinge to form at a section where the range of elastic bend-
ing moment (M + − M −) has its greatest value 2Me. To obtain an upper bound for
incremental collapse, we assume a collapse mechanism consisting of sufficient num-
ber of yield hinges. Let θj denote the hinge rotation at a typical cross section j during
a small motion of the collapse mechanism, and let M0j be the plastic moment at this
section. If mj denotes the local residual moment at the incremental collapse, then

mj + M +
j = M0j if θj > 0

mj + M −
j = −M0j if θj < 0

(38)

Since the unknown moments mj are in equilibrium with zero external loads,∑
mjθj = 0 by the principle of virtual work, where the summation includes all the

assumed hinges. This relation may be used to eliminate the residual moments from
the equation obtained by summing the product of (38) with θj over all the plastic
hinges of the collapse mechanism. The result may be put in the form

∑ {
M +

j
M −

j

}
θj =

∑
M0j|θj| (39)

where M +
j is taken when θj is positive, and M −

j when θj is negative. The
actual load defining the shakedown limit is the smallest of all possible upper

† A general proof of the shakedown theorem in the context of beams and frames has been given
by E. Melan, Prelim. Publ. 2nd. Congr. Int. Assoc. Bridge Struct. Eng., p. 43, Berlin (1936). For a
simplified proof, see P. S. Symonds and W. Prager, J. Appl. Mech., 17: 315 (1950). See also B. G. Neal,
Q. J. Mech. Appl. Math., 4: 78 (1951).

‡ The condition for shakedown of structures in the presence of thermal stresses has been discussed
by W. Prager, Br. Weld. J., 3: 355 (1956). See also J. A. König, Shakedown of Elastic-Plastic Structures,
Elsevier, Amsterdam (1987).
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bound loads based on the considerations of alternating plasticity and incremental
collapse.†

Since the conditions of the shakedown theorem include those of the lower bound
theorem of plastic collapse, the limiting load for shakedown cannot exceed the load
corresponding to static collapse. If the limiting value of the load is exceeded, failure
would occur due to progressive hinge rotations or alternating plastic flow. The pres-
ence of initial stresses has no effect on the conditions for shakedown under a given
set of loads. The order in which these loads are applied are also without effect on
the occurrence of shakedown. However, the shakedown limit would depend on joint
and support stiffnesses, since the elastic bending moment distribution is influenced
by these factors.

(ii) Shakedown in a portal frame Consider a fixed-base rectangular portal frame
of uniform cross section, shown in Fig. 4.17a, having a fully plastic moment equal
to M0. The frame is subjected to horizontal and vertical loads H and V respec-
tively, which vary independently between prescribed limits.‡ The sign convention
for bending moments and hinge rotations will be taken as that used for static loading.
The bending moment M at the five numbered sections, when the response of the
frame is purely elastic, can be determined from the equations of equilibrium and
compatibility. The two independent equations of equilibrium, associated with the
virtual displacement systems of Fig. 4.17b and c, are

−M1 + M2 − M4 + M5 = 2Hl

−M2 + 2M3 − M4 = Vl
(40)

The three independent equations of compatibility are easily obtained from (24) and
(25), with M replaced by M, and using the virtual residual moments of Table 4.1.
Since the hinge discontinuities are zero in an elastic frame, the results are

6M1 + 8.5M2 + 3M3 + 0.5M4 = 0

0.5M2 + 3M3 + 8.5M4 + 6M5 = 0 (41)

2M1 + 7M2 + 6M3 + 7M4 + 2M5 = 0

Adding together the first two equations of (41), and combining the result with the
third, we get

M2 + M3 + M4 = 0

† Methods of estimation of the shakedown limit have been discussed by B. G. Neal and
P. S. Symonds, J. Inst. Civ. Eng., 35: 186 (1950); P. S. Symonds and B. G. Neal, ibid., 41 (1950),
J. Franklin Inst., 252: 883 (1951); B. G. Neal and P. S. Symonds, Proc. Int. Assoc. Bridge Struct. Eng.,
18: 171 (1958). The influence of kinematic hardening has been discussed by W. Jiang and F. A. Leckie,
J. Appl. Mech., 59: 251 (1992). See also J. A. Kamenjarzh, Limit Analysis of Solids and Structures, CRC
Press, CA (1996).

‡ This solution has been discussed by M. R. Horne, Plastic Theory of Structures, 2d ed.,
pp. 136–140, Pergamon Press, Oxford (1979).
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Figure 4.17 Incremental collapse of a portal frame under variable repeated loads H(0, H0) and V (0, V0).

Subtracting the second equation of (41) from the first gives

M1 − M5 + 4
3 (M2 − M4) = 0

The last two relations may be combined with (40) to obtain M2, M3, M4, and
M1 − M5 in terms of Hl and Vl. The solution is then completed by substituting into
any one of Eqs. (41). Thus

M1 = − 4
7 Hl + 1

12 Vl M2 = 3
7 Hl − 1

6 Vl M3 = 1
3 Vl

M4 = − 3
7 Hl − 1

6 Vl M5 = 4
7 Hl + 1

12 Vl
(42)

The algebraically greatest and least values of the elastic moments at the critical
sections depend on the limits between which the loads are varied. Assuming, as
a first example, 0 � H � H0 and 0 � V � V0, the values of M + and M − are readily
found as those shown in the first two rows of Table 4.2.

Consider first the possibility of incremental collapse represented by the
mechanism of Fig. 4.17b. The corresponding work equation, by (39), is found as

4
7 H0lθ + 3

7 H0lθ + ( 3
7 H0l + 1

6 V0l)θ + ( 4
7 H0l + 1

12 V0l)θ = 4M0θ
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Table 4.2 Maximum and minimum elastic moments for a portal frame

Cross section 1 2 3 4 5

}0 < H < H0 M + 1
12 V0l 3

7 H0l 1
3 V0l 0 4

7 H0l + 1
12 V0l

0 � V � V0 M − − 4
7 H0l − 1

6 V0l 0 − 3
7 H0l − 1

6 V0l 0

}−H0 < H < H0 M + 4
7 H0l + 1

12 V0l 3
7 H0l 1

3 V0l 3
7 H0l 4

7 H0l + 1
12 V0l

0 � V � V0 M − − 4
7 H0l − 3

7 H0l − 1
6 V0l 0 − 3

7 H0l− 1
6 V0l − 4

7 H0l

or

H0l + 1
8 V0l = 2M0 (43a)

This relationship holds so long as the statical conditions (37) are satisfied at each
section. The residual moments associated with this collapse mechanism must satisfy
the yield conditions

m1 − 4
7 H0l = −M0 m2 − 3

7 H0l = M0

m4 − 3
7 H0l − 1

6 V0l = −M0 m5 + 4
7 H0l + 1

12 V0l = M0

In view of the interaction relation (43a) and the equilibrium equations

−m1 + m2 − m4 + m5 = 0

−m2 + 2m3 − m4 = 0
(44)

of which the first one is identically satisfied, the residual moments at the cardinal
sections may be written as

m1 = −M0 + 4
7 H0l m2 = M0 − 3

7 H0l m3 = 1
12 V0l

m4 = 5
3 M0 − 19

21 H0l m5 = − 1
3 M0 + 2

21 H0l
(45)

The maximum and minimum values of the resultant bending moment at section 3 are

m3 + M +
3 = 5

12 V0l m3 + M −
3 = 1

12 V0l

in view of (45) and Table 4.2. Since the magnitude of the resultant moment cannot
exceed M0, the validity of (43a) requires 0 � V0l � 2.4M0, which is equivalent to
1.7M0 � H0 � 2.0M0.

Consider now the incremental collapse mechanism of Fig. 4.17c. The work
equation for this mechanism is obtained from (39) and the tabulated elastic moments.
Thus

1
6 V0lθ + 2

3 V0lθ + ( 3
7 H0l + 1

6 V0l)θ = 4M0θ

or
3
7 H0l + V0l = 4M0 (43b)
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Since this is a case of partial collapse, the distribution of the residual moment cannot
be determined uniquely. The relevant equations are

m2 + M −
2 = −M0 m3 + M +

3 = M0 m4 + M −
4 = −M0

representing the conditions of yielding, and the first equation of (44) expressing the
condition of statical equilibrium. Using Table 4.2, the residual moments may be
written as

m2 = −M0 + 1
6 V0l m3 = M0 − 1

3 V0l m4 = 3M0 − 5
6 V0l

m5 − m1 = 4M0 − V0l
(46)

A limit of applicability of (43b) is imposed by the condition that the resultant bending
moments at sections 1 and 5 must lie between −M0 and M0. Since M +

5 > M +
1 ,

M −
5 > M −

1 , and m5 > m1, the relevant inequalities are

m5 + M +
5 � M0 m1 + M −

1 � −M0

giving

(m5 − m1) + (M +
5 − M −

1 ) � 2M0

Inserting the values M +
5 , M −

1 , and m5 − m1, and using (43b), we get V0l � 3.535M0,
or H0l � 1.085M0.The largest permissible value of V0l is evidently 4M0, correspond-
ing to H0 = 0.

Assuming the mechanism of Fig. 4.17d for incremental collapse, the work
equation is obtained as

4
7 H0lθ + 2

3 V0lθ + 2( 3
7 H0l + 1

6 V0l)θ + ( 4
7 H0l + 1

12 V0l)θ = 6M0θ

or

H0l + 13
24 V0l = 3M0 (43c)

Using the yield conditions and one of the equations of equilibrium (44), the residual
moments associated with this collapse mechanism are found to be

m1 = −M0 + 4
7 H0l m2 = 3M0 − 3

7 H0l − 5
6 V0l m3 = M0 − 1

3 V0l

m4 = −M0 + 3
7 H0l + 1

6 V0l m5 = M0 − 4
7 H0l − 1

12 V0l
(47)

The statical conditions of shakedown require m2 + M −
2 � − M0 and m2 +

M +
2 � M0. Inserting the values of the residual and elastic moments, these inequali-

ties are reduced to 2.4M0 � V0l � 3.535M0, or 1.7M0 � H0l � 1.085M0. The inter-
action diagram for incremental collapse of the portal frame is compared with that
for statical collapse (under the loads H = H0 and V = V0) in Fig. 4.18. It would be
noted that for a given ratio H0/V0, the mode of collapse under statical loading is not
necessarily the same as that under variable loading.
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Figure 4.18 Interaction diagrams for a fixed-base portal frame under static and cyclic loading.

The conditions for alternating plasticity are easily derived by considering the
values of M + and M − at each critical section of the frame. If the shape factor is
denoted by α, alternating plasticity can occur simultaneously at sections 1 and 5
when H0 and V0 satisfy the relation

α( 4
7 H0l + 1

12 V0l) = 2M0

Similarly, the conditions for alternating plasticity to occur at sections 2 and 4 is

α( 3
7 H0l + 1

6 V0l) = 2M0

The occurrence of alternating plasticity at section 3 requires αV0l = 6M0. The inter-
action diagram defined by these conditions lies outside that for incremental collapse
for usual values of α. The shakedown limit in this case is entirely controlled by
incremental collapse.

(iii) Cyclic loading in an alternating sense As a second example, consider the
loading of the same frame with −H0 � H � H0 and 0 � V � V0. The horizontal
force therefore acts in either direction in an alternating manner. The modified values
of M + and M − at the critical sections are those given in the last two rows of
Table 4.2. In this case, it is natural to expect that the shakedown limit would be
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Figure 4.19 Lines of alternating plasticity and incremental collapse for a portal frame with alternating
horizontal load and unidirectional vertical load.

controlled by alternating plasticity over a range of values of H0/V0. Using Table
4.2, the conditions of alternating plasticity may be written as

α( 8
7 H0l + 1

12 V0l) = 2M0 sections 1 and 5 (48a)

α( 6
7 H0l + 1

6 V0l) = 2M0 sections 2 and 4 (48b)
1
3αV0l = 2M0 section 3 (48c)

where α is the shape factor for each member of the frame. These relations are
represented graphically in Fig. 4.19, assuming α = 1.15.

Since the horizontal force assumes both positive and negative values, there are
two possible modes of incremental collapse associated with the panel mechanism.
Either one of these modes may be used to establish the collapse relationship between
H0 and V0, and the result is identical to (43a). Considering the beam mechanism, the
incremental collapse equation is obtained as

( 3
7 H0l + 1

6 V0l)θ + 2
3 V0lθ + ( 3

7 H0l + 1
6 V0l)θ = 4M0θ
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or

3
7 H0l + 1

2 V0l = 2M0 (49)

The combined panel and beam mechanism gives two possible modes of collapse,
and the corresponding equation relating H0 and V0 is the same as (43c). The graph-
ical representation of the three collapse equations is shown in Fig. 4.19. The solid
lines define the boundary PQR of a permissible region representing possible states
of shakedown. The point Q corresponds to H0l = 1.312M0 and V0l = 2.875M0,
obtained by solving equations (48b) and (49) with α = 1.15.

A statical check for the relevant collapse mechanism, which happens to be the
beam mechanism, can be carried out as before. It is easily shown that the distribution
of residual moment is given by

m2 = m3 = m4 = M0 − 1
3 V0l m1 = m5

Since M +
5 = M +

1 and M −
5 = M −

1 , all the conditions of the shakedown theorem
will be fulfilled if M +

5 − M −
5 � 2M0. Since the expression on the left-hand side lies

between 0.333M0 and 1.739M0, the inequality is indeed satisfied. Figure 4.19 indi-
cates that the shakedown limit is controlled by alternating plasticity for sufficiently
large values of H0, while incremental collapse becomes the controlling factor when
H0 is sufficiently small.

(iv) Analysis of a two-story frame As a final example illustrating the basic princi-
ples, we consider the two-story rectangular frame shown in Fig. 4.20a. The frame
has uniform cross section throughout with a plastic moment M0 and flexural rigidity
EI. The applied loads H and V are assumed to vary between zero and the maximum
values H0 and V0 respectively. Since the frame has six redundancies, there must be
five equations of equilibrium relating the eleven critical moments. These equations
are found in the usual way by considering the virtual modes associated with the
sway of lower and upper panels, the lower beam mechanism, and the rotation of
joints. Thus, the equilibrium of the elastic moments requires

−M1 + M2 − M9 + M10 = 3Hl

−M4 + M5 − M6 + M7 = Hl

−M3 + 2M11 − M8 = Vl (50)

M2 − M3 − M4 = 0

−M7 − M8 + M9 = 0

These equations are supplemented by six equations of compatibility, which are most
conveniently obtained from (24) and (25) using the virtual residual moment patterns
of Fig. 4.16. Taking account of the changes in the assigned numbers, the resulting
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Figure 4.20 A two-story frame with possible collapse mechanisms. The loads H and V vary in the
ranges (0, H0) and (0, V0) respectively.

equations are easily shown to be

6(M1 + M2) + 2.5M3 + 0.5M8 + 3M11 = 0 (51a)

2(M1 + M10) + 4(M2 + M9) + 3(M3 + M8) + 6M11 = 0 (51b)

0.5M3 + 2.5M8 + 6(M9 + M10) + 3M11 = 0 (51c)

3(M1 + M2 + M4) + 5M5 + M6 = 0 (51d)

M4 + M7 + 5(M5 + M6) = 0 (51e)

M5 + 5M6 + 3(M7 + M8 + M10) = 0 (51f )

This completes the formulation of the problem of finding the distribution of elastic
moment in the frame.

It is convenient to work out the solution in two parts. First, we add together in
pairs Eqs. (51a) and (51c), Eqs. (51d) and (51f ), and the last two equations of (50).
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Table 4.3 Data for shakedown analysis for the frame of Fig. 4.20

H0l = 1.169M0
Arbitrary H0 and V0 V0l = 3.076M0

Section M+ M− M+/M0 M−/M0

1 0.0536V0l −0.8818H0l 0.165 −1.031
2 0.6182H0l −0.1071V0l 0.723 −0.329
3 0.7909H0l −0.1964V0l 0.924 −0.604
4 0.0893V0l −0.1727H0l 0.275 −0.202
5 0.3273H0l −0.0179V0l 0.383 −0.055
6 0 −0.3273H0l −0.0179V0l 0 −0.438
7 0.1727H0l + 0.0893V0l 0 0.476 0
8 0 −0.7909H0l −0.1964V0l 0 −1.528
9 0 −0.6182H0l −0.1071H0l 0 −1.052

10 0.8818H0l + 0.0536V0l 0 1.196 0
11 0.3036V0l 0 0.934 0

The resulting equations, in conjunction with (51b), (51e), and the third equation of
(50), form a set, having the solution

M1 + M10 = 3
28 Vl M2 + M9 = − 3

14 Vl M3 + M8 = − 11
28 Vl

M4 + M7 = 5
28 Vl M5 + M6 = − 1

28 Vl M11 = 17
56 Vl

(52)

Next, we consider the differences of the same pairs of equations, and complete the
set with the first two equations of (50). The solution for this set of equations is
found as

M1 − M10 = − 97
55 Hl M2 − M9 = 68

55 Hl M3 − M8 = 87
55 Hl

M4 − M7 = − 19
55 Hl M5 − M6 = 36

55 Hl
(53)

Values of the elastic bending moments follow immediately from (52) and (53).
The algebraic maximum and minimum elastic moments which occur at the critical
sections, as the loads vary between the prescribed limits, are given in the second and
third columns of Table 4.3.

The static collapse of the frame, produced by the applied loads monotonically
increased to their maximum values, is easily investigated by the method of combined
mechanisms.Among the large number of possible modes of collapse, those shown in
Fig. 4.20b, c, and d are found to be most critical for static collapse, the corresponding
collapse equations being

V0l = 4M0 3H0l = 4M0 4H0l + V0l = 8M0

The interaction diagram defined by these relations is shown by the dashed lines of
Fig. 4.21. That no other collapse mode is critical may be confirmed by a statical
analysis for each of the load ratios represented by points A and B in the diagram.
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Figure 4.21 Interaction diagrams for a two-story rectangular frame.

It is reasonable to consider the same three mechanisms for the possibility of
incremental collapse. The work equations corresponding to mechanisms (b), (c),
and (d) are found as before, using Table 4.3, and the result are†

0.7909H0l + V0l = 4M0

3H0l + 0.1607V0l = 4M0

4H0l + 1.0715V0l = 8M0

(54)

respectively. The interaction diagram for incremental collapse, shown by solid lines
in Fig. 4.21 indicates that the combined panel and beam mechanism does not occur
at all for the present range of loading.

To confirm that no other mode is critical, a statical analysis will be carried out
for the loads corresponding to the vertex C. The solution of the first two equations
of (54) gives H0l = 1.169M0 and V0l = 3.076M0 at C, leading to the maximum and
minimum elastic moments shown in the last two columns of Table 4.3. Since seven
plastic hinges are simultaneously formed by mechanisms (b) and (c), we have

m1 + M−
1 = −M0 m2 + M+

2 = M0 m3 + M−
3 = −M0

m8 + M−
8 = −M0 m9 + M−

9 = −M0 m10 + M+
10 = M0

m11 + M+
11 = M0

† J. Heyman, Plastic Design of Frames, vol. 2, pp. 153–158, Cambridge University Press (1971). For
further examples, see J. J. Skerzypek and R. B. Hetnarski, Plasticity and Creep, CRC press, Boca Raton
(1993).
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Substituting the values of the elastic moments from Table 4.3, we obtain the
corresponding residual moments

m1 = 0.031M0 m2 = 0.277M0 m3 = −0.396M0

m8 = 0.528M0 m9 = 0.052M0 m10 = −0.196M0 m11 = 0.066M0

The equations of equilibrium for the residual moments are given by (50) with
H = V = 0 and m written for M. The first and third equations are identically satisfied,
while the remaining equations furnish

m4 = 0.673M0 m7 = −0.476M0 m5 − m6 = 1.149M0

The shakedown theorem requires the resultant bending moments at sections 5 and
6 to lie between −M0 and M0. It follows from Table 4.3 that any value of m5 in the
range 0.587 M0 � m5 � 0.617M0 will satisfy this condition. The greatest value of
M+ − M− is 1.528M0, occurring at sections 3 and 8 at the ends of the lower beam.
Hence, to avoid the danger of alternating plasticity, the shape factor must be less
than 1.31 approximately.

4.6 Minimum Weight Design

(i) Basic concepts The problem of plastic design is one in which the loads acting on
the structure are given, and we are required to find the plastic moments of the various
members so that the structure is at the point of collapse when the loads are multiplied
by a specified load factor. If the ratios of the plastic moments of the members are
chosen at the outset, the methods of plastic analysis are directly applicable for the
estimation of the characteristic plastic moment corresponding to the state of collapse.
In general, however, the design problem involves the determination of all the plastic
moments, whose relative values are not preassigned, so that either the total weight
of the structure or its total cost has a minimum value. We shall be concerned here
with the plastic design of structures for minimum weight without consideration of
the economic and other factors.

Suppose that a frame of given overall dimensions is composed of uniform pris-
matic members whose plastic moments are taken to be unaffected by shearing and
axial forces. When the members have geometrically similar cross sections, and are
made of the same material, the weight g per unit length is proportional to h2, where
h is a typical dimension such as the depth of the cross section. Since the fully plastic
moment M0 is proportional to h3, the relationship g ∝ M2/3

0 must hold for any given
series of similar sections. The empirical relation g ∝ M0.6

0 is found to agree closely
with the tabulated values of g and M0 for standard I sections. More generally, when
geometrical similarities do not hold, the relationship between the specific weight and
the plastic moment may be approximated by g ∝ Mn

0 , where n is a physical constant.
For the range of sections appropriate to a given problem, it is reasonable to use the
linear relationship

g = α + βM0
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where α and β are constants. If l denotes the length of a typical member having a
plastic moment M0, the total structural weight is

α
∑

l + β
∑

M0l

where the summation includes all the members of the frame. The weight of the frame
will therefore be a minimum if the parameter

G =
∑

M0l

is minimized. The problem of minimum weight design is reduced to that of finding
the minimum value of G, which is known as the weight function.

It is possible to achieve an absolute minimum weight design if the cross section
of each member is allowed to vary continuously in such a way that the fully plastic
moment at any section is equal to the magnitude of the local bending moment. The
problem is to find an equilibrium distribution of bending moment M that minimizes
the linearized weight function

G =
∫

|M| ds

where the integral extends over all the members. The minimum weight frame then
deflects in a form involving no discontinuities in slope, and hence localized hinges
do not occur in the collapse mechanism.†

For given external loads acting on a frame, an equilibrium distribution of moment
M will correspond to an absolute minimum weight if the deflected shape of the frame
at the incipient collapse has a constant absolute curvature, the sign of the curvature
being in conformity with that of the bending moment. To prove this theorem, let
M* denote any other distribution of bending moment in equilibrium with the same
external loads. By the principle of virtual work, the work done by the external loads
on the deflection corresponding to a constant absolute curvature κ0 is equal to the
internal work, which must be the same in both cases. Hence∫

|M|κ0 ds =
∫

M∗κ ds

where |κ| = κ0, but the sign of M* need not be the same as that as κ Consequently:∫
|M|ds =

∫
M∗

(
κ

κ0

)
ds �

∫
|M∗|ds

indicating that the weight of the frame corresponding to the design |M| cannot exceed
that corresponding to |M∗|. The curvature of the minimum weight frame changes

† J. Heyman, Q. J. Mech. Appl. Math., 12: 314 (1959), Int. J. Mech. Sci., 1: 121 (1960); M. A. Save
and W. Prager, J. Mech. Phys. Solids, 11: 255 (1963).



Chakra-04.tex 13/1/2006 16: 5 Page 282

282 theory of plasticity

discontinuously from κ0 to −κ0 at a point of inflection where M changes sign from
positive to negative.

Once the inflection points have been located from the appropriate kinematical
and statical conditions, it is easy to construct the bending moment diagram giving
the required variation of the yield moment. In practice, the beam section cannot be
reduced to zero at the points of inflection, since some material must be provided
to carry the shearing forces that are neglected in the theory. The theoretical design
furnishes valuable information on the maximum saving of material, and provides a
basis of comparison for the practical design of frames.

(ii) Geometrical approach to limit design Consider the minimum weight design
of a fixed-base rectangular portal frame, Fig. 4.22a, made of prismatic members
which may be chosen from a wide range of available sections. Both the columns are
assumed to have the same plastic moment M02, which could be different from the
plastic moment M01 of the beam, so that the weight function becomes

G = (5M01 + 4M02)l (55)

Since it is not known in advance whether M01 is greater or less than M02, any plastic
hinge occurring at the joints may appear either in the beam or in the column. Each
of the three possible modes of collapse is therefore associated with two mechanisms
of the same type, resulting in six possible collapse mechanisms as shown in Fig.
4.22c to h. The corresponding work equations are easily found as

4M01 = 2.5Wl 2M01 + 2M02 = 2.5Wl (c, d)

2M01 + 2M02 = 6Wl 2M02 = 3.0Wl (e, f )

4M01 + 2M02 = 8.5Wl 2M01 + 4M02 = 8.5Wl (g, h)

The equations on the left-hand side correspond to M01 � M02 and those on the
right-hand side correspond to M01 � M02.

These equations are represented by three pairs of straight lines on a plane dia-
gram, Fig. 4.23, the meeting point of each pair being on the bisector of the coordinate
axes. Any given ratio of the plastic moments is represented by a ray, such as ON,
interesting some of the mechanism lines. In view of the upper bound theorem of
plastic collapse, the values of M01 and M02 at the incipient collapse are given by
the coordinates of the point N , which is the farthest point of intersection relative to
the origin. It follows that all possible combinations of M01 and M02 required by the
frame under the given loads are represented by the line segments ABCDE which is
convex toward the origin. The shaded region is called the permissible region, since
plastic collapse does not occur for any design represented by a point lying in this
region. Points on the origin side of the boundary ABCDE represent designs which
cannot support the given loads.†

† The geometrical method has been put forward by J. Foulkes, Q. Appl. Math., 10: 347 (1953).
A trial-and-error method has been discussed by J. Heyman, Struct. Eng., 31: 125 (1953).
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Figure 4.22 Limit design of a rectangular portal frame. (a) Loading and dimensions; (b) collapse
mechanism with two degrees of freedom; (c–h) single-degree-of-freedom mechanisms.

The problem of minimum weight design reduces to that of locating a point on the
boundary of the permissible region such that the weight function (55) is a minimum.
Any point on the straight line

5M01 + 4M02 = const

represents a design of constant weight, the value of G being proportional to the
distance of the line from the origin. The minimum weight design is obtained by
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Figure 4.23 Geometrical analog for the plastic design of a rectangular portal frame.

finding the point where such a straight line is just in contact with the boundary of
the permissible region. The appropriate weight line is shown broken in Fig. 4.23,
the point of contact being the apex C which corresponds to

M01 = 5
4 Wl M02 = 7

4 Wl

giving the minimum weight design for the given frame. By (55), the minimum value
of the weight function G is 13.25Wl2. For certain dimensions of the frame, the
tangent weight line may coincide with one of the inclined faces of the boundary
of the permissible domain. In this case, there are infinitely many designs, giving
the same minimum weight, two of which are represented by the extremities of the
associated line segment.

Since the minimum weight point C is the meeting point of the lines correspond-
ing to mechanisms (e) and (g), the minimum weight frame may collapse by either of
these two modes. A collapse mechanism having two degrees of freedom can actually
occur with hinge rotations as shown in Fig. 4.22b. This is formed by a combination
of the mechanisms (e) and (g), after replacing θ in the two cases by ψ and φ respec-
tively. Such a mechanism represents an overcomplete collapse, since there are more
plastic hinges than are necessary for the frame to be statically determinate. The work
equation for the new mechanism is easily shown to be

2(ψ + 2φ)M01 + 2(ψ + φ)M02 = 6(ψ + φ)Wl (56)

which is valid for ψ � 0 and φ � 0. For any given positive values of ψ and φ,
Eq. (56) represents a straight line on the design plane of Fig. 4.23. The slope of this
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line lies between the slopes of the mechanism lines (e) and (g), which correspond to
φ = 0 and ψ = 0 respectively. Hence, there exists a definite ratio of ψ to φ for which
the straight line given by (56) has the same slope as the weight line given by (55).
Equating the ratios of the coefficients of M01 and M02, we have

ψ + 2φ

ψ + φ
= 5

4
or ψ = 3φ

Substituting this value of ψ into (56), the work equation is reduced to

5M01 + 4M02 = 13.25Wl

which coincides with the equation for the tangent weight line. The collapse mecha-
nism obtained by setting ψ = 3φ is regarded as weight compatible, since the ratio of
the coefficients of the plastic moments in the associated work equation is identical to
the ratio of the corresponding coefficients in the weight function. It follows that the
sum of the magnitudes of the hinge rotations in an individual member corresponding
to a weight compatible mechanism is proportional to the length of this member.

(iii) Minimum weight theorems The two-dimensional geometrical analog can be
extended to n dimensions for the minimum weight design of a frame having n inde-
pendent plastic moments. Since each work equation is linear in the plastic moments,
it will represent a hyperplane in an n-dimensional design space. The hyperplanes cor-
responding to all possible mechanisms of collapse will define a permissible region
whose boundary will be convex with respect to the origin. The linearized weight
function G also represents a hyperplane in n dimensions, and the weight flat will
generally intersect the permissible region. As the weight of the frame is reduced,
the weight flat moves toward the origin, and the minimum value of G makes the
weight flat just touch the boundary of the permissible region. The weight flat then
passes through a vertex formed by the intersection of at least n mechanism flats.
The collapse mechanism for the minimum weight frame is obtainable by a linear
combination of n or more mechanisms, and has at least n degrees of freedom.

Consider a minimum weight frame whose prismatic members are of length lj
and plastic moment M0j corresponding to a set of loads Wi. Suppose it is possible
to postulate a weight compatible mechanism of collapse, so that the sum of the
magnitudes of the hinge rotations associated with a typical member is φj = clj,
where c is a constant. If the displacements corresponding with the loads Wi are
denoted by δi, the work equation may be written as∑

i

Wiδi =
∑

j

M0jφj = c
∑

j

M0jlj

Such a mechanism may be regarded as virtual for any other design of the frame
specified by plastic moments M∗

0j of its members. Since the bending moment at a
hinge occurring in a typical member cannot exceed M∗

0j in magnitude,
∑

Wiδi must
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Figure 4.24 Rectangular portal frame with weight compatible collapse mechanism for a range of values
of H/V and h/l.

be less than or equal to c
∑

M∗
0jlj. If the weight functions for the two designs are

denoted by G and G∗, then

G∗ =
∑

j

M∗
0jlj �

∑
j

M0jlj = G

This brings us to Foulkes’ theorem which states that the design of a frame will be
of minimum weight for a given set of loads if a weight compatible mechanism can
be formulated for plastic collapse and the corresponding distribution of bending
moment is found to be statically admissible.† The theorem includes the possibility
of the existence of a range of designs all of which have the same minimum weight.

As an interesting example illustrating the use of Foulkes’ theorem, consider
the minimum weight design of the fixed-based rectangular portal frame shown in
Fig. 4.24a. The required plastic moments M01 and M02 for the beam and the columns
respectively will obviously depend on the ratios h/l and H/V , which specify the
geometry and loading of the frame. A design chart can be constructed by assuming
a particular collapse mechanism with two degrees of freedom and finding the condi-
tions under which the corresponding design will be valid. Taking, for instance, the
mechanism of Fig. 4.24b, the work equation is easily shown to be

Vlθ + Hhθ = (3θ − φ)M01 + (3θ + φ)M02 (57)

where θ and φ are positive hinge rotations. Equating the coefficients of θ and φ gives

M01 = M02 = 1
6 (Vl + Hh)

The linearized weight function is G = 2(M01l + M02h), which shows that the
mechanism will be weight compatible if

3θ + φ

3θ − φ
= h

l
or φ = 3

(
h − l

h + l

)
θ

† See J. Foulkes, Proc. R. Soc., A, 233: 482 (1954).
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in view of (57). Since the hinge rotations must accord in sign with the corresponding
bending moments, we have the restriction −θ < φ < θ, giving l < 2h < 4l.

The bending moment at B can be determined from the virtual work equation
corresponding to either the panel or the beam mechanism. The latter furnishes the
equation

−MB + 2MC − MD = Vl or MB = 3M01 − Vl

Since −M01 � MB � M01 for the bending moment distribution to be statically admis-
sible, the design will be of minimum weight if 2M01 � Vl � 4M01. The limits of
applicability of the solution therefore become

1

2
� Hh

Vl
� 2

1

2
� h

l
� 2

Similar limits can be found for the other mechanisms of collapse, the complete
results being shown in Fig. 4.25. The minimum weight design corresponding to any
given values of h/l and Hh/Vl is represented by one of seven regions bounded by
straight lines parallel to the axes.

Upper and lower bound theorems, analogous to those for plastic analysis, can
be established in relation to the design for minimum weight. Any design of a frame
which just collapses in a certain mechanism, while admitting a statically admis-
sible distribution of bending moment, provides an upper bound on the minimum
weight. In geometrical terms, the point representing the design of the frame will
then lie on the boundary of the permissible region. The mechanism condition could
be omitted from this theorem without affecting its validity, the design point being
then considered within the permissible region. Any design of a frame which is
based on a weight-compatible mechanism, without satisfying the condition of static
admissibility, provides a lower bound on the minimum weight. In the geometrical
representation, the weight hyperplane can always be passed through a vertex that
is exterior to the permissible region (see Fig. 4.23). Using suitable positive values
of the associated mechanism parameters, the weight flat can be represented by a
combined mechanism with appropriate degrees of freedom.

(iv) Limit design of complex frames The minimum weight problem can be easily
set up for solution by digital computers using the standard techniques of linear
programming. To illustrate the basic principles, consider a two-story rectangular
frame loaded as shown in Fig. 4.26a. The upper and lower beams have plastic
moments M01 and M03 respectively, the two upper stanchions each have a plastic
moment M02, and the two lower stanchions each have a plastic moment M04. These
moments must be such that the frame just collapses under the given loads, while the
weight function

G = 2M01l + 3M02l + 2M03l + 3M04l (58)
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Figure 4.25 Minimum weight solutions for a portal frame loaded as shown in Fig. 4.24a.

has its least possible value. Since the frame has six redundancies and twelve poten-
tially critical bending moments, there must be six independent equations of equi-
librium. By the principle of virtual work applied to the six elementary mechanisms,
the equilibrium equations become

−M4 + M5 − M7 + M8 = 3Wl

−M1 + M2 − M10 + M11 = 6Wl

−M5 + 2M6 − M7 = 3Wl (59)

−M3 + 2M12 − M9 = 6Wl

M2 − M3 − M4 = 0

M8 + M9 − M10 = 0
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Figure 4.26 Minimum weight design of a two-story frame. (a) Loading and dimensions; (b) collapse
mechanism with four degrees of freedom.

Since the magnitude of the bending moment of any section cannot exceed the local
plastic moment, the following inequalities must be satisfied:

−M01 � Mi � M01 (i = 5, 6, 7)

−M02 � Mj � M02 ( j = 4, 5, 7, 8)

−M03 � Mk � M03 (k = 3, 12, 9)

−M04 � Mr � M04 (r = 1, 2, 10, 11)

(60)

The problem is therefore to find the plastic moments M01, M02, M03, and M04 that
minimize the weight function (58), subject to the six constraints (59) required for
equilibrium, and the 28 constraints (60) imposed by the yield condition. The problem
formulated in this way represents one of linear programming, which provides a rapid
method of locating and testing the vertices of the permissible region.†

For the two-story frame considered here, the required fully plastic moments of
its members corresponding to the minimum weight design are obtained as

M01 = M02 = Wl M03 = 8
3 Wl M04 = 5

3 Wl

and the linearized weight function then becomes G = 15.33Wl2. The bending
moment distribution in the minimum weight frame at the instant of collapse is

† This formulation was first used by J. Heyman, Q. Appl. Math., 8: 373 (1951).A computer program
has been developed by R. K. Livesley, Q. J. Mech. Appl. Math., 9: 257 (1956). See also J. Heyman and
W. Prager, J. Franklin Inst., 266: 339 (1958); R. K. Livesley, Civ. Eng. Public Works. Rev., 54: 737
(1959); H. S. Y. Chan, J. Appl. Mech., 36: 73 (1969).
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given by

M1 = − 5
3 Wl M2 = Wl M3 = 2Wl M4 = −Wl M5 = 0

M6 = Wl M7 = −Wl M8 = Wl M9 = − 8
3 Wl M10 = − 5

3 Wl

M11 = 5
3 Wl M12 = 8

3 Wl

This distribution is statically admissible, and is associated with plastic hinges devel-
oped at ten different sections leading to the collapse mechanism of Fig. 4.26b. The
four degrees of freedom of the mechanism are specified by the angles θ, α, φ, and
ψ, denoting the magnitudes of hinge rotations at the indicated sections. The work
equation for this mechanism is

(18θ + 6α)Wl = (4θ + 4α − φ)M01 + (φ + ψ + 2α)M02

+ (4θ − ψ)M03 + (2θ + ψ)M04 (61)

The plastic moments are recovered on equating the coefficients of θ, α, φ, and ψ.
For the mechanism to be weight compatible, the coefficients of the plastic moments
in (61) must be proportional to those in (58). Hence

1
2 (4θ + 4α − φ) = 1

3 (θ + ψ + 2α) = 1
2 (4θ − ψ) = 1

3 (2θ + ψ)

yielding the solution

φ = 28
15θ α = 1

15θ ψ = 8
5θ

The magnitudes of the hinge rotations at the right-hand ends of the upper and lower
beams are 2θ + 2α − φ = 4

15θ and 2θ − ψ = 2
5θ respectively. It follows that all the

hinge rotations accord in sign with the corresponding bending moments, and the
conditions of weight compatibility are therefore satisfied.†

(v) Absolute minimum weight The underlying principles for the design of a frame
to obtain an absolute minimum weight have been discussed in (i). To illustrate the
procedure, consider a fixed-base rectangular portal frame loaded horizontally and
vertically as shown in Fig. 4.27a. If the load ratio H/V does not exceed a critical
value, the deformation mode at collapse involves four inflection points as indicated
in Fig. 4.27b. Each segment of the deflected frame is a curve of constant absolute
curvature, which will be taken as unity for convenience. The deformation is specified
by rotations θ1 and θ2 of joints 2 and 4 respectively, and an angular displacement φ

measuring the sidesway.

† The minimum weight design of frames under shakedown loading has been considered by
J. Heyman, J. Eng. Mech. Div., Proc. ASCE, 84: 1790 (1958). The design of minimum weight frames
from a finite range of available sections has been discussed by A. R. Toakley, J. Struct. Div., Proc. ASCE,
94: 1219 (1968). The minimum cost design has been considered by P. V. Marcal and W. Prager, J. de
Mec., 3: 509 (1964). See also W. Prager and G. I. N. Rozvani, Int. J. Mech. Sci., 17: 627 (1975).
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Figure 4.27 Plastic design of a portal frame for absolute minimum weight. (a) Dimensions and loading;
(b) deflected shape and bending moment diagram.

The slope of the deflected frame vanishes at the column feet 1 and 5, while the
angle of the joints 2 and 4 remains unaltered. These conditions, together with the
fact that the vertical displacement vanishes at these joints, enable us to express θ1,
θ2, and φ in terms of the parameters α1, α2, λ1, and λ2, which define the points of
inflection. Using (64), Chap. 3, we have

θ1 = (2α1 − 1)l θ2 = (2α2 − 1)l φ = (α2
1 − 1

2 )l = ( 1
2 − α2

2)l

θ1 = [2(1 − λ1)2 − 2λ2
2 − 1]l θ2 = [2(1 − λ2)2 − 2λ2

1 − 1]l

in view of the continuity of slope and deflection at the points of inflection. The first
row of results correspond to the columns, while the second row correspond to the
beam. The elimination of θ1, θ2, and φ from the above relations furnishes

α1 = (1 − λ1)2 − λ2
2 α2 = (1 − λ2)2 − λ2

1

[(1 − λ1)2 − λ2
2]2 + [(1 − λ2)2 − λ2

1]2 = 1
(62)

The fourth equation necessary for locating the inflections must be found from
statical considerations. It follows from the geometry of the bending moment dia-
gram that

M2 = 2λ1

1 − 2λ1
M3 M4 = 2λ2

1 − 2λ2
M3

M1 = 1 − α1

α1
M2 M5 = 1 − α2

α2
M4

These are the yield moments at the cardinal sections, and the conditions of
equilibrium satisfied by them are obtained from the principle of virtual work as

M2 + 2M3 + M4 = Vl −M1 − M2 + M4 + M5 = Hl

The substitution for M2 and M4 into the first equilibrium equation leads to an
expression for M3. The second equilibrium equation may then be used to obtain
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the relationship between H/V and the inflection parameters. The results may be
written as

M3 = (1 − 2λ1)(1 − 2λ2)

2(1 − λ1 − λ2)
Vl

λ2(1 − 2λ1)

(1 − λ2)2 − λ2
1

− λ1(1 − 2λ2)

(1 − λ1)2 − λ2
2

= (1 − λ1 − λ2)
H

V
(63)

Equations (62) and (63) are sufficient to determine the positions of the inflections,
and hence to fix the distribution of the yield moment. The validity of the solution
requires λ1 � 0, which is equivalent to

2(1 + λ2
2)(1 − λ2)2 � 1 or λ2 � 0.328

in view of the third equation of (62). It follows from (63) that the corresponding
restriction on the load ratio is H/V � 1.081. In the limiting case λ1 = 0, the cross
section of the left-hand column becomes vanishingly small, while the remaining
plastic moments become M3 = 0.744Vl, M4 = 1.419Vl, and M5 = 1.723Vl. In the
other extreme case H = 0, symmetry requires

α1 = α2 = 1 − 2λ1 = 1 − 2λ2 = 1/
√

2

Then the plastic moments at sections 2 and 4 are each equal to (
√

2 −1)M3, and
those at sections 1 and 5 are each equal to (

√
2 − 1)2M3, where M3 = Vl/2

√
2.

If the ratio H/V exceeds 1.08, a second inflection appears in the left-hand
column,† whose plastic moment continues to vanish. The sagging part of the column
near its base decreases as H/V increases, becoming zero when H/V � 4.0. The
deformation mode then involves one inflection in each column, at a distance 3l/4
from the base, and one inflection in the beam occurring at its center. The plastic
moments at sections 1 and 5 are therefore three times those at sections 2 and 4
respectively. These moments depend on H and V , and are easily found from the
equations of equilibrium.

4.7 Influence of Axial Forces

(i) Combined bending and tension Consider an arbitrary beam section under the
combined action of a bending moment M and an axial tensile force N .As the bending
moment is gradually increased, with the axial force held constant, a plastic zone
forms on one side of the neutral axis, followed by a second plastic zone spreading
from the opposite side. During the course of loading, the neutral axis progressively
moves inward to assume a final position in the fully plastic state. The values of N
and M for full plasticity corresponding to any given position of the neutral axis can
be found by integration. Suppose that the cross section has an axis of symmetry

† See J. Heyman, Int. J. Mech. Sci., 1: 121 (1960).
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Oy which lies in the plane of bending, Fig. 4.28a. Let ξh denote the final distance
of the neutral axis from the centroidal axis Oz, where 2h is the total depth of the
section. Using the stress distribution as shown, the resultant force and moment for
a nonhardening beam may be written as

N = −Y
∫ ξh

−h1

b(y)dy + Y
∫ h2

ξh
b(y)dy

M = −Y
∫ ξh

−h1

b(y)y dy + Y
∫ h2

ξh
b(y)y dy

where b(y) is the width of the section at any distance y from the centroidal axis. These
relations define an interaction curve in the (N , M) plane in terms of the parameter ξ.
The differentiation of the above equations with respect to ξ gives

dN

dξ
= −2Yhb(ξh)

dM

dξ
= −2Yh2ξb(ξh)

Since plane sections remain plane, the deformation consists of an arbitrary
rotation of the cross section about the neutral axis. The deformation is characterized
by a unit longitudinal extension ε and an angle of flexure ψ per unit length. For a
rigid/plastic material, we have the immediate relationship

ε = −ξhψ

The critical values of N and M determine only the ratio of ε and ψ, not their individual
values, since the material can flow plastically under constant stress. It follows from
the preceding relations that

dM

dN
= ξh = − ε

ψ
(64)

This result establishes the fact that the vector representing the strain variables (ε, ψ),
when superposed on the stress variables in the (N , M) plane, is perpendicular to the

Figure 4.28 Effect of normal force on the fully plastic stress distribution in bars under symmetrical
bending.
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local tangent to the interaction curve. The direction of the strain vector is in fact
along the exterior normal to the interaction curve at the appropriate stress point.

Consider now the special case of a rectangular cross section† of width b and
depth 2h as shown in Fig. 4.28b. To express N and M in terms of the parameter ξ,
which specifies the position of the neutral axis, it is convenient to decompose the
stress distribution into three parts as shown. The central block is responsible for the
axial force N , while the outer blocks produce the bending moment M. Consequently,

N = −2bhYξ M = bh2Y (1 − ξ2)

The limiting axial tension in the absence of bending is N0 = 2bhY , and the limiting
bending moment in the absence of axial force is M0 = bh2Y . The elimination of ξ

from the preceding equations therefore gives the interaction relationship‡

M

M0
+

(
N

N0

)2

= 1 0 � M

M0
� 1 (65a)

which defines a parabola with vertex at (0, 1) in terms of the dimensionless coor-
dinates N/N0 and M/M0. When the fully plastic stress distribution is such that the
regions of tension and compression are interchanged, the relationship between N/N0
and M/M0 is modified to

− M

M0
+

(
N

N0

)2

= 1 −1 � M

M0
� 0 (65b)

Equations (65) define the upper and lower halves of the interaction diagram shown
by solid lines in Fig. 4.29. It is symmetrical about the axes of M/M0 and N/N0 due
to the symmetry of the cross section. It follows from (64) and (65) that

N0ε

M0ψ
= ±2N

N0

where the upper sign holds for the upper half and the lower sign for the lower
half of the interaction diagram. The vector (N0ε, M0ψ), representing the strain, is
always directed along the exterior normal to the interaction curve at any point (N/N0,
M/M0), representing the state of stress.§

When the neutral axis lies outside the beam, the fully plastic stress distribution
consists of a uniform tension or compression throughout the cross section. This
corresponds to point A or E of the interaction diagram, where the normal is not

† Beams of rectangular cross section subjected to bending moments about both axes of symmetry
in the presence of axial forces have been considered by H. Shakir-Khalil and G. S. Tadros, Struct. Eng.,
51: 239 (1973).

‡ The interaction formulas for rectangular and I-section beams have been given by K. Girkmann,
S. B. Akad. Wiss. Wien (Abt. 2a), 140: 679 (1931). Other shapes of the cross section have been considered
by M. Zyczkowski, Arch. Mech. Stos, 17: 307 (1965).

§ Equations (65) approximately hold for many other doubly symmetric cross sections.
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Figure 4.29 Interaction curve for combined bending and axial force in a bar of rectangular cross section.

uniquely defined. Indeed, ξ may take on any value between 1 and ∞ or between
−1 and −∞ at these two points. The slope M0ψ/N0ε of the strain vector therefore
takes on any value between − 1

2 and 1
2 , which correspond to the limiting normals at

the two singular points.
In the solution of special problems, it is often convenient to approximate the

actual interaction curve by a polygon as shown by broken lines in Fig. 4.29. The
coordinates of the vertices B and D are (± 1

2 , 3
4 ), while those of the vertices H and F

are (± 1
2 , − 3

4 ). The normality rule for the strain vector must be retained to preserve the
validity of the principle of maximum plastic work. Thus, the strain vector must have a
slope equal to 2

3 when the stress point is on the side AB, and equal to 2 when the stress
point is on the side BC.At the corner B, the slope of the strain vector may lie between
2
3 and 2, and at the corner A, the slope may have any value less than 2

3 in magnitude.
Similar relations hold for the remaining sides and corners of the yield polygon.

(ii) Limit analysis of arches As in the case of beams, the plastic collapse of arches
can be adequately described in terms of rigid segments joined by yield hinges. Due to
the presence of axial forces, a yield hinge in an arch must permit localized extension
or contraction as well as relative rotation of adjacent cross sections. The mechan-
ical behavior of a yield hinge in an arch can be simplified by using the polygonal
approximation to the interaction curve. Since the polygon nowhere extends beyond
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the actual interaction curve, the collapse load based on this approximation cannot
exceed the true collapse load. It is readily shown that an expansion of the polygon
of Fig. 4.29 by a factor of 17

16 yields a similar octagon which is tangential to the
parabolic boundaries at the points (± 1

4 , ± 15
16 ) and is elsewhere exterior. It follows

that the collapse load obtained from the piecewise linear approximation cannot be
lower than the actual one by more than 6 1

4 percent.†
Consider, as an example, a two-hinged circular arch‡ of radius R, subtending

an angle 2φ0 at its center of curvature, and carrying a single vertical load 2P at
the midspan, Fig. 4.30a. Because of symmetry, the vertical component of the reac-
tion at each support is equal to P. The redundant horizontal reaction is equal to P
cot(φ0 − α), where α is the unknown angle between the resultant reaction F and the
tangent to the arch at its support. The normal force N and the bending moment M
at any section, specified by its angular distance φ from the apex, are

N = −F cos(φ0 − α − φ)

M = FR[cos α − cos(φ0 − α − φ)]
(66)

The most critical sections are those corresponding to φ = 0 and φ = φ0 − α,
where the bending moment has extreme positive and negative values. For sufficiently
large values of φ0, the influence of the bending moment would predominate, and
the magnitude of the normal force would be less than 1

2 N0 throughout the arch.
Consequently, the stress point would be on CD for φ = 0 and on FG for φ = φ0 − α

(Fig. 4.29) at the instant of collapse, satisfying the yield conditions

M

M0
− N

2N0
= 1(φ = 0)

M

M0
+ N

2N0
= −1(φ = φ0 − α) (67)

Substituting from (66) into the above relations, we have a pair of equations for α

and F. Since F = P cosec(φ0 − α) and M0/N0 = h/2, the cross section being assumed
rectangular, the solution may be written as

cos(φ0 − α) = 1 − 2(1 − cos α)

1 − h/4R

PR

M0
= sin(φ0 − α)

1 − cos α + h/4R

(68)

giving the relationship between P and φ0 parametrically through α. The normal force
has its greatest magnitude equal to F when φ = φ0 − α. The validity of the solution
therefore requires F � N0/2, which is equivalent to

P � N0

2
sin(φ0 − α) or cos α � 1 − 3h

4R

† P. G. Hodge, Plastic Analysis of Structures, chap. 7, Krieger Publishing, New York (1981).
‡ The limit analysis of arches has been discussed by E. T. Onat and W. Prager, J. Mech. Phys.

Solids, 1: 77 (1953). See also A. W. Hendry, Civ. Eng., London, 47: 38 (1952); L. K. Stevens, Proc. Inst.
Civ. Eng., 6: 493 (1957). For the elastic-plastic collapse of a ring under opposite forces, see C. Y. Wang,
Mech. Struct. Mach., 18: 59 (1990).
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Figure 4.30 Collapse of a circular arch under a concentrated load. (a) Dimensions and loading;
(b) collapse mechanism.

in view of (68). For somewhat smaller values of α, the yield condition at φ = 0
remains unchanged, but that at φ = φ0 − α corresponds to the side EF of the yield
polygon (Fig. 4.29). When α is sufficiently small, the sides ED and EF of the polygon
become appropriate for φ = 0 and φ = φ0 − α respectively. The yield conditions
therefore become†

2M

3M0
− N

N0
= 1(φ = 0)

2M

3M0
− N

N0
= −1(φ = φ0 − α)

† The analysis for the influence of axial forces is considerably simplified by using the square yield
condition obtained by joining the vertices A, C, E, and G of the yield locus.
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Figure 4.31 The collapse load for a simply supported circular arch as a function of semiangle φ0 and
thickness ratio λ = h/4R.

Using equations (66), and proceeding as before, the solution for this range is
obtained as

cos(φ0 − α) = 1 − 2(1 − cos α)

1 − 3h/4R

PR

M0
=

3
2 sin(φ0 − α)

1 − cos α + 3h/4R

(69)

This solution will be valid so long as the magnitude of N at φ = 0 exceeds N0/2. In
view of (66) and (69), this restriction is equivalent to

P � N0

2
tan(φ0 − α) or cos α � (1 + 3h/4R)2

1 + 9h/4R

The collapse loads given by (68) and (69) are exact for the linearized yield conditions
used in this solution. Figure 4.31 shows the variation of the collapse load with the
arch semiangle φ0 for a number of values of λ = h/4R. When φ0 is sufficiently large,



Chakra-04.tex 13/1/2006 16: 5 Page 299

plastic analysis of beams and frames 299

the influence of normal forces becomes negligible, and the collapse load is closely
approximated by setting h/R � 0. This limiting case is represented by the broken
curve.

The problem can also be analyzed by a kinematical approach based on a col-
lapse mechanism. For the pin-supported arch considered here, three yield hinges
are necessary to transform the structure into a mechanism. At each of the hinges,
there will be a contraction and a rotation as indicated in Fig. 4.30b. The motion of
each half of the mechanism is made up of an outward rotation θ2 − θ1 about the
end support, an inward rotation θ2 about the hinge 2, and contractions δ1 and δ2 at
the hinges 1 and 2 respectively. Considering the effect of each partial motion, the
condition of zero horizontal displacement of the center of the arch may be written
from simple geometry as

a(θ2 − θ1) − (a − y)θ2 + δ1 + δ2 cos(φ0 − α) = 0

We examine the situation where the states of stress in the hinges 1 and 2 correspond
to the sides CD and FG of the yield polygon (Fig. 4.29). In view of the normality
rule and the adopted sign convention, we have

δ1

θ1
= − ε1

ψ1
= c

δ2

θ2
= ε2

ψ2
= c

where (2ε1, 2ψ1) and (ε2, ψ2) denote the unit extension and rotation at the respective
hinges, and c is a constant equal to M0/2N0 = h/4. Inserting these values into the
preceding equation furnishes

θ1

θ2
= y + c cos(φ0 − α)

a − c
= (1 + h/4R) cos(φ0 − α) − cos φ0

1 − cos φ0 − h/4R
(70)

The work done by the applied load is W = 2PV , where V is the downward
displacement of the center of the arch. Referring to Fig. 4.30b, it is easily shown that

V = −l(θ2 − θ1) + (l − x)θ2 + δ2 sin(φ0 − α)

Substituting for the contractions δ1 and δ2, and using the geometry of the arch, it is
easily shown that

V = Rθ2

[(
1 + h

4R

)
sin(φ0 − α) +

(
θ1

θ2
− 1

)
sin φ0

]
(71)

Let (N1, M1) be the normal force and bending moment at section 1, and (N2, M2)
those at section 2, satisfying the yield conditions (67). The specific energy dissipated
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in the yield hinges is

D = 2(N1ε1 + M1ψ1) + 2(N2ε2 + M2ψ2) = 2M0(ψ1 − ψ2)

where the last step follows from (67) and the fact that ε1 = −M0ψ1/2N0 and
ε2 = M0ψ2/2N0. Equating the internal work 2M0(θ1 + θ2) to the external work 2PV,
and using (71) and (70), we finally obtain

PR

M0
= (1 − λ) − 2cos φ0 + (1 + λ)cos(φ0 − α)

(1 + λ)sin α + (1 − λ2)sin(φ0 − α) − (1 − λ)sin φ0
(72)

where λ = h/4R. Equation (72) provides an upper bound on the collapse load for
any assumed value of α. To obtain the exact solution it is necessary to minimize the
right-hand side of (72) with respect to α. The corresponding relationship between
φ0 and α is found to be identical to that given by (68).

If the load is uniformly distributed over the entire span, the same collapse mecha-
nism may be used for carrying out the kinematical analysis. Due to the preponderance
of axial forces, the sides ED and EF of the yield polygon would be appropriate in
this case for a wide range of values of φ0. This means that in equations (70) and (71),
the ratio h/4R must be replaced by 3h/4R. The external work W must be found by
integration, using the fact that the contribution from a typical arch element is pRv cos
φ dφ, where p is the intensity of the vertical load and ν the downward displacement
at an angular distance φ from the apex.

(iii) Stability of columns If a straight column is axially compressed by a gradually
increasing load, failure may occur by buckling sideways when a critical value of
the load is reached. For given material and end conditions, the magnitude of the
critical load depends on the slenderness ratio, which is the ratio of the length of the
column to the least radius of gyration of the cross section. If the slenderness ratio is
sufficiently large, buckling will occur in the elastic range, for which an equilibrium
configuration infinitesimally near to the straight form is possible under the same
axial load. By Euler’s well-known formula, the critical stress for elastic buckling is
inversely proportional to the square of the slenderness ratio.

The elastic buckling theory does not hold for sufficiently short columns for
which the critical stress given by the Euler formula exceeds the stress at the elastic
limit. Due to the bilinear character of the incremental material response in the plastic
range, a point of bifurcation of the equilibrium path is possible before an actual loss
of stability. This means that the column can buckle under an increasing axial load
when the rate of work-hardening of the material is decreased to a critical value. The
smallest value of the load for which such a bifurcation can occur corresponds to no
unloading of the plastic material (Sec. 2.7 (ii)).

The smallest possible buckling load, known as the tangent modulus load, is the
same as that for a linearized solid, which behaves identically to both loading and
unloading with a modulus T equal to the current slope of the actual stress–strain
curve. Considering a straight column of length l, which is pin-jointed at its ends as
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Figure 4.32 Buckling of a straight column. (a) Deflected column; (b, c) stress and strain increments
under constant load.

shown in Fig. 4.32a, the differential equation of deflection for a slightly bent form
of the column under a load P may be written as

d2v

dx2 + Pv

TI
= 0

where I is the least moment of inertia of the cross section and ν the lateral deflection
of any point on the axis. In view of the boundary condition v = 0 at x = 0, the solution
becomes

v = v0 sin

(√
P

TI
x

)

where v0 is the maximum deflection. Since the expression in the parenthesis must be
equal to π/2 when x = l/2, the critical load P and the critical stress σ are given by†

P = π2TI

l2 σ = P

A
= π2T

(r

l

)2
(73)

since I = Ar2 for a cross section of area A and radius of gyration r. The above rela-
tions will hold only when σ exceeds the uniaxial compressive stress Y at the elastic
limit. The validity of (73) therefore requires l/r �π

√
E/Y , the tangent modulus

being taken as E at the elastic limit.

† The tangent modulus formula was first suggested by F. Engesser, Z. Archit. Ingenieurwesen, 35:
455 (1889). It has been established with physical reasonings by F. R. Shanley, J. Aero. Sci., 14: 251
(1947). See also R. Hill and M. J. Sewell, J. Mech. Phys. Solids, 8: 105, 112 (1960). The influence of
cyclic loading has been examined by E. Corona, J. Appl. Mech., 68: 324 (2001).
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The largest possible buckling load is that which remains constant during the
transition from the straight form of equilibrium to a slightly bent form. The induced
normal stress due to bending is compressive on the concave side and tensile on
the convex side. Consider a rectangular cross section of width b and depth 2h as
shown in Fig. 4.32b, and let h1 and h2 denote the distances of the neutral axis from
the concave and convex surfaces respectively. The greatest compressive and tensile
stresses induced by bending are σ1 = Th1/R and σ2 = Eh2/R respectively, where R
is the radius of curvature of the neutral surface. Since the resultant of the bending
stress distribution must vanish for equilibrium, σ1h1 = σ2h2, giving

Th2
1 = Eh2

2 h1 + h2 = 2h

These equations are easily solved for h1 and h2, the result being

h1 = 2h

1 + √
T/E

h2 = 2h

1 + √
E/T

The distribution of the additional stresses gives rise to the bending moment

M = b

3
(σ1h2

1 + σ2h2
2) = b

3R
(Th3

1 + Eh3
2)

Substituting for h1 and h2, and introducing the moment of inertia I = 2
3 bh3 about

the centroidal axis, we obtain

M = 4EI

R

(
1 +

√
E

T

)−2

= EI

R
(74)

where E is the reduced modulus that depends on E and T as well as on the shape of
the cross section. Since M = Pv and 1/R = −d2v/dx2, the differential equation for
buckling is

d2v

dx2 + Pv

EI
= 0

which is identical in form to that for elastic buckling. The critical load and the critical
stress corresponding to the reduced or double modulus theory therefore become†

P = π2EI

l2 σ = π2E
(r

l

)2
(75)

where E is given by (74) when the cross section is rectangular. As the slenderness
ratio decreases from the value π

√
E/Y , the critical stress becomes increasingly lower

than that given by the Euler formula.

† The double modulus formula is due to F. Engesser, Schweizerishe Bauzeitung, 26: 24 (1895),
and Th. von Karman, Phys. Zeitschrift, 9: 136 (1908), Z. Ver. deut. Ing., Forschungsarbeit, 81 (1910).
See also J. Chakrabarty, Applied Plasticity, Chap. 7, Springer-Verlag, New York (2000).
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Figure 4.33 Variation of the critical stress with slenderness ratio for an ideal steel column of square
cross section.

To compute the critical stress for plastic buckling of a column, the variation
of T with σ must be determined from the stress–strain curve of the given material.
Since E is always greater than T , the reduced modulus load must exceed the tangent
modulus load. In Fig. 4.33, the critical stresses given by the tangent and reduced
modulus theories are plotted as functions of the slenderness ratio for a steel bar
of square cross section, the curve corresponding to Euler’s formula being shown
broken. The experimental values of the critical stress are seen to agree better with
the tangent modulus theory, except for very short columns.† The tangent modulus
formula is always used in the design of centrally loaded columns, because it gives
the more conservative estimate of the critical load.‡

† J. A. Van den Broek, Eng. J. (Canada), 28: 772 (1945). See also F. Bleich, Buckling Strength of
Metal Structures, p. 20, McGraw-Hill Book Co., New York (1952).

‡ The buckling of an eccentric column has been considered by M. R. Horne, J.Mech. Phys.
Solids, 4: 104 (1956). The elastic/plastic behavior of beam columns has been discussed by W. F. Chen,
J. Eng. Mech. Div., Proc. ASCE, 96: 421 (1970). The stability of frames in the plastic range has been
investigated by M. R. Horne, Proc. R. Soc., London, A 274: 343 (1963); K. I. Majid and D. Anderson,
Struct. Eng., 46: 357 (1968); R. H. Wood, Struct. Eng. 52: 235, 295, 341 (1974). See also M. R. Horne
and L. J. Morris, Plastic Design of Low Rise Frames, chap. 4, Granada Publishing Limited, London
(1981).
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Figure 4.34 Transversely loaded right-angle bent. (a) Geometry and loading; (b) free-body diagram.

4.8 Limit Analysis of Space Frames

In this section, we shall examine the plastic collapse of plane frames that are loaded
transversely by concentrated forces acting normal to the plane. A typical member
of the frame is then under the action of combined bending and twisting along with
transverse shear. If the influence of shear on the formation of plastic hinges is
disregarded, the yield condition involves only a bending moment M and a twisting
moment T acting at a typical cross section of the frame.

(i) A right-angle bent As a simple example of a space frame, consider a right-
angle bent ACB that lies in a horizontal plane and is built into rigid walls at A and
B, as shown in Fig. 4.34a. The frame carries a concentrated load W at a distance
ξl (0 � ξ � 1) from the joint C, which is strong enough to transmit the necessary
forces and moments.† It follows that the only possible locations of yield hinges in
a collapse mechanism are the points A, B, and D. Referring to the free-body diagram
of Fig. 4.34b, the conditions of moment equilibrium of the portions ACD and DB
are easily obtained as

lRA = TD + MA lξRA = MD − TA l(1 − ξ)RB = MD + MB

Since the resultant vertical force acting at D is equal to W , and the fact that the
torque is continuous across D, we have the additional relations

RA + RB = W TD = TB

The elimination of RA and RB between the preceding relations results in

MD − TA = ξ(MA + TB) (1 − ξ)Wl = (MA + TA) + (MB + TB) (76)

These two equations must be supplemented by the yield condition and flow rule
applied to the three sections A, B, and D, providing a sufficient number of equations
to determine the statical and kinematical variables of the problem.

† The analysis presented here is an extension of one given by J. Heyman, J. Appl. Mech., 18: 159
(1951). See also J. Heyman, Plastic design of Frames, Chap. 2, Cambridge University Press, Cambridge
(1971).
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Let the bending and twisting discontinuities at a typical plastic hinge be denoted
by the angles θ and ψ respectively. By the geometry of the collapse mechanism, the
discontinuities at D are related to those at A and B. The continuity of the vertical
deflection at D furnishes an additional relationship between these variables. The
results are easily shown to be

θD = θB − ψA ψD = θA − ψB θA = ξψA + (1 − ξ)θB (77)

For practical purposes, it is sufficiently accurate to use the circular yield condition
defined by (160), Chap. 3. Denoting the ratio T0/M0 by c, the yield condition and
flow rule may be written as

c2M2 + T2 = c2M2
0

ψ

θ
= T

c2M
(78)

If the ratios ψA/θA and ψB/θB are denoted by α and β respectively, then TA/MA = c2α

and TB/MB = c2β. The yield condition (78) therefore furnishes

MA = M0√
1 + c2α2

TA = c2αM0√
1 + c2α2

α = ψA

θA

MB = M0√
1 + c2β2

TB = c2βM0√
1 + c2β2

β = ψB

θB

(79)

The parameters α and β can be determined from the assumed mode of collapse, and
the associated collapse load then follows on inserting (79) into the second equation
of (76).

For relatively small values of ξ, depending on the value of c, the collapse mode
will involve plastic hinges formed at sections A and B only. Since section D is then
stressed below the yield limit, we have θD = ψD = 01 giving θA = ψA and θB = ψB
in view of (77). Setting α = β = 1 in (79), and using the second equation of (76), the
collapse load for c � 1 is obtained as

Wl

M0
= 2

√
1 + c2

1 − ξ
0 � ξ � 1 − c2

1 + c2 (80)

The upper limit of ξ in (80) for the validity of the solution follows from the yield
inequality c2M2

D + T2
D � c2M2

0 , where TD = TB, and MD is given by the first equa-
tion of (76).

For higher values of ξ, the collapse mechanism involves three yield hinges,
located at sections A, D, and B. Since TD = TB, the formation of a plastic hinge at
D requires MD = MB, implying that the ratio ψ/θ at D is equal to β. It follows then
from (77) that

β = ψD

θD
= θA − βθB

θB − αθA

θB

θA
= 1 − αξ

1 − ξ
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The elimination of θB/θA between these two equations leads to a relationship between
α and β as

β[2 − α(1 + ξ)] = 1 − ξ

Setting MD = MB in the first equation of (76), and using (79), we obtain a second
relationship between α and β. The resulting pair of equations may be written as

ξ + c2α

1 − ξc2β
=

√
1 + c2α2

1 + c2β2 β = 1 − ξ

2 − α(1 + ξ)
(81)

which can be solved simultaneously to determine α and β for any given values of c
and ξ. The collapse load is then evaluated from the expression

Wl

M0
= 1

1 − ξ

{
1 + c2α√
1 + c2α2

+ 1 + c2β√
1 + c2β2

}
1 − c2

1 + c2 � ξ < 1 (82)

which is obtained from (76) and (79). The range of values of ξ for which (82) holds,
evidently increases with increasing values of c. For c > 1, the left-hand side of the
inequality in (82) must be replaced by zero. The solution becomes remarkably simple
in the special case of c = 1. Indeed, the pair of equations for α and β in this case for
a given ξ can be expressed as

(1 − ξ2)(1 − αβ) = 2ξ(α + β) (1 − ξ)(1 − αβ) = 2β(1 − α)

where the first expression is obtained by simply squaring the first equation of (81),
after setting c = 1, while the second expression is merely a rewritten version of the
second equation in (81). The final results for c = 1 therefore become

α = β = 1 − ξ

1 + ξ

Wl

M0
= 2

1 − ξ

√
2

1 + ξ2 0 � ξ < 1 (83)

For other values of c, Eqs. (81) are most conveniently solved by an iterative process,
starting with the initial approximation

c2α � 1 − ξ

1 + ξ
β � (1 − ξ)c2

2c2 − (1 − ξ)
(84)

which exactly satisfies the second equation of (81) for all values of c and which
agrees with (83) when c = 1. A second approximation for α may then be obtained by
using the first equation of (81). The numertial procedure may be continued, using
the two equations of (81) in succession, until the desired accuracy is achieved.

Since the preceding solutions are both statically and kinematically admissible,
the collapse load, defined by (80) and (82) constitute the actual collapse loads over the
appropriate ranges. Figure 4.35 depicts the variation of the dimensionless collapse
load with the position of load application for two selected values of the parameter c.
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Figure 4.35 Dimensionless collapse load for a transversely loaded right-angle bent.

It is interesting to note that the collapse load is fairly insensitive to the value of c,
although the distributions of bending and twisting moments are strongly dependent
on this parameter.†

(ii) Rectangular grillages The plastic collapse of a transversely loaded rectangular
grillage of beams involves the formation of plastic hinges produced by the combined
action of bending and twisting moments. Consider, as an example, a three-square
grillage that carries a vertical load W at each of the nine joints as shown in Fig. 4.36,
the ends of the beams being assumed to be fully clamped against both bending
and twisting.‡ The joints are assumed to be strong enough to transmit bending and
twisting moments without yielding. In general, plastic hinges can form at the ends
of each member, only eight of the possible hinge locations being independent due
to the symmetry of the problem.

When the ratio c = T0/M0 is sufficiently small, the bending action is predomi-
nant, and the mode of collapse then involves plastic hinges at sections 1, 2, 5, and
8 only, as shown in Fig. 4.37a, the broken lines being relevant here over the central
part. The geometry of the collapse mechanism is defined by the angles φ1 and φ2,

† An analysis based on a piecewire linear approximation of the yield condition has been discussed
by S. Sankaranarayanan and P. G. Hodge, J. Mech. Phys. Solids, 7: 22 (1959). See also P. G. Hodge,
Plastic Analysis of structures, Krieger Publishing, New York (1981).

‡ J. Heyman, J. Appl. Mech., 19: 153 (1952). See also J. Heyman, Plastic Design of Frames,
Cambridge University Press, Cambridge (1971).
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which must be equal to each other in order to have identical deflections at the four
nodal points designated by C. The kinematics of the mechanism requires the member
ADC to undergo a torsional rotation of amount φ1 to accommodate the necessary
rotation of joint D about the line AA. The symmetry of the problem requires the
angle of twist to vanish in the members BC and OC. Setting φ1 = φ2 = φ, the bend-
ing discontinuity θ and the twisting discontinuity ψ occurring at the plastic hinges
may be written as

θ1 = θ5 = φ ψ1 = ψ5 = φ θ2 = θ8 = 2φ ψ2 = ψ8 = 0

Since the ratio ψ/θ is unity at sections 1 and 5, and zero at sections 2 and 8, we
have T1 = c2M1, T5 = c2M5, and T2 = T8 = 0. The nonzero bending and twisting
moments therefore become

M1 = M5 = M0√
1 + c2

T1 = T5 = c2M0√
1 + c2

M2 = M8 = M0 (85)

in view of (79). Hence, the total internal energy dissipated at the plastic hinges is

8(M1 + T1)φ + 8(M5 + T5)φ + 4(M2 + M8)(2φ) = 16M0(1 +
√

1 + c2)φ

Since the deflections of the joints D, C, and O are equal to lφ, 2lφ, and 4lφ
respectively, the total external work done by the nine applied loads is

4W (lφ) + 4W (2lφ) + W (4lφ) = 16Wlφ

Equating the external work to the internal dissipation of energy, we obtain the
collapse load as

Wl

M0
= 1 +

√
1 + c2 c � 0.553 (86)

The collapse load (86) is in fact exact for c � 0.553, since the assumed mode of
collapse can then be associated with a statically admissible stress field, which will
be established later.

For relatively large values of c, an improved upper bound can be found by using
a generalized collapse mode involving additional plastic hinges at sections 3 and 4, as
shown in Fig. 4.37b. The mechanism is defined by angles φ1, φ2, and φ3, specifying
the deflected shape of the grillage, as well as an angle φ4 specifying the torsional
rotation of the member AD. The associated bending and twisting discontinuities at
the plastic hinges are easily shown to be

θ1 = φ1 θ2 = φ1 + φ2 θ3 = φ1 − φ2 θ4 = φ1 + φ2 − φ3

θ5 = φ2 θ8 = φ3 ψ1 = φ4 ψ3 = φ4 − φ2 ψ5 = φ3 − φ2

(87)

The remaining discontinuities ψ2, ψ4, and ψ8 are identically zero. Any reasonable
assumption for the ratios of the four defining angles would lead to an upper bound.
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A sufficiently accurate upper bound can be obtained by suppressing the yield
hinge at section 3, implying that θ3 = ψ3 = 0, and giving φ1 = φ2 = φ4 = φ (say).
The associated collapse mechanism is that given by the solid lines in Fig. 4.37a.
Setting φ3 = (1 + k)φ1 where 0 < k � 1, the hinge discontinuities may be written as

θ1 = θ5 = φ θ2 = 2φ θ4 = (1 − k)φ θ8 = (1 + k)φ

ψ1 = φ ψ2 = ψ4 = 0 ψ5 = kφ ψ8 = 0
(88)

The values of the ratio ψ/θ furnish the bending and twisting moments acting at the
plastic hinges, the result being

M1 = M0√
1 + c2

M2 = M4 = M0 M5 = M0√
1 + c2k2

M8 = M0

T1 = c2M0√
1 + c2

T2 = T4 = 0 T5 = c2kM0√
1 + c2k2

T8 = 0

(89)

The plastic energy dissipated at a typical plastic hinge is Mθ + Tψ. Substituting
from (88) and (89), and noting the fact that there are four hinges of each of the types
2, 4, and 8, and eight hinges of each of the types 1 and 5, the total energy dissipated
at these yield hinges is

D = 8(M1 + T1)φ + 8(M5 + kT5)φ + 8M2φ + 4(1 − k)M4φ + 4(1 + k)M8φ

= 8M0(2 +
√

1 + c2 +
√

1 + c2k2)φ

Since the vertical deflections of joints D, C, and O are lφ, 2lφ, and (3 + k)lφ
respectively, the total external work done is equal to (15 + k)Wlφ. Equating this
work to the energy D absorbed in the plastic hinges, we obtain the upper bound

Wl

M0
= 8(2 +

√
1 + c2 +

√
1 + c2k2)

15 + k

Minimizing this upper bound load with respect to k, the best bound is found to be

Wl

M0
= 8c2k√

1 + c2k2

15c2k − 1√
1 + c2k2

= 2 +
√

1 + c2 (90)

When c = 1, the numerical computation furnishes k = 0.3046 and Wl/M0 = 2.331.
The optimum value of k defined by (90) steadily increases as c decreases, reaching
the limiting value of unity when c = √

15/7 ∼= 0.553. The upper bound is therefore
given by (86) for c � 0.553, and by (90) for c � 0.553, the collapse load correspond-
ing to c = 0.553 being given by Wl/M0 = 2.143.

Consider, now, a statical analysis for the yield point state, based on the free body
diagram shown in Fig. 4.38. Using the fact that the reacting forces at each of the
joints is statically equivalent to a vertical load W , we get

2(R1 − R5) = R2 + 2R5 − R8 = 4R8 = W
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Figure 4.38 Free body diagram of a transversely loaded square grid in which each segment is of the
same length l.

In view of these relations, the conditions of equilibrium of the individual members
of the grillage may be expressed as

R2l = M2 + M4 R8l = M8 − M6 = 1

4
Wl

R1l = M1 + M3 = 9

8
Wl − 1

2
(M2 + M4)

R5l = M5 − M7 = 5

8
Wl − 1

2
(M2 + M4)

M3 − M7 = T3 − T7 M4 − M6 = 2T5 T1 = T3 T5 = T7

(91)

Consider the simpler collapse mechanism of Fig. 4.37a, for which the bending and
twisting moments at the yield hinges are given by (85). In this case, all nonzero
twisting moments are equal to one another. Since M3 = M7 by the first equation in
the last row of (91), the remaining equations furnish

M3 = M7 = Wl

4
= M0

4
(1 + √

1 + c2) T3 = T7 = c2M0√
1 + c2

M4 = M0

4

{
3 + 7c2 − 1√

1 + c2

}
M6 = M0

4
(3 −

√
1 + c2)

(92)
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in view of (91). Once the bending moments are known, the vertical reactions follow
from (91). In particular, the support reactions are given by

R1l

M0
= 1

4

(
1 + 5 + c2√

1 + c2

)
R2l

M0
= 1

4

(
7 + 7c2 − 1√

1 + c2

)
(93)

Since the most critical bending moment is M4, the stress distribution will be statically
admissible if M4 � M0 which is equivalent to

7c2 − 1 �
√

1 + c2 or c � 0.553

Using (92), it is easily verified that section 3 is stressed below the yield limit. The
collapse load is therefore exactly given by (86) for relatively small values of c. For
c > 0.553, the load given by (86) is only an upper bound on the collapse load.

The improved upper bound furnished by (90), which applies for c � 0.553,
can be similarly checked by using a statical analysis. It turns out, however, that a
statically admissible stress field cannot be associated with the corresponding collapse
mechanism.We therefore attempt to determine a sufficiently close lower bound using
a statical analysis in which the yield limit is exceeded in certain critical sections when
the load has the upper bound value. Assuming sections 2, 4, and 8 to be at the yield
point state, while allowing the yield condition to be violated in equal proportions at
each of the sections 1, 3, and 5, we set

M2 = M4 = M8 = M0 M1 = M3 c2M2
1 + T2

1 = c2M2
5 + T2

5

the equality of M1 and M3 being dictated by the equilibrium condition T1 = T3. In
view of the above relations, the equilibrium equations of (91) furnish

M1 = M3 = 1

2

(
9

8
Wl − M0

)
M6 = M0 − 1

4
Wl T5 = 1

8
Wl

M5 − M7 = 5

8
Wl − M0 M5 + T1 = 3

2

(
7

8
Wl − M0

)

c2M2
5 − T2

1 = 1

4

{(
9c

2
+ 1

)
Wl

4
− cM0

} {(
9c

2
− 1

)
Wl

4
− cM0

}
(94)

For any given value of c, the last two equations of (94) can be solved simultaneously
to give M5 and T1 in terms of Wl, and M7 then follows from the fourth equation of
(94). In the special case of c = 1, we have

M5 = 1

6

(
37

8
Wl − 5M0

)
T1 = 1

3

(
13

8
Wl − 2M0

)
M7 = 1

6

(
7

8
Wl + M0

)
(95)

The corresponding external reactions are R1 = 2M1/l and R2 = 2M0/l. Using the
upper bound value Wl/M0 = 2.331, the bending and twisting moments at the critical
sections 1 and 5 are found to be

M1 = 0.811M0 T1 = 0.595M0 M5 = 0.963M0 T5 = 0.291M0
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If the yield condition at these sections is violated by a factor λ, then
λ2 = 0.8112 + 0.5952 � 1.012, giving λ = 1.006. Since the stress distribution will be
statically admissible if the load is divided by λ, we obtain the corresponding lower
bound W � 2.317M0/l. The collapse load is therefore bounded by the continued
inequalities

2.317 <
Wl

M0
< 2.331 (c = 1)

The actual collapse load for c = 1 cannot differ significantly from the mean value
W = 2.324M0/l. Similar calculations carried out for c = 0.75 leads to the mean col-
lapse load W = 2.227M0/l, which is only marginally lower than the corresponding
upper bound value given by (90).†

When the grillage is simply supported at the external points A and B, the collapse
load is obtained by merely suppressing the contributions from the plastic hinges at
these points in the same collapse mechanisms as those employed for the built-in
condition. For sufficiently small values of c, the collapse load is therefore exactly
one-half of that given by (86). For higher values of c, exceeding 0.371, an upper
bound on the collapse load for the simply supported grillage is given by (90), where
the right-hand side of the second equation must be replaced by unity. In the special
case of c = 1, the upper bound load for the simply corported grillage is given by
Wl/M0 = 1.062.

Problems

4.1 A uniform beam of length 2l and plastic moment M0 carries a uniformly distributed load W over the
left-hand half, and also a concentrated load W at the midspan. If the beam is built-in at both ends, find
by a statical analysis the value of W corresponding to the plastic collapse. Assuming the cross section
to be rectangular, find the lengths of the plastic zones in the central part and near the loaded end of the
beam at the incipient collapse.

Answer: 8M0/3l, 0.477l, 0.104l.

4.2 A continuous beam rests on three simple supports at A, B, and C, the spans of AB and BC being l
and 1.5l respectively. The member AB has a fully plastic moment M0 and carries a central concentrated
load W . The member BC having a plastic moment αM0 carries a uniformly distributed load W . Using
a statical analysis find the value of α for which plastic collapse would occur simultaneously in the two
spans. Find the length of the plastic zone near the central hinge at the instant of collapse.

Answer: 0.693, 0.085l.

4.3 A propped cantilever of length 2l, plastic moment M0, and flexural rigidity EI, is subjected to a
load W which is uniformly distributed between the center of the beam and the simply supported end.
Carry out a kinematical analysis to determine the value of W that will cause plastic collapse. Assuming
the moment-curvature relationship corresponding to an idealized beam section, find the deflection δ at
the section where the final hinge is formed.

Answer: W = 4.80M0/l, δ = 0.262M0l2/EI .

† For the use of piecewise linear yield condition in the limit analysis of grillages, see P. G. Hodge,
Plastic Analysis of Structures, Krieger Publishing, New York (1981).
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4.4 In a rectangular portal frame ABCD of uniform plastic moment M0, the columns AB and CD are
of heights 2l and l respectively. The base A is rigidly fixed and is lower than the pinned base D so that
the beam BC, of length 2l, is horizontal. The frame is subjected to a vertical load 3W at the center of
the beam and a horizontal load W at C in the direction BC. Determine the upper and lower bounds
associated with each collapse mechanism and hence estimate the true collapse load.

Answer: W = 1.20M0/l.

Figure A Figure B

4.5 The rigid frame shown in Fig.A is of uniform cross section, having a plastic moment M0, and carries a
uniformly distributed vertical load 4W and a concentrated horizontal load W . Illustrate diagrammatically
all the possible modes of collapse, and identify the one that furnishes the best upper bound. Locate the
plastic hinge in the beam to find the collapse value of W in terms of M0 and l.

Answer: W = 1.08M0/l.

4.6 A two-bay fixed-base rectangular frame ABCDEF is designed to have a uniform section of fully
plastic moment M0. The columns AB, CD, and EF are each of height h, while the beams BC and CE are
each of length 2l. A horizontal load H acts at B in the direction BC, and two equal vertical loads V act
at the centers of the beams. Construct an interaction diagram showing the relationship between Hh/M0
and Vl/M0 for all positive values of their ratio. Find the required plastic moment M0 when h = 2l and
V = 2H.

Answer: M0 = 6Hl/11.

4.7 The rigidly jointed frame shown in Fig. B is composed of prismatic members with plastic moment
M0 for the columns and 1.6M0 for the beams. The frame is built-in at the base, and carries concentrated
horizontal and vertical loads as indicated. Using the method of combining mechanisms, determine the
actual mode of collapse and the associated limit load W . Carry out a statical analysis to confirm the
kinematical result.

Answer: W = 1.44M0/l.

4.8 A two-story rectangular frame, fixed at the base, has uniform beams and columns with a constant
plastic moment M0. The frame is subjected to vertical loads W at the centers of the beams, and horizontal
loads 0.9W at the ends of the beams as shown in Fig. C. By considering suitable combinations of the
elementary mechanisms, obtain the collapse mechanism, and hence find the collapse load for the given
frame.

Answer: W = 2.13M0/l.

4.9 The two-story rectangular frame shown in Fig. D has uniformly distributed vertical loads acting
on the beams, and a uniformly distributed horizontal load acting on the left-hand columns. The fully
plastic moments of the various members of the frame are as indicated by circles. It may be assumed
that plastic hinges can occur only at the ends and midpoints of the loaded members. Use the method of
combining mechanisms to estimate the collapse load W in terms of M0 and l.

Answer: W = 10M0/3l.
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Figure C Figure D

4.10 A fixed-base gable frame ABCDE consists of two vertical columns AB and DE, each of length h,
and two equally inclined rafters BC and CD, each having a horizontal span l. The roof is subjected to a
uniformly distributed vertical load W . If the height of the apex above the base is denoted by (1 + λ)h,
show that the frame would collapse when

Wl = 2M0(1 + √
1 + 2λ)2

where M0 is the fully plastic moment of each member of the frame.

4.11 A symmetrical gable frame with fixed feet carries a horizontal load W at the top of a column, and
a vertical load 3W at the midpoint of each rafter. The loading and dimensions of the frame, which is
made of prismatic members with a uniform plastic moment M0, are shown in Fig. E. Neglecting the
influence of axial and shearing forces, determine the collapse mechanism and the associated collapse
load.

Answer: W = 5M0/3l.

4.12 The dimensions and loading of a fixed-base gable frame are shown in Fig. F. All members of the
frame are of uniform cross section having the same plastic moment M0. Estimate an upper bound on the
collapse load W on the assumption that the plastic hinge under the distributed load forms at the midpoint
of the rafter. Carry out a statical analysis for the assumed mode of collapse to obtain the corresponding
lower bound on the collapse load.

Answer: 2.18M0 > Wl > 2.14M0.

4.13 A fixed-ended beam AB of length 3l, having a uniform plastic moment M0 and flexural rigidity
EI, is subjected to a concentrated load W at C, where BC = l. Assuming an ideal beam section, show
that the first plastic hinge forms at B when W = 9M0/4l, the second plastic hinge forms at C when
W = 81M0/28l, and the third plastic hinge forms at A when W = 3M0/l. Show also that the deflection
δ of the loading point at the three instants are 2M0l2/9EI , 8M0l2/21EI , and 2M0l2/3EI respectively.
Use the virtual work method to obtain the results.

4.14 For the continuous beam shown in Fig. 4.2a, having a unit shape factor, show that the first plastic
hinge forms at the central support when W = 28M0/3l, and that the corresponding deflection of the
position of the last plastic hinge is δ = 0.06M0l2/EI . If the beam is completely unloaded from the state
of incipient collapse, show that the residual bending moment at the central support is 0.248M0, while
the residual deflection of the last plastic hinge is 0.014M0l2/EI .
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Figure E Figure F

4.15 Consider the elastic/plastic behavior of the fixed-base rectangular portal frame shown in Fig.
4.13a in the special case when H = V = W and h = l. As the load is gradually increased from zero, show
that plastic hinges are successively formed at sections 5, 4, 3, and 1 when Wl/M0 becomes equal to
2.424, 2.567, 2.957, and 3.0 respectively. If δ denotes the horizontal deflection of section 2, show that
3EIδ/M0l2 attains the values 0.530, 0.637, 0.891, and 1.0 at the instants when these hinges are formed.

4.16 A fixed-base rectangular portal frame, having a height l and span 2l, carries a horizontal load
2W at the top of the left-hand column and a vertical load 3W at the center of the beam. Each column
has a plastic moment M0 and flexural rigidity EI, the corresponding quantities for the beam being 2M0
and 2.5EI respectively. Show that the frame collapses in the combined mechanism when W = 8M0/5l.
Compute the horizontal and vertical defections of the center of the beam at the incipient collapse.

Answer: u = 0.30M0l2/EI , v = 0.293M0l2/EI .

4.17 The two-story rectangular frame shown in Fig. C has a uniform plastic moment M0 and flexural
rigidity EI, and remains statically indeterminate at collapse. Using the equations of equilibrium and
compatibility, find the bending moment distribution and the hinge rotations at the instant of collapse.
Hence obtain the horizontal deflection of the center of the lower beam at the point of plastic collapse.

Answer: δ = 1.362M0l2/EI .

4.18. The horizontal and vertical loads acting on the two-bay rectangular frame of Prob. 4.6 are taken as
H = W and V = 2W . All the members are of uniform cross section with plastic moment M0 and flexural
rigidity EI. Using the virtual work method, determine the hinge rotations at the instant of collapse when
h = 2l, and estimate the horizontal and vertical components of the displacement of the center of the
left-hand beam at the incipient collapse.

Answer: u = 1.78M0l2/EI , v = 1.72M0l2/EI .

4.19 A uniform beam AB of length l and plastic moment M0 is built-in at both ends and carries a
concentrated load W which rolls back and forth along the beam. Show that the elastic bending moments
in the beam when the load acts at a point C, distance λl from A, are

MA = −Wlλ(1 − λ)2 MB = −Wlλ2(1 − λ) MC = 2Wlλ2(1 − λ)2

Hence show that the beam will collapse incrementally under repeated passage of the rolling load when
Wl = 7.32M0.

4.20 A uniform continuous beam ABC, having a length 2l and plastic moment M0, is simply supported at
the points A, B, and C, the two spans AB and BC being of equal lengths. Concentrated vertical load P and
Q act at the midpoints of AB and BC respectively, and vary independently in the ranges 0 � P � W , and
0 � Q � nW , where n is a positive constant less than unity. Show that the intensity of W required for incre-
mental collapse is (1 + 3

16 n)−1 times that for static collapse under maximum values of the applied loads.
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4.21 A pinned-base rectangular portal frame, whose dimensions and loading are shown in Fig. G, has
a uniform section with plastic moment M0. The applied loads H and V can vary independently within
the ranges 0 � H � H0 and 0 � V � V0. Show that the relationship between H0 and V0 for incremental
collapse is identical to that for static collapse when

V0

H0
� 2h

l

(
3l + h

3l + 2h

)

Note that the beam mechanism is not critical in this case for incremental collapse over the whole range
of values of V0/H0.

Figure G Figure H

4.22 In the rectangular portal frame shown in Fig. 4.17a, let the length of the columns be decreased
from 2l to l, the same plastic moment M0 being taken for all the members. Show that the elastic bending
moments due to the simultaneous action of the horizontal load H and the vertical load V are

M1 = − 5
16 Hl + 1

10 Vl M2 = 3
16 Hl − 1

5 Vl M3 = 3
10 Vl

M4 = − 3
16 Hl − 1

5 Vl M5 = 5
16 Hl + 1

10 Vl

If the loads vary independently within the ranges 0 � H � W and 0 � V � 2W , find the value of W that
corresponds to the shakedown limit, assuming a unit shape factor.

Answer: W = 1.83M0/l.

4.23 The two-bay rectangular frame shown in Fig. H has a uniform section throughout with a fully
plastic moment M0. The loads P, Q, and H vary independently between the prescribed limits

0 � P � 2W 0 � Q � 2W 0 � H � W

The elastic bending moments at the cardinal sections due to a unit load replacing P, and Q = H = 0, are
given by

sec. 1 2 3 4 5 6 7 8 9 10

2M/l 0.117 −0.281 0.637 −0.445 0.265 −0.180 −0.075 0.031 0.008 −0.156

Using the virtual work method, find the elastic bending moments due to a unit value of H , and compute
the greatest value of W that can be permitted without causing incremental collapse.

Answer: W = 1.64M0/l.
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4.24 A continuous beam ABC, which is simply supported at A, B, and C, carries concentrated vertical
loads 2W and W at the centers of the spans AB and BC respectively. The fully plastic moments of
the members AB and BC, each having a length l, are denoted by M1 and M2 respectively. Using the
linearized weight function and the graphical procedure, show that M1 = 5Wl/12 and M2 = Wl/6 for
minimum weight consumption of the beam.

4.25 A three-span beam ABCD of length 3l rests on four equidistant simple supports at A, B, C, and
D. A load 2W is uniformly distributed over the central span BC, and a load W is uniformly distributed
over each of the two outer spans AB and CD. The beam is designed to have plastic moment M1 for the
outer spans and M2 for the central span. Assuming the linearized theory, find the values of M1 and M2
corresponding to the minimum weight.

Answer: M1 = 0.086Wl, M2 = 0.164Wl.

4.26 In a fixed-base rectangular frame ABCD, the columns AB and DC are of equal length 3l, and the
beam BC is of length 4l. The frame carries a horizontal load W at B in the direction BC, and a vertical
load 2W at the center of the beam. The columns are required to have a plastic moment M1 which differs
from the plastic moment M2 of the beam. Using the geometrical method, find the values of M1 and M2
in the minimum weight design of the frame.

Answer: M1 = M2 = 7Wl/6.

4.27 In a pinned-base symmetrical gable frame of horizontal span 2l, the columns are each of height
l, and the apex is 1.5l above the base. The plastic moments of the rafters and columns are M1 and
M2 respectively. The frame carries a horizontal load W at the top of each column, and a vertical
load nW at the apex. Show that the minimum weight design of the frame requires M1 = M2 = Wl
for 0 � n � 2, and M1 = M2 = (n + 3)Wl/5 for n � 2, if the horizontal loads are directed in the same
sense.

4.28 The built-in rectangular portal frame shown in Fig. H is to be designed for minimum weight when
the applied loads are P = 2W , Q = 3W , and H = W . The columns are required to have a common plastic
moment M1 and the beams to have a common plastic moment M2. Considering the possible collapse
mechanisms with a single degree of freedom, and using the graphical method of solution, determine the
values of M1 and M2 in terms of W and l.

Answer: M1 = 0.40Wl, M2 = 0.87Wl.

4.29 Suppose that the rectangular frame of the preceding problem is designed to have fully plastic
moments M2 and M3 for the left-hand and right-hand beams respectively. The columns still have a
plastic moment M1, and the load ratios are the same as before. Starting with a reasonable assumption
for the relative values of the plastic moments, and choosing three possible collapse mechanisms at a
time to define the vertex of the design space, obtain the correct solution to the minimum weight problem.

Answer: M1 = Wl/3, M2 = 10Wl/9, M3 = 7Wl/9.

4.30 A two-span beam ABC of length 2l is simply supported at A, B, and C, where B is the midpoint
of AC. The beam is designed for an absolute minimum weight with continuously varying cross section.
Show that the points of contraflexure occur at distances λ1l and λ2l from A and C respectively, where
λ2

1 + λ2
2 = 1. If the beam carries concentrated loads W1 and W2 at the centers of AB and BC respectively,

show that the plastic moment M at the central support is given by

(
1 + M

W1l

)(
1 + M

W2l

)
= W1W2l2

16M2

4.31 In a fixed-base rectangular portal frame ABCDE, the columns AB and DE are of height h, and the
beam BD is of length 2l. The frame is to be designed for an absolute minimum weight under a horizontal
thrust H at B and a vertical load V at the beam center C. If the deformation mode at collapse involves
an inflection in each member with a negative curvature at A, show that the distribution of yield moment
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is given by Mc = 0 and

MB = H

4

(
h − l

2

)
− Vl

2
MD = H

4

(
h − l

2

)
+ Vl

2

MA =
(

2h + l

2h − l

)
MB ME =

(
2h + l

2h − l

)
MD

Find the relationship between H/V and h/l required by the validity of the solution.

4.32 An I section consists of two equal rectangular flanges of width b, and a rectangular web of area
Aw and thickness t. The total area of the section is A and its overall depth is 2h. The section is rendered
fully plastic by the combined action of a bending moment M about the strong axis, and a normal force
N . Show that the interaction curve is given by

M = M0 − Y

(
A2

4t

)
n2 0 � n � Aw

A

M = Y (1 − n)

(
4bh

A
− 1 + n

)
A2

4b

Aw

A
� n � 1

where M0 is the plastic moment in the absence of normal force, and n the ratio of the forces N
and N0.

4.33 A T section consists of a flange of width b and thickness b/8, and a web of depth b and thickness
b/8. A bending moment M is applied about an axis parallel to the flange in the presence of a normal
force. Referring the moment to the equal area axis, and assuming the web tip to be in tension, show that
the interaction relationship is

M = M0(1 − 2
9 n2) 0 � n � 1

M = M0(1 − 16
9 n2) −1 � n � 0

where nY is the mean normal stress, and M0 the plastic moment when n = 0. Draw the complete
interaction diagram for M/M0 against n.

4.34 A pin-supported parabolic arch of uniform plastic moment M0 carries a concentrated vertical load
P at a quarter point as shown in Fig. I. The collapse mechanism involves a yield hinge at the point of
load application, and a yield hinge at a horizontal distance ξl from the vertex. Neglecting the influence
of axial forces on the yield condition, find the value of ξ that minimizes the upper bound, and hence
compute the collapse load.

Answer: ξ = 0.379, P = 7.85M0/l.

Figure I Figure J

4.35 The dimensions of a parabolic arch, having a uniform cross section with plastic moment M0, are
those shown in Fig. J. The arch is built-in at both ends and is subjected to equal vertical loads P at
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horizontal distances l from the vertex. Neglecting the effect of the axial forces, find the value of P
at collapse in terms of M0 and l. If the cross section is rectangular with a depth equal to 0.05l, what
would be the collapse load when the normal force effect is taken into account? Assume a square yield
condition, obtained by joining the vertices N = ±N0 and M = ±M0 of the interaction diagram.

Answer: Pl = 8.0M0, 7.65M0.

4.36 A two-hinged circular arch of radius R and angular span 2φ0 carries a uniformly distributed vertical
load p per unit length of the span. Due to the preponderance of axial forces, the condition |N | > 1

2 N0
is satisfied throughout the arch. Assuming plastic hinge rotations of amounts 2θ1 and θ2 to occur at
sections φ = 0 and φ = φ0 − α respectively during collapse, show that

pR2

3M0
=

(
1 + θ1

θ2

){(
θ1

θ2
− 1

)
sin2φ0 +

(
1 + 3h

2R

)
sin2(φ0 − α)

}−1

according to the linearized yield condition of Fig. 4.29. Compute the value of α that minimizes w when
φ0 = 45◦ and R = 30h, and determine the total vertical load P at collapse.

Answer: α � 8◦, P = 67.9M0/R.

4.37 The circular arch of the preceding problem carries a uniformly distributed load p per unit span
over its left-hand half only. The collapse mechanism involves a sagging hinge 1 under the load, and
a hogging hinge 2 in the right-hand half, at angular distances α and β respectively from the apex. If
ω denotes the rotation of the leftmost segment of the arch, and (θ1, θ2) are the rotations at the plastic
hinges, show that according to the linearized yield condition,

pR2

2M0
=

(
1 + θ2

θ1

){
ω

θ1
sin2φ0 −

(
1 − h

2R

)
sin2α

}−1

Assuming φ0 = π/4, β = π/8, and neglecting the influence of normal forces, find the value of α that
minimizes p for collapse, and estimate the corresponding upper bound.

Answer: α � 11.5◦, p = 33.1M0/R2.

4.38 The frame shown in Fig. K lies in the horizontal plane and carries a concentrated vertical load W
at C. All the members have a uniform thin-walled box section with fully plastic moment M0. The yield
hinges formed at the built-in ends during collapse undergo rotations ψ and θ in bending and torsion
respectively. Find the ratio θ/ψ associated with the interaction relation M2 + 3

4 T2 = M2
0 for the bending

and twisting couples, and hence estimate the load W for plastic collapse.
Answer: θ/ψ = 0.324, W = 1.87M0/l.

Figure K

4.39 The frame of the preceding problem is subjected to a vertical load W on BD at a distance 2l
from B, instead of at the center C. The ratios of the twisting to bending discontinuities occurring at the
plastic hinges formed at A and E are denoted by x and y respectively. Considering the equilibrium of
the portions EDF and ABF of the frame, where F is the point of load application, show that

y = 2x

1 + 3x

3 + 8y√
3 + 4y2

= 6 − 4x√
3 + 4x2
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Compute the values of x and y satisfying these equations, and hence estimate the collapse load.
Answer: x = 0.228, y = 0.271, W = 1.92M0/l.

4.40 Figure L shows a uniform right angle bent ABD, which lies in a horizontal plane and carries
a single vertical load W at C. The frame collapses by the formation of yield hinges at A, C, and
D, the interaction relationship between the bending moment M and the twisting moment T being
M2 + 3

4 T2 = M2
0 . Denoting the ratios of the twisting to bending discontinuities at A and D by x and y

respectively, show that

y = 1

4 − 3x

6 − 4y√
3 + 4y2

= 3 + 8x√
3 + 4x2

Compute the values of x and y, and determine the collapse load from the conditions of overall
equilibrium of the frame.

Answer: x = 0.211, y = 0.297, W = 5.13M0/l.

Figure L

4.41 A straight vertical column of length l is pin-supported at its ends, and is loaded by an axial load
at the top. The column has a uniform rectangular cross section with a depth 2h. The stress–strain curve
of the material beyond the elastic limit may be represented by the equation

ε = σ

E

[
1 + 0.3

(
σ

σ0

)3
]

where σ0 is a nominal yield stress equal to E/903. Calculate the critical values of σ/σ0 according to the
tangent and reduced modulus theories when l/h = 28.

Answer: σ/σ0 = 1.21, 1.48.

4.42 An initially straight column of length l is held vertical by fixing the lower end to a rigid foundation,
and is subjected to a vertical load P on a line of symmetry of the upper end at a distance e from the
centroid. The plastic buckling load may be approximately estimated by locating the point of intersection
of the purely elastic and rigid/plastic load-deflection curves, neglecting work hardening. For a rectangular
cross section of depth 2h, show that the critical load is given by

h

2e

(
P0

P
− P

P0

)
= sec

(
l

h

√
3PY

P0E

)

where P0 is the yield point load in pure compression. Compute the value of P/P0 when E/Y = 900,
l/h = 30, and e/h = 2.

Answer: P/P0 = 0.18.

4.43 A square grillage of the type shown in Fig. 4.36 consists of four prismatic beams in each direction.
Each beam is of length 5l, and is fully clamped at both ends. The grillage carries a load W at each
of the sixteen joints in a direction normal to the plane of the grillage. Assuming a simplified collapse
mechanism similar to Fig. 4.37(a), and using the yield condition M2 + T2 = M2

0 and its associated flow
rule, determine the upper bound load W at the point of plastic collapse.

Answer: W = 1.517M0/l (k = 1).
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4.44 Consider a rectangular grillage, consisting of three beams of length 5l each in one direction and
four beams of length 4l each in the perpendicular direction. The grillage is fully clamped, and is loaded
to the point of plastic collapse by the application of a concentrated transverse load W at each of the
12 joints. Using the simplified collapse mechanism of the type shown in Fig. 4.37a, and adopting the
circular yield condition M2 + T2 = 1, estimate the best upper bound value of W . Assume the twisting
discontinuities at the inner plastic hinges to be identical in both the pairs of the outer beams.

Answer: W = 1.943 M0/l (k = 1).

4.45 Referring to the frame considered in Prob. 4.22, let the range of the horizontal loading be modified
to −0.5W < H < W , and estimate the corresponding value of W for incremental collapse. Suppose that
the frame is subjected to a large number of the prescribed loading cycles with W equal to that for the
incremental collapse. There will be one cross section in the frame where a plastic hinge forms in the final
collapse mechanism, but no hinge rotation occurs prior to the instant of collapse. Determine the central
deflection δ of the beam in terms of the plastic moment M0, if the frame is completely unloaded just
before the point of collapse.

Answer: W = 1.753 M0/l, δ = 0.149 M0l2/EI .

4.46 An elliptical link having a plastic moment M0 is reinforced by a rigid stud placed along the minor
axis of length 2b, and is pulled outward by two equal and opposite forces of magnitude P applied at the
ends of the major axis of length 2a. Neglecting the effect of the normal forces, determine the value of
P for which plastic collapse will occur. Find also the modified value of the collapse load when the stud
is absent, the influence of the normal forces again being disregarded.

Answer: P = 9.657 M0/b, P = 4 M0/b.
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CHAPTER

FIVE
FURTHER SOLUTIONS OF

ELASTOPLASTIC PROBLEMS

In this chapter, we shall be mainly concerned with problems where the stress distri-
bution is either axially or spherically symmetrical. A number of important problems,
such as the determination of stresses and strains in thick-walled pressure vessels and
rotating discs, are of this type. The axisymmetric problem is comparatively more
difficult in principle, since there are three independent stress components, even
when the stresses are assumed to vary only in the radial direction. Since the direc-
tions of the principal stresses are known in advance, considerable simplifications
are achieved by using Tresca’s yield criterion and its associated flow rule. When
the Prandtl-Reuss theory is adopted, a suitable numerical method must be used for
the integration of the basic equations. For a work-hardening material, use of the
Hencky theory is sometimes legitimate for a range of loading paths, and provides
a great deal of mathematical simplicity. In general, the solution of the elastic/plastic
problem requires a powerful numerical method, such as the finite element method
described in the concluding section of this chapter.

5.1 Expansion of a Thick Spherical Shell

(i) Elastic analysis A thick-walled spherical shell, whose internal and external radii
are a and b respectively, is subjected to uniform internal pressure p of gradually
increasing magnitude. It is convenient to use spherical polar coordinates (r, θ, φ),
where θ is the angle made by the radius vector with a fixed axis, and φ is the angle
measured round this axis. By virtue of the spherical symmetry, σθ = σφ everywhere
in the shell, and the stresses at any given stage are functions of r only satisfying the

323
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equilibrium equation

∂σr

∂r
= 2

r
(σθ − σr) (1)

For sufficiently small values of the pressure, the deformation of the shell is purely
elastic. If the radial displacement is denoted by u, the stress–strain relations for the
elastic shell may be written as

εr = ∂u

∂r
= 1

E
(σr − 2νσθ)

εθ = εφ = u

r
= 1

E
[(1 − ν)σθ − νσr]

(2)

Eliminating u from the above equations, and substituting for σθ − σr from the
equilibrium equation, we obtain

∂

∂r
(σr + 2σθ) = 0

which is the equation of strain compatibility expressed in stresses. This shows that
σr + 2σθ is independent of r. Writing σr + 2σθ = 3A, the equilibrium equation (1)
can be integrated by eliminating σθ or σr . This leads to the solution†

σr = A + B

r3 σθ = A − B

2r3

where B is also independent of r. Employing the boundary conditions σr = 0 at r = b
and σr = −p at r = a, we get

A = p

b3/a3 − 1
B = −pb3

b3/a3 − 1

The stresses in the elastic shell, which are due to Lamé, therefore become

σr = −p(b3/r3 − 1)

b3/a3 − 1
σθ = σφ = p(b3/2r3 + 1)

b3/a3 − 1
(3)

Thus σr is compressive and σθ tensile throughout the shell. The stress–strain relation
(2) corresponding to εθ then gives

u = p

E

(1 − 2ν)r + (1 + ν)(b3/2r2)

b3/a3 − 1
(4)

If the internal pressure is increased to a critical value pe, plastic yielding begins at
the radius where the yield criterion is first satisfied. Since σθ = σφ, the Tresca and
Mises criteria both reduce to

σθ − σr = Y (5)

† This solution is due to G. Lamé, Leçons sur la théorie de l’élasticité, Paris (1852).
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It follows from (3) that σθ − σr has the greatest value at r = a. Hence yielding will
begin at the inner radius when the pressure becomes

pe = 2Y

3

(
1 − a3

b3

)
(6)

The radial displacement of the internal surface at this stage is

ua = Ya

3E

{
(1 + ν) + 2(1 − 2ν)

a3

b3

}

If the shell is subjected to both internal and external pressures, it can be shown that
yielding still begins at the internal surface when the difference of the two pressures
is equal to pe given by (6). For a very thick tube, pe is approximately 2Y/3.

(ii) Elastic/plastic shell With further increase in the internal pressure, the plastic
zone spreads outward and the elastic/plastic boundary is a spherical surface at each
stage, Fig. 5.1. In the elastic region, the stress equation is integrated as before, but
the boundary condition at r = a is replaced by the yield criterion (5) which must be
satisfied on the plastic boundary. Denoting the radius to this boundary by c, we get

σr = −2Yc3

3b3

(
b3

r3 − 1

)
σθ = 2Yc3

3b3

(
b3

2r3 + 1

)
c � r � b (7)

The radial displacement in the elastic region is found as

u = 2Yc3

3Eb3

{
(1 − 2ν)r + (1 + ν)

b3

2r2

}
c � r � b (8)

Figure 5.1 Geometry and plastic yielding in the expansion of a thick-walled spherical shell by internal
pressure. (a) Loaded shell; (b) elastic and plastic domains.
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In the plastic region, the stresses are required to satisfy the equilibrium equation (1),
and the yield criterion (5), provided there is no strain-hardening.† Since the stresses
must be continuous across the plastic boundary r = c, we obtain

σr = −2Y

3

(
1 − c3

b3 + ln
c3

r3

)

σθ = 2Y

3

(
1

2
+ c3

b3 − ln
c3

r3

) a � r � c (9)

The magnitude of the radial stress steadily decreases from r = a to r = b. The cir-
cumferential stress, on the other hand, has the greatest value on the elastic/plastic
boundary. Setting r = a in the expression for σr in (9), the internal pressure is found
to be‡

p = 2Y

3

(
1 − c3

b3 + ln
c3

a3

)
(10)

If the wall ratio b/a is not too large (less than about 3), the strains in the plastic region
are restricted to small values by the surrounding elastic material. The variation of
the internal radius of the tube may then be neglected for calculating the pressure.
Figure 5.2 shows the stress distribution in a shell of wall ratio 2.

Consider now the displacement of the elastic/plastic shell. For small strains, the
equation of elastic compressibility may be expressed as

∂u

∂r
+ 2u

r
= 1 − 2ν

E
(σr + 2σθ)

Substituting the expressions for the stresses from (9), we obtain the differential
equation for the displacement in the plastic region as

∂

∂r
(r2u) = 2(1 − 2ν)

r2Y

E

(
c3

b3 − ln
c3

r3

)

Since the displacement on the plastic boundary r = c is known from (8), integration
of the above equation results in

u

r
= Y

E

{
(1 − ν)

c3

r3 − 2

3
(1 − 2ν)

(
1 − c3

b3 + ln
c3

r3

)}
a � r � c (11)

The shell becomes completely plastic when c = b; the internal pressure at this stage
attains the value p0 = 2Y ln(b/a) and the corresponding displacement of the internal
surface is

ua = Ya

E

{
(1 − ν)

b3

a3 − 2(1 − 2ν) ln
b

a

}

† Work-hardening can be included in the analysis in a straightforward manner assuming a linear
stress–strain law. See P. Chadwick, Int. J. Mech. Sci., 5: 65 (1963).

‡ A. Reuss, Z. angew. Math. Mech., 10: 266 (1930).
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Figure 5.2 Stress distribution in a thick spherical shell of wall ratio 2.0, expanded by internal pressure
in the plastic range.
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It follows from (10) that the internal pressure attains a maximum when c = b. The
pressure during the subsequent expansion steadily decreases as the change in geom-
etry becomes significant. When the material strain-hardens to a sufficient degree,
the maximum pressure occurs after some fully plastic expansion has taken place.
The expansion of the shell following the pressure maximum is unstable and leads to
an eventual bursting.

If the shell is unloaded from the elastic/plastic state, it will be left with residual
stresses. When p/pe is not too large, the unloading process is purely elastic, and the
residual stresses are obtained by subtracting (3) from (7) and (9). The results are

σr = −2Y

3

(
c3

a3 − p

pe

)(
a3

r3 − a3

b3

)

σθ = 2Y

3

(
c3

a3 − p

pe

)(
a3

2r3 + a3

b3

) c � r � b (12)

σr = −2Y

3

[
p

pe

(
1 − a3

r3

)
− ln

r3

a3

]

σθ = Y − 2Y

3

[
p

pe

(
1 + a3

2r3

)
− ln

r3

a3

] a � r � c (13)

where p/pe is given by (6) and (10), and is found to be less than c3/a3. The elastic
recovery of the shell produces a circumferential compression over the inner part of
the previous plastic region. The assumption of elastic unloading will be justified if
the magnitude of σr − σθ nowhere exceeds the yield stress Y . The greatest magnitude
of σr − σθ occurs at r = a, where the stress difference is Y ( p/pe − 1), giving

p � 2pe

as the condition for validity of (12) and (13). When this is satisfied, a reapplication of
pressure less than that at the instant of unloading deforms the shell only elastically.
Evidently, a secondary yielding cannot occur in an unloaded shell for which the
fully plastic pressure p0 is less than 2pe. The limiting wall ratio is therefore given
by the equation

ln
b

a
= 2

3

(
1 − a3

b3

)

whose solution is b/a = 1.70. For higher values of the wall ratio, a new plastic
annulus will be formed around the inner surface due to secondary yielding when the
pressure is released from a value lying between 2pe and p0.

(iii) Solution for large strains When the shell is very thick, large strains will occur
in the plastic region. The internal pressure is still given by (10), where a represents
the current internal radius of the shell. This radius must be determined for a given
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initial radius a0. The total principal strains in the plastic region, whatever their
magnitude, may be written as

εr = −ln

(
∂r0

∂r

)
εθ = εφ = ln

(
r

r0

)
(14)

where r0 is the initial radius to an element which is currently at a radius r. The
equation of elastic compressibility may be written with sufficient accuracy, noting
the fact that (σr + 2σθ)/E � 1. Thus

(r0

r

)2 ∂r0

∂r
= 1 − 1 − 2ν

E
(σr + 2σθ)

Using the equilibrium equation (1), the above equation can be expressed in the form

r2
0
∂r0

∂r
= r2 − 1 − 2ν

E

∂

∂r
(r3σr)

which holds throughout the shell. Integration of this equation gives

(r0

r

)3 = 1 − 3(1 − 2ν)
σr

E
+ D

c3

r3

where D is a constant of integration. On the external surface of the shell, σr vanishes
and the boundary condition is

r0 = b

[
1 − (1 − ν)

Yc3

Eb3

]
r = b

in view of (8). This gives D = −3(1 − ν)Y/E. Substituting for σr from (9), we finally
obtain (r0

r

)3 = 1 − 3(1 − ν)
Yc3

Er3 + 2(1 − 2ν)
Y

E

(
1 − c3

b3 + ln
c3

r3

)
(15)

The relationship between the initial and final radii of the internal surface may be
written in the compact form

(a0

a

)3 = 1 − 3(1 − ν)
Yc3

Ea3 + 3(1 − 2ν)
p

E

The dimensionless pressure p/Y and the dimensionless internal displacement
a/a0 − 1 are plotted against c/b in Fig. 5.3 for two different b/a0 ratios. The
broken curves indicate how the pressure is overestimated if geometry changes are
disregarded. When the material is incompressible (ν= 0.5), we have

r3 − r3
0 = a3 − a3

0 = 3Y

2E
c3 (16)
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Figure 5.3 Variation of internal pressure and internal displacement with position of the plastic boundary.
The broken curves are based on neglect of geometry changes.

This result can be directly obtained by considering the constancy of volume of the
material between the internal surface and a generic surface in the elastic region,
where the displacement is given by (8).

Each element of the shell is subjected to a uniaxial compression in the radial
direction, together with a superimposed hydrostatic tension equal to σθ . Since no
strain is produced by a hydrostatic stress when the compressibility is zero, the yield
criterion for an incompressible strain-hardening material may be written as

σθ − σr = F(−εr) = F

(
2 ln

r

r0

)

where the function F defines the uniaxial stress–strain curve with F(Y/E) = Y .
Inserting in the equilibrium equation (1) and integrating, we get

p = 2

3
Y

(
1 − c3

b3

)
+ 2
∫ c

a
F

(
2 ln

r

r0

)
dr

r
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In view of the incompressibility relation (16), the above equation can be expressed as

p = 2

3
Y

(
1 − c3

b3

)
+ 2

3

∫ 1−a3
0/a

3

3Y/2E
F

[
−2

3
ln(1 − x)

]
dx

x
(17)

where x = (a3 − a3
0)/r3. For a given function F, the pressure can be calculated

numerically for any assumed value of a/a0. If the wall ratio b/a0 is sufficiently
large, the internal pressure will attain a maximum while the shell is still partly
plastic. Differentiating (17) with respect to a and observing that

dc

da
= 2E

3Y

a2

c2

the condition at the pressure maximum, which corresponds to the plastic instability,
may be written as

2Eρ3(ρ3 − 1)

3F(2 ln ρ)
= b3

a3
0

ρ = a

a0
(18)

This equation is easily solved graphically for any given stress–strain curve to obtain
the value of a/a0 at instability. For a nonhardening material (F = Y ), the solution is

(
a

a0

)3
= 1

2

{
1 +
√

1 + 6Yb3

Ea3
0

}

For a work-hardening material, there is a limiting wall ratio for which the pressure
attains a maximum when the shell just becomes fully plastic (c = b). Since the fully
plastic stage corresponds to ρ3 − 1 = (3Y/2E)(b3/a3

0) in view of (16), the limiting
wall ratio is given by

F

{
2

3
ln

(
1 + 3Y

2E

b3

a3
0

)}
= Y

(
1 + 3Y

2E

b3

a3
0

)
(19)

It follows from (19) that the limiting wall ratio corresponds to the point on the stress–
strain curve where the stress is equal to Y exp

( 3
2ε
)
, the argument of F in (19) being

then equal to ε. When the wall ratio is smaller than the limiting ratio, the internal
pressure attains a maximum after the shell becomes completely plastic. In that
case, the elastic strains are negligible throughout the shell, and the material may be
regarded as rigid/plastic.†

† Numerical results based on the simple power law for the stress–strain curve have been presented
by N. L. Svensson, J. Appl. Mech., 25: 89 (1958). For a bifurcation analysis, see H. Strifors and
B. Storakers, J. Mech. Phys. Solids, 21: 125 (1973). See also Y. Tomita and A. Shindo, Int. J. Mech.
Sci., 23: 723 (1981).
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(iv) Spherical cavity in an infinite medium The preceding solution for large
elastic/plastic expansion of a finite shell is immediately applicable to the expansion
of a spherical cavity in an infinitely extended medium. Thus, for a nonhardening
material, the ratio of the initial and final cavity radii is given by (15) as(a0

a

)3 = 1 − 3(1 − ν)
Yc3

Ea3 + 2(1 − 2ν)
Y

E

(
1 + 3 ln

c

a

)
With continued cavity expansion, c/a progressively increases and a0/a correspond-
ingly decreases. For very large expansions, c/a becomes approximately constant,
the limiting value being

c

a
=
[

E

3(1 − ν)Y

]1/3
(20a)

which holds even when the material work-hardens. The corresponding value of the
cavity pressure is

p = 2Y

3

{
1 + ln

E

3(1 − ν)Y

}
(20b)

These limiting values are the same as those for the expansion of a cavity from zero
radius (a0 = 0). For normal prestrained metals, c/a lies between 5 and 6, while p is
about 4Y .

For an incompressible material (ν= 0.5), the internal pressure, when the mate-
rial work-hardens, is directly obtained from (17). When the cavity is expanded from
zero radius, (17) reduces to

p = 2

3

{
Y +
∫ 1

3Y/2E
F

[
−2

3
ln(1 − x)

]
dx

x

}
(21)

where x = a3/r3. The argument of the function is infinite at the upper limit x = 1, the
strain at the cavity surface being infinitely large. However, the integral converges
because F tends to a constant value at very large strains. Integrating by parts, (21)
may be written as

p = 2

3
Y

(
1 + ln

2E

3Y

)
− 4

9

∫ 1

3Y/2E
F ′
[
−2

3
ln(1 − x)

]
ln x dx

1 − x

The strain-hardening curve may be approximated by a straight line of slope F ′ = T .
It is also sufficiently accurate to take the lower limit of the integral as zero. The
pressure is then obtained in the closed form†

p = 2

3
Y

(
1 + ln

2E

3Y

)
+ 2

27
π2T (22)

† R. Hill, The Mathematical Theory of Plasticity, p. 104, Clarendon Press, Oxford (1950). For
residual stresses due to unloading, see P. Chadwick, Q. J. Mech. Appl. Math., 12: 52 (1959).
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This is also the limiting pressure for expanding a cavity from a finite internal radius.
The expansion pressure (22) is quite sensitive to the rate of hardening of the material.
For example, when E/Y = 300 and T = Y , the pressure is 49.3Y , which is about 17.5
percent higher than the value 4.2Y for a nonhardening material having the same E/Y
ratio. The theoretical value of p provides an estimate of the steady state pressure in
the deep penetration of a smooth punch into a quasi-infinite medium.†

5.2 Expansion of a Thick-Walled Tube

(i) Elastic expansion and initial yielding An important practical problem arises
in the expansion of a thick-walled cylindrical tube under an internal pressure p
and a longitudinal force P. The internal and external radii of the tube are a and b
respectively. In the autofrettage process, the tube is either closed at both ends by
rigid plugs, or provided with floating pistons which allow free axial contractions.
The tube is assumed so large that plane transverse sections remain plane during the
expansion. This means that the longitudinal strain εz is independent of the radius to
the element. The stresses and strains sufficiently far from the ends do not vary along
the length of the tube, and the equation of equilibrium is

∂σr

∂r
= σθ − σr

r
(23)

The z axis of the cylindrical coordinates (r, θ, z) is taken along the axis of the
tube. While the tube is entirely elastic, the longitudinal stress may be written from
Hooke’s law as

σz = Eεz + ν(σr + σθ) (24)

where E isYoung’s modulus and ν Poisson’s ratio. Denoting the radial displacement
by u, the radial strain εr and the circumferential strain εθ may be written as

εr = ∂u

∂r
= −νεz + 1 + ν

E
[(1 − ν)σr − νσθ]

εθ = u

r
= −νεz + 1 + ν

E
[(1 − ν)σθ − νσr]

(25)

Since εz is independent of r, the elimination of u from the above equations, and the
substitution for σθ − σr from (23), leads to the compatibility equation

∂

∂r
(σr + σθ) = 0

It follows that σr + σθ and σz have constant values at each stage of the elastic
expansion. Writing σr + σθ = 2A, the equilibrium equation can be integrated to

† H. G. Hopkins, Progress in Solid Mechanics (Eds. I. N. Sneddon and R. Hill), 1, Chap. 3,
North-Holland, Groningen (1960). See also D. Durban and M. Baruch, J. Appl. Mech., 43: 633 (1976).
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obtain Lamé’s solution

σr = A + B

r2 σθ = A − B

r2

where A and B are constants, obtained from the boundary conditions σr = 0 at r = b
and σr = −p at r = a. The stresses therefore become

σr = −p

(
b2/r2 − 1

b2/a2 − 1

)
σθ = p

(
b2/r2 + 1

b2/a2 − 1

)
(26)

If the resultant longitudinal load is denoted by P, the axial stress σz is P/π(b2 − a2),
since this stress is constant over the cross section. In particular, P = 0 for the open-
end condition and P =πa2p for the closed-end condition. The plane strain condition
(εz = 0), sometimes considered for its simplicity, givesσz directly from (24) and (26).
Hence

σz =




p

b2/a2 − 1
closed-end

0 open-end
2νp

b2/a2 − 1
plane strain

(27)

The radial displacement is obtained from the stress–strain equation for εθ . Substi-
tuting from (26) and (27), we get

u = p

E

αr + (1 + ν)b2/r

b2/a2 − 1
(28)

where α has the value 1 − 2ν for the closed-end condition, 1 − ν for the open-
end condition and (1 + ν)(1 − 2ν) for the plane strain condition. The axial strain is
obtained from (24) and (27) as

Eεz =




(1 − 2ν)p

b2/a2 − 1
closed-end

0 plane strain

− 2νp

b2/a2 − 1
open-end

(29)

In all the three cases, σz is the intermediate principal stress. For the closed-end
condition, σz is exactly the mean of the other two principal stresses. If Tresca’s yield
criterion is adopted, the onset of yielding is given by σθ − σr = 2k, where k is the
yield stress in pure shear. It follows from (26) that

σθ − σr = 2pb2/r2

b2/a2 − 1
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which shows that the stress difference has its greatest magnitude at r = a. Hence
yielding begins at the inner radius when the applied pressure becomes

pe = k

(
1 − a2

b2

)
(30)

irrespective of the end condition. If, on the other hand, the material yields according
to the von Mises criterion, the end condition affects the yield pressure. It is convenient
to express the Mises criterion in the form

1

2
(σθ − σr)2 + 2

3

(
σz − σr + σθ

2

)2
= 2k2

Since the second term on the left-hand side is independent of r, the yield function
again has the greatest value at r = a, and the pressure pe that causes yielding at r = a
is given by (

b2pe

b2 − a2

)2
+ 1

3

(
σz − a2pe

b2 − a2

)2
= k2

The substitution from (27) shows that pe is identical to (30) for the closed-end
condition, the yield pressure for the other two end conditions being

pe = k

(
1 − a2

b2

){
1 + (1 − 2β)2 a4

3b4

}−1/2

(31)

where β= 0 for open-ends and β= ν for plane strain. The values of pe for the three
end conditions differ marginally from one another for usual values of ν, the lowest
pressure being that corresponding to open ends.

When a uniform pressure p is applied externally to a thick-walled tube of wall
ratio b/a, the elastic distribution of σr and σθ is obtained from (26) by interchanging
a and b. In this case, both the stresses are negative, σθ being more compressive than
σr . Tresca’s criterion requires σθ = −2k at r = a for yielding to begin, and the initial
yield pressure pe is found to be the same as (30). If a thick-walled tube, which is
already under an external pressure p2< pe, is subjected to a gradually increasing
internal pressure p1, the magnitude of σθ − σr at any radius decreases when p1< p2
and increases when p1> p2. Yielding begins at the internal surface when p1 exceeds
p2 by an amount equal to pe. The elastic stress distribution in such a tube is obtained
by the superposition of those due to p1 and p2 acting separately at r = a and r = b
respectively.†

(ii) Elastic/plastic expansion When the internal pressure exceeds pe, a plastic zone
spreads from the inner radius, the elastic/plastic boundary at any stage being of

† Compound tubes have been discussed by W. R. D. Manning, Engineering, 163: 349 (1947), and
by B. Crossland and D. J. Burns, Proc. Inst. Mech. Eng., 175: 1083 (1961).
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radius c. In the elastic region (c� r� b), the radial and circumferential stresses are
obtained from Lamé’s equations, using the boundary condition σr = 0 at r = b, and
the fact that the material at r = c is stressed to the yield point. Adopting Tresca’s
yield criterion in the form σθ − σr = 2k, the stress distribution in the elastic region
is easily shown to be

σr = −kc2

b2

(
b2

r2 − 1

)
σθ = kc2

b2

(
b2

r2 + 1

)

σz = −Eεz + 2νk
c2

b2

c � r � b (32)

where εz depends on the end condition and cannot be determined unless the plastic
region is considered, except in the case of plane strain where εz is zero. The radial
displacement in the elastic region is obtained from (25) and (32) as

u = −νrεz + (1 + ν)
kc2

Eb2

{
(1 − 2ν)r + b2

r

}
c � r � b (33)

It is assumed that σz continues to be the intermediate principal stress everywhere in
the plastic region. Tresca’s yield criterion then furnishes the equation

σθ − σr = 2k a � r � c

where the material is assumed as nonhardening. Inserting in the equilibrium equation
(23) and integrating, we get

σr = −k

(
1 − c2

b2 + ln
c2

r2

)

σθ = k

(
1 + c2

b2 + ln
c2

r2

) a � r � c (34)

on using the continuity of σr across r = c. The expressions for σr and σθ are thus
independent of the end condition. The internal pressure is†

p = k

(
1 − c2

b2 + ln
c2

a2

)
(35)

The distribution of σr and σθ is shown in Fig. 5.4 for b/a = 2. The magnitude of σr
steadily decreases with the radius, while σθ has its greatest value at the elastic/plastic
boundary. Assuming Tresca’s associated flow rule, the plastic strain increments may
be written as

dεp
θ = −dεp

r > 0 dεp
z = 0

† L. B. Turner, Trans. Camb. Phil. Soc., 21: 377 (1909), Engineering, 92: 115 (1911). The same
solution applies to an annular disc for all values of p� 2k.
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Figure 5.4 Distribution of radial and circumferential stresses in an elastic/plastic thick-walled tube
subjected to internal pressure.

Since the plastic part of εz is zero, the axial strain is entirely elastic, which means
that (24) holds in both elastic and plastic regions. Hence

σz = Eεz + 2νk

(
c2

b2 − ln
c2

r2

)
a � r � c

Solutions based on the Prandtl-Reuss theory indicate that σz approaches the mean
of the other two principal stresses with increasing expansion when εz = 0.

To determine the axial strain εz for a given end condition, it is necessary to
consider the equation of longitudinal equilibrium. The resultant longitudinal force
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acting in the tube is

P = 2π
∫ b

a
rσzdr = πEεz(b

2 − a2) + 2πν
∫ b

a
r(σr + σθ) dr

in view of (24). Since r(σr + σθ) = ∂(r2σr)/∂r by the equilibrium equation (23), we
obtain

P = π[(b2 − a2)Eεz + 2νa2p]

on using the boundary conditions for σr . It follows that εz is given by (29) even when
the tube is partly plastic. The plane strain condition coincides with the closed-end
condition only when the material is incompressible.

When the wall ratio is less than about 5, the strains in the plastic region are small
so long as the tube remains partly plastic, and positional changes may therefore be
disregarded. Since εp

r + εp
θ = 0 in view of the integrated form of the associated flow

rule, we have

εr + εθ = εe
r + εe

θ = 1

E
{(1 − ν)(σr + σθ) − 2νσz}

Substituting for σz from (24), and using the equilibrium equation (23), the above
equation may be written as

∂u

∂r
+ u

r
= −2νεz + 1 − 2ν

2Gr

∂

∂r
(r2σr)

where G is the shear modulus. It is important to note that this differential equation
holds in both elastic and plastic regions. The equation is readily integrated and the
constant of integration determined by comparison with (33) at r = b, where σr = 0.
This gives

u

r
= −νεz + (1 − ν)

kc2

Gr2 + (1 − 2ν)
σr

2G
(36)

which holds throughout the tube. From (29), (34), and (36), the displacement in the
plastic region (a� r� c) may be found for any given end condition. In particular,
the displacement at the inner radius for the closed-ended tube is

ua = (1 − ν)
kc2

Ga
− (1 − 2ν)

pa

2G

{
1 + ν

1 + ν

(
b2

a2 − 1

)−1
}

where p is given by (35). Similar expressions may be written down for the other
two end conditions. An important feature of the plane strain condition (εz = 0) is
that the solution for any wall ratio b/a also furnishes the solutions for all lesser
wall ratios. This is physically evident from the fact that the stress and strain in an
outer annulus of the tube depend only on the radial pressure transmitted across the
common interface, regardless of the agency through which this pressure is applied.
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The analysis has been based on the assumption that σz is the intermediate prin-
cipal stress throughout the plastic region. In view of (24), the condition σr � σz� σθ
is equivalent to

σr � Eεz + ν(σr + σθ) � σθ

Using the yield criterion σθ − σr = 2k, the inequalities may be written as

(1 − 2ν)σr � Eεz + 2νk Eεz − (1 − 2ν)σr � 2k(1 − ν)

The first inequality is identically satisfied, since the right-hand side of this inequality
is always positive in view of (29). The second inequality will be satisfied for all the
end conditions if

Eεz + (1 − 2ν)p � 2k(1 − ν)

Substituting from (29), the condition for validity of the solution may be
expressed as†

p

2k
�




1 − ν

1 − 2ν

(
1 − a2

b2

)
closed-end

1 − ν

1 − 2ν
plane strain

(1 − ν)(1 − a2/b2)

1 − 2ν − a2/b2 open-end

(37)

The range of wall ratios for which the solution would be valid for all elastic/plastic
expansions is obtained by setting p/2k = ln(b/a). When ν= 0.3, the limiting wall
ratio is found to be 6.19 for the closed-end condition, 5.75 for the plane-strain
condition, and 5.43 for the open-end condition. For still higher values of b/a, the
solution will be valid so long as the internal pressure does not exceed the critical
value given by (37). When the critical pressure is reached, σz becomes equal to σθ
at the internal surface of the tube. An extension of the solution to higher pressures,
without taking geometry changes into account, can hardly be considered as realistic.

(iii) Prandtl-Reuss theory for plane strain When the material yields according to
the von Mises criterion, none of the stress components in the plastic region can be
determined without recourse to the displacement. Under conditions of plane strain,
the radial pressure q across the elastic/plastic boundary r = c is given by the right-
hand side of (31) with β= ν and a replaced by c. The stresses and displacement in
the elastic region are evidently given by (26) and (28) with q and c written for p and

† W. T. Koiter, Biezeno Anniversary Volume, Starn, Haarlem, p. 232 (1953).
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a respectively. Consequently

σr = −kN

(
b2

r2 − 1

)
σθ = kN

(
b2

r2 + 1

)
σz = 2kνN

εr = kN

2G

(
1 − 2ν − b2

r2

)
εθ = kN

2G

(
1 − 2ν + b2

r2

) c � r � b (38)

where N is a dimensionless parameter given by

N =
[

1

3
(1 − 2ν)2 + b4

c4

]−1/2

In view of the plane strain condition, the hydrostatic strain is equal to (εr + εθ)/3
throughout the tube. If sr and sθ denote the radial and circumferential components
of the deviatoric stress, then

σr = sr + K(εr + εθ) σθ = sθ + K(εr + εθ) σz = −(sr + sθ) + K(εr + εθ)

in both the elastic and plastic regions, where K is the bulk modulus equal to
E/3(1 − 2ν). The deviatoric stress in the plastic region must satisfy the von Mises
yield criterion

s2
r + srsθ + s2

θ = k2 or sθ = 1

2

(
−sr +

√
4k2 − 3s2

r

)

Two of the basic equations necessary for the solution of the elastic/plastic problem
is the strain compatibility equation

∂εθ

∂r
= εr − εθ

r
(39)

obtained by eliminating u between the strain-displacement relations εr = ∂u/∂r and
εθ = u/r, and the stress equilibrium equation (23) which becomes

∂sr

∂r
+ K

∂

∂r
(εr + εθ) = 1

2r

(
−3sr +

√
4k2 − 3s2

r

)
a � r � c (40)

Since the deviatoric principal strains are (2εr − εθ)/3 and (2εθ − εr)/3, the Prandtl-
Reuss equations for small strains may be written as

2

3
G
∂

∂c
(2εr − εθ) = ∂sr

∂c
+ 2Gλ̇sr

2

2
G
∂

∂c
(2εθ − εr) = ∂sθ

∂c
+ 2Gλ̇sθ

for λ̇ is a positive scalar. The elimination of λ̇ between the above relations furnishes

sθ
∂sr

∂c
− sr

∂sθ
∂c

= 2

3
G

[
(2sθ + sr)

∂εr

∂c
− (2sr + sθ)

∂εθ

∂c

]
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Multiplying this relation by 2sθ + sr , and using the yield criterion, the differential
equation is easily reduced to

∂sr

∂c
= G

{(
4

3
− s2

r

k2

)
∂εr

∂c
−
(

2

3
+ srsθ

k2

)
∂εθ

∂c

}
a � r � c (41)

Equations (39), (40), and (41) must be solved for εr , εθ , and sr in the domain
a� r� c and b� c� a, the values of these quantities on the boundary r = c being
obtained from (38). The solution can be carried out numerically by expressing the
equations in the finite difference form, and starting from the elastic/plastic boundary
at each stage of the expansion.†

The radial and circumferential stresses predicted by the Prandtl-Reuss theory,
for any given position of the elastic/plastic boundary, are found to be in extremely
close agreement with those given by the Tresca theory on the basis of the shear yield
stress k. However, the distributions of the axial stress in the two solutions differ
appreciably from one another, as indicated by the graphical presentation in Fig. 5.5
which corresponds to ν= 0.3 and b/a = 2. Since the axial stress is relatively small
compared to the other two stresses, the divergence is not important from the practical
point of view. The radial displacements at the external and internal surfaces of the
tube are plotted against c/a in Fig. 5.6, which shows the closeness of agreement
between the two solutions.‡

(iv) Residual stresses Suppose that a thick-walled tube which is rendered partially
plastic by the application of an internal pressure p is completely unloaded by releas-
ing the pressure. For sufficiently small values of p, the unloading process is fully
elastic. The residual stresses are then obtained by subtracting (26) from (32) and
(34), if Tresca’s yield criterion is adopted, the result being

σr = −k

(
c2

a2 − p

pe

)(
a2

r2 − a2

b2

)

σθ = k

(
c2

a2 − p

pe

)(
a2

r2 + a2

b2

) c � r � b (42)

† The plane strain solution has been discussed by P. G. Hodge, Jr., and G. N. White, J. Appl. Mech.,
17: 180 (1950). The closed- and open-end conditions have been treated by P. V. Marcal, Int. J. Mech.
Sci., 7: 229 and 841 (1965). Numerical solutions based on Tresca’s yield criterion and the Prandtl-Reuss
stress–strain equations are presented by R. Hill, E. H. Lee, and S. J. Tupper, Proc. R. Soc., A, 191: 278
(1947), and Proc. First U.S. Nat. Congr. Appl. Mech., 561 (1951).

‡ Solutions based on the Hencky equations have been given by D. N. de G.Allen and D. G. Sopwith,
Proc. R. Soc., A., 205: 69 (1951) using the Tresca criterion, and by C. W. MacGregor, C. F. Coffin, and
J. C. Fisher, J. Franklin Inst., 26: 245 (1948) using the von Mises yield criterion. Solutions based on
ν= 0.5 have been given byA. Nadai, Theory of Flow and Fracture of Solids, Chaps. 30–32, McGraw-Hill
Book Co., New York (1950). See also M. C. Steele, J. Appl. Mech., 19: 133 (1952).



Chakra-05.tex 26/12/2005 12: 57 Page 342

342 theory of plasticity

Figure 5.5 Distribution of axial stress in an elastic/plastic thick-walled tube under plane strain condition
(ν= 0.3).

σr = −k

[
p

pe

(
1 − a2

r2

)
− ln

r2

a2

]

σθ = −k

[
p

pe

(
1 − a2

r2

)
−
(

2 + ln
r2

a2

)] a � r � c (43)

in view of (30) and (35). It follows that the residual σr is everywhere compressive
with the maximum numerical value occurring at a radius r = a

√
p/pe, which is less

than c. The residual σθ is tensile in the outer part and compressive in the inner part
of the tube, vanishing at a radius between r = a and r = c. Since the axial strain is
purely elastic according to Tresca’s associated flow rule, it is completely removed
on unloading, giving the residual axial stress

σz = ν(σr + σθ)

The residual σz is compressive within a radius r = a exp[ 1
2 (p/pe − 1)], which is

also less than c. To check the validity of the assumption of elastic unloading, it is
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Figure 5.6 Internal and external surface displacements during the elastic/plastic expansion of a tube in
plane strain (ν= 0.3).

necessary to examine the magnitude of σθ − σr . From (42) and (43), we get

σθ − σr = 2k
a2

r2

(
c2

a2 − p

pe

)
c � r � b

σθ − σr = 2k

(
1 − pa2

per2

)
a � r � c

The stress differenceσθ − σr has its greatest magnitude on the internal surface, where
yielding will restart if p = 2pe, a possible Bauschinger effect being disregarded. The
smallest wall ratio for which the secondary yielding can occur on unloading is
given by

ln
b

a
= 1 − a2

b2

which is obtained by setting p = p0 = 2k ln(b/a). Hence, the critical wall ratio is
b/a 
 2.22, and the corresponding fully plastic pressure is p0 
 1.59k. For p� 2pe,
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a subsequent reloading of the tube by an internal pressure less than p results only in
elastic changes in strain, whatever the wall ratio. The tube is therefore strengthened
by an initial overstrain, the process of achieving this being known as autofrettage. It
follows from above that a nonhardening tube cannot be strengthened in this way by
more than a factor of two. Figure 5.7 shows the residual stresses in a thick-walled
tube of wall ratio 2.0, when c/a = 1.4 and ν= 0.3.

When b/a> 2.22 and 2pe� p� p0, yielding occurs in the reversed sense within
a radiusρ< c on complete unloading from the elastic/plastic state. The residual stress
distribution is a result of superposition of an additional stress system, denoted by
primes, on that produced by the loading. Since σθ − σr changes from 2k to −2k in
each element of the region a� ρ� c during the process of unloading, σ′

θ − σ′
r in

this region must be equal to −4k. In the remainder of the tube, only elastic changes
in stress are involved. By analogy with (32) and (34), the primed stresses may be
written as

σ′
r = 2k

ρ2

b2

(
b2

r2 − 1

)
σ′
θ = −2k

ρ2

b2

(
b2

r2 + 1

)
ρ � r � b

σ′
r = 2k

(
1 − ρ2

b2 + ln
ρ2

r2

)
σ′
θ = −2k

(
1 + ρ2

b2 − ln
ρ2

r2

)
a � r � ρ

Figure 5.7 Distribution of residual stresses in a thick-walled tube (b/a = 2) unloaded from an
elastic/plastic state.
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The residual σr and σθ are obtained by adding the above stresses to those given by
(32) and (34). The radius ρ is determined from the boundary condition σ′

r = p at
r = a, the relationship between c and ρ being

2

(
ρ2

b2 − ln
ρ2

ac

)
− c2

b2 = 1 (44)

For example, when b/a = 4 and c = b, we find ρ/a 
 1.28. The residual hoop stress
decreases from −2k at r = a to −2.49k at r = ρ, and then steadily increases to
1.59k at r = b. The absence of a continuous cycle of plastic deformation, known
as shakedown, is important for avoiding failure of pressure vessels by incremental
collapse.† The shakedown condition for a thick-walled tube, which is repeatedly
loaded and unloaded, is that the internal pressure must be less than p0 when
b/a� 2.22, and less than 2pe when b/a� 2.22.

(v) Influence of work-hardening When the material work-hardens, Tresca’s yield
criterion may be written as σθ − σr = σ, where σ is the current yield stress in uniaxial
tension or compression. It is assumed that σ depends only on the total plastic work
per unit volume of any given element. Since dεp

r = −dεp
θ and dεp

z = 0 according
to the flow rule, the increment of plastic work per unit volume is (σθ − σr)dεp

θ =
σdεp

θ . It follows that σ is the same function of εp
θ as the stress is of the plastic strain

in uniaxial tension. The yield criterion therefore becomes

σθ − σr = σ = F(εp
θ ) a � r � c

where the function F defines the uniaxial stress-plastic strain curve. The total hoop
strain is still given by (36), where k is half the initial yield stress Y in simple tension.
Subtracting from (36) the elastic hoop strain given by the second equation of (25),
we get

ε
p
θ = (1 − ν2)

(
Yc2

Er2 − σ

E

)
= −εp

r a � r � c (45)

in view of the yield criterion. Differentiating (45) with respect to r, and eliminating
Yc2/Er2 by means of (45), we get

∂ε
p
θ

∂r
= −2

r

{
ε

p
θ + (1 − ν2)σ/E

1 + (1 − ν2)H/E

}

† The design of high-pressure containers has been discussed by T. E. Davidson and D. P. Kendall,
Mechanical Behavior of Materials under Pressure (Ed. H. Ll. D. Pugh), p. 54, Elsevier, Amsterdam
(1970).
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where H = F ′(εp
θ ). The last equation can be used to change the independent variable

of (23) from r to εp
θ . The integration of the resulting stress equation then furnishes†

p = Y

2

(
1 − c2

b2

)
+ 1

2

∫ ε p
0

0

{
1 + (1 − ν2)H/E

ε
p
θ + (1 − ν2)σ/E

}
σ dεp

θ (46)

where εp
0 denotes εp

θ at r = a. The integral on the right-hand side of (46) can be
evaluated numerically for any assumed value of εp

0 Since the corresponding value of
c2/a2 is obtained from (45), the pressure can be calculated from (46) in a straight-
forward manner.

An explicit solution can be found in the case of linear work-hardening where H
has a constant value. Then

σ = Y + Hεp
θ

which can be used to eliminate εp
θ from (45). The yield criterion therefore becomes

σθ − σr = Y

[
1 + (1 − ν2)

Hc2

Er2

]/[
1 + (1 − ν2)

H

E

]

Inserting in (23), the radial and circumferential stresses in the plastic region
(a� r� c) are obtained as[

1 + (1 − ν2)
H

E

]
σr = −Y

2

{
1 − c2

b2 + ln
c2

r2 + (1 − ν2)
H

E

(
c2

r2 − c2

b2

)}
[

1 + (1 − ν2)
H

E

]
σθ = Y

2

{
1 + c2

b2 − ln
c2

r2 + (1 − ν2)
H

E

(
c2

r2 + c2

b2

)} (47)

in view of the continuity of σr across r = c. The axial stress σz for the appropriate
end condition then follows from (24) and (29). The internal pressure for the work-
hardening tube exceeds that of the nonhardening tube by the amount

�p = Y

2

(
c2

a2 − ln
c2

a2 − 1

)/(
1 + E/H

1 − ν2

)
(48)

The effect of work-hardening is therefore to increase the magnitude of the stresses
in the plastic region for a given radius to the elastic/plastic boundary. The internal
pressure steadily increases during the elastic/plastic expansion without attaining a
maximum. The assumption that σz is the intermediate principal stress can be shown
to be valid for somewhat larger wall ratios than those for no hardening.‡Yielding will

† D. R. Bland, J. Mech. Phys. Solids, 4: 209 (1956). Useful theoretical and experimental results
on work-hardening tubes have been reported by B. Crossland and J. A. Bones, Proc. Inst. Mech. Eng.,
172: 777 (1958). See also G. J. Franklin and J. L. M. Morrison, ibid., 174: 947 (1960).

‡ The plastic collapse of a thick-walled tube under combined torsion and internal pressure has been
investigated by B. Crossland and R. Hill, J. Mech. Phys. Solids, 2: 27 (1953).
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not restart at the bore on unloading from an elastic/plastic state so long as the ratio
p/pe is less than 2σ0/Y , where σ0 is the yield stress at r = a. The pressure-expansion
curves for H = 0 and H = 0.1E are plotted in Fig. 5.8 assuming b/a = 2.

(vi) Solution for large strains When the wall ratio is sufficiently large, it is nec-
essary to consider geometry changes to calculate the strains in the plastic region. A
drastic simplification is achieved if we assume that the material is incompressible
(ν= 0.5). The closed-end condition then coincides with the plane-strain condition
with an axial stress

σz = 1
2 (σr + σθ)

The stresses in the elastic region are still given by (32), where r is the current radius
to the element, the initial radius being denoted by r0. If a0 and a denote the initial and
current values of the internal radius of the tube, the constancy of volumes requires
r2 − r2

0 = a2 − a2
0. For an element in the elastic region, the left-hand side of this

equation is 2ru to the usual order of approximation, where u is expressed by (33)
with ν= 0.5 and εz = 0. Thus

r2 − r2
0 = a2 − a2

0 
 3k

E
c2 (49)

Figure 5.8 Pressure-expansion curves for a closed-ended tube with and without work-hardening, when
b/a = 2 and ν= 0.3.
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which gives the relationship between the initial and current radii to any element for
a given position of the elastic/plastic boundary.

The von Mises yield criterion coincides with the Tresca criterion with k equal to
Y/

√
3, when the axial stress is the mean of the other two principal stresses satisfying

the end condition. For a work-hardening material with ν= 0.5, the Mises criterion
may be written as

σθ − σr = 2√
3

F

(
2√
3

ln
r

r0

)
a � r � c

where the function F defines the uniaxial stress–strain curve expressed by the equa-
tion σ= F(ε). Evidently, F(Y/E) = Y . Inserting in the equilibrium equation and
integrating, we get

p = Y√
3

(
1 − c2

b2

)
+ 2√

3

∫ c

a
F

(
2√
3

ln
r

r0

)
dr

r

Using the incompressibility condition (49), the above equation is reduced to

p = Y√
3

(
1 − c2

b2

)
+ 1√

3

∫ 1−a2
0/a

2

√
3Y/E

F

[
− 1√

3
ln(1 − x)

]
dx

x
(50)

where x = (a2 − a2
0)/r2. The integral may be evaluated numerically for any given

internal expansion specified by the ratio a0/a. If the tube is sufficiently thick, the
internal pressure attains a maximum while the tube is still partly plastic, and the sub-
sequent expansion takes place under decreasing pressure. Differentiating (50) with
respect to a and noting that dc/da = (E/

√
3 Y )(a/c) in view of (49), the condition

for plastic instability marked by the pressure maximum may be written as†

Eρ2(ρ2 − 1)√
3 F( ln ρ2/

√
3)

= b2

a2
0

ρ = a

a0
(51)

If the left-hand side of the above equation is plotted againstρ2, the onset of instability
corresponds to the point on the curve where the ordinate equals the square of the wall
ratio. The maximum pressure can then be found from (50) by numerical integration.
For a non-hardening material, F = Y , and the solution of (51) becomes

(
a

a0

)2
= 1

2


1 +
(

1 + 4
√

3
Yb2

Ea2
0

)1/2


For a work-hardening material, there is a limiting wall ratio for which the pressure
attains a maximum when the tube is just fully plastic (c = b). Since at this stage

† J. Chakrabarty and J. M. Alexander, Int. J. Mech. Sci., 11: 175 (1969). A bifurcation analysis has
been carried out by B. Storakers, J. Mech. Phys. Solids, 19: 339 (1971).
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ρ2 = 1 + √
3 Yb2/Ea2

0, the limiting wall ratio is given by

F

{
1√
3

ln

(
1 +

√
3 Yb2

Ea2
0

)}
= Y

(
1 +

√
3 Yb2

Ea2
0

)
(52)

which is obtained on substitution in (51). The above equation indicates that the
limiting wall ratio is directly obtained from the stress–strain curve σ= F(ε) by
finding its intersection with the curve for Y exp(

√
3 ε) against ε. The ordinate of the

point of intersection is then equal to the right-hand side of (52).
When the wall ratio is smaller than the limiting value given by (52), the pressure

attains a maximum some time after the tube is fully plastic. The change in the external
radius of the tube then becomes significant. Denoting the initial and final values of
this radius by b0 and b respectively, the incompressibility condition may be written as

r2 − r2
0 = a2 − a2

0 = b2 − b2
0

The yield criterion in this case holds throughout the tube, and the equilibrium
equation gives

p = 2√
3

∫ b

a
F

(
2√
3

ln
r

r0

)
dr

r
= 1√

3

∫ 1−a2
0/a

2

1−b2
0/b

2
F

[
− 1√

3
ln(1 − x)

]
dx

x
(53)

Differentiating (53) with respect to a, noting that db/da = a/b, and setting
dp/da = 0, we obtain the condition of plastic instability in the form

a2
0

a2 F

(
1√
3

ln
a2

a2
0

)
= b2

0

b2 F

(
1√
3

ln
b2

b2
0

)

Expressing b2/b2
0 in terms of a2/a2

0 from the incompressibility condition, the above
equation may be written in the more convenient form

φ(ρ2 − I) = φ

{
a2

0

b2
0

(ρ2 − 1)

}

φ(x) = F[ ln(1 + x)/
√

3]

1 + x

(54)

The function φ(x) may be plotted against x for any given function F. The curve
will always have a maximum as shown in Fig. 5.9. If a pair of points A and B are
located on the curve at the same vertical height such that CB/CA = b2

0/a
2
0, then in

view of (54),

CB = ρ2 − 1 CA = a2
0

b2
0

(
ρ2 − 1

)
The quantities CA and CB directly furnish the instability strains, since the hoop
strain at the inner radius is 1

2 ln(1 + CB) and that at the outer radius is 1
2 ln(1 + CA).
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Figure 5.9 Graphical representation of the fully plastic instability condition in a thick-walled tube.

When a/a0 and b/b0 are thus known, the maximum or bursting pressure may be
calculated from (53). When the wall ratio has the limiting value given by (52),
the point A coincides with A0 whose abscissa is

√
3Y/E and which corresponds to

the yield point of the stress–strain curve. For wall ratios appreciably smaller than the
limiting value, it would be sufficiently accurate to neglect the elastic strain, which
amounts to the assumption that the material of the tube is rigid/plastic.†

(vii) Cylindrical cavity in an infinite medium An interesting situation involving
large plastic strains arises in the expansion of a cylindrical cavity in an infinitely
extended medium (b = ∞). In the elastic region, σr + σθ and σz are both zero, while
in the plastic region, σz rapidly approaches the mean of the other two principal
stresses. It is therefore a good approximation to take σz = 1

2 (σr + σθ) throughout the
tube, and write the compressibility equation in the form

∂v

∂r
+ v

r
= 3

2E
(1 − 2ν) (σ̇r + σ̇θ)

where v is the radial velocity, and the dot denotes rate of change following the parti-
cle, taking c as the time scale. If the material is nonhardening and yields according
to the von Mises criterion, σr and σθ are given by (34) with b = ∞ and k replaced

† Large elastic/plastic expansions have also been investigated by D. Durban, J. Appl. Mech., 46:
228 (1979); E. B. Tadmor and D. Durban, J. Pressure Vessel Tech., Trans. ASME, 117: 85 (1995).
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by Y/
√

3. The above equation then becomes

∂v

∂r
+ v

r
= −√

3(1 − 2ν)
2Y

Ec

on neglecting a term of order Y/E in comparison with unity. Since
v= 2(1 + ν)Y/√3 E on r = c in view of (33), integration of the above equation
results in

v = −√
3(1 − 2ν)

Yr

2Ec
+ (5 − 4ν)

Yc√
3 Er

a � r � c (55)

The velocity is therefore a function of the ratio r/c only. Since v= dr/dc and
d(r/c) = (r/c)(dr/r − dc/c), Eq. (55) can be rewritten in the form

dr

r
=

√
3(1 − 2ν)Y/E − (5 − 4ν)Yc2/

√
3 Er2

1 + √
3(1 − 2ν)Y/E − (5 − 4ν)Yc2/

√
3 Er2

c

r
d
( r

c

)

which can be integrated under the initial conditions r/c = 1 and r/r0 = 1 + (1 + ν)Y/√
3 E, when an element first becomes plastic. Using the same order of approximation

as introduced above, we obtain

(r0

r

)2 = 1 + √
3(1 − 2ν)

Y

E
− (5 − 4ν)

Yc2

√
3 Er2

a � r � c (56)

The ratio of the initial and final radii of the cavity is given by

(a0

a

)2 = 1 + √
3(1 − 2ν)

Y

E
− (5 − 4ν)

Yc2

√
3 Ea2

As the expansion proceeds, the second term on the right-hand side soon becomes
negligible. For very large expansions, a2

0/a
2 is vanishingly small and we have

c

a


[ √

3E

(5 − 4ν)Y

]1/2
(57)

This formula may be directly obtained by integrating (55) corresponding to r = a,
with v= da/dc. In view of (35) and (57), the internal pressure approaches the
limiting value

p = Y√
3

{
1 + ln

[ √
3 E

(5 − 4v)Y

]}
(58)

For most prestrained metals, E/Y is of order 250 to 350, while ν is usually between
0.25 and 0.35. Hence c/a lies between 10 and 13, while p is normally in the range
3.3Y to 3.7Y .
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For a work-hardening incompressible material, the cavity pressure is given by
(50) with b = ∞. If the cavity is expanded from zero radius, the upper limit of the
integral in (50) is unity, and the integration by parts results in

p = Y√
3

(
1 + ln

E√
3 Y

)
− 1

3

∫ 1

√
3 Y/E

F ′
[
− 1√

3
ln(1 − x)

]
ln x dx

1 − x

The ratio c/a has the constant value (E/
√

3Y )1/2 throughout the expansion. If a
linear strain-hardening is assumed, F ′ has a constant value T . Taking the lower limit
as zero, we then have the explicit solution†

p = Y√
3

(
1 + ln

E√
3 Y

)
+ π2

18
T (59)

When the cavity is expanded from a finite radius, the pressure rapidly approaches
this value as the expansion proceeds. As in the case of spherical cavity, the expan-
sion pressure (59) is fairly sensitive to the rate of hardening. For example, when
E/Y = 300 and T = Y , the cavity pressure is 4.10Y , compared to 3.55Y for a
nonhardening material.

5.3 Thermal Stresses in a Thick-Walled Tube

(i) Elastic analysis A long thick-walled tube made of an isotropic nonhardening
material is under combined internal pressure and radial temperature gradient. It
is assumed that the yield criterion and the plastic stress–strain relations are unaf-
fected by the variation in temperature, provided the variation is not large enough to
change the material properties appreciably. Thermal effects are then included in the
expanding tube problem by the usual modification of the stress–strain equations. If
the coefficient of linear expansion is denoted by α, the unit extension due to a rise
in temperature T is equal to αT . Subtracting this from each strain component in the
generalized Hooke’s law, we have the elastic stress–strain equations

E(εr − αT ) = σr − ν(σθ + σz)

E(εθ − αT ) = σθ − ν(σz + σr)

E(εz − αT ) = σz − ν(σr + σθ)

Substituting for σz from the last equation, the first two equations may be expressed as

∂u

∂r
= −νεz + (1 + ν)αT + 1 + ν

E
[(1 − ν)σr − νσθ]

u

r
= −νεz + (1 + ν)αT + 1 + ν

E
[(1 − ν)σθ − νσr]

(60)

† R. Hill, The Mathematical Theory of Plasticity, p. 127, Clarendon Press, Oxford (1950). The
work done during the expansion has been evaluated by R. D. Bhargava and C. B. Sharma, J. Franklin
Inst., 277: 422 (1964).
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Eliminating u between these two equations, and using the equilibrium equation (23),
we obtain the compatibility equation

∂

∂r

(
σr + σθ + EαT

1 − ν

)
= 0

which indicates that σr + σθ varies linearly with the temperature. If we assume a
steady state distribution of temperature, T satisfies the Laplace equation ∇2T = 0,
the solution of which may be written as

T = Tb + (Ta − Tb)
ln(b/r)

ln(b/a)
(61)

where Ta and Tb are the temperatures at the inner and the outer surfaces respectively.
It is convenient at this stage to introduce a dimensionless parameter β defined as

β = α(Ta − Tb)

2(1 − ν)

The integral of the compatibility equation is then expressed in the form

σr + σθ = 2A − 2βE
ln(b/r)

ln(b/a)

where A is a constant. Eliminating σθ from (23) by means of the above relation, and
integrating, we arrive at the solution†

σr = A + B
b2

r2 − βE

{
1
2 + ln(b/r)

ln(b/a)

}

σθ = A − B
b2

r2 + βE

{
1
2 − ln(b/r)

ln(b/a)

} (62)

where B is also independent of r. The boundary conditionsσr = 0, r = b andσr = −p,
r = a furnish

A = p − βE

b2/a2 − 1
+ βE

2 ln(b/a)
B = − p − βE

b2/a2 − 1

The radial and circumferential stresses in the purely elastic tube therefore become

σr = −( p − βE)
b2/r2 − 1

b2/a2 − 1
− βE

ln(b/r)

ln(b/a)

σθ = ( p − βE)
b2/r2 + 1

b2/a2 − 1
+ βE

1 − ln(b/r)

ln(b/a)

(63)

† This solution is due to R. Lorenz, Z. Ver. deut. Ing., 51: 743 (1907).



Chakra-05.tex 26/12/2005 12: 57 Page 354

354 theory of plasticity

The axial stress σz then follows from the third stress–strain relation, where εz must
be determined from the fact that the resultant axial force is

P = 2π
∫ b

a
rσz dr = 2πνa2p + πE(b2 − a2)εz − 2πEα

∫ b

a
rT dr

the derivation being similar to that in the previous section. When the tube has closed
ends, P =πa2p, which gives

εz = (1 − 2ν)p/E − 2(1 − ν)β

b2/a2 − 1
+ (1 − ν)β

ln(b/a)
+ αTb (64)

and the axial stress is then found as

σz = p − 2βE

b2/a2 − 1
+ βE

1 − 2 ln(b/r)

ln(b/a)
(65)

In view of (61), (63), and (65), the radial displacement can be calculated from the
second equation of (60).

When p and β are increased to critical values, yielding may begin anywhere
in the tube depending on the ratio of these parameters. We shall be concerned here
with the situation where σz is the intermediate principal stress in the element that
yields. If Tresca’s yield criterion is adopted, yielding will depend on the magnitude
of the stress difference

σθ − σr = ( p − βE)
2b2/r2

b2/a2 − 1
+ βE

ln(b/a)

which has the greatest value at r = a, provided p>βE. Suppose that the tube is first
subjected to a temperature gradient, which is followed by an application of internal
pressure. Plasticity then commences at the internal surface when σθ − σr equals Y
at r = a, and the pressure at the onset of yielding is

pe = Y

2

(
1 − a2

b2

)
+ βE

{
1 − 1 − a2/b2

ln(b2/a2)

}
(66)

The effect of the thermal gradient is, therefore, to increase pe for β> 0 and decrease
pe for β< 0. When β> 0, the necessary condition pe>βE leads to the restriction
βE/Y < ln(b/a). For β< 0, the tube will yield due to the temperature difference
alone unless pe> 0. Hence the initial yield pressure will be correctly given by (66),
only if

−ln R

R2 ln R2/(R2 − 1) − 1
<
βE

Y
< ln R (67)

where R denotes the wall ratio b/a. In view of these inequalities, it can be shown
that σr <σz <σθ at r = a, and that σθ − σz and σz − σr are each numerically less
than Y throughout the tube. It may be noted in passing that yielding can occur due
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to the temperature gradient alone even for β> 0, when σr − σθ attains the value Y
at the inner surface of the tube.†

(ii) Elastic/plastic analysis If the internal pressure is increased to a value greater
than pe, the tube will become plastic within a radius c. It is assumed that the
axial stress continues to be the intermediate principal stress in the plastic region
throughout the elastic/plastic expansion. The range of validity of this assumption
will be discussed later. Tresca’s yield criterion for a nonhardening material therefore
becomes

σθ − σr = Y a � r � c

In the outer elastic region, σr and σθ are still of the form (62), where A and B are to
be determined from the condition σr = 0, r = b, and the fact that the surface r = c is
on the point of yielding. We thus obtain

A = Yc2

2b2 + βE

2

1 − c2/b2

ln(b/a)
B = − c2

2b2

Y − βE

ln(b/a)

and the expressions for σr and σθ in the elastic annulus become

σr = −1

2

(
Y − βE

ln(b/a)

)(
c2

r2 − c2

b2

)
− βE

ln(b/r)

ln(b/a)

σθ = 1

2

(
Y − βE

ln(b/a)

)(
c2

r2 + c2

b2

)
+ βE

1 − ln(b/r)

ln(b/a)

c � r � b (68)

It follows from (68) that σθ − σr has its greatest value at r = c so long as
βE/Y < ln(b/a). In the plastic annulus, the equilibrium equation (23) and the yield
criterion readily furnish‡

σr = −1

2

(
Y − βE

ln(b/a)

)(
1 − c2

b2 + ln
c2

r2

)
− βE

ln(b/r)

ln(b/a)

σθ = 1

2

(
Y − βE

ln(b/a)

)(
1 + c2

b2 − ln
c2

r2

)
+ βE

1 − ln(b/r)

ln(b/a)

a � r � c (69)

in view of the continuity of σr across r = c. The internal pressure necessary to render
the tube plastic within a radius c is

p = 1

2

(
Y − βE

ln(b/a)

)(
1 − c2

b2 + ln
c2

a2

)
+ βE (70)

† Various other cases of the initial yielding of the tube under both internal and external pressures
with radial heat flow have been discussed by M. G. Derrington, Int. J. Mech. Sci., 4: 83 (1962).

‡ D. R. Bland, J. Mech. Phys. Solids, 4: 209 (1956). Bland also included external pressure and
work-hardening in his analysis.
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The pressure attains a maximum when the tube just becomes fully plastic, and the
fully plastic pressure is Y ln(b/a) irrespective of the temperature difference. During
the elastic/plastic expansion, the internal pressure is augmented byβ> 0 and reduced
byβ< 0. IfβE/Y is equal to ln(b/a), the whole tube becomes simultaneously plastic
when the pressure attains the value Y ln(b/a).

As in the preceding section, εz is entirely elastic in view of Tresca’s associated
flow rule. The axial strain is therefore given by (64) throughout the expansion when
the tube has closed ends. The elastic stress–strain relation for εz then furnishes

σz = Eε′z + νY
c2

b2 + βE

ln(b/a)

{
ν

(
1 − c2

b2

)
− ln

b2

r2

}
c � r � b

σz = Eε′z + νY

(
c2

b2 − ln
c2

r2

)
+ βE

ln(b/a)

{
ν

(
1 − c2

b2 + ln
c2

r2

)
− ln

b2

r2

}
a � r � c

(71)

in view of (68) and (69), where ε′z stands for εz −αTb. Thus σz increases with r in
both the elastic and plastic regions of the tube at each stage when β> 0.

It is assumed, as before, that the strains are small so long as the tube is partly
plastic. Since εp

r = −εp
θ in view of the plastic flow rule, εr + εθ is purely elastic, and

hence (60) gives

∂u

∂r
+ u

r
= −2νεz + 2(1 + ν)αT + 1

E
(1 + ν)(1 − 2ν)(σr + σθ)

throughout the tube even when it is partly plastic. In view of (23), the above equation
can be rewritten as

∂

∂r
(ru) = −2νrεz + 2(1 + ν)αrT + 1

E
(1 + ν)(1 − 2ν)

∂

∂r
(r2σr)

Substituting from (61) and integrating, we can express the solution in the form

u

r
= −νεz + (1 + ν)αT + (1 + ν)(1 − 2ν)

σr

E
+ (1 − ν2)

{
C

r2 + β

ln(b/a)

}

The parameter C can be determined from the condition that the hoop strain calculated
from this equation at the outer radius must be the same as that given by Hooke’s
law. It follows from (60) and (68) that

ub

b
= −νεz + (1 + ν)αTb + (1 − ν2)

{
Yc2

Eb2 + β(1 − c2/b2)

ln(b/a)

}
(72)

Setting r = b and σr = 0 in the above expression for u/r, and comparing with (72),
we find

C = c2
(

Y

E
− β

ln(b/a)

)
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Hence the radial displacement in the elastic/plastic tube is finally expressed as

u

r
= −νεz + (1 + ν)αT + (1 + ν)(1 − 2ν)

σr

E
+ (1 − ν2)

{
Yc2

Er2 − β(c2/r2 − 1)

ln(b/a)

}

(73)

where T is given by (61) and σr by (68) or (69) according as the displacement is
required in the elastic or the plastic part of the tube. The variation of the internal
pressure and the bore strain during the elastic/plastic expansion of a closed-ended
tube of wall ratio 2 is shown in Fig. 5.10 for three different values of βE/Y . Since
the uniform part of the temperature distribution causes no thermal stress, Tb has
been taken as zero in calculating the results.

Equation (73) holds good even when the material work-hardens, provided Y is
regarded as the initial yield stress. If the current yield stress is denoted by σ, which
replaces Y in the yield criterion, the elastic part of the hoop strain is

εe
θ = −νεz + (1 + ν)αT + (1 + ν)(1 − 2ν)

σr

E
+ (1 − ν2)

σ

E

Figure 5.10 Variation of internal pressure and bore strain during the elastic/plastic expansion of a
closed-ended tube (ν= 0.3).
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by (60), where σ is a given function of the plastic strain εp
θ . Subtracting εe

θ from the
total strain (73), we get

ε
p
θ = (1 − ν2)

{
Yc2

Er2 − σ

E
− β(c2/r2 − 1)

ln(b/a)

}
= −εp

r (74)

If the stress–plastic-strain curve of the material is assumed to have a constant slope
H, then the stresses in the plastic region can be determined explicitly, following the
previous analysis. The internal pressure for the work-hardening tube can be shown
to exceed that for the nonhardening tube by the amount

�p = Y

2

(
c2

a2 − ln
c2

a2 − 1

)(
1 − βE/Y

ln(b/a)

)/(
1 + E/H

1 − ν2

)
(75)

irrespective of the end condition. Evidently, the effect of the temperature gradient
counteracts that of the work-hardening, as far as the internal pressure is concerned,
for β> 0. Residual stresses on unloading from the elastic/plastic state can be cal-
culated as in the previous section, assuming elastic changes in stress during the
unloading.†

(iii) Validity of the solution The assumption that the axial stress is the intermediate
principal stress during the elastic/plastic expansion will now be examined for a
nonhardening tube with closed ends. In view of the stress–strain relation and the
yield criterion, the inequalities σθ >σz >σr in the plastic region can be written as

(1 − 2ν)σr + (1 − ν)Y − Eεz + EαT > 0

−(1 − 2ν)σr + νY + Eεz − EαT > 0
(76)

where σr is given by (69), σz by (71), and T by (61). Considering the first inequality
of (76), we find that the left-hand side of this inequality has the least value at
r = c or r = a according as (βE/Y ) ln(b/a) is greater or less than (1 − 2ν)/2(1 − ν).
WhenβE/Y ln(b/a)> (1 − 2ν)/2(1 − ν), the inequality is found to be satisfied for all
values of c� b. When βE/Y ln(b/a)< (1 − 2ν)/2(1 − ν), the inequality reduces to

−(1 − 2ν)p + (1 − ν)Y − Eεz + EαTa � 0

If this inequality is satisfied for c = b, it will be satisfied for all c� b. The substitution
for p and εz then furnishes

R2 ln R2

R2 − 1
�
(

ln R − βE

Y

)/{
1

2

(
1 − 2ν

1 − ν

)
ln R − βE

Y

}

for
βE

Y
<

1

2

(
1 − 2ν

1 − ν

)
ln R (77)

† This has been discussed by D. R. Bland, op. cit. Elastic/plastic thermal stresses in a solid cylinder
due to unsteady heat flow have been investigated by T. B. Kammash, S. A. Murch, and P. M. Naghdi,
J. Mech. Phys. Solids, 8: 1 (1960). See also J. H. Weiner and J. V. Huddleston, J. Appl. Mech., 26: 31
(1959).
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where R = b/a. The left-hand side of the second inequality of (76) increases
or decreases toward r = c according as βE/Y ln R is greater or less than
(1 − 2ν)/2(1 − ν). Considering βE/Y ln R> (1 − 2ν)/2(1 − ν), the inequality can
be written as

(1 − 2ν)p + νY + Eεz − EαTa � 0

which is satisfied for all c� b provided it is satisfied for c = a. This gives the
condition

R2 ln R2

R2 − 1
� 1 + Y

βE
ln R for

1

2

(
1 − 2ν

1 − ν

)
ln R <

βE

Y
< ln R (78)

When βE/Y ln R< (1 − 2ν)/2(1 − ν), it can be shown that the second inequality of
(76) is satisfied for all values of c whenever (77) is satisfied. Numerical values of
the maximum permissible wall ratio, calculated from (77) and (78) for ν= 0.3 and
various values of βE/Y , are given in the following table:

βE/Y 0.798 0.707 0.654 0.448 0 −0.111 −0.220 −0.343

b/a 2.22 4.0 6.0 6.0 5.43 4.0 3.0 2.22

It remains to verify that in the elastic part of the tube (c� r� b), each of the stress
differences σθ − σr , σθ − σz, and σz − σr is numerically less than Y . Since σθ − σr
decreases as r increases, in view of (68), becoming negative for large negative values
of βE/Y , it is only necessary to ensure that σθ − σr is greater than −Y at r = b. As
the value of this stress difference is the least for c = a, the required inequality is

R2 <
− ln R + βE/Y

ln R + βE/Y

which is satisfied when (77) is satisfied. The other two stress differences σθ − σz and
σz − σr have maximum and minimum values in the range c� r� b. It is necessary
for the maxima to be less than Y and the minima greater than −Y throughout the
expansion. It turns out that these conditions are satisfied whenever (77) and (78) are
satisfied.

5.4 Thermal Stresses in a Thick Spherical Shell

(i) Elastic deformation and plastic yielding As a further illustration of the thermal
effects on stresses and strains, consider the expansion of a thick-walled spherical
shell under internal pressure and steady state temperature distribution. In the com-
pletely elastic situation, the stresses and the strains can be found by the superposition
of those due separately to pressure and temperature. Since the effect of internal pres-
sure has been previously discussed (Sec. 5.1), it is necessary here to consider the
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temperature gradient alone. The steady state temperature in the case of spherical
symmetry is given by the well-known formula

T = Tb + (Ta − Tb)
b/r − 1

b/a − 1
(79)

where a and b are the internal and external radii of the sphere, and Ta and Tb the
corresponding surface temperatures. Denoting the coefficient of linear expansion by
α, the elastic stress–strain equations may be written as

εr = ∂u

∂r
= 1

E
(σr − 2νσθ) + αT

εθ = u

r
= 1

E
[(1 − ν)σθ − νσr] + αT

(80)

In view of the equilibrium equation (1), the elimination of u from (80) leads to
the compatibility equation

∂

∂r

(
σr + 2σθ + 2EαT

1 − ν

)
= 0

which gives, by (79),

σr + 2σθ = 3A − 2βE
b/r

b/a − 1
(81)

where A is independent of r, and β is a dimensionless quantity equal to
α(Ta − Tb)/(1 − ν). It may be noted thatσr + 2σθ varies linearly with T . The solution
of Eqs. (1) and (81) may be expressed as

σr = A + B
b3

r3 − βE
b/r

b/a − 1

σθ = A − B
b3

2r3 − βE
b/2r

b/a − 1

(82)

Since the surfaces of the sphere are traction-free, the boundary conditions are σr = 0
at r = a and r = b. Hence

A = βE
b

a

(
b/a + 1

b3/a3 − 1

)
B = βE

b3/a3 − 1

On inserting these values in (82), the stresses in elastic sphere are obtained as

σr = −βE

(
b/r − 1

b/a − 1
− b3/r3 − 1

b3/a3 − 1

)

σθ = −βE

(
b/2r − 1

b/a − 1
+ b3/2r3 + 1

b3/a3 − 1

) (83)
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For β> 0, the inner part of the sphere tends to expand more than the outer part,
giving rise to a compressive radial stress. The hoop stress is, however, compressive
in the inner part and tensile in the outer part. The substitution for σr , σθ , and T into
the second equation of (80) gives the radial displacement in the form

u

r
= (1 − 2ν)

A

E
− (1 + ν)

Bb3

2Er3 + β[(1 + ν)b/2r − (1 − ν)]

b/a − 1
+ αTb (84)

where A and B are expressed above as functions of β and b/a.
If the temperature difference is sufficiently high, yielding will occur at the radius

where the stresses satisfy the yield criterion

|σr − σθ| = Y

according to both Tresca and von Mises. It follows from (83) that

σr − σθ = βE

(
3b3/2r3

b3/a3 − 1
− b/2r

b/a − 1

)

which is easily shown to have its greatest numerical value at r = a. Hence yielding
begins at the inner surface due to hoop compression when β attains the value

βe = Y

E

(
1 + a/b + a2/b2

1 + a/2b

)
(85)

which indicates that the temperature difference required to cause yielding decreases
as the wall ratio increases.

(ii) Yielding under combined loading If an internal pressure p is applied along
with the thermal gradient, the stresses in the elastic sphere are expressed by the sum
of those given by (3) and (83). Under the combined loading, therefore, we have

σθ − σr = βE
b/2r

b/a − 1
− (βE − p)

3b3/2r3

b3/a3 − 1
(86)

Depending on the values of p/βE and b/a, the initial yielding may occur at the inner
or the outer surface or within the wall of the sphere. Only positive values of β will
be considered in what follows. The partial derivative of (86) with respect to r shows
that σθ − σr steadily decreases from r = a to r = b so long as p/βE>m1, where

m1 = 1

9

(
8 − a

b
− a2

b2

)

Then σθ − σr is everywhere positive, the greatest value occurring at r = a. Hence
yielding begins at the inner surface of the sphere, and the relationship between p
and β at the initial yielding is obtained from (80) as

3p − βE
(

1 − a

b

)(
2 + a

b

)
= 2Y

(
1 − a3

b3

)
p

βE
� m1 (87)
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The restriction in (87) is evidently equivalent toβE/Y � 3 (1 − a/b). For p/βE�m1,
the value of σθ − σr is a maximum at the radius

r∗ = 3a

√
1 − p/βE

1 + a/b + a2/b2 (88)

As the ratio p/βE is decreased from m1, the position of the maximum σθ − σr moves
outward from r = a and eventually reaches r = b when p/βE = m2, where

m2 = 1

9

(
8 − b

a
− b2

a2

)

For m2� p/βE�m1, yielding will occur at radius (88) when the maximum value
of σθ − σr is equal to Y . From (86) and (88), the condition for initial yielding is

βE

Y

√
1 + b

a
+ b2

a2 = 9

(
b

a
− 1

)√
1 − p

βE
m2 �

p

βE
� m1 (89)

The above inequalities are found to be equivalent to 3(b/a − 1)�βE/Y �
3(1 − a/b). It is also necessary, for the validity of (89), that σr − σθ does not
exceed Y at r = a. In view of (86) and (89), this amounts to the further restriction
βE/Y � 6(1 − a/b), or p/βE� n1, where

n1 = 1

9

(
5 − 4

a

b
− 4

a2

b2

)

Evidently n1≷m2 for b/a≷ 2. So the inequalities in (89) must be replaced by
n1� p/βE�m1 when b/a� 2. It follows from (88) with p = n1βE that yielding
occurs simultaneously at r = a and r = 2a when

βE

Y
= 6Y
(

1 − a

b

) p

Y
= 2

3

(
1 − a

b

)(
5 − 4

a

b
− 4

a2

b2

)
b

a
� 2 (90a)

For p/βE�m2, σθ − σr steadily increases from r = a to r = b, the greatest numer-
ical value occurring at r = b or r = a according as p/βE is greater or less than n2,
where

n2 = 2(b/a − 1)2

3(b2/a2 − b/a + 1)

For n2� p/βE�m2, the initial yielding therefore corresponds to σθ − σr = Y at
r = b, which gives

3p + βE

(
b

a
− 1

)(
b

a
+ 2

)
= 2Y

(
b3

a3 − 1

)
n2 �

p

βE
� m2 (91)
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It follows that the inequalities in (91) are equivalent to 2(b/a + a/b − 1)�βE/Y �
3(b/a − 1). Yielding occurs simultaneously at r = a and r = b when

βE

Y
= 2

(
b

a
+ a

b
− 1

)
p

Y
= 4a

3b

(
b

a
− 1

)2 b

a
� 2 (90b)

For p/βE outside the range so far considered, yielding will occur at the inner surface
due to σr − σθ reaching the value Y there, the condition for the yielding being

βE
(

1 − a

b

)(
2 + a

b

)
− 3p = 2Y

(
1 − a3

b3

)
p

βE
� n1, n2 (92)

which reduces to (85) when p = 0. It follows from above that the restriction
p/βE� n2 is appropriate when b/a� 2 and p/βE� n1 when b/a� 2. Figure 5.11
shows the dependence of the location of yielding on the ratios p/βE and b/a. The
lowest curves represent simultaneous yielding at two different radii, one of which
is r = a. It may be noted that yielding can begin at the outer surface only under the
restriction b/a� 2.

It follows from the preceding (p, β) relations that the internal pressure required
to cause yielding increases with increasing β whenever plasticity begins at the inner

Figure 5.11 Location of the surface of initial yielding in a spherical shell under internal pressure and
thermal loading.



Chakra-05.tex 26/12/2005 12: 57 Page 364

364 theory of plasticity

Figure 5.12 Relationship between p/Y and βE/Y at the onset of yielding of a spherical shell for various
wall ratios.

surface, and decreases with increasing β whenever yielding begins at the outer
surface. The pressure has a maximum over the range of values of β for which initial
yielding occurs within the wall. From (89), p/βE is equal to 2/3 at the maximum,
and the corresponding value of the pressure is given by

p

Y
= 2

√
3(b/a − 1)√

1 + b/a + b2/a2

which is the greatest permissible pressure at the initial yielding. The variation of
p/Y with βE/Y at the onset of yielding is shown in Fig. 5.12 for various wall
ratios.† The straight lines of positive slope terminating on the broken curves AB and
DE correspond to yielding at the inner radius in hoop tension and hoop compression

† M. G. Derrington and W. Johnson, Appl. Sci. Res., A, 7: 408 (1958).
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respectively. The straight lines of negative slope below the broken curve AC corre-
spond to yielding at the outer radius. Each point within the domain ACD represents
yielding at both r = a and r = b for two different values of b/a. The solid curves
above AC correspond to yielding within the shell wall. The largest permissible values
of β at the initial yielding for given wall ratios evidently correspond to the broken
curve DCE.

(iii) Elastic/plastic analysis The following discussion is based on the assumption
that the sphere is subjected to thermal gradient alone. For β exceeding βe, given by
(85), the sphere will become plastic within a radius c, the yield criterion being

σr − σθ = Y a � r � c

provided the material is nonhardening. The stresses in the plastic region are
immediately obtained from the equilibrium equation and the yield criterion as

σr = −2Y ln
r

a
σθ = −Y

(
1 + 2 ln

r

a

)
a � r � c (93)

satisfying the boundary condition σr = 0 at r = a. Within the elastic region, the
stresses can be expressed in the form (82) where A and B are functions of c. Since
A + B =βE/(b/a − 1) in view of the boundary condition σr = 0 at r = b, we write

σr = B

(
b3

r3 − 1

)
− βE

(
b/r − 1

b/a − 1

)

σθ = −B

(
b3

2r3 + 1

)
− βE

(
b/2r − 1

b/a − 1

) c � r � b (94)

The conditions of continuity of the stresses across r = c furnish a pair of equations
which may be solved for B and β to obtain

B

Y
= 2

c3

b3

{
1 − c/b + ln(c/a)

(2 + c/b)(1 − c/b)2

}

βE

Y
= 2
( c

a
− c

b

){1 − c3/b3 + ln(c2/a3)

(2 + c/b)(1 − c/b)2

} (95)

Thus all parameters affecting the stress distribution in the elastic region are expressed
in terms of the single parameter c. To find the displacement u at any radius r, we
consider the compressibility equation, which for small strains becomes

∂u

∂r
+ 2u

r
= 1

E
(1 − 2ν)(σr + 2σθ) + 3αT

Substituting for σθ from (1) and T from (79), this equation can be readily integrated
to obtain

u

r
= (1 − 2ν)

σr

E
+ (1 − ν)

{
β

(
3b/2r − 1

b/a − 1

)
− C

b3

r3

}
+ αTb (96)
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which is valid in both the elastic and plastic regions. Equating the displacements
given by (84) and (96) at r = b, we find C = 3B/2E. Since B and β are known from
(95), the displacement in the elastic or the plastic region is obtained by inserting
the appropriate expression for σr in (96). The displacement of the internal surface
is given by

ua

a
= (1 − ν)

{
β

(
3b/2a − 1

b/a − 1

)
− 3B

2E

b3

c3

}
+ αTb

When the plastic boundary has advanced to a radius c1, a second plastic zone
is initiated either at the outer surface or somewhere in the interior of the elastic
zone.† The situation is that of initial yielding of a spherical shell of wall ratio
b/c1 under internal pressure 2Y ln(c1/a) and a temperature difference equal to that
existing between r = c1 and r = b. The results of the earlier analysis are directly
applicable here. Since the radius r = c1 is stressed to the yield point, it follows that
the second plastic zone will begin at r = b for b/c1� 2 and at r = 2c1 for b/c1� 2.
Equating to 2Y ln(c1/a) the pressure required to cause the yielding, obtained by the
necessary modification of (90), we get

ln
c1

a
=




2b

3c1

(
1 − c1

b

)2 b

c1
� 2

1

3

(
1 − c1

b

)(
5 − 4

c1

b
− 4

c2
1

b2

)
b

c1
� 2

(97)

from which b/c1 can be determined for any given wall ratio. The value β1 of β,
corresponding to c = c1, may also be found from the results in (90), where β must
be replaced by β1(b/c1 − 1)/(b/a − 1). Thus

E

Y
β1 =




2

(
b

a
− 1

)(
1 + c2

1/b
2

1 − c1/b

)
b

c
� 2

6

(
b

a
− 1

)
c1

b

b

c1
� 2

(98)

Setting b/c1 = 2 in (97) and (98), we find that the greatest value of b/a for the new
yielding to start at the outer radius is 2e1/3 
 2.79, and the corresponding value of
β1E/Y is 5.57. We shall restrict ourselves to b/a� 2.79 in the subsequent analysis
of the problem.‡

As β is increased beyond β1, the second plastic zone spreads inward from the
outer surface, while the inner plastic zone continues to spread outward. Let ρ denote

† G. R. Cowper, J. Appl. Mech., 47: 496 (1960). An analysis for the partly plastic shell simulta-
neously subjected to temperature and pressure loadings has been given by F. Drabble and W. Johnson,
Conf. Therm. Loading Creep, paper No. 19, Inst. Mech. Eng. (1964).

‡ Residual stresses on unloading from the second elastic/plastic stage have been given by
W. Johnson and P. B. Mellor, Int. J. Mech. Sci., 4:147 (1962). Transient heat flow in a solid sphere
has been treated by C. Hwang, J. Appl. Mech., 47: 629 (1960).
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the radius to the boundary of the outer plastic region, where the stresses satisfy the
yield criterion

σθ − σr = Y ρ � r � b

The equilibrium equation, the yield criterion, and the boundary condition σr = 0 at
r = b furnish the stress distribution in the outer plastic region as

σr = −2Y ln
b

r
σθ = Y

(
1 − 2 ln

b

r

)
ρ � r � b (99)

The stresses in the inner plastic region (a� r� c) are still given by (93). In the
elastic region, where (82) still applies, the continuity of σr across r = ρ furnishes
the stress distribution

σr = B

(
b3

r2 − b3

ρ3

)
− βE

(
b/r − b/ρ

b/a − 1

)
− 2Y ln

b

ρ

σθ = −B

(
b3

2r3 + b3

ρ3

)
− βE

(
b/2r − b/ρ

b/a − 1

)
− 2Y ln

b

ρ

c � r � ρ (100)

where B depends on ρ, which is a function of c. Since the boundaries of the elastic
zones are at the point of yielding, σθ − σr = Y at r = ρ, and σθ − σr = − Y at r = c.
Hence

B

Y
= 2c3/3b3

(c/p)(1 − c/ρ)

βE

Y
= 2
(ρ

a
− ρ

b

)(
1 + c2/ρ2

1 − c/ρ

) (101)

The condition of continuity of σr across r = c then leads to the relationship between
c and ρ as

ln
(cρ

ab

)
= 2c

3ρ

(ρ
c

− 1
)2

(102)

The radial displacement during the second elastic/plastic phase is given by (96)
throughout the shell, where C = 3B/2E as before, but B is now expressed by (101).
The growth of the plastic zones with increasing temperature difference, and the
corresponding variation of the internal and external displacements, are represented
graphically in Fig. 5.13. As might be expected, the sphere becomes completely
plastic only for an infinite temperature, when the elastic zone degenerates into a
surface of radius

√
ab, across which the hoop stress becomes discontinuous in the
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Figure 5.13 Surface displacements and positions of elastic/plastic boundary as functions of temperature
in a thick spherical shell of wall ratio 2 (ν= 0.3, Tb = 0).

limit.† The theory is only valid in the temperature range for which βE and Y may
be regarded as approximately constant.

5.5 Pure Bending of a Curved Bar

(i) Elastic bending A wide curved bar of uniform cross section is bent in the plane
of its curvature by terminal couples M per unit width under conditions of plane
strain. Since the cylindrical surfaces of the bar are free from external tractions, the
stress distribution can be expected to be the same for all plane sections normal to
the curved surfaces of the bar. Referring to cylindrical coordinates (r, θ, z), the bar
geometry is defined by the cylindrical surfaces r = a and r = b and the radial planes
θ= ±α (Fig. 5.14). It is also assumed thatσr , σθ , andσz are the only nonzero stresses,
which depend on r alone. Since the stress distribution is then axially symmetrical,
the equation of equilibrium is

∂σr

∂r
= σθ − σr

r
(23)

† Elastic/plastic thermal stress analysis of an annular ring has been given by J. C. Wilhoit, Proc.
3d U.S. Nat. Congr. Appl. Mech., 693 (1958). Thermally stressed elastic/plastic free plates have been
analyzed by J. Weiner, J. Appl. Mech., 78: 395 (1956), and H. Yuksel, J. Appl. Mech., 80: 603 (1958).
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Figure 5.14 Geometry of an elastic/plastic curved bar under pure bending.

So long as the bar is elastic, the stresses σr and σθ must also satisfy the compatibility
equation† (

∂2

∂r2 + 1

r

∂

∂r

)
(σr + σθ) = 0 (103)

the solution of which may be written as

σr + σθ = C + 2B ln
b

r

where C and B depend on the applied bending moment. The substitution in (23)
then leads to the solution

σr = −A

(
b2

r2 − 1

)
+ B ln

b

r

σθ = A

(
b2

r2 + 1

)
− B

(
1 − ln

b

r

) (104)

satisfying the external boundary condition σr = 0, r = b. Here 2A has been written
for B + C. The parameters A and B can be determined from the remaining boundary
condition σr = 0, r = a, and the fact that the normal stresses σθ across any radial

† See, for example, S. Timoshenko and J. N. Goodier, Theory of Elasticity, p. 30, 3d ed.,
McGraw-Hill Book Company, New York (1970).
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section must give rise to a couple of magnitude M per unit width. Since

∫ b

a
(σr + σθ)r dr =

∫ b

a

∂

∂r
(r2σr)dr = 0

in view of the equilibrium equation and the boundary conditions, we have

M = −
∫ b

a
rσθ dr = 1

2

∫ b

a
(σr − σθ)r dr (105)

The last expression in (105) is more convenient for calculations. The substitution
from (104) then furnishes

A = 4M

Na2 ln
b

a
B = 4M

Na2

(
b2

a2 − 1

)

where N =
(

b2

a2 − 1

)2
− b2

a2

(
ln

b2

a2

)2 (106)

The radial stress is positive throughout the cross section with a maximum value at a
radius b

√
2A/B. The hoop stress changes from positive to negative as r is increased

from a to b. The neutral surface, which corresponds to σθ = 0, is independent of M
so long as the bar is entirely elastic.

It follows directly from the equilibrium equation and the boundary conditions
that the resultant normal force across any radial section vanishes as required. Since

σz = ν(σr + σθ)

in view of the plane strain condition εz = 0, the elastic stress–strain equations in
terms of the shear modulus G and Poisson’s ratio ν become

εr = ∂u

∂r
= 1

2G
[(1 − ν)σr − νσθ]

εθ = u

r
+ 1

r

∂v

∂θ
= 1

2G
[(1 − ν)σθ − νσr] (107)

2γrθ = ∂v

∂r
− v

r
+ 1

r

∂u

∂θ
= 0

where u and v are the radial and circumferential displacements respectively. It is
assumed that a radial element at the centroid of the section θ= 0 remains fixed in
space during the bending. Then the conditions to be satisfied by u and v are

u = v = ∂v

∂r
= 0 on θ = 0 and r = 1

2
(a + b) = r0 (say) (108)
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In view of (104), the solution of Eqs. (107) satisfying the end conditions (108) can
be written as

2Gu = r

{
A

(
1 − 2ν + b2

r2

)
+ B

[
(1 − ν) + (1 − 2ν) ln

b

r

]}
− Kr0 cos θ

2Gv = −(1 − ν)Brθ + Kr0 sin θ (109)

where K is a dimensionless parameter expressed by the equation

K = A

(
1 − 2ν + b2

r2
0

)
+ B

[
(1 − ν) + (1 − 2ν) ln

b

r0

]
(110)

Since v is a linear function of r, each radial section remains plane during the bending,
the angle of rotation of the cross section being of amount (1 − ν)Bθ/G in a sense
that reduces the curvature of the bar. The change in the thickness b − a is equal to
the difference between the radial displacements at the outer and inner boundaries.
From (109) and (106), the thickness change is found to be

�(b − a) = 2(1 − ν)(b − a)M

G[(b2 − a2) − 2ab ln(b/a)]
(111)

As the bending couple is increased to a critical value Me, plastic yielding begins
at the inner curved boundary. It follows from (104) that σθ − σr has its greatest value
at r = a where σr = 0 and σz = νσθ . Hence according to Tresca’s yield criterion, σθ
must attain the value 2k at r = a, where k is the yield stress in shear. From (104) and
(106), the initial yield couple per unit width is

Me =
1
2 Nka2

1 + (b2/a2)[ln(b2/a2) − 1]
(112)

When b/a = 2, for instance, Me = 0.258ka2, the radius to the neutral surface being
1.144a. The circumferential stress at this stage varies from 2k at the inner boundary
to −1.27k at the outer boundary. The radial stress has a maximum value of 0.276k,
occurring at a radius slightly smaller than that of the neutral surface.

(ii) The first elastic/plastic phase As the bending couple is further increased, a plas-
tic zone is formed around the inner curved surface of the bar. In view of the symmetry
of the stress distribution, the elastic/plastic boundary is a circular cylindrical surface
of radius c. The stresses in the plastic region must satisfy the equilibrium equation
(23) and the yield criterion

σθ − σr = 2k a � r � c

provided σz continues to be the intermediate principal stress. Since σr = 0 at r = 0,
we have

σr = 2k ln
r

a
σθ = 2k

(
1 + ln

r

a

)
a � r � c (113)
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for no work-hardening. In the elastic region (c� r� b), the stresses are still
expressed by (104), but the parameters A and B are now to be determined from
the conditions of continuity of σr and σθ across r = c. Thus

A = 2k ln(b/a)

1 + (b2/c2)[ln(b2/c2) − 1]
B = 2k

(b2/c2)[1 + ln(c2/a2)] − 1

1 + (b2/c2)[ln(b2/c2) − 1]
(114)

Using the expressions for σr − σθ in the elastic and plastic regions, the applied
couple is obtained from (105) as†

M = −1

2
k(c2 − a2) + 1

2
Lkc2
{

1 + b2

c2

(
ln

b2

c2 − 1

)}−1

(115)

where L =
(

b2

c2 − 1

)2
− b2

c2

{(
ln

b2

c2

)(
ln

b2

a2

)
−
(

b2

c2 − 1

)
ln

c2

a2

}
The neutral surface (where σθ vanishes) occurs in the elastic region of the bar. The
maximum radial stress also occurs in the elastic region at a radius somewhat less
than that of the neutral surface.

It follows from Tresca’s associated flow rule that εp
r = −εp

θ < 0; so the elastic
and plastic parts of εz individually vanish as in the case of the thick-walled tube.
Hence

σz = ν(σr + σθ)

throughout the bar even when it is partly plastic. The displacements in the elastic
region are expressed by (109) and (110), where A and B are now given by (114). In
the plastic region, the displacements can be determined from the fact that εr + εθ is
still given by Hooke’s law, since the sum of the plastic parts of εr and εθ vanishes.
Assuming small strains, the displacement equations become

∂u

∂r
+ u

r
+ 1

r

∂v

∂θ
= 1 − 2ν

2G
(σr + σθ)

∂v

∂r
− v

r
+ 1

r

∂u

∂θ
= 0

(116)

where the second equation states that γrθ = 0, since the principal axes of stress and
strain rate must coincide. The solution of these equations may be taken in the form‡

2Gu = F(r, c) − Kr0 cos θ

2Gv = −(1 − ν)Brθ + Kr0 sin θ
(117)

† The elastic/plastic analysis for the stresses is due to B. W. Shaffer and R. N. House, J. Appl.
Mech., 24: 305 (1955).

‡ The displacement solution has been discussed for an incompressible material by B. W. Shaffer
and R. N. House, J. Appl. Mech., 26: 447 (1957), and for a compressible material by G. Eason, Appl.
Sci. Res., A, 9: 53 (1960).
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where K is given by (110) and (114). Since v has the same expression throughout, it
is automatically continuous across r = c. The second equation of (116) is identically
satisfied, while the first equation reduces to

1

G

∂

∂r
(rF) = 1 − ν

G
Br + 1 − 2ν

2G

∂

∂r
(r2σr)

in view of (23). This differential equation is readily integrated as

F(r, c) = r

[
(1 − ν)B + (1 − 2ν)σr + H

b2

r2

]

where H is a parameter depending on c. The above equations hold in both elastic
and plastic parts of the bar. Comparison of the radial displacement given by (117) at
r = b with that expressed by (109) at r = b immediately shows that H = 2(1 − ν)A.
Substitution for σr from (113) then gives

F(r, c) = r

[
(1 − ν)

(
B + 2A

b2

r2

)
+ (1 − 2ν)2k ln

r

a

]
a � r � c (118)

where A and B are given by (114). It may be noted that plane radial sections con-
tinue to remain plane in the plastic range. Since 2G�(b − a) = F(b, c) − F(a, c), the
change in thickness is readily obtained from (118) as

�(b − a) = (1 − ν)(b − a)
k

G

{
(1 − c2/ab) ln(b2/a2)

ln(b2/c2) − (1 − c2/b2)
− 1

}
(119)

When the plastic zone has spread to a sufficient extent, the outer curved boundary
becomes stressed to the yield point. According to Tresca’s yield criterion, σθ must
be equal to −2k at r = b for yielding to start at that radius. If the radius to the
elastic/plastic boundary at this stage is denoted by c1, then (104) and (114) furnish

c2
1

(
1 + ln

b

a

)
= b2

(
1 − ln

ab

c2
1

)
(120)

The bending moment per unit width at the end of the first elastic/plastic phase is
obtained, after some algebra, as

M1 = 1

2
k

(
a2 − b2 + 2b2 ln

ab

c2
1

)
(121)

Taking b/a = 2, we find M1 = 0.387ka2. It follows from (120) that c1< b for all
values of b/a; so yielding will always occur at r = b while an outer part of the cross
section is still elastic. The centroid of the section lies in the elastic region during the
first elastic/plastic phase.
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(iii) The second elastic/plastic phase For M exceeding M1, an outer plastic zone
will spread inward from the convex boundary, while the inner plastic zone continues
to spread outward. The second elastic/plastic phase therefore consists of a central
elastic core between a pair of plastic regions. Let the radius of the outer elastic/plastic
boundary be denoted by ρ. Tresca’s yield criterion requires

σr − σθ = 2k ρ � r � b

if σz is the intermediate principal stress. The substitution into the equilibrium
equation then furnishes

σr = 2k ln
b

r
σθ = −2k

(
1 − ln

b

r

)
ρ � r � b (122)

in view of the boundary condition σr = 0, r = b. The stresses in the inner plastic
region (a� r� c) are still given by (113). To obtain the stresses in the elastic region
(c� r� ρ), the solution of (23) and (103) is taken in the form

σr = −A

(
ρ2

r2 − 1

)
+ B ln

ρ

r
+ 2k ln

b

ρ
c � r � ρ

σθ = A

(
ρ2

r2 + 1

)
− B
(

1 − ln
ρ

r

)
+ 2k ln

b

ρ

(123)

so that the radial stress is continuous across r = ρ. Since the radii r = c and r = ρ
are at the point of yielding, we have

A = 2k

ρ2/c2 − 1
B = 2k

(
ρ2/c2 + 1

ρ2/c2 − 1

)
(124)

The neutral surface still occurs in the elastic region for the permissible values of
b/a. The condition of continuity of σr across r = c furnishes

ρ2
(

1 − ln
ab

c2

)
= c2
(

1 + ln
ρ2

ab

)
(125)

which is the relationship between the positions of the two elastic/plastic boundaries.
Substituting for σr − σθ in (106) and integrating over the three separate regions, we
have

M = 1

2
k

[
a2 + b2 − 2ρ2

(
1 − ln

ab

c2

)]
(126)

in view of (124) and (125). As the bending couple approaches the fully plastic
value, the outer and inner plastic boundaries approach one another to meet at the
neutral surface whose radius finally becomes

√
ab. The fully plastic moment per

unit width is

M0 = 1
2 k(b − a)2
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The distributions of σr and σθ during the entire elastic/plastic bending are shown in
Fig. 5.15 for a series of values of M/M0 when b/a = 2. The broken curve indicates
the variation of the position of the neutral surface. The hoop stress is discontinuous
across the neutral surface in the limiting case when the bar just becomes fully plastic.

In view of Tresca’s associated flow rule, the displacement in each separate region
may be expressed in the form (117), where B is given by (124) and K is yet to be
determined. In the elastic region, the function F is most conveniently obtained from
the stress–strain equation

εθ = u

r
+ 1

r

∂v

∂θ
= 1

2G
[(1 − ν)σθ − νσr]

Substitution from (117) and (123) into the above equation immediately furnishes

F(r, c) = r

{
A

(
1 − 2ν + ρ2

r2

)
+ B
[
(1 − ν) + (1 − 2ν) ln

ρ

r

]

+ 2k(1 − 2ν)ln
b

ρ

}
c � r � ρ (127)

In the plastic regions, the displacements must be determined from (116) as before.
The integration of the resulting differential equation furnishes

F(r, c) = r

[
(1 − ν)B + (1 − 2ν)σr + H

ρ2

r2

]

where H has the value 2(1 − ν)A as before, in order that this equation coincides with
(127) when σr is expressed by (123). The substitution for σr from (113) and (122)

Figure 5.15 Stress distribution in a curved bar (b/a = 2) during elastic/plastic bending by pure couples.
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then furnishes

F(r, c) =




r

[
(1 − ν)

(
B + 2A

ρ2

r2

)
+ 2k(1 − 2ν) ln

r

a

]
a � r � c

r

[
(1 − ν)

(
B + 2A

ρ2

r2

)
+ 2k(1 − 2ν) ln

b

r

]
ρ � r � b

(128)

where A and B are given by (124). In view of (108), the parameter r0K is equal to
F(r0, c) according to (127) when ρ� r0, and according to the second equation of
(128) when ρ� r0. The change in thickness of the bar is readily derived from (128)
and (124) as†

�(b − a) = (1 − ν)(b − a)
k

G

{
1 − 2

(
ρ2/ab − 1

ρ2/c2 − 1

)}
(129)

It is easy to show that σz <σθ in the inner plastic region and σz <σr in the outer
plastic region throughout the bending, whatever the ratio b/a. Hence σz will be the
intermediate principal stress so long as σr <σz in the region a� r� c and σθ <σz
in the region ρ� r� b. In view of (113) and (122), these conditions become

(1 − 2ν) ln
c

a
− ν � 0 (1 − 2ν) ln

b

ρ
− (1 − ν) � 0

which will be satisfied throughout the bending if they are satisfied for c = ρ= √
ab.

The second inequality is then satisfied whenever the first one is. The validity of the
preceding solution therefore requires

ln
b

a
� 2ν

1 − 2ν

For ν= 0.3, the largest value of b/a for which the solution is valid is 4.48. For an
incompressible material, the solution remains valid for all b/a ratios.

For a given b/a ratio, the elastic/plastic boundaries advance almost linearly with
the bending moment as M increases to within 90 percent of the fully plastic value.
The thickness change increases toward the beginning, attains a positive maximum
during the first elastic/plastic phase, and then decreases rapidly during the second
elastic/plastic phase. When the bar is fully plastic, the thickness change is zero. The
fractional change in angle �α/α, which is equal to −(1 − ν)B/G, remains of the
elastic order of magnitude so long as M is less than about 0.95M0, but increases
indefinitely as the limiting moment is approached.‡ Figure 5.16 shows the variation
of the applied couple with the fractional change in angle for several b/a ratios.

† For the plane stress bending of a curved bar according to both the Tresca and Mises criteria, see
G. Eason, Q. J. Mech. Appl. Math., 12: 334 (1960).

‡ Residual stresses upon unloading the fully plastic moment have been discussed by B. W. Shaffer
and E. E. Ungar, J. Appl. Mech., Trans. ASME, 27: 34 (1960).
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Figure 5.16 Variation of the applied moment with the fractional decrease in angle for different b/a
ratios (ν= 0.3).

5.6 Rotating Discs and Cylinders

(i) Elastic discs Consider a circular disc of uniform thickness rotating with an
angular velocity of gradually increasing magnitude about an axis perpendicular
to its plane and passing through the center. The thickness of the disc is assumed
sufficiently small so that it is effectively in a state of plane stress (σz = 0). The radial
equilibrium of an element of the rotating disc requires

r
∂σr

∂r
= σθ − σr − ρω2r2 (130)

whereω is the angular velocity and ρ the density of the material of the disc. Denoting
the purely radial displacement by u, the relevant stress–strain equations may be
written as

εr = ∂u

∂r
= 1

E
(σr − νσθ)

εθ = u

r
= 1

E
(σθ − νσr)

(131)

The elimination of u from these equations and the use of (130) lead to the
compatibility equation

∂

∂r
(σr + σθ) = −(1 + ν)ρω2r



Chakra-05.tex 26/12/2005 12: 57 Page 378

378 theory of plasticity

which is readily integrated to give σr + σθ . The equilibrium equation then furnishes

σr = A + B
b2

r2 − 3 + ν

8
ρω2r2

σθ = A − B
b2

r2 − 1 + 3ν

8
ρω2r2

(132)

where b is the external radius of the disc, and the parameters A and B depend on ω
only. For a solid disc, B must be zero in order that the stresses are finite at the center,
while the boundary condition σr = 0 at r = b gives A = (3 + ν)ρω2b2/8. The stress
distribution for the solid disc therefore becomes

σr = 1
8ρω

2(3 + ν)(b2 − r2)

σθ = 1
8ρω

2[(3 + ν)b2 − (1 + 3ν)r2]
(133)

The displacement is then obtained from (131) as

u = 1 − ν

8E
ρω2r[(3 + ν)b2 − (1 + ν)r2] (134)

Both the stresses are tensile and σθ� σr , the equality holding only at r = 0 where
the stresses have the greatest magnitude. Yielding will therefore start at the center
of the disc when σr = σθ = Y at this point. If ω=ωe at the onset of yielding, then
from (133),

ρω2
e b2 = 8Y

3 + ν

For an annular disc with internal radius a and external radius b, the boundary
conditions are σr = 0 at r = a and r = b. These conditions give

A = 3 + ν

8
ρω2(a2 + b2) B = −3 + ν

8
ρω2a2

and the elastic stress distribution becomes

σr = 3 + ν

8
ρω2
(

a2 + b2 − a2b2

r2 − r2
)

σθ = 3 + ν

8
ρω2
(

a2 + b2 + a2b2

r2 − 1 + 3ν

3 + ν
r2
) (135)

From (131) and (135), the displacement is obtained as

u = (3 + ν)(1 − ν)

8E
ρω2r

{
a2 + b2 −

(
1 + ν

3 + ν

)
r2 −
(

1 + ν

1 − ν

)
a2b2

r2

}
(136)
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The radial stress is a maximum at r = √
ab, and the maximum value of σr is

(3 + ν)ρω2(b − a)2/8. The hoop stress σθ has the greatest value

1
4ρω

2[(3 + ν)b2 + (1 − ν)a2]

occurring at r = a. According to Tresca’s yield criterion, yielding will begin at the
inner radius when σθ = Y . Hence the angular velocity ωe at the initial yielding is
given by

ρω2
e b2 = 4Y

(3 + ν) + (1 − ν)(a2/b2)
(137)

As a tends to zero, the value of ρω2
e b2 for an annular disc approaches a limit which

is half of that for a solid disc, since there is a stress concentration factor of 2 in the
elastic range of deformation.† It is important to note that the angular velocity at
the onset of yielding for the von Mises criterion is identical to that for the Tresca
criterion.

(ii) Elastic/plastic discs If the speed of rotation is further increased, the disc will
consist of an inner plastic zone surrounded by an outer elastic zone. Within the
plastic region, which is assumed to extend to a radius c, the stresses are required to
satisfy the equilibrium equation (130) and the Tresca criterion σθ = Y . For a solid
disc σr must be finite at r = 0, while for an annular disc σr must vanish at r = a. The
integration of (130) for a nonhardening material therefore gives

σr =




Y − 1

3
ρω2r2 solid disc (0 � r � c)

Y
(

1 − a

r

)
− 1

3
ρω2r2
(

1 − a3

r3

)
annular disc (a � r � c)

(138)

The stresses in the elastic region (c� r� b) are of the form (132) for both solid and
hollow discs. In view of the boundary condition σr = 0 at r = b, these expressions
may be rewritten in the more convenient form

σr = B

(
b2

r2 − 1

)
+ 3 + ν

8
ρω2b2
(

1 − r2

b2

)
c � r � b

σθ = −B

(
b2

r2 + 1

)
+ 1 + 3ν

8
ρω2b2
(

3 + ν

1 + 3ν
− r2

b2

) (139)

For a given position of the elastic/plastic boundary, B and ω can be determined from
the conditions of continuity of the stresses across r = c. For a solid disc,

B = −1

8
(1 + 3ν)

ρω2c4

3b2

† For a three-dimensional analysis of the rotating disc problem, see S. Timoshenko, and
J. N. Goodier, Theory of Elasticity, p. 388, 3d ed., McGraw-Hill Book Company, New York (1970).
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and the elastic/plastic angular velocity is given by

ρω2b2

3Y
=
{

1 + 1 + 3ν

8

(
1 − c2

b2

)2}−1

(140)

It is equally convenient to find c from (140) for a given ω. The complete expressions
for the stresses in the elastic region of a solid disc become†

σr = ρω2b2

8

[
(3 + ν) − 1

3
(1 + 3ν)

c4

r2b2

](
1 − r2

b2

)
c � r � b

σθ = ρω2b2

8

[
(3 + ν) + (1 + 3ν)

{
c4

3b4

(
b2

r2 + 1

)
− r2

b2

}] (141)

These stresses are the same as those at the initial yielding of a hollow disc of radius
ratio b/c rotating with angular velocity ω and having a uniform radial tension
Y − ρω2c2/3 at the inner radius. Figure 5.17 shows the variation of ρω2b2/Y in
a solid elastic/plastic disc with the movement of the plastic boundary.

In the case of an annular disc, calculations similar to above result in

B = −
{

ac

2b2

(
Y − 1

3
ρω2a2
)

+ 1 + 3ν

24
ρω2 c4

b2

}
(142)

ρω2b2

3Y
=
{

2 − a

c

(
1 + c2

b2

)}/{
2 + 1 + 3ν

4

(
1 − c2

b2

)2
− a3

b2c

(
1 + c2

b2

)}

(143)

Once the angular velocity has been found from (143) for an assumed position of
the plastic boundary, the stresses in the elastic/plastic disc can be calculated from
(138), (139), and (142). As the disc is rendered more and more plastic, ω rapidly
approaches the fully plastic value ω0, where

ρω2
0b2 = 3Y

1 + a/b + a2/b2 (144)

which is independent of ν. Considering b/a = 3, the fully plastic speed of the disc
is found to be 1.324 times that at the initial yielding, assuming ν= 0.3. The angular
velocity attains a maximum when the disc is just fully plastic.

The displacements in the elastic region (c� r� b) are obtained by the direct
substitution of the stresses into the second equation of (131). Considering the solid

† See, for example, W. W. Sokolovsky, Prinkl. Mat. Mekh., 12: 87 (1948). An analysis based on
the von Mises criterion has been discussed by D. W. A. Rees, Z. angew. Math. Mech., 79: 281 (1999).
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Figure 5.17 Variation of angular velocity and hoop strain with radius to the plastic boundary in rotating
discs.

disc, we find

Eu

Yr
= (1 − ν) + ρω2b2

8Y

{
(1 + 3ν)

c2

3b2

[
(1 − ν) + (1 + ν)

c2

r2

]
− (1 − ν2)

r2

b2

}
c � r � b (145)

The determination of the displacement in the plastic region is more involved. How-
ever, a useful approximation is achieved by adopting the total strain theory of Hencky.
Assuming small strains, the plastic stress–strain equation may be written as

∂u

∂r
− 1

E
(σr − νσθ) =

(
2σr − σθ

2σθ − σr

){
u

r
− 1

E
(σθ − νσr)

}

where σθ = Y in view of the yield criterion. Considering the solid disc again and
substituting from (138), the above equation is reduced to

∂u

∂r
−
(

3Y − 2ρω2r2

3Y + ρω2r2

)
u

r
= (1 − 2ν)

ρω2r2

3E

(
6Y − ρω2r2

3Y + ρω2r2

)
(146)



Chakra-05.tex 26/12/2005 12: 57 Page 382

382 theory of plasticity

Since the displacement must be continuous across the elastic/plastic boundary, the
required boundary condition is

(u

r

)
r=c

= (1 − ν)
Y

E
+ νρω2c2

3E

The integration of (146) therefore leads to the displacement in the plastic region as

Eu

Yr
= 1 − 2ν

5

(
4 − ρω2r2

3Y

)
+ 1 + 3ν

5

(
1 + ρω2c2

3Y

)5/2(
I + ρω2r2

3Y

)−3/2

0 � r � c (147)

where ω is given by (140). The hoop strains at r = 0 and r = b are shown in Fig.
5.17. It may be noted that the stress ratio at any given radius, once the element is
overtaken by the plastic boundary, decreases slightly with the subsequent growth of
the plastic zone. The displacement given by (147) cannot, therefore, be significantly
different from that obtained by a numerical solution of the relevant Prandtl-Reuss
equation.†

(iii) Instability in rotating discs When the disc is rotated in the fully plastic range,
the changes in geometry become significant. For a sufficiently work-hardening mate-
rial, the speed of rotation initially increases with increasing plastic strain. Since large
strains are involved, it is reasonable to assume that the material is rigid/plastic. Con-
sidering an annular disc, let a0 and b0 denote the initial radii of the disc, a and b
being their current values. The equation of radial equilibrium is

∂

∂r
(hrσr) = h(σθ − ρω2r2) (148)

where r is the current radius to a typical particle, and h the local thickness of the
disc of uniform initial thickness h0. If the initial radius to the particle is denoted by
r0, the radial and circumferential strains may be written as

εr = ln

(
1 + ∂u

∂r0

)
εθ = ln

(
1 + u

r0

)
(149)

where u is the radial displacement, equal to r − r0, of a typical particle.
If Tresca’s yield criterion is adopted, σθ must be equal to the current uniaxial

yield stress σ. The analysis is greatly simplified if Tresca’s associated flow rule is
also employed. Then εr vanishes and (149) gives ∂u/∂r0 = 0, which means that u is

† The elastic/plastic stresses in a rotating ray have been analyzed by P. G. Hodge, J. Appl. Mech.,
24: 311 (1955). The plastic design of rotating discs has been considered by J. Heyman, Proc. Inst. Mech.
Eng., 172: 531 (1958), Proc. 3d U.S. Nat. Congr. Appl. Mech., p. 551 (1958).
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constant at any given stage. Since hr = h0r0 in view of the incompressibility of the
material, and the fact that dr = dr0, equation (148) becomes

∂

∂r0
(r0σr) = r0σ

u + r0
− ρω2r0(u + r0)

Integrating between the limits r0 = a0 and r0 = b0, and remembering that σr vanishes
at both the limits, we have

1

6
ρω2[2(b3

0 − a3
0) + 3u(b2

0 − a2
0)] =
∫ b0

a0

σr0 dr0

u + r0

Adopting the work-hardening hypothesis, we write σ= F(εθ), where the function
F defines the stress–strain curve in uniaxial tension. Changing the variable of the
above integral to εθ by means of (149), and introducing dimensionless quantities
α= b0/a0 and η= u/a0, the above equation may be written as

1

6
ρω2a2

0 = η[ f (εb) − f (εa)]

2(α3 − 1) + 3η(α2 − 1)
(150)

where

f (εθ) = −
∫ εθ

0

F(εθ)

(eεθ − 1)2 dεθ (151)

the hoop strains at the inner and outer radii being denoted by

εa = ln(1 + η) εb = ln
(

1 + η

α

)
The fully plastic rotation of the disc will be initially stable if dω/dη is positive

at η= 0. Using (150) and (151), the condition for stability of the initial state is
obtained as

1
2 (α2 − 1)ρω2

0a2
0 < [F ′(0) − F(0)] ln α

where ω0 is given by (144), and the prime denotes differentiation with respect to the
argument. This gives

F ′(0) > Y

{
1 + 3(α2 − 1)(α− 1)

2(α3 − 1) ln α

}
(152)

If the initial rate of hardening satisfies the above inequality, the disc will become
unstable at a later stage when the angular velocity attains a maximum.† From (150),
the condition dω/dη= 0 gives

η[ f (εb) − f (εa)]

αφ(εb) − φ(εa)
= 1 + 3

2

(
α2 − 1

α3 − 1

)
η

† The present analysis is an extension of that due to H. J. Weiss and W. Prager, J. Aero. Sci., 21:
196 (1954), and a generalization of that presented by M. J. Percy and P. B. Mellor, Int. J. Mech. Sci., 6:
421 (1964). A bifurcation analysis has been carried out by V. Tvergaard, ibid., 20: 109 (1978).
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where φ(εθ) = F(εθ) exp(−εθ) (153)

It is convenient to use an empirical stress–strain equation expressed by F(εθ) = Cεn
θ ,

where C and n are empirical constants. Expanding 1/(eεθ − 1)2 in powers of εθ , the
integral in (151) is readily evaluated, giving

f (εθ) = Cεn
θ

[
1

n
+ 1

(1 − n)εθ
− 5εθ

12(1 + n)

]
(154)

with an error of less than 1 percent over the range 0<εθ < 0.5. When the value of
η has been found from (153) and (154) by trial and error, the maximum angular
velocity can be calculated either from (150), or more conveniently from the formula

ρω2a2
0 = 3[αφ(εb) − φ(εa)]

α3 − 1
(155)

obtained from (150) and (153). It can be shown that in the limiting case of a thin
ring (α
 1), the hoop strain is n/2 at instability. Values of the bore strain εa and the
speed factor ρω2b2

0/C at the onset of plastic instability are plotted as functions of
the radius ratio α in Fig. 5.18 for n = 0.05 and n = 0.10. For large values of α, the
instability strain can be considerably greater than the uniaxial value n. Results based
on the Hencky theory,† represented by the broken curves, predict an instability strain
somewhat higher than that given by the Tresca theory.‡

(iv) Rotating cylinders A solid circular cylinder of radius b is rotated about its axis,
the angular velocity at any instant beingω. The cylinder is assumed to be sufficiently
long compared with its radius so that end effects are negligible. If the cylinder is
free to contract in the axial direction, the axial strain εz is a negative constant at
each stage. The equation of radial equilibrium is still (130), but the compatibility
equation in the elastic range is obtained by replacing νwith ν/(1 − ν). It is then easy
to show that

σr = 1

8

(
3 − 2ν

1 − ν

)
ρω2(b2 − r2)

σθ = 1

8
ρω2
[(

3 − 2ν

1 − ν

)
b2 −
(

1 + 2ν

1 − ν

)
r2
] (156)

while the cylinder is completely elastic. Since the resultant longitudinal force across
the cylinder vanishes,

0 =
∫ b

0
rσz dr = 1

2
Eεzb

2 + ν

∫ b

0
r(σr + σθ) dr

† Solutions based on the Hencky theory have been discussed by M. Zaid, J. Aero. Sci., 20: 369
(1953), and also by M. J. Percy and P. B. Mellor, op. cit. Discs of uniform strength have been discussed
by N. E. Waldren, M. J. Percy, and P. B. Mellor, Proc. Inst. Mech. Eng., 180: 111 (1966).

‡ For experimental results on the bursting speed of rotating discs, see E. N. Robinson, Trans.
ASME, 66: 373 (1944), and D. H. Winne and B. M. Wundt, Trans. ASME, 80: 1643 (1958).
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Figure 5.18 Instability strains and bursting speed parameters for hollow rotating discs of uniform
thickness.

in view of the stress–strain equation. Substitution for σr + σθ from (156) results in

Eεz = −1

2
νρω2b2 σz = νρω2

4(1 − ν)
(b2 − 2r2) (157)

Thus σz is tensile for r< b/
√

2 and compressive for r> b/
√

2. Using the stress–
strain equation corresponding to εθ , the radial displacement is obtained from (156)
and (157) as

u = ρω2r

8E(1 − ν)
[(3 − 5ν)b2 − (1 + ν)(1 − 2ν)r2] (158)

It is easy to see that σθ� σr >σz throughout the cylinder. Hence, if Tresca’s
yield criterion is adopted, we have to consider the stress difference

σθ − σz = ρω2

8(1 − ν)
[(3 − 4ν)b2 − (1 − 2ν)r2]
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which has the greatest magnitude at r = 0. Yielding will therefore start on the axis
of the cylinder for an angular velocity ωe, where

ρω2
e b2 = 8Y

(
1 − ν

3 − 4ν

)

Since σr = σθ on the axis, this is also true for the von Mises criterion.
If the angular velocity is increased to a value somewhat larger than ωe, there

will be a plastic core of radius c, surrounded by an elastic annulus. The radial and
circumferential stresses in the elastic region (c� r� b) may be expressed as

σr = B

(
b2

r2 − 1

)
+ 1

8

(
3 − 2ν

1 − ν

)
ρω2b2
(

1 − r2

b2

)

σθ = −B

(
b2

r2 + 1

)
+ 1

8
ρω2b2

[(
3 − 2ν

1 − ν

)
−
(

1 + 2ν

1 − ν

)
r2

b2

] c � r � b (159)

where B is a parameter that depends on c. In the plastic region, the stresses must
satisfy the yield criterion, which is taken as

σθ − σz = σr − σz = Y 0 � r � c

The stress point is thus assumed to remain at an appropriate corner of the yield
hexagon, work-hardening being neglected.† Since the stresses given by (159) must
be equal to one another at r = c, we have

B = 1

8

(
1 − 2ν

1 − ν

)
ρω2c4

b2

Within the plastic zone (0� r� c), the stresses are obtained by integrating the
equilibrium equation (130) withσr = σθ , and using the condition of continuity across
r = c. Thus

σr = σθ = 1

8
ρω2b2

[(
3 − 2ν

1 − ν

)
+
(

1 − 2ν

1 − ν

)
c2

b2

](
1 − c2

b2

)
+ 1

2
ρω2(c2 − r2)

0 � r � c (160)

The axial stress in the plastic region is σz = −Y + σr by the yield criterion, while in
the elastic region, σz = Eεz + ν(σr + σθ) by Hooke’s law. In view of the continuity
of the stresses across r = c,

Eεz = −Y + (1 − 2ν)σc

† P. G. Hodge, Jr. and M. Balban, Int. J. Mech. Sci., 4: 465 (1962).
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where σc denotes the radial or hoop stress at r = c, and is expressed by

σc = ρω2b2

8(1 − ν)

[
(3 − 2ν) + (1 − 2ν)

c2

b2

](
1 − c2

b2

)

The distribution of σz in the elastic and plastic regions can be conveniently expressed
in terms of σc. Thus

σz =




−Y + σc + 1

2
ρω2(c2 − r2) 0 � r � c

−Y + σc + νρω2

2(1 − ν)
(c2 − r2) c � r � b

(161)

The angular velocity corresponding to a given radius to the plastic boundary can
now be determined from the condition of zero resultant axial force. Using the above
expressions for σz, and integrating, we arrive at the formula

ρω2b2

4Y
=
{

1 + 1

2

(
1 − 2ν

1 − ν

)(
1 − c2

b2

)2}−1

(162)

The fully plastic value of ρω2b2 is 4Y , which may be compared with the value 3Y
for a rotating disc without a hole. The dependence of the speed factor ρω2b2/Y on
the ratio c/b is displayed in Fig. 5.17.

The radial displacement in the elastic region can be directly obtained from (159)
and (161), using Hooke’s law. In particular, the external displacement is given by

Eub

Yb
= ν + ρω2b2

8Y

(
1 − 2ν

1 − ν

)[
(2 − 3ν) + (2 − ν)

c2

b2

](
1 − c2

b2

)
(163)

In the plastic region, the displacement must satisfy the equation of elastic compress-
ibility, and be continuous across r = c, while vanishing at r = 0. It turns out that
these conditions cannot be simultaneously satisfied, and to this extent the above
solution must be regarded as approximate.

The elastic compressibility soon becomes negligible, however, if the rotation is
continued into the fully plastic range. Then εr = εθ − 1

2εz throughout the cylinder
irrespective of the rate of hardening of the material. The fully plastic stresses are
easily shown to be

σr = σθ = 1
2ρω

2(b2 − r2) σz = 1
4ρω

2(b2 − 2r2) (164)

The state of stress is therefore a uniform axial compression σ= 1
4ρω

2b2,
together with a varying hydrostatic tension. The rotation becomes unstable when ω
attains a maximum, and this corresponds to dσ/dε= σ, where ε is the axial com-
pressive strain related to σ by the uniaxial stress–strain curve. Hence the axial strain
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at instability is numerically equal to the longitudinal strain at the onset of necking
in simple tension.†

5.7 Infinite Plate with a Circular Hole

(i) Plate under uniform radial tension A large flat plate containing a small circular
hole is subjected to a state of balanced biaxial stress σ. The presence of the hole will
cause large additional stresses in the immediate neighborhood of the hole, but its
effects will be negligible at a distance of a few diameters from its edge, theoretically
vanishing at infinity. In the mathematical formulation of the problem, we therefore
consider an infinitely extended plate. The nonzero stress components σr and σθ must
satisfy the equilibrium equation

∂σr

∂r
= σθ − σr

r
(165)

where the origin is taken at the center of the hole. The corresponding strain
components εr and εθ , assumed to be small, satisfy the compatibility equation

∂εθ

∂r
= εr − εθ

r
(166)

which is readily obtained from the strain-displacement equations

εr = ∂u

∂r
εθ = u

r

Let the radius of the hole be denoted by a. So long as the plate is completely elastic,
the stress distribution is obtained from Lamé’s solution as

σr = σ

(
1 − a2

r2

)
σθ = σ

(
1 + a2

r2

)

The hoop stress is 2σ at the edge of the hole, indicating that there is a stress concen-
tration factor of 2 in the elastic range. Yielding occurs in hoop tension at the edge
of the hole when σ= Y/2, whatever the yield criterion.

For some value of σ greater than Y/2, the plate will be plastic within a radius c.
The material is assumed to be incompressible and strain-hardening according to the
generalized stress–strain law‡

σ

Y
=
(

E ε

Y

)n

σ � Y (167)

† The fully plastic rotation of both solid and hollow cylinders has been treated by E. A. Davis and
F. M. Connelly, J. Appl. Mech., 26: 25 (1959), and by E. P. J. Rimrott, J. Appl. Mech., 27: 309 (1960).

‡ The elastic/plastic solution for a finite hollow disc of linearly work-hardening Tresca material
has been given by P. G. Hodge, Jr., J. Appl. Mech., 20: 530 (1953).
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where n is a material constant. It is also assumed that the strains are small enough
to justify the neglect of geometry changes. The stress distribution in the plate will
be largely unaffected by the neglect of elastic compressibility.†

Considering first the Tresca criterion, σθ = Y at the elastic/plastic boundary, and
the stresses in the elastic region (r� c) are found to be

σr = σ − (Y − σ)
c2

r2 σθ = σ + (Y − σ)
c2

r2 r � c (168)

In the plastic region (r� c), the Tresca criterion may be written as σθ = σ. Adopting
the Hencky stress–strain relation, and denoting the stress ratio σr/σθ by s, we have

εr = ε

(
s − 1

2

)
εθ = ε
(

1 − s

2

)
r � c

Inserting in the strain compatibility equation (166), and using the strain-hardening
law (167), we get

1

σ

∂σ

∂r
= n

2 − s

∂s

∂r
− 3n

r

(
1 − s

2 − s

)
(169a)

The substitution σθ = σ and σr = sσ in the equilibrium equation (165) leads to

1

σ

∂σ

∂r
= −1

s

∂s

∂r
+ 1 − s

rs
(169b)

The elimination of σ between the last two equations furnishes

r
∂s

∂r
= (1 − s)

[
2 − (1 − 3n)s

2 − (1 − n)s

]

Since the edge of the hole is stress free, s = 0 at r = a. Integration of the above
equation under this boundary condition results in

a

r
= (1 − s)(1+n)/(1+3n)

[
1 − (1 − 3n)

s

2

]4n/(1−9n2)
(170)

which indicates that s depends only on r for a given material. At the elastic/plastic
boundary r = c, s = 2σ/Y − 1 view of (168). Hence

a

c
=
[
2
(

1 − σ

Y

)](1+n)/(1+3n)
[

3

2
(1 − n) − (1 − 3n)

σ

Y

]4n/(1−9n2)

which relates the extent of the plastic zone to the magnitude of the applied stress.
Evidently, the entire plate becomes plastic (c = ∞) when σ= Y , whatever the value
of n. Eliminating r from Eqs. (169), we get

1

σ

∂σ

∂s
= − 2n

2 − (1 − 3n)s

† B. Budiansky, Q. Appl. Math., 16: 307 (1958).
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At the edge of the hole, s = 0 and σ= λσ, where λ is the elastic/plastic stress concen-
tration factor. At the elastic/plastic boundary, s = 2σ/Y − 1 and σ= Y . Integration
of the above equation therefore furnishes

σ = λσ
[
1 − (1 − 3n)

s

2

]2n/(1−3n)

where λ = Y

σ

[
3

2
(1 − n) − (1 − 3n)

σ

Y

]−2n/(1−3n) (171)

For a nonhardening material, the stress concentration factor is Y/σ, whatever the
yield criterion. When n = 1

3 , the right-hand sides of the above equations become
indeterminate, but direct integration of the differential equations for s and σ gives

r

a
= es/3(1 − s)−2/3 σ = λσe−s/3

(172)
λ = Y

σ
exp

[
1

3

(
2σ

Y
− 1

)]
As σ is increased from Y/2 to Y , the stress concentration factor decreases from 2 to
a limiting value λ∗ = 1.35 for n = 1

3 , and

λ∗ =
[

2

1 + 3n

]2n/(1−3n)

for other values of n. The hoop strain at the bore (equal to ε/2) is still comparable
to that at the initial yielding. For σ= Y , the elastic/plastic boundary disappears and
the outer boundary condition becomes s = 1 at r = ∞. The stresses are then directly
proportional to σ, so long as the strain remains small, and the stress concentration
factor has a constant value equal to λ∗.

If the von Mises yield criterion is adopted, the stresses at the elastic/plastic
boundary must satisfy the equation σ2

r − σrσθ + σ2
θ = Y2. The stress distribution in

the elastic region (r� c) is therefore found as

σr = σ − Yc2

√
3r2

√
1 − σ2

Y2 σθ = σ + Yc2

√
3r2

√
1 − σ2

Y2 r � c (173)

In the plastic region (r� c), the Mises criterion is identically satisfied by writing

σr = 2√
3
σ sin φ σθ = 2√

3
σ cos
(π

6
− φ
)

r � c (174)

where φ is an auxiliary angle. At the edge of the hole r = a, the boundary condition
requires φ= 0, while at the plastic boundary r = c, the continuity of the stresses
requires φ to have the value

φc = sin−1




√
3σ

2Y
− 1

2

√
1 − σ2

Y2


 (175)
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It may be noted that φ−π/6 is equal to the deviatoric angle measured from the
relevant pure shear direction (Fig. 2.2). The Hencky equations for an incompressible
material obeying the von Mises criterion may be expressed as

εr = ε sin
(
φ − π

6

)
εθ = ε cosφ r � c (176)

where ε is related to σ by the strain-hardening law (167). Substitution for the stresses
and strains into (165) and (166) then leads to

1

σ

∂σ

∂r
tan φ + ∂φ

∂r
= 1

2r

(√
3 − tan φ

)
1

σ

∂σ

∂r
− n tan φ

∂φ

∂r
= −

√
3 n

2r

(√
3 − tan φ

) (177)

from which σ can be eliminated to obtain the differential equation

r
∂φ

∂r
=
(√

3 − tan φ
) (

1 + √
3 n tan φ

)
2(1 + n tan2 φ)

In view of the boundary condition φ= 0 at r = a, the integration of the foregoing
equation gives

a2

r2 = 2√
3

cos
(π

6
+ φ
)(

cosφ + √
3 n sin φ

)−4n/(1+3n2)
exp

[
−√

3

(
1 − n2

1 + 3n3

)
φ

]

(178)

Thus φ is a function of r only for a given n. The position of the elastic/plastic
boundary for any given σ can be found by setting r = c and φ=φc in (178). The
elimination of r from (177) gives

1

σ

∂σ

∂φ
= −n

( √
3 − tan φ

1 + √
3 n tan φ

)

which is integrated under the boundary condition σ= λσ at r = a to obtain

σ

σ
= λ
(

cosφ + √
3 n sin φ

)−n(1+3n)/(1+3n2)
exp

[
−√

3
n(1 − n)

1 + 3n2 φ

]
(179)
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The stress concentration factor λ is finally obtained from the fact that σ= Y at the
elastic/plastic boundary where φ=φc. Thus, from (175) and (179), we get†

λ = Y

σ


(1 + 3n)

σ

2Y
+

√
3(1 − n)

2

√
1 − σ2

Y2




n(1+3n)/(1+3n2)

× exp

[√
3

n(1 − n)

1 + 3n2 φc

]
(180)

When λ has been found for a given σ, the spatial distribution of σ follows from
(178) and (179). The limiting value of λ is

λ∗ =
(

1 + 3n

2

)n(1+3n)/(1+3n2)

exp

[
πn(1 − n)√
3(1 + 3n2)

]

corresponding to σ= Y and φc =π/3, the plate being then just fully plastic. For
any further increase in σ, the stress concentration factor remains constant so long as
geometry changes are negligible.

It follows from both (170) and (178) that the stress ratio remains constant at any
given radius once the element has become plastic. The above solutions will therefore
be identical to those based on the Prandtl-Reuss equations. The results for the stress
concentration factor are shown graphically in Fig. 5.19 for various values of n. It is
evident that the Tresca solution gives much simpler results without significant loss
in accuracy.

(ii) Expanding a circular hole Consider an infinite plate of uniform thickness
containing a circular hole which is subjected to gradually increasing radial pressure
p around its edge. While the plate is entirely elastic, the sum of the radial and
circumferential stresses is constant at each stage, in view of Lamé’s solution. Since
the stresses vanish at infinity, σr + σθ = 0 throughout the plate. We therefore have a
state of pure shear given by

σr = −pa2

r2 σθ = pa2

r2

where a is the radius of the hole. Yielding will begin at the edge of the hole when
p = k, where k is equal to Y/

√
3 for the von Mises criterion. If the pressure is further

increased to render the plate plastic within a radius c, the stresses in the elastic
region are

σr = −kc2

r2 σθ = kc2

r2 r � c

† These results have been obtained by J. Chakrabarty, unpublished work (1976). A more involved
analysis, requiring the solution of a non-linear differential equation, has been given by B. Budiansky
and O. L. Mangasarian, J. Appl. Mech., 27: 59 (1960). See also H. Ishilkawa, Z. angew. Math. Mech.,
55: 171 (1975).
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Figure 5.19 Variation of the elastic/plastic stress concentration factor with the applied radial tension.

We begin with an ideally plastic material with constant yield stress k. To find
the stresses in the plastic region (r� c), it is convenient to express the von Mises
yield criterion in the parametric form

σr = −2k sin
(π

6
+ φ
)

σθ = 2k sin
(π

6
− φ
)

r� c (181)

Evidently, φ= 0 on the elastic/plastic boundary r = c. The angle φ is the same as that
which the stress vector in the deviatoric plane makes with the direction representing
pure shear in the plane of the applied stresses. It may be noted that the maximum
principal stress difference at any radius is σθ − σr = 2k cos φ. Substitution in the
equilibrium equation (165) gives

cos
(π

6
+ φ
)∂φ
∂r

= −cosφ

r

of which the integral, satisfying the condition φ= 0 at r = c, is easily shown to be

c2

r2 = e
√

3φ cosφ (182)
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The internal pressure necessary to move the elastic/plastic boundary to a radius c is
given parametrically by†

p = 2k sin
(π

6
+ α
) c2

a2 = e
√

3α cosα (183)

where α is the value of φ at r = a. As p increases from k, α increases from zero and
eventually becomes equal to π/3, giving c/a = 1.751, when p attains the limiting
value of 2k. The circumferential stress at the edge of the hole is then a compression
of amount k. Since a nonhardening material cannot sustain a stress of magnitude
greater than 2k, the plate must start to thicken appreciably to support any further
increase in the radial load.‡

Releasing the expanding pressure by an amount q is equivalent to superposing
the elastic stresses

σ′
r = qa2

r2 σ′
θ = −qa2

r2

on the above elastic/plastic stress distribution, so long as there is no secondary
yielding. If q (less than p) is sufficiently large, yielding will restart at the edge of the
hole when the residual value of σr − σθ is equal to 2k cos α. It follows that secondary
yielding occurs when q = 2k cos α. From (183), the minimum value of p for the
yielding to occur on complete unloading (q = p) is

√
3k, corresponding to α=π/6

and c/a = 1.465.
For p>

√
3k, the zone of secondary yielding on complete unloading will spread

to a radius ρ. If φ=β at r = ρ, the value of σr − σθ superposed at this radius due
to the unloading is 4k cosβ. Hence, the residual stresses in the region ρ� r� c are
obtained by the superposition of the elastic stresses§

σ′
r = 2k

(
c2

r2

)
e−√

3β σ′
u = −2k

(
c2

r2

)
e−√

3β

where e
√

3β cosβ = c2/ρ2 β � π/6
(184)

on those given by (181). In the secondary plastic zone a� r� ρ, the residual stresses
may be expressed as

σr = −2k sin
(
ψ − π

6

)
σθ = −2k sin

(
ψ + π

6

)
a� r� ρ (185)

† This solution is due to A. Nadai, Theory of Flow and Fracture of Solids, Vol. 1, p. 473, McGraw-
Hill Book Company, New York (1950).

‡ For a finite disc of external radius b, the boundary condition at r = c is modified to φ=φc, where
sec φc =√1 + c4/3b4. The stresses in the elastic region are given by (32) with k replaced by k cos φc.

§ J. M. Alexander and H. Ford, Proc. R. Soc., A, 226: 543 (1954). These authors have also given
numerical solutions for a work-hardening Prandtl-Reuss material up to large values of the strain.



Chakra-05.tex 26/12/2005 12: 57 Page 395

further solutions of elastoplastic problems 395

where ψ=β at r = ρ for the stresses to be continuous across this radius. Since the
hole is stress free on complete unloading, ψ=π/6 at r = a. Substitution from (185)
into (165) results in the differential equation

cos
(
ψ − π

6

) ∂ψ
∂r

= cosψ

r

which gives, on integration, the spatial distribution of ψ as

r2

a2 =
√

3

2
secψ exp

[√
3
(
ψ − π

6

)]
(186)

Setting r = ρ and ψ=β in (186), and using the last equation of (184), we get

e−√
3β =
(

2√
3

eπ/2
√

3
)−1/2 a

c

 0.591

a

c

In view of (181), (182), and (184), the residual stresses in the region ρ� r� c
(where β�φ� 0) may now be written as

σr = −2k
[
sin
(π

6
+ φ
)

−
(

0.591
a

c

)
e
√

3φ cosφ
]

σθ = 2k
[
sin
(π

6
− φ
)

−
(

0.591
a

c

)
e
√

3φ cosφ
] ρ � r � c (187)

the spatial distribution of φ being given by (182). The residual hoop stress changes
sign as φ varies from β at r = ρ to zero at r = c. The residual radial stress has a
maximum numerical value where β−φ is 0.4 radians. In the remainder of the plate,
the residual stresses are

−σr = σθ = k
(

1 − 1.182
a

c

) c2

r2 r � c

The angle β increases from π/6 as c/a is increased from 1.465. In the limiting
case of c/a = 1.751, β= 35.93◦ and ρ/a = 1.131. The stress distribution in the
elastic/plastic plate and the residual stresses on complete unloading are shown in
Fig. 5.20 for c/a = 1.751. The numerically largest residual stress is of magnitude Y ,
occurring at the edge of the hole which is in a state of uniaxial compression.

When the material strain-hardens, an immediate simplification is achieved, with-
out loss of generality as far as the determination of the stresses is concerned, by
assuming the material to be incompressible. The von Mises yield criterion and the
Hencky stress–strain relation may be written parametrically as

σr = − 2σ√
3

sin
(π

6
+ φ
)

σθ = 2σ√
3

sin
(π

6
− φ
)

εr = −ε cos
(π

6
− φ
)

εθ = ε cos
(π

6
− φ
) r � c (188)
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Figure 5.20 Stress distribution in an infinite plate containing a circular hole which is expanded by radial
pressure.

where σ and ε are related to one another by the strain-hardening law (167).
Substitution into (165) and (166) then gives(

1 + √
3 tan φ
) 1

σ

∂σ

∂r
+
(√

3 − tan φ
) ∂φ
∂r

= −2

r(√
3 − tan φ

) 1

σ

∂σ

∂r
− n
(

1 + √
3 tan φ
) ∂φ
∂r

= −2
√

3n

r

(189)

The space variable r is easily eliminated from these equations, yielding

1

σ

dσ

dφ
= 4n√

3(1 − n) − (1 + 3) tan φ
(190)

The total derivative is used in this equation because σ depends only on φ. Using
the boundary condition σ= Y at the elastic/plastic boundary where φ= 0, the above
equation is integrated to

σ

Y
=
[

cosφ − 1√
3

(
1 + 3n

1 − n

)
sin φ

]−n(1+3n)/(1+3n2)

exp

[√
3n(1 − n)

1 + 3n2 φ

]
(191)
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Equations (188) and (191) give the stresses and strains as functions of φwhich varies
with both r and c. Eliminating σ from (189), we get[

tan φ +
√

3(1 − n) tan φ − (3 + n)√
3(1 − n) − (1 + 3n) tan φ

]
∂φ

∂r
= 2

r

which is integrated under the boundary condition r = c at φ= 0 to give the spatial
distribution of φ as

c2

r2 =
[

cosφ − 1√
3

(
1 + 3n

1 − n

)
sin φ

]−4n/(1+3n2)

exp

[√
3

(
1 − n2

1 + 3n2

)
φ

]
cosφ

(192)

When n = 0, the above equation reduces to (182). If the right-hand sides of (191)
and (192) are denoted by f (φ) and g(φ) cos φ respectively, the relationship between
p and c can be expressed parametrically as†

p

Y
= 2√

3
f (α) sin

(π
6

+ α
) c2

a2 = g(α) cosα

where φ=α corresponds to r = a as before. As the expansion proceeds, tanα
approaches the asymptotic value

√
3(1 − n)/(1 + 3n). The validity of the infinitesi-

mal theory requires, however, that α should be limited to values for which εθ at the
edge of the hole is sufficiently small (less than about 5 percent).

When an element first becomes plastic, φ= 0 and the stress ratio σr/σθ is −1.
The subsequent variation of φ (and hence the stress ratio) at a given radius can be
determined from (192) for various assumed values of c/r> 1. The stress path is
therefore the same for each element. The angle which the tangent to the stress path
makes with the radial path has the greatest value of tan−1[

√
3(1 − n)/4n] at the initial

point φ= 0. Since inequality (59), Chapter 2, is satisfied at all stages, the use of the
Hencky theory is justified. In Fig. 5.21, the dimensionless radial and circumferential
stresses and the corresponding c/r ratio are plotted for various values of n. Each
stress history curve approaches the straight line σθ/σr = (1 − 3n)/2 asymptotically
as the stresses are increased. The broken curve indicates points on the stress history
curves where the hoop strain is ten times the uniaxial strain at the yield point.‡

(iii) Plates of variable thickness Consider now an infinite plate whose thickness
h varies with the radial distance from the center of the hole. It is assumed that the
thickness is everywhere small enough for the stresses to be averaged through the

† More complicated solutions, based on the Ramberg-Osgood equation for the stress–strain curve,
have been given by O. L. Mangasarian, J. Appl. Mech., 27: 65 (1960), using both Hencky and Prandtl-
Reuss equations.

‡ Finite expansions based on the rigid/plastic assumption have been discussed by several investi-
gators. Relevant references can be found in the paper by J. Chern and S. Nemat-Nasser. J. Mech. Phys.
Solids, 17: 271 (1969). See also J. Chakrabarty, Applied Plasticity, Springer-Verlag, New York (2000).
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Figure 5.21 Relationship between σr , σθ and c/r in the expansion of a circular hole in a strain-hardening
infinite plate.

thickness. The nonzero principal stresses σr and σθ must satisfy the equilibrium
equation, which assumes the form

∂

∂r
(hσr) = h

r
(σθ − σr) (193)

If the thickness of the plate is assumed to vary according to the equation

h = h0

( r

a

)m
where h0 is the thickness at the edge of the hole and m a constant, the equilibrium
equation becomes

r
∂σr

∂r
+ (1 + m)σr = σθ (194)

When m is negative, the solution will be sufficiently accurate if a is large compared
to h0. For positive values of n< 1, the solution will provide a good approximation
for large but finite plates. While the plate is elastic, the stresses and strains obey
Hooke’s law. Substituting for εr and εθ in (166), and using (194), we obtain

∂

∂r
(σr + σθ) + (1 + ν)mσr = 0 (195)
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which is the compatibility equation expressed in terms of the stresses. Elimination
of σθ between (194) and (195) leads to the differential equation

r2 ∂
2σr

∂r2 + (3 + m)r
∂σr

∂r
+ (1 − ν)mσr = 0

which must be solved under the boundary conditions σr = 0, r = ∞ and σr = −p,
r = a. We thus arrive at the stress distribution

σr =−p
(a

r

)γ
σθ = p(γ − m − 1)

(a

r

)γ
(196)

where γ = 1 + m

2
+
√

1 − νm + m2

4

The strains are now easily found by substitution into the stress–strain relations. Since
vm< 1 for all realistic values of m, σr is compressive and σθ tensile throughout the
plate. Hence, if Tresca’s yield criterion is adopted, σθ − σr must be equal to Y at
r = a for the yielding to begin. The pressure at the initial yielding is

pe = Y

γ − m

When the plate is rendered plastic within a radius c by increasing the pressure
to a value greater than pe, the radial pressure transmitted across r = c must be equal
to pe. The stresses in the elastic region are

σr = −pe

(c

r

)γ
σθ = pe(γ − m − 1)

(c

r

)γ
r � c (197)

If the material work-hardens, the stresses in the plastic region must be determined
by using the yield criterion in the form

σθ − σr = σ a � r � c

where σ is the current uniaxial yield stress of the material at any radius r. Tresca’s
associated flow rule furnishes ε̇p

θ = −ε̇p
r > 0, ε̇p

z = 0 indicating that the thickness
strain εz is purely elastic. If the amount of hardening is assumed to be a function
of the plastic work per unit volume, it follows that σ is the same function of εp

θ as
the stress is of the plastic strain in uniaxial tension. Assuming a constant slope H of
the stress–strain curve, we write

σθ − σr = Y + Hεp
θ a � r � c

The elastic parts of εr and εθ are expressed by Hooke’s law, while the plastic parts
are given by the above relation. Thus

H

Y
εr =
(

1 + H

E

)
σr

Y
−
(

1 + νH

E

)
σθ

Y
+ 1

H

Y
εθ =
(

1 + H

E

)
σθ

Y
−
(

1 + νH

E

)
σr

E
− 1

(198)
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If we restrict ourselves to small strains, εr and εθ must satisfy the compatibility
equation (166). Substituting from (198) and using (194), we get

r2 ∂
2σr

∂r2 + (3 + m)r
∂σr

∂r
+
(

1 + E + νH

E + H

)
mσr = 2EY

E + H

The integration of this linear differential equation is straightforward. Excluding the
case m = 0 (which corresponds to a flat plate), the stresses in the plastic region may
be expressed as†

ησr

Y
= 1 − A

(c

r

)1+α − B
(c

r

)1−β

ησθ

Y
= (1 + m) + βA

(c

r

)1+α − αB
(c

r

)1−β r � c (199)

in view of (194). Here A and B are the constants of integration, and

α

β

}
= ±m

2
+
[

1 − m

(
E + νH

E + H

)
+ m2

4

]1/2

η = m

[
1 + (1 + ν)

H

2E

] (200)

It may be noted that α−β= m. The conditions of continuity of σr and σθ across
r = c furnish

A = η+ β − 1

α+ β
+ η(α− 1)

(α+ β)(γ − m)

B = 1 + α− η

α+ β
+ η(1 + β)

(α+ β)(γ − m)

(201)

When the stresses have been found, the strains in the plastic region can be determined
from (198). The plastic part of the strain is given by

ηE

Y
ε

p
θ = −(1 + ν)

m

2
+ E

H

[
A(1 + β)

(c

r

)1+α − B(α− 1)
(c

r

)1−β]
(202)

The relationship between the internal pressure and the extent of the plastic region is
readily obtained by setting σr = −p and r = a in (199). The hoop stress vanishes at
the edge of the hole when c/a = ρ, such that

αBρ1−β − βAρ1+α = 1 + m (203)

The form of the yield criterion used above is valid for all values of c/a� ρ. For a
given rate of hardening, ρ decreases as m increases.

† J. Chakrabarty, Int. J. Mech. Sci., 13: 439 (1971). The particular case m = 1 has been analyzed
by J. M. Alexander and H. Ford (op. cit.), using the Prandtl-Reuss theory.
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It may be noted that for a nonhardening material, α= 1, β= 1 − m, η= m, A = 0
and B = γ/(γ − m). Moreover, it is easily shown that

(α− 1)
E

H
= m

(
1 − ν

2 − m

)
AE

H
= m

2 − m

(
1 + ν

2
+ 1 − ν

2 − m

γ

γ − m

)

when H is vanishingly small. The plastic strain for a nonhardening material therefore
becomes†

Eεp
θ

Y
= 1 + ν

2

(
c2

r2 − 1

)
+ (1 − ν)γ

(2 − m)(γ − m)

{(c

r

)2 −
(c

r

)m}
(204)

The elastic part of the strain is readily obtained from Hooke’s law. The distributions
of stesses and strain for a nonhardening material corresponding to ν= 0.3 and m = 0
and 0.5 are shown graphically in Fig. 5.22 over the range of validity of the solution.

5.8 Yielding Around a Cylindrical Cavity

(i) Symmetrical problem The expansion of a cylindrical cavity in an infinite
medium by the application of uniform internal pressure has been previously dis-
cussed (Sec. 5.2(vii)). A more general problem of elastic/plastic deformation under
combined internal pressure and independent twisting moment will now be consid-
ered. The stress distribution is axially symmetrical and the deformation occurs under
plane strain condition. The relevant equations of equilibrium are

r
∂σr

∂r
= σθ − σr

∂

∂r
(r2τrθ) = 0 (205)

If the radial and circumferential displacements are denoted by u and v respectively,
the components of the strain (assumed small) are given by

εr = ∂u

∂r
εθ = u

r
2γrθ = r

∂

∂r

(v
r

)
(206)

where the polar coordinates (r, θ) are referred to the axis of the cylindrical cavity.
The second of the equilibrium equations (205) is identically satisfied by taking

τrθ = −mk
a2

r2 0 � m � 1

† Large strains for the nonhardening material have been considered by T. G. Rogers, Q. J . Mech.
Appl. Math., 20: 271 (1967), and for a work-hardening material by S. Namat-Nasser, J . Mech. Phys.
Solids, 16: 195 (1968).
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Figure 5.22 Stresses and strains in infinite plates of uniform and variable thicknesses (ν= 0.3).

There is a uniformly distributed shear stress of magnitude mk round the cavity of
radius a. The twisting couple per unit length of the cavity is 2πmka2 acting in
the sense of increasing θ. The remaining stress components, while the material is
entirely elastic, are

σr = −p
a2

r2 σθ = p
a2

r2 σz = 0

by Lamé’s solution, where p is the applied internal pressure. Plastic yielding begins
on the cavity surface when p reaches the value k

√
1 − m2, where k is the yield stress

in pure shear.
Further radially symmetric loading, caused by suitable changes in the two load-

ing parameters p and m, produces a plastic zone within a radius c. The nonzero stress
components in the elastic region are easily found as

σθ = −σr = kc2

r2

√
1 − m2a4

c4 τrθ = −mk
a2

r2 r � c (207)
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The application of Hooke’s law then gives the corresponding displacements

u = (1 + ν)
kc2

Er

√
1 − ma4

c4 v = (1 + ν)m
ka2

Er
r � c (208)

In the plastic region, it would be a good approximation to assume that σz 

1
2 (σr + σθ). Then the Tresca and Mises criteria both reduce to

(σθ − σr)2 + 4τ2
rθ = 4k2

work-hardening being neglected. The second equation of equilibrium and the yield
criterion are identically satisfied by

τrθ = −mk
a2

r2 σθ − σr = 2k

√
1 − m2a4

r4 r � c (209)

The first equation of (205) is then integrated to obtain σr in the plastic region as

σr

k
= −
√

1 − m2a4

r4 − ln

{
r2 − √

r4 − m2a4

c2 − √
c4 − m2a4

}
r � c (210)

which is evidently continuous across r = c. Hence the internal pressure is given by†

p

k
=
√

1 − m2 + ln

{
a2[1 − √

1 − m2]

c2 − √
c4 − m2a4

}
(211)

For a given value of m, as the expansion proceeds, the pressure exceeds 2k ln(c/a)
by a quantity that rapidly approaches a constant value. When m = 1, for instance,
p = 0 at the initial yielding, but the pressure soon becomes approximately equal to
k ln(2c2/a2).

If the ratio c/a is not too large (less than 5, say), the strains in the plastic
region would be small enough to justify neglect of geometry changes. Then the
compressibility equation may be written as

∂u

∂r
+ u

r
= 3

2
(1 − 2ν)(σr + σθ)

which is readily integrated on substitution for σθ from (205). Using the conditions
of continuity of u and σr across r = c, we get

u = kr

2E


(5 − 4ν)

c2

r2

√
1 − m2a4

c4 + 3(1 − 2ν)
σr

k


 r � c (212)

† These equations are due to A. Nadai, Z . Phys., 30: 106 (1924). The solution also holds for a
thin plate (σz = 0), yielding according to Tresca’s yield criterion, provided p/k� 1 + √

1 − m2, which
ensures that the algebraically greater principal stress in the plane of the plane is non-negative.
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where σr is given by (210). The expression for u furnishes εθ − εr by (206).
Subtracting the elastic part expressed by Hooke’s law, we get

εp
u − εp

r = (5 − 4ν)
k

E


c2

r2

√
1 − m2a4

c4 − σθ − σr

2k


 (213)

If m is maintained constant during the expansion, the ratios of the deviatoric stresses
also remain constant, and the Prandtl-Reuss equations become equivalent to the
Hencky equations. We therefore write the relevant stress–strain equation in the form

2γrθ = τrθ

G
+ 2

(
ε

p
θ − ε

p
r

σθ − σr

)
τrθ

where the first term represents the elastic part and the second term the plastic part.
Inserting from (206), (209), and (213), we get

∂

∂r

(v
r

)
= −mka2

Er3

{
(5 − 4ν)

(
c4 − m2a4

r4 − m2a4

)1/2
− 3(1 − 2ν)

}

In view of the continuity of v across r = c, the integral of the above equation becomes

v = kr

2E


(5 − 4ν)

c2

ma2


1 −
√

1 − m2a4

c4

√
1 − m2a4

r4


− 3(1 − 2ν)

ma2

r2


 r � c

(214)

For a given twisting moment specifying m, Eqs. (211), (212), and (214) express the
displacements at any radius in the plastic region as functions of the applied internal
pressure.†

(ii) Unsymmetrical problem One of the few unsymmetrical problems, for which
an analytical treatment is possible, has been discussed by Galin. An infinite medium
containing a cylindrical cavity is subjected to biaxial tensile stresses t1 and t2 under
conditions of plane strain, while a uniform pressure p acts around the cavity. The
three quantities t1, t2, and p are varied in such a way that the plastic zone, which
completely surrounds the cavity, nowhere unloads during the process. It is assumed
that the material is incompressible and the stresses in the plastic region are axially
symmetrical. The axial stress is then equal to 1

2 (σr + σθ), and the yield criterion
becomes

σθ − σr = 2k

† The combined twisting and expansion of an annular plate, for both Tresca and Mises criteria, has
been discussed by R. P. Nordgren and P. M. Naghdi, Int. J. Eng. Sci., 3: 33 (1963); J. Appl. Mech., 30:
605 (1963).
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where k is equal to Y/2 for the Tresca criterion and Y/
√

3 for the Mises criterion. For
no work-hardening, the equilibrium equation (165) and the yield criterion furnish
the stress distribution

σr = −p + 2k ln
r

a
σθ = −p + 2k

(
1 + ln

r

a

)
τrθ = 0 (215)

in the plastic region, in view of the stress boundary condition at r = a. The lines
across which the shear stress has its maximum value k are given by

dr = ±rdθ or r ∼ exp(±θ)
where θ is the polar angle. The lines of shearing stress therefore form an orthogonal
net of logarithmic spirals. The stresses (215) are derivable from the stress function

φ = k

{
−1

2
r2
(

1 + p

k

)
+ r2 ln

r

a

}

as may be verified by the substitution into the relations

σr = 1

r

∂φ

∂r
σθ = ∂2φ

∂r2

which satisfy the equilibrium equation identically. The rectangular components of
the stress are given by

σx + σy = σr + σθ = −2p + 2k
(

1 + 2 ln
r

a

)
σy − σx = 2k cos 2θ τxy = −k sin 2θ

where the polar angle θ is measured counterclockwise from the x axis, which is
taken in the direction of t1. It is convenient to introduce the complex coordinates

z = x + iy = reiθ z = x − iy = re−iθ

where i = √−1, and write the stresses in the complex variable form

σx + σy = −2p + 2k

(
1 + ln

zz

a2

)

σy − σx + 2iτxy = 2ke−2iθ = 2k
z

z

(216)

within the plastic region. It is important to note that the plastic stress function
satisfies the biharmonic equation ∇4φ= 0, which the elastic stress function also
satisfies. Consequently, the stresses can be expressed as analytic functions of z and
z in both elastic and plastic regions of the infinite medium.
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We propose to map the elastic region in the z plane onto the exterior of a unit
circle in a ζ plane, such that the points at infinity in the two planes correspond to
one another. This is achieved by means of the conformal transformation

z = c

(
ζ + m

ζ
+ m1

ζ2 + · · · +
)

ζ = ρeiψ (217)

where c, m, m1, etc., are real constants to be determined from the boundary condi-
tions. The elastic/plastic boundary, which is one of the unknowns of the problem, is
transformed into the unit circle ρ= 1. Since the stresses must be bounded at infinity
and continuous across the elastic/plastic boundary, we can immediately write

σx + σy = −2p + 2k

[
1 + ln

(
1

a2

zz

ζζ

)]
= −2p + 2k

(
1 + 2 ln

r

aρ

)
(218)

for ρ� 1, with the bar denoting complex conjugate. To find the remaining stress
combination in the elastic region, consider the equilibrium equations

∂σx

∂x
+ ∂τxy

∂y
= 0

∂τxy

∂x
+ ∂σy

∂y
= 0

Multiplying the second of these equations by i and subtracting from the first, and
observing that

∂

∂x
= ∂

∂z
+ ∂

∂z

∂

∂y
= i

(
∂

∂z
− ∂

∂z

)

where z and z are taken as independent variables, we obtain

∂

∂z
(σy − σx + 2iτxy) = ∂

∂z
(σx + σy) = 2k

z
− 2k/ζ

dz/dζ

by (218), since z and z depend only on ζ and ζ respectively. This is readily integrated
to give

σy − σx + 2iτxy = 2k

[
z

z
− z/ζ

dz/dζ
+ f (ζ)

]
(219)

In view of (216), the continuity of the stresses across the elastic/plastic boundary
requires

f (ζ) = z

ζ(dz/dζ)
on ζ = 1

ζ

since ζζ= 1 on the unit circle. Using (217), we obtain the unknown function as

f (ζ) = 1 + mζ2 + m1ζ
3 + · · ·

ζ2 − m − 2m1/ζ − · · ·
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Since f (ζ) must remain finite at infinity, it is evident that m1 = m2 = · · · = 0. Hence

z = c

(
ζ + m

ζ

)
f (ζ) = 1 + mζ2

ζ2 − m
(220)

Substitution into (219) finally gives the required stress combination

σy − σx + 2iτxy = 2k

[
z

z
− ζ

ζ

(
ζ

2 + m

ζ2 − m

)
+ 1 + mζ2

ζ2 − m

]
(221)

As |ζ| tends to infinity, z/z tends to ζ/ζ, and the expression in the square bracket of
the above equation tends to m. Since σx = t1, σy = t2, and τxy = 0 at infinity, (218)
and (221) furnish†

m = t2 − t1
2k

ln
c

a
= 1

2

(p

k
− 1
)

+ t1 + t2
4k

(222)

The real and imaginary parts of the mapping function z(ζ) give

x = c

(
ρ + m

ρ

)
cosψ y = c

(
ρ − m

ρ

)
sinψ

The elastic/plastic boundary, which corresponds to ρ= 1, is therefore an ellipse
(Fig. 5.23) whose semiaxes are c(1 + m) and c(1 − m) respectively, ψ being the
eccentric angle of the ellipse. Since m≷ 0 for t2≷ t1 in view of (222), the major axis
of the ellipse coincides with the direction of the lesser applied tension. When t1 = t2,
the elastic/plastic boundary reduces to a circle of radius c. The polar coordinates
(r, θ) of any point in the physical plane, corresponding to a point (ρ, ψ) in the
transformed plane, are given by

r2

c2 = ρ2 + 2 mρ cos 2ψ + m2

ρ2

tan θ =
(
ρ2 − m

ρ2 + m

)
tanψ

ρ � 1 (223)

As ρ tends to infinity, r/ρ tends to c and θ tends to ψ. Returning to Eq. (221), and
separating the real and imaginary parts, we get

σy − σx = 2k

{
cos 2θ − (ρ2 − 1)[(ρ2 + m2) cos 2ψ − m(ρ2 + 1)]

ρ4 − 2mρ2 cos 2ψ + m2

}

τxy = k

{
− sin 2θ + (ρ2 − 1)(ρ2 − m2) sin 2ψ

ρ4 − 2mρ2 cos 2ψ + m2

} (224)

† This solution is due to L. A. Galin, Prikl. Mat. Mekh., 10: 365 (1946). For an extension of Galin’s
solution, based on Eqs. (209) for the stresses in the plastic region, see O. S. Parasyuk, Prikl. Mat. Mekh.,
13: 367 (1948).
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Figure 5.23 Cylindrical cavity in an infinite medium unsymmetrically loaded by biaxial tensions in
plane strain (t1 > t2).

The stress distribution in the elastic region (ρ� 1) can be calculated from (218),
(223), and (224) for any suitable values of m and c. Along the y axis, the principal
stress perpendicular to this axis is

(σx)θ=π/2 = −p + 2k

(
1 + ln

r

aρ

)
− k(1 + m)

(
ρ2 − 1

ρ2 + m

)
(225)

The stress rapidly decreases outward from the plastic boundary to approach its value
at infinity. Taking for instance p = 0, t1 = 3k and t2 = 2.5k, giving m = −0.25 and
c = 2.4a, we find that σx varies from 4.2k at r = 3a (apex of the ellipse) to 3.2k at
r = 7a.

For the solution to be valid, the ellipse must completely surround the circular
hole, requiring c(1 − |m|)� a. Hence

t1 + t2
2k

+ 2 ln

(
1 −
∣∣∣∣ t2 − t1

2k

∣∣∣∣
)
� 1 − p

k
(226)

in view of (222). The permissible values of t1 and t2 for given values of p, such
that the plastic zone just surrounds the hole, are shown in Fig. 5.24. It follows that
a single applied tension will not give a plastic region completely surrounding the
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Figure 5.24 Permissible range of values of t1, t2, and p for the applicability of Galin’s solution.

cavity unless p> k, which is the pressure required to cause yielding at r = a if the
tensions were absent.†

The validity of the solution also requires that the tensions and the internal pres-
sure are varied in such a manner that successive ellipses contain their predecessors.
One way of ensuring this is to maintain a constant value of m, so that the successive
ellipses are concentric with one another. Thus, the tensions are varied at the same
rate ṫ (say) once the ellipse is formed, and the solution will then hold if ċ> 0. In
view of (222), the last condition is equivalent to ṫ + ṗ> 0 throughout the loading.

It is not known how the loads should be varied to produce the first ellipse
touching the circular hole. The initial problem is not even statically determined
unless the eccentricity of the ellipse is less than a certain value. For this limiting
value of m, there are four diametrically opposite points on the ellipse where the
tangents are along one of the maximum shear stress directions. The acute angle

† A plane strain analysis of an incompressible elastic/plastic wedge under a uniform normal pressure
on one boundary has been reported by P. M. Naghdi, J. Appl. Mech., 25: 98 (1956).
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which each of these tangents makes with the respective radius vector is therefore
equal to π/4. The included angle will always exceed π/4 if |(dr/dθ)|< r. Using
(223) with ρ= 1, the inequality may be written as

|2m( cos 2θ ± sin 2θ)| < 1 + m2

The expression on the left-hand side has its greatest value equal to 2
√

2|m|, and the
critical value of |m| is therefore

√
2 − 1, the critical aspect ratio being

√
2 + 1. For

greater aspect ratios, the stress distribution cannot be determined from the stress
boundary conditions alone.†

Problems

5.1 A thick-walled spherical shell having an internal radius a and an external radius b is rendered
partially plastic by the application of an internal pressure p. The material of the shell hardens linearly
with a constant plastic modulus H. Introducing the assumption of complete incompressibility of the
material, and neglecting changes in geometry, show that the pressure necessary for the elastic/plastic
boundary to have a radius c is given by

(
1 + H

E

)
p = 2

3
Y

{
1 − c3

b3 + ln
c3

a3 + H

E

(
c3

a3 − c3

b3

)}

where Y denotes the uniaxial yield stress of the material.

5.2 The internal radius of a thick spherical shell increases from an initial value a0 to a current value
a when the shell is expanded into the fully plastic range by the application of internal pressure. The
uniaxial stress–strain curve of the material is expressed by the equation σ= F(ε). Neglecting elastic
strains, show that the condition for plastic instability may be written as

φ(ρ3 − 1) = φ

{
a3

0

b3
0

(ρ3 − 1)

}
φ(x) = F[ 2

3 ln(1 + x)]

1 + x

where ρ= a/a0 and b0 is the initial external radius of the shell. Assuming F(ε) = Cεn, where C and n
are constants, compute the hoop strain on r = a at instability for b0/a0 = 2 and n = 0.2.

Answer: εθ = 0.148.

5.3 A multilayer cylinder having an internal radius a0 and an external radius an is made up of n thick-
walled tubes of the same material with a shear yield stress k. The compound cylinder is assembled
by shrink-fit, and is designed in such a way that yielding occurs simultaneously in all cylinders when
subjected to uniform internal pressure at r = a0. Assuming Tresca’s yield criterion, show that the yield
pressure is a maximum when the individual cylinders have the same wall ratio, and that the maximum
value of the pressure is

p = nk

{
1 −
(

a0

an

)2/n
}

5.4 A compound tube is made up of two thick tubes, the internal radius of the inner tube and the external
radius of the outer tube being a and b respectively. The shear yield stress of the inner and outer tubes

† This conclusion follows from a theorem due to R. Hill, The Mathematical Theory of Plasticity,
p. 243, Clarendon Press, Oxford (1950).
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are m2k and k respectively. If yielding occurs simultaneously in the two cylinders on the application
of internal pressure, according to Tresca’s criterion, show that the common radius corresponding to a
maximum pressure is

√
mab, and that the optimum value of the pressure is

p = k
(

1 − 2m
a

b
+ m2
)

If the tubes are made of the same material, with m = 1, show that the initial radial interference required
for the optimum design is

δ = (b − a)
2k

E

√
a

b

5.5 In a closed-ended thick-walled tube subjected to internal pressure, it is a good approximation to
assume σz = 1

2 (σr + σθ) during the elastic/plastic expansion. Show that the maximum engineering shear
strain γ in the elastic region, and the displacement ub at the external surface r = b are then given by

γ = kc2

Gr2 ub = 1

2

(
2 − ν

1 + ν

)
kc2

Gb

where k is the initial yield stress in pure shear, and c the radius to the elastic/plastic boundary. Assuming
the same expression for γ to hold in the plastic region, and the engineering shear stress–strain curve to
be given by τ= k(Gγ/k)n, γ � k/G, where n is a constant, show that the pressure applied at r = a is

p = k

{
1 − c2

b2 + 1

n

[( c

a

)2n − 1

]}

5.6 A thick-walled tube with closed ends is made of a work-hardening material for which the engineering
shear stress–strain curve is expressed by the equation τ= k(Gγ/k)n, γ � k/G, where n is an empirical
constant. Assuming σz = 1

2 (σr + σθ) throughout the tube as in the preceding problem, and estimating
εz from the stress–strain relation in the elastic region, show that the radial displacement in the plastic
region is given by

Eu

kr
= (5 − 4ν)

c2

2r2 − (1 − 2ν)

{
3

2n

[( c

r

)2n − (1 − n)

]
− c2

b2

}

where b is the external radius and c the radius to the elastic/plastic boundary. Use the equations of
equilibrium and elastic compressibility.

5.7 In the case of a partially plastic open-ended tube expanded by internal pressure, the von Mises yield
criterion is closely approximated by the modified Tresca criterionσθ − σr = 1.1Y , where Y is the uniaxial
yield stress, provided the wall ratio b/a is not too large. For the estimation of the tangential strain, it is a
good approximation to assume σz = 0 throughout the tube satisfying the end condition. Using the value
of εz given by the stress–strain relation in the elastic region, and neglecting work-hardening, show that
the displacement in the plastic region is given by

Eu

Yr
= 0.55

{
(1 − ν)

c2

b2 + (2 − ν)
c2

r2 − (1 − 2ν)

(
1 + ln

c2

r2

)}

5.8 A thick-walled tube expanded by internal pressure under conditions of plane strain has its wall ratio
b/a exceeding the critical value given by inequality (37) with p = p0. The material is nonhardening,
and obeys Tresca’s yield criterion and the associated flow rule. Show that, for sufficiently large values
of the radius c to the elastic/plastic boundary, there is an inner plastic zone extending to r = ρ where σz
is equal to σθ , the relationship between c and ρ being

ln
c

ρ
= 1

2

(
1

1 − 2ν
+ c2

b2

)
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Using c as the time scale, and neglecting positional changes, obtain the circumferential strain rate ε̇θ in
the inner plastic region in the form

Gε̇θ
k

= 2(1 − ν)
c

r2 −
(

1 − 2ν

1 + ν

)
1

2c

(
1 − c2

b2

)[
3 − (1 − 2ν)

ρ2

r2

]

5.9 A thick-walled tube with closed ends and having a wall ratio b/a is rendered plastic within a radius
c by the application of an internal pressure p. If a fraction λp of the applied pressure is then released,
and a torque T is superimposed, show that the conditions for yielding not to restart are

(
1 − λpa2

per2

)2

+
(

rT

bTe

)2

< 1 a � r � c

(
c2

r2 − λpa2

per2

)2

+
(

rT

bTe

)2

< 1 c � r � b

to a close approximation on the basis of the von Mises criterion, where pe and Te are the values of p
and T required to cause yielding separately. Assuming b/a = 1.5, and c/a = 1.25, show that yielding
occurs either at r = c or at r = b, and find the range of values of λ that applies in each case.

Answer: 0� λ� 0.37, 0.37� λ� 1.

5.10 A nonhardening rigid/plastic tube of wall ratio b/a is brought to the fully plastic state by the
combined action of an internal pressure p and a twisting moment T under conditions of plane strain.
The ratio of the circumferential strain rate to the shear strain rate on the outer surface of the tube at the
yield point is denoted by λ. Using the von Mises yield criterion and the Lévy-Mises flow rule, show
that the relationship between p and T is given by

p

p0
= sinh−1(mλ) − sinh−1 λ

ln m

T

T0
= m

√
1 + λ2 − √

1 + m2λ2

m − 1

where m = b3/a3, p0 = 2k ln(b/a) and T0 = 2
3πk(b3 − a3). Verify that the (p/p0, T/T0) curve does not

differ appreciably from a quadrant of a circle for small to moderate values of the wall ratio.

5.11 In a thick-walled spherical shell subjected to thermal loading, caused by a steady state outward
flow of heat, and a relatively small internal pressure, yielding begins at the inner radius r = a and spreads
outward with increasing pressure p. Considering the elastic part of radius ratio b/c, which is at the onset
of yielding under a combination of thermal gradient and internal pressure (at r = c), show that

(
1 − a

b

)[3p

Y
+ 2

(
1 − c3

b3 + ln
c3

a3

)]
= βE

Y

(a

c

)(
1 − c

b

)2 (
2 + c

b

)
where β equals α/(1 − ν) times the temperature difference between the radii r = a and r = b. Assuming
b/a = 2, and p/βE = 1

9 throughout the loading, find the range of values c/a for which the above
relationship should hold in the elastic/plastic range.

Answer: 1� c/a� 1.082.

5.12 A closed-ended thick-walled tube having a wall ratio R is subjected to an internal pressure p in the
presence of a steady state temperature difference �T between the internal and external surfaces. The
tube is completely elastic, and the flow of heat is radially outward, the coefficient of linear expansion
being denoted by α. Setting β=α�T/2(1 − ν), show that σθ − σz has a maximum value at r = r1 when
p<βE, and σz − σr has a minimum value at r = r2 when p>βE, such that

r2
1

a2 =
(

1 − p

βE

)
R2 ln R2

R2 − 1

r2
2

a2 =
(

p

βE
− 1

)
R2 ln R2

R2 − 1
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where a is the internal radius of the tube. Assuming R = 2, find the range of values of p/βE in each case
for which the stationary stress difference would occur within the tube.

Answer: 0� p/βE� 0.46, 1.54� p/βE� 3.16.

5.13 An annular plate of inner radius a and outer radius b is subjected to a steady state radial temperature
variation which is sufficient to render the plate partially plastic. The material is nonhardening and obeys
Tresca’s yield criterion with a uniaxial yield stress Y . Show that the plastic zone grows outward from the
inner boundary, the radius to the elastic/plastic interface being c when the temperature at r = a exceeds
that at r = b by �T , such that

Eα�T

Y
= (2 − a/c − ac/b2) ln(b2/a2)

ln(b2/c2) − (1 − c2/b2)

where α is the coefficient of linear expansion. Show also that a second plastic zone begins to form at
the outer radius when (

1 + ac

b2

)
ln

b2

c2 =
(

3 − a

c

)(
1 − c2

b2

)

5.14 The temperature difference across the radial thickness of the annular plate of the preceding problem
is increased beyond the point at which a second plastic zone begins to spread inward from the outer
boundary. Denoting the radius to the outer elastic/plastic interface by ρ, and neglecting the effects of
temperature on the material properties, show that

Eα�T

Y
= (1 + ac/ρ2) ln(b2/a2)

1 − c2/ρ2

where c and ρ are related by the equation

(
1 + a

c

)
ln
ρ2

c2 =
(
ρ2

c2 − 1

)(
3 − a

c
− ln

b2

c2

)

Assuming b/a = 2, find the range of values of c/a for which there will be two separate plastic zones.
Answer: 1.15< c/a< 1.46.

5.15 An annular disc of uniform thickness is rendered fully plastic by the application of a uniform
radial pressure p at the inner boundary r = a. If the material yields according to von Mises criterion,
show that the stress distribution may be expressed as

σr = −2k sin
(π

6
+ φ
)

σθ = 2k sin
(π

6
− φ
)

where φ is a function of the radius r. Using the equilibrium equation and the boundary conditions, prove
that the radius ratio b/a is given by

b2

a2 = 2√
3

cosα exp
[√

3
(π

6
+ α
)]

where α is the value of φ at r = a. Determine the range of values of b/a for which the solution would
be valid.

Answer: b/a� 2.96.

5.16 A uniform annular disc of internal radius a and external radius b is subjected to a uniform radial
tensile stress σ along the outer edge. The material is incompressible and hardens linearly with a plastic
modulus H. Assuming Tresca’s yield criterion and the associated flow rule, show that the radial stress
in the plastic region for a prestrained material is given by

σr

Y
= 1 − a

r
+ na

2r

[(
ln

c

a

)2 −
(

ln
c

r

)2]



Chakra-05.tex 26/12/2005 12: 57 Page 414

414 theory of plasticity

approximately, where c is the radius to the elastic/plastic boundary and n = H/(E + H). Show also that
the applied tension is given by

σ

Y
= 1 − a

2c

(
1 + c2

b2

)[
1 − n

2

(
ln

c

a

)2]

5.17 A gradually increasing radial pressure p is applied round the edge of a circular hole of radius a
contained in an infinite plate of uniform thickness. The uniaxial stress–strain curve of the material in the
plastic range can be represented by σ= Y (Eε/Y )n, ε� Y/E, where n is an empirical constant. Assuming
the material to be incompressible, and adopting Tresca’s yield criterion with the Hencky stress–strain
relation, show that for small elastic/plastic expansions,

p

Y
= s0

[
3(1 − n)

4 − 2(1 + 3n)s0

]4n/(1+3n)

where s0 is the ratio of the applied pressure to the current yield stress at r = a. Show also that s0 is
related to the radius c to the elastic/plastic boundary by the equation

ln
c

a
= 1 − n

1 + 3n

(
s0 − 1

2

)
+ 8n

(1 + 3n)2 ln

[
3(1 − n)

4 − 2(1 + 3n)s0

]

5.18 A thin infinite plate of uniform initial thickness h0 contains a circular hole of initial radius a0. The
hole is finitely expanded by radial pressure, so that the plate is plastic within a radius c. The material is
rigid work-hardening, and the uniaxial stress–strain curve is approximated by σ= Y exp(nε) over the
relevant range, where n is a constant. Using Tresca’s yield criterion and the associated flow rule, show
that the plate thickness within a radius ρ= 0.607c, the thickness h of an element initially at a radius
r0 being given by

h0

h
= 1

2 + n

{(
ρ

r0

)n/(1+n)

+ (1 + n)

(
r0

ρ

)2/(1+n)
}

If the current radius of the hole is denoted by a, show that the relationship between a and a0 is

a

ρ
= 1

2 + n

{
1 + (1 + n)

(
a0

ρ

)(2+n)/(1+n)
}

1

2
� a

ρ
� 1

5.19 A uniform disc of external radius b, and having a concentric circular hole of radius a, is rotated
about its central axis until the stress distribution is just fully plastic. The material is non-hardening,
and yields according to the Tresca criterion. If the disc is subsequently brought to rest, show that the
distribution of residual hoop stress for elastic unloading is given by

σθ

Y
=
{

a

b
− 1 + 3ν

8

(
1 + a2

b2 − 3r2

b2

)
− 3

8
(3 + ν)

a2

r2

}/(
1 + a

b
+ a2

b2

)

Assuming ν= 1/3, show that a secondary yielding cannot occur on unloading if the radius ratio of the
disc is less than 2 + √

7.

5.20 Considering the forces acting on a typical element of a disc of variable thickness h rotating with
an angular velocity ω, obtain the radial equilibrium equation

∂

∂r
(hrσr) = h(σθ − ρω2r2)

A disc of uniform strength is defined as one in which σr = σθ = σ throughout the disc. Evidently, the
disc must be solid, and have radial loading at the periphery r = b applied through blades. Show that
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σ is independent of r in both elastic and plastic ranges, and that the thickness must vary from h0 at r = b
according to the formula

h = h0 exp

{
ρω2

2σ
(b2 − r2)

}

Prove that the total mass of the disc is 2π(hc − h0)σ/ω2, where hc is the thickness at the center.

5.21 A nonhardening hollow disc consists of an inner part of uniform thickness hc extending from r = a
to r = c, and an outer part of uniform strength extending from r = c to r = b with an external thickness
h0. The thickness is made discontinuous at r = c in order to satisfy the condition of continuity of the
radial force transmitted across this radius. Show that hc is a minimum for a given fully plastic angular
velocity ω if ρω2c2 is equal to the uniaxial yield stress Y , and that the minimum thickness is given by

h0

hc
=

2

3
−
√
ρω2a2

Y

(
1 − ρω2a2

3Y

)
exp

{
1

2

(
1 − ρω2b2

Y

)}

5.22 A rotating hollow disc of internal radius a and external radius b is designed to have a uniform inner
part of thickness hc and a doubly conical outer part with a thickness h0 at the periphery. The radius c at
which the profile of the disc changes is so chosen that the radial force transmitted across this radius in
the fully plastic state is independent of the cone angle. Assuming σr = Y at r = b, show that

c

b
= 1

3

{(
6

λ
− 2

)1/2

− 1

}
λ = ρω2b2

3Y
� 1

3

where Y is the constant uniaxial yield stress, the thickness ratio associated with this design being

hc

h0
= 1 + λb/c − λc2/b2

1 − λc2/b2 − (a/c)(1 − λa2/b2)

5.23 The thickness of a rotating hollow disc of internal radius a and external radius b varies according
to the power law h = h0(b/r)m, where h0 and m are constants. The disc is to be designed in such a way
that the fully plastic state involves a uniform hoop stress σθ = Y throughout, and a radial stress σr = Y
at r = b due to an external edge loading. Show that mY >ρω2b2 for the radial stress to decrease inward
from the outer edge, where ω is the fully plastic angular velocity of the disc. Establish the relationship

ρω2b2

Y

{(a

b

)2 −
(a

b

)m−1
}

= 3 − m

m − 1

{
m
(a

b

)m−1 − 1

}
m �= 3

Assuming b/a = 2.5, determine the value of m that corresponds to ρω2b2 equal to Y .
Answer: m = 2.16.

5.24 A long hollow cylinder made of a rigid ideally plastic material has an internal radius a and an
external radius b. The cylinder is rendered fully plastic by rotation about its axis with an angular
velocity ω. The stress and velocity distributions at the yield point may be expressed in terms of a
parameter c, such that

√
3c2/a2 is equal to the ratio of the maximum engineering shear strain rate at

r = a to the magnitude of the axial strain rate. Using the von Mises yield criterion and the Lévy-Mises
flow rule, show that

ρω2(b2 − a2)

4Y
= 1

2
√

3
ln




b2
[
c2 + √

a4 + c4
]

a2
[
c2 + √

b4 + c4
]

 =

√
b4 + c4 − √

a4 + c4

b2 + a2
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5.25 A rigid circular disc of radius a, rotating horizontally about its central axis, is provided with several
protruding rays of constant width symmetrically arranged round the periphery. Each ray is flat at the
bottom and is linearly tapered from a depth h0 at the root r = a to a knife-edged tip at r = b. Due to the
centrifugal action, a typical cross section of the ray is subjected not only to a radial force N but also to a
bending moment M. Show that yielding begins at r = a for b� 7a and at r = b/7 for b� 7a, when the
angular velocity ω satisfies the relations

ρω2 = 12Y

(b − a)(5b + 7a)
(b � 7a) ρω2b2 = 7

3
Y (b � 7a)

5.26 Suppose that the speed of rotation of the tapered ray of the preceding problem is increased beyond
the elastic limit, so that certain cross sections of the ray become partially plastic. For a nonhardening
material, plastic collapse would occur at a critical value of the speed for which a cross section first
becomes, fully plastic. If the radius to the fully plastic section is denoted by ξb, and the corresponding
speed factor ρω2b2/Y is denoted by 6λ, show that

λ2(1 − ξ)2(1 + 2ξ)2 + λ(1 − ξ2) = 1 a/b � ξ � 1

Determine ξ that minimizes the speed factor, and hence estimate the collapse value of λ.
Answer: ξ= 0.18, λ= 0.59 (b� 5.5a).

5.27 A curved bar of uniform small thickness h is bounded by circular arcs of radii a and b on the
concave and convex sides respectively. The plate is bent in its own plane by equal and opposite couples
M, applied to the end faces θ= ±α, so as to increase its curvature. If the material is ideally plastic
obeying Tresca’s yield criterion, and the extent of the plastic zone is sufficiently small, show that

M = kh

N

{
b2
(

1 − c2

b2

)2(
1 − a

2c

)
− 2ac

(
ln

b

c

)2}
− kh(c2 − a2)

where k is the yield stress in pure shear, c the radius to the elastic/plastic interface, and

N = ln
b2

c2 −
(

1 − c2

b2

)

5.28 In the plane stress bending of a curved bar considered in the preceding problem, the applied
moment M is assumed large enough to produce two distinct plastic zones defined by a� r� c and
ρ� r� b. Show that the radii c and ρ to the elastic/plastic boundaries are related by the equation

(
1 + ac

ρ2

)
ln
ρ2

c2 =
(

1 − c2

ρ2

)(
3 − a

c
− ln

b2

ρ2

)

and that the corresponding bending moment is given by the formula

M = kh

[
ρ2 ln

b

c
+ a

2c
(ρ2 − c2) + 1

2
(b2 − 3ρ2 + 2a2)

]

Compute the values of c/a and M/kha2 in the fully plastic state when b/a = 2.
Answer: c/a = 1.46, M/kha2 = 0.474.
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5.29 A thin annular plate of internal radius a and external radius b is rendered partially plastic by
the application of a radial pressure p and a uniform tangential stress mk (0<m< 1) round the edge of
the hole. If the radius to the elastic/plastic boundary is c, and the material is ideally plastic obeying the
Tresca criterion, show that

p

k
=
√

1 − m2 − 1

b2

√
c4 − m2a4 + ln

{
c2 + √

c4 − m2a4

a2(1 + √
1 − m2)

}

so long as the inequality p/k� 1 + √
1 − m2 is satisfied. Find the greatest value of b/a required by the

validity of the solution for all elastic/plastic stages when m = 0, 0.5, and 1.0.
Answer: b/a = 2.72, 2.63, 1.90.

5.30 Using Tresca’s associated flow rule, show that the radial and circumferential plastic strains in the
partially plastic plate of the preceding problem are given by

−ε p
r = ε

p
θ = 2k

Er2

[√
c4 − m2a4 −

√
r4 − m2a4

]
a � r � c

From the condition of positive rate of plastic work, show that no plastic element will unload in an infinite
plate if k(dm/dp) is greater than −f (a) for ṗ> 0, and less than −f (c) for ṗ< 0, where

1

f (r)
=

 1

c2
√

r4 − m2a4
+ 1

a4
(

1 + √
1 − m2

) − 1

c2
(

c2 + √
c4 − m2a4

)

ma4

5.31 A compound cylinder of internal radius a and external radius b, consisting of two thick-walled
tubes of the same material, is designed to carry an internal pressure p in the elastic/plastic range under
conditions of plain strain. If the ratio of the depth of the plastic zone to the wall thickness in each tube has
a constant value η, show that for a non-hardening Tresca material, the internal pressure is a maximum
when the tubes have equal wall ratios, and that the maximum value of the pressure is given by

p

2k
= 1 −

{
η+ (1 − η)

√
a

b

}2

+ 2 ln

{
1 + η

(√
b

a
− 1

)}

5.32 A thick-walled tube of external radius b is shrunk on to another tube of internal radius a made
of the same material. The radial interference δ and the common radius c are such that the outer tube is
just at the point of yielding while the inner tube becomes partially plastic. Assuming σz = 0 in both the
elastic and plastic regions, and considering a non-hardening material obeying Tresca’s yield criterion,
show that

Eδ

Yc
= 1

2



(

3 + c2

b2

)
−
√(

1 + c2

b2

)2

− 4a2

c2


 c2

ab
� 1

5.33 A thin annular disc of inner radius a and outer radius b is shrunk on to a rigid shaft with a small
radial interference δ so that the disc becomes partially plastic within a radius c. For an ideally plastic
Tresca material, show that

Eδ

Ya
= c2

a2 − 1 − ν

2

(
1 − c2

b2 + ln
c2

a2

)

If the shaft is subsequently rotated about its axis with an angular velocity ω, which is just sufficient for
the disc to become loose on the shaft, show that for a purely elastic unloading process,

ρω2b2

2Y
= (1 − ν)a2 + (1 + ν)b2

(1 − ν)a2 + (3 + ν)b2

{
1 − c2/b2 + ln(c2/a2)

1 − a2/b2

}
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5.34 A non-hardening curved bar having an inner radius a and outer radius b is subjected to pure
bending under conditions of plane strain, such that the curvature is reduced during the bending. If the
applied bending moment M is completely released from a partially plastic state, show that the residual
hoop stress in the inner plastic region (a� r� c) for elastic unloading is given by

σθ

2k
= −
(

M

M2
− 1

)(
1 + ln

r

a

)
+ M

Me

{
ln(r2/a2) + (1 − a2/r2)

ln(b2/a2) − (1 − a2/b2)

}
ln

b

a

Assuming b/a = 42, c/a = 1.25 and ν= 1/3, compute the residual hoop stress at r = a, and also the
relative angle of bend �α/α produced by the elastic springback on unloading.

Answer: σθ = −1.678 k, �α/α= 2.89 k/G.

5.35 In a rotating disc stressed beyond the elastic limit, the von Mises yield criterion can be written
approximately in the form

σθ = Y
{

1 + 0.62
σr

Y

(
1 − σr

Y

)}
Considering a solid disc, and assuming the Tresca solution as a first approximation, show that the
modified expression for the radial stress in the plastic region, satisfying the equilibrium equation, is
given by

σr = Y

{
1 − ρω2r2

9Y

(
2.38 + 0.62

ρω2r2

5Y

)}

Evaluate the parameter λ= ρω2b2/3Y that renders the disc fully plastic. Compute also the value of λ
for which the clastic/plastic boundary r = c coincides with the location of the maximum hoop stress,
assuming ν= 0.3.

Answer: λ− 1.079(c − b), λ= 1.026(c = 0.698b).



Chakra-06.tex 27/1/2006 14: 57 Page 419

CHAPTER

SIX
THEORY OF THE SLIPLINE FIELD

In the preceding chapters, we have considered problems in which the plastic mate-
rial is severely constrained by the adjacent elastic material so that the elastic and
plastic strains are usually of comparable magnitudes. When the plastic zone grows
to a sufficient extent, the constraint ceases to apply, and the plastic material then has
freedom to flow in an unrestricted manner. In a number of important practical prob-
lems, such as drawing, extrusion, indentation, and piercing, the unrestricted plastic
flow begins while the body is still partly plastic. In such cases, the elastic strain soon
becomes negligible throughout the plastic zone except in a certain transition region
bordering the elastic zone. It is therefore a reasonable approximation to regard the
material as rigid/plastic for the determination of the stress and velocity distributions
in the plastically deforming region. If the transition region is sufficiently narrow, no
significant error is introduced by the neglect of elastic strains.

6.1 Formulation of the Plane Strain Problem

(i) Basic equations Consider the plastic flow behavior of a rigid/plastic body under
conditions of plane strain. The flow is everywhere parallel to the xy plane, and the
velocity field is independent of z. Evidently, the rate of extension vanishes in the
z direction, which coincides with a principal axis of the strain rate. Since the material
is incompressible (the elastic strains being zero), the principal strain rates in the
xy plane are equal in magnitude but opposite in sign. Each incremental deformation
therefore consists of a pure shear in the plane of plastic flow. For an isotropic material,
the state of stress at each point is also a pure shear, together with a hydrostatic stress

419
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whose value must be equal to σz. It follows that

σz = 1
2 (σ1 + σ2) = 1

2 (σx + σy) (1)

where σ1 and σ2 are the principal stresses in the plane of plastic flow. This expres-
sion is equally valid in nonplastic regions if we assume ν = 0.5. The stress is then
automatically continuous across the plastic boundary. Since yielding is unaffected
by the hydrostatic stress, the maximum shear stress in the xy plane must be equal to
the shear yield stress k. The yield criterion may therefore be written as

(σx − σy)2 + 4τ2
xy = 4k2 (2)

where k is equal to Y/2 for the Tresca criterion and Y/
√

3 for the von Mises criterion.
If the material is assumed as nonhardening, k has a constant value throughout the
plastic region. In the absence of body forces, the equations of equilibrium for quasi-
static deformation reduce to

∂σx

∂x
+ ∂τxy

∂y
= 0

∂τxy

∂x
+ ∂σy

∂y
= 0 (3)

If the nonzero components of the velocity are denoted by vx and vy, the condition
of incompressibility of the material is expressed by the equation

∂vx

∂x
+ ∂vy

∂y
= 0 (4)

Since in an isotropic rigid/plastic material the principal axes of stress and strain rate
must coincide, there follows the stress–strain relation

2γ̇xy

ε̇x − ε̇y
= 2τxy

σx − σy

Each side of this equation is equal to the tangent of twice the counterclockwise angle
made by either of the common principal axes with respect to the x axis. Expressing
the strain rates in terms of the velocity gradients, we get

(σx − σy)

(
∂vx

∂y
+ ∂vy

∂x

)
= 2τxy

(
∂vx

∂x
− ∂vy

∂y

)
(5)

The set of five equations (2) to (5) form the basis for the calculation of the stress and
velocity distributions in the plastic region. If the boundary conditions involve only
the stresses, the equilibrium equations (3) and the yield criterion (2) are sufficient
to determine the stresses throughout the plastic region.† Once the stresses have

† In the nonplastic region, the equilibrium equations are supplemented by the compatibility equa-
tion ∇2(σx + σy) = 0, which is independent of the elastic constants, and is therefore equally valid for
rigid/plastic materials.
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been found, the velocity components can be determined from equations (4) and
(5). Such problems of plane plastic flow may be regarded as statically determinate.
In the majority of practical problems, however, some of the boundary conditions
are kinematical in nature, involving the velocities. The solution of such problems
evidently requires consideration of the stress and velocity equations simultaneously.
The plane strain problem is, therefore, not necessarily statically determined, although
there are as many stress equations as the number of unknown stress components.

The significance of the nonhardening rigid/plastic theory for plane strain in
relation to a compressible elastic/plastic solid may be briefly outlined. If the material
obeys Tresca’s yield criterion and the associated flow rule, (1) does not apply, but
(2) holds in those parts of the plastic zone where σz is the intermediate principal
stress. For a statically determinate problem, the corresponding in-plane stresses at
any stage are exactly predicted by the rigid/plastic analysis.† In the remainder of
the plastic zone, the yield criterion (2) breaks down, and the actual stresses differ
appreciably from their rigid/plastic values. For a Mises material on the other hand,
the associated Prandtl-Reuss flow rule indicates that (2) is not valid anywhere in the
plastic zone unless ν = 0.5. However, σz approaches the value (1) as the magnitude
of the in-plane principal plastic strains progressively increases. The rigid/plastic
stress distribution therefore holds increasingly well within the plastic zone, but may
be appreciably in error over a region bordering the elastic/plastic interface. The
applied load should converge monotonically to its theoretical yield point value as
the deformation continues in the plastic range.

(ii) Characteristics in plane strain Through each point in the plane of plastic flow,
we may consider a pair of orthogonal curves along which the shear stress has its
maximum value k. These curves are called sliplines or shear lines. We shall denote
them by α and β lines, following the convention that the line of action of the alge-
braically greatest principal stress makes a counterclockwise angle of π/4 with the
α direction.‡ Let φ be the counterclockwise orientation of the α line with the x axis
at a typical point P (Fig. 6.1). If the hydrostatic stress at this point is denoted by −p,
Mohr’s circle for the stress furnishes

σx = −p − k sin 2φ σy = −p + k sin 2φ
(6)

τxy = k cos 2φ

The lines joining the pole P∗ to the highest and lowest points of the circle are parallel
to the tangents to the sliplines at P. The algebraically greatest and least principal
stresses at P are equal to −p + k and −p − k respectively. In a small curvilinear
element formed by two intersecting pairs of neighboring sliplines around P, the
stresses acting across its faces will be directed as shown.

† For a statically indeterminate problem, the stress distribution cannot be determined by a strict
rigid/plastic analysis before the yield point is reached.

‡ The algebraically greatest principal stress direction therefore bisects the angle between the α and
β directions taken as a right-handed pair of curvilinear axes.
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Figure 6.1 Stresses on a curvilinear element bounded by sliplines. (a) Physical plane; (b) stress plane.

The quantities p and φ define the state of stress in each plastic element. In view
of (6), the equilibrium equations (3) for a nonhardening material become

∂p

∂x
+ 2k

(
cos 2φ

∂φ

∂x
+ sin 2φ

∂φ

∂y

)
= 0

∂p

∂y
+ 2k

(
sin 2φ

∂φ

∂x
− cos 2φ

∂φ

∂y

)
= 0

(7)

We now proceed to enquire if the stress equations are hyperbolic, in which case
there exist certain curves called characteristics across which the spatial derivatives
of p and φ may be discontinuous. Suppose that the values of p and φ are given along
some curve C, so that the differentials dp and dφ are known at all points on C. These
quantities are expressed by the equations

dp = ∂p

∂x
dx + ∂p

∂y
dy dφ = ∂φ

∂x
dx + ∂φ

∂y
dy (8)

where dx and dy are considered along C. The set of four equations given by (7) and
(8) uniquely define the first derivatives of p/2k and φ, unless the determinant of the
coefficients of these derivatives vanishes. Hence C will be a characteristic if∣∣∣∣∣∣∣∣∣

dx dy 0 0
0 0 dx dy

1 0 cos 2φ sin 2φ

0 1 sin 2φ −cos 2φ

∣∣∣∣∣∣∣∣∣
= 0

When this is satisfied, the derivatives cannot be determined without further infor-
mation. The derivatives may therefore be discontinuous across C. Expanding the
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determinant, we obtain a quadratic expression which can be written in the form

(dy − tan φ dx)(dy + cot φ dx) = 0 (9)

Hence there are two distinct characteristics through each point having slopes tan φ

and –cot φ with respect to the x axis. The characteristics therefore coincide with the
sliplines, which are inclined at angles φ and π/2 + φ with the x axis. The velocity
equations may be similarly examined by considering the set of equations involving
the derivatives of the components vx and vy. Two of these equations are provided by
the differential relations

dvx = ∂vx

∂x
dx + ∂vx

∂y
dy dvy = ∂vy

∂x
dx + ∂vy

∂y
dy

where dvx and dvy are assumed known along a given curve. The remaining equations
consist of the incompressibility condition (4) and the isotropy condition (5). Since
σx −σy = −2k sin 2φ and τxy = k cos 2φ, the condition for nonuniqueness of the first
derivatives of vx and vy becomes∣∣∣∣∣∣∣

dx dy 0 0
0 0 dx dy
1 0 0 1

cos 2φ sin 2φ sin 2φ −cos 2φ

∣∣∣∣∣∣∣ = 0

which again leads to Eq. (9). Hence the velocity equations are also hyperbolic, and the
characteristics are the sliplines. In plane plastic flow, therefore, the characteristics
of the stress and the velocity coincide, the characteristic directions at each point
being those of the maximum shear stress or shear strain rate. Across these curves,
the normal derivatives of the stress and velocity components may be discontinuous.

(iii) Equations of Hencky and Geiringer For the solution of physical problems, it
is convenient to set up differential relations holding along the sliplines. Let the x and
y axes be taken along the tangents to the α and β lines respectively at the considered
point. Since this corresponds to φ = 0, Eqs. (7) become

∂p

∂x
+ 2k

∂φ

∂x
= 0

∂p

∂y
− 2k

∂φ

∂y
= 0

Thus, the tangential derivative of p + 2kφ vanishes along an α line, and that of
p − 2kφ vanishes along a β line. Evidently, this result is independent of the actual
orientation of the sliplines at any given point. Hence

p + 2kφ = const along an α line

p − 2kφ = const along a β line
(10)

These are known as the Hencky equations,† which are simply the equilibrium equa-
tions expressed along the sliplines. It follows from (10) that the hydrostatic pressure

† H. Hencky, Z. angew. Math. Mech., 3: 241 (1923). The Hencky equations are special cases of the
more general relations for ideal soils derived earlier by F. Kötter, Berl. Akad. Berichte, p. 229 (1903).
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varies along a slipline by an amount equal to 2k times the angle turned through
along it, an increase in pressure corresponding to a clockwise turning of an α line
or a counterclockwise turning of a β line.

The velocity equations can be reduced in a similar manner by introducing the
components u and v along the α and β lines respectively. The rectangular components
vx and vy are expressed in terms of u and v by the equations

vx = u cos φ − v sin φ

vy = u sin φ + v cos φ
(11)

When the x and y axes are taken along the tangents to the α and β lines, σx = σy = −p
and τxy = k. Equations (4) and (5) then indicate that(

∂vx

∂x

)
φ=0

=
(

∂vy

∂y

)
φ=0

= 0

These results imply that the rate of extension vanishes along the sliplines. Substi-
tuting for vx and vy from (11) into the above derivatives, and then setting φ = 0,
we get

∂u

∂x
− v

∂φ

∂x
= 0

∂v

∂y
+ u

∂φ

∂y
= 0

Since the derivatives in the above equations are along the tangents to the sliplines
when φ = 0, the differential relations along them are obtained as

du − v dφ = 0 along an α line

dv + u dφ = 0 along a β line
(12)

which are due to Geiringer.† It follows from (10) and (12) that the hydrostatic pres-
sure and the tangential velocity remain constant along a straight slipline φ = const.
When both families of sliplines are straight, the stress is uniform in that region, but
the velocity is not necessarily uniform.‡

Since the material is incompressible, the conservation of mass requires the
normal component of velocity to be continuous across any curve.The tangential com-
ponent may, however, be discontinuous. The line of discontinuity must be regarded
as the limit of a narrow region in which the rate of shearing in the tangential direction
is infinitely large. The tangent to the curve therefore coincides with a direction of
the maximum shear stress, which means that the discontinuity is a slipline. If the
velocity is discontinuous across an α line, v is continuous while u changes by a
finite amount �u on crossing the discontinuity. It follows from (12), applied to each
side of the discontinuity, that d(�u) = 0 along the discontinuity. The jump in the
tangential velocity therefore remains constant along a slipline.

† H. Geiringer, Proc. 3d Int. Cong. Appl. Mech., Stockholm, 2: 185 (1930).
‡ The lines of principal stress under plane strain condition have been discussed by M. A. Sadowsky,

J. Appl. Mech., 8: 74 (1941).
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(iv) Influence of work-hardening We shall now examine how the slipline field
equations are modified when the work-hardening of the material is taken into
account. The shear yield stress k at any given particle is a function of the maxi-
mum shear strain following the motion of the particle. Let the magnitude of the
maximum engineering shear strain rate be denoted by γ̇ . Then the equivalent stress
and strain rates are

√
3k̇ and γ̇/

√
3 respectively, their ratio being the current slope H

of the uniaxial stress–strain curve. This gives γ̇ = 3k̇/H. If ψ is the counterclockwise
angle made by the direction of motion of the particle with the positive α direction,
then the rate of extension in the direction of flow is

ε̇ = 1

2
γ̇ sin 2ψ = 3k̇

2H
sin 2ψ

If the resultant velocity of the particle is denoted by w, then ε̇ = ∂w/∂s, which is the
space derivative of w along the instantaneous flowline. Since k̇ is the rate of change
of k following the particle, the above equation becomes

∂w

∂s
= 3

2H

(
∂k

∂t
+ w

∂k

∂s

)
sin 2ψ (13)

where t denotes the time scale. The quantities w and ψ are related to u and v by the
equations

w =
√

u2 + v2 ψ = tan−1 v

u
(14)

When the problem is one of steady state, the field quantities at any given point are
independent of t. The work-hardening relation (13) may then be written as

dw

w
= 3dk

2H
sin 2ψ along a flowline (15)

In the case of steady motion, the flowlines are identical to the paths of the particles.
These curves are in fact the characteristics across which the normal derivative of
k may become discontinuous.

The Geiringer equations (12) are unaffected by the work-hardening, since they
are based on relations that are independent of the yield stress. Hence, the sliplines
are still the characteristics of the velocity field. It can be shown that the charac-
teristics of stress and velocity coincide even when the material work-hardens. The
Hencky equations must of course be modified to allow for the variation of the yield
stress. Substituting from (6) into the equilibrium equations (3), and setting φ = 0 on
differentiation as before, we get

∂p

∂x
+ 2k

∂φ

∂x
= ∂k

∂y

∂p

∂y
− 2k

∂φ

∂y
= ∂k

∂x
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where the rectangular axes are now along the local slipline directions. The above
equations will be independent of the orientation of the axes if ∂/∂x and ∂/∂y are
replaced by the tangential derivatives ∂/∂sα and ∂/∂sβ along the α and β lines
respectively. Hence†

dp + 2k dφ = ∂k

∂sβ

dsα along an α line

dp − 2k dφ = ∂k

∂sα

dsβ along a β line

(16)

These relations are complicated because of the terms involving the derivatives of k.
Consequently, the hydrostatic pressure generally varies even along a straight slipline.
A process of successive approximation will usually be necessary to determine the
stress and velocity distributions under given boundary conditions.

Strictly speaking, a velocity discontinuity cannot occur in a work-hardening
material for which the strain rate must always remain finite. However, there can
be certain narrow transition regions through which the velocity changes rapidly
and continuously. If the thickness of such a transition region is neglected for an
approximation, the yield stress will be discontinuous across the resulting velocity
discontinuity. The line of discontinuity cannot be considered as a slipline for the
material on both sides of it, since the unequal values of the shear stress acting across
this line will violate the condition of tangential equilibrium. The maximum shear
directions are therefore discontinuous across a line of assumed velocity discontinu-
ity. The subsequent discussion of slipline fields will be based on the assumption that
the material is ideally plastic.‡

6.2 Properties of Slipline Fields and Hodographs

(i) Geometry of the slipline field A field of orthogonal families of sliplines has cer-
tain interesting geometrical properties which are frequently used in the solution of
physical problems. We begin our discussion by considering a curvilinear quadrilat-
eral ABCD bounded by the α lines AB and CD and the β lines AC and BD (Fig. 6.2a).
In view of (10), the pressure difference between C and B may be written as

pC − pB = (pC − pA) + (pA − pB) = 2k(φB + φC − 2φA)

pC − pB = (pC − pD) + (pD − pB) = 2k(2φD − φB − φC)

These expressions are obtained by following the two different paths BAC and BDC.
Since the right-hand sides of the above equations must be equal to one another, we

† These equations have been essentially given by D. G. Christopherson, P. L. B. Oxley, and
W. B. Palmer, Engineering, 186: 113 (1958). See also H. G. Hopkins, Problems of Plasticity,A. Sawczuk
(ed.), p. 253, Noordhoff International Publishing, Leyden (1974).

‡ A semi-graphical method of finding the slipline field from an experimentally determined flow
field has been discussed by J. Chakrabarty, Proc. Int. Conf. Prod. Eng., Tokyo (1980).
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Figure 6.2 Slipline field geometries for establishing Hencky’s theorems.

obtain the following relationship between the nodal values of φ and p:

φC − φD = φA − φB pC − pD = pA − pB (17)

This is known as Hencky’s first theorem,† which states that the angle between the
tangents to a pair of sliplines of one family at the points of intersection with a slipline
of the other family is constant along their lengths. In other words, if we pass from
one slipline to another of the same family, the angle turned through and the change
in hydrostatic pressure are the same along each intersecting slipline.

It follows that if a segment AC of a slipline is straight, the corresponding segment
BD of any slipline of the same family will also be straight (Fig. 6.2b). The straight
segments must be of equal lengths, since the intersecting curved sliplines are their
orthogonal trajectories. Indeed, the curved sliplines have the same evolute E, which
is the locus of the centers of curvature along either of them. Both AB and CD may
therefore be described by unwinding a taut string from the evolute. The ends of the
string in the two cases will be separated from one another by a distance equal to
the length of each straight segment. It follows from (12) that the normal component
of velocity changes by a constant amount in passing from one straight slipline to
another along any intersecting curved slipline.

Let the radii of curvature of the α and β lines be denoted by R and S respec-
tively. These radii will be taken as positive if the α and β lines, regarded as a
right-handed pair of curvilinear axes, rotate in the counterclockwise and clockwise

† H. Hencky, Z. angew. Math. Mech., 3: 241 (1923).
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senses respectively. Hence R and S are defined by the equations

1

R
= ∂φ

∂sα

1

S
= − ∂φ

∂sβ

(18)

Let the sliplines of Fig. 6.2a be now regarded as infinitesimally close to one another.
The lengths of the arcs AB and AC are denoted by dsα and dsβ, their radii of curvature
being denoted by R and S respectively. The angular spans of the arcs AC and BD are
each equal to dφ by Hencky’s first theorem. Since the angles turned through by AB
and CD are also equal, it follows from geometry that

BD � B′D′ � (S − dsα) dφ

which is correct to second order. This shows that if S + dS is the radius of curvature
of BD, then dS = −dsα. Similarly, if R + dR is the radius of curvature of CD, then
dR = −dsβ. These results may be expressed as

∂R

∂sβ

= −1
∂S

∂sα

= −1 (19)

These equations state that as we move along a slipline, the radii of curvature of
the sliplines of the other family change by the distance traveled. This is known as
Hencky’s second theorem. An alternative form of (19), more suitable for practical
calculations, is obtained by combining these equations with (18). Thus

dS + R dφ = 0 along an α line

dR − S dφ = 0 along a β line
(20)

If the normal derivative of φ is discontinuous across a slipline, (18) indicates that
the curvature of the sliplines of the other family is also discontinuous. This means
that R may be discontinuous across a β line, and S may be discontinuous across an
α line. Since (20) must hold on each side of the discontinuity, the jump in the radius of
curvature is constant along the slipline. It follows from (10) that the normal derivative
of p is discontinuous across a slipline involving a discontinuity in curvature of the
sliplines of the other family.

Since the radius of curvature of AC exceeds that of BD by an amount equal to the
arc length AB, the centers of curvature P and Q must lie on the involute of AB or CD.
This leads to Prandtl’s theorem,† which states that as we proceed along a slipline
of one family, the centers of curvature of the sliplines of the other family form an
involute of the given slipline. The radius of curvature decreases in magnitude as we
move toward the concave side of a given family of sliplines. If the plastic zone extends
sufficiently far, the radius of curvature eventually vanishes to form a cusp. In that
case, the neighboring sliplines of the other family run together, their envelope being
a limiting line‡ across which the slipline of the previous family cannot be continued

† L. Prandtl, Z. angew. Math. Mech., 3: 401 (1923).
‡ Some general properties of limiting lines have been examined by W. Prager and P. G. Hodge,

Theory of Perfectly Plastic Solids, p. 150, Wiley and Sons (1951).



Chakra-06.tex 27/1/2006 14: 57 Page 429

theory of the slipline field 429

(see Fig. 6.17). The envelope of one family of sliplines is evidently the locus of
the cusps of the sliplines of the other family. When the envelope degenerates into a
point, the result is a centered fan which occurs frequently in practical applications.
The radii of curvature of all sliplines passing through the center of the fan have the
same value at this point.†

For the calculation of the rectangular coordinates of the nodal points of a slipline
field network, it is often convenient to introduce the Mikhlin‡ variables (x, y), which
are related to (x, y) by the equations

x = x cos φ + y sin φ

y = −x sin φ + y cos φ
(21)

These new variables are the coordinates of a typical point P with respect to axes
passing through a fixed origin O and parallel to the slipline directions at P (Fig. 6.3a).
The inversion of (21) gives

x = x cos φ − y sin φ

y = x sin φ + y cos φ
(22)

from which the rectangular coordinates can be found when x and y are known along
the sliplines. The variations of x and y can be immediately written down as

dx = (cos φ dx + sin φ dy) + y dφ

dy = (−sin φ dx + cos φ dy) − x dφ
(23)

The expression in the parenthesis of the first equation vanishes along a β line, and
that of the second equation vanishes along an α line, in view of (9). The above
expressions therefore become

dy + x dφ = 0 along an α line

dx − y dφ = 0 along a β line
(24)

These relations are analogous to (12) and (18). Consider, now, the infinitesimal
variation of x along an α line and of y along a β line. Then the expressions in the
parentheses of (23) are equal to the respective arc elements dsα and dsβ. Hence

∂x

∂sα

= 1 + y

R

∂y

∂sβ

= 1 + x

S
(25)

These are important relations connecting x, y, and the radii of curvature of the
sliplines. It may be noted that no special property of the slipline field has been used

† Several properties of slipline fields and certain special solutions have been discussed by
A. M. Freudental and H. Geiringer, Handbuch der Physik, 6, Springer Verlag, Berlin (1958).

‡ S. G. Mikhlin, Akad. Nauk. USSR (1934); S. A. Khristianovich, Mat. Sb. Nov. Ser., 1: 511
(1936).
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Figure 6.3 Correspondence between slipline field and hodograph. (a) Physical plane; (b) hodograph
plane.

in the derivation of (24) and (25), which are therefore valid for any two orthogonal
families of curves.

(ii) The hodograph and its significance The velocity distribution in plane plastic
flow is represented graphically by a plane diagram known as the hodograph. The
resultant velocity at a typical point P in the physical plane is represented in magnitude
and direction by the vector O′P′ in the hodograph, where O′ is a fixed origin known
as the pole of the hodograph (Fig. 6.3b). Evidently, the rectangular coordinates
of P′ in the hodograph plane are the rectangular components of the velocity at
P. As P describes the slipline field, P′ traces out the hodograph net. To obtain the
correspondence between the slipline field and the hodograph, consider the variations
dvx and dvy in the neighborhood of P. Equations (11) furnish

dvx = (du − v dφ)cos φ − (dv + u dφ)sin φ

dvy = (du − v dφ)sin φ + (dv + u dφ)cos φ

In each of the above equations, the expression in the first parenthesis vanishes along
an α line and that in the second parenthesis vanishes along a β line, as may be seen
from (12). Hence

dvy/dvx =
{−cot φ along an α line

tan φ along a β line

giving the slopes of the hodograph traces at P′. On the other hand, the slopes of the
corresponding sliplines at P are tan φ and −cot φ respectively. It follows that the



Chakra-06.tex 27/1/2006 14: 57 Page 431

theory of the slipline field 431

tangent to a slipline at any point is orthogonal to the corresponding tangent to its
image in the hodograph.† This geometrical property is a consequence of the fact
that the change in velocity between the neighboring points on a slipline is directed
along its normal, because the rate of extension is zero along the slipline. The angle
turned through along a slipline PL is identical to that along its image P′L′ in the
hodograph. It follows that the geometrical properties of Hencky and Prandtl are
equally applicable to the hodograph.

By means of hodographs, tentative slipline fields can be rapidly checked for
positive plastic work. The rate of plastic work per unit volume is equal to kγ̇ , where
γ̇ is the engineering shear rate associated with the local α and β directions forming
a right-handed pair. According to our convention, the algebraically greater principal
stress at P acts along the internal bisector of the angle between the sliplines at P.
It follows that the right angle at P must instantaneously decrease, giving a positive
value of γ̇ . The expression for the shear rate may be obtained from the relation

γ̇ =
(

∂vx

∂y
+ ∂vy

∂x

)
φ=0

Substituting from (11), and adopting the usual operators to denote the tangential
derivatives, we have

γ̇ = ∂u

∂sβ

+ ∂v

∂sα

+ u

R
+ v

S
(26)

Let α′ and β′ denote a right-handed pair of orthogonal directions in the hodograph
plane, corresponding to the α and β directions in the physical plane. Figure 6.3
shows that the α′ and β′ directions are obtained by a 90◦ clockwise rotation from
the α and β directions. The radii of curvature of the α′ and β′ lines are denoted by
R′ and S′, defined in a similar manner to R and S. The corresponding line elements
along the α and α′ curves are in the ratio R:R′, and those along the β and β′ curves
are in the ratio S:S′. Hence the tangential derivatives along the hodograph lines are
given by

∂

∂sα′
= R

R′
∂

∂sα

∂

∂sβ′
= S

S′
∂

∂sβ

It follows from Fig. 6.3 that (−v, u) have the same significance in the hodograph
plane as (x, y) have in the physical plane. The hodograph equations corresponding
to (25) may therefore be written down as

∂v

∂sα

+ u

R
= −R′

R

∂u

∂sβ

+ v

S
= S′

S
(27)

† W. Prager, Trans. Inst. Tech., Stockholm, no. 65 (1953). See also A. P. Green, J. Mech. Phys.
Solids, 2: 73 (1953).
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It is interesting to note that the sum of left-hand sides of (27) is identical to the
right-hand side of (26). We therefore arrive at the result†

γ̇ = S′

S
− R′

R
> 0 (28)

for the rate of plastic work to be positive. If S and S′ have the same sign while
R and R′ have opposite signs, then γ̇ is known to be positive from an inspection
of the general forms of the two networks. When S′/S and R′/R are both positive,
the following graphical method would be useful for checking the slipline field for
positive work rate.‡

Let P′L′M ′N ′ be a curvilinear mesh of the hodograph corresponding to a slipline
mesh PLMN. The velocity of M relative to P is equal to the vector P′M ′, and the
velocity of N relative to L is equal to the vector L′N ′. The rate of plastic work will
be positive if the component of P′M ′ parallel to PM is in the direction of PM, and
the component of L′N ′ parallel to LN is directed opposite to LN. In other words,
the scalar product of the vectors PM and P′M ′ must be positive and that of LN
and L′N ′ must be negative. Thus, if PM ′′ and LN ′′ are drawn parallel to P′M ′ and
L′N ′ respectively in the direction of these vectors, then the angle MPM ′′ must be
acute and the angle NLN ′′ obtuse in order that the rate of plastic work is positive.
If the velocity is discontinuous across a slipline, the jump in the tangential velocity
must correspond to a relative sliding that is consistent with the direction of the shear
stress across the slipline. The requirement of positive plastic work rate imposes a
restriction on the shape of the hodograph in relation to that of the slipline field.

In the solution of special problems, a velocity discontinuity often occurs across
a slipline that separates a rigid region from a deforming one. A nonrotating rigid
region is mapped into a single point in the hodograph. The particles on the deforming
side of the discontinuity are mapped into a circular arc, with center representing the
rigid region, and with radius equal to the magnitude of the velocity discontinuity
(see Fig. 6.10). If, on the other hand, the rigid region is rotating with an angular
velocity ω, any curve in this region, including the bounding slipline, is mapped as a
geometrically similar curve§ rotated through 90◦ in the same sense as that of ω. This
conclusion follows from the fact that the radius vector from the center of rotation to a
typical point in the physical plane is orthogonal to the radius vector from the pole to
the corresponding point in the hodograph, while the lengths of these radius vectors
are in the constant ratio 1:ω. If the velocity is discontinuous across the bounding
slipline, the deforming side of this slipline will be mapped into a parallel curve at a
normal distance equal to the velocity discontinuity.

(iii) Completeness of solutions In order to solve any particular problem in plane
plastic flow, a slipline field must be found in the region where the deformation

† A. P. Green, Q. J. Mech. Appl. Math., 6: 223 (1953).
‡ H. Ford, Advanced Mechanics of Materials, p. 519, Longman Green and Co. (1963).
§ A. P. Green, J. Mech. Phys. Solids, 2: 73 (1953).
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is assumed to occur. The proposed field must satisfy all the stress and velocity
boundary conditions, as well as the condition of positive rate of plastic work. It
is also necessary to ensure that the yield criterion is nowhere violated in the rigid
region. A partial solution in which the rigid region has not been examined will be
regarded as incomplete. It is strictly an upper bound solution, since the associated
velocity field is kinematically admissible. Suppose that the stress distribution of the
incomplete solution is now extended to the entire body in a statically admissible
manner, so that it is acceptable also as a lower bound solution. Such an extended
solution will be regarded as a complete solution.†The yield point load corresponding
to a complete solution is the actual one, although the associated deformation mode
is not necessarily actual (Sec. 2.6). If a complete solution does not exist, the yield
point load for a partly plastic body will naturally be overestimated in accordance
with the upper bound theorem.

There may be more than one complete solution to a problem under given bound-
ary conditions. The associated deformation mode in each case is compatible with
the stress distribution, which is uniquely defined in the region where deformation
can occur in any mode. It follows that a deformation mode associated with the stress
field in one complete solution is also compatible with the stress field in any other
complete solution. This means that if a region is necessarily rigid in a known com-
plete solution, it must be rigid in all other complete solutions. If it were not so, the
deformation mode in another solution would not be compatible with the stress field
on the known solution. To determine the extent of the deformable region occupied
by the complete set of modes, it is therefore necessary to consider only one complete
solution of the problem.‡ The stress distribution in the rigid region of a complete
solution cannot be regarded as actual for a solid whose elastic modulus has become
infinitely large.

6.3 Stress Discontinuities in Plane Strain

(i) Conditions at a discontinuity We have seen that the normal derivative of the
stress may be discontinuous across a slipline. The possibility of the stress itself being
discontinuous has already been established in connection with the fully plastic bend-
ing and torsion discussed in Chap. 3. The general properties of stress discontinuities
will now be examined under conditions of plane strain. Equilibrium demands that
the normal stress σn and the shear stress τ must be continuous across any curve
(Fig. 6.4a). If the curve is a line of stress discontinuity, the components σt and σ′

t
acting parallel to the curve will be different from one another. Since the material on
both sides of the discontinuity is assumed as plastic, σt and σ′

t are the two possible
values of σ satisfying the yield criterion

(σ − σn)2 + 4τ2 = 4k2

† J. F. W. Bishop, J. Mech. Phys. Solids, 2: 44 (1953).
‡ J. F. W. Bishop, A. P. Green, and R. Hill, J. Mech. Phys. Solids, 4: 256 (1956).
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Figure 6.4 Stress discontinuity across a surface under conditions of plane strain.

If σn and τ are regarded as given, the roots of the above equation may be written as

σt , σ′
t = σn ± 2

√
k2 − τ2

The difference σt − σ′
t representing the stress discontinuity is therefore of magnitude

4
√

k2 − τ2. In Mohr’s representation of the stress, two circles of radius k can be
drawn through a given point (σn, τ), the distance between the centers of the circles
being 2

√
k2 − τ2, which is the magnitude of the jump in the hydrostatic pressure.†

It is instructive to consider the line of stress discontinuity in relation to the
sliplines.‡ Let θ and θ′ denote the acute angles made by the α lines with the dis-
continuity on the lower and upper sides respectively. The mean compressive stress
on the two sides of the discontinuity are denoted by p and p′. Equations (6) may
be applied to each side of the discontinuity with the x and y axes taken along the
tangent and the normal to this curve. It immediately follows that the shear stress will
be continuous if θ′ = θ, which means that the sliplines are reflected in the line of
stress discontinuity. The condition of continuity of the normal stress then becomes

−p − k sin 2θ = −p′ + k sin 2θ

The pressure jump p′ − p is therefore equal to 2k sin 2θ. If the α lines point to the
left instead of to the right, p′ − p would be equal to −2k sin 2θ. The magnitude of
the pressure jump in each case is∣∣p′ − p

∣∣ = 2k sin 2θ (29)

† The maximum stress discontinuity of amount 4k occurs in the familiar example of the plastic
bending of beams.

‡ W. Prager, Courant Anniversary Volume, p. 289, Interscience Publishers, New York (1948). For
a general discussion of stress discontinuities, see W. Prager, Proc. 2d U.S. Nat. Cong. Appl. Mech.,
pp. 21–32 (1954).
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The algebraically greater value of the pressure occurs on the upper side of the
discontinuity when the positions of the sliplines are as shown in Fig. 6.4. If these
positions are interchanged, the pressure would decrease on crossing the discontinuity
from the lower side to the upper side. Since sin 2θ = sin(π − 2θ), the acute angle
θ in (29) may be regarded as the inclination of the α lines or the β lines with the
line of discontinuity. Equation (29) may be obtained directly from the condition
of equilibrium of a quadrilateral element with sides perpendicular to the sliplines
(Fig. 6.4b).

The curvatures of the sliplines become discontinuous across a line of stress dis-
continuity. The amount of jump in the curvatures can be established by considering
the tangential derivatives of p and φ along the discontinuity. For the lower side of
the discontinuity, the tangential derivative is given by the operator

∂

∂s
= cos θ

∂

∂sα

+ sin θ
∂

∂sβ

where the arc lengths are assumed to increase in the sense from A to B. Applying
this operator to φ and p, and using (18) and (10), we obtain the relations

∂φ

∂s
= cos θ

R
− sin θ

S
(30)∂p

∂s
= −2k

(
cos θ

R
+ sin θ

S

)

The corresponding expressions for the upper side of the discontinuity are obtained
by replacing φ, p, R, and S by the corresponding primed variables, and changing the
sign of θ. Since φ′ − φ = 2θ and p′ − p = 2k sin 2θ, we have(

1

R′ − 1

R

)
cos θ +

(
1

S′ + 1

S

)
sin θ = 2

dθ

ds

−
(

1

R′ − 1

R

)
cos θ +

(
1

S′ + 1

S

)
sin θ = 2cos 2θ

dθ

ds

This shows that the changes in curvatures depend not only on the angle θ but also
on its derivative along the discontinuity. It follows from above that†

1

R′ − 1

R
= 2sin θ tan θ

dθ

ds
(31)

1

S′ + 1

S
= 2cos θ cot θ

dθ

ds

These relations furnish the jumps in the curvatures of the sliplines at any point of
the line of discontinuity. If S and S′ are both positive, θ increases along AB, and

† These conditions have been established by W. Prager, op. cit., p. 189.
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the curvature of the α line is then algebraically greater on the upper side of the
discontinuity than on the lower side.

A line of stress discontinuity may be regarded as the limit of a narrow transition
region through which the tangential stress component varies rapidly in a continu-
ous manner. For equilibrium, the normal and shear stress components must be very
nearly constant through this region. There are in fact two possible values of the tan-
gential component producing plastic states for given normal and shear components.
It follows that the change in stress must occur through a central elastic strip where
the stress components do not satisfy the yield criterion. Within the framework of
the rigid/plastic theory, a line of stress discontinuity should be regarded as an inex-
tensible but perfectly flexible filament separating two plastic regions. A velocity
discontinuity, on the other hand, occurs across a slipline, which may be considered
as the limit of a plastic strip across which the tangential component of velocity
varies rapidly. Hence, a velocity discontinuity cannot be permitted across a line
of stress discontinuity.† Slipline fields involving simultaneous stress and velocity
discontinuities are, however, sometimes useful for deriving approximate solutions.

In the approximate solution of physical problems, it is sometimes necessary
to consider stress discontinuities separating plastic regions from nonplastic ones.
Referring to Fig. 6.4a, suppose that the region above the discontinuity is nonplastic,
while that below the discontinuity is stressed to the yield point. The expressions for
σn and τ are obtained as before, but those for the other two stresses are modified to

σ′
n = −p′ + τ0 sin 2θ′ τ′ = τ0 cos 2θ′

where τ0 < k is the maximum shear stress in the nonplastic region. The continuity
conditions σn = σ′

n and τ = τ′ then lead to the relations

τ0

k
= cos 2θ

cos 2θ′
p′ − p

k
= sin 2(θ + θ′)

cos 2θ′ (32)

The sign of p′ − p in (32) must be reversed, as before, with the reversal of the
positions of the sliplines. It is evident that θ′ � θ, where the equality applies when
either the upper region is also plastic or the discontinuity is along a principal stress
direction. In the latter case, the magnitude of the hydrostatic pressure jump can have
any value between 0 and 2k.

Consider, now, the possibility of several straight discontinuities meeting at a
point and separating regions of constant stress. Assuming these regions to be plastic,
it can be shown that at least four such discontinuities must meet at a common
point.‡ In particular, when the discontinuous stress field admits an axis of symmetry,
the lines of discontinuity must meet on this axis,§ the included angle between the pair

† See, for example, E. H. Lee, Proc. 3d Symp. Appl. Math., p. 213, McGraw-Hill Book Co.,
New York (1950).

‡ A. Winzer and G. F. Carrier, J. Appl. Mech., 15: 261 (1948).
§ F. Ellis, J. Strain Anal., 2: 52 (1967). An angle of reflection lying between π/4 and π/2 is possible

when one of the domains is nonplastic.
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Figure 6.5 Stress discontinuities meeting on an axis of symmetry. (a) 90◦ reflection; (b) 45◦ reflection.

of discontinuities on either side of the axis being either π/2 or π/4. The two possible
situations are illustrated in Fig. 6.5, where OA and OB are the stress discontinuities
with OA inclined at an acute angle ψ to the axis of symmetry. The sliplines are
reflected at each discontinuity and are inclined at 45◦ to the axis of symmetry outside
the angles AOB.

In the case of the 90◦ reflection, the acute angles made by the α line with OA
and OB are π/4 − ψ and π/4 + ψ respectively. By (29), the hydrostatic pressure
increases by the amount of 2k cos 2ψ on crossing each discontinuity from left to
right, the net pressure jump being

p3 − p1 = 4k cos 2ψ

The 45◦ reflection, on the other hand, involves angles π/4 − ψ and π/2 − ψ which
the α line makes with OA and OB respectively. The hydrostatic pressure jump is of
amount 2k cos 2ψ across OA and 2k sin 2ψ across OB, so that

p3 − p1 = 2k( cos 2ψ − sin 2ψ)

It may be noted that the directions of the algebraically greater and smaller principal
stresses to the right of OB for the 45◦ reflection are opposite to those for the 90◦
reflection, these directions to the left of OA being assumed identical in the two cases.
Intersecting discontinuities, though unlikely to occur in actual physical situations,
are useful for obtaining lower bound approximations to practical problems.†

(ii) Conditions at a stress singularity Consider a two-dimensional wedge whose
inclined plane faces are subjected to normal pressures q1, q2 and tangential tractions

† Stress discontinuities of variable intensity have been discussed by A. Winzer and G. F. Carrier,
J. Appl. Mech., 16: 346 (1949).
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Figure 6.6 Plastic yielding of a wedge of included angle α, equal to ψ − λ1 − λ2. (a) ψ � π/2;
(b) ψ � π/2.

τ1 and τ2 near the vertex. For arbitrary values of these tractions, the vertex O is
a singularity of stress. Depending on the magnitudes and directions of the applied
shear stresses, in relation to the vertex angle α, there are two possible slipline fields
for the state of stress in the wedge at the yield point.† In Fig. 6.6a, the plastic material
consists of two uniformly stressed zones OAC and OBD separated by a centered fan
field OCD in which the sliplines are radial lines and circular arcs. Suppose that
the plastic boundary ACDB is a β line inclined to AO and BO at angles π/4 + λ1
and π/4 + λ2 respectively. Then the angles made by the α lines with AO and BO
are π/4 − λ1 and π/4 − λ2 respectively. It follows from (6) that the shear stresses
across OA and OB are given by

τ1 = k sin 2λ1 τ2 = k sin 2λ2 (33)

Since these stresses cannot exceed k in magnitude, both λ1 and λ2 must lie between
−π/4 and π/4. The mean compressive stresses along OA and OB are

p1 = q1 + k cos 2λ1 p2 = q2 − k cos 2λ2 (34)

The hydrostatic pressure is constant along AC and BD, but there is an increase
in pressure along CD by an amount equal to 2k times the fan angle ψ − π/2,
where ψ = α + λ1 + λ2. Thus p2 − p1 = k(2ψ − π), which on substitution from (34)
becomes

q2 − q1 = k(cos 2λ1 + cos 2λ2 + 2ψ − π)
(35a)

ψ = α + λ1 + λ2 � π

2

† The results of this section are essentially due to R. Hill, J. Mech. Phys. Solids, 2: 278 (1954),
who investigated the problem directly from the equilibrium equations and the yield criterion.
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Since the normal component of velocity must be zero along the plastic boundary
ACDB, it follows from the Geiringer equations (12) that u = 0 and v = const through-
out the plastic region. The velocity is discontinuous across ACDB above which the
material moves with a constant speed parallel to the β lines. The motion must take
place from right to left in order to have a positive rate of plastic work.

The slipline field for ψ �π/2 is shown in Fig. 6.6b, which contains a stress
discontinuity OD separating two regions of constant stress. The angles OAD and
OBD are equal to π/4 + λ1 and π/4 + λ2 respectively, as before. From geometry,
the angle EDF is π/2 − ψ, where ψ is again equal to α + λ1 + λ2. Hence, the acute
angle made by the α lines with the discontinuity is π/4 − ψ/2. By (29), the jump in
the hydrostatic pressure is p1 − p2 = 2k cos ψ, which gives

q2 − q1 = k(cos 2λ1 + cos 2λ2 − 2cos ψ)
(35b)

ψ = α + λ1 + λ2 � π

2

in view of (34). A typical point P in the field EDF may be specified by the distances
(ξ, η) from D of the points where the α and β lines through P meet the discontinuity
OD. Excluding a translation of the entire wedge, the velocity of any particle on OD
must be perpendicular to OD, where ξ = η. Since u is constant along ξ = const, and
v is constant along η = const, the velocity distribution in EDF may be written as

u = ± f (ξ)(1 − sin ψ) v = f (η)cos ψ

where the upper sign applies to the region ODE, and the lower sign to the region
ODF. The velocity is evidently continuous across OD. In the regions ADE and BDF,
the velocity field is given by u = 0 and v = f (η)cos ψ, where f (0) = 0, so that the
velocity is continuous across DE and DF, and also across AD and BD. The function
f is otherwise arbitrary, except that its first derivative must be positive for the rate
of plastic work to be positive.

An overriding restriction follows from the geometrical fact that the angles ODE
and ODF cannot exceed the angles DEA and DFB respectively. This means that
both λ1 and λ2 must be less than or equal to ψ/2. Inserting the expression for ψ, we
obtain the inequality

|λ1 − λ2| � α (36)

which imposes a limitation on the permissible values of λ1 and λ2 in relation to the
vertex angle α.

Consider now the situation where the plastic boundary is an α line. The angles
which this slipline makes with the boundaries are π/4 − λ1 and π/4 − λ2 respectively
in order that τ1 and τ2 can still be expressed in the form (33). Equations (34) are,
however, modified to

p1 = q1 − k cos 2λ1 p2 = q2 + k cos 2λ2

Proceeding as before, the pressure difference p1 − p2 is found to be equal to
k(2ψ∗ − π) for the continuous field and −2k cos ψ∗ for the discontinuous field,
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where ψ∗ = α − λ1 − λ2. Inserting the expressions for p1 and p2 from above, we get

q2 − q1 = k(π − 2ψ∗ − cos 2λ1 − cos 2λ2) ψ∗ � π

2

q2 − q1 = k(2cos ψ∗ − cos 2λ1 − cos 2λ2) ψ∗ � π

2

(37)

For given values of λ1, λ2, and α, Eqs. (35) give the maximum value, and Eqs. (37)
the minimum value of q2 − q1 for the yield point state. The vertex of a wedge (with
arbitrary curved boundaries) will not be overstressed so long as the difference of the
normal pressures near the corner lies between these limits. Some particular cases
will now be examined.

(a) Let τ1 = τ2 = 0, implying that the vertex is under normal pressures alone.
Setting λ1 = λ2 = 0 in (35) and (37), we obtain

|q2 − q1| �
{

2k(1 + α − π/2) α � π/2

2k(1 − cos α) α � π/2
(38)

The elastic limit is reached, at a smaller pressure difference, on the sides of the vertex
for α < π/2, and on the bisector of the wedge angle for α > π/2. When α = π/2, the
singularity disappears, and the vertex becomes plastic when |q2 − q1| = 2k.

(b) The shearing stresses have the largest magnitude k and are both directed
either toward or away from the vertex. Thus τ1 = −τ2 = ±k and λ1 = −λ2 = ±π/4.
In view of (36), it is first necessary that α�π/2. Equations (35) and (37) then give

|q2 − q1| � k(2α − π) (39)

(c) Both the shear stresses are of magnitude k, but one of them is directed toward
the vertex and the other one away from the vertex (as in Fig. 6.6). Setting τ1 = τ2 = k,
which means λ1 = λ2 = π/4, the permissible range is found as

2kα � q2 − q1 �
{−2k(α − π) α � π

2k sin α α � π
(40)

(d) On one side the shear stress is zero, while on the other side the shear stress
has the greatest value k. Thus τ1 = 0 and τ2 = k, giving λ1 = 0 and λ2 = π/4; then
(36) requires α�π/4. From (35) and (37), the permissible values of the pressure
difference are given by

1 + 2
(
α − π

4

)
� q2 − q1

k
�




−1 − 2

(
α − 3π

4

)
α � 3π

4

−1 + 2cos
(
α − π

4

)
α � 3π

4

(41)

Let AO and its continuation represent a stress-free boundary (q1 = τ1 = 0), while OB
is a slipline (τ2 = k) intersecting the boundary at angles α and π − α. Applying (41)
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to each vertex angle in turn, we find that the only values of α for which there
exists a pressure on OB common to both ranges are π/4 and 3π/4. Hence, a slipline
cannot intersect a stress free surface with continuous slope at an acute angle other
than π/4.

6.4 Construction of Slipline Fields and Hodographs

The plastic region generally consists of a number of subsidiary domains with the
curvature of the sliplines changing discontinuously across their boundaries. The con-
struction of the slipline field depends on the boundary conditions. When the problem
is statically determined, the slipline field is uniquely defined by the stress boundary
conditions, and will represent a plastically deforming zone if the stress field can be
associated with a nonzero velocity field. When the problem is not statically deter-
mined, as is generally the case, the velocity boundary conditions impose restrictions
on the slipline field itself. Consequently, the construction of the slipline field will
involve a simultaneous consideration of the velocity field or, equivalently, the hodo-
graph. In the simplest class of problems of this kind, one or more starting sliplines
can be guessed in advance, and the network of sliplines constructed from them using
the stress boundary conditions. The solution can be subsequently tested to see if the
velocity boundary conditions are also satisfied. In general, a process of trial and
error would be necessary if the standard numerical and graphical methods discussed
below are adopted. A direct method of treating the statically indeterminate problem
is provided by the matrix formulation discussed in the next section. Here we shall
consider the types of boundary conditions that arise in the construction of slipline
fields and hodographs, leaving aside the question of finding the initial slipline.

(i) First boundary-value problem Suppose that the positions of two intersecting
sliplines AB and AC are given (Fig. 6.7a). They may be considered as the boundary of
a previously calculated slipline field in some area to the left. It is required to construct

Figure 6.7 Slipline fields for the first boundary-value problem. (a) Regular domain; (b) singular domain.
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the slipline field to the right of AB and AC, assuming the region to be plastic. It is
known from the theory of characteristics that the field is uniquely determined within
the curvilinear rectangle ABDC formed by the given sliplines AB and AC. Let AB
be an α line and AC a β line. These sliplines are divided into a number of small arcs
by the points (1, 0), (2, 0), (3, 0) . . . along AB, and the points (0, 1), (0, 2), (0, 3) . . .

along AC. A typical nodal point (m, n) within the field is the intersection of the
sliplines through the base points (m, 0) and (0, n). Since the values of φ are known at
all points on AB and AC, the hydrostatic pressures at these points are readily found
from the Hencky equations (10), provided p is given at one point, say A. The values
of p and φ at any nodal point (m, n) are then obtained from the Hencky relations as

p(m, n) = p(m, 0) + p(0, n) − p(0, 0)

φ(m, n) = φ(m, 0) + φ(0, n) − φ(0, 0)

It is often convenient to choose a constant angular distance �φ between the suc-
cessive base points. Then the angular span of any slipline between two adjacent
nodal points has the constant value �φ throughout the field. In an equiangular net
such as this, one family of diagonal curves passing through opposite nodal points
are contours of constant p, while the other family of diagonal curves are contours
of constant φ. Along the first family of curves the principal stresses have constant
magnitudes, and along the second family of curves the principal axes have fixed
directions.†

The simplest approximate method of calculating the coordinates of the modal
points consists in replacing each slipline arc by a chord with slope equal to the mean
of the terminal slopes. The actual slope dy/dx at any point is tan φ for an α line
and –cot φ for a β line. The approximation applied to a pair of intersecting arcs
leads to a pair of simultaneous equations for the coordinates of each nodal point.
An alternative and more accurate method is based on Eqs. (24), the values of x and
y at the base points being found from (21). The finite difference equations for an
equiangular net become

x(m, n) − x(m, n − 1) = 1
2 [ y(m, n) + y(m, n − 1)]µ �φ

y(m, n) − y(m − 1, n) = − 1
2 [x(m, n) + x(m − 1, n)]λ �φ

(42)

where λ and µ are equal to 1 or –1 depending on whether φ increases or decreases
toward the point (m, n) from the two neighboring points along the respective sliplines.
When the values of x and y have been found at (m, n − 1) and (m − 1, n), those at
(m, n) can be calculated from (42). The coordinates of each nodal point can be
finally determined by using (22). A third method consists in evaluating the radii
of curvature of the slipline from (20), using a finite difference form‡ analogous
to (42). The values of S along AB and R along AC are obtained by a straightforward

† This was pointed out by R. von Mises, Z. angew. Math. Mech., 5: 147 (1925).
‡ For details, see R. Hill, The Mathematical Theory of Plasticity, p. 145, Clarendon Press, Oxford

(1950).
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numerical integration of (20). The coordinates of the nodal points are obtained from
the fact that

dx = R cos φ dφ dy = R sin φ dφ

along an α line. These equations may be integrated by using mean values of R cos φ

and R sin φ between two successive nodal points.
The first boundary-value problem is associated with a velocity distribution in

which the normal component of the velocity is prescribed along the given intersecting
sliplines. Thus, v is given along AB, and u is given along AC. The application of
(12) readily furnishes u along AB and v along AC. The velocity components of a
typical nodal point (m, n) are expressed in terms of those at the neighboring points
(m − 1, n) and (m, n − 1) by the finite difference equations

u(m, n) − u(m − 1, n) = 1
2 [v(m, n) + v(m − 1, n)]λ �φ

v(m, n) − v(m, n − 1) = − 1
2 [u(m, n) + u(m, n − 1)]µ �φ

(43)

When the mean values of u and v have been found by solving (43) for each nodal
point (m, n), the Cartesian components of the velocity can be determined from
(11). The prescribed normal velocities may be such that the tangential velocities are
discontinuous across the given sliplines, the jump in the velocity component being
constant along each slipline.

If the radius of curvature of one of the given sliplines, say AC, is allowed to
vanish, while the change in angle between A and C is held constant (Fig. 6.7b), we
obtain a centered fan ABD defined by the slipline AB and the angular difference at
A. All α lines pass through A, which is a singularity of stress since the hydrostatic
pressure at this point has a different value for each slipline. It follows from (20) that
all α lines have the same radius of curvature at A, where the β line is of zero radius.
The values of p and φ at a typical nodal point (m, n) are found as before, with p(0, n)
and φ(0, n) referring to the appropriate α line at A. The velocity field within the fan
ABD can be uniquely determined if the normal component of velocity is specified
along AB and BD. The calculations can be carried out as before, starting from the
point B. The values of u and v at the singular point A will depend on the particular
slipline considered through A.

(ii) Second boundary-value problem Consider the situation where the normal and
tangential tractions are prescribed along a given curve AC. We are required to con-
struct the slipline field below AC on the assumption that the material is plastic.
This field is uniquely defined within the curvilinear triangle ABC bounded by the
sliplines through A and C (Fig. 6.8a). At each point on AC, the normal stress compo-
nent acting parallel to the boundary can have two different values satisfying the yield
criterion. Physical considerations will indicate the correct value of the stress, and
hence specify the values of p and φ along the boundary. It is not generally possible
to choose an equiangular net unless AC is a contour of constant p or of constant φ.
The former occurs when the boundary is acted upon by a uniform normal traction
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Figure 6.8 Slipline domains in the neighborhood of a curved boundary. (a) Second boundary-value
problem; (b) third boundary-value problem with a singularity.

and zero tangential traction. The latter occurs when a constant frictional stress acts
along the boundary with an arbitrary distribution of normal stress.

Let the given curve AC be divided into an arbitrary number of small segments
by the points (1, 1), (2, 2), (3, 3), etc. A typical nodal point (n, m) in the field is
defined by the intersection of the sliplines passing through (m, m) and (n, n) on the
boundary. Assuming AB to be an α line, we have

p(n, m) − p(m, m) = 2k[φ(m, m) − φ(n, m)]

p(n, m) − p(n, n) = 2k[φ(n, m) − φ(n, n)]
(44)

in view of the Hencky equations (10). Since the values of p and φ are known at
all points on AC, these equations furnish p and φ at any point within the field. The
rectangular coordinates of the nodal points can be found by any one of the methods
described for the first boundary-value problem. It is necessary, in this case, to start
from the given curve AC along which the values of x and y can be found from (21),
using the equation of the curve in the parametric form x = x(φ) and y = y(φ). The
radii of curvature of the sliplines along AC can be determined from (30) using the
known variation of p and φ along this curve. The set of equations of type (42) must
be modified to allow for any variation of �φ between the successive nodal points.

The velocity solution associated with the second boundary-value problem
involves both u and v being prescribed along the given curve AC. The velocity
components at the nodal points of the field ABC can be uniquely determined by the
successive application of (43), taking due account of any variation of the angular dis-
tance �φ. Suppose, now, that AC is a boundary separating the plastic material from
the nonplastic one. Since the material is rigid/plastic, the nonplastic material above
AC moves as a rigid body. The velocity distribution in the plastic region ABC can be
obtained by superposing a uniform velocity on that based on the boundary conditions
u = v = 0 along AC. The plastic material therefore moves as a rigid whole attached
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to the nonplastic material. It follows that, in general, there will be two types of rigid
regions in a partly plastic body. In one, the material is stressed below the yield point,
and in the other, the material is plastic but the deformation is prevented by the non-
plastic material. The rigid and the deforming parts of the plastic zone are separated
from one another by one or more sliplines across which the tangential velocity can be
discontinuous. In a real material, the rigid part of the plastic zone would correspond
to a region where the elastic and plastic strains are of comparable magnitudes.

(iii) Third boundary-value problem In the third or mixed boundary-value problem,
we are given a slipline AB and a curve AC along which φ is known at each point.
The value of φ on AB at A is generally different from that on AC at A. The slipline
field in the region between AB and AC then involves a centered fan ABD having an
angular span equal to the difference of the two values of φ (Fig. 6.8b). The fan is
uniquely determined by the given slipline AB as in the first boundary-value problem.
The remaining field ADC is uniquely defined by the known slipline AD and the given
condition along AC. Let the equation of this curve be expressed in the parametric
form x = x(φ), y = y(φ), where x and y are known functions of φ along AC. Let
AD be an α line, which is divided into a number of small arcs by the points (1, 0),
(2, 0), (3, 0), etc. To locate the point (1, 1) on AC, the corresponding value φ(1, 1)
is determined by trial and error so that the first equation of (42) is satisfied with
m = n = 1, and �φ = φ(1, 1) − φ(1, 0). The values of φ at all other nodal points on
the α line through (1, 1) are then obtained from Hencky’s theorem. The calculation
of (x, y) at these nodal points is similar to that for the first boundary-value problem.
The procedure is repeated until the whole field is covered, a new nodal point being
located on AC at the beginning of each stage.

It is evident that the slipline net cannot be equiangular unless φ is constant along
the curve AC. An example of constant φ occurs in the situation where AC is a straight
boundary having a constant frictional stress along its length. Then φ is obtained for
all the nodal points directly from Hencky’s theorem, and the coordinates of the nodal
points can be separately calculated. When the frictional stress is zero along a straight
boundary, so that all sliplines meet it at 45◦, the field is identical to that defined by
AD and its reflection in the given boundary (first boundary-value problem).

The third boundary-value problem is usually coupled with a velocity solution
in which the normal component of velocity is prescribed along both AB and AC. To
calculate the velocity distribution in the field ABD, it is also necessary to know the
normal component of velocity along BD, as in the first boundary-value problem. The
solution for the velocity field in ABD furnishes the normal component of velocity
along AD. Thus v is known along the slipline AD, while a linear relationship between
u and v is given along the curve AC. Considering the point (1, 1) on this curve, one
of the equations for the velocity components u(1, 1) and v(1, 1) is obtained by
setting m = n = 1 in the second equation of (43), with �φ = φ(1, 1) − φ(1, 0). The
relationship between u(1, 1) and v(1, 1) then furnishes the velocity at (1, 1). Using
these values of u and v, the velocity components at (2, 1), (3, 1) . . . are calculated
successively as in the first boundary-value problem. The process is repeated to cover
the whole field.
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In the solution of special problems, the boundary AC frequently corresponds to
a rigid die, so that the velocity component normal to the boundary vanishes at each
point. The normal component of velocity is a given function of φ along the bounding
sliplines AB and BC whose shapes are unknown. It is assumed, for simplicity, that
the value of φ is given on AB at A. Then the velocities at the nodal points of the fan
ABD can be determined without having to know the actual shape of the slipline field.
The velocity solution can be subsequently built up in the region ACD starting from
the point C on the boundary. Since the shape of this boundary is a known function
of φ, the nodal points on the slipline CD can be chosen at such intervals of φ that
the values of u and v at (1, 1), (2, 2), etc., satisfy the required boundary condition.
This fixes the positions of the nodal points on the given boundary AC. Starting from
these points on AC, the values of x and y can be calculated at all the nodal points
of the field ACD, as in the second boundary-value problem. The slipline AD having
been found, the construction of the remaining field ADB is identical to that for the
first boundary-value problem.

(iv) Prager’s geometrical method An interesting geometrical interpretation of
Hencky’s pressure equations with reference to Mohr’s stress plane has been given
by Prager.† In Fig. 6.9, P∗ is the pole of the Mohr circle, with center C, representing
the state of stress at a generic point P in the plastic material. The directions of the
α and β lines at P are parallel to P∗I1 and P∗I2 respectively, where I1 and I2 are
the highest and lowest points of the Mohr circle. The broken circle with center D
corresponds to the state of stress at a neighboring point Q on the α line, the new
pole being at Q∗. The change in position of the pole from P∗ to Q∗ can be produced
by a rotation of the solid circle about its center, bringing P∗ to T , followed by a
translation of the Mohr circle, moving T to Q∗. Since TI1 is parallel to the new α

direction Q∗J1, the angle P∗I1T is equal to the angle dφ turned through along PQ.
The angle subtended by the arc P∗T at the center C is therefore 2dφ, and the length
of this arc is equal to 2k dφ. The length TQ*, on the other hand, is equal to the
distance –dp between the centers of the two circles. Since −dp = 2k dφ along an α

line by (10), it follows that the pole travels by equal amounts during rotation and
translation of the Mohr circle. In the stress plane, the α line through P is therefore
mapped into a curve generated by rolling the Mohr circle without sliding on the
straight line τ = k. The curve is evidently a cycloid. Similarly, the image of the β

line through P is a cycloid described by the pole when the Mohr circle is rolled with-
out sliding on the line τ = −k. The instantaneous centers of rotation at each stage
are the highest and lowest points of the circle. Hence I1P∗ and I2P∗ are normal to
the cycloidal elements P∗Q∗ and P∗R∗ respectively. It follows that the tangents to a
slipline and its cycloidal image at the corresponding points are mutually orthogonal.
This means that the angle turned through along a slipline segment is equal to that
along its cycloidal image.

† W. Prager, Trans. R. Inst. Tech., Stockholm, no. 65 (1953). See also W. Prager, Introduction to
Plasticity, Chap. 4, Addison-Wesley Pub. Co., New York (1959).
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Figure 6.9 Geometrical representation of the Hencky equations. (a) Physical plan; (b) stress plane.

Consider first the situation where a pair of intersecting sliplines AM and AN are
given (Fig. 6.10). The state of stress at the point of intersection A is represented by the
pole A∗ of the Mohr circle whose position along the σ axis depends on the hydrostatic
pressure at A. The point A∗ is such that I1A∗ and I2A∗ are parallel to the α and β direc-
tions at A. The cycloid images A∗B∗ and A∗C∗ corresponding to the small slipline
segments AB and AC are drawn through A∗ such that the angles turned through along
the sliplines and their respective images are identical. After B∗ and C∗ have been
located, the cycloid images of the remaining sliplines through B and C can be drawn
to obtain the point of intersection D∗ in the stress plane. The slipline segments BD
and CD can be constructed graphically by assuming each one of them to be a circular
arc whose chord has a slope equal to the mean of the terminal slopes of the segment.
Once D has been located by the intersection of these chords, the arcs BC and CD
can be drawn as smooth curves tangential to the known slipline directions at B, C,
and D.

We now discuss the hodograph for the particular case in which the material on
either side of the pair of intersecting sliplines undergoes rigid body translation in a
specified direction. The velocity to the left of AC is represented by the vector PQ,
and that to the right of AB is represented by the vector PR, where P is the pole of
the hodograph (Fig. 6.10c). The velocity at A, considered in the deforming zone,
is represented by the vector PA′, where A′ is the intersection of the lines through
Q and R drawn parallel to the slipline directions at A. Hence QA′ and RA′ denote
the velocity discontinuities across AC and AB respectively. Since the magnitude
of the velocity discontinuity must remain constant along a slipline, the segments
AB and AC are mapped into the circular arcs A′B′ and A′C′ with centers R and
Q respectively. The angles subtended by these arcs at the centers are equal to the
angles turned through along the respective sliplines. The hodograph field A′B′D′C′
can be constructed from A′B′ and A′C′ in a manner identical to that used for the
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Figure 6.10 Graphical treatment of the first boundary-value problem. (a) Physical plane; (b) stress
plane; (c) hodograph.

slipline field. It is evident that velocity boundary conditions impose restrictions on
the hodograph in the same way as stress boundary conditions do on the slipline field.
The shape of the hodograph in relation to the slipline field is further restricted by the
requirement of positive rate of plastic work as explained in Sec. 6.3.

When the surface tractions across a boundary curve AC are given (Fig. 6.8a),
two circles of radius k can be drawn in the stress plane through the stress point
corresponding to a typical point on the boundary. The appropriate Mohr circle in
this case may be identified from the consideration of the nature of the problem.
Since the angular distances between the successive nodal points are again known in
advance, the slipline field can be constructed by the approximate small arc process as
before, starting from the boundary AC. The corresponding cycloidal net can be drawn
separately from the known angular spans of the various segments. In the solution
of the mixed boundary-value problem, the construction of the slipline field and its
cycloidal net should generally be carried out simultaneously by a trial-and-error
process, using the correspondence between the physical plane and the stress plane.
When both components of the velocity are known along a given boundary of a plastic
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zone, for which the slipline field has been found, the hodograph can be constructed
by the small arc process using the orthogonality of the corresponding tangents.

6.5 Analytical and Matrix Methods of Solution

(i) The analytical theory Consider the first boundary-value problems in which a
pair of intersecting sliplines CA and CB are given. Let CA and CB be taken as a
right-handed pair of curvilinear axes, the angles turned through along them being
denoted by α and β respectively (Fig. 6.11). By Hencky’s first theorem, these are
the angles turned through to reach a generic point P along either pair of orthogonal
sliplines. The coordinate curves α = const and β = const are therefore the sliplines
with the base curves CA and CB corresponding to β = 0 and α = 0 respectively. We
shall regard α and β as algebraically increasing along CA and CB irrespective of
their sense of rotation. Referring to Fig. 6.11a, we have

φ = φ0 + β − α p = p0 + 2k(α + β)

where p0 and φ0 are the values of p and φ at C. Since dφ = −dα along an α line and
dφ = dβ along a β line, Eqs. (12) may be written as

∂u

∂α
= −v

∂v

∂β
= −u (45)

except when one family of sliplines is straight. Similarly, Eqs. (20) and (24) become

∂S

∂α
= R

∂R

∂β
= S (46)

∂y

∂α
= x

∂x

∂β
= y (47)

Figure 6.11 Slipline nets with canonical variables and moving coordinates.
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The elimination of either of the dependent variables from each pair of the above
equations shows that u, v, R, S, x, and y separately satisfy the same equation

∂2f

∂α ∂β
= f (48)

which is known as the equation of telegraphy.† It applies to the plain strain prob-
lem only when both families of sliplines are curved. Setting dsα = −R dα and
dsβ = −S dβ in (25), we get

∂x

∂α
+ y = −R

∂y

∂β
+ x = −S (49)

which are useful relations between the Mikhlin variables and the radii of curvature
of the sliplines. From (47) and (49), it is easy to show that

∂

∂α
(x + y ) = x − y − R

∂

∂β
(x − y ) = x + y + S (50)

These relations are sometimes useful in the solution of special problems. Returning
to the governing differential equation (48), we observe that it has the following
particular solutions:‡

f (α, β) =
{

cos(α − β), sin(α − β), exp[±(α + β)]

(α + β)[cos(α − β), sin(α − β)], (α − β) exp[±(α + β)]
(51)

The boundary conditions in physical problems cannot be generally satisfied by these
elementary functions alone. To obtain a general solution of (48), we consider the
function

fn(α, β) =
(

α

β

)n/2

In(2
√

αβ) (52)

where In is the modified Bessel function of the first kind and of an integer order
n � 0. It is defined as

In(z) =
∞∑

s=0

(z/2)n+2s

s!(n + s)!
It is evident that I0(0) = 1, In(0) = 0 for n � 1, and I ′

0(z) = I1(z), where the prime
denotes differentiation with respect to z. The recurrence relations satisfied by In(z) are

In−1(z) − In+1(z) = 2n

z
In(z)

In−1(z) + In+1(z) = 2I ′
n(z)

(53)

† C. Carathéodory and E. Schmidt, Z. angew. Math. Mech., 3: 468 (1923).
‡ These solutions may be generalized by writing cα for α and β/c for β throughout, where c is an

arbitrary constant.
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Substituting the expression for In(2
√

αβ) in (52), we immediately obtain the series
expansion

fn(α, β) =
∞∑

s=0

αn+sβs

(n + s)!s! (54)

which is frequently useful in the solution of special problems. Differentiating (54)
partially with respect to α and β, we get

∂fn
∂α

= fn−1
∂fn
∂β

= fn+1 (55)

The derivatives of fn(β, α) are obtained by merely interchanging α and β in (55).
It follows that both fn(α, β) and fn(β, α) satisfy equation (48). Hence the general
solution of (48) can be written as†

f (α, β) =
∞∑

n=0

[an fn(α, β) + cn fn+1(β, α)] (56)

where an and cn are arbitrary constants to be determined from the boundary
conditions. From (54) and (56), it is easily shown that

f (α, 0) =
∞∑

n=0

an
αn

n! f (0, β) = a0 +
∞∑

n=1

cn−1
βn

n! (57)

These equations express the power series expansion of f along the base sliplines.
If the value of the function is given along both these curves, the coefficients of the
expansions are readily found and the required field variable then follows from (56).

When the curvature of one of the base sliplines, say CA, is reversed as in
Fig. 6.11b, it is necessary to change the sign of α in the preceding theory. Since the
argument of In in (52) then becomes complex, it is convenient to replace fn(α, β) by

gn(α, β) =
(

α

β

)n/2

Jn(2
√

αβ) (58)

where n is zero or a positive integer, and Jn is the Bessel function of the first kind
defined as

Jn(z) =
∞∑

s=0

(−1)s (z/2)n+2s

s!(n + s)!

† H. Geiringer, Memorial des Sciences Mathematiques, 86 Gauthier Villars, Paris (1937);
J. Chakrabarty, Int. J. Mech. Sci., 21: 477 (1979).
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It has the properties J0(0) = 1, Jn(0) = 0 for n � 1, J ′
0(z) = −J1(z). Further,

In(iz) = inJn(z), where i represents
√−1. The associated recurrence relations are

Jn−1(z) + Jn+1(z) = 2n

z
Jn(z)

Jn−1(z) − Jn+1(z) = 2J ′
n(z)

Using the preceding expression for Jn(z), the series expansion form of (58) is easily
shown to be

gn(α, β) =
∞∑

s=0

αn+s(−β)s

(n + s)!s! (59)

and the partial derivatives of gn(α, β) are found as

∂gn

∂α
= gn−1

∂gn

∂β
= −gn+1 (60)

Equation (48), with the appropriate sign change, is therefore satisfied by both gn(α, β)
and gn(β, α), and the general solution becomes

f (α, β) =
∞∑

n=0

[angn(α, β) + cngn+1(β, α)] (61)

which again reduces to (57) on the base sliplines β = 0 and α = 0. The solution is
of the form (56) whenever the radii of curvature of the base sliplines have the same
sign, and of the form (61) whenever they have opposite signs.

For given shapes of the base sliplines, the differential equation for f remains
unchanged in form if the independent variables are changed to ξ and η defined as

ξ = α0 ± α η = β0 ± β

where α0 and β0 are constants, provided both the upper signs or both the lower signs
are taken. Then (α, β) may be replaced by (ξ, η) in the appropriate solution (56)
or (61). When other signs are considered in the above expressions, the solution is
obtained by writing (ξ, η) for (α, β) in (61) if R and S are of the same sign, and in
(56) if they are of opposite signs. It follows from (55) and (60) that

f ′
n(α, ξ) = fn−1(α, ξ) ± fn+1(α, ξ)

g′
n(α, ξ) = gn−1(α, ξ) ∓ gn+1(α, ξ)

(62)

where the prime denotes differentiation with respect to the independent variable α.
The upper and lower signs in (62) correspond with the upper and lower signs in the
expression for ξ.
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(ii) A series method of solution A general method of treating slipline field problems
will now be discussed in relation to the first boundary-value problem in which the
radii of curvature of the base sliplines have the same sign. Referring to Fig. 6.11a,
the baseline radii of curvature are expanded in the convergent power series†

−R(α, 0) =
∞∑

n=0

an
αn

n! −S(0, β) =
∞∑

n=0

bn
βn

n! (63)

where an and bn are given constants. The first of these conditions is satisfied by
assuming the solution for −R(α, β) in the form (56). In view of (46), the remaining
boundary condition then gives cn = bn. The expression for R and S therefore become

−R(α, β) =
∞∑

m,n=0

[
an

αm+n

(m + n)!
βm

m! + bn
αm

m!
βm+n+1

(m + n + 1)!
]

−S(α, β) =
∞∑

m,n=0

[
an

αm+n+1

(m + n + 1)!
βm

m! + bn
αm

m!
βm+n

(m + n)!
]

This solution can be verified directly by inspection and is readily shown to be uni-
formly and absolutely convergent. Rearranging the subscripts, the above expressions
can be written in the form

−R(α, β) =
∞∑

n=0

rn(β)
αn

n! −S(α, β) =
∞∑

n=0

sn(α)
βn

n! (64)

where rn and sn are constant along α and β lines respectively, and are given by

rn(β) =
n∑

m=0
an−m

βm

m! +
∞∑

m=n+1
bm−n−1

βm

m!

sn(α) =
n∑

m=0
bn−m

αm

m! +
∞∑

m=n+1
am−n−1

αm

m!
(65)

We thus have the power series expansions for R along an α line and S along a β line. If
the curvature of both the base sliplines is reversed, we may use the series expansions
(63) and (64) with the negative signs omitted. Equations (46), with due changes in
sign of α and β, then indicate that the resulting modifications of (65) are such as to
have the sign of the second series for both rn and sn reversed.

The series expansions for x and y in terms of α and β would be analogous to
those for R and S. Alternatively, the expression for either R or S may be used to
determine x and y. Considering the second equations of (47), (49), and (64), it can

† D. J. F. Ewing, J. Mech. Phys. Solids, 15: 105 (1967).
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be easily shown that

x(α, β) =
∞∑

n=0

tn(α)
βn

n! y(α, β) =
∞∑

n=0

tn+1(α)
βn

n! (66)

where tn+2(α) + tn(α) = sn(α).

It is important to note that t0(α) and t1(α) are the values of x and y respectively along
the α baseline. Hence tn(α) can be readily found from the above recurrence rela-
tionship for any given β line α = α0. When x and y have been found, the rectangular
coordinates follow from (23). Consider now the convolution integrals

U(α, β) = −
∫ β

0
tS(α, t)sin(β − t)dt

V (α, β) = −
∫ β

0
tS(α, t)cos(β − t)dt

(67)

which are taken along a given β line from its intersection with the α baseline. It
follows from direct differentiation that

∂U

∂β
= V

∂V

∂β
+ U = −βS

Hence, the solution for U and V , vanishing on β = 0, can be written as

U(α, β) =
∞∑

n=1

un(α)
βn

n! V (α, β) =
∞∑

n=1

un+1(α)
βn

n! (68)

where un+2(α) + un(α) = nsn−1(α) with u1 = 0

Let (P, Q) be the rectangular components of the resultant traction acting across the
line segment AP (Fig. 6.11a) due to the material on the right of this slipline. The
counterclockwise angle which is made by the tangent to AP with the y axis at a
generic point (α, t) is φ0 − α + t. It follows from geometry that

P = kX − (p0 + 2kα)Y + 2k
∫ β

0
tS(α, t)cos(φ0 − α + t)dt

Q = kY − (p0 + 2kα)X + 2k
∫ β

0
tS(α, t)sin(φ0 − α + t)dt

where p0 is the hydrostatic pressure at C, and (X , Y ) denote the coordinate differences
(xP − xA, yP − yA). Using (67), the above equations can be expressed as

P

k
= X −

(p0

k
+ 2α

)
Y − 2(V cos φ + U sin φ)

Q

k
= Y +

(p0

k
+ 2α

)
X + 2(U cos φ − V sin φ)

(69)
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where φ = φ0 + β − α. Similar expressions may be written down for the components
of the resultant force across an α line.†The resultant counterclockwise moment about
the origin, of the distribution of tractions on AP, is easily shown to be given by

M

k
= −

∫ β

0

{[p0

k
+ 2(α + t)

]
y(α, t) + x(α, t)

}
S(α, t)dt (70)

When x, y, and S have been found by the summing of the respective power series,
M/k can be evaluated by a straightforward numerical integration.

(iii) Matrix formulation The method outlined above is particularly suitable for
evaluating the slipline field quantities in problems of the direct type where a pair
of initial sliplines are either given or can be reasonably guessed. There are how-
ever many important problems of the indirect type in which the shape of none
of the sliplines, or their hodograph images, can be deduced in advance. In order
to deal with such cases, it is convenient to recast the foregoing theory in matrix
language.‡ We shall be concerned here with the radii of curvature of the sliplines
from which the other relevant quantities can be determined by using the series
method. We begin by writing (64) in the matrix form

−R = [1, α1, α2, . . . ]




r0

r1

r2
...




−S = [1, β1, β2, . . . ]




s0

s1

s2

...




(71)

where αn = αn/n! and βn = βn/n! (n = 1, 2, 3, . . .). The column vectors {rn} and {sn}
may be considered as representing the radii of curvature of typical sliplines β = const
and α = const respectively. Let ρ and σ denote these vectors for the sliplines BD
and AD, considered through a typical point D with angular coordinates θ and ψ

(Fig. 6.12a). These vectors are defined in such a way that their sign is always positive,
irrespective of the sense of the curvature. Eqs. (65) may now be written in the matrix
form§

ρ = Mψa + Nψb σ = Mθb + Nθa (72)

where a and b are column vectors having elements an and bn respectively
(with n = 0, 1, 2, . . .), and representing the radii of curvature of the base sliplines

† A graphical method of finding the resultant force acting across a slipline has been proposed by
W. Johnson and A. G. Mamalis, Int. J. Mech. Sci., 20: 47 (1978).

‡ I. F. Collins, Proc. R. Soc., A, 303: 317 (1968); P. Dewhurst and I. F. Collins, Int. J. Num. Methods
Eng., 7: 357 (1973). The sign convention employed by these authors was somewhat different.

§ This is an analytical statement of the superposition principle discussed in Sec. 6.8.
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Figure 6.12 Vector representation of sliplines. (a) Regular domain; (b) singular domain. The arrow
indicates the intrinsic direction.

CA and CB. The operators M and N are square matrices expressed as

Mθ =




1 0 0 · · ·
θ1 1 0 · · ·
θ2 θ1 1 · · ·
· · · · · · · · · · · ·


 Nθ =




θ1 θ2 θ3 · · ·
θ2 θ3 θ4 · · ·
θ3 θ4 θ5 · · ·
· · · · · · · · · · · ·


 (73)

where θn = θn/n!. If one of the base sliplines, CB (say), degenerates into a point
(b = 0), the radii of curvature of CD and AD of the fan CAD are given by Mψa and
Nθa respectively. It follows that M and N are matrix operators which generate the
singular field on the convex side of a given slipline (Fig. 6.12b). Thus M is associated
with sliplines of the same family and N with sliplines of the opposite family.† It
may be noted that MθMψ = Mθ+ψ.

Consider now the power series expansion of the radii of curvature of the sliplines
DB and DA with respect to the new base point D. Taking due account of the sign
convention, we write

R(α, ψ) =
∞∑

n=0

rn(θ, ψ)
ξn

n! S(θ, β) =
∞∑

n=0

sn(θ, ψ)
ηn

n!
where ξ = θ − α and η = ψ − β, while rn and sn are new coefficients. On the other
hand, (64) directly furnishes

R(α, ψ) =
∞∑

n=0

rn(ψ)
αn

n! S(θ, β) =
∞∑

n=0

sn(θ)
βn

n!

† Evidently, the singular field on the concave side of a given slipline would be generated by the
inverse operators M−1 and N−1 in a similar way.
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where α = θ − ξ and β = ψ − η. Using the binomial expansions of (θ − ξ)n and
(ψ − η)n, and comparing the coefficients of ξn and ηn on the right-hand sides of
the above equations, we obtain

rn(θ, ψ) = (−1)n
∞∑

m=n

rm(ψ)
θm−n

(m − n)!
and a similar expression for sn(θ, ψ). Denoting the column vectors {rn} and {sn} by
ρ′ and σ′ respectively, these equations may be written in the matrix form

ρ′ = Rθρ σ′ = Rψσ (74)

where

Rψ =




1 ψ1 ψ2 · · ·
0 −1 −ψ1 · · ·
0 0 1 · · ·
· · · · · · · · · · · ·


 (75)

The direction indicated by arrows in Figs. 6.12 and 6.13 represents the intrinsic
direction in which the characteristic angle, whose powers are involved in the respec-
tive series expansion, progressively increases. Since ξ and η increases along DB
and DA, the intrinsic directions for ρ′ and σ′ are opposite to those for ρ and σ. The
matrix Rψ is therefore a reversion operator which reverses the intrinsic direction
of a given slipline of angular span ψ. It has the property R2

ψ = I, where I is the unit
matrix operator. We now introduce operators P and Q defined as

Pθψ = RψMθ Qθψ = RψNθ (76)

Figure 6.13 Vector representation of sliplines with intrinsic directions opposite to those of the base
curves.
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The geometrical interpretation for P and Q is analogous to that for M and N, the
only difference being in the associated intrinsic direction (Fig. 6.13a). Thus Pψθa
and Qθψb represent the radii of curvature of the sliplines DC and DA of the centered
fan CAD with the intrinsic directions pointing toward C and A respectively. Pre-
multiplying the two equations of (72) by Rθ and Rψ respectively, and using (74)
and (76), we obtain

ρ′ = Pψθa + Qψθb σ′ = Pθψb + Qθψa (77)

These equations express the vectors representing the radii of curvature of DB and
DA with respect to D in terms of those of CA and CB with respect to C. Alternatively,
we may regard DB and DA as base sliplines, and express a and b as linear functions
of ρ′ and σ′. Taking due account of the modifications resulting from the reversed
curvature of the new baselines, it can be shown that

a = Pψθρ
′ − Qψθσ

′ b = Pθψσ′ − Qθψρ′ (78)

Eliminating ρ′ and σ′ between (77) and (78), we obtain a pair of matrix equations
which can be simultaneously satisfied if

PθψQθψ = QθψPψθ P2
θψ − QθψQψθ = I (79)

These identities are sometimes useful for establishing the validity of a proposed
slipline field. It is interesting to note that Pψψ and Qψψ are mutually commutative,
namely PψψQψψ = QψψPψψ.

If the origin of the curvilinear coordinates (α, β) is moved from C to D, it
is necessary to replace α by θ + α and β by ψ + β in the series expansions (64).
Proceeding as before, it can be shown that the vectors representing the sliplines
through D with the intrinsic directions unchanged, are obtained by pre-multiplying
ρ and σ by the matrices Sθ and Sψ respectively, where Sψ is a shift operator given
by (75) with all the negative signs suppressed.

An important special case arises in the construction of the slipline field between
a given curve OA, represented by the vector a, and two frictionless planes OX and OY
(Fig. 6.13b). The field may be regarded as being generated by OA and its reflection
in the planes. The vector Tψa, representing the bounding curve BA on the convex
side of OA, is obtained by setting b = a and θ = ψ in (77). Thus

Tψ = Pψψ + Qψψ T−1
ψ = Pψψ − Qψψ (80)

where the second result follows from (79) with θ = ψ. The vector T−1
ψ a evidently

represents the curve CA, on the concave side of OA, so that the operator Tψ can
generate the original curve OA from CA.

For computational purposes, the infinite dimensional vectors and matrices intro-
duced in the above formulation must be truncated to a suitable size of dimension N
(say). The error involved in this approximation can be estimated by considering the
next higher dimension. Using this formulation, the problem of finding an unknown
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initial slipline may be reduced to one of matrix inversion, after a simultaneous con-
sideration of the slipline field and the associated hodograph. The matrix method
of determining the initial slipline fails, however, when the boundary conditions are
such that the basic problem is mathematically nonlinear.

(iv) Riemann’s method of integration The solution of (48) may also be expressed
in an integral form using Riemann’s method, which consists in finding a particular
analytical solution known as Green’s function. For the problem under consideration,
the Green’s function is required to have a constant value along the characteristics
through a typical point D (Fig. 6.12a). The angular coordinates of D are denoted by
(θ, ψ) to distinguish it from an arbitrary point (α, β) within the field. Then Green’s
function for the problem may be written as

F(α, β) = I0[2
√

(θ − α)(ψ − β)]

which corresponds to (52) with n = 0 and (θ − α, ψ − β) written for (α, β) respec-
tively. The above function evidently satisfies the differential equation (48) and
assumes a value of unity along the curves α = θ and β = ψ. Since

F
∂2f

∂α ∂β
= Ff = f

∂2F

∂α ∂β

in view of (48), it is readily verified by direct differentiation that

∂

∂β

(
F

∂f

∂α
− f

∂F

∂α

)
= ∂

∂α

(
f
∂F

∂β
− F

∂f

∂β

)

which is the necessary and sufficient condition for the expression(
F

∂f

∂α
− f

∂F

∂α

)
dα +

(
f
∂F

∂β
− F

∂f

∂β

)
dβ

to be a perfect differential. Hence the line integral of this expression round any closed
curve is zero. We therefore write∮ {(

F
∂f

∂α
− f

∂F

∂α

)
dα +

(
f
∂F

∂β
− F

∂f

∂β

)
dβ

}
= 0

where the integral is taken round CADBC in a counterclockwise sense. Since F = 1
along AD(α = θ) and DB(β = ψ), and consequently ∂F/∂α = 0 on AD and ∂F/∂β = 0
on DB, the integral is readily evaluated along these curves, and the above equation
is reduced to

2fD = fA + fB +
∫ A

C

(
F

∂f

∂α
− f

∂F

∂α

)
dα +

∫ B

C

(
F

∂f

∂β
− f

∂F

∂β

)
dβ
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where the subscripts denote the values of f at the specified points, and the integrals
are taken along the base curves CA and CB. Integrating by parts, and then substituting
for F(α, β), we finally obtain†

f (θ, ψ) = I0(2
√

θψ)f (0, 0) +
∫ θ

0
I0(2

√
ξψ)

∂f

∂α
dα +

∫ ψ

0
I0(2

√
θη)

∂f

∂β
dβ (81)

where ξ = θ − α and η = ψ − β. Equation (81) expresses the value of the function f
at any point of the field in terms of its boundary values along the base curves. Taking
f = R, for instance, we have ∂f /∂β = S. The integrands are therefore known when R
and S are given along CA and CB respectively. When R(α, β) has been found from
(81), the rectangular coordinates of any point can be determined from the relations

∂x

∂α
= −R cos(φ0 + β − α)

∂y

∂α
= −R sin(φ0 + β − α) (82)

on integrating along the α lines. Alternatively, these coordinates may be found
through x and y calculated from (81) and (47). If one of the base sliplines is curved
in the opposite sense, it is only necessary to replace I0 by J0 in Eq. (81). Riemann’s
method is also applicable when the function f and one of its derivatives, say ∂f /∂α,
are given along any curve passing through A and B. Since ∂f /∂β can be found from
∂f /∂α and the known variation of f along the given curve AB, the value of f at any
point in the field may be determined as before by considering CAB as the relevant
integration path.

6.6 Explicit Solutions for Direct Problems

(i) Field defined by circular arcs of equal radii—I As a first example to illustrate
the analytical theory, consider the situation where each of the base sliplines CA and
CB is a circular arc of radius

√
2a (Fig. 6.14). Then R = −√

2a, S = −√
2a(1 + α)

on β = 0 and S = −√
2a, R = −√

2a(1 + β) on α = 0, in view of (46). A compari-
son with (57), where f is taken to stand for R, indicates that a0 = c0 = −√

2a and
an = cn = 0 for n � 1. These values immediately furnish R, while S follows from it
on using (46). The radii of curvature of the sliplines at any point (α, β) therefore
become

R = −√
2a

[
I0(2

√
αβ) +

√
β

α
I1(2

√
αβ)

]

S = −√
2a

[√
α

β
I1(2

√
αβ) + I0(2

√
αβ)

] (83)

It follows that R(α, β) = S(β, α) as expected in view of the symmetry of the field.
The leading terms in the brackets of (83) are the numerical values of R and S for a

† C. Carathéodory and E. Schmidt, Z. angew. Math. Mech., 3: 468 (1923); R. Hill, The Mathematical
Theory of Plasticity, p. 153, Clarendon Press, Oxford (1950).
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Figure 6.14 Symmetrical field defined by circular arcs of equal radii.

centered fan defined by an α baseline of unit radius. Similarly, the last terms in the
brackets correspond to a centered fan defined by a β baseline of unit radius.

To obtain the rectangular coordinates, let the x axis be taken along the axis
of symmetry and the y axis through the centers D and E of the circular arcs. The
counterclockwise angle made by the α line with the x axis at a generic point N is
φ = −π/4 + β − α. By (22), the coordinates of the slipline field may be written as

√
2x = (x + y) cos(β − α) + (x − y) sin(β − α)√
2y = (x + y) sin(β − α) − (x − y) cos(β − α)

(84)

It is convenient here to work with x + y and x − y instead of x and y separately. From
geometry, the boundary conditions are easily derived as

x + y = √
2a(1 + sin α) x − y = −√

2a(1 − cos α) on β = 0

x + y = √
2a(1 + sin β) x − y = −√

2a(1 − cos β) on α = 0

The solution for x + y and x − y at a generic point in the field may therefore be
written in the form

x + y√
2a

= I0(2
√

αβ) + 2F1(α, β) + sin(β − α)

x − y√
2a

= I0(2
√

αβ) − 2F2(α, β) − cos(β − α)
(85)

where the functions F1 and F2 must be of the form (56) and satisfy the conditions
F1(0, β) = F2(0, β) = 0 and F1(α, 0) = sin α, F2(α, 0) = 1 − cos α. The coefficients



Chakra-06.tex 27/1/2006 14: 57 Page 462

462 theory of plasticity

cn are therefore zero, while an are readily found from (57) using the series expansions
of sin α and cos α. Thus

F1(α, β) =
∞∑

m=0
(−1)m

(
α

β

)m+1/2

I2m+1(2
√

αβ)

F2(α, β) =
∞∑

m=0
(−1)m

(
α

β

)m+1

I2m+2(2
√

αβ)

(86)

These functions are easily calculated† from a standard table for α�β, which corre-
sponds to y � 0. Because of symmetry, the slipline field for α�β is the mirror-image
of that for α�β. The functions F1(α, β) and F2(α, β) are related to one another by
the equations

∂F1

∂α
= I0(2

√
αβ) − F2

∂F2

∂α
= F1 (87)

Similar expressions may be written down for the derivatives with respect to β,
noting the fact that both F1 and F2 satisfy (48). Employing the series expansion for
the modified Bessel functions it can be shown that

F1(β, α) − F1(α, β) = sin(β − α)

F2(β, α) + F2(α, β) = I0(2
√

αβ) − cos(β − α)
(88)

which are useful properties of the functions F1 and F2. From (84) and (85), the
rectangular coordinates of any point (α, β) are finally obtained as‡

x

a
= [I0(2

√
αβ) + 2F1(α, β)] cos(β − α)

+ [I0(2
√

αβ) − 2F2(α, β)] sin(β − α)

y

a
= 1 + [I0(2

√
αβ) + 2F1(α, β)] sin(β − α)

− [I0(2
√

αβ) − 2F2(α, β)] cos(β − α)

(89)

In view of (88), the above equations satisfy the conditions x(α, β) = x(β, α) and
y(α, β) = −y(β, α), required by the symmetry of the field about the x axis. The last
condition also ensures that y = 0 on the axis of symmetry. The distance of a generic
point on the axis from the origin O is

x(α, α) = a[I0(2α) + A0(2α)]
(90)

where A0(2α) = 2F1(α, α) =
∫ 2α

0
I0(z) dz

† The functions F1, F2, as well as similar ones occurring subsequently, may be evaluated directly
from the double power series obtained by using (54) or (59), whichever is appropriate.

‡ J. Chakrabarty, Int. J. Mech. Sci., 21: 477 (1979).
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The last equality follows from the repeated use of the second relation of (53) for
successive values of n.

It may be easily verified by direct differentiation that Eqs. (87) are satisfied by
the integral representation

F1(α, β) =
∫ α

0
I0(2

√
tβ) cos(α − t) dt

F2(α, β) =
∫ α

0
I0(2

√
tβ) sin(α − t) dt

(91)

The integrals are taken along a given α line, starting from the point where it is
intersected by the β baseline. We now introduce two additional functions L and N
defined as

L(α, β) =
∫ α

0
F1(t, β) cos(α − t) dt

N(α, β) =
∫ α

0
F1(t, β) sin(α − t) dt

(92)

Similar integrals involving F2 may be obtained by writing F1 = ∂F2/∂t in (92) and
then integrating by parts. Differentiating (92) partially with respect to α and β, and
remembering that F1(0, β) = 0, we get

∂L

∂α
+ N = F1

∂N

∂α
= L

∂L

∂β
= N (93)

The last two equations indicate that both L and N satisfy (48). The solution to
these differential equations satisfying the conditions L(0, β) = N(0, β) = 0 may be
written as

L(α, β) =
∞∑

m=1
(−1)m+1m

(
α

β

)m

I2m(2
√

αβ)

N(α, β) =
∞∑

m=1
(−1)m+1m

(
α

β

)m+1/2

I2m+1(2
√

αβ)

(94)

which may be verified by direct substitution in (93). The new functions L and N are
related to F1 and F2 by the equations

2L(α, β) = (α + β)F1(α, β) − √
αβ I1(2

√
αβ)

2N(α, β) = (α + β)F2(α, β) + F1(α, β) − αI0(2
√

αβ)
(95)

which are easily shown to satisfy the differential equations (93) and the bound-
ary conditions L(0, β) = N(0, β) = 0. Both (94) and (95) give 2L(α, 0) = α sin α,
2N(α, 0) = sin α − α cos α. It follows from (88) and (95) that

2L(β, α) − 2L(α, β) = (α + β) sin(β − α)

2N(β, α) + 2N(α, β) = 2F1(α, β) + sin(β − α) − (α + β) cos(β − α)
(96)
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In the solution of physical problems we are often required to calculate integrals of
the type

∫
x dα and

∫
y dα to find the components of the resultant traction across a

slipline. Setting α = t in (89) and using (91) and (92), it can be shown that∫ α

0
x(t, β) dt = a[(F1 − F2 + 4L) cos(β − α) + (F1 − F2 − 4N) sin(β − α)]

(97)∫ α

0
y(t, β) dt = aα + a[(F1 − F2 + 4L) sin(β − α) − (F1 − F2 − 4N) cos(β − α)]

where all the functions are considered at (α, β). The integrals involving F2 have been
reduced to those in terms of F1 by using equations (87). Interchanging α and β in
(97), and using (88) and (96), it is easily shown that∫ β

0
x(t, α) dt = y(α, β) +

∫ α

0
x(t, β) dt

∫ β

0
y(t, α) dt = x(α, β) −

∫ α

0
y(t, β) dt − a(1 + α + β)

(98)

These relations may be used to calculate the values of the integrals (97) for α�β

when those for α�β are known. Accurate numerical values of x/a and y/a, as well
as their associated integrals, are presented in Table A-1 for a 10◦ equiangular net
and in Table A-2 for a 15◦ equiangular net (Appendix). Numerical values of the
relevant mathematical functions used in the analysis are given in Tables A-3 and
A-4 (Appendix).

If p0 denotes the hydrostatic pressure at C, the normal compressive stress acting
at a generic point (α, α) on the axis of symmetry is of magnitude p0 + k(1 + 4α).
Assuming CD and CE to be sliplines, the resultant normal force transmitted across
the axis between the origin O and a typical point (α, α) may be written as

F = (p0 + k)x(α, α) + 4k
∫ α

0
α

(
dx

dα

)
dα

on the basis of a unit width of the material. Since

α

a

dx

dα
= 2α[I1(2α) + I0(2α)] = d

dα
[αI0(2α) + αI1(2α)] − I0(2α)

in view of (90) and (53), the integration can be carried out explicitly. Using (90)
again, the result may be put in the form

F = (p0 − k)x(α, α) + 2ka[(1 + 2α)I0(2α) + 2αI1(2α)] (99)

If the α and β lines are interchanged, it is only necessary to change the sign of k in
the above expression.

Consider now the resultant force acting across a typical slipline EMN, the mate-
rial in the region ECB being regarded as plastic (Fig. 6.14). It is convenient to assume
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p0 = 0 for the present purpose, so that interchanging the α and β lines of the field
would result in a mere sign reversal of the force components.† Let (P, Q) denote
the forces exerted on EN per unit width by the material above this slipline in the
directions of the positive x axis and the negative y axis respectively. Since EN is an
α line, it follows from Hencky’s equations that

P = kxN + 2k
∫ N

E
(t + β) dy Q = k(a − yN ) + 2k

∫ N

E
(t + β) dx

where t denotes the angle turned through along the slipline, and (xN , yN ) are the
coordinates of N . Integrating by parts, the above relations may be expressed as

P = k

[
xN + 2(α + β)yN − 2βa − 2

∫ α

0
y(t, β) dt

]

Q = k

[
(a − yN ) + 2(α + β)xN − 2

∫ α

0
y(t, β) dt

] (100)

The forces P and Q are functions of the angular coordinates (α, β) of the generic
point N . In view of the symmetry of the field, (100) also gives the magnitude of the
forces across the β line extending from D to the field point (β, α). It follows from
(100) and (98) that

P(β, α) + P(α, β) = 2ka Q(β, α) = Q(α, β)

relating the force components for α�β to those for α�β. These results are con-
sistent with the fact that the resultant force across DE is a horizontal tension of
magnitude 2ka. Numerical values of P/2ka and Q/2ka are included in Tables A-1
and A-2 (Appendix). The dimensionless clockwise moment M/ka2 of the tractions
about O, calculated numerically using (70) and the symmetry condition, appears in
the last column of Table A-1 over a range of 90◦ for α and β. It is important to note
that M(β, α) = M(α, β) in view of the symmetry of the field about the x axis.

(ii) Field defined by equal logarithmic spirals As another example, consider the
slipline field defined by a pair of identical logarithmic spirals OA and OB with poles
at D and E, each at a distance b from the axis of symmetry (Fig. 6.15). The angle
turned through along each spiral is equal to the angle swept over by the radius vector
to the curve from the corresponding pole. Since the radius vector makes an angle
of 45◦ with the tangent to the spiral at each point, the polar equations of the base
sliplines OA and OB are r = be−α and r = be−β respectively. The radius of curvature
at any point of either baseline is numerically equal to

√
2r, which gives

R = −√
2be−α S = −√

2b(2 − e−α) on β = 0

R = −√
2b(2 − e−β) S = −√

2be−β on α = 0

† It is easy to allow for any nonzero value of p0 whose effect is to augment the hydrostatic pressure
at each point of the field by the same amount.
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Figure 6.15 Slipline field defined by identical logarithmic spirals.

in view of (46). The radii of curvature at any point within the field may therefore be
written as

R = −√
2b[2I0(2

√
αβ) − 2G(α, β) − exp(−α − β)]

S = −√
2b[2G(α, β) + exp(−α − β)]

(101)

the exponential terms being suggested by (51) and the nature of the boundary con-
ditions. Evidently, the function G is required to satisfy the conditions G(0, β) = 0,
G(α, 0) = 1 − e−α. From (57), it is easily found that

G(α, β) =
∞∑

n=0

(−1)n
(

α

β

)(n+1)/2

In+1(2
√

αβ) (102)

which can be calculated for α�β using a table. It is interesting to note that
R + S has the magnitude 2

√
2bI0(2

√
αβ) everywhere. The symmetry requirement

R(α, β) = S(β, α) is fulfilled in view of the relation

G(α, β) + G(β, α) = I0(2
√

αβ) − exp(−α − β) (103)

which may be verified by using the series expansion of the modified Bessel func-
tions. The coordinates of the field may be obtained by determining x + y and x − y
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as before. It follows from geometry that x = be−α sin α, y = −b(1 − e−α cos α) on
β = 0 and x = be−β sin β, y = b(1 − e−β cos β) on α = 0. Using (84), we obtain the
boundary conditions

x + y = √
2b sin α x − y = √

2b(cos α − e−α) on β = 0

x + y = √
2b sin β x − y = −√

2b(cos β − e−β) on α = 0

which are very similar to those of the previous problem. The solution for x + y and
x − y satisfying these conditions are similarly obtained as

x + y√
2b

= 2F1(α, β) + sin(β − α)

x − y√
2b

= −2F2(α, β) + 2G(α, β) − cos(β − α) + exp(−α − β)
(104)

where F1 and F2 are given by (86) and G by (102). Substitution in (84) now furnishes
the rectangular coordinates of the nodal points of the field as†

x

b
= 2F1 cos(β − α) + [2G − 2F2 + exp(−α − β)] sin(β − α)

y

b
= 1 + 2F1 sin(β − α) − [2G − 2F2 + exp(−α − β)] cos(β − α)

(105)

It follows from Eqs. (88) and (103) that the conditions x(α, β) = x(β, α) and
y(α, β) = −y(β, α) are automatically satisfied, as required by the symmetry of the
field with respect to the x axis. The distance of a generic point on the axis (β = α) from
the origin is bA0(2α) where A0(2α) is defined in (90). Numerical values of G(α, β),
R/

√
2b, S/

√
2b, x/b and y/b for a 10◦ equiangular net are given in Table A-5

(Appendix).

(iii) Field defined by circular arcs of unequal radii Suppose that the base sliplines
CA and CB are circular arcs of unequal radii, the distance DE between the centers
being 2a (Fig. 6.16). Let λ be the counterclockwise angle made with ED by the
tangent to the α line at C. Since the radii of curvature of the α and β baselines are
2a sin λ and 2a cos λ respectively, the expressions for R and S at any point (α, β)
within the field become

R = −2a

{
l0(2

√
αβ) sin λ +

√
β

α
l1(2

√
αβ) cos λ

}

S = −2a

{
l0(2

√
αβ) cos λ +

√
α

β
l1(2

√
αβ) sin λ

} (106)

To find the rectangular coordinates of the field defined by CA and CB, we choose
our x axis along OC which is perpendicular to the line joining the centers D and E.

† J. Chakrabarty, Int. J. Mech. Sci., 21: 477 (1979), and 33: 89 (1991).
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Figure 6.16 Slipline field defined by circular arcs of unequal radii. The associated symmetrical field is
shown broken.

If the origin is taken temporarily at C, the boundary conditions may be written as

x = 2a sin λ sin α y = 2a sin λ(1 − cos α) β = 0

x = 2a cos λ(1 − cos β) y = 2a cos λ sin β α = 0

The solution for x and y, satisfying these conditions, can be immediately written
down in terms of the functions F1 and F2 as

x = 2a{F1(α, β) sin λ + F2(β, α) cos λ}
y = 2a{F2(α, β) sin λ + F1(β, α) cos λ}

The coordinates of the field, when the y axis is taken through C, are obtained by
substituting for (x, y) in (22) with φ = −π/2 + (λ + β − α). If the y axis is now taken
along OE as shown, it is only necessary to add OC = a sin 2λ to the expression for
x. Using (88), we finally obtain the rectangular coordinates at any point (α, β) as

x

a
= 2I0(2

√
αβ) cos λ sin(λ + β − α) + 2F1(α, β) cos(β − α)

− 2F2(α, β) sin(β − α)
y

a
= 2 cos2 λ − 2I0(2

√
αβ) cos λ cos(λ + β − α)

+ 2F1(α, β) sin(β − α) + 2F2(α, β) cos(β − α)

(107)

The comparison of (107) with (89) indicates that the coordinates (x, y) of the unsym-
metrical field may be obtained from those of the symmetrical field (λ = π/4) for the
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same (α, β) by adding quantities (x′, y′) given by

x′

a
= [sin(2λ + β − α) − cos(β − α)]I0(2

√
αβ)

y′

a
= cos 2λ − [cos(2λ + β − α) + sin(β − α)]I0(2

√
αβ)

(108)

The symmetrical field (shown broken) is defined by circular arcs having centers at
(0, ±a). It follows from (108) that x′ is positive or negative according as β − α is
greater or less than π/4 − λ. From (108) and (91), it is easy to show that

∫ α

0
x′(t, β) dt = a[sin(2λ + β − α) − cos(β − α)]F1(α, β)

+ a[cos(2λ + β − α) + sin(β − α)]F2(α, β)∫ α

0
y′(t, β) dt = aα cos 2λ − a[cos(2λ + β − α) + sin(β − α)]F1(α, β)

+ a[sin(2λ + β − α) − cos(β − α)]F2(α, β)

(109)

For α � β, these integrals may be readily evaluated by using the tabulated values
of F1 and F2. When α � β, it is necessary to use (88) to obtain F1 and F2 from
the tabulated data. Assuming the region ECB to be plastic, the components of the
resultant force across a typical α line EN, reckoned positive as shown, are found as

P = k

[
xN + 2(α + β)yN − 4aβ cos2 λ − 2

∫ α

0
y(t, β) dt

]

Q = k

[
2a cos2λ − yN + 2(α + β)xN − 2

∫ α

0
x(t, β) dt

] (110)

The derivation of these expressions is identical to that of (100). Numerical values of
the relevant parameters for a 15◦ equiangular net are given in Table A-6 (Appendix),
corresponding to λ = 0, 15, and 30◦. When λ = 0, the points C and D coincide with
O, and the field reduces to a centered fan defined by a circular arc of radius 2a, the
x axis being tangential to this arc at the origin.†

(iv) Field defined by circular arcs of equal radii—II Consider the field in which
each of the base sliplines is again a circular arc of radius

√
2a, but the curvature of

the α baseline is now opposite to that of the previous problem. In Fig. 6.17, the field
defined by the circular arcs CA and CB is therefore without an axis of symmetry. The
radii of curvature of the sliplines, satisfying Eqs. (46) with −α written for α, and
the boundary conditions R = √

2a on β = 0 and S = −√
2a on α = 0, can be written

† For an analysis for the singular field, see J. Chakrabarty, Int. J. Mech. Sci., 33: 89 (1991).
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Figure 6.17 Unsymmetrical field defined by circular arcs of equal radii. The broken curve BL is a
limiting line.

down in terms of the Bessel functions J0 and J1, the result being

R = √
2a

[
J0(2

√
αβ) −

√
β

α
J1(2

√
αβ)

]

S = −√
2a

[
J0(2

√
αβ) +

√
α

β
J1(2

√
αβ)

] (111)

For a given α, R decreases as β is increased. Hence there exists a limiting line BL
along which R vanishes, and which forms an envelope of the intersecting β lines.
Values of α and β defining this limiting line are given in the following table:

α◦ 0 10 20 30 40 50 60
β◦ 57.30 52.60 48.39 44.70 41.43 38.54 36.0
x/a −0.301 −0.189 −0.090 −0.004 0.067 0.137 0.176
y/a 0.382 0.412 0.448 0.489 0.536 0.596 0.643

Choosing the origin of rectangular coordinates at the midpoint of the line of
centers DE, the boundary conditions for (x, y) may be written as

x + y = −√
2 a(1 − cos α) x − y = √

2 a(1 + sin α) on β = 0

x + y = √
2 a(1 − cos β) x − y = √

2 a(1 − sin β) on α = 0
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These conditions can be satisfied by writing the solution for x + y and x − y in the
form

x + y√
2 a

= J0(2
√

αβ) − 2F∗
2 (α, β) − cos(α + β)

x − y√
2 a

= J0(2
√

αβ) − 2F∗
1 (α, β) − sin(α + β)

(112)

where F∗
1 and F∗

2 must be of the form (61), and assume the values F∗
1 (0, β) = F∗

2
(0, β) = 0, and F∗

1 (α, 0) = sin α, F∗
2 (α, 0) = 1 − cos α. All these conditions are

satisfied by taking

F∗
1 (α, β) =

∞∑
m=0

(−1)m
(

α

β

)m+1/2

J2m+1(2
√

αβ)

F∗
2 (α, β) =

∞∑
m=0

(−1)m
(

α

β

)m+1

J2m+2(2
√

αβ)

(113)

These functions can be calculated for α � β using TableA-8 for the Bessel functions.
Evidently, both F∗

1 and F∗
2 are solutions of (48) with the appropriate sign change in

α. Using the series formula (59), it can be shown that

F∗
1 (α, β) + F∗

1 (β, α) = sin(α + β)

F∗
2 (α, β) + F∗

2 (β, α) = J0(2
√

αβ) − cos(α + β)
(114)

The rectangular coordinates of a generic point (α, β) are found by setting
φ = π/4 + α + β in (22), and then substituting from (101), resulting in

x

a
= [J0(2

√
αβ) + 2F∗

1 (α, β)] cos(α + β)

− [J0(2
√

αβ) − 2F∗
2 (α, β)] sin(α + β)

y

a
= −1 + [J0(2

√
αβ) + 2F∗

1 (α, β) sin(α + β)

+ [J0(2
√

αβ) − 2F∗
2 (α, β)] cos(α + β)

(115)

In view of (114) and (115), the coordinates at any point (β, α) are related to those at
(α, β) by the equations

x(α, β) + y(β, α) = 2aJ0(2
√

αβ) cos(α + β)

y(α, β) + y(β, α) = 2aJ0(2
√

αβ) sin(α + β)
(116)

Values of x and y along the envelope BL are included in the above table. It follows
from (116) that the radius vector from the origin O to any point (α, α) is of length
aJ0(2α), and inclined at an angle 2α to the x axis. The radial direction is therefore
a principal stress direction at each point of the curve β = α. Accurate numerical
values of x/a, y/a, R/

√
2a, −S/

√
2a, for a 10◦ equiangular net are given in Table

A-7 (Appendix).
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6.7 Some Mixed Boundary-Value Problems

(i) Slipline field near a straight limiting line Consider the mixed boundary-value
problem in which we are required to determine the slipline field between a circular
base slipline OA of radius a (Fig. 6.18), and a plane boundary OB along which the
shear stress has its maximum value k. Thus OB is the envelope of one family of
sliplines, and is at right angles to the sliplines of the other family. If OA is an α line,
the radius of curvature of the β lines must vanish along OB, where α = β. Hence the
boundary conditions for R and S are

R(α, 0) = −a S(α, α) = 0

These conditions, together with the equation S = ∂R/∂β, furnish the solution

R(α, β) = −a

[
I0(2

√
αβ) − β

α
I2(2

√
αβ)

]

S(α, β) = −a

(√
α

β
−
√

β

α

)
I1(2

√
αβ)

(117)

The β base curve, which lies above the limiting line, has a positive curvature.
Let the x and y axes be taken along and perpendicular to OB with the origin at

O. Then the boundary conditions for x and y can be written as

x(α, 0) = a sin α y(α, 0) = a(1 − cos α) y(α, α) = 0

Figure 6.18 Slipline field defined by a straight limiting line and a given circular arc.
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The last two conditions are sufficient to find y, from which x follows in view of the
equation x = ∂y/∂α. The solution for x and y therefore becomes

y(α, β) = a[I0(2
√

αβ) − 2F2(β, α) − cos(α − β)]

x(α, β) = a

[
−
√

β

α
I1(2

√
αβ) + 2F1(β, α) + sin(α − β)

]
(118)

where F1 and F2 are given by (86). Substituting in (22) with φ = β − α, the
rectangular coordinates of a generic point (α, β) are obtained as†

x

a
=
[

2F1(β, α) −
√

β

α
I1(2

√
αβ)

]
cos(α − β)

+ [I0(2
√

αβ) − 2F2(β, α)] sin(α − β)
(119)

− y

a
= 1 +

[
2F1(β, α) −

√
β

α
I1(2

√
αβ)

]
sin(α − β)

− [I0(2
√

αβ) − 2F2(β, α)] cos(α − β)

It is interesting to note that the right-hand sides of (119) differ from those of (89),
with α and β interchanged, by terms that depend on R(α, β) for the field defined by
opposed circular arcs of unit radius.‡The distance of a generic point on the boundary
from the origin O is

x(α, α) = a[A0(2α) − I1(2α)] (120)

where A0(z) is defined in (90). Values of x/a and y/a at the nodal points of a 15◦
equiangular net are given in Table A-9 (Appendix).

Let p0 denote the hydrostatic pressure at O. Then the normal pressure at any
point on the plane boundary is p0 + 4kα. If the angular span of OA is denoted by
ψ, the resultant normal force acting on OB per unit width, in view of (120), may be
written as

Q = p0d + 4ka
∫ ψ

0
2α[I0(2α) − I ′

1(2α)] dα

where d = x(ψ, ψ). Since the expression within the integral is equal to I1(2α)dα

by (53), we finally obtain

Q = p0d + 2ka[I0(2ψ) − 1] (121)

† J. Chakrabarty, Int. J. Mech. Sci., 21: 477 (1979).
‡ If we construct the field between a pair of circular arcs of radius

√
2a with centers at (0, ±a),

and drop a perpendicular from the center of curvature of the α line at a typical point (α, β) of the field
on to the line of action of the major principal stress at (α, β), then the foot of this perpendicular defines
the corresponding point (α, β) of the field shown in Fig. 6.18.
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The components of the resultant force per unit width across a typical β line through
C, when the region COA is plastic with p0 = 0, are given by expressions similar to
(100). From (119), (91) and (92), it is easily shown that

∫ β

0
x(α, t) dt = a[(4L − 2F2) cos(α − β) + (I − 4N) sin(α − β)]

−
∫ β

0
y(α, t) dt = aβ + a[(4L − 2F2) sin(α − β) − (I − 4N) cos(α − β)]

(122)

where I = √
β/α I1(2

√
αβ), and all other functions correspond to the angular

coordinates (β, α). Numerical values of these integrals are included in Table A-9.
An explicit solution may also be obtained in the important situation where the

base slipline BE belongs to the field defined by a pair of opposed circular arcs of
equal radii (Fig. 6.19). The plane boundary AF passes through the center A of the
circular arc BC of radius

√
2a and angular span χ. The radius of curvature of BE is

evidently given by the first equation of (83) with β = χ. Thus

R = −√
2a

[
I0(2

√
αχ) +

√
χ

α
I1(2

√
αχ)

]
along BE

which corresponds to β = 0 for the field BEF. Introducing new variables ξ and η

through the transformation

ξ = χ + α η = χ + β

Figure 6.19 Slipline field between a limiting line and an axis of symmetry.
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the radii of curvature of the sliplines in BEF, satisfying Eqs. (46) and the boundary
conditions on β = 0 and β = α, can be written as

− R√
2a

= I0(2
√

αη) +
√

η

α
I1(2

√
αη) −

√
β

ξ
I1(2

√
ξβ) − β

ξ
I2(2

√
ξβ)

− S√
2a

= I0(2
√

αη) +
√

α

η
I1(2

√
αη) − I0(2

√
ξβ) −

√
β

ξ
I1(2

√
ξβ)

(123)

It follows that S is discontinuous across BE by an amount
√

2a. Consider now the
solution for x and y, when the origin of coordinates is as shown. Setting β = χ in
(85) furnishes the boundary condition

y = √
2a[F1(α, χ)] + F2(α, χ)] + a cos

(
χ − α − π

4

)
on BE

The solution for y which reduces to the above expression when β = 0, and assumes
the value a cos(χ − π/4) on β = α, can be immediately written as

y√
2a

= F1(α, η) + F2(α, η) − F1(β, ξ) − F2(β, ξ) + 1√
2

cos
(
η − α − π

4

)
the partial derivative of which with respect to α gives x. The results may be
conveniently put in the form

x + y√
2a

= I0(2
√

αη) + 2F1(α, η) − 2F2(β, ξ) −
√

β

ξ
I1(2

√
βξ) + sin(η − α)

(124)
x − y√

2a
= I0(2

√
αη) − 2F2(α, η) + 2F1(β, ξ) −

√
β

ξ
I1(2

√
βξ) − cos(η − α)

Substituting from (124) into (84), with β replaced by η, furnishes the rectangu-
lar coordinates for the field BEF. Comparison with (89) then shows that these
coordinates may be expressed as

x(α, β) = x◦(α, η) + x′(α, β)
y(α, β) = y◦(α, η) + y′(α, β)

where (x◦, y◦) denote the rectangular coordinates for the symmetrical field defined
by a pair of circular arcs through C, while (x′, y′) are additional coordinates given
by†

x′

a
= −

[
2F2(β, ξ) +

√
β

ξ
I1(2

√
βξ)

]
cos(η − α)

+
[

2F1(β, ξ) −
√

β

ξ
I1(2

√
βξ)

]
sin(η − α) (125a)

† These results have been obtained by the author in an unpublished work.
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y′

a
= −

[
2F2(β, ξ) +

√
β

ξ
I1(2

√
βξ)

]
sin(η − α)

−
[

2F1(β, ξ) −
√

β

ξ
I1(2

√
βξ)

]
cos(η − α) (125b)

For an equiangular net with β �α�χ, these coordinates may be calculated from the
tabulated values of the relevant functions. It follows from the condition of symmetry
of the (x◦, y◦) field that∫ β

0
x(α, t) dt =

∫ η

χ

x◦(t, α) dt +
∫ β

0
x′(α, t) dt

∫ β

0
y(α, t) dt = −

∫ η

χ

y◦(t, α) dt +
∫ β

0
y′(α, t) dt

The second integrals on the right-hand side can be expressed, as before, in terms of
known functions. After some algebraic manipulation, using (98), we finally obtain∫ β

0
x(α, t) dt =

∫ α

0
x◦(t, η) dt −

∫ α

0
x◦(t, χ) dt − y◦(α, χ) + y(α, β) + aE

(126)∫ β

0
y(α, t) dt =

∫ α

0
y◦(t, η) dt −

∫ α

0
y◦(t, χ) dt + x◦(α, χ) − x(α, β) + a(β − F)

where E and F denote the expressions in the upper and lower square brackets respec-
tively of (97) with cos(β − α) and sin(β − α) replaced by sin(η − α) and cos(η − α)
respectively, the functions F1, F2, L, and N being considered at (β, ξ). Table A-10
(Appendix) gives numerical values of the relevant parameters of the field for different
values of ψ = χ − π/4.

Let s denote the distance from A of a generic point T on the plane boundary.
Since x + y = s + √

2a sin χ along BF by simple geometry, it follows from (124) that

s = √
2a

[
I0(2

√
αξ) −

√
α

ξ
I1(2

√
αξ) + 2F1(α, ξ) − 2F2(α, ξ)

]
(127)

In view of (62), the differentiation of the above expression with respect to α furnishes

α
ds

dα
= √

2a

[
(1 + χ)

√
α

ξ
I1(2

√
αξ) + χ

(
α

ξ

)
I2(
√

αξ)

]

The normal pressure acting on the plane boundary at (α, α) is equal to p0 + 4kα by
Hencky’s equations. The resultant normal force per unit width transmitted across
AT is

Q = p0s + 4k
∫ s

0
α ds = p0s + 4k

∫ α

0
α

(
ds

dα

)
dα
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where p0 is the hydrostatic pressure on AB. Inserting from the preceding equation,
and noting the fact that

d

dα
[F2(α, ξ)] =

√
α

ξ
I1(2

√
αξ)

d

dα
[F1(α, ξ) = I0(2

√
αξ)]

in view of (62), we finally obtain

Q = p0s + 4
√

2ka

{
(1 + χ)F2(α, ξ) + χ

[√
α

ξ
I1(2

√
αξ) − F1(α, ξ)

]}
(128)

where s is given by (127). When p0/k is specified, the value of Q/ka can be readily
calculated from (128) as a function of α.

When the shape of the given base slipline is arbitrary, its radius of curvature
R(α, 0) may be expressed in the form of the power series (63) with known values of
an. The boundary condition S(α, α) = 0 then furnishes the relation bn = −an−1 with
b0 = 0. Once the coefficients have been found, the series method of solution may be
employed to derive the slipline field.

(ii) Generating a stress-free boundary A base slipline LM is given (Fig. 6.20).
We propose to determine the slipline field LMN such that the normal and tangential
tractions along the unknown boundary LN are zero. Let LM be an α line, the other
baseline being unknown. The vanishing of the normal and shear stresses across LN
requires p = −k along the boundary, and all sliplines meet the boundary at 45◦.

Figure 6.20 Stress-free boundary associated with slipline field containing an axis of symmetry.
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It follows from the Hencky equations that β = α along the boundary, 2α being the
clockwise angle made by the tangent to the boundary at a generic point P with that
at L. Considering a triangular element at P formed by a pair of intersecting sliplines,
we find −R dα = S dβ = √

2ρ dα, where ρ is the radius of curvature of LN at P. This
leads to the boundary condition

−R(α, α) = S(α, α) = √
2ρ

where R and S are related to one another by the equations

∂R

∂β
= −S,

∂S

∂α
= R (129)

Let the quantities −R(α, 0) and S(0, β) be given by the right-hand sides of (63),
where an are known constants. Then the solution for −R(α, β) may be expressed in
the form (61) with cn = bn. In view of (129), the boundary condition R = −S leads
to the recurrence relationship†

bn+1 − bn = an + an+1 (with b0 = a0)

for the unknown coefficients bn. The radius of curvature at a generic point of LN is
given by

√
2ρ = a0J0(2α) +

∞∑
n=1

(an + bn−1)Jn(2α) (130)

Since ρ is equal to 1
2 (ds/dα), where s is the arc length measured from L, the shape

of the stress-free boundary can be determined from (130). Changing the sign of β in
(47) and (49), and combining these equations, the boundary condition R = −S can
be written in terms of x and y as

∂

∂α
(x + y) = ∂

∂β
(x + y) on α = β

If x + y is expressed in the form (61), where an and cn are new constants, it follows
from above that cn = an+1. Thus, x + y is symmetrical with respect to α and β

everywhere in the field. The quantities x and y are directly obtainable from (66),
using the series method.

Suppose that the known slipline field to the left of LM contains an axis of
symmetry which is taken as the x axis. The β line CBEL emanating from the point C
on the axis turns through an angle ψ to reach L. Then the angle which the α direction
at L makes with x axis is φ0 = −(π/4 − ψ). Substituting φ = −π/4 + ψ − α − β in
(22) gives

√
2x = (x + y) cos(ψ − α − β) + (x − y) sin(ψ − α − β)

√
2y = (x + y) sin(ψ − α − β) − (x − y) cos(ψ − α − β)

(131)

† D. J. F. Ewing, J. Mech. Phys. Solids, 15: 105 (1967).
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An explicit solution can be found if CE is assumed to be a circular arc of radius√
2a. It is also assumed that a portion EL of the bounding slipline is straight. Then the

radius of curvature at any point of LM numerically exceeds that at the corresponding
point of EF by the length of each straight segment. Denoting this length by

√
2c0,

we have

− R√
2

= a

[
I0(2

√
αψ) +

√
ψ

α
I1(2

√
αψ)

]
+ c0 along LM

in view of (83). This is the boundary condition for R on β = 0 for the required field
LMN. The solution for R(α, β) may therefore be assumed in the form

− R√
2

= a

[
I0(2

√
αη) +

√
η

α
I1(2

√
αη)

]
+

∞∑
n=0

cn

(
β

ξ

)n/2

In(2
√

ξβ) (132)

where cn are unknown coefficients, and the additional variables ξ and η are defined as

ξ = ψ − α η = ψ − β

Each term of (132) satisfies (48). Employing the boundary condition S = − R, and
remembering that ξ = η when α = β, we find that c0 = a, c1 = 3a, and cn = 4a for
all n � 2. It follows that the straight segments are of length

√
2a. It is convenient at

this stage to introduce the function

H(α, β) =
∞∑

n=0

(
α

β

)(n+1)/2

In+1(2
√

αβ) (133)

numerical values of which are included in Table A-5. Evidently H(0, β) = 0 and
H(α, 0) = eα − 1. It is not difficult to show that

H(α, β) + H(β, α) = −I0(2
√

αβ) + exp(α + β) (134)

From (132) and (129), the radii of curvature of the sliplines in the region of LMN
may now be written as

− R√
2a

= I0(2
√

αη) +
√

η

α
I1(2

√
αη)

+ I0(2
√

ξβ) −
√

β

ξ
I1(2

√
ξβ) + 4H(β, ξ)

(135)S√
2a

= −I0(2
√

αη) +
√

α

η
I1(2

√
αη)

+ 3I0(2
√

ξβ) +
√

ξ

β
I1(2

√
ξβ) + 4H(β, ξ)
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Setting β = α in either of these equations, we obtain the radius of curvature at a
generic point of LN as

ρ

a
= 2

{
I0(2

√
αξ) + ψ − 2α

2
√

αξ
I1(2

√
αξ) + 2H(α, ξ)

}
(136)

As the generic angle α increases from zero, ρ steadily increases from a(2 + ψ),
reaching the value 2aeψ when α = ψ/2 in view of the identity

I0(ψ) + 2H

(
ψ

2
,
ψ

2

)
= eψ

obtained by setting α = β = ψ/2 in (134). It may be noted that α = β = ψ/2 corre-
sponds to the point N where the tangent to the boundary is parallel to the axis of
symmetry.

As ψ approaches π/2, LM is intersected by sliplines of its own family before
M is reached. The minimum value of ψ for this to happen corresponds to S = 0 at
α = ψ/2 and β = 0. The second equation of (135) therefore gives

I0(
√

2ψ) + 1√
2

I1(
√

2ψ) = 3 + ψ

2

leading to ψ � 86.1◦. For higher values of ψ, the solution can be extended by intro-
ducing stress discontinuities. For ψ < 86.1◦, S vanishes on β = 0 at some point
beyond M for which α exceeds ψ/2.

Along the straight sliplines, x remains constant, while y increases by the amount√
2a on passing from EF to LM. If the origin O is taken at a distance a from C, it

follows from (85) that

x + y√
2a

= 1 + I0(2
√

αψ) + 2F1(α, ψ) + sin(ψ − α) on LM

The solution for x + y, which is symmetrical with respect to α and β, and which
reduces to the above expression when β = 0 may be written as

x + y√
2a

= I0(2
√

αη) + I0(2
√

βξ) + 2F1(α, η) + 2F1(β, ξ) + sin(ψ − α − β) (137a)

Substitution into the first equation of (50) then furnishes

x − y√
2a

= I0(2
√

αη) − I0(2
√

βξ) − 2F2(α, η) − 2F2(β, ξ)

− 4H(β, ξ) − cos(ψ − α − β) (137b)

For a given ψ, the right-hand sides of (137) can be calculated from Tables A-3 and
A-5 when α + β �ψ, and all angles are integral multiples of 10◦. The rectangular
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coordinates of the slipline net are then obtained from (131). Setting β = α, we obtain
the parametric equation of the boundary LN in the form

x

a
= 2{I0(2

√
αξ) + 2F1(α, ξ)}cos(ψ − 2α)

− 4{F2(α, ξ) + H(α, ξ)}sin(ψ − 2α)
(138)y

a
= 1 + 2{I0(2

√
αξ) + 2F1(α, ξ)}sin(ψ − 2α)

+ 4{F2(α, ξ) + H(α, ξ)}cos(ψ − 2α)

where ξ = ψ − α as before. If the tangent to the boundary at N is parallel to the x
axis, the angle turned through by each of the segments LM, MN, BD, and DF is
equal to ψ/2. Since

I0(ψ) − 2F2

(
ψ

2
,
ψ

2

)
= 1

in view of (88), the rectangular coordinates of the point N are obtained as†

d = 2a[I0(ψ) + A0(ψ)] = 2d0 w = a(2eψ − 1) (139)

where d0 represents the distance OD, and A0(ψ) is defined by (90). It follows that the
center of curvature of LN at N is situated at a distance a below the axis of symmetry.

Consider next the stress-free boundary emanating from the slipline field defined
by equal logarithmic spirals through C, which is taken to coincide with the origin
O. The field is assumed to extend right up to LM without any intervening region of
straight sliplines. From (129), and the condition of continuity of R across LM, the
radii of curvature of the sliplines within LMN are obtained as

− R√
2b

= 2I0(2
√

αη) − 2G(α, η) + 2H(β, ξ) − exp(β − α − ψ)

(140)S√
2b

= 2I0(2
√

βξ) − 2G(α, η) + 2H(β, ξ) − exp(β − α − ψ)

It is readily verified that the expression for R in (140) for β = 0 is identical to that in
(101) for β = ψ, implying the continuity of R. Moreover, S changes sign on crossing
the slipline LM and the jump in the radius of curvature has the constant magnitude
2
√

2b. The radius of curvature of the boundary LN is given by

ρ

b
= 2

{
I0(2

√
αξ) + 2

∞∑
m=1

(
α

ξ

)m

I2m(2
√

αξ)

}
− e−ψ (141)

† These results have been derived by D. J. F. Ewing, J. Mech. Phys. Solids, 16: 81 (1968), using
a lengthy algebraic method, and by M. Sayir, Z. angew. Math. Phys., 20: 298 (1969), using Riemann’s
method of integration. A mass flux method has also been employed by D. J. F. Ewing, J. Mech. Phys.
Solids, 16: 267 (1968). The present analysis is due to J. Chakrabarty, Int. J. Mech. Sci., 21: 477 (1979).
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where ξ = ψ − α, the second term in the curled bracket being equal to H(α, ξ) − G
(α, ξ). The radius of curvature increases from the value b(2 − e−ψ) at α = 0 to beψ at
α = ψ/2, in view of the identity

I0(ψ) + 2
∞∑

m=1

I2m(ψ) = cosh ψ

obtained from (103) and (134). The condition of continuity of x and y across LM
and the symmetry of x + y with respect to α and β lead to

x + y√
2b

= 2F1(α, η) + 2F1(β, ξ) + sin(ψ − α − β) (142)

in view of (104). The expression for x − y then follows from (50) as before, and the
rectangular coordinates are finally obtained from (131). In particular, the coordinates
of the point N , where the tangent to the boundary is parallel to the x axis, are found
to be†

d = 2bA0(ψ) = 2d0 w = b(eψ − 1) (143)

The center of curvature of the boundary at N lies on the straight line parallel to the
x axis drawn through the opposite pole. It is interesting to note that the relationship
d = 2d0 holds for both the slipline fields considered here.‡

6.8 Superposition of Slipline Fields

(i) The basic principle An important consequence of the linearity of the governing
differential equations is that any two slipline fields can be suitably combined to
generate a third field. If the two fields are positioned in such a way that a chosen
pair of points and their associated slipline directions are coincident, then the third
field can be obtained by the addition or subtraction of the position vectors to points
with identical slipline directions. It follows that the line segment between any pair
of points in the generated field is the vector resultant of the line segments between
the corresponding pairs of points in the given fields. The radii of curvature of the
sliplines at the corresponding points combine algebraically, and so do the arc lengths
of any finite segments of the corresponding curves. Since the tangent to a generated
curve is parallel to the corresponding tangents to the given curves, the generated net
is orthogonal and possesses the geometrical properties of Hencky and Prandtl.§

Any regular domain can be generated from a pair of centered fans by using the
principle of vectorial superposition. Situations where the centered fans are either
both outside or both inside the regular domain are shown in Fig. 6.21. Let OA and

† D. J. F. Ewing, J. Mech. Phys. Solids, 16: 81 (1968).
‡ Introducing functions G∗(α, β) and H∗(α, β), defined by the right-hand sides of (102) and (133)

respectively with In+1 replaced by Jn+1, it can be shown that H∗(β, α) − G∗(α, β) = exp(β − α) − J0
(2

√
αβ). See J. Chakrabarty, Int. J. Mech. Sci., 33: 89 (1991).
§ R. Hill. J. Mech. Phys. Solids, 15: 255 (1967).
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Figure 6.21 Vectorial superposition of singular fields to generate regular domains.

OB be a pair of base curves which are regarded as sliplines of opposite families.
In order to generate the domain OACB, the centered fans OAD and OBE must be
defined over the same range of values of (α, β) as that of the regular field. It is
therefore necessary to continue the fans round O as far as the curves OD and OE,
so that the tangents to sliplines at D and E are parallel to those at C. According
to the principle of superposition, if P, Q, R are three corresponding points in the
centered fans and the regular domain, then OR is the vector resultant of OP and
OQ. In particular, as the generating point R traces the slipline BC, the corresponding
points P and Q in the singular fields move from O to D and from B to E respectively.
The rectangular coordinates of the regular field may be expressed as

x = f1(α, β) + f2(α, β)

y = g1(α, β) + g2(α, β)
(144)

where ( f1, g1) and ( f2, g2) denote the values of (x, y) for the two singular fields
referred to the same pair of rectangular axes.

To illustrate a variant of the graphical technique, consider the slipline field in
the neighborhood of a frictionless plane boundary AN (Fig. 6.22). The point A is
the center of the fan ACB in which the sliplines are radii and circular arcs. AB and
AC make an angle of 45◦ with AN and OD respectively, where OD is an axis of
symmetry. From geometry, the angle of inclination of AN with CD is equal to the
fan angle ψ. The slipline domain CBD is one-half of the field defined by the circular
arc CB and its reflection in CD. Since all sliplines meet CD and AN at 45◦, the angle
turned through by each of the segments BD, LM, and MN is equal to ψ. The field
LMN is one-half of the network defined by LM and its reflection in AN. The radius
of curvature at a generic point on LM numerically exceeds that at the corresponding
point on BD by a constant amount equal to AB. The field LMN and its reflection in LN
are therefore obtained by the superposition of the field BDEF, which is an extension
of the field CBD over an angular range ψ, and its reflection in AN. Choosing an
equiangular net, a nodal point in the field LMN is located by the vector AR obtained
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Figure 6.22 Slipline domain LMN developed from an auxiliary field BDEF.

by adding the vectors AP and PR. The position of P relative to B is similar to that of
R relative to L. The vector PR is equal to the image of the associated vector AQ in
AN. Thus PR is equal in length to AQ and is inclined to AN at angle equal to NAQ. It
follows that each of the diagonal points from B to E is situated at the same distance
from A as from the corresponding nodal point along LN. In other words, the distance
of each nodal point on LN from A is bisected at the foot of the perpendicular on AN
from the corresponding diagonal point of the extended field.

To express the graphical construction in mathematical terms, let f (α, β) and
g(α, β) denote the values of x/a and 1 − y/a at any point (α, β) of the field defined
by the circular arc CF and the axis of symmetry CD. The rectangular components
of the vectors AP and AQ can be immediately written down in terms of f and g,
while those of PR are obtained from the fact that the counterclockwise orientation
of PR with respect to the x axis exceeds the clockwise orientation of AQ by an angle
2ψ. The rectangular coordinates of a generic point R resulting from the vectorial
superposition may therefore be written as†

x = a[ f (α, ψ + β) + f (β, ψ + α) cos 2ψ − g(b, ψ + α) sin 2ψ]

y = a[1 − g(α, ψ + β) + f (β, ψ + α) sin 2ψ + g(β, ψ + α) cos 2ψ]
(145)

† The radii of curvature at any point (α, β) in the field LMN are obtained by the addition of the
corresponding values at the points (α, ψ + β) and (β, ψ + α) in the field BDEF. For the special case
ψ = π/2, the expressions for R and S have been derived from the corresponding Riemann integrals by
J. Grimm, Ing.-Archiv., 44: 79 (1975).
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where (α, β) are referred to the new base point L. It follows from (145), or directly
from the geometry of the construction, that the distance of a typical boundary point
T from the corner A is

s = 2a[ f (α, ξ) cos ψ − g(α, ξ) sin ψ]

where ξ = ψ + α. Substituting the expressions for f (α, ξ) and g(α, ξ), which are given
by (89), we obtain

s = 2a[I0(2
√

αξ) + 2F1(α, ξ)] (146)

Since the hydrostatic pressure at T is equal to p0 + 2k(ψ + 2α) by Hencky’s equations,
where p0 is the pressure at C, the resultant normal force across AT is

Q = [p0 + k(1 + 2ψ)]s + 4k
∫ s

2a
α ds

= [p0 + k(1 + 2ψ)]s + 4k

(
αs −

∫ α

0
s dα

)

Substituting from (146), and using the relations dF1/dα = I0 and dL/dα = F1, where
F1 and L are considered at (α, ξ), we finally obtain

Q = [(p0 − k) + 2k(ψ + 2α)]s + 4ka[I0(2
√

αξ) − 4L(α, ξ)] (147)

For given values of ψ and α, the functions in the square bracket as well as the ratio
s/a are readily obtained from Table A-3 or A-4 (Appendix).

(ii) A mixed boundary-value problem Consider a frictionless plane boundary AD
passing through an arbitrary stress singularity A, the slipline AC being concave to the
plane making an angle of 45◦ (Fig. 6.23). The singular field on the convex side is ABC
in which the same angle ψ is turned through by the segments AB, AC, and BC. The
regular field ACD is formed by the vectorial superposition† of the singular field ACB
and its reflection in AD. We observe that for an equiangular mesh, the vectors. AE1,
AE2, etc., are the resultants of vectors AF1, AF2, etc., and their images in the plane
AD. The distances AE1, AE2, . . . , AD are therefore bisected by the perpendiculars
from F1, F2, . . . , B to the plane AD. Since equal angles are turned through along BC
and CD, the tangents to the sliplines at B are inclined at 45◦ with AD.

Suppose that the initial slipline AB, taken as the α baseline, is a circular arc of
radius

√
2ρ. Let the overall longitudinal and transverse dimensions of the field be

denoted by 2a and b respectively. Then the distance of B from the vertical through
A is equal to a. It follows from geometry that

a = ρ(cos ψ + sin ψ − 1) b = ρ(1 − cos ψ + sin ψ) (148)

† R. Hill, J. Mech. Phys. Solids, 15: 255 (1967). I. F. Collins, Proc. R. Soc., A, 303: 317 (1968).
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Figure 6.23 Slipline field with a singularity on a smooth plane, illustrating the principle of vectorial
superposition.

The angle which the chord AB makes with AD is evidently equal to π/4 + ψ/2. If
the rectangular axes are taken through A as shown, we have x = √

2ρ sin α and
y = −√

2ρ(1 − cos α) along the slipline AB. The formal solution for x and y within
the fan ABC may therefore be written as

x(α, β) = √
2ρF∗

1 (α, β) y(α, β) = −√
2ρF∗

2 (α, β)

where F∗
1 and F∗

2 are defined by (113). Setting α = β = ψ in the above expressions,
and using (114), we have

√
2 x = ρ sin 2ψ

√
2y = −ρ[J0(2ψ) − cos 2ψ]

The rectangular coordinates of the point C are obtained by inserting from above
into (22), with φ = −(π/4 − ψ). When ψ is small (less than 20◦ say), we may write
J0(2ψ) � 2cos ψ − 1, with a maximum error of about 0.2 percent. This leads to the
approximate results

AG = x(ψ, ψ) = b cos ψ = a(1 + sin ψ)

CG = −y(ψ, ψ) = a cos ψ = b(1 − sin ψ)
(149)

in view of (148). The above approximation is equivalent to replacing the curve OC
by a circular arc of radius

√
2ρ cos ψ. It follows from above that the angle CAG is

equal to π/4 − ψ/2, and consequently the angle BAC is θ � ψ to the same order of
approximation. It also follows from above that

AC = AB cos ψ = AD cos

(
π

4
− ψ

2

)
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Hence the angles ACB and ACD are both right angles, which means that the points
B, C, and D are collinear.

The hydrostatic pressure at a generic point on AB is p0 − 2kα by Hencky’s
equation, where p0 is the pressure at A on the same curve. The distribution of
the normal pressure p and the tangential stress k along AB has a resultant whose
horizontal component per unit width is

P = p0b − 2k
∫

α dy − ka = p0b + k(a − 2ρψ) (150)

in view of (148). The normal pressure q on the plane boundary AD is p0 + k +
2k(ψ − 2α) at a point which is situated at a distance 2x(α, ψ − α) from A, where
x(α, β) is the abscissa to a generic point of the fan ABC. From geometry,

x(α, ψ − α) � ρ( cos α + sin α − 1) cos(ψ − α)

Integrating along AD, the resultant compressive force per unit width on the plane
boundary is obtained as

Q = 2
∫

q dx = 2a(p0 + k) + 4kρ(ψ − sin ψ) (151)

As ψ tends to zero, ρ tends to infinity, such that ρψ � a � b. The slipline field then
reduces to a net of orthogonal straight lines inclined at 45◦ with AD. The normal
pressure along AD then has a constant value equal to p0 + k.

(iii) Geometrical similarity We begin with the configuration of Fig. 6.24, where
AD and DF are two mutually perpendicular frictionless planes. The slipline field
domains DCA and DCF can be generated as before from the same centered fan
DCE; it is evident that the slipline segments AC, CD, CF, and CE all have the same
angular span. Then DF is the resultant of the vector DE and its image in DF, while
DA is the resultant of the vector DE and its image in DA. The triangles AED and
DEF are therefore isosceles. It follows that A, E, and F are collinear, and E is the
midpoint of the line AF. For every point P on CE, there are corresponding points
Q and R on AC and CF respectively, such that the tangents at these three points are
parallel to one another. Considering the parallelograms formed by the vector DP and
its reflected counterparts, it is easily shown that the points P, Q, and R are collinear,
and P is the midpoint of QR. The domain ACD may also be generated from the fan
ACB in a similar manner, where equal angles are turned through along AC and BC.

Suppose, now, that the curves AC and DC are similar in the ratio λ:1. This means
that the radii of curvature of AC and DC at points situated at equal angular distances
from A and D are in the ratio λ:1. The singular fields ACB and DCE are then also
similar in the same ratio, and so are the regular fields ACD and DCF generated by
the singular ones on their concave sides. The curves DC and FC are therefore similar
in the ratio λ:1, and the curves AC and FC are similar in the ratio λ2:1. Thus, C is
the center of similitude of the curves CA, CD, and CF. Since the tangents at A and
F to the respective sliplines are parallel to one another, the straight line joining A
and F must pass through C. In fact, the line joining any trio of corresponding points
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Figure 6.24 Geometrical similarity of slipline field domains associated with frictionless plane
boundaries.

P, Q, and R will necessarily pass through C. Since the two fields ABCD and DECF
are identical except in scale, we have

AB

DC
= DE

FC
= 1

2

(
AC

FC
+ 1

)
= 1

2
(λ2 + 1)

BC

DC
= EC

FC
= 1

2

(
AC

FC
− 1

)
= 1

2
(λ2 − 1)

It follows that the curves CA, CD, CF, CB, and BA are all similar to one another
in the ratios λ:1:1/λ: 1

2 (λ2 − 1): 1
2 (λ2 + 1), and the points B, C, and D are collinear.

The curves CB and CE are evidently similar in the ratio λ:1. The similarity of the
domains ACD and DCF furnishes

AG

CG
= DH

CH
= CG

CH
= λ

where CG and CH are perpendiculars to AD and DF respectively. It follows that the
angles CAD and CDF are each equal to cot−1λ, and the straight lines AF and BD
are mutually orthogonal. The angle θ between the lines AB and AC is given by

cot θ = AC

BC
= 2λ

λ2 − 1

Let the angular span of each slipline be such that B and F are situated at the same
distance from AD. The domains DCF and FCB are then similar in the ratio λ:1, and
the curves CF and CB are also similar in the same ratio. Hence (λ2 − 1)λ2 = 2, giving
λ = AD/DF = √

2, and θ = cot−1 2
√

2 � 19.47◦. It will be a good approximation,
therefore, to adopt the solution given in 6.8(ii) with ψ � θ.
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Problems

6.1 Figure A shows a quadrilateral element ABCD, of which the sides AB and AD are tangential to the
sliplines through A. The upper face DC is parallel to AB, while BC is normal to the slipline AE at a
point whose angular distance from A is dφ. Considering AE as an α line and a β line in turn, obtain
Hencky’s pressure equations from the condition of equilibrium of the element in the direction parallel
to AB. Show that the derivatives of the stresses are discontinuous across a slipline when the curvature
of the other family of sliplines changes abruptly across it.

6.2 Considering the velocity components in the characteristic directions at the extremities of a typi-
cal slipline element, and using the fact that the rate of extension vanishes along the sliplines, obtain
Geiringer’s equations for the velocity field. Show that the radial and tangential velocities at any point
in a centered fan, where the sliplines are radial lines and circular arcs, must be of the form

vr = −f ′(θ) vθ = f (θ) + g(r)

where r is the distance measured from the center of the fan and θ the angle measured from an arbitrary
radial line through the center.

6.3 One of the plane faces of a wedge, made of a rigid/plastic material, is acted upon by normal and
tangential tractions near its vertex as shown in Fig. B. Draw the possible slipline fields that correspond
to the yield point of the wedge tip, and hence determine the normal pressure q in each case as a function
of the wedge angle α � π/2. Find also the condition for the wedge tip not to be overstressed, when the
direction of the shear stress is reversed.

Figure A Figure B

Figure C Figure D
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6.4 Figure C shows the flowlines and one of their orthogonal trajectories within a plastically deforming
region. Prove that the counterclockwise angle ψ made by the local flow direction with the positive
α direction corresponding to a particle speed w is given by

cot 2ψ = 1

2

(
Rη

w

∂w

∂sη

+ Rη

Rξ

)

where Rξ and Rη are the local radii of curvature of the flowline and the trajectory respectively, reckoned
positive as shown. The above relation may be used for obtaining the slipline field from an experimentally
determined flow field.

6.5 A truncated wedge of semiangle ψ is uniformly loaded along its top and bottom faces as shown
in Fig. D. Assuming stress discontinuities OA and OB, which bisect the angles at the corners A and B,
show that the upper and lower face pressures at the yield point are

q = 2k(1 + sin ψ) q′ = 2k(1 − sin ψ)

Does the discontinuous stress field represent the actual state of stress in the wedge at the yield point?

6.6 A nonhardening elastic/plastic material, obeying Tresca’s yield criterion and the associated flow
rule, is plastically deformed under conditions of plane strain. The strains are assumed small, so that
positional changes and rotations of the element may be disregarded. Show that the Hencky equations
are unaffected by the inclusion of elastic strains, so long as σz is the intermediate principal stress, while
the Geiringer equations are modified to

G(du − v dφ) = −[kφ + ( 1
2 − v)ṗ]dsα along an α line

G(du + u dφ) = [kφ + ( 1
2 − v)ṗ]dsβ along a β line

where G is shear modulus and ν is Poisson’s ratio for the material, the superposed dot denoting the time
derivative.

6.7 Consider a slipline field defined by a pair of identical base curves of negative curvature. Prove that
(a) every slipline in the field is a logarithmic spiral when the baselines are logarithmic spirals having a
common pole on the axis of symmetry; and (b) every slipline in the field is a cycloid when the baselines
are cycloids generated by identical circles rolling in opposite directions.

6.8 Referring to Fig. 6.16, show that the components of the resultant force acting across the slipline
ECA, when the hydrostatic pressure vanishes at C, are given by

P

2ka
= sin 2λ − [cos(α − λ) + 2α sin(α − λ)]sin λ

Q

2ka
= cos 2λ + [−sin(α − λ) + 2α cos (α − λ)]sin λ

Show also that the resultant clockwise moment of the tractions on ECA about the origin O is given by

M

2ka2 = sin 2λ + (1 − cos 2λ)

(
α − P

2ka

)

6.9 Show that the radius of curvature of a typical α line at a given point (θ, ψ) of the field of Fig. 6.17,
where the base sliplines are circular arcs each of radius

√
2a, is given by

R = √
2a

{
J0(2

√
θψ) −

∫ ψ

0
J0[2

√
θ(ψ − β)]dβ

}
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Derive the final expressions for R and S, and compute the values of ψ along the envelope BL
corresponding to θ = 0, 10, 20, and 30◦, using interpolations based on Table A-8.

6.10 Employ the Riemann method of integration to derive Eqs. (83) for the radii of curvature of the α

and β lines of the field defined by a pair of opposed circular arcs of equal radii. Using the expression
for R/a, find the values of x/a and y/a by numerical integration with a 10◦ equiangular net considered
over the range α � β � 30◦.

6.11 Using a dimension N = 4 for truncating the matrices M and N introduced in Sec. 6.5(iii), find the
column vector σ representing the slipline AB of Fig. 6.18, when ψ = 15, 30, and 45◦. Hence calculate the
values of x/a and y/a for the slipline field defined by the circular arc and the limiting line, considering
a 15◦ equiangular net with β � α � 45◦, and employing the series method of solution.

6.12 Show that the rectangular coordinates for the slipline field defined by a pair of circular arcs CA
and CB (Fig. 6.16), having radii a and b respectively, are given by

x = af (α, β) + bg(β, α) y = ag(α, β) + bf (β, α)

when the x and y axes are taken along the tangents to the α and β lines at C. The functions f and g at any
point (α, β) denote x/a and y/a for the singular field defined by CA on its convex side. Taking b/a = 2,
and using Table A-6, calculate the values of x/a and y/a for a 15◦ equiangular net with α, β � 45◦.

6.13 The field OABD of Fig. E consists of a singular domain OAB and a regular domain OBD adjacent
to a frictionless plane OD. The initial slipline OA is a circular arc of radius b with center on the negative
y axis. Using the principle of vectorial superposition, show that the distance of D from the origin O is

d = √
2b[F1(φ, ξ) + F2(φ, ξ)]

where ξ = π/4 − ψ + φ, and that the normal compressive force transmitted across the inclined plane
OD is

Q = [p0 + k(1 + 4φ)]d − 4
√

2k[L(φ, ξ) + N(φ, ξ)]b

where p0 denotes the hydrostatic pressure at O considered on the plane boundary.

Figure E Figure F
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6.14 It is required to construct the slipline field ABC between a given slipline AB, turning through an
angle θ and a stress-free boundary AC whose position is not known in advance (Fig. F). Representing
the sliplines AB and AD by vectors a and b respectively, obtain the relationship (D − I)b = (D + I)a,
where I is the identity matrix and

D =




0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
· · · · · · · · · · · · · · ·




Show that the vector σ representing the slipline CB is given by σ = Fa, where

F = RθM−1
θ [(D − 1)−1(D + I) − NθRθ]

where Mθ and Rθ are matrix operators given by Eqs. (73) and (75) respectively.

6.15 A slipline field forming a centered fan is to be constructed on the convex side of a circular are CA
of radius ρ, considered as an α line, the point of singularity being at C. Taking the x and y axes along
the tangent and normal respectively to the given slipline at C, show that the coordinates of a generic
point of the field are given by

x = ρ[F1(α, β)cos(β − α) − F2(α, β)sin(β − α)]

y = ρ[F1(α, β)sin(β − α) + F2(α, β)cos(β − α)]

where F1 and F2 are the functions defined by equations (86). Indicate how the results for α � β can be
obtained from those for α � β.

6.16 Consider the singular field on the concave side of a given α line OA, which is a logarithmic
spiral having the polar equation r = beα with the pole located at C. Choosing the origin of rectangular
coordinates at the singularity O, with the x axis taken along CO produced, derive the coordinates of the
field in the form

x = b[(F∗
2 + H∗)cos(α + β) − F∗

1 sin(α + β)]

y = b[(F∗
2 + H∗)sin(α + β) + F∗

1 cos(α + β)]

where F∗
1 and F∗

2 are functions of (α, β) defined by equations (113), while H∗ is given by (133) with
In replaced by Jn. If a point D is located on OC such that OD = b/2, and if P denotes a generic point
(α, α) of the field, show that DP is inclined at an angle 2α to the x axis.
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CHAPTER

SEVEN
STEADY PROBLEMS IN PLANE STRAIN

We shall be concerned here with problems of steady motion in which the stress and
velocity distributions do not vary with time. The rigid material enters the deform-
ing zone on one side, and after passing through this region becomes rigid again
on the other side. Steady state problems are not statically determined, since the
shape and position of the plastic boundary are restricted by velocity boundary con-
ditions required to maintain the flow. The steady state condition is satisfied, to a
close approximation, in continuous metal-forming processes such as rolling, draw-
ing, and extrusion. Since large strains are involved in such cases, the assumption
of rigid/plastic material would be sufficiently good. The results for a nonhardening
material should be a good approximation for a real material having a sharp yield
point and a low subsequent rate of hardening. It is often possible, as we shall see,
to include work-hardening in an approximate manner by introducing a simple cor-
rection factor. Although the majority of the solutions given in this chapter and the
next are incomplete in the sense that the stress state in the rigid regions has not been
examined, they are otherwise satisfactory. In each case, the proposed slipline field
represents only that part of the plastic region which is undergoing deformation as
a rigid/plastic material. The remaining plastic region that extends beyond the slipline
field is held rigid by the nonplastic material.

7.1 Symmetrical Extrusion Through Square Dies

Extrusion is the process of forming a metal billet, held in a container, by forcing
it through a shaped die with a moving ram.† The process is said to be direct when

† For practical details, see C. E. Pearson and R. N. Parkins, The Extrusion of Metals, Chap-
man and Hall, London (1960); K. Lange (ed.), Handbook of Metal Forming, Chap. 15, McGraw-Hill,
New York (1985).

493
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the ram and the billet move together against the stationary die, and the product
also moves in the same direction. In the inverted extrusion, the ram is held fixed
and the die is forced into the billet causing an opposite movement of the product.
The pressure builds up rapidly as the billet is initially compressed, following which
the extrusion proceeds steadily. When the die is square-faced, some material in the
corner between the die and the container wall is held back and not extruded with the
rest of the billet. This material, known as dead metal, effectively converts the square
die into a curved one with a perfectly rough surface.

(i) Frictionless extrusion for small reductions Figure 7.1 shows the slipline
field† for the plane strain direct extrusion of a billet when the ratio of the initial
to the final cross-sectional areas, known as the extrusion ratio, is less than 2. The
container wall and the die are well lubricated so that frictional forces are negligible.
The dead metal boundary AC, which is assumed straight, must be a slipline inclined
at 45◦ with the container wall. The field ABC is a centered fan in which the sliplines
are radii and circular arcs. BCEF is one-half of the field defined by the circular arc
BC and its reflection in the wall. The angle CAD is so chosen that the exit slipline
ABF intersects the axis of symmetry at 45◦. The angle BAD is 90◦, being equal to
the angle turned through by the slipline EF. If the angle CAD is denoted by θ, the
fractional reduction corresponding to an initial thickness 2H and a final thickness
2h may be expressed as

r = 1 − h

H
=

{
1 + I0

[
2

√
θ
(π

2
+ θ

)]
+ 2F1

(
θ,

π

2
+ θ

)}−1

in view of the second equation of (89), Chap. 6. When θ is an integral multiple of
10 or 15◦, 1/r may be directly obtained from Table A-1 or A-2, being equal to the
value of y/a corresponding to the angular coordinates (θ, π/2 + θ).

The stress distribution in the plastic region can be determined by using the
Hencky equations which give the mean compressive stress at any point in terms of
the value p0 on AB. The pressure p0 is obtained from the condition that the resultant
axial force acting across the exit slipline ABF must vanish. It follows from physical
considerations that the algebraically greater principal stress at F is along the axis,
the α and β lines being identified as shown. The normal pressure at any point on BF
is p0 − 2kα, where α is the angle turned through by the tangent to the curve. Hence
the resultant longitudinal force across ABF is

p0h − 2k
∫ F

B
α dy − kd = 0

where d is the distance of F from the exit plane of the die, the ratio d/(H − h) being
obtained from Table A-1 or A-2. The pressure p0 is therefore given by

p0

2k
= d

2h
+ θH

h
−

∫ θ

0

( y

h

)
dα (1)

† R. Hill, J. Iron Steel Inst., 158: 177 (1948); J. F. W. Bishop, Met. Rev., 2: 361 (1957).
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Figure 7.1 Extrusion through a smooth square die with reductions less than 50 percent. (a) Slipline
field; (b) hodograph.

The average pressure q on the die is equal to the magnitude of the principal stress
on AC in the direction normal to the die. Using Hencky’s theorem, we get

q = p0 + k(1 + π + 2θ)

The die pressure therefore increases as the reduction decreases. Let the mean pres-
sure exerted by the ram, known as the extrusion pressure, be denoted by pe. For
equilibrium, the total ram load peH per unit width must be equal to the horizontal
thrust q(H − h) on the die. This gives pe = rq, leading to†

pe

2k
= r

{
1 + π

2
+

(
2 − r

1 − r

)
θ + r

1 − r

[
d

2a
−

∫ θ

0

( y

a

)
dα

]}
(2)

where a = H − h. The integral on the right-hand side is obtained from the Table,
with α = θ and β = π/2 + θ. Since r and d/h are known functions of θ, the extrusion
pressure is obtained as a function of the reduction r parametrically through θ. In
the special case of 50 percent reduction, θ = 0 and d = h, yielding pe = k(1 + π/2).
The results for r � 0.5 are summarized in Table 7.1. The extrusion pressure may be
conveniently expressed by the empirical formula

pe/2k = 0.1 + 0.3r(8.4 − r) r < 0.5 (3)

which is correct to within 0.5 percent. The solution does not hold for very small
reductions (less than about 5.4 percent), when the die pressure reaches the value

† Although the problem can be solved more directly by using the values of the resultant force given
in Table A-1 or A-2, this procedure is adopted here to illustrate a general method of solution.
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Table 7.1 Extrusion through a smooth container with r � 0.5

θ 0◦ 5◦ 10◦ 20◦ 30◦ 45◦ 60◦

r 0.500 0.428 0.336 0.268 0.196 0.122 0.076
q/2k 2.571 2.595 2.705 2.817 3.035 3.410 3.842
pe/2k 1.285 1.110 0.909 0.755 0.595 0.416 0.289

2k(1 + π) causing the plastic zone to spread round the corner A to the free surface
of the extruded billet.

The associated velocity field is represented by the hodograph (Fig. 7.1b). The
velocity of the rigid material entering the deforming zone is represented by the
vector PQ of magnitude U. Since the material is incompressible, the velocity of
the extruded billet, represented by the vector PR, is of magnitude UH/h. The tan-
gential components of the velocity are evidently discontinuous across the sliplines
through F, whose image F ′ is the intersection of the straight lines through Q and R
parallel to the slipline directions at F. The velocity discontinuity propagates along
the sliplines AE, EF, and FA with a constant magnitude equal to (U/

√
2)r/(1 − r).

The segments F ′B′ and F ′F ′ are therefore circular arcs defining the region F ′B′D′E′
of the hodograph. The points immediately above the slipline DE are mapped into
D′′E′′ separated from D′E′ by a constant normal distance equal to the velocity dis-
continuity. The velocity is continuous across the dead metal boundary AC which is
mapped into the pole P of the hodograph. The container wall CE is mapped into
PE′′ where all characteristics meet at an angle of 45◦. It is apparent from the figure
that the radii of curvature of the β and β′ curves have the same sign, while those
of the α and α′ curves are of opposite signs. Moreover, the velocity discontinuities
across AE, EF, and FA are in the directions of the shear stress across these curves.
The rate of plastic work is therefore everywhere positive.

(ii) Complete solution for r = 0.5 The preceding solution is incomplete in the
sense that the stress distribution in the rigid regions has not been examined. This will
now be carried out for the special case of 50 percent reduction (Fig. 7.2). A statically
admissible stress field beyond the exit slipline AB consists of a stress discontinuity
AO separating a stress-free region on the left from the uniformly stressed plastic
region AOB on the right. The stress in the dead metal zone ANC is also assumed
uniform with the principal stresses as shown. To obtain a statically admissible stress
field in the region ahead of the die, we extend the slipline field† up to the principal
stress trajectory CF through C. The principal stresses at each point of the trajectory
are directed along the tangent and the normal to the curve, which is inclined at 45◦
with the sliplines. It follows from the curvilinear triangle formed by an infinitesimal
arc of the trajectory and a pair of intersecting sliplines that R dα = − S dβ. In view
of Eqs. (83) of Chap. 6, this condition becomes

d[I0(2
√

αβ)] = −I0(2
√

αβ)d(α + β)

† J. M. Alexander, Q. Appl. Math., 19: 31 (1961).
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Figure 7.2 Statically admissible stress field for extrusion with 50 percent reduction.

along the trajectory, the base point for (α, β) being taken at B. Since α = 0 when
β = π/2, the above equation is readily integrated to

exp
(
α + β − π

2

)
I0(2

√
αβ) = 1 (4)

which is the equation of the trajectory CF. The point F, where the trajectory inter-
sects the axis of symmetry, corresponds to α = β = ψ. This gives ψ � 35.1◦, while
OF is found to be approximately 2.8 times OA.

Since the mean compressive stress at B is equal to k, the normal pressure trans-
mitted across the trajectory at E is pn = 2k(α + β) by Hencky’s equations. Let CF
be a line of stress discontinuity. The conditions of symmetry and zero wall friction
are satisfied by assuming that the principal stresses in the material to the right of CF
are everywhere parallel and perpendicular to the axis. The normal and shear stresses
will be continuous across CF if the state of stress immediately to the right of CF is
a hydrostatic compression of magnitude equal to the normal pressure acting across
CF. It is also assumed that within the region CFG, the horizontal principal stress
is constant along a horizontal line and the vertical principal stress is constant along
a vertical line.

The principal compressive stresses at the point defined by the horizontal and
vertical lines through E and E′ are pn and p′

n, where p′
n is the normal pressure across

CF at E′. The stress distribution will be statically admissible if the maximum value
of pn − p′

n, which occurs at G, is less than 2k. This is indeed satisfied since the
pressure difference at G is (π − 4ψ)k � 0.69k. The statically admissible stress field
is extended further to the right of FG by assuming that the stress distribution along
any vertical line is the same as that along FG. The extrusion pressure k(1 + π/2)
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is therefore the actual extrusion pressure since it is both an upper and a lower
bound.†

(iii) Distortion of a square grid In general, the trajectories of the particles in the
deforming zone can be found by a graphical procedure from the known direction of
the velocity vector throughout the field.A simple analytical solution exists, however,
for the special case of 50 percent reduction (Fig. 7.3). Denoting the radial and
tangential velocities by u and v respectively, the boundary conditions may be written
as u = − U cos φ along BC and v = − √

2U along AB. In view of the Geiringer
equations, the velocity field in the sector ABC becomes

u = −U cos φ v = −U

(
1√
2

− sin φ

)
(5)

The velocity therefore depends only on φ. The trajectories of the particles in the fan
ABC are given by the differential equation

1

ρ

dρ

dφ
= u

v
=

√
2 cos φ

1 − √
2 sin φ

Let φ0 be the angular position of a given particle when it enters the deforming zone.
Since ρ = a when φ = φ0, the integration of the above equation results in

ρ = a

(
1 − √

2 sin φ0

1 − √
2 sin φ

)
(6)

In order to compare the theory with experiment, it is often necessary to determine
the distorted shape of a uniform square grid marked on the undeformed billet.‡ The
gridlines originally parallel to the central axis assume the shape of the trajectories
of the particles lying on them. To obtain the distortion of the transverse gridlines,
consider the time taken by a particle to move along its trajectory. Let t = 0 correspond
to the instant when a given gridline MN is tangential to the circular arc BC (Fig. 7.3).
The particle which is initially at the point L on MN reaches the circular arc at
t = a(1 − cos φ0)/U. Since v = ρ dφ/dt, the time taken by the particle to reach a
generic point P is

t = a

U

{
(1 − cos φ0) +

∫ φ

φ0

ρ

v
dφ

}

Substituting from (5) and (6), and integrating, we obtain

t = a

U
{(1 − cos φ0) + 2(1 − √

2 sin φ0)[ f (φ) − f (φ0)]} (7)

† A statically admissible extension of the slipline field for r < 0.5 under modified boundary
conditions has been treated by J. Grimm, Ing.-Arch., 44: 209 (1975).

‡ R. Hill, J. Iron Steel Inst., 158: 177 (1948). A graphical method based on the hodograph has
been discussed by J. M. Alexander, Proc. Conf. Technol. Eng. Manuf., Instn. Mech. Eng., 155 (1958).



Chakra-07.tex 30/1/2006 17: 57 Page 499

steady problems in plane strain 499

Figure 7.3 Distortion of a square grid in extrusion with 50 percent reduction.

where

f (φ) = √
2 coth−1

(√
2 − tan

φ

2

)
− cos φ(1 − √

2 sin φ)−1 (8)

The time t∗ required by a given particle to reach the exit slipline AB corresponds
to φ = −π/4. Note that f (−π/4) = 0.515. The locus of the positions of the particles at
a given time t < t∗ can be determined from (7) and (8) by calculating φ for various
values of φ0. For t > t∗, we have t − t∗ = x/2U, where x is the axial distance of
a particle from AB.

If the length of each side of the squares of the approaching grid is denoted by c,
successive transverse gridlines come in contact with the arc BC at a regular interval
of time c/U. The deformed shape of these lines is given by the locus of the positions
of the particles, originally at the nodal points of MN, corresponding to t = mc/U
(m = 1, 2, 3, . . . ). Several curves determined in this way are shown in Fig. 7.3 for
c = a/2

√
2. It gives the distorted shape of the grid when a transverse line, originally

five meshes to the right of M, has reached the position MN. The longitudinal grid
lines in the extruded billet are straight and equally spaced at a constant distance c/2
from one another. The transverse lines are also equally spaced after extrusion, the
axial distance between two successive lines being twice that before extrusion. Apart
from a cusp on the axis, the distorted grid is similar to that observed in cylindrical
billets.

The angle of the cusp for r � 0.5 can be found as follows. Let a particle S
leave the deforming zone at an infinitesimal distance δy from the central axis. The
particle enters the zone at a distance (H/h)δy from the axis, and traverses an axial
distance of (H/h + 1)δy to reach the exit slipline AF. Since the axial component of
the velocity immediately above F is (U/2)(H/h + 1), given by the hodograph, the
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time of traverse is 2 δy/U. During this time, a particle T on the axis, originally at
a distance (H/h)δy to the right of F, moves through a distance (3 − H/h)(H/h)δy.
Hence the axial distance between the two particles S and T at the end of the time
interval is (H/h − 1)2δy. It follows, therefore, that an element of any transverse
gridline on the axis makes an acute angle of cot−1(H/h − 1)2 with the axis after
deformation. The cusp is evidently less pronounced for relatively small reductions.
The semiangle of the cusp is equal to 45◦ when the reduction is 50 percent.

(iv) Frictionless extrusion for large reductions An obvious slipline field for reduc-
tions greater than 50 percent consists in interchanging the positions of the central
axis and the container wall in Fig. 7.1. In that case, it is not difficult to show that
the mean extrusion pressure for any reduction r is equal to r/(1 − r) times that for
a reduction 1 − r. The extrusion pressure for r � 0.5 can therefore be obtained from
that calculated for r � 0.5. The solution requires the die face to be partially rough.
An empirical formula for r > 0.5, correct to within 1.5 percent, is

pe

2k
= 0.41 + 1.26 ln

(
1

1 − r

)
0.5 < r < 0.9 (9)

When the die face and the container wall are both perfectly smooth, the exit slipline
for 2 < H/h < 3 must be partly curved.† The solution consists of two types of
field, one applying to extrusion ratios between 2 and

√
2 + 1, and the other between√

2 + 1 and 3. The former involves a dead metal region adjacent to the die face, while
the latter is without any dead metal. The mean extrusion pressure only marginally
exceeds that given by the approximate formula

pe = 2k
(

1 + π

2

)
r

1

2
� r � 2

3
(10)

which is exact for r = 1
2 and r = 2

3 , the maximum error being less than 1 percent,
corresponding to H/h = √

2 + 1. The mean die pressure differs only slightly from
the constant value 2k(1 + π/2). By an extension of the statically admissible stress
field of Fig. 7.2, it is easily shown that (10) corresponds to a strict lower bound to
the extrusion pressure for all reductions.

For r � 2
3 , the slipline field and the hodograph are those shown in Fig. 7.4, the

dead metal zone being absent.‡ The exit slipline AC is straight as before, inclined
at 45◦ to the axis of symmetry. ABC is a 90◦ centered fan, and BCEF is defined by
the circular arc BC and its reflection in the axis. The slipline segments BF and GJ
are parallel curves at a distance

√
2h from one another. The angle turned through

by each of the segments DE, BF, GJ, and JK is equal to the angle CAD, denoted
by θ. This angle is such that N coincides with the meeting point of the die and the

† W. A. Green, J. Mech. Phys. Solids, 10: 225 (1962); I. F. Collins, ibid, 16: 137 (1968).
‡ Slipline field solutions for large reductions, based on various frictional conditions along the die

and the container wall, have been given by W. Johnson, J. Mech. Phys. Solids, 4: 191 (1956).
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Figure 7.4 Extrusion through a smooth square die with reductions greater than 66.7 percent. (a) Slipline
field; (b) hodograph.

container wall. The field GJK is a part of that discussed in Sec. 6.8 with ψ = π/2,
the extrusion ratio being given by

H

h
= 1 + 2

{
I0

[
2

√
θ
(π

2
+ θ

) ]
+ 2F1

(
θ,

π

2
+ θ

)}

which follows from (146), Chap. 6, with p0 = k, s = H − h, a = h and α = θ. The
extrusion ratio is also obtainable directly from Table A-1 or A-2 (Appendix) by sub-
tracting unity from twice the value of y/a corresponding to the angular coordinates
(θ, π/2 + θ).

The mean compressive stress along the exit slipline AC must be equal to k in
order to have zero longitudinal force across this line. The Hencky equations then
furnish the hydrostatic pressure at any other point in the field. By (147), Chap. 6,
the mean die pressure q may be written as

q

2k
= π

2
+ 2θ + 2h

H − h
[I0(2

√
θξ) − 4L(θ, ξ)]

where ξ = π/2 + θ. Since the extrusion pressure pe is equal to rq by the condition
of overall equilibrium, we have

pe

2k
= r

(π

2
+ 2θ

)
+ 2(1 − r)[I0(2

√
θξ) − 4L(θ, ξ)] (11)

The expression in the square bracket of (11) can be evaluated using Table A-3 or
A-4. The results of the calculation are presented in Table 7.2, an empirical formula
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Table 7.2 Results for frictionless extrusion with r � 2
3

θ 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

r 0.667 0.814 0.892 0.935 0.961 0.976 0.985
q/2k 2.571 2.725 3.028 3.404 3.823 4.273 4.746
pe/2k 1.714 2.218 2.701 3.183 3.672 4.171 4.677

for the extrusion pressure being

pe

2k
= 0.63 + 0.96 ln

(
1

1 − r

)
r >

2

3
(12)

which is correct to within 2 percent for r < 0.95. The greatest reduction for which
the proposed slipline field applies is 98.5 percent, corresponding to θ = π/2.

The uniform velocities of the material before entering and after leaving the
deforming zone are represented by the vectors PQ and PC′ in the hodograph
(Fig. 7.4b). Since the particles on the die face AN must move vertically downward, a
velocity discontinuity of magnitude

√
2U propagates along the slipline KJFE.At the

point E on the axis, the velocity suffers a second discontinuity of the same magnitude
across the slipline EDA. The velocity increases along EC from the magnitude 3U at
E to reach the exit value UH/h at C, there being no discontinuity across the line AC.
The velocity is constant in magnitude and direction along each straight slipline in the
regions ABC and BFJG. The triangular region ABG therefore moves downward as a
rigid body with a velocity represented by the vector PG′. The hodograph is identical
in shape to the slipline field, and the rate of plastic work is seen to be everywhere
positive.†

The work done by the ram per unit time per unit width of the billet is peHU. Since
the volume of material passing through the die, in unit time, is UH per unit width, pe
is equal to the work done per unit volume of the material. If the sheet were reduced
in thickness by compressing it between smooth plates under plane strain condition,
the work done per unit volume would have been 2k ln(H/h). This is represented by
the broken curve in Fig. 7.5, where the actual extrusion pressure calculated from the
slipline fields is also plotted as a function of the fractional reduction. The relative
expenditure of the redundant work, not directly contributing to the reduction, is
seen to be quite considerable. The mean die pressure q, having a minimum value of
2k(1 + π/2), is represented by the uppermost solid curve.

(v) Inverted extrusion and piercing In the case of inverted extrusion, the frictional
resistance between the billet and the container is absent, since there is no relative
movement between the two. The slipline fields for direct and inverted extrusions are

† The solution may be shown to be complete by considering a statically admissible extension of
the slipline field into the rigid region. See J. M. Alexander, Q. Appl. Math., 19: 31 (1961); J. Grimm,
Ing.-Arch., 44: 79 (1975).
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Figure 7.5 Extrusion pressure and die pressure for plane strain extrusion through a square die.

obviously identical. The velocity field for the inverted extrusion is obtained from
that for the direct extrusion by superposing a uniform velocity U from left to right.
The billet is thereby brought to rest and the die is pushed into it with a velocity U.
The pole of the hodograph is shifted from P to Q, the vector QP then representing the
velocity of the die.

The process of piercing, in which the billet is held in a container and hollowed
out by forcing a punch in the middle, is a variant of the inverted extrusion. If the
problem is considered as one of plane strain and the punch is flat-ended, the slipline
field for piercing is similar to that for steady state extrusion. When the container wall
is smooth,† the slipline field and hodograph for piercing with reductions greater than
50 percent are as shown in Fig. 7.6. The initial and final thicknesses of the billet
are 2H and 2h respectively giving a fractional reduction r = (H − h)/H. The punch
and the emerging billet move in opposite directions with speeds U and U(H − h)/h
respectively. The hodograph of the process is similar to that for extrusion (Fig. 7.1),

† R. Hill, J. Iron Steel Inst., 158: 177 (1948). A possible slipline field for piercing in a rough
container has been suggested by W. Johnson and H. Kudo, The Mechanics of Metal Extrusion, p. 55,
Manchester University Press (1962).
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Figure 7.6 Slipline field and hodograph for steady state piercing in a smooth container with reductions
greater than 50 percent.

but the pole P now takes the position of the singularity Q, while PR is now equal to
the punch speed U.

The mean punch pressure in piercing with reduction r is equal to the mean die
pressure in steady state extrusion with reduction 1 − r. This can be easily shown by
superposing a uniform hydrostatic tension of amount equal to the mean die pressure
on the stress system of Fig. 7.1, and then changing the sign of all the stresses. The
slipline field for piercing with reductions less than 50 percent is therefore identical
to that for extrusion process, except that the positions of the container wall and the
central axis are interchanged. The curve for the steady state punch pressure against
reduction is therefore symmetrical about r = 0.5, and is directly given by the mean
die pressure in extrusion (Fig. 7.5) for reductions less than 50 percent. The pressure
therefore has a minimum value of 2k(1 + π/2) corresponding to a reduction of
50 percent.

A false head of dead metal remains attached to the punch during the steady state
operation, a certain amount of friction on the punch probably being necessary for the
assumed dead metal. When the reduction is less than 50 percent, the punch pressure
needed to begin piercing is 2k(1 + π/2), which is the yield pressure for indentation
by a flat punch. For reductions greater than 50 percent, piercing would not begin
until the punch pressure attains the steady state value. As the reduction is deceased
to very small values, the punch pressure approaches a limiting value which should
be approximately equal to the cavity pressure required for expanding in an infinite
medium (Sec. 5.2(vii)). These results are in broad agreement with experiments† on
the piercing of cylindrical billets, except for the rounding of the pressure-penetration
curve due to elastic strains and work-hardening.

(vi) Perfectly rough container wall Some estimation of the influence of friction
can be obtained by assuming that the container wall is perfectly rough so that the

† E. Siebel and E. Fangmeier, Mitt. Kaiser-Wilhelm-Inst. Eisenforsch., 13: 28 (1931); W. Johnson
and J. B. Haddow, Int. J. Mach. Tool Des. Res., 2: 1 (1962).
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Figure 7.7 Extrusion through a square die when the container wall is perfectly rough. (a) Slipline field;
(b) hodograph.

frictional stress reaches the value k where there is relative sliding.† The exit slipline
AC is inclined at 45◦ with the axis of symmetry, and the angle of the centered fan
CAB is so chosen that the slipline ABF is tangential to the wall (Fig. 7.7a). The angle
ABD is 45◦, being equal to the angle turned through by EF. The slipline field outside
the fan is defined by the circular arc BC and the axis of symmetry. The existence of
the dead metal zone to the left of AF requires certain frictional conditions on the die
face. If the angle θ is assumed to be an integral multiple of 15◦, the extrusion ratio is
obtained directly from Table A-2 as the value of y/a corresponding to (θ, π/4 + θ).
The extrusion ratio may be expressed mathematically as

H

h
= 1 + √

2
[
F1

(
θ,

π

4
+ θ

)
+ F2

(
θ,

π

4
+ θ

)]
The mean compressive stress at a generic point of BF is k(1 + π/2 + 2θ + 2α) by
Hencky’s equations. The resultant longitudinal thrust acting across the dead metal
boundary ABF furnishes the mean die pressure

q = k
(

1 + π

2
+ 2θ

)
+ k

H − h

(
d + 2

∫ F

B
α dy

)

Integrating by parts, the extrusion pressure pe = rq may be expressed as

pe

2k
= 1

2

(
1 + π

2

)
r + (1 + r)θ + (1 − r)

{
d

2h
−

∫ θ

0

( y

h

)
dα

}
(13)

The expression in the curly bracket can be readily evaluated by using the appro-
priate table (Appendix). The results of the calculation are given in Table 7.3, and
a graphical plot of the extrusion pressure is shown in Fig. 7.5. This value of the

† A slipline field solution for partially rough containers has been given by W. Johnson, J. Mech.
Phys. Solids, 3: 218 (1955).



Chakra-07.tex 30/1/2006 17: 57 Page 506

506 theory of plasticity

Table 7.3 Results for symmetrical extrusion with a perfectly rough container

θ 5◦ 10◦ 15◦ 20◦ 30◦ 45◦ 60◦ 75◦ 90◦

r 0.118 0.225 0.320 0.406 0.550 0.708 0.812 0.881 0.925
d/h 1.646 1.905 2.195 2.522 3.311 4.962 7.465 11.321 17.376
pe/2k 0.890 1.069 1.248 1.428 1.784 2.316 2.846 3.395 3.901
µ 0.337 0.288 0.241 0.196 0.112 0 0.090 0.152 0.175

pressure corresponds to the position of the ram at F. When the ram is farther back
at a distance D from the die face, an additional term equal to (D − d)/2H must be
added to the right-hand side of (13) to allow for the frictional drag between the billet
and the container. An empirical formula for the nominal extrusion pressure (13),
correct to within 1 percent over the range 0.15 < r < 0.8, may be written as

pe

2k
= 0.75 + 1.26 ln

(
1

1 − r

)
(14)

The minimum coefficient of friction on the die face required for the validity of the sli-
pline field may be estimated on the assumption that the rigid corner at A is stressed
to the yield limit. It follows from Eqs. (33) and (35), Chap. 6, with τ1 = k, τ2 =
−k cos 2θ, q1/k = 1 + π/2 + 2θ, |τ2| = µq2 and α = π/2 − θ, that the minimum
coefficient of friction is

µ = |cos 2θ|
1 + π/2 + 2θ + sin 2θ

(15)

Thus, µ increases as θ increases or decreases from π/4. The maximum reduction for
which the slipline field is applicable is 92.5 percent corresponding to θ = π/2, when
AB coincides with the die face. The frictional stress on the die then attains the shear
yield stress k, requiring a coefficient of friction not less than 2/(2 + 3π) � 0.175.
The minimum values of µ for different reductions are included in Table 7.3.

The slipline field is associated with a velocity distribution which is everywhere
continuous except across the dead metal boundary. The magnitude of the velocity
discontinuity across this boundary is equal to the uniform speed U of the billet
approaching the die. The entry and exit sliplines are mapped into the points F ′ and
C′ lying on the horizontal through the pole P of the hodograph (Fig. 7.7b). The
slipline domain FBDE is mapped into the singular field F ′B′D′, where F ′B′ is a
circular arc of radius U. The remaining field E′D′C′, of the hodograph is the vector
resultant of the fan E′D′C′′, which is an extension of the original fan at E′ through
an angle θ, and its reflection in the line E′C′. An inspection of the slipline field and
its hodograph net indicates that the rate of plastic work is nowhere negative.†

The load on the ram steadily decreases during the extrusion until the ram comes
nearly in contact with the entry slipline. The process then ceases to be one of steady

† Possible slipline fields for work-hardening materials have been discussed by L. E. Farmer and
P. L. B. Oxley, J. Mech. Phys. Solids, 19: 369 (1971).
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Figure 7.8 Slipline field and hodograph for extrusion of short slugs.

state, and the solution becomes strongly dependent on the roughness of the punch.
The extrusion pressure rapidly varies as the residual length of the billet continues to
decrease. The measured value of the extrusion pressure at the transition between the
steady and unsteady states is found to be in close agreement† with the theoretical
pressure (14). Due mainly to the breakdown of lubricants, the steady state extrusion
pressure from a lubricated container frequently approaches the value attained in the
unlubricated extrusion.

(vii) Extrusion of short slugs In the steady state solutions of the extrusion problem,
it has been tacitly assumed that the slug is long enough for the slipline field to
remain fixed in space during the entire process. When the slug length becomes less
than a certain minimum, the deforming zone changes continuously as the extrusion
proceeds, and the slipline field increasingly spreads over the face of the punch.‡
Figure 7.8a shows the instantaneous slipline field for extrusion of a short slug when
the container wall and the punch face are assumed to be perfectly rough. The slipline
EGH is tangential to the punch face whose instantaneous distance from the exit plane
is denoted by d. Above the point G, all β lines meet the punch face tangentially,
a condition that defines the region GHK. The slipline field is completely specified
by the angles θ and ψ, defining the two physical parameters d/h and H/h of the
extrusion process.

† W. Johnson, J. Mech. Phys. Solids, 4: 269 (1956). See also E. G. Thomsen, J. Appl. Mech.,
23: 225 (1956). A semiexperimental method of solving the extrusion problem has been discussed by
A. H. Shabaik and E. G. Thomsen, J. Eng. Indust., Trans. ASME, 91B: 543 (1969).

‡ The final unsteady process in extrusion has been investigated by W. Johnson, J. Mech. Phys.
Solids, 5: 193 (1957). See also T. Murakami and H. Takahashi, Int. J. Mech. Sci., 23: 77 (1981).
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The velocity is continuous across the exit slipline AC, while a discontinuity of
amount U propagates along the dead metal boundary KHBA. The velocity is also
discontinuous across the sliplines ADE and EG, the magnitude of this discontinuity
being determined by the velocity of the plastic element at G relative to the punch.
Since the rigid material above ABK is at rest, this slipline is mapped into the circular
arc B′K ′ of radius U and angular span θ + ψ, as shown in Fig. 7.8b. The region
K ′B′F ′G′ of the hodograph is then obtained from the fact that the characteristics
are normal and tangential to the limiting line K ′G′. The curve G′F ′ and the circular
arc G′E′ define the region G′E′D′F ′, and the hodograph is completed in the usual
manner to reach the point C′ which maps the exit slipline AC. The plastic work rate
is easily shown to be nowhere negative.

For computational purposes, it is convenient to assign a value for θ, thereby fix-
ing the ratio d/h, and vary H/h by considering a number of values of ψ lying between
0 and π/2 − θ. A continuous extrusion of a given slug is not, therefore, directly
examined. Assuming a value of ψ, for a selected value of θ, the field GHK may be
constructed by using the condition x = d along GK, and the continuity of (x, y) across
GH. It may be noted that R is discontinuous across GH by an amount equal to its
value at G immediately to the left of GH. The values of x and y along GH are obtained
from (85), Chap. 6, while those within the field GHK are calculated by using (42),
Chap. 6. The rectangular coordinates of the field then follow from the transformation
relations. The extrusion pressure pe is finally obtained from the equation

pe

2k
= r

2

(
1 + π

2

)
+(1+r)(ψ+θ)+(1−r)

{
d

2h
−

∫ θ

0

( y

h

)
dα −

∫ ψ

0

( y

h

)
dα

}
(16)

the derivation of which is similar to that of (13). The first integral of (16) is taken over
the slipline BH and is directly obtained from Table A-1, while the second integral
taken over HK is found by a numerical procedure.

When θ = 0, the punch face is tangential to the circular arc BC, giving d = √
2h.

The ratio (H − h)/h is then
√

2 times the value of x/a given by Table A-9 with
α = β = ψ. The total extrusion force peH is equal to

√
2kh + Q, where Q is given

by (121), Chap. 6, with a = √
2h, d = H − h and p0 = k(1 + π/2). The extrusion

pressure is therefore given by

pe

2k
= r

2

(
1 + π

2

)
+ 1 − r√

2
[2I0(2ψ) − 1] (17)

If r exceeds the value 0.773, which corresponds to ψ = π/2, shearing would occur
along the die face over a distance greater than

√
2h, and the slipline field should be

modified accordingly. No analytical solution seems possible in that case, although
a numerical solution would be straightforward.

For any given value of ψ, the ratio H/h and d/H can be calculated for each
assumed value of θ.A plot of pe/2k and d/H against r is then made for each particular
value of θ. These graphical plots readily furnish the variation of pe/2k with d/H
corresponding to any given reduction in thickness. The results are displayed in
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Figure 7.9 Variation of extrusion pressure with slug length during unsteady extrusion in plane strain
(after W. Johnson).

Fig. 7.9 for a number of reductions, the points representing θ = 0 being indicated by
the broken line on the left. The dotted line ss represents the steady state solution with
d/H just sufficient to contain the appropriate slipline field. Beyond this line, pe/2k
increases linearly with d/H due to the frictional drag on the slug. The extrusion
pressure first decreases and then increases as the extrusion is continued into the
unsteady range. It is interesting to note that a fairly rapid reduction in pressure
occurs over an appreciable range of reductions in the billet length.

7.2 Unsymmetrical and Multihole Extrusion

(i) End extrusion Consider the situation where the aperture of the die is not central
with respect to the container.†When the container wall is perfectly rough, the slipline
field and the hodograph are modified to those shown in Fig. 7.10. The exit sliplines

† A. P. Green, J. Mech. Phys. Solids, 3: 189 (1954).
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Figure 7.10 Unsymmetrical extrusion with perfectly rough container walls. (a) Slipline field;
(b) hodograph.

A1C and A2C are inclined at 45◦ to the die opening A1A2, but the fans centered at A1
and A2 are of unequal angular spans. The field defined by the circular arcs CB1 and
CB2 is extended as far as F1 and F2 where the sliplines are normal and tangential to
the container walls. If the angles turned through by B1F1 and B2F2 are denoted by
θ1 and θ2 respectively, the fan angles CA1B1 and CA2B2 are equal to π/4 + θ1 and
π/4 + θ2 respectively, by Hencky’s theorem.

The velocity discontinuity occurring across the dead metal boundaries A1B1F1
and A2B2F2 is of amount U, equal to the speed of the approaching billet. The centered
fans E′B′

1D′
1 and E′B′

2D′
2 in the hodograph are defined by the circular arcs E′B′

1 and
E′B2 of radius U, with fan angles π/4 ± (θ1 − θ2). The remainder of the hodograph
is defined by the base curves E′D′

1 and E′D′
2 (first boundary-value problem). The

billet is extruded obliquely with velocity PC′, making an acute angle η with the
shorter die face. Evidently, the thickness of the extruded billet is somewhat smaller
than the width of the die aperture.

The eccentricity of the die may be defined as e = (b − c)/(b + c), where b and
c denote the widths of the die on either side of the aperture. If the initial and final
thicknesses of the billet are 2H and 2h respectively, then b + c = 2(H − h) = 2rH,
where r is the nominal reduction in thickness.† Hence

b

H
= (1 + e)r

c

H
= (1 − e)r

† The true reduction in thickness is equal to 1 − (1 − r) sin η where η is defined above.
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where e ranges from zero to one. The lengths d1 and d2 covered by the dead metal
zones are identical to those for symmetrical extrusion with extrusion ratios (b + h)/h
and (c + h)/h respectively, the corresponding reductions being

r1 = (1 + e)r

1 + er
r2 = (1 − e)r

1 − er
(18)

The mean normal pressures on the dies A1G1 and A2G2 are p1/r1 and p2/r2
respectively, where p1 and p2 are the extrusion pressures for symmetrical extru-
sion with reductions r1 and r2 respectively. The overall vertical equilibrium requires
2peH = (p1/r1)b + (p2/r2)c, which gives

pe = 1
2 {(1 + er)p1 + (1 − er)p2} (19)

in view of the last two equations. Adopting the empirical formula (14), and using
(18), we have

p1

2k
= 0.75 + 1.26 ln

(
1 + er

1 − r

)
p2

2k
= 0.75 + 1.26 ln

(
1 − er

1 − r

)

Substitution in (19) shows that the extrusion pressure in unsymmetrical extrusion
exceeds that in symmetrical extrusion for the same reduction r by an amount �pe,
where

�pe

2k
= 0.63

{
er ln

(
1 + er

1 − er

)
+ ln(1 − e2r2)

}
(20)

The pressure �pe increases with e from a minimum value of zero at e = 0. Equation
(20) gives the value of the pressure when the ram has moved to F1. In general, we have
to add the quantity k(2D − d1 − d2)/2H to the right-hand side of (19) to allow for
the frictional drag between the billet and the walls. The corresponding modification
of (20) involves the additional term (2d − d1 − d2)/4H for �pe/2k, where d is the
dead metal length in the symmetrical extrusion for the same reduction.

When the container wall is perfectly smooth and the reduction is sufficiently
large, a simple modification of the slipline field for symmetrical extrusion is possible
if b and c are both greater than h. The proposed slipline field and the associated
hodograph are shown in Fig. 7.11, their construction being similar to that for the
rough container. The extruded material is seen to emerge straight but oblique to the
axis of the orifice. The extrusion pressure is still given by (19), where p1 and p2 are
related to r1 and r2 by the empirical formula (9). The amount by which the pressure
in unsymmetrical extrusion exceeds that in symmetrical extrusion is again given by
(20), where e � 2 − 1/r in view of the restriction b, c � h. The effect of eccentricity
over this range is therefore identical for smooth and rough containers within the
accuracy of the empirical equations.

The solution for smooth containers outside the above range is extremely com-
plicated. Green† has proposed two types of slipline field, one applying to the range

† A. P. Green, op. cit.; N. S. Das, N. R. Chitkara, and I. F. Collins, Int. J. Num. Meth. Eng., 11:
1379 (1977).
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Figure 7.11 Slipline field and hodograph for unsymmetrical extrusion with smooth container walls
(b > h, c > h).

b, c < h, and the other applying to the range b > h > c. In both cases, the exit slip-
lines are curved, and the extruded material rotates to form a curved product with
constant curvature. The center of curvature lies on the same side of the orifice as
the larger dead metal zone. However, recent computations have revealed that the
second type of field holds not only for b > h, but also over a part of the range b < h.
Moreover, there is an upper limit on the eccentricity for both fields, depending on
the reduction, beyond which the solution ceases to hold. Plasticine experiments by
Green have shown that a curved product always results when e > 2 − 1/r, while
a straight product is invariably obtained when e < 2 − 1/r.

The results for unsymmetrical extrusion can be used to analyze the problem of
extrusion through two equal holes symmetrically placed in a square die.† When the
container is perfectly smooth, one-half of the slipline field for symmetrical two-hole
extrusion is identical to Fig. 7.11 with one of the container walls replaced by the axis
of symmetry. The difference between the extrusion pressures in symmetrical single-
hole and two-hole extrusions from a smooth container is therefore given by (20),
where the eccentricity e can take both positive and negative values with the restriction

−
(

2 − 1

r

)
� e �

(
2 − 1

r

)

The eccentricity vanishes when the orifice is midway between the container wall
and the axis of symmetry.

When the container is perfectly rough, the slipline field between the central axis
and the orifice axis is the same as before, while that between the orifice axis and
the container wall is identical to Fig. 7.10. The extrusion pressure is given by (19),

† Symmetrical two-hole and three-hole extrusions have been examined by L. C. Dodeja and
W. Johnson, J. Mech. Phys. Solids, 5: 267 (1957).
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where p1 and p2 correspond to symmetrical single-hole extrusion from smooth and
rough containers respectively. Thus

p1 = 0.41 + 1.26 ln

(
1 + er

1 − r

)
p2 = 0.75 + 1.26 ln

(
1 − er

1 − r

)

Substituting in (19), we find that the amount �p by which the nominal extrusion
pressure in two-hole extrusion exceeds that in single-hole extrusion for a given
reduction may be expressed by the empirical formula

�pe

2k
= 0.63

{
er ln

(
1 + er

1 − er

)
+ ln(1 − e2r2)

}
− 0.17(1 − er) (21)

This solution is valid so long as the width of the central die is not less than the width
of the orifice, the restriction on e being identical to that for the smooth container. For
a given reduction, the extrusion pressure is a minimum when e = 0 for the smooth
container, and when e � 0.134/r for the rough container. The minimum value of
�pe2k for the rough container is −0.18 approximately, irrespective of the reduction.
The variation of �pe/2k with e at constant reductions is shown in Fig. 7.12 for both
smooth and rough containers.

Figure 7.12 Variation of �pe with eccentricity for a symmetrical two-hole extrusion.
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Figure 7.13 Sideways extrusion
through a rough container.
(a) Slipline field; (b) hodograph.

(ii) Side extrusion A billet of initial thickness H is extruded through an orifice
of width 2h on one side of a container. The end of the container is assumed to be
sufficiently far away from the orifice so as to have no effect on the zone of defor-
mation. The slipline field is shown in Fig. 7.13, where the exit sliplines AC and
BC are equally inclined to the container wall. The field is defined by the circular
arcs CD and CE of equal radii but having unequal angular spans θ and φ which
depend on the wall friction. The point F moves up the wall as the friction between
the material and the container is increased.† If λ denotes the acute angle which the

† A. P. Green, J. Mech. Phys. Solids, 3: 189 (1954); W. Johnson, P. B. Mellor and D. M. Woo, ibid.,
6: 203 (1958).
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tangent to the slipline DF at F makes with the wall, it follows from Hencky’s first
theorem that

φ − θ = π

4
− λ

The hydrostatic pressure on AC and BC must be equal to k in order that the resultant
horizontal force across the orifice becomes zero. Since the hydrostatic pressure at
F has the value k(1 + 2θ + 2φ) by Hencky’s equations, the ratio of the tangential
traction and the normal pressure at F is

µ = cos 2λ

1 + 2θ + 2φ − sin 2λ
(22)

The coefficient of friction µ therefore depends on λ and one of the fan angles.
For given values of θ and φ, the ratio H/h is obtained from the appropriate table
(Appendix). The minimum value of H/h for which the slipline field holds is√

2 cos λ, when θ vanishes. The upper limit of H/h corresponds to the situation
where AE is inclined at an angle λ to the container wall. For higher H/h ratios, the
yield criterion would be violated in the rigid corner at A.

If the speed of the ram is denoted by U, the condition of incompressibility of
the material requires the component of velocity of the extruded billet along the axis
of the orifice to be equal to UH/2h. The hodograph is defined by the circular arcs
F ′D′ and F ′E′ of radii U cos λ and U sin λ, which are the magnitudes of the velocity
discontinuity across the sliplines FDB and FEA respectively. The material below
BDF is at rest. The velocity of the extruded billet is represented by the vector PC′
which is inclined at an angle η to the vertical. It follows from simple geometry that

tan η = H/2h

cos2λ − (v/U)
(23)

The ratio v/U is obtained from Table A-6 as the value of y/2a corresponding to the
angular coordinates (θ, φ).

Since the mean compressive stress at C is equal to k by the condition of zero
horizontal pull across the orifice, the vertically downward force exerted by the ram
is kH + Q, where Q denotes the vertical force across AEF with zero hydrostatic
pressure at C. The extrusion pressure pe, when the ram touches EF, is given by

pe

2k
= 1

2

(
1 + Q

kH

)
(24)

The ratios Q/2kh and H/h, which correspond to the angular coordinates (θ, φ),
may be directly obtained from Table A-1 or A-2. The results for a perfectly rough
container wall (λ = 0) are given in Table 7.4. The velocity discontinuity across the
slipline AEF disappears in this case, and the points E′ and F ′ coincide with Q. If the
material is extruded by a pair of oppositely moving rams, the slipline field would
consists of the net ACGF and its reflection in GC, a triangular zone of dead metal
being formed between FG and its reflected image. The extrusion pressure required
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Table 7.4 Data for side extrusion with a perfectly rough container

θ 0◦ 15◦ 30◦ 45◦ 60◦ 75◦

H/h 1.414 2.195 3.311 4.961 7.465 11.330
d/h 1.000 1.472 2.222 3.420 5.336 8.412
pe/2k 1.285 1.492 1.806 2.195 2.639 3.123
η◦ 45.00 58.26 67.96 74.70 79.32 82.45

by each ram is identical to (24), but the direction of motion of the extruded billet
depends on the ratio of the speeds of the two rams. The billet is extruded along the
axis of the orifice when the rams have equal speeds.

When the container wall is perfectly smooth (λ = π/4), the fan angles θ and φ

are equal to one another, and the slipline field becomes symmetrical about the axis
of the orifice. The extrusion pressure may be represented by the empirical formula

pe

2k
= 0.85

(
H

h

)0.52

2.0 <
H

h
< 8.5 (25)

which is correct to within 1.5 percent of the exact solution. The hodograph in this
case is identical to the slipline field, and the angle η assumes the value tan−1(H/h)
when the extrusion is carried out by a single ram as shown. The variation of the
dimensionless extrusion pressure with the ratio H/h is shown in Fig. 7.14 for the
limiting cases of perfectly smooth and perfectly rough containers. The extrusion
pressure and the mode of deformation predicted by the theory have been confirmed
by experiments.†

The solution for the single-hole extrusion from a smooth container also applies
to the situation where the material is extruded through two collateral holes of width
2h on opposite sides of a container of width 2H and having an arbitrary state of
roughness of the wall. When the two holes are of unequal widths 2h1 and 2h2 such
that h1 + h2 < 2H, the slipline field is a combination of two geometrically similar
ones for one-sided extrusion from a smooth container. The extrusion pressure is
therefore identical to that for the one-sided extrusion with a container width H and
an orifice width 2h = h1 + h2. The direction of motion of the extruded billet on either
side of the container makes an angle of tan−1(H/h) with that of the ram, irrespective
of the frictional condition on the wall.‡

(iii) Combined end and side extrusion Suppose that the material is extruded simul-
taneously through an end orifice and a pair of side orifices.§ The particular case of
symmetrical extrusion through holes of equal sizes will be examined here, but the
solution can be easily extended for holes of unequal widths. In Fig. 7.15a is shown

† A comparison with experiments based on the extrusion of lead billets has been made by T. F. Jordan
and E. G. Thomsen, J. Mech. Phys. Solids, 4: 184 (1955).

‡ A problem of partial side extrusion has been treated by W. Johnson, J. Mech. Phys. Solids, 5: 193
(1957).

§ W. Johnson, P. B. Mellor, and D. M. Woo, J. Mech. Phys. Solids, 6: 203 (1958).
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Figure 7.14 Variation of the extrusion pressure with H/h ratio in sideways extrusion.

Figure 7.15 Simultaneous end and side extrusion. (a) Slipline field; (b) results for θ2 = θ4.
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one-half of the slipline field for the general case where the meeting point F of the
two kinds of field is situated at some distance away from the center line of the side
orifice. The field for the side extrusion involves unequal fan angles θ2 and θ4 at the
corners A and B respectively. The field corresponding to the end extrusion is defined
by the angles θ1 and θ3 subtended by the circular arcs HJ and HK respectively. Since
the mean compressive stress is equal to k along the exit sliplines, the conditions of
continuity of the hydrostatic pressure and the slipline directions at F furnish

θ3 − θ4 = θ2 − θ1 θ3 + θ4 = π

2
+ (θ2 + θ1)

These equations may be solved for θ3 and θ4 to obtain

θ3 = π

4
+ θ2 θ4 = π

4
+ θ1

It follows that θ2 − θ1 �π/4 for θ2 � θ4, which constitutes the practical range. The
angles θ1 and θ2 may be taken as independent parameters defining the slipline field.
For given values of H/h and d/h, these angles may be determined from the conditions
(a) the sum of the horizontal distances of F from G and C is equal to d, and (b) the
sum of the vertical distances of F from H and A is equal to the semithickness H.
The extrusion pressure may be calculated from the relation

pe

2k
= 1

2

(
1 + P + Q

kH

)
(26)

where P and Q are the magnitudes of the horizontal thrust exerted by the dead metal
across the boundaries GKF and BDF respectively, when the hydrostatic pressure
at H and C are taken to be zero. The ratios P/2kh and Q/2kh are obtainable from
Table A-1 or A-2, the appropriate angular coordinates being (θ1, θ3) and (θ2, θ4)
respectively. The solution is independent of the wall friction so long as BD is inclined
at an angle greater than 45◦ to the container wall. When θ1 = θ2 = 0, the slipline field
degenerates into a pair of 45◦ centered fans, giving a value

√
2 + 1 for both H/h

and d/h ratios, the corresponding value of pe/2k being (2 − √
2)(1 + π/4) � 1.046.

Consider now the special case when the common point F is on the vertical center
line. The slipline field for the side extrusion is then symmetrical about the orifice
axis, requiring

θ2 = θ4 = π

4
+ θ1 θ3 = π

2
+ θ1

The entire slipline field may be specified by the angle θ1, the ratios d/h, H1/h and
H2/h being obtainable from the appropriate table. The force exerted by the ram to
cause simultaneous extrusion through the three orifices is the sum of those for two
side extrusions, each over a depth H2, and an end extrusion over a depth 2H1. The
extrusion pressure is therefore given by

Hpe = H1p1 + H2p2
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where p1 and p2 are the extrusion pressures for the separate end and side extrusion
processes respectively. Adopting the empirical formulas (9) and (25) we get

pe

2k
= H1

H

(
0.41 + 1.26 ln

H1

h

)
+ 0.85

H2

H

(
H2

h

)0.52

(27)

where 2H is the initial sheet thickness. The calculated values of pe/2k, H2/H1 and
d/h are plotted against H/h in Fig. 7.15b. The minimum value of H/h for this
solution to apply is 5.644, which corresponds to θ1 = 0.

The region GKFDBN is a dead metal zone where the material remains attached
to the container during the extrusion. The sheet extruded through the end orifice
moves along the axis with a speed equal to UH1/h, where U is the speed of the rigid
material approaching the deforming zone. The material leaving the side orifice moves
in the direction FB, when θ2 = θ4, with a speed approximately equal to UH2/2h.
The ratio of the two speeds of the extruded billet, having the value 2H1/H2 to a close
approximation, increases as the ratio H/h is increased.

7.3 Sheet Drawing Through Tapered Dies

(i) Frictionless drawing with small reduction Consider the steady state process
in which a metal sheet of initial thickness 2H is reduced to a final thickness 2h
by pulling it symmetrically through a wedge-shaped die having an included angle
2ψ. The die is assumed to be perfectly smooth so that all sliplines meet the die
face at 45◦. When the reduction in thickness is sufficiently small, the slipline field
involves a single point F of the axis of symmetry (Fig. 7.16a). The triangle ABC is

Figure 7.16 Sheet drawing through a smooth tapered die with H/h � 1 + 2 sin ψ. (a) Slipline field;
(b) hodograph.
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a region of constant stress, while ACE and BCD are centered fans continued round
the corners A and B. The circular arcs CD and CE define the remaining part DCEF
of the slipline field.† The fan angles θ and φ are such that the point F lies on the
axis of symmetry. Since the counterclockwise angle made by AE with the axis is
π/4 + φ − ψ, it follows from Hencky’s first theorem that

φ − θ = ψ

Let (x0, y0) be the coordinates of F referred to the rectangular axes as shown, with
the origin at O, the midpoint of AB. If G is the point where the x axis is intersected
by the axis of symmetry, it follows from geometry that

OG = 1
2 (H + h)sec ψ = x0 + y0 tan ψ

If the die contact length is denoted by 2a, which is equal to (H − h) cosec ψ, the frac-
tional reduction r = (H − h)/H may be expressed, in view of the above relation, as

2

r
= 1 + x0

a
cot ψ + y0

a
(28)

from which r may be calculated as a function of either φ or θ for a given die angle,
using the appropriate table (Appendix). The maximum drawing ratio for which the
present field is valid is 1 + 2 sin ψ, corresponding to θ = 0 and φ = ψ, the greatest
value of the reduction being

r = 2 sin ψ

1 + 2 sin ψ
(29)

The hydrostatic pressure in the region ABC is equal to q − k, where q denotes
the magnitude of the uniform die pressure.‡ If the sheet is drawn without any back
pull, the force required for the drawing must equal the longitudinal component of
the thrust on the die. If the mean drawing stress is denoted by t, then ht = (H − h)q
for longitudinal equilibrium, giving

t =
(

H

h
− 1

)
q =

(
r

1 − r

)
q

Let (P, Q) denote the components of the resultant force per unit width across the
slipline AEF due to the rigid material on its left, when the hydrostatic pressure of
C is assumed to be zero. Then the forces acting on BDF in the negative x and y
directions due to the rigid material approaching the die are of magnitudes 2ka − P
and Q respectively. Since the actual hydrostatic pressure at C is equal to q − k, the
condition of zero longitudinal force across BDF may be written as

(q − k)H + (2ka − P)sin ψ − Q cos ψ = 0

† R. Hill and S. J. Tupper, J. Iron Steel Inst., 159: 353 (1948).
‡ The hydrostatic stress at F is predominantly tensile. It becomes compressive for ψ < 18◦ when

the reduction approaches (29). See B. Dodd and D. A. Scivier, Int. J. Mech. Sci., 17: 663 (1975).
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In view of the relationship between t and q, and the identity rH = 2a sin ψ, the above
equation reduces to

t

2k
= r

2

{
1 + r

1 − r

(
P

2ka
+ Q

2ka
cot ψ

)}
(30)

The ratios P/2ka and Q/2ka are directly obtained from Table A-1 or A-2, the cor-
responding angular coordinates being (θ, φ). In the limiting case θ = 0, the mean
drawing stress t is equal to 2k(1 + ψ) − q by the Hencky relation. Since rq = (1 − r)t,
the dimensionless drawing stress in this particular case becomes

t

2k
= 2(1 + ψ)sin ψ

1 + 2 sin ψ

in view of (29). For a given die angle, as the reduction is decreased, the drawing
stress decreases but the die pressure increases with increasing gradient. When the
reduction is sufficiently small, the die pressure becomes large enough to cause the
plastic zone to spread round the corner B to the surface of the undrawn sheet. By (38),
Chap. 6, with q2 − q1 = q and α = π − ψ, this die pressure is q = 2k(1 + π/2 − ψ),
which sets a limit of validity of the solution. The limit is known as the bulge limit,
and the reduction for which it occurs increases with increasing die angle.

Since the material to the right of BDF moves as a rigid body, the normal compo-
nent of velocity is constant along the straight slipline BD. It follows from Geiringer’s
equations that the normal component is constant on each slipline through B, and in
particular on BC. Similarly, the normal component of velocity is constant on each
slipline through A, and in particular on AC. The region ABC therefore moves with
a uniform velocity which must be parallel to the die face. If the speed of the sheet
ahead of the die is denoted by U, the speed of the drawn sheet is UH/h in view of
the incompressibility of the material. In the hodograph of the process (Fig. 7.16b),
the velocities of the material entering and leaving the die are represented by the
vectors PQ and PR respectively. A velocity discontinuity of amount QF ′ or RF ′
occurs across the bounding sliplines AEF and BDF, while the uniform velocity of
the triangle ABC is given by the vector PC′. An inspection of the slipline field and
the hodograph indicates that the plastic work rate is everywhere positive.

The ratios t/2k and q/2k are plotted in Figs. 7.17 and 7.18 as functions of the
reduction r for various semiangles of the die. Each solid curve terminates at the bulge
limit represented by the broken curve on the left. The relationship between the die
angle and the reduction corresponding to this limit may be expressed empirically as

r = ψ

(
0.23 + ψ

9

)
(31)

For reductions smaller than this, a standing wave of plastic material is formed in front
of the die, as has actually been observed in the drawing of sheets and round bars.†

† J. G. Wistreich, Proc. Inst. Mech. Eng., 169: 123 (1955); R. W. Johnson and G. W. Rowe, ibid.,
182: 521 (1968). See also G. W. Rowe, Elements of Metal-working Theory, Edward Arnold, London
(1979).
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Figure 7.17 Variation of the mean drawing stress with the fractional reduction for various semiangles
of a tapered die without friction.

Figure 7.18 Variation of the mean die pressure with reduction in sheet drawing without friction.



Chakra-07.tex 30/1/2006 17: 57 Page 523

steady problems in plane strain 523

(ii) Frictionless drawing with large reduction The slipline field and the hodograph
for reductions greater than (29) are shown in Fig. 7.19, where the deformation
extends over a finite portion of the axis of symmetry. From geometry, the angle of
the fan ABC is equal to the die semiangle ψ. The angle ACD, denoted by θ, must be
such that the entry slipline EFJK passes through the corner K . Since the sliplines
meet the die at 45◦, the angles turned through by GJ and JK are both equal to θ. The
field GJK may be constructed by the method of vectorial superposition discussed
in Sec. 6.8(i). Using Eq. (146), Chap. 6, where s = (H − h)cosec ψ and α = θ, the
extrusion ratio may be written as

H

h
= 1 + 2[I0(2

√
θξ) + 2F1(θ, ξ)]sin ψ (32)

where ξ = ψ + θ. Since the hydrostatic pressure at C is p0 = k − t, where t is the
mean drawing stress, it follows from (147), Chap. 6, that

q + t

2k
= ψ + 2θ + 2h

H − h
[I0(2

√
θξ) − 4L(θ, ξ)]sin ψ

where q is the mean die pressure. The actual pressure on the die is constant over
AG, but increases steadily along GK. Since rq = (1 − r)t for equilibrium, the mean
drawing stress is obtained as

t

2k
= r(θ + ξ) + 2(1 − r)[I0(2

√
θξ) − 4L(θ, ξ)]sin ψ (33)

The values of I0, F1, and L are readily obtained from the appropriate table (Appendix)
for any assumed value of θ. Equations (32) and (33) therefore give the relationship
between t and r parametrically through θ. The maximum reduction for which the
slipline field is applicable corresponds to θ = ψ. No drawing is possible when t � 2k,
for which there is necking of the drawn sheet outside the die.

Figure 7.19 Sheet drawing through a smooth tapered die with H/h � 1 + 2 sin ψ. (a) Slipline field;
(b) hodograph.
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The associated velocity field is represented by the hodograph, which is explained
in the same way as that for extrusion with large reductions. There is a velocity
discontinuity of amount

√
2U sin ψ propagating along AEFJK, where U is the uni-

form speed of the material entering the die. The velocity is continuous across the
exit slipline, and the rate of plastic work is everywhere positive. The part of the
hodograph to the left of QK ′ is identical in shape to the slipline field.

The solid curves in Fig. 7.17, representing the drawing stress, do not extend as
far as the reduction that marks the limit of the present field. The limiting value of
the reduction for ψ �π/6 is approximately equal to ψ(2 − ψ). The broken curve
represents the ideal drawing stress which is equal to 2k ln(H/h) corresponding to
homogeneous compression. The relative amount of redundant work, represented by
the difference between the solid and broken curves, decreases as the reduction is
increased. The ratio of the actual drawing stress to the ideal drawing stress is known
as the redundant work factor. For all die angles and reductions, this factor is found
to depend only on the ratio b/a, where 2b denotes the length of the circular arc with
center at the virtual apex of the wedge and joining the midpoints of the two areas of
die contact. The drawing stress may therefore be written in the form†

t

2k
= f

(
b

a

)
ln

(
1

1 − r

)
b

a
=

(
2

r
− 1

)
ψ (34)

It is also found that 2kf (b/a) is very nearly equal to the mean die pressure in the
compression of a strip between a pair of smooth flat dies, the ratio of the strip
thickness to the die width being b/a (Sec. 8.1). The redundant work factor f for
various values of b/a is given in Table 7.5, an empirical formula correct to within
1 percent being

f

(
b

a

)
=




0.93 + 0.07

(
b

a

)2

1.0 � b/a � 2.5

0.85

(
b

a

)0.52

2.5 � b/a < 8.0

(35)

The work done per unit volume of the drawn sheet is equal to the mean drawing
stress t. Since the equivalent stress for a nonhardening Mises material is

√
3k, the

mean equivalent strain of the drawn sheet is equal to t/
√

3k. It is reasonable to
suppose that the same mean effective strain occurs in the process whatever the
strain-hardening characteristic of the material. Now, the work done per unit volume
of a work-hardening material is

∫
σ dε, where the integral represents the area under

the equivalent stress–strain curve. It follows that the mean drawing stress t∗ for
a work-hardening sheet is equal to the area under the true stress–strain curve up to
a total strain of t/

√
3k, the value of which is obtained from the slipline field theory.

† A. P. Green and R. Hill, J. Mech. Phys. Solids, 1: 31 (1953); A. P. Green, Proc. Inst. Mech. Eng.,
174: 847 (1960).
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Table 7.5 Redundant work factor in sheet drawing without friction

b/a f (b/a) b/a f (b/a) b/a f (b/a) b/a f (b/a)

8.716 2.571 4.567 1.881 2.014 1.218 0.800 1.021
8.046 2.481 3.791 1.703 1.605 1.103 0.746 1.033
7.117 2.345 3.190 1.550 1.383 1.050 0.707 1.040
6.216 2.199 2.792 1.442 1.183 1.014 0.670 1.033
5.434 2.057 2.440 1.342 1.000 1.000 0.500 1.000

If the stress–strain curve of the material is expressed by the simple power law
σ = Cεn, where C and n are empirical constants, the mean drawing stress becomes

t∗ = C
∫ t/

√
3 k

0
εn dε = C

1 + n

(
t√
3k

)1+n

It may be noted that C is
√

3 times the shear yield stress of the material when it is
prestrained by ε = 1. Substitution from (34) into the above expression gives

t∗ = C

1 + n

{
2√
3

f

(
b

a

)
ln

(
1

1 − r

)}1+n

(36)

The redundant work factor for the work-hardening material is therefore equal to
(1 + n)th power of that for the nonhardening material. To avoid yielding of the
drawn sheet, t∗ must be less than the mean yield stress at the exit, which requires
f (b/a)ln(H/h) < 1 + n, setting an upper limit on the reduction in thickness.

(iii) Distortion of a square grid The deformed shape of a uniform square grid†
scribed on the undrawn sheet can be determined analytically when the reduction is
given by (29). Then the relevant range of angles for sheet drawing is 0 < ψ < π/4,
which corresponds to t < 2k. Let (ρ, φ) denote the polar coordinates of any point
in the centered fan ACE, where φ; is measured in the clockwise sense from the
horizontal through A (Fig. 7.20). The radial and circumferential velocities u and v,
satisfying the Geiringer equations and the boundary conditions, may be written as

u = −U cos φ v = U(
√

2 sin ψ + sin φ) (37)

Thus, u is continuous across CE and v is continuous across AE, the speed of the
material leaving the fan being U(1 + 2 sin ψ). The uniform speed of the material in
ABC moving along the die face is U(cos ψ + sinψ).

The gridlines originally parallel to the axis of symmetry are deformed into the
streamlines while passing through the die. The streamlines in ABC are evidently

† The influence of die friction has been discussed by W. Johnson, R. Sowerby, and R. D. Venter,
Plane Strain Slipline Fields for Metal Deformation Processes, Pergamon Press, Oxford (1982).
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Figure 7.20 Distorted square grid in a sheet drawn through a smooth tapered die of 30◦ semiangle.

all parallel to the die face. Within the sector ACE, the streamlines are given by the
differential equation

1

ρ

dρ

dφ
= u

v
= − cos φ√

2 sin ψ + sin φ

A typical streamline lying below the one passing through C may be identified by
the angular position φ0 of the point where the streamline meets the circular arc CE
of radius a. The integral of the above equation then becomes

ρ

a
=

√
2 sin ψ + sin φ0√
2 sin ψ + sin φ

φ0 � π

4
− ψ (38)

The path of a particle entering the plastic sector across AC may be identified by the
radius ρ0 to the point of intersection of its trajectory with AC. The equation for this
streamline is

ρ

ρ0
= cos(π/4 − ψ)√

2 sin ψ + sin φ
ρ0 � a

Any transverse gridline is deformed into a curve which is the locus of the parti-
cles on this line after a given interval of time. Consider a transverse line that coincides
with BN at the initial instant t = 0. The time taken by a particle on BN to move to
a generic point on its path across CE is

t = a

U
(
√

2 cos ψ − cos φ0) +
∫ φ

φ0

(ρ/v)dφ

in view of the relation v = ρ(dφ/dt) The first term on the right-hand side denotes
the time when the particle reaches the boundary CE. The integral can be exactly
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evaluated on substitution from (37) and (38), resulting in the expression

t = a

U

{
(
√

2 cos ψ − cos φ0) + (
√

2 sin ψ + sin φ0)[ f (φ) − f (φ0)]
}

(39a)

where

f (φ) =
{

− cos φ

λ + sin φ
+ 2λ√

cos 2ψ
tanh−1

[√
1 − λ

1 + λ
tan

(
π

4
− φ

2

)]}
sec 2ψ (40)

with λ = √
2 sin ψ. If the particle enters the deforming zone across BC, its position

in the sector, given by a typical angle φ, would correspond to the time

t = ρ0

U

{
sin

(π

4
− c

)
+ cos

(π

4
− ψ

)[
f (φ) − f

(π

4
− ψ

)]}
+ a − ρ0

U
sec

(π

4
− ψ

)
(39b)

Since the material in ABC is in a state of uniform simple shear, the transverse
gridlines in this region are inclined at a contant angle to the vertical. The acute angle
made by these lines with the die face is easily shown to be equal to cot−1(2 sin2ψ).
The time t∗ at which a given particle reaches the exit slipline AE can be found from
(39) and (40) by setting φ = π/4. For t > t∗, the particle moves horizontally through
a distance U(t − t∗)(1 + 2 sin ψ) measured from its point of exit on AE.

The vertical gridlines of the undrawn sheet assume the position BN at a regular
time interval c/U, where c is the length of each side of the original square mesh. The
deformed shape of the grid is obtained by finding the points of intersection of the
appropriate streamlines with the loci of the positions of the nodal particles at instants
t = mc/U (m = 1, 2, 3, . . .). Owing to the velocity discontinuities occurring across
the sliplines through E, a cusp is formed on the axis of symmetry with a semiangle
that depends on ψ. The shape of the distorted grid for ψ = 30◦ is shown in Fig. 7.20,
assuming c = a/2

√
2. Apart from a cusp on the axis, the calculated distortion closely

resembles that experimentally observed in wire drawing.
The semiangle of the cusp may be determined analytically by considering the

velocity distribution in the neighborhood of the point E (Fig. 7.20). A particle leav-
ing the deforming zone at Z , situated at a distance δy from the axis of symmetry,
must have entered the zone at S whose distance from the axis is (1 + 2 sin ψ)δy.
Since the axial component of the velocity of the particle during this motion is (1 +
sin ψ)U in view of the hodograph, while the axial distance between S and Z is 2(1 +
sin ψ)δy by geometry, the time taken by the particle to move from S to Z is 2δy/U.
During this time interval a particle on the axis, originally situated vertically below
the previous one, moves from T to E with a speed U and then from E to Y with
a speed (1 + 2 sin ψ)U. Hence

EY = (δy/U)[2 − (1 + 2 sin ψ)](1 + 2 sin ψ)U = (1 − 4 sin2ψ)δy
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and the axial distance between the two particles finally becomes δx = (4 sin2ψ)δy.
It follows that an element of transverse gridline makes an angle cot−1(δx/δy) =
cot−1(4 sin2ψ) with the axis of symmetry as it moves out of the deforming zone.
The cusp is evidently more pronounced for larger die angles.

(iv) Influence of friction and back pull The most convenient way of taking die
friction into account is to introduce a suitable correction factor into the frictionless
theory, assuming a constant coefficient of friction µ between the material and the
die. If t′ and q′ are the mean drawing stress and die pressure respectively when the
friction is present, the condition of longitudinal equilibrium requires

T = 2(1 + µ cot ψ)(H − h)q′

where T = 2ht′. The component of the resultant force per unit width acting on each
half of the die perpendicular to the axis of drawing is

Q = (cot ψ − µ)(H − h)q′

The elimination of (H − h)q′ between the above relations furnishes the coefficient
of friction

µ = 1 − (2Q/T )tan ψ

tan ψ + (2Q/T )
(41)

Thus, µ can be experimentally determined from the measurement of the loads T and
Q. The equation of longitudinal equilibrium may be rearranged to yield

t′ = (1 + µ cot ψ)
rq′

1 − r
= t(1 + µ cot ψ)

q′

q
(42)

which is an important relationship between t′/t and q′/q. The assumption q′ � q
immediately gives the often quoted friction factor 1 + µ cot ψ, which increasingly
overestimates the drawing stress as the reduction is increased.

A fairly accurate estimate of the ratio t′/t is obtained by considering the longi-
tudinal equilibrium of a thin slice of the sheet having vertical faces of semiheights
y and y + dy, the material being assumed plastic between the planes of entry and
exit.† If the mean longitudinal stresses across these faces are denoted by σ and
σ + dσ, and the local die pressure is denoted by s, the equation of longitudinal
equilibrium of the slice may be written as

d

dy
(yσ) + (1 + µ cot ψ)s = 0

† G. Sachs and L. J. Klingler, J. Appl. Mech., 14: A-88 (1947). These authors treated the more
general case where die profile is arbitrary. The angle ψ in (43) then represents the inclination of the
local tangent to the profile.
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It is further assumed that the yield criterion may be written in the forms s + σ � 2k.
The elimination of s from the equilibrium equation furnishes the first-order linear
differential equation

y
dσ

dy
− µσ cot ψ = −2k(1 + µ cot ψ) (43)

Introducing the boundary conditions σ = 0 when y = H, and σ = t′ when y = h, we
obtain the solution

t′

2k
=

(
1 + tan ψ

µ

){
1 −

(
h

H

)µ cot ψ
}

Since the redundant shearing at entry and exit is neglected in this analysis, the above
formula underestimates the drawing stress except at large reductions. Indeed, when
µ = 0, the predicted drawing stress has the ideal value 2k ln(H/h). The ratio of the
drawing stresses with and without friction therefore becomes

t′

t
=

(
1 + tan ψ

µ

)
1 − (1 − r)µ cot ψ

ln[1/(1 − r)]

which is found to agree with the slipline field solution,† including the friction, to
within 1.5 percent over most of the range of values of µ, r, and ψ. Inserting from
(34), the above equation may be written as‡

t′

2k
=

(
1 + tan ψ

µ

)
{1 − (1 − r)µ cot ψ} f

{(
2

r
− 1

)
ψ

}
(44)

For a given reduction and coefficient of friction, the ratio t′/t decreases with increas-
ing ψ. Since t increases as the die angle is increased, there is an optimum value of
ψ for which t′ is a minimum. This is illustrated in Fig. 7.21, where t′/2k is plotted
against ψ for various values of µ at a reduction of 30 percent. The curves follow the
same trend as that experimentally observed in wire-drawing.§

When µ is sufficiently small, a close approximation is achieved by expanding
(1 − r)µ cot ψ in ascending powers of µ cot ψ and neglecting terms of order higher
than µ2, the result being

t′

t
� 1 + µ

(
1 − 1

2
ln

1

1 − r

)
cot ψ (45)

† The results of the slipline field solution for drawing through rough dies have been presented by
H. C. Rogers and L. F. Coffin, Int. J. Mech. Sci., 13: 141 (1971). A slipline field predicting a midplane
cracking has been discussed by B. Dodd and H. Kudo, Int. J. Mech. Sci., 22: 67 (1980).

‡ When the material work-hardens, a good approximation to the mean drawing stress is obtained
by multiplying the right-hand side of (36) by the same friction factor as that given by (44).

§ J. G. Wistreich, Proc. Inst. Mech. Eng., 169: 123 (1955); Useful experimental results have been
reported by R. M. Caddell and A. G. Atkins, J. Eng. Indust., Trans. ASME, 91B: 664 (1969).
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Figure 7.21 Variation of the drawing stress with die semiangle for r = 0.3 and various values of µ.

Since the optimum die angle is sufficiently small for usual values of r and µ, the
redundant work factor for the associated drawing stress is given by the first equation
of (35). Substituting for t/2k into (45), and minimizing t′/2k with respect to ψ, the
optimum die angle may be shown to be very closely approximated by the formula

ψ0 � 1.49

(
µr2

2 − r

)1/3

− 0.08µ(2 − r) (46)

Suppose, now, that a tensile force F per unit width is applied to the sheet on
the entry side. The effect of this back pull is to increase the drawing force T and
decrease the horizontal die load P by amounts that are proportional to F. Denoting
the drawing force without back pull by T0, we write

T = T0 + (1 − η)F P = T0 − ηF

whereη is a nondimensional quantity known as the back-pull factor. Since T − P = F
by the above relations, the condition of longitudinal equilibrium is identically
satisfied. The permissible amount of back tension is limited by the fact that the
corresponding drawing force T cannot exceed the value 4kh for which the drawn
sheet would neck outside the die.
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When the friction is absent, the back pull F causes a uniform hydrostatic tension
F/2H at every point of the deforming zone. All boundary conditions are satisfied
and the slipline field remains unchanged. It is assumed that the rigid material is able
to support the additional boundary stresses. The drawing stress is then augmented
by F/2H and the die pressure is reduced by the same amount. Since the reduction
in the die load is (H − h)F/H = rF, the back-pull factor η is equal to the fractional
reduction r. When the die is rough, a useful approximation is achieved by assuming
the same reduction in die pressure as that in the frictionless situation.† Since the
longitudinal die load is then reduced by the amount (1 + µ cot ψ)rF, we get

η � r(1 + µ cot ψ)

This formula is found to overestimate the back-pull factor by a few percent for
typical values of r, ψ, and µ.

A more accurate formula for the back-pull factor is obtained by considering the
solution of (43) under the modified boundary conditions σ = F/2H at y = H and
σ = T/2h at y = h. Denoting the drawing force by T0 when F = 0 the solution may
be expressed as‡

T = T0 + F

(
h

H

)1+µ cot ψ

This relation holds even when work-hardening is taken into account. It follows from
the definition of the back-pull factor that

η = 1 − (1 − r)1+µ cot ψ (47)

Calculations based on the slipline field indicate that (47) slightly underestimates the
back-pull factor§ over the relevant range of values of r, ψ, and µ. The application of
back pull permits much higher drawing speeds while reducing the margin of safety
against the possibility of necking of the drawn sheet.¶

7.4 Extrusion Through Tapered Dies

(i) Extrusion without friction The extrusion process is similar to sheet drawing,
the main difference being that the material in this case is pushed through the die
instead of being pulled. When there is no friction, the stress in the deforming part of
the plastic region is obtained from that in sheet drawing by the addition of a uniform
hydrostatic pressure of magnitude equal to the mean drawing stress. The slipline
field in extrusion is identical to that in drawing for the same die angle and reduction,

† R. Hill, The Mathematical Theory of Plasticity, p. 176, Clarendon Press, Oxford (1950).
‡ This is the plane strain analog of the result for a wire-drawing analysis by R. W. Lunt and

G. D. S. MacLellan, J. Inst. Met., 72: 65 (1946). For an approximate analysis of wire drawing, including
redundant work and work-hardening, see A. G. Atkins and R. M. Caddell, Int. J. Mech. Sci., 10: 15
(1968). See also, W. A. Backofen, Deformation Processing, Addison-Wesley, Reading, Mass. (1972).

§ R. Hill, J. Mech. Phys. Solids, 1: 142 (1953); J. F. W. Bishop, ibid., 2: 39 (1953).
¶ J. G. Wistreich, J. Iron Steel Inst., 157: 417 (1947); Met. Rev., Inst. Met., 3: 97 (1958).
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and the extrusion pressure is therefore equal to the mean drawing stress for the same
reduction, provided the container wall is also smooth. The mean die pressure in
extrusion is, however, H/h times that in drawing. The slipline fields and hodographs
of Figs. 7.16 and 7.19 are directly applicable to the extrusion process without the
limitations of bulging and necking.†

The smallest reduction for which the field of Fig. 7.16 is valid depends on two
possibilities. Firstly, under frictionless conditions, the slipline BD cannot make an
angle less than π/4 with the container wall, which means that the angle θ cannot
exceed π/2 − ψ. Secondly, the die pressure for very small reductions may rise to
the value 2k(1 + π/2 + ψ), causing the plastic zone to spread round the corner A
to the free surface of the extruded billet. The plastic deformation is then locally
confined near the free surface while most of the billet passes through undeformed.
The greatest reduction for which the field of Fig. 7.19 is applicable is θ = ψ for
reasons of geometry. This limiting value of r is tabulated below as a function of the
die semiangle.

ψ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 90◦

r 0.330 0.581 0.746 0.847 0.906 0.943 0.985

For still higher reductions, with a given die angle, the stress and velocity bound-
ary conditions can be simultaneously satisfied only if the exit slipline is taken as
curved.‡ The situation is analogous to that encountered in the compression of
a block between smooth flat dies with nonintegral width/height ratios greater than
unity (Sec. 8.5). The extrusion pressure in this range differs only marginally from the
ideal value 2k ln(H/h) which is approached in an oscillatory manner as the reduction
in thickness is increased. The problem is most conveniently solved by the matrix
method which directly furnishes the shape of the initial slipline.

The dimensionless extrusion pressure based on the slipline fields of Figs. 7.16
and 7.18 is presented graphically in Fig. 7.22. For relatively large reductions, the
extrusion pressure may be conveniently expressed by the empirical equation

pe

2k
= a + b ln

(
1

1 − r

)

where a and b are constants for a given die angle. Values for a and b for different
values of ψ are given in Table 7.6 which includes the lowest and highest values of
r for which these constants furnish sufficiently accurate values of pe.

Frictionless conditions over the die are realized to a large extent in hydrostatic
extrusion where the billet is surrounded by a fluid within the container. The pressure

† W. Johnson, J. Mech. Phys. Solids, 3: 218 (1955). Unsymmetrical extrusion through wedge-
shaped dies has been considered by W. Johnson, P. B. Mellor, and D. M. Woo, ibid., 6: 203 (1958). The
initial nonsteady state in the extrusion process has been examined by L. I. Kronsjo, Int. J. Mech. Sci.,
11: 281 (1969).

‡ A. P. Green, Phil. Mag., 42: 900 (1951); P. Dewhurst and I. F. Collins, Int. J. Num. Meth. Eng.,
7: 357 (1973).
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Figure 7.22 Variation of the frictionless extrusion pressure with the reduction for various semiangles
of the die.

of the surrounding fluid is increased to a sufficiently high value so that a slight
forward pull is able to initiate the extrusion. Sometimes, the billet is extruded into
a pressurized chamber to inhibit the formation of tensile cracks in the extruded
product. Since friction between the billet and the container is absent, long billets
can be used in hydrostatic extrusion. The improved lubrication of the die permits
the use of low die angles, thereby minimizing the redundant work.†

† Hydrostatic extrusion has been described in detail by H. Ll. D. Pugh (ed.), Mechanical Behaviour
of Materials under Pressure, Elsevier, Amsterdam (1970). See also J. M. Alexander and B. Lengyel,
Hydrostatic Extrusion, Mills and Boon, London (1971). Some limitations of the process have been
discussed by R. Hill and D. W. Kim, J. Mech. Phys. Solids, 22: 73 (1974).
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Table 7.6 Empirical constants for extrusion through smooth dies

ψ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

a 0.06 0.13 0.22 0.33 0.46 0.63
b 0.92 0.92 0.93 0.94 0.95 0.96
r1 0.35 0.50 0.58 0.63 0.65 0.67
r2 0.60 0.85 0.85 0.90 0.90 0.95

(ii) Extrusion with Coulomb friction Consider the plane strain extrusion through
a wedge-shaped die which is partially rough, the frictional stress along the die being
assumed to be a constant fraction of the normal pressure.† When the reduction in
thickness is sufficiently small, the acute angle made by the α lines with the die face
has a constant value λ < π/4 as shown in Fig. 7.23. The normal pressure on the die is
uniformly distributed, its magnitude being denoted by q. Since the shear stress on the
die has the magnitude k cos 2λ, the coefficient of friction along the die face is given by

µ = k

q
cos 2λ (48)

Since the horizontal component of the normal and tangential forces on the die must
be equal to the total ram load, the extrusion pressure pe may be written as

pe

k
= r

(
q

k
+ cos 2λ

tan ψ

)
(49)

which reduces to pe = rq when λ = π/4. The slipline field is built up from the cen-
tered fans BCD and ACE of angular spans θ and φ respectively. The application of
Hencky’s first theorem furnishes the relationship.

φ − θ = π

4
+ ψ − λ

Let OC be drawn perpendicular to the die face AB from C. Since OB = AB sin2λ,
the height of B above O is equal to (H − h)sin2λ. If (x0, y0) are the coordinates of
F with respect to the rectangular axes through O as shown, it can be shown from
simple geometry that the reduction r is given by

1

r
= sin2λ + 1

2

(x0

a
cot ψ + y0

a

)
(50)

where 2a denotes the length AB. The values of (x0, y0) correspond to the angular
coordinates (θ, φ) of the field defined by the circular arcs CD and CE having unequal
radii.

The resultant longitudinal tension per unit width across the slipline AEF corre-
sponding to zero hydrostatic pressure at C is P sin ψ + Q cos ψ, where P and Q are
the component forces directed as shown. Since the mean compressive stress at C is

† W. Johnson, J. Mech. Phys. Solids, 3: 224 (1955).
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Figure 7.23 Extrusion through a rough tapered die for small reductions. (a) Slipline field; (b) hodograph.

equal to q − k sin 2λ, the condition of zero longitudinal pull on the extruded billet
becomes

(q − k sin 2λ)h = P sin ψ + Q cos ψ

Using the geometrical relationship

sin ψ = H − h

2a
= r

1 − r

(
h

2a

)
in the preceding equation, the die pressure may be expressed in the form

q

k
= sin 2λ + r

1 − r

(
P

2ka
+ Q

2ka
cot ψ

)
(51)

When ψ, λ, and θ are all integral multiples of 15◦, the fractional reduction and the
die pressure can be readily calculated from (50) and (51), using Table A-6. The
coefficient of friction and the extrusion pressure then follow from (48) and (49)
respectively. The determination of the extrusion pressure for a number of reductions
with a given value of µ would evidently involve a great deal of interpolation. A limit
of applicability of the field corresponds to θ = 0, and the limiting reduction depends
on the coefficient of friction according to the parametric relationship

r =
√

2 sin ψ

cos λ + √
2 sin ψ

µ = cos 2λ

1 + sin 2λ + π/2 + 2ψ − 2λ
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The limiting reduction decreases as the coefficient of friction increases. Another
limit occurs when λ = 0, and the corresponding value of µ is equal to k/q, which
increases with increasing reduction. The shear stress along the die face is then equal
to k, and the solution for any given reduction is unchanged by still higher values of
the coefficient of friction.

Let the mean extrusion pressure for a die with a coefficient of friction µ be
identical to the mean drawing stress with a coefficient of friction µ∗, corresponding
to the same die angle and reduction.† The slipline fields in the two cases will be
identical if the associated die pressures q and q∗ are such that the frictional stresses
µq and µ∗q∗ are equal. Since q(1 + µ cot ψ)h = q∗(1 + µ∗ cot ψ)H by hypothesis,
the relationship between µ and µ∗ is

µ∗ = µ

1 − r(1 + µ cot ψ)
(52)

For given values of r and ψ, the extrusion through a tapered die therefore corresponds
to the drawing with somewhat higher coefficient of friction. This correspondence
between µ and µ∗ holds so long as the coefficient of friction is less than or equal to
that for which shearing would occur along the die face.

The general effect of friction is to decrease the die pressure and increase the
extrusion pressure for given die angle and reduction. The dimensionless extrusion
pressure is plotted in Fig. 7.24 as a function of the reduction for ψ = 30◦ and various
values of µ, the limit λ = 0 being represented by the broken curve. The extrusion
pressure based on (34) and (44), with µ∗ written for µ, is found to be remarkably
close to that given by the slipline field solution. As in the drawing process, there is
an optimum die angle for which the extrusion pressure is a minimum with specified
values of r and µ. The solution is not valid for very small reductions when a surface
distortion would occur in an attempted extrusion as a result of the die pressure
becoming exceedingly high.

(iii) Extrusion with sticking friction When the container wall is perfectly rough,
the slipline field of Fig. 7.7 holds for all semiangles greater than θ, provided the die
has a sufficient degree of roughness. The extrusion pressure for a wedge-shaped die
is therefore the same as that for the square die up to the reduction for which θ = ψ.
In this limiting state, the slipline AB coincides with the die face, requiring a coef-
ficient of friction not less than (1 + π/2 + 2ψ)−1. The minimum coefficient of die
friction needed for smaller reductions is obtained from (15) with ψ − θ written for
θ in the trigonometric functions. The limiting value of the extrusion ratio is given
by θ = ψ, the corresponding reduction r being given in the following table:

ψ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

r 0.320 0.550 0.708 0.812 0.881 0.925

† The extrusion pressure is identical to the drawing stress for the same values of r, ψ, and λ, but
the required coefficient of friction is different due to the difference in die pressure.
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Figure 7.24 Variation of the extrusion pressure with fractional reduction and coefficient of friction
(ψ = 30◦).

For still higher reductions, when the die and the container are both perfectly
rough, the slipline field and the hodograph are as shown in Fig. 7.25. The field
involves a zone of dead metal whose outer boundary NG is tangential to the die and
the container wall. By Hencky’s first theorem, the angle turned through by each of
the segments NG, MF, LE, and DJ is equal to the die semiangle ψ. The field CBFE
is the usual extension of the centered fan ABC where the sliplines are straight lines
and circular arcs. The remaining field BNGF is part of the slipline field defined by
BF and a straight limiting line coinciding with the die face (Sec. 6.7). For a given
die angle, the extrusion ratio depends on the angle CAJ, denoted by θ, which can
have any value between zero and π/4. The angles turned through by the segments
BM, MN, and FG are each equal to θ. When ψ and θ are both integral multiples of
15◦, the extrusion ratio H/h may be obtained directly from Table A-10, the angular
coordinates of G being (ψ + θ, θ) referred to the base point B.

Since the normal pressure on the exit slipline AC must be equal to k, the
hydrostatic pressure at any point on EFG is k(1 + 4ψ + 4θ + 2φ), where φ is the
angle turned through along the slipline. The resultant horizontal force exerted by
the ram per unit width across EG is

P = k(1 + 4ψ + 4θ)H + 2k
∫ G

E
φ dy − k(d − b)
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Figure 7.25 Slipline field and hodograph for extrusion through perfectly rough die and container wall.

where d and b are the distances of G and E from the exit plane. Integrating by parts,
and noting that dφ = dβ along EFG, we get

P = k
(

1 + π

2
+ 4ψ + 4θ

)
H − k(d − b) − 2k

∫ π/4+ψ

θ+ψ

y dβ − 2k
∫ θ

0
y dβ (53)

The first integral on the right-hand side is taken along the segment EF and the
second integral along the segment FG. Using (98), Chap. 6, the first integral may be
expressed as

∫ π/4+ψ

θ+ψ

y(ψ + θ, β)dβ =
∫ θ+ψ

0
y(t, θ + ψ)dt +

∫ θ+ψ

0
y
(

t,
π

4
+ ψ

)
dt

+
(

1 + π

4
+ 2ψ + θ

)
h − x

(
θ + ψ,

π

4
+ ψ

)
(54)

The angular coordinates in the above equation are referred to the point C on the axis.
Combining (53) and (54), the extrusion pressure pe = P/H may be written as

pe

2k
= r

(
1 + π

4
+ 2ψ

)
+ (1 + r)θ − 1

2
+ (1 − r)

(
xF

h
− d − b

2h
− c

h

)

c =
∫ θ+ψ

0
y
(

t,
π

4
+ ψ

)
dt +

∫ θ+ψ

0
y(t, θ + ψ)dt +

∫ θ

0
y(θ + ψ, t)dt

(55)
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Figure 7.26 Variation of the extrusion pressure with fractional reduction under conditions of sticking
friction.

When θ and ψ are integral multiples of 15◦, the ratios xF/h, b/h and the first two
integrals for c/h are obtained from Table A-2, while d/h and the last integral for c/h
are obtained from Table A-10.

The dimensionless extrusion pressure given by (55) is plotted against the frac-
tional reduction in Fig. 7.26 for three different die angles.† The curve for ψ = 90◦ is
based on the field of Fig. 7.7. Over the range of applicability of the present slipline
field, the extrusion pressure increases as the die angle decreases with a given reduc-
tion. This is due to the fact that the deforming zone spreads out to a greater extent
for smaller die angles, producing a greater amount of frictional work. For ψ > 60◦,
the extrusion pressure is practically independent of the die angle.

The dead metal boundary NG, which is a line of velocity discontinuity, is mapped
into the circular arc N ′G′, whose center P is the pole of the hodograph. The velocity
is continuous across EG which is therefore mapped into a single point G′. The
singularity at G′ and the condition of symmetry about E′K ′ define the region of
G′N ′L′K ′, which maps the slipline domain GNKE. The construction of the region
N ′B′D′L′ is similar to that of BNGF. The remainder of the hodograph is built up from
the known characteristics L′D′ and L′K ′, and the condition of symmetry about K ′C′.

† J. Chakrabarty, unpublished work (1982).



Chakra-07.tex 30/1/2006 17: 57 Page 540

540 theory of plasticity

The curvatures of the sliplines and their hodograph images indicate that the plastic
work rate is nowhere negative.

7.5 Extrusion Through Curved Dies

(i) Constant pressure dies We begin with the extrusion through a smooth concave
die with zero entry angle (Fig. 7.27). The shape of the die is such that the normal
pressure is constant along the profile.† The length of the straight lower part AD,
inclined at an angle ψ to the central axis, is twice the thickness of the extruded
billet. The centered fan ABC, of angle ψ, is extended in the usual manner to obtain
the region CFGJDB, where DJ and BG are parallel curves at a distance

√
2h from

one another. The curved profile DK and the associated field DJK are identical to
those discussed in Sec. 6.7, in relation to the stress-free boundary. Thus AE is the
bisector of the fan angle ABC, and the sliplines DJ and JK turn through the same
angle ψ/2. The normal pressure on the die has the constant value q = 2k(1 + ψ), and
the mean extrusion pressure is

pe = rq = 2k(1 + ψ)r (56)

where r is the fractional reduction depending on ψ. Since the extrusion ratio H/h is
equal to 2eψ − 1, we have

ψ = ln

(
2 − r

2 − 2r

)
(57)

The largest possible reduction is 88.4 percent corresponding to ψ = π/2, although
the slipline field is strictly valid for ψ less than about 86◦. The theoretical efficiency
of the die, expressed as the ratio of the ideal extrusion pressure to the actual extru-
sion pressure (56), is extremely high. For example, when ψ = 60◦, the reduction is
78.7 percent and the efficiency is 96 percent. For small reductions, the redundant
work is only about r2/24 times the homogeneous work. The total axial length l of
the die is twice the distance OF = d. If the same die is used for drawing, the mean
drawing stress t is the same as the extrusion pressure, but the reduction is limited to
62.5 percent corresponding to t = 2k.

In the hodograph of this process, the slipline FGJK is mapped into a single
point F ′ at a distance U from the pole P. The region DJK of the slipline field is
mapped into part of a singular field bounded by the broken line D′K ′, representing
the image of the curved external boundary DK. The singular field F ′B′E′ maps the
slipline domain GBEF. A typical point L′ on the broken curve, corresponding to a
point L on DK, is such that PL′ is parallel to the tangent to the boundary at L. The
triangular region moves as a rigid body with a velocity represented by the vector
PD′. The velocity field in the domain CEF can be constructed entirely in terms of the
elementary functions contained in the first row of (51), Chap. 6. Since the velocity
changes in magnitude from U at F to (2eψ − 1)U at C, the velocity components (u, v)
along the sliplines, satisfying the equation v = −∂u/∂α and the condition u = v on

† R. Sowerby, W. Johnson, and S. K. Samanta, Int. J. Mech. Sci., 10: 231 (1968).
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Figure 7.27 Extrusion through a constant pressure die without friction. (a) Slipline field; (b) hodograph.

α = β, may be written as

u = −U
{√

2exp(ψ − α − β) − cos
(π

4
+ α − β

)}
v = −U

{√
2exp(ψ − α − β) − sin

(π

4
+ α − β

)} (58)

The rectangular components of the velocity, defining the shape of the hodograph
net with pole P, are readily obtained from (11), Chap. 6, with φ = −(π/4 + α − β).
It follows that the field C′E′F ′ consists of logarithmic spirals with pole at P′ where
PP′ = U. In particular, the polar equations of C′E′ and E′F ′ are found to be w =
2U exp(ψ − θ) and w = 2U exp(θ) respectively, where θ is measured from P′C′. The
singular field F ′E′B′, defined by the spiral F′E′, can be determined in terms of Bessel
functions following the method of Sec. 6.6. It can be shown that

PB′ = U[1 + 2J1(ψ) + 2J3(ψ) + · · · ]

Within the centered fan ABC, the velocity is constant along any radial line through A.
There is no velocity discontinuity, and the rate of plastic work is nowhere negative.

The slipline field and the hodograph can be modified in a straightforward manner
when the die is partially rough. The angular span of CE is still equal to ψ/2, but angle
BAD is now equal to λ (less than π/4).All α lines in the region DJK are inclined at the
same angle λ to the die profile. The normal pressure on the die has the constant value

q = k
(

1 + sin 2λ + π

2
+ 2ψ − 2λ

)
(59)

The coefficient of friction is µ = (k/q)cos 2λ, and the mean extrusion pressure is
given by

pe = rq + k(1 − r)
1

h
cos 2λ (60)
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where l is the axial length of the die. The slipline field in the region DJK can be deter-
mined from the condition S = −R tan λ along DK. It follows that x tan λ + y is a sym-
metrical function of α and β, and can be written down from the boundary condition
along DJ. There is no simple geometrical relation for the extrusion ratio, but suffi-
ciently accurate empirical formulas for small to moderate coefficients of friction are

H

h
= 1 + (eψ − 1)

√
2 sec λ

l

d
= √

2 sec λ (61)

When the friction is specified, the mean extrusion pressure can be easily calculated
for a given angle ψ.As the reduction in thickness is increased to large values depend-
ing on λ, the slipline DJ is intersected by sliplines of its own family. The minimum
value of ψ for this to happen is given approximately by

I0(
√

2ψ) + 1√
2

I1(
√

2ψ) = sec2λ +
(

1 + ψ

2

)
tan λ (62)

When λ = π/6, for instance, the slipline field is valid for ψ � 57◦. For larger values
of ψ, the field can be continued only by introducing stress discontinuities. It is
important to note that the solution for the partially rough die does not contain the
limiting case of full friction when the die profile coincides with a slipline. The entire
slipline field is then an extension of the centered fan ABC. The normal pressure
varies along the die profile, and the extrusion pressure is given by the upper broken
curve of Fig. 7.5.

(ii) Graphical solution for arbitrary profiles In general, the slipline field for a
curved die is more complicated than those hitherto considered. The construction
must be carried out by a trial-and-error process to propose a field that satisfies the
stress and velocity boundary conditions. An inverse semi-graphical method is some-
times convenient for the solution of problems involving curved dies.† A hodograph
of suitable shape is first assumed so that the velocity boundary conditions are satis-
fied everywhere. The hodograph image of the curved boundary is then determined
such that it is compatible with the frictional condition on the die face. The slipline
field is finally constructed from the orthogonality of the slipline elements and their
hodograph images.

Consider the extrusion through a smooth convex die of arbitrary contour and
having semiangles χ and ψ at the entry and exit respectively (Fig. 7.28). The reduc-
tion is assumed to be sufficiently small so that the slipline field contains a single
point F of the axis of symmetry, and there are stress singularities at the entry and exit
points of the die. The constant velocity discontinuity propagating along the entry and
exit sliplines is taken to be of

√
2 units. Let θ and φ denote the fan angles at B and A

† This is an adaptation of a graphical method employed by W. Johnson, Int. J. Mech. Sci., 4:
323 (1962); M. J. Hillier, ibid., 4: 529 (1962); M. J. Hillier and W. Johnson, ibid., 5: 191 (1963). For
a numerical approach to the problem, see W. W. Sokolovsky, J. Mech. Phys. Solids, 10: 353 (1962).
The extrusion of initially curved sheets has been investigated by W. Johnson, Int. J. Mech. Sci., 8: 163
(1966).
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Figure 7.28 Extrusion through a smooth convex die. (a) Slipline field; (b) hodograph.

respectively. Since the sliplines meet the die at 45◦, the angles turned through along
AE and BD are of amounts ψ + θ − φ and χ + θ − φ respectively. The hodograph is
begun with the centered fans RF ′E′ and QF ′B′, each of radius

√
2 and having angu-

lar spans θ and θ + χ. The point D′ is located on F ′B′ such that angle QF ′D′ is equal
to φ. If the reduction is not too small, φ is less than ψ, and the point A′ lies on the
arc E′F ′ produced, the angle subtended by F ′A′ being ψ − φ. The hodograph field
F ′E′B′′B′, defined by circular arcs of equal radii, is easily constructed using Table
A-1. The field defined by the circular arcs F ′A′ and F ′D′ can be constructed graph-
ically or numerically, but the rectangular coordinates of the various nodal points of
this field for a 10◦ equiangular net are directly obtained from Table A-7.

The pole P of the hodograph is located on RQ produced, making PR = 2/r,
where r is the fractional reduction. Since the ratio PQ/PR is then equal to h/H, the
vectors PQ and PR represent the entry and exit velocities of the billet. For given
die angles and reduction, the fan angles θ and φ can be so chosen that PA′′ and PB′′
intersect the hodograph curves at 45◦. The angles which these lines make with PR
are then equal to the entry and exit semiangles of the die. The rectangular coordinates
(ξ, η) of the nodal points of the field F ′B′B′′E′ are known functions of the curvilinear
coordinates (α′, β′) referred to F ′E′ and F ′B′ as the baselines. If these functions are
denoted by f (α′, β′) and g(α′, β′) respectively, it follows from geometry that

2

r
= 1 + f (θ, χ + θ)cot χ + g(θ, χ + θ) (63)

which can be solved for θ using TableA-1 orA-2, when r and χ are given. The angle φ

is similarly determined from TableA-7, using the condition PT/TA′′ = cot ψ. Having
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located the points A′′ and B′′, it is possible to draw lines from P to intersect each char-
acteristic through R at 45◦. The locus A′′L′M ′B′′ of the points of intersection is the
image of the die profile, whatever its shape. When the shape AB is given, the points
L and M can be located on it by drawing tangents to the profile parallel to the corre-
sponding velocity vectors. The triangular field ABC adjacent to the die is mapped into
the region A′′B′′C′. The maximum reduction for which the construction is valid is

r∗ = 2 sin χ

1 + 2 sin χ
(64)

corresponding to θ = 0 (B′′ coinciding with B′). This is the same as that in the case
of a wedge-shaped die of semiangle χ for the type of slipline field considered. It also
follows from geometry that φ vanishes (A′′ coinciding with A′) when r = 2 sin ψ.

The slipline field is now completely defined by the hodograph. Starting from
the profile AB, the field can be constructed in small segments of circular arc with
the tangents at the extremities perpendicular to the corresponding tangents to the
hodograph elements. The distribution of the hydrostatic pressure is determined from
the Hencky equations, the pressure p0 at A on the exit side being obtained from the
condition of zero longitudinal force across AEF. Thus

p0

2k
= d

2h
−

∫
y

h
dα (65)

where the integral is taken along AF; y is the height of a generic point on AF above
the axis and α the angle turned through along AF in the clockwise sense. Note
that dα is positive along AE and negative along EF. The normal pressure on the die
decreases from entry to exit, and the resultant longitudinal component of the die load
furnishes the mean extrusion pressure. Calculations based on χ = 90◦, ψ = 30◦, and
r = 2

3 = r∗ for a circular profile give an extrusion pressure of 2.82k. This is about
2 percent higher than that for a smooth wedge-shaped die of semiangle 60◦, which
is the mean semiangle of the convex die.

As the reduction is decreased, φ increases and becomes equal to ψ when
H = h(1 + 2 sin ψ), the points A′ and A′′ coinciding with F ′ and D′ respectively.
For still smaller reductions, A′ lies on E′F ′, and the fan ACE is mapped into a part
of the region F ′E′C′D′. In that case, φ can be determined from the equation

2

r
= 1 + f (φ − ψ, φ)cot ψ + g(φ − ψ, φ) (66)

using the table (Appendix). In all cases, the rate of plastic work is easily shown to be
everywhere positive, justifying the shape of the proposed slipline field. By a slight
modification of the method, a partially rough die with a constant frictional stress
along it can also be treated.†

† A slipline field solution for drawing through smooth cylindrical dies with zero exit angle has
been given by T. C. Firbank and P. R. Lancaster, Int. J. Mech. Sci., 6: 415 (1964). See also T. C. Firbank,
P. R. Lancaster, and G. McArthur, ibid., 8: 541 (1966).
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Figure 7.29 Extrusion through a smooth concave die. (a) Slipline field; (b) hodograph.

The slipline field solution for extrusion through a concave die is very similar to
that for a convex die. When the reduction is small, the slipline field involves centered
fans of angles θ and φ at the entry and exit respectively (Fig. 7.29). Under frictionless
conditions, the angles turned through along AE and BD are φ − θ − ψ and φ − θ − χ

respectively. The entire slipline field is mapped into the region F ′A′A′′D′ defined by
the circular arcs F ′A′ and F ′D′, subtending angles φ − ψ and φ respectively at the
centers. For given values of r, χ, and ψ, the fan angles θ and φ can be obtained from
(63) and (66) as before. The image A′′B′′ of the curved profile passes through the
points where the characteristics through R are intersected at 45◦ by lines drawn from
the pole P. The angles which PB′′ and PA′′ make with PR are equal to the entry and
exit semiangles of the die. The slipline field is drawn as before from the nodal points
thus established on the boundary AB. The construction is valid for all reductions less
than r∗, given by (64), when the entry fan disappears. The die pressure increases
from entry to exit, and is determined when the hydrostatic pressure p0 on the exit
side of A is calculated from (65), noting the fact that dα is negative throughout the
exit slipline. Considering a concave die with χ = 20◦ and ψ = 40◦, the extrusion
pressure† for the limiting reduction of 41 percent is found to be 1.61k. This may be
compared with the pressure 1.32k for a wedge-shaped die of 30◦ semiangle.

For certain die angles and reductions, it is likely that sliplines of the same family
would cross one another near the steepest part of the die. The construction of the
slipline field in such cases would naturally involve stress discontinuities. The present
method cannot be applied, without modification, when the exit angle vanishes for

† L. I. Kronsjo and P. B. Mellor, Int. J. Mech. Sci., 8: 515 (1966).
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the convex die or the entry angle vanishes for the concave die, since the velocity
discontinuity then disappears.†

7.6 Ideal Die Profiles in Drawing and Extrusion

(i) Basic principles The plastic flow is known as streamlined when the velocity
vector is everywhere along a principal stress direction. The streamlines therefore
coincide with one family of trajectories of principal stress. Since the velocity vector
bisects the slipline directions at each point, µ = ±v throughout the field, where the
upper or lower sign is taken according to whether the streamline is in the direction of
the algebraically greater or lesser principal stress. The Geiringer equations are then
immediately integrated, and it follows that the magnitude w of the resultant velocity
is proportional to exp(±φ) along an α line and exp(∓φ) along a β line. Consequently,
the traces of the sliplines in the hodograph plane are logarithmic spirals irrespective
of the form of the slipline field. The application of the Hencky equations then reveals
that

w = c exp(∓ p/2k) (67)

throughout the field, where c is a constant. The deformation mode would be physi-
cally possible if the rate of plastic work is everywhere positive. Hence a material line
element along a streamline must increase in length when the direction of flow is along
the major principal stress and decrease in length when it is along the minor principal
stress. In other words, the flow must proceed in the direction of increasing or decreas-
ing speed according as the principal stress in this direction is major or minor. It
follows from (67) that in either case the flow must occur in the direction of decreasing
hydrostatic compression or algebraically increasing mean principal stress.‡

We now consider the steady state drawing or extrusion of an ideally plastic
material through a frictionless die of suitable shape. To eliminate redundant work,
it is necessary to ensure that material elements are not sheared longitudinally while
passing through any infinitesimal streamtube. In addition, the material should enter
and leave the deforming zone smoothly, without any velocity discontinuity. It follows
that the die must have zero entry angle and its profile must be such that the flow within
the die is streamlined with the major principal stress occurring along the streamlines.
Since the material enters and leaves the die with uniform speeds, it follows from (67)
that the entry and exit sliplines must be straight. Moreover, the difference between
the major principal stresses across these sliplines is 2k times the logarithm of the
ratio of the exit and entry speeds. The mean drawing stress or the extrusion pressure
therefore has the ideal value 2k ln(H/h). In the case of drawing, the reduction must
be less than 63.2 percent to avoid necking of the drawn sheet outside the die.

† Upper bound solution for plane strain extrusion through curved dies have been obtained by
W. Johnson, Appl. Sci. Res., 7A: 437 (1958).

‡ R. Hill, J. Mech. Phys. Solids, 14: 245 (1966). For a general three-dimensional discussion, see
R. Hill, ibid., 15: 223 (1967).
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Figure 7.30 Slipline field and distorted square grid for drawing through an ideal sigmoidal die.

Let us consider a curvilinear segment momentarily orthogonal to the streamlines
in a steady state process. Since the principal axes of stress and strain rate coincide,
the orthogonality will persist while the segment moves in the field. This means
that transverse lines originally perpendicular to the direction of flow will deform
into orthogonal trajectories to the streamlines while passing through the deforming
zone. It follows that a uniform square grid marked in the rigid material entering the
die will become uniformly rectangular after leaving the die. The emerging material
is, therefore, uniformly strained, although the deformation within the die is not
homogeneous.

(ii) Solution for a sigmoidal die Let the streamlined die be sigmoidal in shape, so
that the entry and exit angles both vanish, and there is no singularity anywhere in
the field.† The design of the ideal die profile for symmetrical drawing or extrusion
then involves a slipline field of the type shown in Fig. 7.30. The starting slipline
BC is concave to the exit, intersecting the axis of symmetry BD at 45◦. This will
uniquely define the field BCD in which all sliplines are concave in the same sense,
and the flow will be everywhere convergent as required. The remaining fields ABC
and CDE can be constructed by taking the entry and exit sliplines DE and AB as
straight. The principal stress trajectories AC and CE through C define the profile
ACE of a streamlined die of sigmoidal shape. Since the velocity boundary conditions
require u = v along AB, BD, DE, and AE, the velocity equations will be satisfied only
if u equals v everywhere in the field. The streamlines therefore coincide with the
major principal stress trajectories.

The magnitude of the velocity at any point in the field CDE is Ueθ , where θ

is the angle turned through along an α line from the entry slipline DE. Similarly,

† O. Richmond and M. L. Davenpeck, Proc. 4th U.S. Nat. Cong. Appl. Mech., 1053 (1962);
M. L. Davenpeck and O. Richmond, J. Eng. Ind., 6: 425 (1965). See also H. Takahashi, Proc. Jpn. Soc.
Mech. Eng., 9 (1967).



Chakra-07.tex 30/1/2006 17: 57 Page 548

548 theory of plasticity

the velocity at any point in the field ABC, defined by the angle θ turned through
along a β line from AB, is of magnitude U(H/h)e−θ . Since the velocity remains
constant in magnitude and direction along each straight slipline, the regions ABC
and CDE are mapped into a pair of orthogonal logarithmic spirals in the hodograph.
The continuity of the velocity at C furnishes H = he2ψ, where ψ is the angle turned
through by either of the sliplines BC and CD. Hence the fractional reduction is

r = 1 − exp(−2ψ) (68)

The distribution of the hydrostatic pressure in the deforming region can be calculated
by Hencky’s equations, using the boundary condition p = −k along DE for drawing
and p = k on AB for extrusion. The normal pressure on the die decreases from 2k at E
to 2k(1 − 2ψ) at A in the case of drawing, and increases from 2k at A to 2k(1 + 2ψ)
at E in the case of extrusion. The mean drawing stress or extrusion pressure is 4kψ

or 2k ln(H/h) as explained earlier.
Suppose that BC is a logarithmic spiral with pole G on the central axis. Then

all sliplines of the field BCD are logarithmic spiral having the same pole. The polar
equations of BC and CD are ξ = aeθ and ξ = be−θ respectively, where BG = a,
DG = b, and b = ae2ψ. It follows that the streamlines in this region are radially
converging to the pole. The magnitude of the velocity at a radial distance ξ from
G is (b/ξ)U in view of the incompressibility and continuity conditions. It is to be
noted that GC is tangential to the die profile and is of length

√
ab.

Let GMN be any radial line inclined at angle θ to the axis, intersecting BC and
CD at M and N respectively. The straight sliplines MP and MN, drawn through M
and N , meet the die profile at P and Q respectively. The angles turned through by
AP and EQ are each equal to θ, and the tangents to the profile at P and Q are both
parallel to MN. Let PM = √

2n1 and QN = √
2n2. Since the radii of curvature of

the spirals BC and CD are numerically equal to
√

2aeθ and
√

2be−θ respectively,
S = −√

2(aeθ − n1) along AC and R = −√
2(be−θ + n2) along CE. Considering a

triangular element formed by the sliplines through the extremities of a small arc of
the profile of angular span dθ, we get dn1 = S dθ along AC and dn2 = R dθ along CE.
Hence the differential equations for n1 and n2 are

dn1

dθ
− n1 = −√

2aeθ dn2

dθ
+ n2 = −√

2be−θ

and the boundary conditions are n1 = n2 = 0 when θ = ψ. The integration of the
above equations results in

n1 = √
2a(ψ − θ)eθ n2 = √

2b(ψ − θ)e−θ (69)

Evidently, n2 is greater than n1 for all values of θ less than ψ. Since n1 = √
2h and

n2 = √
2H when θ = 0, we have

a = h

ψ
b = H

ψ

b

a
= H

h
= e2ψ (70)
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The length of the axis covered by the slipline field is BD = b − a = rH/ψ, and it
follows that the total axial length of the die is

L = H

{
(2 − r) + 2r

ln[1/(1 − r)]

}
(71)

The radius of curvature of the die profile is ρ = ds/dθ, where the arc length s is
assumed to increase from entry to exit. Since ds = √

2dn1 along the curve AC and
ds = −√

2dn2 along CE, we get

ρ =
{−2a(1 − ψ + θ)eθ along AC

2b(1 + ψ − θ)e−θ along CE

in view of (69). The radius of curvature numerically increases from 2a(1 − ψ) at
A to 2b(1 + ψ) at E, while there is a discontinuity of amount 4aeψ in the value of
ρ at C. The rectangular coordinates of points on the die profile can be found from
geometry, using (69). Choosing the x and y axes as shown, we obtain

x

a
= [cos θ − (ψ − θ)(cos θ + sin θ)]eθ

y

a
= [sin θ + (ψ − θ)(cos θ − sin θ)]eθ

(72)

on the exit side of the die (along AC), and
x

b
= [cos θ + (ψ − θ)(cos θ − sin θ)]e−θ

y

b
= [sin θ + (ψ − θ)(cos θ + sin θ)]e−θ

(73)

on the entry side (along CE). These equations define the die profile parametrically
through θ. When ψ is increased to 1 rad, a becomes equal to h, and A becomes the
center of curvature of the spiral BC at B. For still higher values of ψ, some of the
straight sliplines will intersect one another near A. Hence the maximum reduction
for which the field is valid is r = 1 − e−2 � 0.865.

Suppose, now, that the slipline field in the central region BCD is an equiangular
net. The streamlines passing through the diagonal points of this network meet the
entry and exit sliplines at points that are equidistant from one another. A typical
streamline inclined at an angle θ0 to the axis in the radial flow region can be extended
on either side by using (72) and (73) with ψ replaced by θ0 > θ. The diagonal stream-
lines may be regarded as the distorted longitudinal lines of a uniform square grid
marked on the undeformed sheet. When a transverse gridline passes through the
zone BCD, the part of the line lying inside this region is deformed into a circular arc
with center at G. Let t denote the time taken by a typical particle on the axis to move
from D to a generic point at a distance ξ from G. Since dξ/dt = −(b/ξ)U while the
particle remains on BD, we obtain

ξ = b

√
1 − tU

H
ln

H

h
(74)
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in view of (70). Denoting the length of each side of the original mesh by c,
the deformed transverse gridlines in BCD may be obtained from (74) by setting
tU/c = 1, 2, . . . The time t∗ taken by the particle to move from D to B is given by

t∗U

H
= r(2 − r)

ln[1/(1 − r)]

To complete the construction of the distorted grid within the die, it is only necessary to
extend the transverse lines into the regions ABC and CDE as trajectories intersecting
the sliplines at 45◦. The time required by each particle to travel between the planes
of entry and exit is

T = H

U

{
1 + (1 − r)2 + r(2 − r)

ln[1/(1 − r)]

}
(75)

The shape of the distorted grid as it passes through the die is shown by broken lines
in Fig. 7.30, assuming c = H/3. The square grid becomes rectangular on leaving
the die with the longitudinal spacing multiplied by H/h and the transverse spacing
divided by the same ratio.†

(iii) The minimum length die For practical purposes, it is desirable to minimize the
length of the streamlined die required to produce a given reduction. This is achieved
by considering a nonzero exit angle with a singularity at the exit point of the die
(Fig. 7.31). Assuming a straight end AD of the die, the slipline field is started from
the centered fan ABC of angle ψ, equal to the semiangle of the die at the exit. The
circular arc CB defines the field CBF, which is extended above by taking the β lines
as straight. If AD is equal to the thickness 2h of the outgoing sheet, the straight
slipline through B will meet the die at D. The concave partDE of the die is defined
by the principal stress trajectory through D, intersecting the sliplines at 45◦. The
entry angle of the die evidently vanishes, and the velocity is everywhere continuous.
The Hencky equations furnish 4kψ as the drawing stress or the extrusion pressure,
indicating that 2ψ = ln(H/h) as before. In view of (90), Chap. 6, the axial length of
the die is

L = H{1 + [I0(2ψ) + A0(2ψ)]e−2ψ} (76)

Equations (68) and (76) give the relationship between L/H and r parametrically
through ψ. When r = 0.5, for instance, L/H = 1.92 compared to the value 2.94
required for the sigmoidal die.

Let (α, β) denote the curvilinear coordinates of the field CBF with respect
to CB and its reflection in the axis as the baselines. The resultant velocity at any
point on the straight slipline through a generic point on BF has the magnitude
U exp(ψ − α). Within the fan ABC, the magnitude of the velocity along any radial

† A slipline field solution for extrusion through a sigmoidal die in the form of a cosine curve has
been presented by S. K. Samanta, J. Mech. Phys. Solids, 19: 300 (1971).
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Figure 7.31 Slipline field and hodograph for drawing through a streamlined die of minimum length.

line is U exp(2ψ − β). In the hodograph plane, the regions ABC and BDEF are
therefore mapped into the logarithmic spirals C′B′ and B′F ′ with pole P. Each
characteristic in the field C′B′F ′ is also a logarithmic spiral, the velocity at a generic
point in CBF being of magnitude U exp(2ψ − α − β) and directed along the major
principal stress.

Let MN be any straight slipline of length n, intersecting BF and DE at M and
N respectively. The angles turned through by BM and DN are each equal to α. The
radius of curvature of the α line at N is numerically equal to n − R0, where R0 is the
radius of curvature of the slipline BF at M. By (83), Chap. 6,

R0 = −√
2h

{
I0(2

√
αψ) +

√
ψ

α
I1(2

√
αψ)

}

Consider a neighboring point on the profile at an angular distance dα from N . The
length of the straight slipline changes by an amount dn = (n − R0)dα as we move
along an infinitesimal arc of the profile. Hence

dn

dα
− n = −R0

It may be verified by direct substitution that the above differential equation, subject
to the boundary condition n = √

2h at α = 0, has the exact solution†

n = √
2h[I0(2

√
αψ) + 2H(α, ψ)] (77)

where H(α, ψ) is defined by (133), Chap. 6. The expression in the square bracket
is equal to e2ψ when α = ψ. Since n = √

2H at E, we recover the result H = he2ψ.

† No confusion should arise from the fact that the symbol H is also used to denote the initial
semi-thickness of the sheet.
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The equation of the curve DE may be expressed parametrically as

x = x0(α) + n cos
(π

4
+ ψ − α

)

y = y0(α) + n sin
(π

4
+ ψ − α

) (78)

where (x0, y0) are the coordinates of the typical point M from which n is measured.
The die profile and the associated slipline field can be readily established by using
Tables A-1, A-3, and A-5.

Since the velocity varies as e−α in the region BDGF, and the material is incom-
pressible, the length of the straight characteristic between the die and a given
streamline must vary as eα along the streamline. This property enables us to draw the
streamlines in the region BDEF, starting from selected points on the exit slipline EF.
It follows that the streamline passing through the point B intersects EF at K , such
that EK/DB = eψ, the depth of K below E being

√
Hh or H

√
1 − r. All streamlines

lying below KBL pass through the central field CBF, intersecting the sliplines at 45◦.
In the region ABD, which moves with a uniform speed U

√
H/h, the streamlines are

obviously parallel to AD. The streamlines in the centered fan ABC are logarithmic
spirals with pole at A, and the vertical distance between A and L is h

√
1 − r, where

L is the exit point of the streamline.
The time taken by a typical particle on the axis to move from F to a generic point

on CF is obtained from the equation dx/dt = −U exp(2ψ − 2α). Substituting from
(90), Chap. 6, and rearranging the terms, the equation of motion may be expressed as

d

dt
[e2αI0(2α)] = −U

h
e2ψ

Employing the initial condition α = ψ at t = 0, and using the fact that e2ψ is equal
to H/h, the solution is obtained as

tU

h
= I0(2ψ) − (1 − r)e2αI0(2α) (79)

which is valid for 0 �α�ψ. Equation (79) enables us to locate the positions on
the axis of the transverse lines of an originally square grid. The deformed pattern of
these gridlines may now be obtained by constructing the principal stress trajectories
through the appropriate points on the axis. The total time taken by any particle to
travel from the plane of entry to the plane of exit is

T = H

U

[
1 + (1 − r)I0

(
ln

1

1 − r

)]
(80)

The stress distribution in the deforming region can be readily found by using
Hencky’s equations. The normal pressure along the curved portion of the die
decreases from 2k at E to 2k(1 − ψ) at D in the case of drawing, and increases
from 2k(1 + ψ) at D to 2k(1 + 2ψ) at E in the case of extrusion.
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7.7 Limit Analysis of Plane Strain Extrusion

The slipline field solutions discussed in the preceding sections are incomplete in the
sense that no attempt has been made (except in a special case) to extend the stress
field into the assumed rigid zones in a statically admissible manner. It is not shown,
therefore, that the proposed slipline fields meet the requirements of the lower bound
theorem of limit analysis. On the other hand, the velocity field associated with the
slipline field in each case is kinematically admissible as required by the upper bound
theorem. Consequently, the incomplete solutions are strictly upper bound solutions,
although the estimated value of the external load is not likely to exceed the actual
value significantly. Lower and upper bound solutions for the symmetrical extrusion
through straight dies using approximate stress and velocity distributions will be
discussed in what follows.

(i) Lower bound solutions An intuitively obvious lower bound for the extrusion
pressure pe is 2k ln(H/h) corresponding to homogeneous compression. Under fric-
tionless conditions, this may be rigorously demonstrated by considering stress
discontinuities across a pair of concentric circular arcs drawn through the extremi-
ties of the die with the center at the virtual apex. The stress distribution in the region
between the considered circular arcs is taken to be that corresponding to a thick
cylinder under a uniform external pressure equal to pe. A stress-free state on the exit
side and a uniform hydrostatic compression of intensity pe on the entry side are also
assumed to complete the stress field that is statically admissible.

To obtain an improved lower bound for frictionless extrusion through a square-
faced die, consider the discontinuous stress fields of Fig. 7.32 which hold for two
different ranges of reduction.† The proposed discontinuity patterns are such that all
the stress boundary conditions are satisfied, the material to the right of the die and
the exit plane being assumed plastic everywhere except region LFBDN in (a) and
region FBEDN in (b). The boundary conditions on the exit side are accommodated
by assuming the material to the left of the exit plane to be entirely stress-free.
Using (29), Chap. 6, the stresses in the plastic regions are readily evaluated from the
known hydrostatic pressure in AOC, and the fact that the α lines are inclined at 15◦
to each of the discontinuities AC, AD, AB, and at 75◦ to the discontinuity CD. The
magnitude and direction of the principal compressive stresses throughout the field
are as indicated in the figure.

Since BD, BE, and DE coincide with principal stress directions in the plastic
regions to their left, the boundary and continuity conditions require a state of hydro-
static compression to exist on the other side of each of these inclined discontinuities.
The continuity of the stresses in the nonplastic zones is maintained by introducing
additional discontinuities through B and E in fields (a) and (b) respectively. Both the
stress fields are statically admissible, and involve a uniform die pressure equal to 5k.

† The discontinuous stress field for R � 3 is due to J. M. Alexander, Q. Appl. Math., 19: 31
(1961). The remaining lower bound solutions presented here have been obtained by J. Chakrabarty in
an unpublished work (1971).
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Figure 7.32 Discontinuous stress fields for frictionless extrusion through a square die.

Equating the punch load peH to the die load 5k(H − h), we obtain the lower bound

pe = 5k

(
1 − h

H

)
= 5kr (81)

The two discontinuity patterns become identical when points B and F coincide, the
corresponding extrusion ratio being H/h = cot230◦ = 3. Thus, field (a) applies to
r � 2/3 and field (b) applies to r � 2/3. The smallest reduction for which field (b)
holds is that for which E coincides with D, resulting in

h(cot 30◦ + tan 30◦) = 2(H − h)cot 30◦

which gives r = 2/5. For still smaller reductions, BE intersects AD at some point
J while DE becomes nonexistent. The stress distribution on the entry side would
be statically admissible if we replace EF by a new discontinuity EG, where G is on
the axis vertically below E. The material to the right of EG is under a hydrostatic
compression of intensity 2k, while that between EM and JN must be under a vertical
compression of magnitude 2k. The extrusion pressure is still given by (81), since
the die pressure is unaffected by the modified stress distribution.

A lower bound solution for wedge-shaped dies may be derived in a similar
manner, assuming frictionless conditions as before. Depending on the reduction
in relation to die angle, two types of discontinuity pattern must be considered as
in Fig. 7.33. The condition of zero tangential traction along the die face and the
container wall can be satisfied by introducing a pair of discontinuities through A
inclined at an angle ψ/2 with one another, where ψ is the die angle, and a disconti-
nuity through B drawn perpendicular to the die face. The discontinuities through C
are mutually perpendicular, and the proposed angle φ = (π − ψ)/4 between AC and
the axis of symmetry furnishes the most suitable lower bound.

In field (a), the discontinuities CD and AD meet at a point D, and DE is parallel
to the die face, the remaining discontinuities through D and E being horizontal
and vertical. Assuming the region OABEDG to be stressed to the yield point, the
hydrostatic pressure jump across the sides of the triangle ACD is obtained from the
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Figure 7.33 Stress discontinuity patterns for frictionless extrusion through a tapered die, where
φ = π/4 − ψ/4.

fact that the α lines make an angle ψ/4 with AC and AD, and an angle π/2 − ψ/4
with CD. The magnitudes of the hydrostatic pressure are easily found by following
the successive reflection of the sliplines (see Sec. 6.3(i)). These pressures are

p1 = k

(
1 + 2 sin

ψ

2

)
p2 = p3 = k

(
1 + 4 sin

ψ

2

)

In both the fields, the triangle BEF is under a hydrostatic compression p3 − k. The
principal stresses shown in the different regions of the field constitute a statically
admissible state of stress. Since the extrusion pressure is r times the die pressure,
the lower bound is

pe = 2kr

(
1 + 2 sin

ψ

2

)
(82)

Field (a) holds for all reductions greater than that for which DE vanishes. Since the
projection of AD on the die face is equal to the die length for the limiting reduction,
it follows from simple geometry that

h sec
ψ

2
= (H − h)cosec ψ

which reduces to H/h = 1 + 2 sin(ψ/2). For smaller extrusion ratios, field (b)
becomes appropriate. The discontinuities through A and B then meet at E, and ED is
drawn perpendicular to CD. The hydrostatic pressure jump across ED is of the same
amount as that across AC but occurs in the opposite sense. The stress distribution
on the entry side is therefore modified as shown. Since p2 − k = p3 − k � 2

√
2k, the

stress field is still statically admissible, giving the same lower bound for the extru-
sion pressure. For ψ = π/2, the lower bound pressure given by (82) is 2(

√
2 + 1)kr,

which is slightly inferior to (81).
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When the die is perfectly rough, but the container wall is still smooth, Fig. 7.34,
a statically admissible stress field is easily constructed for a wedge-shaped die with
ψ �π/4. The state of stress in the plastic material adjacent to the die involves a
discontinuity through A inclined at 3π/8 + ψ/2 to the exit plane and a discontinuity
through B inclined at 3π/8 − ψ/2 to the container wall. In field (a), these discontinu-
ities do not meet, and are joined by a third discontinuity CD perpendicular to AC. By
geometry, the angles of inclination of the α lines with AC, CD, and BD are π/8 + ψ/2,
3π/8 − ψ/2, and 3π/8 + ψ/2 respectively. Using (29), Chap. 6, the hydrostatic
pressures in the associated plastic regions ABDC, CDE, and BDF are found to be

p1 = k
[
1 + 2 sin

(π

4
+ ψ

)]
p2 = k

[
1 + 4 sin

(π

4
+ ψ

)]

p3 = k(1 + 2
√

2 sin ψ)

Since p2 − p3 < 2
√

2k, the material to the right of ED is stressed below the yield
limit. For equilibrium, the distribution of uniform normal pressure p1 and shear
stress k along the die face must produce a horizontal resultant equal to peH.

Figure 7.34 Stress discontinuity patterns for extrusion with smooth container and rough die. The vertical
compressive stresses in CDE and BDF are p2 + k and p3 − k respectively.
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The extrusion pressure is therefore obtained as

pe = kr(1 + cot ψ)(1 + √
2 sin ψ) (83)

When the reduction is decreased to a limiting value, points D and C coincide on the
axis of symmetry. The discontinuity pattern of field (b) is applicable for all smaller
reductions, giving the same extrusion pressure. Since p3 � 3k for ψ �π/4, the yield
limit is not exceeded in the rigid zone to the right of CE. At the limiting reduction,
the length BC becomes equal to H sec(π/8 + ψ/2), and the application of the sine
rule to triangle ABC furnishes

(H − h)(sin ψ + cos ψ) = 2H sin ψ

Hence the limiting reduction is r = 2/(1 + cot ψ). When ψ = π/4, field (b) holds for
all reductions, the corresponding lower bound being 4kr with AC and BC reduced
to horizontal and vertical discontinuities through A and B respectively.

(ii) Upper bound solutions An effective method of constructing kinematically
admissible velocity fields for plane strain problems is to divide the material into
a number of zones, each one of which is assumed to move as a rigid block with
shearing along the interfaces.† A simple velocity pattern for extrusion through a
wedge-shaped die is shown in Fig. 7.35a, where AC and BC are lines of velocity
discontinuity emanating from the die and meeting on the axis of symmetry. As the
punch advances toward the die with a unit speed, a typical particle on the entry side
reaches BC and instantaneously changes its path to proceed parallel to the die face.
On crossing AC, the particle suffers a second change in velocity and moves parallel
to the axis again with a speed equal to the extrusion ratio R. The acute angles made
by the discontinuities with the axis are denoted by θ and φ, one of which can be
independently chosen for given die angle and reduction.

The associated hodograph shown in Fig. 7.35b is started from the vector OP1
representing the velocity of the rigid region adjacent to the punch face. The lines
drawn through O and P1 parallel to AB and BC respectively locate the point P2,
defining the velocity v2 of the rigid triangle ABC and the velocity discontinuity v12
across BC. A line from P2 drawn parallel to AC intersects OP1 produced at P3, where
OP3 is the speed R of the extruded sheet, and P2P3 the velocity discontinuity v23
across AC. It follows from the geometry of the triangles OP1P2 and OP2P3 that

v2 = sin φ

sin(φ − ψ)
= R sin θ

sin(θ + ψ)

† Various upper bound solutions for plane strain extrusion have been discussed by W. Johnson,
Proc. Inst. Mech. Eng., 173: 61 (1959); H. Kudo, Int. J. Mech. Sci., 1: 57 and 229 (1960); J. Halling
and L. A. Mitchell, J. Mech. Eng. Sci., 6: 240 (1964); and R. G. Fenton, J. Basic Eng., 9: 45 (1968). See
also W. Johnson and P. B. Mellor, Engineering Plasticity, Chap. 13, Van Nostrand-Reinhold Company,
London (1973); B. Avitzur, Metal Forming: Processes and Analysis, McGraw-Hill Book Company,
New York (1969).
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Figure 7.35 Single triangular velocity discontinuity pattern and the associated hodograph for plane
strain extrusion.

which gives

cot θ + cot ψ = R(cot ψ − cot φ) (84)

In view of this relationship, the velocity discontinuities may be expressed as

v12 = sin ψ

sin(φ − ψ)
= cosec φ

cot ψ − cot φ

v23 = R sin ψ

sin(φ + ψ)
= cosec θ

cot ψ − cot φ

The container wall is assumed to be perfectly smooth as in previous solutions.
When the die is perfectly smooth, the energy is dissipated only by shearing along
the discontinuities AC and BC. Equating the rate of external work done by the punch
to the rate of internal energy dissipation readily gives

Hpe = k(BC · v12 + AC · v23)

Substituting for v12 and v23, and noting that BC = H cosec φ and AC = h cosec θ,
the extrusion pressure may be written in the dimensionless form

pe

k
= cosec2θ + R cosec2φ

R(cot ψ − cot φ)

The best upper bound corresponds to the value of θ or φ for which the extrusion
pressure is a minimum. Differentiating the above equation with respect to φ, and
using the fact that dθ/dφ = −R(cosec2φ/cosec2θ), the minimum extrusion pressure
is found to be

pe = 2k[(R − 1)cot ψ − (R + 1)cot φ] (85)
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the condition for the minimum being

cosec2θ + R cosec2φ = 2R(cot θ − cot φ)(cot ψ − cot φ)

Using (84), the above equation may be expressed as a quadratic in cot φ, and the
solution is obtained as

cot φ = cot ψ − 1√
R

cosec ψ

Substitution into (85) now furnishes the best upper bound† for the extrusion pressure
as a function of the die angle and the reduction. Thus

pe

2k
= 2 − r√

1 − r
cosec ψ − 2 cot ψ (86)

When the die is perfectly rough, the material is sheared along the die face, and the
energy dissipation increases by the amount k · AB · v2. The extrusion pressure is then
given by the modified expression

pe

k
= cosec2θ + R cosec2φ + (R − 1)cosec2φ

R(cot ψ − cot φ)

The condition for the best upper bound leads to a second relationship between θ and
φ as before. The minimum value of the extrusion pressure is still expressed in the
form (85), but the discontinuity angle φ is now given by

cot φ = cot ψ −
√

2

R + 1
cosec ψ

For given values of R and ψ, θ is smaller and φ is greater for the rough die than for
the smooth die. The best value of the upper bound for the rough die becomes

pe

2k
=

√
2(2 − r)

1 − r
cosec ψ − 2 cot ψ (87)

The preceding solutions provide good approximations to the extrusion pressure
when the reduction is sufficiently large. For moderate to small reductions, the upper
bound must be improved by introducing additional discontinuities. A convenient
expression for the extrusion pressure is again possible if we consider the disconti-
nuity pattern of Fig. 7.36, where identical angles are made by AD and BD with the
die face, while CD is perpendicular to the axis. The velocity of the material triangle
ACD is represented by OP3 in the hodograph, where P3 is the meeting point of lines
from P1 and P2 drawn parallel to CD and AD respectively. The velocity triangle

† A. P. Green, British Iron and Steel Res. Assoc. Report, MW/B/7 (1952).
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Figure 7.36 Double triangular velocity discontinuity pattern and the associated hodograph for plane
strain extrusion.

OP1P2 is constructed as before, and the hodograph is completed by the line P3P4
which is parallel to AC. It follows from the geometry of the hodograph that

v12 = sin ψ

sin φ
v13 = (R − 1)tan θ v34 = (R − 1)sec θ

v23 = −cos(ψ + φ)

cos(ψ − φ)
v12 =

(
tan φ − cot ψ

tan φ + cot ψ

)
sin ψ

sin φ

Equating the expression for v12/v13 given by above to that furnished by the velocity
triangle P1P2P3, we obtain

cot θ = R − 1

2
(tan φ + cot ψ) (88)

as the relationship between θ and φ for a given geometry of the process. The upper
bound for the extrusion pressure for a perfectly smooth die is given by

Hpe = k(BD · v12 + CD · v13 + AD · v23 + AC · v34)

where

BD = AD = (H − h)sec φ

2 sin ψ
CD = H + h

2
− (H − h)tan φ

2 tan ψ
AC = h

sin θ

Substituting into the above upper bound relation, inserting the expressions for the
velocity discontinuities, and eliminating φ by means (88), the extrusion pressure may
be written in the compact form

pe

k
= (2 − r)cot θ + r

1 − r
(2 − r + r cot2ψ)tan θ − 3r cot ψ
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Setting to zero the derivative of pe with respect to tan θ, the minimum extrusion
pressure is found to correspond with

cot2θ = r

1 − r

(
1 + r

2 − r
cot2ψ

)

and the best value of the upper bound is obtained as†

pe

2k
=

√
r(2 − r)

(
2 + r

1 − r
cosec2ψ

)
− 3

2
r cot ψ (89)

When ψ = 90◦, Eq. (89) gives a lower value of the extrusion pressure than (86)
does for all reductions. When ψ = 30◦, Eq. (89) gives a lower extrusion pressure for
r < 0.31. The range of reductions for which (89) provides a better bound increases
as the die angle is increased.

An upper bound solution for a perfectly rough die face may be obtained by
including the term k · AB · v2 = k(H − h)(cot φ + cot ψ) in the expression for Hpe.
A closed form solution for the minimum extrusion pressure is no longer possible,
except for a square die (ψ = 90◦). The best upper bound in this case is easily shown
to be

pe

2k
= (2 − r)cot θ =

√
r(2 − r)(4 − r)

2(1 − r)
ψ = π

2
(90)

When the reduction is sufficiently small in relation to the die angle, a better
upper bound is obtained on the assumption that a zone of dead metal is attached to
the die face. Then the extrusion pressure is identical to that for a perfectly rough
die with a smaller die angle α. Using (87) with α written for ψ, and minimizing the
extrusion pressure with respect to α, we obtain the upper bound formula

pe

2k
= 2 tan α =

√
2r

1 − r
α < ψ (91)

which is independent of the frictional condition on the die face. In the case of a
perfectly smooth die, the extrusion pressure (91) is lower than (89) for r < 0.586
when ψ = 90◦, and for r < 0.06 when ψ = 30◦. For a perfectly rough square die,
the upper bound estimate (91) is lower than (90) in the range r < 3 − √

5 � 0.764.
The upper and lower bound solutions are compared with one another in Fig. 7.37
for the perfectly smooth die with 45 and 90◦ semiangles. The slipline field solution
for the square die is also included in the figure for comparison.

The block sliding modes of deformation used in the preceding solutions can
be applied without modification for the estimation of upper bounds with coulomb
friction along the die face. Since the resultant traction on the die face makes an

† The upper bound can be improved numerically by including additional sliding blocks within
the die.
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Figure 7.37 Comparison of upper and lower bounds for frictionless extrusion in plane strain.

angle λ = tan−1µ with the inward normal, the magnitude of the resultant die reac-
tion is peH/sin(ψ + λ), and the rate of work done by its tangential component is
−peHv2 sin λ/sin β, where β = ψ + λ. This must be added to the punch work to
obtain peH(cot β − cot φ)/(cot ψ − cot φ) as the net work done by the external
forces per unit time, in view of the velocity field of Fig. 7.35. The best upper bound
is still given by (85), but the expression for cot φ becomes much more complicated.
When µ is sufficiently small, terms of order µ2 and higher may be neglected, and
the upper bound then reduces to†

pe

2k
�

(
1 + µ cosec ψ√

1 − r

)(
2 − r√
1 − r

cosec ψ − 2 cot ψ

)
(92)

The range of reductions for which this formula provides a reasonable bound is about
the same as that for the frictionless situation. However, the friction factor represented
by the expression in the first parenthesis predicts with sufficient accuracy the ratio
of the extrusion pressures with and without friction over a wide range of die angles
and reductions.

† I. F. Collins, J. Mech. Phys. Solids, 17: 323 (1969).
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7.8 Cold Rolling of Strips

(i) General considerations We shall investigate the process in which a metal sheet
or strip is reduced in thickness by passing it between a pair of cylindrical rolls having
their axes parallel to one another. In cold rolling, the radius R of the rolls is usually
more than 50 times the initial strip thickness. If the width of the strip is at least five
times the length of the arc of contact, the nonplastic material prevents the lateral
spread, and the deformation takes place effectively under plane strain condition. Due
to the pressure of the rolled stock, the rolls are themselves flattened so as to increase
the arc of contact by as much as 20 to 25 percent or even more. It will be assumed,
for simplicity, that the part of the rolls in contact with the strip is deformed into a
cylindrical surface of a larger radius R′. Since the volume of the material passing
through each vertical plane per unit time is the same, the speed of the strip steadily
increases as it moves through the roll gap. On the entry side, the peripheral speed
of the rolls is higher than that of the strip, and consequently the frictional forces
draw the strip into the roll gap. On the exit side, the strip moves faster than the rolls,
and the frictional forces therefore oppose the delivery of the strip. It follows that
there is a neutral point N somewhere on the arc of contact where the strip moves at
the same speed as that of the rolls.

Let O be the center of the upper roll and O′ the center of curvature of the arc
of contact AB (Fig. 7.38). The deformation of the roll is assumed to be such that O′
lies on the straight line joining O and the midpoint C of the arc of contact. If we
ignore the small part of the arc of contact that arises from the elastic recovery of the
rolled strip, O′ must be vertically above the exit point A. The angle of contact AO′B,

Figure 7.38 Geometry of strip rolling, showing the forces acting on a slice considered on the exit side.
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denoted by α, is defined by the radius R′ of the arc of contact, and the difference
h1 − h2 between the initial and final strip thicknesses. Let φ be the angular distance
of a generic point on the arc of contact measured from the plane of exit. If the normal
pressure at this point is denoted by q, the local frictional stress is equal to µq, where
µ is a constant coefficient of friction.† Taking due account of the direction of the
frictional stress on either side of the neutral point, the resultant vertical force per
unit width of the roll is obtained as

P = R′
∫ α

0
q cos φ dφ + µR′

(∫ α

φn

q sin φ dφ −
∫ φn

0
q sin φ dφ

)

where φn is the angular position of the neutral point N . Since the angle of contact is
generally less than 0.15 rad, the expression in the bracket is negligible. It is therefore
sufficiently accurate to write

P = R′
∫ α

0
q cos φ dφ � R′

∫ α

0
q dφ (93)

Let T2 and T1 be the front and back tensions respectively applied per unit width of
the strip. Denoting the difference T2 − T1 by T , the condition of equilibrium of the
horizontal forces acting on the strip may be written as

T = 2R′
∫ α

0
q sin φ dφ + 2µR′

(∫ φn

0
q cos φ dφ −

∫ α

φn

q cos φ dφ

)

Replacing sin φ by φ and cos φ by unity, with an error not exceeding 1 percent, we
obtain the simplified expression

T = 2R′
∫ α

0
qφ dφ + 2µR′

(∫ φn

0
q dφ −

∫ α

φn

q dφ

)
(94)

The torque G per unit width acting on each roll is the resultant moment about the
spindle axis O due to the forces along the arc of contact. The frictional forces produce
a positive torque on the entry side and a negative torque on the exit side. The lever
arm of an infinitesimal force µqR′dφ is equal to R to a close approximation. Since
the lines of action of the normal forces nearly pass through O, their contribution to
the moment is negligible. Hence

G = µRR′
(∫ α

φn

q dφ −
∫ φn

0
q dφ

)
(95)

Since this expression involves the difference of two quantities of the same order of
magnitude, a small error in either of them could lead to a large error in the torque.

† For the measurement of the distribution of frictional stress in cold rolling, see G. T. Van Rooyen
and W. A. Backofen, J. Iron Steel Inst., 186: 235 (1957); the measurement of the coefficient of friction
along the arc of contact has been carried out by L. Lai-Seng and J. G. Lenard, J. Eng. Mat. Technol.,
Trans. ASME, 106: 139 (1984).
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If the moment of the normal pressure is taken into account, the necessary mod-
ification of (95) follows from the fact that the lever arm of the force qR′dφ is
approximately equal to ±(R′ − R)(α/2 − φ), depending on which side of OO′ the
normal lies. We therefore have to add the quantity

−R′(R′ − R)
∫ α

0
q
(α

2
− φ

)
dφ

to the right-hand side of (95). This additional term is usually negative, and its mag-
nitude is generally negligible. Eliminating the terms in µ between (94) and (95),
we obtain an alternative expression for the torque, more suitable for numerical
evaluation. This is

G = RR′
∫ α

0
qφ dφ − 1

2
RT (96)

The first term on the right-hand side is approximately equal to the moment of the
vertical component of the roll pressure distribution with respect to the roll axis. The
moment of the horizontal components of the normal and tangential forces along
the arc of contact, which is equal to that of their resultant of magnitude 1

2 T , is
expressed by the last term. When the moment of the normal pressure is included,
(96) is modified to

G = R′2
∫ α

0
qφ dφ − 1

2
RT − 1

2
(R′ − R)αP (96a)

If a strip of metal is rolled under gradually increasing back tension, a stage is
eventually reached when the rolls are just at the point of slipping. Since the neutral
point is then forced to the exit, Eqs. (93) and (95) furnish

µ = G

RP

as the condition for slipping. The coefficient of friction can be determined experi-
mentally from the above formula by plotting the measured value of the ratio G/RP
against the applied back tension for any suitable pass reduction. In practical cold
rolling, the coefficient of friction is less than 0.1, and so the frictional stress µq is
almost invariably less than the shear yield stress k.

If the exit speed of the strip is denoted by U, the mean speed over the plane
of entry is U(h2/h1). Hence the rate of work done by the applied front and back
tensions per unit width are T2U and −T1U(h2/h1) respectively. The rolls on the
other hand do work at the rate 2Gω per unit width, where ω is the angular velocity
of the rolls. Since the volume of material rolled per unit time is Uh2, the total work
done per unit volume is

W = 2Gω

Uh2
+ T2

h2
− T1

h1

The mean speed of the material at the neutral plane is U(h2/hn), where hn is the
strip thickness at the neutral point. Since this speed is approximately equal to the
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peripheral speed Rω of the rolls, we have Uh2 = ωRhn. Substituting in the above
relation, we get

W = 2G

Rhn
+ (t2 − t1) (97)

where t2 and t1 are the mean front and back tension stresses. A part of this total
energy is expended for the plastic compression of the strip, the remaining part
being dissipated by the friction between the strip and the rolls. The ratio of the
homogeneous work of compression to that of the total work W is called the efficiency
of the rolling process. The actual efficiency of rolling is somewhat less than this due
to the frictional losses in the roll neck bearings.

The relative difference between the speeds of the strip and the rolls at the point
of exit is known as the forward slip denoted by s. It follows from the preceding argu-
ment that

s = U

Rω
− 1 � hn

h2
− 1 = 2R′

h2
(1 − cos φn) � R′

h2
φ2

n (98)

This relation is sometimes used to determine the position of the neutral point from
the measurement of the forward slip.† If a fine line is scribed on the rolls parallel to
the roll axis, then s is obtained from the fact that the ratio of the distance between the
successive imprints on the rolled strip to the roll circumference is equal to the speed
ratio U/Rω. Unless the front tension is too high, the forward slip is less than 0.1 in
cold rolling.

(ii) Elastic deformation of the rolls The pressure distribution over the arc of contact
produces elastic bending as well as flattening of the cylindrical rolls. The effect of
bending is usually compensated in practice by introducing a slight convexity or
camber in the roll profile.‡ The roll-flattening, however, is an important factor in the
theoretical estimation of the roll force and torque. The simplest method of taking
the roll-flattening into account is to assume, as we have done, that the deformed arc
of contact is circular in shape. This approximation involves the actual distribution of
roll pressure to be replaced by an elliptical one giving the same total load.§The effect
of the frictional forces is probably small and is therefore neglected. The deformation
of the roll is then identical to that of an elastic cylinder of radius R pressed against
a rigid concave surface of radius R′ by an external force P per unit length in the
axial plane (Fig. 7.39). Since the length of the arc of contact is small compared to its
radius of curvature, the cylinder may be regarded as a semi-infinite medium under
an elliptical distribution of loading.

† J. Puppe, Stahl Eisen, 29: 161 (1909). See also L. Underwood, The Rolling of Metals, Chapman
and Hall, London (1950).

‡ The design of roll cambers has been discussed at length by E. C. Larke, The Rolling of Strip,
Sheet and Plate, chap. 3, 2d ed., Chapman and Hall, London (1963).

§ The accuracy of this approximation has been examined mathematically by D. R. Bland, Proc.
Inst. Mech. Eng., 163: 141 (1950).
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x

Figure 7.39 The equivalent elliptic distribution of roll pressure for the estimation of roll flattening.

It is reasonable to suppose that the deformation of the cylinder takes place
under conditions of plane strain. Then the vertical displacement of its surface at any
distance x from the central axis, produced by an elemental load q dξ per unit length
acting at a distance ξ, is given by the well-known elastic solution for a concentrated
load acting on a semi-infinite block. The deflection may be written as†

dw = (1 − ν2
r )q

πEr
[C + ln(x − ξ)2]dξ

where Er is Young’s modulus and νr Poisson’s ratio for the rolls, while C is a
constant. If the length of the arc of contact is denoted by 2l, the resultant normal
displacement at the considered point is

w = 1 − ν2
r

πEr

∫ l

−l
q[C + ln(x − ξ)2]dξ

Since q is a function of ξ only, the differentiation of this expression with respect to
x gives

dw

dx
= 2(1 − ν2

r )

πEr

∫ l

−l

q dξ

x − ξ
(99)

† See, for example, S. Timoshenko and J. N. Goodier, Theory of Elasticity, p. 109, 3d ed., McGraw-
Hill Book Co., New York (1970).



Chakra-07.tex 30/1/2006 17: 57 Page 568

568 theory of plasticity

In view of the constant change in curvature of the cylindrical surface over the region
of contact, d2w/dx2 has a constant value, giving

dw

dx
=

(
1

R
− 1

R′

)
x

The last two equations will be compatible only if the distribution of q is elliptical.
Since the area under the pressure distribution curve must be equal to P, the intensity
of the maximum pressure is 2P/πl, and the pressure distribution is given by

q = 2P

πl

√
1 − ξ2

l2

In view of (99), and the last two equations, the relationship between the applied load
and the change in curvature becomes

4(1 − ν2
r )P

π2Erl2

∫ l

−l

√
l2 − ξ2

x − ξ
dξ =

(
1

R
− 1

R′

)
x

The integral on the left-hand side is easily shown to be equal to πx. Hence

1

R
− 1

R′ = 4(1 − ν2
r )P

πErl2

From geometry, the length of the arc of contact is 2l � R′α � √
R′δ, where δ is the

thickness change h1 − h2, known as the draft. The radius of the deformed arc of
contact is therefore given by the formula (due to Hitchcock†)

R′ = R

(
1 + P

cδ

)
c = πEr

16(1 − ν2
r )

(100)

The constant c depends on the material of the rolls, its value for steel rolls being
2.99 (103) tons/in2 or 4.62 (104) MN/m2. When δ is vanishingly small, the force
required to bring the strip to the yield point is sufficient to produce a finite arc of
contact between the strip and the rolls. In this case, the elastic deformation of the
strip must be considered for a realistic estimation of R′.

(iii) Von Karman’s theory of rolling It is assumed at the outset that each element
of the strip is uniformly compressed between the rolls while passing through the
roll gap. The vertical compression of the strip is accompanied by a horizontal force
which is increasingly compressive as the neutral point is approached from either
side. Let p denote the mean horizontal pressure over a vertical section specified by
its angular coordinate φ (Fig. 7.38). The resultant compressive force acting over this

† J. H. Hitchcock, Roll Neck Bearings, app. I, ASME Publication (1935).
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section per unit width is hp, where h is local strip thickness. Consider a thin slice of
the strip between two vertical sections corresponding to the angles φ and φ + dφ.
Since the horizontal components of the normal and tangential forces acting on the
ends of the slice are qR′ sin φ dφ and µqR′ cos φ dφ respectively, the equation of
equilibrium may be written as

d

dφ
(hp) = 2qR′(sin φ ± µ cos φ) (101)

where the upper sign applies to the exit side and the lower sign to the entry side of
the neutral point. We now assume that the material is everywhere plastic between
the planes of entry and exit, and the principal compressive stresses at each point on
a vertical section are approximately equal to p and q. Then the yield criterion may
be written in the form

q − p = 2k

where the shear yield stress k generally varies along the arc of contact. The value
of 2k at a generic point on the arc of contact is approximately equal to the ordinate
of the compressive stress–strain curve, obtained under plane strain condition, cor-
responding to an abscissa equal to ln(h1/h). Alternatively, the variation of the yield
stress can be estimated by rolling a length of the strip in a succession of passes and
carrying out a tensile test at the end of each pass.† This gives the tensile yield stress√

3k as a function of the thickness ratio h/h1.
The theory of rolling expressed by the differential equation (101) and the yield

criterion is due to von Karman.‡ The equilibrium equation can be reduced further by
eliminating p and using the relation dh/dφ = 2R′ sin φ. Adopting the usual approx-
imation sin φ � φ and cos φ � 1, since the angle of contact is small, we arrive at the
governing equation

h
d

dφ
(q − 2k) ∓ 2µR′q = 4kR′φ (102)

where

h = h2 + 2R′(1 − cos φ) � h2 + R′φ2

The boundary conditions are p = −t2, q = 2k2 − t2 at φ = 0, and p = −t1,
q = 2k1 − t1 at φ = α, where k1 and k2 are the values of k at the entry and exit
planes respectively.§ From geometry,

α �
√

h1 − h2

R′ =
√

rh1

R′

† H. Ford, Proc. Inst. Mech. Eng., 159: 115 (1948).
‡ Th. von Karman, Z. angew. Math. Mech., 5: 139 (1925).
§ Numerical results, for the average pressure and the peak pressure, based on a graphical solution

of (102), have been presented by W. Trinks, Blast Furn. Steel Plant, 25: 617 (1933).
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where r is the fractional reduction. The experimentally derived relationship between
the yield stress 2k and the thickness ratio h/h1 may be expressed in the form

2k = 2k0

{
1 − m

(
h

h1

)n}
(103)

where k0, m, and n are empirical constants. The nonhardening material corresponds
to m = 0. It is convenient at this stage to change the independent variable from φ to
ψ, where

ψ = tan−1

√
R′
h2

φ = tan−1
{√

r

1 − r

φ

α

}
(104)

Inserting from (103) into (102), and noting that h = h2 sec2ψ and
√

R′/h2 dφ =
sec2ψ dψ in view of (104), the equilibrium equation is reduced to

dq

dψ
∓ 2aq = 4k0[1 − m(1 + n)(1 − r)n sec2nψ]tan ψ (105)

where

a = µ

√
R′
h2

= µ

α

√
r

1 − r

The solution of the first-order linear differential equation (105) is uniquely defined
by the boundary condition q = 2k2 − t2 at ψ = 0 and q = 2k1 − t1 at ψ = ψ0, where

ψ0 = tan−1
√

r

1 − r
= sin−1√r (106)

Using the standard method of solving linear first-order equations, the distribution of
roll pressure along the arc of contact can be expressed in the nondimensional form

q

2k0
=

[
1 − t2

2k0
− m(1 − r)n + f (ψ)

]
e2aψ exit side

q

2k0
=

[(
1 − t1

2k0
− m

)
e2aψ0 + g(ψ) − g(ψ0)

]
e−2aψ entry side

(107)

on inserting the values of k1 and k2 from (103). The functions f (ψ) and g(ψ) in the
above expressions are defined by

f (ψ) = 2
∫ ψ

0
[1 − m(1 + n)(1 − r)n sec2n ψ]e−2aψ tan ψ dψ

g(ψ) = 2
∫ ψ

0
[1 − m(1 + n)(1 − r)n sec2n ψ]e−2aψ tan ψ dψ

(108)
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The roll pressure steadily increases as the neutral point ψ = ψn is approached from
the entry and exit points of the arc of contact. The neutral point is determined from the
fact that the two values of q given by (107) are identical at ψ = ψn. Since rolling is
possible only for ψn > 0, the inequality

(
1 − t1

2k0
− m

)
e2aψ0 −

(
1 − t2

2k0

)
+ m(1 − r)n > g(ψ0)

must always be satisfied. When m = 0, the integrals (108) can be evaluated explicitly
by writing tan ψ � ψ(1 + ψ2/3) with sufficient accuracy over the relevant range,
resulting in

f (ψ) � 1

2a2

(
1 + 1

2a2

)
(1 − e−2aψ) − ψ

a

(
1 + 1

2a2 + ψ

2a
+ ψ2

3

)
e−2aψ

g(ψ) � − 1

2a2

(
1 + 1

2a2

)
(e2aψ − 1) + ψ

a

(
1 + 1

2a2 − ψ

2a
+ ψ2

3

)
e2aψ

(109)

The error in the actual roll pressure at any point due to this approximation will
be less than 0.5 percent.† Typical pressure distribution curves for m = 0, a = 1.5,
and r = 0.3 are shown in Fig. 7.41, which indicates how the neutral point is
moved backward and forward by the application of the front and back tensions
respectively.‡

When the distribution of roll pressure has been found, the roll force and torque
can be calculated from the expressions (93) and (96), which become

P

2k0h2
= R′

h2

∫ α

0

(
q

2k0

)
dφ =

√
R′

h2

∫ tan ψ0

0

(
q

2k0

)
dξ

G

2k0Rh2
= R′

h2

∫ α

0

(
q

2k0

)
φ dφ − T

4k0h2
=

∫ tan ψ0

0

(
q

2k0

)
ξ dξ − T

4k0h2

(110)

where ξ =√
R′/h2φ = tan ψ is a convenient new variable. For given values of a,

r, m, n, t1/2k0, and t2/2k0, the integrals appearing in (110) can be evaluated by
a numerical procedure, using (107) and the calculated value of ψn defining the
position of the neutral point. Since P and R′ are interdependent, they have to be
found simultaneously by trial and error before the torque can be calculated. The
results of the computation based on the von Karman theory are given in Table 7.7.

† A solution for the pressure distribution, based on the approximation tan ψ � ψ, has been discussed
by A. Nadai, J. Appl. Mech., 6, A-55 (1939).

‡ The elastic property of the strip extends the arc of contact to include a region of elastic compression
at the entry and a region of elastic recovery at the exit. The former is usually of little significance, but
the latter can have an appreciable effect on the roll torque (see Prob. 7.33).
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Figure 7.40 Distribution of normal roll pressure in the cold rolling of annealed aluminum.

Figure 7.40 shows the theoretical and experimental pressure distributions for
rolling without tension of a strip of annealed aluminum with R/h1 = 45, r = 0.5, and
µ = 0.14, the roll-flattening being neglected. The theoretical curve has been derived
by Orowan† with the help of graphical integration of an equation substantially the
same as (102), using the actual stress–strain curve of the material. The experimental
curve has been obtained by Siebel and Lueg,‡who measured the pressure distribution
by the piezoelectric method using a pressure-transmitting pin embedded in the roll
surface. The agreement between theory and experiment is fairly good, except for
the rounding of the pressure peak in the measured curve, which is mainly due to the
fact that a zone of material near the neutral point actually remains nonplastic.

(iv) An approximate analysis An exact solution of the von Karman equation
requires numerical integration even when work-hardening is neglected. For prac-
tical purposes, an approximate solution due to Bland and Ford has been found to

† E. Orowan, Proc. Inst. Mech. Eng., 150: 140 (1943). The inhomogeneity of deformation is
approximately allowed for in Orowan’s theory. Numerical computations based on Orowan’s theory
have been carried out by M. Cook and E. C. Larke, J. Inst. Met., 71: 557 (1945). See also J. B. Hockett,
Trans. ASME, 52: 675 (1960); V. Venter and A. Abd-Rabbo, Int. J. Mech. Sci., 22: 83 and 93 (1980).

‡ E. Siebel and W. Lueg, Mitt. K.W. Inst. Eisenf., 15: 1 (1933). For the measurement of roll pressure
distribution, see also F. A. R. Al-Salehi, T. C. Firbank, and P. R. Lancaster, Int. J. Mech. Sci., 15: 693
(1973).
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Table 7.7 Neutral Angle, Roll Force, and Torque in Cold Rolling

µ
√

R′/h1 r ξn P/P∗ G/G∗

0.50 0.05 0.09158 1.0503 1.0463
0.10 0.12053 1.0681 1.0600
0.20 0.15414 1.0883 1.0714
0.30 0.17322 1.0960 1.0693
0.40 0.18310 1.0915 1.0547
0.50 0.18526 1.0725 1.0262

0.75 0.05 0.09865 1.0821 1.0775
0.10 0.13419 1.1166 1.1069
0.20 0.18166 1.1680 1.1460
0.30 0.21710 1.2108 1.1733
0.40 0.24748 1.2509 1.1933
0.50 0.27631 1.2926 1.2086

1.00 0.05 0.10241 1.1150 1.1101
0.10 0.14158 1.1678 1.1569
0.20 0.19667 1.2543 1.2281
0.30 0.24067 1.3374 1.2902
0.40 0.28105 1.4292 1.3524
0.50 0.32169 1.5430 1.4230

1.25 0.05 0.10473 1.1493 1.1440
0.10 0.14617 1.2220 1.2100
0.20 0.20593 1.3481 1.3177
0.30 0.25505 1.4787 1.4214
0.40 0.30108 1.6339 1.5364
0.50 0.34795 1.8410 1.6797

1.50 0.05 0.10630 1.1849 1.7920
0.10 0.14927 1.2794 1.2661
0.20 0.21216 1.4505 1.4157
0.30 0.26457 1.6375 1.5692
0.40 0.31408 1.8719 1.7504
0.50 0.36455 2.2023 1.9911

1.75 0.05 0.10742 1.2219 1.2159
0.10 0.15149 1.3402 1.3257
0.20 0.21659 1.5625 1.5229
0.30 0.27125 1.8167 1.7360
0.40 0.32304 2.1504 2.0008
0.50 0.37574 2.6446 2.3716

be generally adequate.† The approximation is arrived at by starting with Eq. (101)
from which p is eliminated by the yield criterion. Setting sin φ � φ and cos φ � 1,
we express the equilibrium equation as

d

dφ

{
2kh

( q

2k
− 1

)}
= R′q(φ ± µ)

† D. R. Bland and H. Ford, Proc. Inst. Mech. Eng., 159: 189 (1948). See also H. Ford, Metall. Rev.,
2: 5 (1957).
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Carrying out the differentiation gives

kh
d

dφ

( q

2k

)
+

( q

2k
− 1

) d

dφ
(kh) = R′q(φ ± µ)

If the rate of work-hardening is sufficiently low, d(kh) would be small compared to
kh since k increases in the direction of decreasing thickness. If, in addition, the strip
tensions are small or moderate, (q/2k − 1) would be small compared to d(q/2k).
Then the second term on the left-hand side of the above equation may be neglected,
resulting in the simplification

d

dφ

( q

2k

)
= 2R′

h
(φ ± µ)

q

2k
(111)

where h � h2 + R′φ2. The approximation is also good for an annealed material with
no back tension, since q is then very nearly equal to 2k over the part of the entry side
where the strain-hardening is most pronounced. In view of the boundary conditions
q/2k = 1 − t2/2k2 at φ = 0 and q/2k = 1 − t1/2k at φ = α, the solution of (111) is

q

2k
= h

h2

(
1 − t2

2k2

)
e2aψ exit side

q

2k
= h

h1

(
1 − t1

2k1

)
e2a(ψ0−ψ) entry side

(112)

where a, ψ, and ψ0 are the same as before. For given ratios t1/2k1 and t2/2k2, the
roll pressure at each point is proportional to the local yield stress. The condition of
continuity of q/2k at the neutral point φ = φn furnishes

tan−1

√
R′
h2

φn = 1

2
sin−1√r − 1

4a
ln

{
h1(1 − t2/2k2)

h2(1 − t1/2k1)

}
(113)

It is interesting to note that the neutral point is independent of the manner in which
the yield stress varies along the arc of contact. The minimum coefficient of friction
for which rolling is possible under given tensions is

µ∗ =
√

h2

R′ ln

{
1

1 − r

(
1 − t2/2k2

1 − t1/2k1

)}
(2 sin−1√r) (114)

For this critical value of µ the neutral point falls at the point of exit. The angle of
contact α must be less than the angle of friction tan−1µ � µ, in order that the rolls can
draw the strip into the roll gap. It follows that unless the strip is forced into the roll
gap, the reduction cannot exceed the value µ2R′/h1. The roll pressure distribution
for a nonhardening material is compared with that obtained from the von Karman
theory in Fig. 7.41, which illustrates the accuracy of the above approximation.†

† An approximate theory in which the arc of contact is replaced by a pair of chords has been put
forward by A. T. Tselikov, Mettalurg (Russian), 6: 61 (1936). For an approximate solution, obtained by
setting q � 2k, sin φ � φ and cos φ � 1 on the right-hand side of (101), see E. Siebel, Stahl Eisen, 45:
1563 (1925). An approximate theory based on purely kinematical considerations has been discussed by
B. Avitzur, J. Eng. Ind., Trans. ASME, 86: 31 (1964).
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Figure 7.41 Roll pressure distributions in cold rolling with and without strip tensions.

To find the roll force and torque, we have to insert the expressions for q into
(110) and integrate over the arc of contact, using the fact that h = h2(1 + ξ2). If the
material is nonhardening (k1 = k2 = k), and the strip tensions are absent (t1 = t2 = 0),
we have

P

P∗ =
√

1 − r

r

{∫ ξn

0
(1 + ξ2)e2aψ dξ + (1 − r)e2aψ0

∫ ξ0

ξn

(1 + ξ2)e−2aψ dξ

}
(115)

G

G∗ = 2

(
1 − r

r

){∫ ξn

0
ξ(1 + ξ2)e2aψ dξ + (1 − r)e2aψ0

∫ ξ0

ξn

ξ(1 + ξ2)e−2aψ dξ

}

where P∗ = 2k
√

R′rh1 and G∗ = kRrh1. These are the values of P and G for a uniform
distribution of normal pressure equal to 2k along the arc of contact. In the above
integrals, ψ = tan−1 ξ and

ξn = tan

(
1

2
sin−1√r − 1

4a
ln

1

1 − r

)
ξ0 =

√
r

1 − r
(116)

The dimensionless values of roll force and torque, calculated numerically from
(115), are plotted in Fig. 7.42 as functions of the reduction r and the parameter
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Figure 7.42 Variation of roll force and torque with reduction in cold rolling for various values of
µ
√

R′/h1.

µ
√

R′/h1. In view of (97), the work done per unit volume of the strip for no
applied tension is approximately equal to 2kr/(1 − r) times the dimensionless
torque G/G∗.

The deformed roll radius R′, corresponding to a given radius R, must be
determined from Hitchcock’s formula (100) by successive approximation. For this
purpose, it is convenient to express the roll force by the empirical formula

P

P∗ = 1.02 + r(1.5 + 1.6r2)µ

√
R′
h1

− 1.9r2 (117)

which is correct to within ±1.5 percent over the ranges 0.1 � r � 0.5 and 0.5 �µ√
R′/h1 � 1.5, in relation to the results presented in Fig. 7.42. Substitution into (100)
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Figure 7.43 Curves for roll flattening in the cold rolling of metal strips.

then furnishes the quadratic equation

{
h1

µ2R
− λ

√
r(1.5 + 1.6r2)

}
µ

√
R′
h1




2

− λ

(
1.02√

r
− 1.9r

√
r

)
µ

√
R′
h1

− 1 = 0

(118)

where λ = 2k/µc. It may be noted that µ
√

R′/h1 depends only on the parameters
µ

√
R/h1, λ and r. The variation of R′/R with 2k/µc for various reductions is dis-

played in Fig. 7.43, using two different values of µ
√

R/h1. For a given value of
2k/µc, the ratio R′/R increases as the reduction is decreased, since there is a greater
concentration of the roll force at smaller reductions producing an increased local
distortion of the roll surface. When the reduction in thickness is extremely small,
the effect of the elastic distortion of the strip becomes significant, particularly for
thin hard materials.†

When the material work-hardens, it is convenient to define the quantities P∗
and G∗ in such a way that they represent the values of P and G for a distribution
of normal pressure equal to the local yield stress at each point of the arc of contact.

† The elastic compression of the strip has been approximately treated by D. R. Bland and H. Ford,
J. Iron Steel Inst., 171: 245 (1952). For a more extensive treatment of the problem, see J. Chakrabarty
and Y. W. Kwon, Arabian J. Sci. Tech., 16: 385 (1991).
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Since √
R′
h1

φ =
√

h − h2

h1
= √

r − e

where e = (h1 − h)/h1, denoting the fractional reduction at a generic point of the arc
of contact, we have

P∗ = R′
∫ α

0
2k dφ =

√
R′h1

[
2k1

√
r + 2

∫ k2

k1

√
r − e dk

]

G∗ = RR′
∫ α

0
2kφ dφ = R

∫ h1

h2

k dh = Rh1

∫ r

0
k de

(119)

The first relation of (119) follows on integrating by parts and using the fact that
α =√

rh1/R′. For any given reduction in thickness, the integrals in (119) can be
readily evaluated from an experimentally determined (2k, e) curve. To determine
the roll force and torque for a work-hardening material, it may be assumed that
the ratios P/P∗ and G/G∗ are independent of work-hardening. This means that P
and G can be obtained by multiplying the appropriate ordinates of Fig. 7.42 by the
corresponding values of P∗ and G∗ given by (119). The approximation is obviously
equivalent to using suitable mean values of the yield stress, separately defined for
the roll force and the torque. The radius R′ is furnished by (118) with λ = 2k/µc,
where 2k is the mean yield stress corresponding to the roll force. Thus

2k = 2k1 + 2
∫ k2

k1

√
1 − e

r
dk

In Fig. 7.44, the theoretical values of the roll force and the torque are compared
with experimental results for high conductivity copper,† using 5-in roll radius and
0.05-in initial strip thickness, the coefficient of friction being equal to 0.086. In the
theoretical estimation of roll force and torque, work-hardening has been allowed for
in the manner described above, using the actual stress–strain curve of the material.
Apart from the experimental scatter, the agreement between the calculated and the
measured values is quite satisfactory.‡

(v) Influence of strip tensions Tensions are often applied in cold rolling in order
to ensure adequate control of the dimensional accuracy of the rolled strip. For a
prestrained material, the effect of tensions is to reduce the roll pressure at each point
approximately by the factor t1/2k1 on the entry side and by the factor t2/2k2 on the

† The experimental results have been obtained by H. Ford, Proc. Inst. Mech. Eng., 159: 115 (1948).
Useful experimental works on cold rolling have been reported by I. Y. Tarnovskii, A. A. Pozdeyev, and
V. B. Lyashkov, Deformation of Metal During Rolling, Pergamon Press, Oxford (1965).

‡ A finite element solution for plane strain rolling has been given by G. Li and S. Kobayashi, J. Eng.
Ind., Trans. ASME, 104: 55 (1982). Three-dimensional finite element solutions have been discussed by
T. Iguchi and I. Yarita, Int. J. Mech. Sci., 33: 559 (1991); A. B. Richelsen and V. Tvergaard, ibid., 46:
653 (2004).
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Figure 7.44 Comparison of theoretical and experimental roll force and torque in cold rolling.

exit side. The position of the neutral point is moved forward by the application of
a back tension and backward by the application of a front tension. The permissible
amounts of front and back tensions are limited by the fact that the neutral point
must lie between the planes of entry and exit. Each of the ratios t1/2k1 and t2/2k2
must of course be less than unity so that the strip does not neck before entering or
after leaving the roll gap. Using (110) and (112), the roll force and torque can be
expressed in terms of the functions

f1(ξ), f2(ξ) =
∫ ξ

0
(1 + ξ2) exp(∓2a tan−1ξ)dξ

g1(ξ), g2(ξ) =
∫ ξ

0
ξ(1 + ξ2) exp(∓2a tan−1ξ)dξ

(120)

where the upper sign applies to the first function and the lower sign to the second
function in each case. Assuming average values of the yield stress, we have

P

P∗ =
√

1 − r

r

{(
1 − t2

2k2

)
f2(ξn) + (1 − r)

(
1 − t1

2k1

)
e2aψ0

[
f1(ξ0) − f1(ξn)

]}
G′

G∗ = 2

(
1 − r

r

){(
1 − t2

2k2

)
g2(ξn) + (1 − r)

(
1 − t1

2k1

)
e2aψ0

[
g1(ξ0) − g1(ξn)

]}
(121)
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where P∗ and G∗ are given by (119), G′ = G + 1
2 RT , and ξn =√

R′/h2 φn, the values
of ψ0 and ξ0 being sin−1√r and

√
r/(1 − r) respectively. The various functions

occurring in the above expressions can be evaluated numerically for any given values
of a, r, t1/2k1, and t2/2k2. The results may be conveniently put in the form

P = P∗
(

1 − t1
2k1

)
F(a, r, b) G = G∗

(
1 − t1

2k1

)
H(a, r, b) − 1

2
RT (122)

where F and H are dimensionless functions of a, r, and the parameter

b = ln

(
1 − t2/2k2

1 − t1/2k1

)

The strain-hardening characteristic of the material enters only through P∗ and G∗.
The quantities F and H are shown graphically† in Figs. 7.45 and 7.46 as functions
of r, corresponding to a = 1 and a = 2, and for a range of values of b. The results
are subject to the restriction 0 < φn < α, which is equivalent to

−
(

2a sin−1√r + ln
1

1 − r

)
< b <

(
2a sin−1√r − ln

1

1 − r

)
(123)

Since the neutral point is independent of applied tensions when t1 = t2, the functions
F and H corresponding to b = 0 are identical to P/P∗ and G/G∗ for rolling without
tensions.‡

The approximation leading to (112) breaks down in the presence of high back
tensions in an annealed strip, and consequently the roll pressure is underestimated on
the entry side of the arc of contact. A modification of the theory is, however, possible
if we consider the solution of (102) for two identical passes, one with tensions t1
and t2 applied to the strip and the other without tensions. It is assumed that R′ is the
same in the two passes, so that the values of R would be different. If q denotes the
pressure with tensions and q0 the pressure without tensions, then (102) gives

h
d

dφ
(q0 − q) ∓ 2µR′(q0 − q) = 0

The distribution of q0 corresponding to either the upper or the lower sign is assumed
to extend up to the neutral point defined by the distribution of q. A straightforward
integration gives

q0 − q = t2e2aψ exit side

q0 − q = t1e2a(ψ0−ψ) entry side

† H. Ford, F. Ellis, and D. R. Bland, J. Iron Steel Inst., 168: 57 (1951); 171: 239 (1952). See also
W. C. F. Hessenberg and R. B. Sims, J. Iron Steel Inst., 168: 155 (1951).

‡ For a numerical comparison of various rolling theories, including the effects of work-hardening
and strip tensions, see J. M. Alexander, Proc. R. Soc., A, 326: 535 (1972). See also J. M. Alexander,
R. C. Brewer, and G. W. Rowe, Manufacturing Technology, Ellis Horwood, Chichester (1987).
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Figure 7.45 Variation of F and H with r and b for a = 1 in relation to rolling with tension.

Figure 7.46 Variation of F and H with r and b for a = 2 in relation to rolling with tension.
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So far the analysis has been exact. We now introduce the assumption that the expres-
sion for q0 is the same as that given by (112) with t1 = t2 = 0. Then the roll pressure
distribution becomes†

q =
(

2kh

h2
− t2

)
e2aψ exit side

q =
(

2kh

h1
− t1

)
e2a(ψ0−ψ) entry side

(124)

This solution is in close agreement with that obtained by the numerical integration
of (102). The neutral point corresponds to ψ = ψn, given by

ψn = 1

2
sin−1√r − 1

4a
ln

{
sec2ψn − t2/2kn

(1 − r) sec2 ψn − t1/2kn

}
(125)

where kn is the shear yield stress at the neutral section φ = φn. The above equation
may be solved for ψn by trial and error, noting the fact that

kn = k0
[
1 − m(1 − r)n sec2nψn

]
in view of (103). The roll force and the torque can be found numerically from
Eqs. (110) and (124), using an assumed value of R′. Since the applied tensions are
usually small, their effect on the roll flattening may be disregarded as a first approxi-
mation. The roll pressure distribution given by (124) is particularly significant for
annealed materials in the presence of strip tensions.

To estimate the effect of strip tensions on the magnitude of roll force and torque,
it is convenient to examine the changes in the values of these quantities caused by the
application of tensions. If the no-tension values of roll force and torque are denoted
by P0 and G0 respectively, then

P0 − P = R′
∫ α

0
(q0 − q)dφ, G0 − G = RR′

∫ α

0
(q0 − q)φ dφ + 1

2
RT

in view of Eqs. (93) and (96). Inserting the preceding expressions for q0 − q, and
introducing the dimensionless variable ξ =√

(R′/h2)φ, we obtain the relations‡

P0 − P

2k0
√

R′h2
= t2

2k0

∫ ξn

0
e2aψdξ + t1

2k0

∫ ξ0

ξn

e2a(ψ0−ψ)dξ (126)

G0 − G

2k0Rh2
= t2

2k0

∫ ξn

0
e2aψξ dξ + t1

2k0

∫ ξ0

ξn

e2a(ψ0−ψ)ξ dξ + T

4k0h2
(127)

† D. R. Bland and R. B. Sims, Proc. Inst. Mech. Eng., 167: 371 (1953).
‡ There seems to be an approximately linear relationship between G/PR and T/P, as has been

shown by R. Hill, Proc. Inst. Mech. Eng., 163: 135 (1950).
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where ξ0 is given by (116), while ξn = tan ψn is given by (125). The numerical
evaluation of the above integrals is straightforward, once ξn is known for any given
material and strip tensions. Equation (126) is consistent with the fact that the roll
force is decreased more by the application of a back tension than by an equal stress
applied as a front tension.

As a very rough approximation, it may be assumed that the effect of tensions is
to decrease the roll pressure by t1 on the entry side and by t2 on the exit side of the
neutral plane. Using Eq. (97) and the fact that the forward slip is usually small, it is
easily shown that

G � G0 + 1
2 Rh2(t1 − t2)

which agrees reasonably with experiment. The above relationship indicates that
the work expended per unit volume of the material is practically unaffected by the
applied tensions. Consequently, no significant advantage could be gained by rolling
with tensions higher than those necessary to produce a properly coiled strip.†

(vi) Minimum thickness in cold rolling For a given reduction in pass, there is a
limiting entry thickness below which it is impossible to achieve the reduction by cold
rolling.‡ At this critical value of the strip thickness, an increased roll force merely
flattens the roll surface still further, thereby increasing the arc of contact between the
strip and the rolls. The longitudinal compressive stresses induced by the additional
frictional forces are sufficient to suppress plastic yielding of the material in the roll
gap. A limit is therefore set to the reduction that can be allowed in a single pass for
very thin materials. From the theoretical point of view, if P/h1 and R′/R are plotted
against R/h1 for a given material and specified values of r, µ, t1, and t2, both the
curves will eventually have an infinite slope at a definite value of R/h1, beyond which
there is no solution to the rolling problem. The maximum value of R/h1 obtained for
a given set of rolling conditions gives the minimum entry thickness of the material
for the given rolling schedule.§

We begin our discussion by considering the situation where no tensions are
applied to the strip. The roll force calculated from (115) may be conveniently
expressed by the empirical formula

P

P∗ = 1

2


1 + exp


(0.9 + r2)µ

√
R′r
h1






† Methods of controlling the thickness of the rolled strip have been discussed byW. C. F. Hessenberg
and R. B. Sims, Proc. Inst. Mech. Eng., 166: 75 (1952). See also R. B. Sims and P. R. A. Briggs, Sheet
Met. Ind., 31: 181 (1954); G. W. Alderton and W. C. F. Hessenberg, Met. Rev., 1: 239 (1956).

‡ This question has been discussed by R. Hill and I. M. Longman, Sheet Met. Ind., 28: 705
(1951), using an approximate expression for the roll force. The limiting case r = 0 has been treated by
M. D. Stone, Iron Steel Eng., 30: 61 (1953).

§ The problem has been solved graphically by R. B. Sims, J. Iron Steel Inst., 178: 19 (1954). The
present solution is due to J. Chakrabarty, unpublished work (1978).
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which is correct to within 2.5 percent over the relevant range. Inserting into
Hitchcock’s formula (100) furnishes

r

(
R′

R
− 1

)
= k

c

√
R′r
h1


1 + exp


(0.9 + r2)µ

√
R′r
h1




 (128)

where k is the mean shear yield stress for the given reduction. When the strip thick-
ness is a minimum, the derivative of R/h1 with respect to the ratio R′/R must vanish.
Using (128), the minimum condition may be written as

h1

R
= k

2c

√
h1

R′r


1 +


1 + (0.9 + r2)µ

√
R′r
h1


 exp


(0.9 + r2)µ

√
R′r
h1




 (129)

Multiplying this equation by R′/h1 and then eliminating R′/R by means of (128),
we obtain√

R′r
h1





(0.9 + r2)µ

√
R′r
h1

− 1


 exp


(0.9 + r2)µ

√
R′r
h1


 − 1


 = 2cr

k
(130)

This transcendental equation can be solved for µ
√

R′r/h1 for any assumed values
of r and 2k/µc. The corresponding value of h1/µ

2R then follows from (129). These
calculations immediately furnish the ratio R′/R, and the associated roll force is then
obtained from (100). The results are shown graphically in Fig. 7.47. When r is
vanishingly small, µ

√
R′r/h1 approaches a limiting value equal to 1.421, obtained

by equating the expression in the curly bracket of (130) to zero. This is independent
of the yield stress. The minimum strip thickness and the corresponding roll force
for a vanishingly small reduction are

h1 = 1.616µR
2k

c

P

2k
= 5.273R

2k

c

A rigorous analysis of the problem when tensions are applied to the strip will
be very complicated. As a rough approximation, it may be assumed that the effect
of tensions is to reduce the roll force by the factor t/2k, where t is the mean of the
front and back tension stresses. It is then only necessary to write 2k − t for 2k in
the above equations for the calculation of the minimum strip thickness. Evidently,
it is possible to roll thinner gauges by applying tensions to the strip. The minimum
thickness in cold rolling is found to be very sensitive to the value of the coefficient
of friction, an accurate estimation of which is always a difficult problem.

The elastic deformation of the strip has a significant effect on the minimum
thickness for extremely small reductions. The limiting thickness below which it is
impossible to roll the strip corresponds to a completely elastic arc of contact sym-
metrical about the line joining the roll centers. The central section of the strip is just
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Figure 7.47 Minimum strip thickness in cold rolling as a function of the reduction, the coefficient of
friction, and the mean yield strength.

at the point of yielding under the action of a vertical roll pressure q0 and a horizontal
compressive stress p0. The distribution of roll pressure is symmetrical about the
center of the arc of contact, and may be approximately represented by the equation†

q = q0 cos
πx

2l

where l is the semilength of contact, and x is measured from the center of contact.
The roll force per unit width is

P = 2
∫ 1

0
q dx = 2q0

∫ 1

0
cos

πx

2l
dx = 4q0l

π

† A solution for the limiting thickness based on a parabolic distribution of pressure has been given
by H. Ford and J. M. Alexander, J. Inst. Met., 88, 193 (1960).



Chakra-07.tex 30/1/2006 17: 57 Page 586

586 theory of plasticity

When no tension is applied to the strip, the longitudinal equilibrium of the material
on either side of the central section requires µP = p0h, where h is the strip thickness.
The compressive normal stresses at the central section therefore become

p0 = µP

h
q0 = πP

4l

The substitution into the yield criterion q0 − p0 = 2k gives

P

h

(
πh

4l
− µ

)
= 2k

The thickness of the strip is reduced by the amount l2/R′ at the central section,
giving a compressive thickness strain equal to l2/R′h. In view of the plane strain
condition, the elastic stress–strain relation furnishes

l2

R′h
= 1 − ν2

E

(
q0 − ν

1 − ν
p0

)
= 1 − ν2

E

(
πP

4l
− ν

1 − ν

µP

h

)

where E and ν are the usual elastic constants for the strip material. Substituting
for l2/R′ given by Hitchcock’s equation, and then eliminating P/h by means of the
preceding equation, we get

l

R

(
π

4
− µl

h

)
= (1 − ν2

r )
8k

πEr
+

{
(1 − ν2)

πh

4l
− µν(1 + ν)

}
2k

E
(131)

Differentiating this expression with respect to l, and setting dh/dl = 0, the condition
for the thickness to be a minimum may be written as

l

R

(
π

4
− 2µl

h

)
+ (1 − ν2)

2k

E
+

(
πh

4l

)
= 0

This is a cubic equation in l/h, and the solution is easily shown to be

l

h
� π

8µ
+ 8µR

πh
(1 − ν2)

2k

E

to a close approximation. The minimum value of the strip thickness is then given by
(131), the result being

h

µR
� 64

π2

{
(1 − ν2

r )
8k

πEr
+ µ(1 + ν)(2 − 3ν)

2k

E

}
(132)

By letting E tend to infinity, we obtain the rigid/plastic solution h � 1.62µR(2k/c),
which may be compared with the result previously obtained by an entirely different
approach. The neglect of the elastic distortion of the strip appreciably underestimates
the minimum thickness for which rolling is possible. The above analysis is essentially
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unchanged if equal front and back tensions are applied to the strip, the only necessary
modification being the yield stress 2k replaced by 2k − t, where t is the applied tensile
stress.†

7.9 Analysis of Hot Rolling

(i) The technological theory In the hot rolling process, the material is initially
heated to a sufficiently high temperature at which there is a marked decrease of the
yield stress.The speed of rolling has a significant effect at such elevated temperatures,
the yield stress being increased by increasing the rate of deformation. The frictional
resistance in hot rolling is generally so high that the tangential stress at each point
of the roll surface attains the local yield stress in shear, representing a state of
sticking friction over the entire arc of contact. In view of the incompressibility of
the material, the average longitudinal speed over a vertical section steadily increases
from the plane of entry to the plane of exit. The tangential stress tends to pull the
material into the roll gap on the entry side, and oppose the material being extruded
out on the exit side.

Let LM be a circular arc orthogonal to the rolls and having its center C on the
axis of symmetry of the rolled stock (Fig. 7.48). The radius of the arc is ρ = 1

2 h
cosec φ, where φ is the angular distance of L and M with respect to the plane of exit,
and h the local thickness of the slab or strip. Introducing polar coordinates (ρ, θ)
of a generic point on the arc LM, the shear stress component τρθ is assumed to be
proportional to the distance of the point from the axis of symmetry. Since the shear
stress has the magnitude k on the roll surface, the stresses acting over the circular
arc are given by

τρθ = k

(
sin θ

sin φ

)
σρ − σθ = 2k

√
1 − sin2θ

sin2φ
(133)

in view of the yield criterion under conditions of plane strain. If the mean horizontal
pressure across LM is denoted by p, the resultant horizontal thrust transmitted across
the circular arc is

ph = −2
∫ φ

0
ρσρ cos θ dθ = −h

∫ φ

0
σρ

(
cos θ

sin φ

)
dθ

It is further assumed that σθ has a constant value equal to −q along the arc LM, where
q is the roll pressure at L and M. Substitution from (133) into the above integral then
furnishes the yield condition‡

q − p = π

2
k

† A sandwich technique for rolling thin hard materials has been discussed by R. R. Arnold and
P. W. Whitton, Proc. Inst. Mech. Eng., 173: 241 (1959).

‡ E. Orowan, Proc. Inst. Mech. Eng., 150: 140 (1943). The derivation given here is an extension
of that of Orowan.



Chakra-07.tex 30/1/2006 17: 57 Page 588

588 theory of plasticity

Figure 7.48 Stresses in an element in the roll gap, and the resultant forces acting on a curved slice.

For small values of φ, the above relation is also obtained on the assumption that the
stress distribution along LM is approximately the same as that in a plastic material
compressed between a pair of rough platens inclined to one another at an angle 2φ

(Sec. 8.6(vi)).
Consider now the equilibrium of a thin curved slice of the material contained

between a pair of cylindrical surfaces orthogonal to the rolls at angular distances
φ and φ + dφ from the exit plane. Since the resultant horizontal component of the
forces acting on the slice must vanish for equilibrium, we have

d

dφ
(ph) = 2R(q sin φ ± k cos φ)

where R is the roll radius. The upper sign holds on the exit side and the lower
sign on the entry side. Since the material is sufficiently soft in hot rolling, the
elastic distortion of the rolls is generally small and is therefore neglected. Using the
geometrical relationship dh = 2R sin φ dφ, and substituting from the yield criterion,
the above equation may be expressed as

dq

2k
= π

4

(
dk

k
+ dh

h

)
± R cos φ dφ

h2 + 2R(1 − cos φ)
(134)

The boundary conditions are p = 0 and q = πk/2 at both φ = 0 and φ = α, where α

is the angle of contact. The above equation can be integrated exactly if k is assumed
to have a mean value k over the arc of contact. The solution is greatly simplified
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with negligible error by using a slight approximation in the final result. Denoting
the entry and exit thicknesses of the strip by h1 and h2 respectively, the distribution
of roll pressure may be expressed as

q+

2k
= π

4

(
1 + ln

h

h2

)
+ c

√
R

h2
tan−1

√
R

h2
φ − 1

2
φ

q−

2k
= π

4

(
1 + ln

h

h1

)
+ c

√
R

h2

(
tan−1

√
R

h2
α − tan−1

√
R

h2
φ

)
− 1

2
(α − φ)

(135)

where q+ and q− denote the pressures on the exit and entry sides respectively, and
c = 1 + (h2/2R). The angular distribution of the dimensionless roll pressure given by
(135) is shown by the solid lines in Fig. 7.49. Since the pressure must be continuous
at the neutral point φ = φn, we have√

R

h2
φn = tan

{
1

2
tan−1

√
R

h2
α − 1

2c

√
h2

R

(
π

4
ln

1

1 − r
+ α

2
− φn

)}
(136)

This equation may be solved by successive approximation, starting with a suitable
trial value of φn on the right-hand side. Accurate values of φn/α and hn/h2, covering

Figure 7.49 Roll pressure distribution in the hot rolling process.
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a wide range of values of R/h2 and r, are given in Table 7.8. The torque per unit
width can be calculated from the formula

G = kR2
(∫ α

φn

dφ −
∫ φn

0
dφ

)
= kR2(α − 2φn) (137)

obtained by setting R′ � R and µq = k in (95). The roll force per unit width may be
written as

P = R
∫ α

0
q cos φ dφ + R

(
k
∫ α

φn

sin φ dφ − k
∫ φn

0
sin φ dφ

)

The expression in the parenthesis represents the contribution from the tangential
stresses. Integrating the first integral by parts, and using (134) and the fact that
h + 2R cos φ = 2cR, we get

P

2kR
= π

4

(
sin α −

∫ h1

h2

sin φ
dh

h

)
+ c

2

(∫ h1

hn

dh

h
−

∫ hn

h2

dh

h

)

Although the first integral can be evaluated exactly, it is convenient to introduce the
same approximation as that leading to (135). The result is

P

2kR
= π

4
(1 + c)

√
h2

R
tan−1

√
R

h2
α + c

(
1

2
ln

1

1 − r
− ln

hn

h2
− π

4
α

)
(138)

Table 7.8 Neutral angle and neutral thickness ratios in hot rolling

R/h2 r φn/α hn/h2 R/h2 r φn/α hn/h2

5 0.05 0.4532 1.0108 50 0.05 0.4812 1.0122
0.10 0.4285 1.0204 0.10 0.4688 1.0244
0.20 0.3869 1.0376 0.20 0.4461 1.0498
0.30 0.3478 1.0522 0.30 0.4222 1.0764
0.40 0.3083 1.0640 0.40 0.3966 1.1050
0.50 0.2668 1.0723 0.50 0.3687 1.1361
0.60 0.2218 1.0756 0.60 0.3362 1.1699

10 0.05 0.4652 1.0114 100 0.05 0.4848 1.0124
0.10 0.4460 1.0221 0.10 0.4740 1.0250
0.20 0.4126 1.0426 0.20 0.4538 1.0515
0.30 0.3803 1.0622 0.30 0.4326 1.0800
0.40 0.3468 1.0806 0.40 0.4086 1.1113
0.50 0.3110 1.0975 0.50 0.3830 1.1468
0.60 0.2714 1.1118 0.60 0.3513 1.1853

25 0.05 0.4757 1.0119 150 0.05 0.4864 1.0125
0.10 0.4613 1.0236 0.10 0.4771 1.0253
0.20 0.4351 1.0475 0.20 0.4571 1.0522
0.30 0.4083 1.0715 0.30 0.4367 1.0815
0.40 0.3803 1.0966 0.40 0.4140 1.1143
0.50 0.3496 1.1224 0.50 0.3884 1.1509
0.60 0.3146 1.1492 0.60 0.3578 1.1922
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where r is the fractional reduction in thickness, while

α = cos−1
(

1 − rh1

2R

)
hn

h2
= 1 + 2R

h2
(1 − cos φn) (139)

For α less than about 30◦, the roll force predicted by (138) cannot differ by more
than 1 percent from that based on the exact solution.

When the angle of contact is fairly small (less than about 10◦), it is sufficiently
accurate to solve (134) with the approximations cos φ � 1 and 2(1 − cos φ) � φ2,
giving the pressure distribution†

q+

2k
= π

4

(
1 + ln

h

h2

)
+

√
R

h2
tan−1

√
R

h2
φ

q−

2k
= π

4

(
1 + ln

h

h1

)
+

√
R

h2

(
tan−1

√
R

h2
α − tan−1

√
R

h2
φ

) (140)

The broken curve of Fig. 7.49 indicates that (140) is a good approximation for the
roll pressure distribution even for moderate angles of contact.‡ Since α � √

rh1/R,
the neutral angle corresponding to (140) is given by√

R

h2
φn = tan

(
1

2
sin−1 √

r − π

8

√
h2

R
ln

1

1 − r

)
(141)

This expression is also obtained from (136) by setting c � 1, and taking, φn � α/2
as a first approximation. The torque is given by (137) and (141), while the formula
for the roll force becomes

P

2kR
= π

2

√
h2

R
sin−1 √

r + 1

2
ln

1

1 − r
− ln

hn

h2
− π

4

√
rh1

R
(142)

on substituting from (140) into (93). This result is identical to (138) with the approx-
imations c � 1 and α � √

rh1/R. It may be noted that Eq. (137) also follows from
(96) with R′ � R, and the roll pressure distribution (140). The identity is due to the
fact that (140) is an exact solution of (134) on the assumption φ � 1, for which (95)
and (96) are completely equivalent.

The roll force and torque calculated from (138) and (137) are shown non-
dimensionally in Fig. 7.50, in terms of the parameters P∗ = 2kRα and G∗ = kR2α2.

† R. B. Sims, Proc. Inst. Mech. Eng., 168: 191 (1954). Accurate values of roll force and torque
based on Sims’ theory have been tabulated by E. C. Larke, The Rolling of Strip and Sheet and Plate,
p. 363, Chapman and Hall (1963).

‡ An approximate theory based on a triangular friction hill has been put forward by E. Orowan and
K. J. Pascoe, Iron Steel Inst., Special Report, no. 34, p. 124 (1946). A modification of the theory has
been discussed by J. M. Alexander and H. Ford, Prager Anniversary Volume, p. 191, Collier-Macmillan,
London (1963). An approximate solution based on equilibrium across assumed shear planes has been
discussed by J. W. Green and J. F. Wallace, J. Mech. Eng. Sci., 4: 136 (1962). See also J. W. Green,
L. G. M. Sparling, and J. F. Wallace, ibid., 6: 219 (1964).
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Figure 7.50 Variation of roll force and torque with reduction in hot rolling for various radius/thickness
ratios.

When α is sufficiently small, P∗ and G∗ are equal to the values P and G correspond-
ing to a normal pressure equal to 2k at each point of the arc of contact. The work
done per unit volume, which is equal to 2G/Rhn by (97), can be readily estimated.
The assumption of sticking friction throughout the arc of contact is strictly valid
if the coefficient of friction µ exceeds 2/π � 0.637. Frictional coefficients of this
order are normally expected in the hot working of metals.†

(ii) Influence of strain rate and temperature The hot working of metals is char-
acterized by the circumstance where the rate of thermal softening is sufficient to
annihilate the rate of work-hardening. Except for a brief initial rise, the yield stress

† The spread in hot rolling has been studied by A. Helmi and J. M. Alexander, J. Iron Steel Inst.,
206: 1110 (1968); N. R. Chitkara and W. Johnson, J. Basic Eng., Trans. ASME, 88: 489 (1966). For
an application of the plane strain theory to the planetary hot rolling process, see L. G. M. Sparling,
J. Mech. Eng. Sci., 4: 257 (1962). Section rolling has been discussed by Z. Wusatowski, Fundamentals
of rolling, Pergamon Press, Oxford (1969).
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of the material is almost independent of the total strain. The temperature at which hot
working begins is of the order of the recrystallization temperature, which depends
on the rate of deformation. The absolute recrystallization temperature of different
metals, under similar speeds of deformation, is roughly proportional to their absolute
melting temperature. The ratio of the absolute working temperature to the absolute
melting temperature is known as the homologous temperature. For usual speeds of
rolling, hot working begins when the homologous temperature is somewhat greater
than 0.6. If the speed of rolling is small, relatively low temperatures should produce
hot working.

In general, the yield stress of the material at a given temperature depends on the
strain and the strain rate, both of which vary from entry to exit. The strain rate or
the rate of deformation λ is defined as the rate at which the thickness of the rolled
stock decreases in relation to the current thickness in the roll gap. Thus

λ = − ḣ

h
= −2R

h
φ̇ sin φ

where the dot denotes the rate of change. It is assumed for the present purpose that
vertical plane sections remain plane during the motion. In view of the constancy of
volume, φ̇ = −ω(hn cos φn)/(h cos φ), where ω is the angular velocity of the rolls.
This gives

λ = 2ω

(
Rhn

h2

)
cos φn tan φ (143)

The strain rate vanishes at the plane of exit, and its value gradually increases toward
the plane of entry, attaining a maximum at an angle φ � (3R/h2 − 1)−1/2 to a close
approximation. The maximum value of the strain rate is approximately given by

λ0 � 9

8
ω

hn

h2

√
R/h2

3 − h2/R

The variation of the yield stress along the arc of contact follows a similar pattern.
Typical variations of λ and k through the pass are shown graphically in Fig. 7.51. In
many cases, a useful approximation is achieved by considering a mean value of the
rate of deformation. The mean strain rate λ in hot rolling is usually defined as

λ = 1

α

∫ α

0
λ dφ =

(
ωhn

α

)
cos φn

∫ h1

h2

sec φ
dh

h2

in view of (143). For practical purposes, it is sufficiently accurate to write
hn − h2 � Rφ2

n, and use an approximate mean value of sec φ equal to sec φn. Then,
a straightforward integration, using (141), results in

λ = ω

√
Rr

h1
sec2

{
1

2
sin−1√r − π

8

√
h2

R
ln

1

1 − r

}
(144)
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Figure 7.51 Variation of strain rate and yield stress with angular position. The curve for k/k2 is based
on a typical (σ, ε̇) relation.

to a close approximation. The ratio λ/ω is plotted as a function of r in Fig. 7.52 for
various values of R/h2. For given r and ω, the mean strain rate increases as the ratio
R/h2 is increased.†

The variation of the yield stress in hot rolling is usually determined from the
stress–strain behavior of the material in simple compression. The specimen is com-
pressed in a special testing machine, known as the cam plastometer, where the
lower platen is moved upward by a logarithmic cam rotating with a constant angular
velocity. The rate of straining therefore remains constant during the compression.
The relationship between the yield stress Y and the strain rate ε̇, derived from a
series of stress–strain curves obtained at different strain rates, may be expressed by
the empirical equation

Y = Cε̇n

where C and n are constants depending on the strain and the temperature.‡ Since
the effective strain rate in plane strain compression is ε̇ = 2λ/

√
3, the plane strain

† The temperature distribution in hot rolling, using an upper bound approach, has been examined
by W. Johnson and H. Kudo, Int. J. Mech. Sci., 1: 175 (1960). An upper bound solution has also been
presented by H. Takuda, N. Hatta, and H. Lippmann, Ingenieur-Archiv, 59: 274 (1989).

‡ The values of C and n for a number of metals at various strains and temperatures have been given
by J. F. Alder and V. A. Phillips, J. Inst. Met., 83: 80 (1954).
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Figure 7.52 Dependence of the mean strain rate on the reduction r and the ratio R/h2.

yield stress 2k in hot rolling may be written as

2k = 2C√
3

(
2λ√

3

)n

(145)

Introducing the local fractional reduction e = (h1 − h)/h1, and using the approxima-
tion h − h2 � Rφ2 with φn � α/2 in (143), the local strain rate λ may be expressed
in the more convenient form

λ � ωR(4 − 3r)

2h1(1 − e)2 cos

(
1

2

√
rh1

R

)
tan

√
(r − e)h1

R

Let the mean values of k required for the calculation of the roll force and the torque
be denoted by kP and kG respectively. Following the analysis of the cold rolling
process, these stresses may be defined as

kP = 1

α

∫ α

0
k dφ � 1√

r

∫ √
r

0
k df

kG = 1

δ

∫ h1

h2

k dh = 1

r

∫ r

0
k de

(146)



Chakra-07.tex 30/1/2006 17: 57 Page 596

596 theory of plasticity

where δ is the draft h1 − h2, and f denotes the quantity
√

r − e. For practical purposes,
a mean yield stress may be calculated directly from (145), using the mean strain rate
λ, and the mean coefficients

C = 1

r

∫ r

0
C(e) de n = 1

r

∫ r

0
n(e) de

These integrals can be evaluated explicitly if suitable empirical expressions are used
for C(e) and n(e) at a mean working temperature.When the effects of temperature and
strain rate are taken into account, reasonable agreements may be obtained between
theory and experiment.†

(iii) A slipline field solution The construction of slipline fields for hot rolling is
a problem of the indirect type where no initial slipline is known at the outset. The
problem can be conveniently treated by the matrix method if we consider the special
case when a rigid zone of material covers the entire arc of contact. The following
analysis is based on the existence of such a rigid zone, together with the assumption of
sticking friction over the arc of contact. The solution corresponds to roll geometries
that are encountered in the first few stands of a typical hot rolling schedule. For this
range of roll geometries, the technological theory of rolling is generally regarded as
insufficiently accurate.

In Fig. 7.53, the rigid zone AEFG rotates with the rolls with an angular veloc-
ity ω. There is a velocity discontinuity of constant amount propagating along the
sliplines ABD and DFG, where FG is a circular arc of radius ρ. The velocity is
therefore continuous across the entry slipline but discontinuous across the exit slip-
line. The material enters and leaves the roll gap with velocities represented by the
vectors PC′ and PQ respectively in the hodograph, where P is the pole (not shown).
Since the material AEFG rotates as a rigid body, the boundaries AEF and FG are
mapped into geometrically similar curves A∗E′F ′ and F ′G′, rotated through 90◦ in
the counterclockwise sense (Sec. 6.2(ii)). Thus F ′G′ is a circular arc of radius ωρ,
which is equal to the magnitude of the velocity discontinuity. The particles imme-
diately above and below the discontinuity ABD are mapped into the curves A′B′D′
and A′′B′′D′′ respectively, separated by a distance ωρ. The image of the roll surface
AG is the circular arc A∗G′ having an angular span equal to the angle of contact.
Since the peripheral speed of the roll is ωR, it follows that the exit speed of the rolled
stock is equal to ω(R + ρ). The fact that the rigid zone AEFG is not overstressed is
demonstrated by the continuation (shown broken) of the stress field into the rigid
zone.‡ The rate of plastic work is found to be nowhere negative.

† For experimental results on hot rolling, see O. Emicke and K. H. Lucas, Sheet Met. Ind., 17: 611
(1943); G. Wallquist, J. Iron Steel Inst., 177: 142 (1954); R. Stewartson, Proc. Inst. Mech. Eng., 168:
201 (1954).

‡ The slipline field has been proposed by B. A. Druyanov, Plastic Flow of Metals (trans. from
Russian), vol. I, p. 80, Plenum Pub. Corp., NewYork (1971). The present analysis is due to P. Dewhurst,
I. F. Collins, and W. Johnson, J. Mech. Eng. Sci., 15: 439 (1973). The special case φ = 0 had been
considered earlier by N. R. Chitkara and W. Johnson, Proc. 5th MTDR Conf., p. 391 (1965). Druyanov
analyzed the same field using Riemann’s method of integration.
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Figure 7.53 Slipline field and hodograph for hot rolling of a flat sheet.

The curve AE is taken as the base slipline of the field, and is represented by
the column vector a formed by the coefficients in the power series expansion of
the radius of curvature in terms of the angular distance from A (Sec. 6.5(iii)). The
angles turned through along AE, CB, and BE are denoted by θ, ψ, and φ respectively.
Since AEC is a centered fan generated on the convex side of AE, the curve CE is
represented by the vector Qθηa, where Q is the appropriate matrix operator and
η = ψ + φ. If EF is continued to meet the axis of symmetry at J , then the curve JFE
is given by TηQθηa, and consequently the curve FE is represented by

σ = SφTηQθηa (147)

where S is the shift operator and T the smooth boundary operator. The geometrically
similar curves A∗E′ and F ′E′ are evidently denoted by ωa and ωσ respectively, while
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the circular arc F ′D′ is denoted by ωρc, where c is the column vector [1, 0, 0, …]T .
It follows that the vector representing the curve B′D′ is ω(Pφψσ + ρQφψc), which
added to the vector ωρc gives the curve B′′D′′. Denoting the curve C′B′′ by the vector
ωa′, we have

a′ = TψRψ[Pφψσ + ρ(I + Qφψ)c] (148)

where I is the unit matrix and R the reversion operator. We shall subsequently use
the relations RψPφψ = Mφ and RψQφψ = Nφ. If ωσ′ represents the curve B′E′, then

σ′ = ρPψφc + Qψφσ (149)

The curve B′′A′′ is given by ωNψa′, and the curve B′A′ by ω(Nψa′ + ρc). Expressing
the vector representation of A∗E′ in terms of those of B′E′ and B′A′, we have

a = Pφθ(Nψa′ + ρc) + Qφθσ
′

The substitution from (148) and (149) into the last relation, and the use of (147),
lead to the matrix equation

(I − D)a = ρEc (150)

where

D ≡ (QφθQψφ + PφθNψTψMφ)SφTηQθη

E = Pφθ[I + NψTψ(Rψ + Nφ)] + QφθPψφ

(151)

The problem of finding the initial slipline, denoted by a, is therefore reduced to a
simple matrix inversion. Calculations indicate that the initial slipline does not differ
significantly from a circular arc.

For any assumed value of ρ/h1, the slipline field is completely defined by the
three angles θ, ψ, and φ, which furnish the three fundamental parameters R/h1,
h2/h1 and the back tension. The mean compressive stress p0 at G is determined
from the condition of zero resultant front tension across DFG. For a given angle ψ,
the values of θ and φ corresponding to a zero back tension must be found before
the field can be considered as valid for the hot rolling process. Only those values
of the field angles for which h2/h1 is less than unity are relevant to the process.
Once the distribution of hydrostatic pressure has been found by using the Hencky
equations, the roll force and torque can be calculated by numerical integration along
the boundary AEFG. Due to the presence of the rigid zone, it is not possible to
ascertain the precise distribution of roll pressure over the arc of contact.

The largest value of R/h1 corresponding to a given reduction is attained when
φ = 0. The matrix equation for the fundamental vector a in this limiting situation is
easily shown to be

(I − QψθT2
ψQθψ)a = ρ(I + QψθTψ)c (152)

As φ increases from zero, θ also increases but ψ decreases. The ratios R/h1 and ρ/h1
also decrease until the circular arc FG degenerates into a single point and the velocity
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Figure 7.54 Comparison of slipline field and technological theories of hot rolling in relation to the roll
separating force.

discontinuity disappears. The matrix equation (150) then becomes homogeneous,
and the vector a reduces to the eigenvector of the matrix D corresponding to a unit
eigenvalue. This extreme situation occurs, however, for values of R/h1 that are too
small to be of any practical interest.

For a given reduction, the normal roll pressure p0 at G decreases with decreasing
roll radius and becomes zero before the eigencase ρ = 0 is reached. The solution
cannot be valid for values of R/h1 less than that corresponding to p0 = 0. The com-
puted values of the roll force are plotted in Fig. 7.54 as solid lines extending between
the limits φ = 0 and p0 = 0. The broken curves are based on (138) and (139) and
are included here for comparison. The difference between the two solutions, as
far as the roll force is concerned, is about 10 percent over the range of validity
of the field. The torque values given by the slipline field are, however, found to
be in close agreement with those obtained from the formula (137). The ratio ρ/R
increases appreciably with the reduction, but decreases only slightly with the roll
radius for a given reduction. Since the roll pressure is quite small near the exit
point, the tangential stress near the exit will not satisfy the condition of sticking
friction. Nevertheless, the estimated roll force and torque should not be significantly
in error.†

† A slipline solution for asymmetrical hot rolling has been discussed by I. F. Collins and P. Dewhurst,
Int. J. Mech. Sci., 17: 643 (1975).
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When the ratio R/h1 exceeds that given by the limit φ = 0, the slipline field
modifies in such a way that there is a plastically deforming region bordering on the
roll surface. The problem then becomes nonlinear in nature, and the construction of
the slipline field requires a prohibitive amount of trial and error. The shape of the
initial slipline cannot be determined by the process of matrix inversion. Each half of
the slipline field involves a central rigid zone having its apex on the axis of symmetry,
and a narrow rigid zone extending between the point of entry and an intermediate
point on the roll surface. The field on the entry side consists of a singular domain
defined by a curved entry slipline, and several regular domains in one of which the
sliplines are normal and tangential to the roll surface. The exit slipline is also curved
and defines a regular field in which the arc of contact is again a limiting line.†

7.10 Mechanics of Machining

In the machining process, a surface layer of material of constant thickness is removed
by a wedge-shaped tool which travels parallel to the surface of the workpiece.‡ The
speed of the relative movement between the tool and the workpiece, known as
the cutting speed, normally ranges from 1 to 10 m/s. When cutting in unlubricated
conditions and at low cutting speeds (less than 0.5 m/s), the removed metal chip
is usually discontinuous, being made up of small segments produced by periodic
fracture.§ Extremely brittle materials, such as magnesium and gray cast iron, form
discontinuous chips under all practical cutting conditions. Sometimes, a cap of dead
metal builds up around the cutting edge from which it separates out at intervals. The
formation of built-up edges is apparently restricted to metals containing two or more
phases.¶ When the material is ductile and the tool face lubricated, the chip forms a
continuous coil, and the process may be considered as one of steady state. We shall
be concerned here with the steady orthogonal machining in which the cutting edge
of the tool is perpendicular to the direction of its relative motion. This condition is
satisfied in some planing and broaching operations, and is approximately realized

† Such a solution has been discussed by J. M. Alexander, Proc. Inst. Mech. Eng., 169: 1021 (1955).
Approximate constructions of the field have been considered by F. A. A. Crane and J. M. Alexander,
J. Inst. Met., 96: 289 (1968).

‡ The basic physical principles of the machining process have been discussed by M. C. Shaw, Metal
Cutting Principles, Clarendon Press, Oxford (1984). For relevant metallurgical details, see E. M. Trent,
Metal Cutting, Butterworth Publishing Company, London (1977). A great deal of useful theoretical and
experimental work on machining has been reported by N. N. Zorev, Metal Cutting Mechanics (trans.
from Russian), Pergamon Press, Oxford (1966). For a comprehensive review on the subject, see T. H. C.
Childs and G. W. Rowe, Report on the Progress in Physics, The Institute of Physics, London, 36: 223–
288 (1973). See also, A. Bhattacharya and I. Ham, Design of Cutting Tools, Society of Manufacturing
Engineers, Dearborn, Mich. (1969).

§ The discontinuous process has been studied theoretically by E. H. Lee, J. Appl. Mech., 76: 189
(1954), and experimentally by N. H. Cook, I. Finnie, and M. C. Shaw, Trans. ASME, 76: 153 (1954).
See also J. Bannerjee and W. B. Palmer, Proc 6th MTDR Conf., Pergamon Press, Oxford (1966).

¶ The formation of built-up edges has been extensively studied by E. M. Trent, J. Inst. Prod. Eng.,
38: 105 (1959); and by W. B. Heginbotham and S. L. Gogia, Proc. Inst. Mech. Eng., 175: 892 (1961).
See also H. Takayama and T. Ono, J. Eng. Ind., 90: 335 (1968).
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Figure 7.55 Geometry of orthogonal machining with a possible slipline field.

in others, such as lathe turning. Many of the results for the two-dimensional theory
may be applied qualitatively to three-dimensional machining processes.†

(i) Basic concepts and early theories It is assumed that the depth of cut is small
compared to its width so that the deformation occurs essentially in plane strain.
There is sufficient experimental evidence to indicate that at normal cutting speeds
the plastic deformation is confined in a narrow region springing from the cutting
edge of the tool. It is therefore reasonable to assume that the deformation consists
of simple shear across a plane AB inclined at an angle φ to the direction of cutting
(Fig. 7.55). In a real material, the shear plane is the limit of a narrow zone in
which the velocity changes rapidly but continuously. The angle α which the tool
face makes with the normal to the machined surface is known as the rake angle,
reckoned positive when the tool face is inclined as shown. The angle between the
rake face BT and the shear plane AB is evidently π/2 − φ + α. The shear angle φ can
be found experimentally from the measurement of the chip thickness ratio r, which
is the ratio of the depth of cut h to the chip thickness t. Thus

r = h

t
= sin φ

cos(φ − α)

or tan φ = r cos α

1 − r sin α

(153)

† The mechanics of three-dimensional machining has been considered by G. V. Stabler, Proc. Inst.
Mech. Eng., 165: 14 (1951); M. C. Shaw, N. H. Cook, and P. A. Smith, Trans. ASME, 74: 1055 (1952);
E. Usui, M. Masuko, and A. Hirota, J. Eng. Ind., Trans. ASME, 100: 222 (1978); E. Usui and A. Hirota,
ibid., 100: 229 (1978). See also P. L. B. Oxley, Mechanics of Machining, Ellis Horwood, Chichester
(1989).
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Let the workpiece be considered as moving relative to the cutting tool with a
uniform velocity U. Continuity requires that the velocity of the chip sliding up the
tool face is rU. It follows from the geometry of the shearing process (inset of Fig.
7.55) that the engineering shear strain experienced by the material is

γ = cot φ + tan(φ − α) = cos α

sin φ cos(φ − α)
(154)

For a given rake angle, the shear strain has a minimum value of 2 tan(π/4 − α/2)
corresponding to φ = π/4 + α/2, for which AB bisects the angle between the rake
face and the machined surface. Machining involves very large amounts of shear
strain, values of γ greater than 3.0 being fairly common.

It is assumed that the frictional condition at the chip-tool interface can be rep-
resented by a mean coefficient of friction µ = tan λ, where λ is the corresponding
angle of friction. The direction of the resultant tool force R therefore makes an angle
λ with the normal to the rake face. The component of the resultant force in the
direction of cutting is known as the cutting force, denoted by F per unit width. If the
component normal to the cutting direction per unit width is N , then from geometry,

N = F tan(λ − α)

or tan λ = N + F tan α

F − N tan α

(155)

Thus λ can be found from experimentally measured values of F and N . For a given
material, λ decreases as the cutting speed is increased. Since µ generally varies along
the rake face, only an average value of λ can be found. For an isotropic material,
the shear stress across AB is equal to k, and the normal stress across it is uniformly
distributed.† Since the resultant force transmitted across the shear plane makes an
angle λ − α + φ with the direction of the shear stress on it, the normal pressure
across the shear plane is

p = k tan(λ − α + φ) (156)

The cutting force is most conveniently obtained by considering the normal and shear
forces acting on the shear plane. Resolving in the cutting direction, we have

F = h(p + k cot φ) (157)

Since the cutting speed is denoted by U, the external work done per unit time per unit
width of cut is FU, and the corresponding volume of metal removed is hU. Hence
the work done per volume is F/h. In order to relate φ to α and λ, Merchant assumed
that φ is such that the work done per unit volume is a minimum.‡ Equations (156)

† The distribution of normal and shear stresses across the shear plane in a real material has been
tentatively discussed by M. C. Shaw, Int. J. Mech. Sci., 22: 673 (1980).

‡ See H. Earnst and M. E. Merchant, Trans. Am. Soc. Met., 29: 299 (1941); and M. E. Merchant,
J. Appl. Phys., 16: 267 and 318 (1945). A minimum energy criterion, based on a constant frictional force
has been discussed by G. W. Rowe and P. T. Spick, J. Eng. Ind., Trans. ASME, 89: 530 (1967).
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and (157) then furnish

cos(λ − α + φ) = sin φ

or φ = π

4
− 1

2
(λ − α)

(158)

This optimum value of φ gives F = 2kh cot φ, the normal pressure p on the shear
plane being k cot φ. Experimental results indicate that although φ is approximately
a linear function of λ − α, Eq. (158) tends to overestimate the shear angle quite
appreciably,† except for small values of λ − α.

Lee and Shaffer applied‡ the theory of slipline fields to derive the required
expression for the shear angle. They assumed a triangular plastic region ABC above
the shear plane with sliplines parallel and perpendicular to AB (Fig. 7.55). If the
nonplastic material above AC is assumed stress-free, no stress is transmitted across
AC which is therefore inclined at an angle π/4 with the sliplines. There is a hydro-
static pressure jump of amount k across AC. Since the stress is uniform in the plastic
region, the normal pressure on the shear plane is p = k. It immediately follows from
(156) that

φ = π

4
− (λ − α) (159)

which means that AC is parallel to the line of action of the resultant tool force. Hence
the α lines are inclined to the tool face at an angle

η = π

4
− λ

This result may be otherwise obtained from the fact that the ratio of the shear stress
to the normal pressure on the tool face is equal to tan λ. The cutting force becomes

F = kh(1 + cos φ)

Since the velocity on either side of the plastic zone corresponds to rigid body motion,
the Geiringer equations indicate that the plastic field ABC also moves as a rigid
body. The deformation occurs, therefore, entirely across the shear plane AB. When
λ = π/4, the frictional stress on the tool face is equal to k, the maximum which the
chip material can transmit. For larger values of λ, shear flow will occur at the tool-
chip interface, requiring φ = α. A serious limitation of (159) is that the predicted
shear angle can vanish under practical conditions, implying an infinite cutting force.

† Merchant (op. cit.) attempted to improve the agreement by assuming k to be a function of p. This,
however, is inconsistent with the observed plastic behavior of ductile metals. See, for example, J. M.
Alexander and R. C. Brewer, Manufacturing Properties of Materials, Chap. 7, Van Nostrand, London
(1963). See also G. Boothroyd and W. A. Knight, Fundamentals of Machining and Machine Tools, 2d
ed., Marcel Dekker, New York (1989).

‡ E. H. Lee and B. W. Shaffer, J. Appl. Mech., 18: 405 (1951). These authors have also presented
a solution for a built-up nose around the cutting edge of the tool. See also N. Fang and P. Dewhurst,
Int. J. Mech. Sci., 47: 1079 (2005).
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The solution is not valid for λ < α, since the material in the corner A below the shear
plane is then overstressed.†

(ii) Solution considering work-hardening A realistic solution for the machining
problem should take into account the ability of the material to work-harden. If the
shear plane approximation is still retained for simplicity, it must be supposed that the
yield stress is discontinuous across the shear plane. Since the chip material must be
considerably harder than the workpiece, it is reasonable to envisage a state of stress
in which a part of the workpiece adjacent to the shear plane is brought to the yield
point, the material above the shear plane being nonplastic. The strain-hardening of
the material and the subsequent elastic unloading would occur in a narrow transition
zone, the limit of which is assumed to coincide with the shear plane.‡ Across this
plane, not only the yield stress but also the maximum shear directions become
discontinuous (Sec. 6.1(iv)).

The slipline field BADEFG shown in Fig. 7.56 holds for φ �π/4, and consists
of two regions of constant stress separated by a fan of angular span π/4 − φ. In the
triangular region ADE, the sliplines meet the stress-free surface AD at π/4, while in
the regionABGF the sliplines are parallel and perpendicular to AB. It follows from the
Geiringer equations and the velocity boundary conditions that no deformation occurs
in the assumed plastic region, and consequently there is no strain-hardening here
either. Since the hydrostatic pressure along the stress-free boundary must be equal
to the initial shear yield stress k, the normal pressure acting on the shear plane AB is

p = k
(

1 + π

2
− 2φ

)
φ � π

4
(160a)

When φ exceeds π/4, the centred fan AEF must be replaced by a stress discontinuity
inclined at an angle 3π/8 − φ/2 with AD. The angle made by the α lines with the
discontinuity is φ/2 − π/8, giving the pressure

p = k
[
1 − 2 sin

(
φ − π

4

)]
φ � π

4
(160b)

The extent of the assumed plastic zone is indeterminate. It is easy to show that the
nonplastic material in the corner B is able to support the tractions along the slipline
BG. Equations (156) and (157) continue to hold with k denoting the initial yield
stress. It follows from (156) that§

tan−1(p/k) − φ = λ − α (161)

† R. Hill, J. Mech. Phys. Solids, 3: 47 (1954), considering the possibility of stress singularities
occurring at A and B, has presented a range of permissible values of φ. Merchant’s solution lies outside
this range, and Lee and Shaffer’s solution forms one boundary of it. Unfortunately, there are many
experimental values of φ outside Hills’ permitted range.

‡ There is usually a narrow zone of secondary shear next to the rake face where large frictional
forces cause local plastic deformation of the chip. This is a boundary phenomenon observed in several
metal working process, and cannot be regarded as peculiar to metal cutting.

§ J. Chakrabarty, Proc. Int. Conf. Prod. Eng., New Delhi (1977).
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Figure 7.56 An alternative field, applicable to work-hardening materials (φ � π/4).

where p/k is now given by (160) as a function of the shear plane angle. The variation
of φ with λ − α for λ�α is represented by the solid curve in Fig. 7.57. This curve
lies between the broken straight lines given by (158) and (159), the former being
tangential to the curve at φ = 45◦, which corresponds to λ = α in all the three theories.
The experimental points† included for comparison indicate that the shear angle
relationship given by (160) and (161) is a definite improvement over the other two
for a range of values of λ and α.

A statically admissible stress field in the chip can be constructed by assuming
that a triangular region ABC is under a uniform compression q in the direction of the
resultant tool force. AC is a line of stress discontinuity inclined in the same direction,
the material above AC being assumed stress-free. The normal pressure and the shear
stress acting on the tool face are q cos2λ and q sin λ cos λ respectively, satisfying the
required frictional condition. The stress is also discontinuous across AB (except for
φ = π/4), which is not a slipline for the chip material. The condition of continuity
of the normal and shear stresses across AB furnishes

q = 2k cosec 2(λ − α + φ)

The yield criterion will not be violated in ABC if q � 2k′, where k′ is the shear yield
stress of the work-hardened material above the shear plane, its magnitude depending

† M. E. Merchant, J. Appl. Phys, 16: 267 (1945); and E. G. Thomsen, J. T. Lapsley, and R. C. Grassie,
Trans. ASME, 75: 591 (1953). Useful experimental data on machining have also been reported by D.
Kececioglu, Trans. ASME, 80: 158 (1958). See also E. G. Thomsen, C. Y. Yang, and S. Kobayashi,
Mechanics of Plastic Deformation in Metal Processing, Macmillan, New York (1965).
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Figure 7.57 Shear-angle relationship in the orthogonal machining of metals.

on the shear strain as well as on the mean strain rate and temperature. Using (156),
the condition for validity of the solution may be expressed as

k′

k
� 1

2

(
p

k
+ k

p

)
(162)

As φ decreases from π/4, the right-hand side of (162) increases from unity, approach-
ing the value 1.48 when φ tends to zero. The right-hand side also increases as φ

increases from π/4, but its value is less than 1.5 for φ < 63◦ or λ − α > −42◦. In
view of the large amount of shear strain involved in the process, the inequality (162)
will be satisfied in a wide range of practical situations. The minimum yield stress
ratio k′/k, determined from (160) and (162) as a function of φ, is plotted against
λ − α in Fig. 7.58. The specific cutting force F/kh, obtained from (157) and (160),
is also displayed in the same figure as a function of λ − α.

When the inequality (162) is violated by (160), the region ABC must be stressed
to the yield point with the α lines inclined at an angle π/4 − λ to the rake face. The
workpiece is then completely nonplastic. The shear stress across AB is still equal
to k, but the normal pressure on AB is modified so as to satisfy the yield criterion
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Figure 7.58 Dimensionless cutting force and minimum yield stress ratio for machining of work-
hardening materials.

q = 2k′. The result is the equality in (162), giving

p

k
= k′

k
±

√(
k′
k

)2

− 1 (163)

where the upper sign holds for λ > α and the lower sign for λ < α. The shear plane
angle is now given by (161) and (163), and the cutting force by (157) and (163). Since
k′/k cannot be determined before φ is known, a process of trial and error will be
necessary to obtain consistent values of these quantities. For a given value of k′/k, the
shear angle relationship in this range is represented by a straight line drawn parallel
to the lower broken line of Fig. 7.57, and terminating at a point on the solid curve.†

In the machining process, there is so little constraint on the flow of metal that
the initial conditions may be expected to influence the final steady state. There can
be many theoretically possible steady state solutions, each one involving a kinemat-
ically admissible mode of deformation for the cutting operation.‡ A kinematically

† Work-hardening has been considered in a semiempirical manner, taking a finite width of the shear
zone, by W. B. Palmer and P. L. B. Oxley, Proc. Inst. Mech. Eng., 173: 623 (1959). See also R. N. Roth
and P. L. B. Oxley, J. Mech. Eng. Sci., 14: 85 (1972).

‡ See, for example, P. Dewhurst, Proc. R. Soc. (London), Ser. A, 360: 587 (1978).
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valid solution giving a lower cutting resistance cannot, however, be regarded as more
acceptable for the prediction of the shear plane angle, even when work-hardening
is absent, since the limit theorems do not apply to such quantities.

(iii) Temperature and strain rate The energy expended in the machining process,
for producing plastic deformation and overcoming frictional resistance, is mostly
converted into heat. A part of the heat generated in the shear zone flows into the
workpiece and a part is carried away into the chip. Since the rate of total energy
consumption per unit width of cut is equal to FU, the rate at which energy is dissipated
in the shear zone is FU − F ′(h/t)U, where F ′ is the frictional force along the chip-
tool interface. The fact that the line of action of the resultant tool force makes an angle
λ − α with the direction of the cutting force F (Fig. 7.55), immediately gives F ′ = F
sin λ/cos(λ − α). The rate of heat generation per unit width due to the shearing
therefore becomes

Q̇ = FU

{
1 − sin λ sin φ

cos(λ − α)cos(φ − α)

}

on inserting from (153). To obtain the chip temperature, let β denote the proportion
of the generated heat that is convected into the chip. The average temperature rise of
the material leaving the shear zone may then be written as

�T = βQ̇

hUρc
= βF

hρc

{
1 − sin λ sin φ

cos(λ − α)cos(φ − α)

}
(164)

where ρ is the density and c the specific heat of the workpiece material. Available
theoretical and experimental results† on this problem suggest that β is given with
sufficient accuracy by the empirical equation

β = 0.5 + 0.13 ln

(
hUρc

κ
tan φ

)
(165)

where κ is the thermal conductivity of the workpiece. For any given values of λ and
α, the temperature rise can be computed with an appropriate value of the shear plane
angle φ.

The temperature distribution in the chip has been obtained analytically on the
simplifying assumption‡ that there is a uniform heat source along the chip-tool
interface with no heat loss through the remaining chip surface. The maximum tem-
perature rise �T ′ in the chip then occurs at the point where the chip loses contact

† An analytical solution of the problem of partition of heat between the chip and the workpiece
has been presented by J. H. Weiner, Trans. ASME, 77: 1331 (1955). The problem has been studied
experimentally by G. Boothroyd, Proc. Inst. Mech. Eng., 177: 789 (1963).

‡ A. C. Rapier, Br. J. Appl. Phys., 5: 400 (1954). The temperature distribution in the tool due to
frictional heating along the rake surface has been calculated numerically by B. T. Chao and K. J. Trigger,
Trans. ASME, 77: 1107 (1955), and 80: 311 (1958).
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with the tool, and is given by

�T ′ = 1.13
F ′

t

√
hUt

κρcl

where l is the length of the tool-chip contact. The total temperature rise of the
material as it leaves the tool is �T + �T ′, whose value is usually between 400 and
1000◦C. The substitution for F ′/t furnishes

�T ′ = 1.13F sin λ sin φ

h cos(λ − α) cos(φ − α)

√
hUt

κρcl
(166)

The ratio l/t may be approximately estimated from the configuration of Fig. 7.56,
in which the contact pressure between the chip and the tool vanishes at all points
beyond C. It is easily shown that

l/t = tan λ + tan(φ − α)

The strain rate occurring in the shear zone cannot be estimated on the basis of
the shear plane model, since the thickness of the shear zone is assumed to vanish.
Detailed measurement of plastic flow in this region has revealed that the maximum
shear strain rate varies markedly across the shear zone with a peak value attained at
the position of the shear plane. The mean value of the shear strain rate is found to
be given with reasonable accuracy by the empirical relation†

γ̇ = C�v/b(λ − α + φ − π/12)

where �v is the magnitude of the overall change in velocity in the shear zone, b is
the length of the shear zone, and C a constant whose value generally lies between
3.5 and 4.5. Since �v must be closely equal to the velocity discontinuity U cos α/

cos (φ − α) across the shear plane, we obtain the approximate formula

γ̇ = 4U cos α sin φ sec(φ − α)

h(λ − α + φ − π/12)
(167)

For normal cutting speeds and depths of cut, the mean strain rate in machining lies
between 104 to 105/s. When the mean values of the strain rate and temperature have
been calculated, the mean yield stress k′ of the chip material next to the shear plane
can be found from an experimentally determined variation of the flow stress

√
3 k′

of the fully hardened material with the velocity modified temperature

Tm = T

(
1 − m ln

γ̇

γ̇0

)

† An empirical equation without the term (λ − α + φ) − π/12 has been given by M. G. Stevenson
and P. L. B. Oxley, Proc. Inst. Mech. Eng., 184: 561 (1970). See alsoW. F. Hastings, P. L. B. Oxley, and M.
G. Stevenson, ibid., 188: 245 (1974). The present generalization has been discussed by J. Chakrabarty,
Arabian J. Sci. Tech., 17: 109 (1992).
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Figure 7.59 Machining with sticking friction. (a) Slipline field; (b) hodograph.

where m, γ̇0 are empirical constants and T the absolute temperature. For practical
purposes, it is reasonable to assume a linear variation of the yield stress with Tm
over the relevant range of values of γ̇ and T .

(iv) Machining with sticking friction A possible slipline field† for the machining
of an ideally plastic material, when the frictional stress over the tool face is equal to
the yield stress in shear, is shown in Fig. 7.59. The field begins with the centered fan
ABC, where AC is perpendicular to the tool face, and AB is inclined at some angle ψ

to AC. The circular arc BC and the frictional condition along CE uniquely define the
remaining domain BCE. The broken line AD is a line of stress discontinuity, above
which the material is stress free. The equilibrium of the isosceles rigid triangle ACD
requires that the normal pressures on AC and CD are each equal to k. By Eq. (121),
Chap. 6, the normal component of the force exerted on CE per unit width for a
nonhardening material is

Q = k{l + 2t[I0(2ψ) − 1]} (168)

where l denotes the dimension CE, and is given by the relation

l = t[A0(2ψ) − I1(2ψ)]

From geometry, the depth of cut h is equal to l cos α + t sin α, and the substitution
from above gives

h = t{sin α + [A0(2ψ) − I1(2ψ)]cos α} (169)

† H. Kudo, Int. J. Mech. Sci., 7: 43 (1965), J. Chakrabarty, ibid., 21: 477 (1979).
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The normal and tangential components of the resultant tool force per unit width are
Q + kt and k(l + t) respectively. Hence the horizontal cutting force is

F = kl(cos α + sin α) + kt{[2I0(2ψ) − 1]cos α + sin α}
in view of (168). Substituting for l and using (169), we obtain (after some algebraic
manipulation) the result

F

kh
= 1 + tan α + 2I0(2ψ) − sec2α

A0(2ψ) − I1(2ψ) + tan α
(170)

The solution is kinematically admissible, since the slipline field is associated with
a consistent hodograph (Fig. 7.59). Assuming the tool to be at rest, the velocity of
the workpiece is represented by the vector PQ having a magnitude U. There is a
velocity discontinuity of amount U cos α across the slipline ABE, which is therefore
mapped into the circular arc B′E′ in the hodograph. The field E′B′C′ is similar to
the field CBE, the vector PC′ representing the chip velocity with magnitude (h/t)U.
The velocity is constant along each straight slipline of the centered fan ABC, which
is mapped into the curve B′C′.

The angle ψ may be determined by minimizing the cutting force correspond-
ing to given rake angle and depth of cut. In view of the relations I ′

0(z) = I1(z),
A′

0(z) = I0(z), and zI0(z) = d(zI1)/dz, the condition dF/dψ = 0 furnishes the result

I0(2ψ) − 2ψ[A0(2ψ) − I1(2ψ) + tan α] = 1
2 sec2α (171)

When ψ has been calculated from (171) for any given α, the cutting ratio t/h and the
specific cutting force F/kh can be calculated from (169) and (170) respectively. The
results for various rake angles are given in Table 7.9. As α tends to π/4, the angle ψ

tends to zero and the ratio t/h tends to
√

2, while the plastic zone degenerates into
a single shear plane perpendicular to the tool face.

(v) Solution for curled chips In the continuous chip formation, the chip is almost
invariably found to be curled. The sheared material slides over the rake face of the
tool and finally curls away, thereby breaking contact with the tool at a distance l from
its tip. A possible slipline field and the corresponding hodograph for the curly chip
formation in an ideally plastic material are shown in Fig. 7.60. The deformation
is assumed to occur in the region BCD adjacent to the tool face. The work-chip
interface ACB is a curve across which the velocity is discontinuous. The material
above ACD undergoes rigid body rotation, relative to the tool, about the center of
curvature of the curled chip. Then AC must be a circular arc in order that the motion
of the rigid chip is compatible with its relative sliding over the workpiece.

Table 7.9 Numerical data for machining with a perfectly rough tool

α 0◦ 10◦ 20◦ 30◦ 40◦ 45◦

ψ 39.8◦ 30.4◦ 22.2◦ 13.8◦ 5.2◦ 0◦
t/h 1.331 1.373 1.397 1.409 1.413 1.414
F/kh 3.77 3.31 2.91 2.54 2.17 2.00
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Figure 7.60 Formation of curled chips in machining. (a) Slipline field; (b) hodograph.

The conditions of equilibrium of the chip can be satisfied by taking the plas-
tic/rigid boundary CD as a circular arc identical to CA. Since the distribution of
normal and shear stresses along CA and CD are then also identical, their resul-
tant must be a single force acting along the bisector of the right angle at C. Using
Hencky’s pressure equation along either curve, the resultant force can be expressed
in terms of the hydrostatic pressure p0 at D (or A), the angular span ψ, and the radius
R of each of the circular arcs. Equating this resultant force to zero, the relationship
between p0 and ψ is obtained as†

p0

k
= 1 + 2(ψ − sin ψ)

cos ψ + sin ψ − 1
(172)

Since ψ is small over the relevant range, the second term on the right-hand side is
equal to ψ2/3 to a close approximation.

The slipline field BCD is associated with frictional stresses that decrease along
the tool face from B to D. In view of the practical difficulty in lubricating the rake
face near the tool tip, it is reasonable to suppose that a state of sticking friction
exists at B. The slipline BC then meets the tool face at 90◦. The frictional stress at
D is defined by the angle η which the tangent to CD at D makes with the tool face.
The restrictions imposed on the slipline field by the velocity boundary conditions
are such that the frictional stress distribution along the entire chip-tool interface is
determined when η is given.

The velocity of the workpiece relative to the tool is represented by the vector
PQ in the hodograph. The magnitude of the velocity discontinuity QB′ remains

† H. Kudo, Int. J. Mech. Sci., 7: 43 (1965). Chip curling has been studied experimentally by
R. S. Hahn, Trans. ASME, 75: 581 (1953), and by T. H. C. Childs, Int. J. Mech. Sci., 13: 373 (1971),
ibid., 14: 359 (1972). Interesting models have been proposed by J. G. Horne, Int. J. Mech. Sci., 20:
739 (1978). See also S. Ramalingam, E. D. Doyle, and D. M. Turley, J. Eng. Ind., Trans. ASME, 102:
177 (1980).
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unchanged along the slipline BCA, whose image is the circular arc B′A′C′ of radius
R′ = U cos α. The angles subtended by B′C′ and C′A′ at Q are η − ψ and ψ respec-
tively. Since the velocity distribution along CD corresponds to a rigid body rotation,
its image C′D′ is also a circular arc of radius R′ and angular span ψ. The image of the
chip-tool interface is B′D′ parallel to BD. The hodograph field B′C′D′ can be easily
completed since it is part of the standard field defined by circular arcs of equal radii.

Let ρ denote the radius of curvature of the concave side of the chip, of thickness
t, rotating about its geometrical center of curvature with angular velocity ω. The
peripheral speeds of the concave and convex sides of the chip are equal to the mag-
nitudes of the vectors PA′ and PD′ respectively in the hodograph. If these magnitudes
are denoted by ρ′ and ρ′ + t′ respectively, then ρ′ = ωρ and t′ = ωt. The continuity
of the material during the chip formation requires

Uh = ω

(
ρ + t

2

)
t or ρ′ = Uh/t

1 + t/2ρ
(173)

which must be satisfied if ψ is correctly chosen for given α and η. However, since
h/t is yet unknown, this cannot be verified without considering the slipline field.

The construction of the slipline BCD is simplified by drawing a similar field
B′′C′D′ directly on the hodograph, where D′B′′ is perpendicular to the actual tool
face BD. This is done graphically by using the fact that the tangent to a slipline
at any point of the network D′C′B′′ is parallel to the corresponding tangent of the
hodograph net D′C′B′. Let the horizontal distance between B′′ and A′ be denoted by
h′. In view of the similarity of A′C′B′′D′C′ with ACBDC, the dimensions R′, l′, h′, t′,
and ρ′ are in the same ratios with one another as are R, l, h, t, and ρ. The problem is
thus completely solved once ψ is adjusted to satisfy (173) with reasonable accuracy.

The distributions of normal and shear stresses along BD are obtained from the
inclinations of the sliplines to the tool face. The frictional stress decreases from k at
B to k cos 2η at D; the normal pressure slightly increases from B to D. If the rake
angle is too large, the workpiece material in corner A may be overstressed. To avoid
yielding of the chip material in corner A, the normal pressure p0 must be less than
k(1 − π/2 + 2δ), where δ is the angle between the chip surface and the slipline at A.
Since p0 exceeds k only by a few percent, this condition would be satisfied.

The results of the calculation based on η = 45, 30, and 15◦, and for various values
of α, are shown graphically in Fig. 7.61. The frictional stress at D corresponding
to these values of η are 0, 0.5k, and 0.866k respectively. For a given rake angle
and depth of cut, the effect of increasing the friction is to increase not only the
cutting force but also the chip thickness, the chip radius of curvature, and the contact
length.† When there is sticking friction over the entire tool face (η = 0), the plastic
zone BCD disappears and the slipline ACB reduces to a straight line inclined at an
angle α to the horizontal.

† A more complicated slipline field, in which the curve ACB is replaced by a singular domain,
has been proposed by H. Kudo, op. cit., and discussed in detail by E. Usui and K. Takada, J. Jpn Soc.
Precis. Eng., 33: 23 (1967). A finite element solution has been presented by K. Iwata, K. Osakada, and
Y. Terasaka, J. Eng. Mater. Technol., Trans. ASME, 106: 132 (1984).
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Figure 7.61 Computed results based on Fig. 7.60. (a) Chip radius and contact length; (b) cutting force and chip thickness.
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Figure 7.62 Machining with restricted contact tool. (a) Slipline field; (b) hodograph.

(vi) Restricted chip-tool contact In the conventional machining process considered
so far, actual measurements indicate that the frictional stress is nearly constant over
a lower part of the contact region, but the stress decreases rapidly over the remaining
upper part.† If, however, the length of chip-tool contact is limited by using a properly
shaped tool, the frictional stress is constant over a major part of the contact region.
In this case, the cutting force increases with the length of chip-tool contact, so long
as this is smaller than the natural contact length for the unrestricted cutting tool.

The simplest slipline field‡ and the corresponding hodograph for machining
with a restricted contact tool are shown in Fig. 7.62. The right-angled triangle ABE
adjacent to the tool face AE is a field of constant stress, the angle of inclination η

depending on the frictional condition. BCE is a centered fan of angular span ψ, while
CD is a straight work-chip interface of length equal to l cos η. The material beyond
ED is assumed stress free. The statical equilibrium of the rigid triangle ECD requires
the hydrostatic pressure to have the value k along DC and CE. The normal pressure
acting on AE is equal to k(1 + 2ψ + sin 2η), and the frictional stress is of magnitude
k cos 2η. The resultant horizontal component of the normal and tangential forces on
the tool face is the cutting force F, given by

F

kl
= (1 + 2ψ)cos α + sin(2η + α) (174)

† See, for example, P. W. Wallace and G. Boothroyd, J. Mech. Eng. Sci., 6: 74 (1964), and A. Bhat-
tacharya, Proc. 6th MTDR Conf., p. 491, Pergamon Press (1966). The stress distribution in the tool has
been studied photoelastically by H. Chandrasekharan and D. V. Kapoor, J. Eng. Ind., Trans. ASME, 87:
495 (1965), and also by E. Amini, J. Strain Anal., 3: 206 (1968).

‡ W. Johnson, Int. J. Mech. Sci., 4: 323 (1962); E. Usui and K. Kikuchi, J. Jpn Soc. Precis. Eng.,
29: 436 (1963); E. Usui, K. Kikachi, and K. Hoshi, J. Eng. Ind., Trans. ASME, 86: 95 (1964). More
complex slipline fields, giving smaller cutting force, have been proposed by H. Kudo, Int. J. Mech. Sci.,
7: 43 (1965).
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where l is the length of the restricted tool face. From geometry, the ratio h/l can be
expressed as

h

l
= cos α − √

2 cos η sin
(π

4
− ψ − η − α

)
(175)

For a given frictional stress on the tool face, Eqs. (174) and (175) give the relationship
between the specific cutting force F/kh and the dimensionless contact length l/h
parametrically through ψ. The coefficient of friction is

µ = cos 2η

1 + 2ψ + sin 2η
(176)

When µ is given, η can be found from the above equation for any assumed ψ.
For sticking friction (η = 0), this equation gives the minimum coefficient of friction
required for its existence.

The material approaching the tool with a uniform velocity U, suffers a velocity
discontinuity of amount U cos α/cosη across the slipline ABCD. The region ABE
moves with a uniform velocity represented by the vector PA′, parallel to AE. The
velocity of the chip is represented by the vector PC′ inclined at an angle β to the direc-
tion of the workpiece velocity. It follows from the geometry of the hodograph that

tan β = sin(ψ + η + α)

sec α cos η − cos(ψ + η + α)
(177)

Evidently, the chip is more inclined to the workpiece than the rake face is, in agree-
ment with what is actually observed. The fact that the vector PC′ is of magnitude
(h/t)U leads to the relation

(
h

t

)2

= 1 − 2 cos α sec η cos(ψ + η + α) + cos2α sec2η (178)

The solution cannot be valid for large values of l/h, since F/kh must be independent
of l/h when l exceeds the length of chip-tool contact for the unrestricted tool face.
An approximate estimate of the limit of validity of the solution may be obtained by
assuming the greatest specific cutting force F/kh to be approximately cos η times
the value given in Table 7.8 for the same rake angle. For given α and η, the great-
est value of ψ for which the solution holds is then obtainable from (174), and the
corresponding value of l/h follows from (175). The variation of the specific cutting
force with the length ratio is shown in Fig. 7.63 for η = 0 and different values of α.
The cutting force increases with the contact length until the limit is reached.

Consider, now, the distortion of a square grid during the deformation, in the
special case of an overall sticking friction existing along the rake face. Let (ρ, θ)
denote the polar coordinates of any point in the fan BEC with respect to E and
the downward vertical. Since η = 0, the normal component of velocity along BE
must be U cos α. If the radial and circumferential velocities are denoted by u and v
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Figure 7.63 Specific cutting resistance for orthogonal machining with a restricted contact tool (η = 0).

respectively, it follows from Geiringer’s equation and the continuity conditions that
the velocity field in BEC is given by

u = −U sin θ v = U(cos α − cos θ)

The slipline components of the velocity in DCE are obtained by setting θ = ψ + α

in the above expressions. The trajectories of the particles in BEC are given by

1

ρ

dρ

dθ
= u

v
= − sin θ

cos α − cos θ
or (179)

ρ = l

(
cos α − cos θ0

cos α − cos θ

)

where θ0 denotes the angular position at which a given particle enters the fan across
BC. The time taken by the particle to move along its trajectory on crossing the
boundary BC is

τ =
∫ θ

θ0

ρ dθ

v
= 1

U
(cos α − cos θ0)

∫ θ

θ0

dθ

(cos α − cos θ)2



Chakra-07.tex 30/1/2006 17: 57 Page 618

618 theory of plasticity

Figure 7.64 Distortion of grids in machining with limited contact tools and sticking friction.

since v = ρ(dθ/dτ) along the trajectory of the particle. Performing the integration,
the solution may be written as

τU

l
= (cos α − cos θ0)[ f (θ0) − f (θ)] (180)

where

f (θ) = cosec2α

{
sin θ

cos α − cos θ
+ cot α ln

(
tan θ/2 − tan α/2

tan θ/2 + tan α/2

)}
(181)

for all value of α > 0. When α = 0, the above expression for f (θ) becomes
indeterminate, but an independent calculation furnishes

f (θ) = 1

2
cot

θ

2

(
1 + 1

3
cot2 θ

2

)
α = 0

Using the above relations, it is possible to determine the position of selected points
on an initially vertical line after given intervals of time. The deformed shape of an
original grid is given by the intersection of the trajectories of the particles and the loci
of their positions at equal intervals. Figure 7.64 shows the pattern of grid distortion
for α = 5◦, ψ = 25◦, and η = 0, when a vertical gridline originally four spaces to
the left of B coincides with the vertical through B. The actual deformation observed
in machining tests† strikingly resembles the theoretically predicted pattern, which
involves a zone of intense shear near the cutting edge.‡

† E. Usui, K. Kikuchi, and K. Hoshi, J. Eng. Ind., Trans. ASME, 86: 95 (1964). These authors have
also studied the variation of coefficient of friction along the rake face.

‡ The influence of elastic deformations on the chip formation, when cutting with an unrestricted
tool, has been investigated by T. H. C. Childs, Int. J. Mech. Sci., 22: 457 (1980).



Chakra-07.tex 30/1/2006 17: 57 Page 619

steady problems in plane strain 619

Problems

7.1 In Fig. 7.1, let P denote the resultant force per unit width exerted on the exit slipline by the adjacent
rigid material in the direction of its motion, when the mean compressive stress at C is assumed to vanish.
Show that

pe

2k
= r

{
1

2
+

(
r

1 − r

)
P

2ka

}

where a = H − h. Using the appropriate table (Appendix) verify the numerical results of Table 7.1.
Extend this table for r > 0.5 assuming the die face to be covered by a dead metal.

7.2 Draw the slipline field and the hodograph for extrusion through a perfectly rough square die under
conditions of Coulomb friction along the container wall. Show that the extrusion pressure is given by
the expression

pe

2k
= r

2
+ (1 − r)

P

2kh

where P is the longitudinal thrust per unit width exerted by the dead metal on its boundary when the
hydrostatic pressure vanishes along the exit slipline. Assuming the angle between the container wall and
the dead metal boundary to be λ = 30◦, calculate the coefficient of friction, the fractional reduction, and
the extrusion pressure when the angle turned through by the dead metal boundary is θ = 15, 30 and 45.

Answer: µ = 0.132, 0.103, and 0.085; r = 0.624, 0.761 and 0.850; pe/2k = 1.676, 2.229, and 2.774.

7.3 Figure A shows the slipline field for incipient extrusion through a square die when the length of
the slug is

√
2 times that of the die. Frictionless conditions along the die and the container wall, and a

state of sticking friction along the punch face, are assumed to exist. Show that the extrusion pressure

Figure A Figure B

may be written as

pe

2k
= r

{
1 + π

2
+ a

h

[
1

2

(
1 − d

a

)
+

∫ θ

0

( x

a

)
dα

]}

where α = √
2(H − h), and the integral is taken along the slipline segment BE. Use Table A-9 to evaluate

the extrusion pressure and the fractional reduction when θ = 15, 30, and 45◦. Construct the associated
hodograph.

Answer: r = 0.398, 0.318, and 0.252; pe/2k = 1.041, 0.857, and 0.698.
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7.4 The slipline field for incipient extrusion of a short slug is shown in Fig. B, where the length of the
slug is

√
2 times the emerging sheet thickness. The face of the punch is assumed to be perfectly rough,

and the container wall perfectly smooth. Considering the tractions across the dead metal boundary ABG,
show that

pe

2k
= r

(
1 + π

2
+ 2θ

)
+ 1 − r√

2

{
1 − d

a
− 2

∫ θ

0

( x

a

)
dα

}

where α = √
2h. Using Table A-9, calculate the values of pe/2k and r for θ = 15, 30, and 45◦. Sketch

the hodograph associated with the slipline field.
Answer: r = 0.602, 0.682, and 0.748; pe/2k = 1.603, 1.957, and 2.359.

7.5 The slipline field for side extrusion from a partially rough container caused by a pair of opposed
rams is shown in Fig. C. The speeds of the right-hand and left-hand rams are U and nU respectively,
where 0 < n < 1. Draw the hodograph of the process and hence show that the angle η∗ which the extruded
sheet makes with the container wall is given by

tan η∗ =
(

1 + n

1 − n

)
tan η

where η is the angle for one-sided extrusion with identical wall friction. When λ = 15◦, θ = 30◦, and
n = 0.3, find the extrusion pressure and the angles η and η∗.

Answer: pe/2k = 1.654, η = 68.0◦, η∗ = 77.7◦.

Figure C

7.6 In the combined end and side extrusion process discussed in Sec. 7.2(iii) for arbitrary d/h and H/h
ratios, prove that the angle η between the direction of the side extrusion and the plane of the side orifice
is given by

tan η = H/2h

sin2 λ + v/U

where λ is the acute angle made by the α direction at F with the axis of symmetry, and v the horizontal
distance of the image of C from that of F in the hodograph. Assuming d/h = 2.74, and a total fan angle
of 90◦ at the exit point G, find the values of H/h, pe/2k, and η.

Answer: H/h = 6.97, pe/2k = 1.855, η = 83.2◦.

7.7 Using the notation of Fig. 7.16, representing the frictionless sheet drawing through a tapered die,
show that the hydrostatic pressure p0 at the axial point F is given by

p0

k
= r

(
P

2ka
+ Q

2ka
cot ψ − 1

)
− 2(θ + φ)
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where P and Q depend on the angular coordinates (θ, φ) of F. Considering the case ψ = 20◦, obtain
the variation of p0/k with the reduction r over the range covered by the slipline field. Find the range of
values of ψ for which p0 becomes negative for all reductions.

Answer: ψ > 17.9◦.

7.8 In the plane strain drawing of a sheet through a rough tapered die, the bulge limit depends not only
on the die angle but also on the coefficient of friction. Show that the die pressure in this limiting state
becomes

q = k
[
1 + sin 2λ + π

2
− 2(ψ − λ)

]
where λ is the angle of inclination of the α lines with the die face. Assuming µ = 0.1, calculate the
values of λ, r, q/2k, and t/2k at the bulge limit corresponding to ψ = 15◦.

Answer: λ = 32.9◦; r = 0.077, t/2k = 0.235.

7.9 Over the practical range of reductions and coefficients of friction, show that the mean drawing stress
for a rough wedge-shaped die may be written as

t′ � t
{

1 +
(

1 − r

2

)
µ cot ψ

}

Using the appropriate empirical expression for the redundant work factor, prove that the optimum die
angle is given by the equation

ψ3 +
(

2 − r

4

)
µψ2 − 3.32

(
µr2

2 − r

)
= 0

in which the second term may be neglected as a first approximation. Show that the second approximation
then coincides with Eq. (46).

7.10 Show that for small coefficients of friction, and small-to-moderate reductions in thickness, the
ratio of the extrusion pressures with and without friction over a wedge-shaped die may be written on
the basis of equations (45) and (52) as

p′
e

pe
� 1 + 1

2

(
2 − r

1 − r

)
µ cot ψ

Assuming µ = 0.1 and ψ = 30◦, calculate the dimensionless extrusion pressure for r = 0.2, 0.3, and 0.4.
Determine the optimum value of ψ when µ = 0.1 and the reduction is 30 percent.

Answer: p′
e/2k = 0.507, 0.646, and 0.785, ψ = 15.6◦.

7.11 The combined effect of friction and work-hardening may be estimated by approximating the
relevant part of the stress–strain curve by a straight line with an initial yield stress k1 and a final yield
stress k2. Considering the solution of Eq. (43), where k is now a variable quantity, prove that the ratio
of the drawing stresses with and without friction becomes

t′

t
= (1 + m)[1 − (1 − r)m]

{
1

mε2
− 1

6

(
k2 − k1

k2 + k1

)}

to a close approximation, where ε2 = ln (H/h) and m denotes the quantity µ cot ψ. Note that the second
term in the curly bracket is negligible except for annealed materials together with large values of mε2.

7.12 Draw the slipline field and the hodograph for symmetrical extrusion through a perfectly rough
tapered die when the deforming zone involves a single point on the axis of symmetry. Assuming a 15◦
die semiangle, calculate the fractional reduction, the mean die pressure, and the extrusion pressure when
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the entry fan angle is 0, 15, and 30◦. Determine in each case the minimum coefficient of friction required
by the given frictional condition.

7.13 Figure D shows a possible slipline field that predicts the formation of a surface strip in an attempted
extrusion through a smooth wedge-shaped die when the reduction is very small. Show that the extrusion
pressure and the direction of chip travel are given by

pe = 2kr
(

1 + π

2
+ ψ

)
tan η = sin ψ

1 + sin ψ

Rederive the expression for pe using the velocity distribution and the upper bound theorem.

Figure D Figure E

7.14 Figure E shows the slipline field for unsymmetrical extrusion through a smooth wedge-shaped
die with unequal angles of inclination ψ1 and ψ2. The field applies to a particular value of the nominal
extrusion ratio (H1 + H2)/2h. Prove that the extrusion pressure is given by

pe

2k
= (1 + ψ1)sin ψ1 + (1 + ψ2)sin ψ2

1 + sin ψ1 + sin ψ2

Draw the associated hodograph and hence show that the direction of motion of the extruded billet makes
an acute angle η with the plane of the orifice, where cot η = (H1 − H2)/(H1 + H2).

7.15 Suppose that the nominal reduction for the unsymmetrical extrusion is increased from the preceding
value such that the ratio H1/H2 remains constant. Assuming ψ1 = 45◦ and ψ2 = 30◦, show that the
extrusion pressure for any reduction r may be expressed by the empirical equation

pe

2k
= 0.184 + 0.925 ln

(
1

1 − r

)

Find the range of reductions for which this formula is expected to be sufficiently accurate.
Answer: 0.55 < r < 0.84.

7.16 Figure F shows a particular slipline field for unsymmetrical extrusion through a perfectly rough
wedge-shaped die when the container wall is also perfectly rough. Assuming ψ1 = 45◦ and ψ2 = 30◦,
find the eccentricity, the nominal reduction, and the extrusion pressure when the position of the ram is
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at F. Excluding the effect of the frictional drag between the billet and the wall, show that the extrusion
pressure for smaller reductions, with the ratio H1/H2 held constant, is given by the empirical formula

pe

2k
= 0.78 + 1.26 ln

(
1

1 − r

)

Answer: e = 0.329, r = 0.646, pe/2k = 2.398 for the geometry of Fig. F.

Figure F

Figure G

7.17 Figure G shows the drawing of a sheet through a convex die of circular profile with zero exit angle.
Using the yield criterion in the form σ + q = 2k, obtain the equilibrium equation

y dσ + 2k dy + µqR cos φ dφ = 0

Assuming a mean value of q, equal to that for frictionless drawing, show that the drawing stress t for a
sufficiently small angle of contact ψ is given by

t

2k
= ln

1

1 − r
+ µ

(
1 − 1

2
ln

1

1 − r

)√
2R

h
tan−1

√
r

1 − r

Adopting a redundant work factor, equal to that for a wedge-shaped die of semiangle ψ/2, determine
t/2k when r = 0.25, µ = 0.1, and R/h = 5.

Answer: t/2k = 0.448.



Chakra-07.tex 30/1/2006 17: 57 Page 624

624 theory of plasticity

7.18 Draw the slipline field for symmetrical extrusion through a partially rough constant pressure die
with a wedge-shaped end of semiangle ψ. Using the geometry of the slipline field, prove that the length
of the axis of symmetry covered by the field for a given final thickness is independent of the coefficient
of friction. If the modification of the field of Fig. 7.27 is such that

r

1 − r
= l

d
(eψ − 1),

l

d
= √

2 sec λ

as an approximation for low die friction, calculate the reduction in thickness and the extrusion pressure
when ψ = 30◦ and µ = 0.1. Compare this extrusion pressure with that in frictionless extrusion for the
same reduction.

Answer: r = 0.544, pe/2k = 1.116.

7.19 A lower bound solution for frictionless extrusion through a square die may be obtained by assuming
stress discontinuity across the exit plane AD and the sides of an isosceles right-angled triangle ABC as
shown in Fig. H. The angle φ which AC makes with the axis of symmetry depends on the extrusion ratio
R. Show that the stress field is statically admissible, giving the lower bound

pe

2k
= 2

(
R2 − 1

R2 + 1

)

Figure H

Figure J

7.20 An improved lower bound for medium reductions is furnished by the discontinuity pattern of
Fig. J, where the material in the top right-hand corner is assumed nonplastic. The stress field coincides
with that of Fig. 7.32 when R = 3, and degenerates into that of Fig. H when R = √

2 + 1. Show that a
permissible state of stress exists between these limiting cases, and that the extrusion pressure is

pe = 4k

(
3 − r − 1

r

)

7.21 An upper bound solution for extrusion through a square die may be obtained by assuming the
single triangular velocity discontinuity pattern of Fig. K, which involves a dead metal region adjacent to
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Figure K Figure L

the die face. Considering the associated hodograph, and minimizing the extrusion pressure with respect
to the dead metal boundary angle α, derive Eq. (91) for the best upper bound estimate.

7.22 For a perfectly rough square die with large reductions, a reasonable upper bound approximation
is achieved by assuming velocity discontinuity across a pair of concentric circular arcs AC and BD, and
a purely radial flow of material in the region between them (Fig. L). Prove that the radial velocity v is
of magnitude cos θ/ρ per unit speed of the ram, and that the extrusion pressure is given by

pe

2k
= 1 + E

(√
3

2
,
π

2

)
ln

1

1 − r

where E(
√

3/2, π/2) is the complete elliptic integral of the second kind. Note that this solution is valid
for all frictional conditions along the die face.

Figure M

7.23 A statically admissible stress field for frictionless extrusion through a wedge-shaped die may be
constructed by using the stress discontinuity pattern of Fig. M, where φ = π/4 − ψ/2 and BD is normal
to the die face. Determine the principal stresses in each separate region of the field, and hence obtain
the lower bound

pe = 2kr(1 + sin ψ)
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Show that the proposed field is geometrically possible for sin ψ/(1 + sin ψ) � r � 2 sin ψ/(1 + sin ψ).
Discuss the lower bound solution outside this range of reductions.

7.24 For ψ > 45◦, an improved lower bound may be found by considering the discontinuity pattern
shown in Fig. N, where AD is parallel to the axis of symmetry and DE is parallel to the die face. Show
that the field is valid for R � 1 + 2 cos ψ, and is statically admissible, giving the extrusion pressure

pe = 2kr(1 + cos ψ − cos 2ψ)

Indicate how the stress field may be modified for lower extrusion ratios without affecting the lower
bound value.

Figure N Figure O

7.25 For moderate die angles and reductions, a reasonable upper bound estimate for frictionless extru-
sion through a wedge-shaped die is furnished by the velocity discontinuity pattern of Fig. O. Considering
the associated hodograph, derive the upper bound expression

pe

k
= (2 − r)tan ψ +

(
r2

1 − r

)
cot ψ

Verify that the same upper bound follows from the velocity field of Fig. K with the die face taking the
place of the dead metal boundary.

7.26 An upper bound solution for extrusion through a perfectly rough wedge-shaped die may be found
by using the double triangular velocity discontinuity pattern of Fig. 7.36. Assuming φ = π/4, obtain the
extrusion pressure in the form

pe

2k
= 2

1 + cot ψ
+ r(2 − r)cot ψ + r2

4(1 − r)

Compare this upper bound with (87) for ψ = 45◦ over the range 0.1 � r � 0.9, and present your results
in tabular form.

7.27 The stress discontinuity pattern of Fig. P may be used to obtain a lower bound solution for
frictionless extrusion through a convex die whose profile is a quarter circle. The stress distribution is
assumed radially symmetrical in the region CABD, where CD is a circular arc of radius H, the radial
compressive stress at any radius being denoted by q. Show that a statically admissible stress field exists
for r > 0.2 approximately, and that the extrusion pressure is given by

pe

2k
= r

1 − r
ln

1

r
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7.28 An upper bound solution for extrusion through a smooth convex die of circular profile may be
obtained by using the velocity discontinuity pattern of Fig. Q. The material in the curvilinear triangle
ABC is assumed to rotate as a rigid body about the center O of the circular arc AB. The discontinuities
AC and BC are also circular arcs whose radii and angular spans can be found from the hodograph. Show
that the upper bound is

pe

2k
= r

{
π

4
+

[
1 +

(
r

1 − r

)2
]

sin−1
(

1 − r√
2r

)}

This formula can be expected to provide a reasonable approximation to the extrusion pressure for r > 0.5.

Figure P Figure Q

7.29 The velocity discontinuity pattern of Fig. R represents the simultaneous forward and backward
extrusion of a slug of thickness 2a, resulting in two emerging sheets of equal thickness h moving in
opposite directions. The discontinuity angle θ depends on the reduction r and the thickness ratio a/H.
Show that the assumed velocity field permits a simultaneous operation for r > 0.5, and that the predicted
upper bound for no friction is

Pe

2k
= 1

2

{
rH

a
+ a

H(1 − r)

}

Figure R Figure S

7.30 Figure S shows the velocity discontinuity pattern for unsymmetrical extrusion through a smooth
wedge-shaped die. The eccentricity of the die and the inclination of the die faces are such that the
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corners B and E are on the same vertical line. Assuming θ = 45◦, and a nominal reduction of 50 percent,
calculate the upper bound on the extrusion pressure and the corresponding direction of extrusion when
the die semiangles are ψ1 = 40◦ and ψ2 = 20◦.

Answer: pe/2k = 0.833, η = 11.2◦.

7.31 An approximate solution for the cold rolling of a strip without applied tensions may be obtained
by setting q � 2k in the second term of Eq. (102). Derive the corresponding roll pressure distribution
neglecting work-hardening, and show that the roll force per unit width is given by

P

P∗ = 2

√
1 − r

r
sin−1√r + µ

α

{
ln

1

1 − r
− 2 ln(1 + ξ2

n)

}
− 1

where ξn =√
R′/h2 φn, and P∗ = 2k

√
R′rh1, the neutral angle being identical to that given by (116). Is

the above equation expected to underestimate or overestimate the actual roll force?

7.32 When the neutral point and the roll force are known, a useful approximation to the torque may
be obtained by assuming a triangular distribution of the roll pressure giving the same total force. If the
position of the pressure peak is taken as that of the preceding theory, show that

G

G∗ = 1 + 2

3


1 +

√
1 − r

r
tan


1

2
sin−1√r − 1

4µ

√
h2

R′ ln
1

1 − r






(
P

P∗ − 1

)

Plot the variation of P/P∗ and G/G∗ with r for µ
√

R′/h1 = 1, using the above expressions, and compare
it with that of Fig. 7.42.

7.33 In cold rolling, the elastic recovery of the strip on the exit side may be approximately taken into
account by assuming the longitudinal stress in the elastic region to have a constant value. Using the
stress–strain relation, show that the elastic arc of contact increases the roll force by �P and decreases
the roll torque by µR�P, where

�P

P∗ � 2k2 − t2
3k

√
(1 − r)λ

r + (1 − r)λ
λ = (1 − v2)

(
2k2 − t2

E

)

E and ν are the elastic constants for the strip, and P∗ is the mean yield stress 2k times the plastic arc of
contact. Prove that the radius of the deformed arc of contact is given by

R′

R
= 1 + P + �P

ch1[
√

r + (1 − r)λ + √
(1 − r)λ]2

7.34 The relationship between the yield stress 2k and the fractional reduction e in the plane strain
compression of a copper strip can be expressed in the empirical form

2k = 540{1 − 0.5(1 − e)3.5} MN/m2

Assuming an overall reduction of 30 percent produced by cold rolling, determine the mean values of
the yield stress appropriate for the evaluation of the roll force and the torque. Using Fig. 7.42 for P/P∗
and G/G∗, calculate the values of P and G when R = 180 mm, h1 = 2.5 mm, and µ = 0.08.

Answer: 2kp = 407 MN/m, 2kG = 380 MN/m2, P = 6.01 MN/m, and G = 34.15 kN · m/m.

7.35 A strip of annealed copper having an initial thickness 1.8 mm is cold rolled in a single pass to
a reduction of 26.5 percent using 180-mm diameter steel rolls. A gradually increasing back tension is
applied to the strip until the rolls are just at the point of slipping. The yield stress curve of the material
may be represented by the equation

2k = 650{1 − 0.8(1 − e)5.0} MN/m2
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If the coefficient of friction between the strip and the rolls is 0.07, determine the applied back tension,
and the corresponding roll force and torque, when the rolls are about to slip.

Answer: t1 = 107.35 MN/m2, P = 2.62 MN/m, G = 16.48 kN · m/m.

7.36 A mild steel sheet 50 mm wide and 10 mm thick is to be rolled in a hot rolling mill to a thickness
of 5 mm at 1000◦C, using 400-mm diameter steel rolls driven at 60 rpm. The results of the simple
compression test carried out at the same temperature may be expressed by the equation Y = Cε̇n. In
terms of the fractional reduction e in plane strain compression, the constants C and n may be expressed
by the empirical relations

C = 65 + 320e − 450e2

n = 0.126 − 0.24e + 0.46e2

which furnish the yield stress in meganewtons per square meter. Calculate the roll force and the torque,
and estimate the power required to drive the mill if the mechanical efficiency is 90 percent.

Answer: P = 10.41 MN/m, G = 147.3 kN · m/m, W = 103.0 kW.

7.37 An approximate expression for the roll separating force in the hot rolling process may be obtained
by assuming a linear distribution of roll pressure with a gradient corresponding to the mean sheet
thickness on either side of the neutral point. Considering a mean yield stress 2k, and assuming φn � α/2
as a first approximation, show that

P

P∗ = π

4
+ 2

8 − 5r

√
rR

h1

The mean yield stress may be approximately estimated on the basis of the mean strain rate λ, and the
mean empirical constants C and n. Using the data of the preceding problem, compute the roll force per
unit width from the above formula.

Answer: 10.78 MN/m.

7.38 An upper bound solution for the hot rolling problem may be obtained by assuming velocity
discontinuities across a pair of circular arcs AD and DB with centers of curvature at C and E on the exit
plane (Fig. T). The discontinuity BD is tangential to the roll surface at the exit point and meets the axis
of strip at 45◦. Sketch the hodograph and derive the upper bound expression

G

2kh12
= 1.457(1 − r)2

{
π

4
+ cosec2β cot−1

(
1 − r√
2 − 1

+ 2R

h1
sin α

)}

where α is the angle of contact, r the fractional reduction, and

2 cot β =
√

2 − 1

1 − r

{
1 +

(
2R

h1

)2

sin2α

}
− 1 − r√

2 − 1

Assume that there is no relative motion between the material and the roll. Calculate the value of G/2kh2
1

when r = 0.4 and R/h1 = 10, using the above relations.
Answer: 2.98.

7.39 In the orthogonal machining of nonhardening materials, a permissible state of stress in the work-
piece may be constructed by assuming stress discontinuities across the straight lines shown in Fig. U. The
stress state in the triangle ABC is the same as that on the shear plane itself, while stress-free conditions
are assumed to exist in the regions DCE, GAM, and BFN. Show that the configuration is geometrically
possible if the shear plane angle φ does not exceed 3π/4 − ψ, where

ψ = π

2
− sin−1

(
1

2
− p

2k

)
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Figure T

Assuming an angle of friction λ = π/8, find the range of values of α for which the chip material would
yield at the corner A without overstressing the workpiece.

Answer: α � 62◦.

Figure U

7.40 A possible slipline field for machining with a built-up nose BCE is shown in Fig. V, where the
material is assumed stress free above the discontinuity AD. Show that the relationship between the
angles φ and ψ is

φ − ψ = π

4
− (λ − α)

Show also that the workpiece material in the corner A will not be overstressed if ψ � (λ − α)/2. Find
the minimum coefficient of friction between the nose and the workpiece for which the solution would
be statically admissible when λ − α = 0, 30, and 45◦. Assuming the frictional stress to be uniform along
the base BE, calculate the value of F/kh corresponding to the limiting state of stress in the corner when
α = 0 and λ = 30◦.

Answer: µ = 1, 0.760, and 0.656; F/kh = 3.356.

7.41 Figure W shows the shear plane model of chip formation in orthogonal machining with a restricted
contact tool. The workpiece is assumed to move horizontally with a unit speed toward a stationary tool
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Figure V Figure W

whose rake face is of length l. Show that under frictionless conditions, the rate of energy dissipation is
a minimum when the shear plane angle φ has the Merchant value π/4 + α/2. For a perfectly rough tool,
show that the minimum energy criterion leads to the shear angle relationship

cot φ = sec α
√

1 + m cos α − tan α

where m = l/h. Calculate the shear plane angle and the specific chip thickness when α = 0 and 30◦,
assuming m = 1.

Answer: φ = 35.3◦, 45◦; t/h = 1.414, 1.366.

7.42 A two-dimensional machining operation is carried out with a cutting speed of 1.5 m/s and a depth
of cut of 0.5 mm, the material of the workpiece being plain carbon steel having an initial temperature
25◦C and a density 7.86 (103) kg/m3. The specific heat c and the thermal conductivity κ of the material
vary with the absolute temperature T according to the linear laws

c = 416 + 0.104T (J/kg · K)

k = 60.5 − 0.035T (W/m · K)

If the rake angle of the tool is 5◦, and the mean coefficient of friction along the tool-chip interface is
0.32, compute the temperature of the chip leaving the tool face. Use Eqs. (160) and (161) for the shear
angle φ, and assume k = 245 MPa for the workpiece.

Answer: 497.3◦C.

7.43 An improved upper bound solution for relatively small a/H ratios, for the simultaneous forward
and backward extrusion process displayed in Fig. R, can be found by considering a symmetrical pair
of velocity discontinuity lines passing through the exit points A and D, and intersecting one another
at a point G situated at a distance 2rH/3 below the container wall. These discontinuities meet the die
and punch faces at points E and F respectively, which are joined with point B on the container wall by
straight lines to complete the velocity discontinuity pattern. Show that the upper bound is

pe

2k
=

(
3

2
− r

){
rH

3a
+ a

H(1 − r)

}
,

a

H
� r√

3

For smaller values of a/H, improved upper bounds can be obtained by including additional equidistant
crosses in the velocity discontinuity pattern.

7.44 To obtain a lower bound solution to the plane strain extrusion through a smooth tapered die, the
stress discontinuity pattern of Fig. H may be generalized in the manner shown in Fig. X, the material to
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A

C

c

f

E

D

F

B

Figure X

the right of the line BD being assumed nonplastic. Sow that the geometry of the field requires φ = cot−1

[(R − cos ψ)/sin ψ], and that the predicted lower bound is

pe

2k
= r

{
(2 − cos ψ) + 2(R − 1) sin2ψ

R2 − 2R cos ψ + 1

}

where R is the extrusion ratio and r the fractional reduction in thickness. Verify that the assumed stress
field is statically admissible over the range π/4 − ψ/2 � φ � π/4.
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CHAPTER

EIGHT
NONSTEADY PROBLEMS IN PLANE STRAIN

We now turn to two-dimensional problems in which the stress and velocity at any
given point vary from one instant to another. It is generally necessary, for simplicity,
to restrict the discussion to the estimation of the yield point load, under which the
deformation just begins in a rigid/plastic body. This load is effectively the same as
that for which the overall distortion in a nonhardening elastic/plastic body, under
identical boundary conditions, increases rapidly in relation to the change in load. The
yield point load is generally approached in an asymptotic manner, and is very nearly
attained while the deformation is still of the elastic order of magnitude. In a number
of interesting situations, the plastic zone develops in such a way that the configuration
remains geometrically similar throughout the deformation. If the configuration at
each stage is scaled down by a certain factor so as to obtain the same geometrical
figure, the stress and velocity at any given point remain constant. The problem is
therefore analogous to that of steady motion, except that it is necessary to satisfy
the velocity boundary condition required for the maintenance of the geometrical
similarity.

8.1 Indentation by a Flat Punch

(i) Semi-infinite medium As a typical example of the problem of incipient plastic
flow, consider the indentation of a semi-infinite body by a flat rigid punch under
conditions of plane strain (Fig. 8.1). As soon as a load is applied by the punch,
plastic zones begin to form at the corners A, where the punch pressure has its
greatest value. Since the material is rigid/plastic, no deformation is possible until
the applied load is sufficient to cause the plastic zones to spread across the bottom of

633
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Figure 8.1 Slipline fields for the indentation of a semi-infinite medium by a flat punch.

the punch. Following the fusion of the plastic zones spreading from both sides, the
indentation proceeds as the material is pushed upward by the sides of the punch. The
slipline field, due to Prandtl,† consists of a pair of 90◦ centered fans with adjacent
regions of constant stress. Since the mean compressive stress has the value k along
the free boundaries AB, it follows from Hencky’s equation that the punch pressure
at the yield point has the value

q = 2k
(

1 + π

2

)
(1)

This pressure is uniformly distributed over the width of the punch. The yield point
state would of course be entirely different if a gradually increasing uniform pressure
were applied over the width AA.

The material triangle ACA moves vertically downward as a rigid body with
a speed equal to the punch speed U. Since the material below the sliplines CDB
is rigid, the normal component of velocity must be zero along these boundaries.
It follows from the Geiringer equations that the particles outside the triangle ACA
move outward along the sliplines parallel to the boundary CDB with a constant
speed U/

√
2, while velocity discontinuities of the same amount occur across ACDB.

The field is independent of the frictional condition over the punch face, and it has
actually been verified by experiment.‡ Beneath the field ACDB, there exists a further

† L. Prandtl, Göttinger Nachr., Math. Phys. Kl., 74 (1920). This work preceded Hencky’s general
theory by three years.

‡ See, for example, A. Nadai, Theory of Flow and Fracture of Solids, vol. 2, p. 470, McGraw-Hill
Book Co., New York (1963).
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plastic region where the material is stressed to the yield point but the deformation
is prevented by the constraint of the nonplastic matrix.†

An alternative solution, proposed by Hill,‡ consists of a deformation mode in
which the material below the sliplines OLMN remains rigid, the velocity discontinu-
ity propagating along these sliplines being of amount

√
2U. Evidently, the particles

in each half of the deforming zone move with a speed
√

2U along the sliplines par-
allel to the boundary OLMN. In view of the relative sliding between the material and
the punch face, the solution is valid only for a perfectly smooth punch, while the
punch pressure is still given by (1). From the theoretical point of view, any slipline
field having its boundary lying between OLMN and ACDB represents a possible
solution to the problem, giving the same punch pressure at the yield point of the
semi-infinite block.§

An extension of the Prandtl field into the rigid region is shown in Fig. 8.2,
only one half of the field being considered.¶ The circular arc CD and the condition
of symmetry uniquely define the field to the left of DPQ. The slipline BJ, which
is parallel to DP, defines the stress-free boundary BN, where the tangent at N is
parallel to the axis of symmetry of the field. Since the sliplines of one family begin
to intersect one another†† near J , it is necessary to introduce the stress discontinuity
JM to continue the slipline field beyond JKN. The discontinuity bisects at each
point the angles between the sliplines of the same family. The field immediately
to the right of the discontinuity must be compatible with the slipline JN, and the
hydrostatic pressure jump across JM must be compatible with its inclination to
the sliplines at each point. These requirements are sufficient to construct the fields
JKM and KMN. It turns out that the angles turned through along JK, KM, and
HM are approximately equal to one another. The discontinuity line NMR is then
constructed through M and N , using relations (32), Chap. 6, such that the material
below this line is in a state of uniaxial stress (of varying magnitude) parallel to the
axis of symmetry. Evidently, the hydrostatic tension must be equal to the maximum
shear stress everywhere in this region. It is found that the material in this region is
stressed below the yield limit. An additional discontinuity NS is considered through
N parallel to the axis, and the material on the right of BNS is assumed unstressed. The
extended field therefore constitutes a complete solution of the indentation problem.
The perpendicular distances of N from OR and OB are given by

w

a
= 2eπ/2 − 1 � 8.621

d

a
� 7.288

† If the material is annealed, the familiar sinking-in mode of deformation would occur at a somewhat
smaller load, the displaced material being accommodated by the elastic resilience of the block.

‡ R. Hill, Q. J. Mech. Appl. Math., 2: 40 (1949). A finite element solution has been given by
C. H. Lee and S. Kobayashi, Int. J. Mech. Sci., 12: 349 (1970).

§ The indeterminacy of the deformation mode may be removed by specifying a traction rate, and
considering the nonhardening material as the limit of a work-hardening material (Sec. 2.7(iii)).

¶ J. F. W. Bishop, J. Mech. Phys. Solids, 2: 43 (1953). For a different treatment, see M. Sayir and
H. Ziegler, Ing. Arch. 36: 294 (1968).

†† The intersection first occurs on BJ at an angular distance of 2.4◦ from J , but this has a negligible
effect on further extension of the slipline field into the rigid region.
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Figure 8.2 A statically admissible extension of the Prandtl field into the rigid region.

in view of (139), Chap. 6. The depth of R below O is found to be about 8.74a, where
a denotes the semiwidth of the punch.

The material lying outside BNMR is nonplastic and therefore rigid. Since the
velocity must be continuous across the curves BN, MN , and MR, which are not
characteristics, the regions BNJ, MNK , and MRL must also be rigid. The normal
component of velocity therefore vanishes along the sliplines JK and MK, which
means that the regions JKM and JHM are rigid, the velocity being continuous across
the stress discontinuity JM. Following the same argument, the regions LMHG, LFG,
BJFE, and CEF are successively shown to be rigid, bearing in mind that the normal
component of velocity is zero along the axis of symmetry. It follows that the Prandtl
field OCDB covers the whole of the deformable region, outside which the material
is necessarily rigid.†

† The indentation of a surface by a pair of punches in close proximity has been discussed by
S. A. Meguid, I. F. Collins, and W. Johnson, Int. J. Mech. Sci., 19: 1 (1977).
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Figure 8.3 Indentation of a block by a flat punch when 1 � h/a � 4.77. (a) Slipline field; (b) hodograph.

(ii) Medium of finite depth A block of material of thickness h, resting on a rigid
foundation, is indented by a flat punch of width 2a. When the ratio h/a is less than a
certain critical value, plastic zones originating from the corners of the punch spread
through the thickness of the block to bring it to the yield point. If the foundation
is smooth, the slipline field consists of a pair of identical centered fans ACD and
the associated field CDFD, defined by the equal circular arcs CD (Fig. 8.3). The
triangular region ACA is uniformly stressed,† and the sliplines at F meet the foun-
dation at 45◦. Since the material is incompressible, the rigid material on either side
of the field moves horizontally with a speed Ua/h, where U denotes the speed of
the punch. The velocities of the rigid ends are represented by the vectors PQ in the
hodograph. The sliplines DF are mapped into the circular arcs D′F ′ having a radius
equal to the magnitude of the velocity discontinuity occurring across the pair of slip-
lines ADEF. These circular arcs define the remainder F ′D′C′D′ of the hodograph,
with PC′ denoting the velocity of the punch. The material immediately above F
abruptly changes its direction of motion without change in speed on crossing the
discontinuities.

The uniform pressure q on the punch is equal to p0 + k, where p0 is the mean
compressive stress at C. This is determined from the condition that the resultant

† The slipline field is due to L. Prandtl, Z. angew. Math. Mech. 3: 401 (1923). See also R. Hill,
J. Iron Steel Inst., 156: 513 (1947). For experimental confirmation, see F. Körber and E. Siebel, Mitt.
Kaiser-Wilhelm-Inst. Eisenforsch., 10: 97 (1928).
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horizontal force acting across the vertical section OF must be zero. Using Eq. (99),
Chap. 6, with the necessary sign change for the terms in k, there results

q

2k
= a

h
{I0(2θ) + 2θ[I0(2θ) + I1(2θ)]} (2)

where θ is the angular span of the centered fans ACD. The ratio h/a is directly
obtained as a function of θ from the appropriate table in the Appendix. As h/a
increases from unity, the principal compressive stress at F normal to the foundation
progressively decreases. When h/a � 4.77 (θ � 55.1◦), the normal stress vanishes
at F, and the transverse stress is equal to the tensile yield stress 2k. The ratio q/2k
at this stage attains the value 1.923. For higher values of h/a, the stress normal to
the foundation becomes tensile, and the field is therefore no longer valid.

When h/a > 4.77, the slipline field is modified by adding a right-angled triangle
GFG having a uniform tensile stress 2k parallel to the foundation (Fig. 8.4). The
material in the triangle moves upward with a velocity represented by the vector
PG′ in the corresponding hodograph. The magnitude of this velocity is equal to the
outward speed of the rigid material on either side of the slipline field. Let δ denote
the height of the triangle GFG, and d the depth of the point F below the punch face,
so that h = d + δ. The condition of zero resultant thrust across the vertical section

Figure 8.4 Slipline field and hodograph for punch indentation when 4.77 � h/a � 8.77.
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Figure 8.5 Relationship between q/2k, h/a, and δ/a at the yield point of a block indented by a flat
punch.

through O can be written as

qd − 2ka{I0(2θ) + 2θ[I0(2θ) + I1(2θ)]} = 2kδ

Since the mean compressive stress is −k at F, it follows from the Hencky equations
that q = 4kθ. Substituting in the above equation, and using (90), Chap. 6, we get

δ

a
= 2θ[2F1(θ, θ) − I1(2θ)] − I0(2θ) (3)

from which δ/a, and hence h/a, can be calculated as functions of θ. The relationship
between q/2k, h/a, and δ/a is shown graphically in Fig. 8.5, the numerical values
of these quantities being given in Table 8.1. The punch pressure attains the value
2k(1 + π/2) when h/a � 8.77 (θ � 73.65◦), the ratio δ/a at this stage being 0.91.
For h/a > 8.77, the indentation will always begin at the pressure given by (1), and
the deformation mode will then consist of a displacement of the material to the free
surface of the block.†

When the foundation is not smooth, the punch pressure necessary to begin the
indentation increases to a value q′. The frictional resistance on either side of the

† Slipline fields predicting rotation of the ends of the strip toward the indenter have been discussed
by P. Dewhurst, Int. J. Mech. Sci., 16: 923 (1974).
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Table 8.1 Indentation of a block resting on a smooth foundation using a flat
punch

θ◦ h/a q/2k θ◦ h/a δ/a q/2k

0 1.000 1.000 55 4.754 0 1.921
15 1.605 1.104 60 5.639 0.205 2.094
30 2.440 1.342 65 6.654 0.438 2.269
45 3.644 1.667 70 7.815 0.698 2.443
50 4.162 1.790 73.65 8.772 0.910 2.571

foundation plane is µaq′ per unit width, where µ is the coefficient of friction. It is
reasonable to assume that the effect of friction is to increase the mean compressive
stress at each point by a constant amount. Then the punch pressure with friction
exceeds that without friction by the same amount, which is (µa/h)q′, giving†

q′ = q

1 − µa/h

q

2k
� 2.571 (4)

The slipline field for the symmetrical indentation of a rectangular block of height
2h between a pair of opposed dies of width 2a is identical to that shown in Fig. 8.3,
except that the supporting plane is replaced by the horizontal plane of symmetry.‡
The solution holds for all values of h/a lying between 1.0 and 8.72, the tensile stress
acting across the horizontal axis at the center of the block being permissible so long
as fracture is not produced by the triaxial tension. The punch pressure becomes
equal to 2k(1 + π/2) when h/a � 8.72 (θ � 77.4◦); the vertical tensile stress at F
equals 0.26k at this stage. The punch pressure for h/a � 8.72 may be written as
q = 2kf (h/a), where f is obtainable from Table 7.5. The punch pressure remains
constant for h/a � 8.72, since the field of Fig. 8.1 then becomes operative.§

(iii) The critical width If the width of the block is reduced to a critical value, the
plastic zone spreads out to the sides of the block when the load attains the yield
point.¶ A single slipline FGHJK then extends from the axis of symmetry to the
lateral surface, meeting it at an angle of 45◦ (Fig. 8.6). The rigid shoulder BMHJLT

† R. Hill, The Mathematical Theory of Plasticity, p. 257, Clarendon Press, Oxford (1950).
A slipline field solution for friction on the foundation has been given by W. Johnson and D. M. Woo,
J. Appl. Mech., 25: 64 (1958). The slipline field is identical to that for side extrusion through a rough
container produced by a pair of opposed rams.

‡ If a finite block of width/thickness ratio less than unity is compressed by a pair of overlapping
dies, the die pressure is 2k for all conditions of friction. A triangular zone of material moves rigidly
with each die, while velocity discontinuities occur along straight sliplines passing through the corners
of the block and inclined at 45◦ to the die face.

§ The theoretical predictions have been experimentally confirmed by A. B. Watts and H. Ford,
Proc. Inst. Mech. Eng., 1B: 448 (1952). See also B. B. Murdi and K. N. Tong, J. Mech. Phys. Solids,
4: 121 (1956).

¶ This is a special case of a more general problem discussed by R. Hill, Phil. Mag., 41: 745 (1950).
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Figure 8.6 Estimation of the critical width of a block indented by a flat punch. (a) Slipline field;
(b) hodograph.

is assumed to be displaced sideways by sliding over the slipline HJK. Since any
rigid body motion in a plane is necessarily a rotation about an instantaneous center,
HJ must be a circular arc of some radius ρ. The segment JK, of length c, is assumed
straight, so that the triangle JKL is under a uniform compression 2k parallel to the
surface. Let b denote the length of the straight segment GH, which forms a part of the
continuation DMHG adjacent to the standard field CDGF, defined by the circular
arc CD and the axis of symmetry. Since the net angle turned through in moving
from K to F along the slipline is zero, the hydrostatic pressure at F is equal to k.
The radius AE must bisect the fan ACD in order that the hydrostatic pressure in the
triangle ABD is compatible with that at F. It follows that the angles subtended by
CE, FG, and HJ are each equal to π/4.

The three unknown parameters ρ, b, and c must be determined from the condi-
tions of equilibrium of the rigid shoulder BMHJLT. The equilibrium is established
by setting to zero the resultant force components and the resultant moment of the
distribution of tractions along the boundary ADGHJK. The hydrostatic pressure at
any point of HJ, situated at an angular distance φ from H, is p = k(1 − π/2 + 2φ)
by Hencky’s equations. The distribution of normal pressure p and tangential stress k
along HJ produces a resultant force whose components per unit width of the inter-
face are −kρ(

√
2 − 1) and −kρ(π/2 − 1) referred to the axes of x and y respectively.

The vertical and horizontal components of the force acting on GH are kb(π/2 − 1)
and −kb, while those on JK are −√

2kc and zero respectively.
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Let (P, −Q) denote the rectangular components of the force per unit width
exerted on ADG by the plastic material on its left when the hydrostatic pressure is
assumed to vanish at C. Since p = (1 + π)k at C, the actual force acting on ADG
has components P − k(1 + π)(y0 − a) and −Q + k(1 + π)x0 per unit width, where
(x0, y0) are the rectangular coordinates of G. The condition for overall force
equilibrium is therefore expressed as

(
√

2 − 1)
ρ

a
−

(π

2
− 1

) b

a
+

√
2c

a
= P

ka
− (1 + π)

(y0

a
− 1

)
(π

2
− 1

) ρ

a
+ b

a
= (1 + π)

x0

a
− Q

ka

(5)

The normal and tangential tractions along the circular arc HJ are statically
equivalent to their resultant acting at the center of curvature of JH, together with a
counterclockwise couple of magnitude 1

4πkρ2 per unit width. The clockwise moment
about G due to the tractions along ADG, corresponding to zero hydrostatic pressure
at C, is equal to M − Py0 − Qx0 per unit width, where M is the clockwise moment
about the origin O. The actual hydrostatic pressure at C is responsible for an addi-
tional clockwise moment of amount 1

2 k(1 + π)[x2
0 + (y0 − a)2] about the point G.

Considering all the moments about G, the equation for overall couple equilibrium is
obtained as

1

2

(
ρ + c

a

)2

−
(π

2
− 1

) ρ2

2a2 + b

a

[
(
√

2 − 1)
ρ

a
−

(π

2
− 1

) b

2a
+

√
2c

a

]

= M

ka2 − Py0 + Qx0

ka2 + 1 + π

2

[
x2

0

a2 +
(y0

a
− 1

)2]

(6)
The ratios x0/a, y0/a, P/ka, and Q/ka are directly obtained from Table A-2, the
appropriate angular coordinates being (45◦, 90◦). The value of M/ka2 can be found
by interpolation using Table A-1. Substituting for b/a and c/a, obtained from (5) as
linear functions of ρ/a, Eq. (6) is reduced to a quadratic in ρ/a. The final results are

ρ

a
� 5.686

b

a
� 0.490

c

a
� 0.937

These results furnish the width ratio w/a � 8.593. The depth of K below the plane
surface is given by d/a � 7.290, which is very nearly equal to twice the ratio of OF
to OC.

Let ω be the angular velocity of the instantaneous rotation of the rigid shoulder
at the yield point. The resulting velocity discontinuity propagating along KJHGFEA
is then of amount ωρ. Since the material beneath FHJK is at rest, this slipline is
mapped into the circular arc H ′J ′ whose center P is the pole of the hodograph (Fig.
8.6). The image of the boundary HM must be a geometrically similar curve, so that
the radius of curvature at any point of H ′M ′ is ω times that at the corresponding point
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of HM. The two curves G′F ′ and G′D′ uniquely define the image field G′F ′E′D′ (first
boundary-value problem). The points immediately to the left of the slipline FEA are
mapped into the curve F ′′E′′, which is parallel to F ′E′, the distance between them
being equal to the velocity discontinuity ωρ. The remaining field F ′′E′′C′ of the
hodograph is defined by F ′′E′′ and its reflection in F ′′C′. The angular velocity ω is
determined from the fact that the vector PC′ represents the velocity of the punch.
The material in the triangle ADB moves sideways with a velocity represented by the
vector PD′. It follows from the sense of rotation of the sliplines and their images, and
the direction of shearing along the velocity discontinuities, that the rate of plastic
work is everywhere positive.

If the stress field could be continued throughout the block without overloading,
the solution would be complete, and the width of the block would then represent
the actual critical width. Otherwise the width is less than critical, since the actual
yield point load associated with this width is lower than the Prandtl value. On the
other hand, the width corresponding to the statically admissible field of Fig. 8.2
must exceed the critical value, since the yield point load in this case is higher than
the Prandtl value. It follows that the critical value of the ratio w/a lies between the
bounds 8.593 and 8.621, which are remarkably close to one another.†

8.2 Indentation by a Rigid Wedge

(i) Frictionless indentation Consider the penetration of a smooth rigid wedge into
a semi-infinite mass of rigid/perfectly-plastic material, so that the bisector of the
wedge angle 2ψ is perpendicular to the plane surface of the medium.‡ The slipline
field maintains its shape during the indentation, but increases in size by a scale
factor equal to the depth of penetration c. As the wedge is pressed into the medium,
a raised coronet is formed on either side of the wedge (Fig. 8.7). The slipline field
on each side consists of a centered fan BCD separating a pair of uniformly stressed
triangular regions ABC and BDE, the displaced surface BE being assumed straight.
All sliplines meet AB and BE at 45◦ in order to satisfy the stress boundary conditions.
If the fan angle BCD is denoted by θ, the angle of inclination of BE to the original
plane surface is ψ − θ. Since the height of E above A is equal to c, it follows from
geometry that

b[ cos ψ − sin(ψ − θ)] = c (7)

where b denotes the length AB = BE. In view of the incompressibility of the material,
the triangles AOE and ABE must be equal in area, the triangle AFE being common
to both. Since the perpendicular distance of E from AB is equal to b cos θ, we obtain

c[ sin ψ + cos(ψ − θ)] = b cos θ (8)

† When the width of the block is less than critical, q/2k is given to a close approximation by the
right-hand side of (90) with h replaced by the semiwidth w.

‡ R. Hill, E. H. Lee, and S. J. Tupper, Proc. R. Soc., A, 188: 273 (1947).
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Figure 8.7 Indentation of a semi-infinite block by a rigid lubricated wedge.

The elimination of b/c between (7) and (8) furnishes the relationship between θ and
ψ as

cos(2ψ − θ) = cos θ

1 + sin θ
= tan

(
π

4
− θ

2

)

which is readily solved for ψ in terms of θ. The result is

ψ = 1

2

{
θ + cos−1 tan

(
π

4
− θ

2

)}
(9)

When θ has been found for a given ψ, the ratio h/c can be calculated from (7) or
(8). It may be noted that θ < ψ for all nonzero values of ψ < π/2. When ψ = π/2,
θ also has the same value, and the slipline field represents only the incipient mode
at the yield point.

Since the normal component of velocity vanishes on the plastic/rigid boundary
ACDE, the velocity component along the straight sliplines normal to the boundary
must be zero by Geiringer’s equation. It follows that the steamlines coincide with
the sliplines parallel to the boundary, and the velocity along them has a constant
magnitude equal to

√
2 sin ψ throughout the field, the downward speed of the wedge

being taken as unity with c as the time scale. The velocities of the lip BE and
the vertex A have components sin ψ and cos(ψ − θ) respectively along the normal
to BE. The perpendicular distance of A from BE therefore increases at the rate
sin ψ + cos(ψ − θ), which remains constant during the indentation. It follows that
the left-hand side of (8) represents the distance of A from BE when the depth of
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penetration is c. Since this distance is also equal to b cos θ, Eq. (8) is recovered from
the kinematical standpoint.†

The mean compressive stress increases from k on the free surface BE to a value
k(1 + 2θ) on the wedge face AB by Hencky’s equation. The uniformly distributed
normal pressure on the wedge is therefore given by

q = 2k(1 + θ) (10)

Equations (9) and (10) express the relationship between q and ψ parametrically
through θ. The vertical load per unit width of the wedge is 2qb sin ψ, and the work
done per unit width is qcb sin ψ. Table 8.2 gives the values of θ, q/2k, and c/b
for various semiangles of the wedge. The results have been found to be in good
agreement with experiments using a lubricated wedge.‡ The variations of θ and
(b/c)cos ψ with the semiangle ψ are represented by the solid curves of Fig. 8.8. It
follows from Eqs. (8) and (7) that (b/c)cos θ and (b/c)cos ψ tend to their limiting
values of 2 and 3/2 respectively as ψ tends to π/2.

A consideration of the trajectories of the particles (see below) indicates that the
material initially occupying the region OAC has consistently moved parallel to AC
after being plastic. Consequently, this material currently remains in the region GAC,
where OG is in the direction of the velocity. Similarly, the material which is finally
in the triangle BDE has consistently moved parallel to DE after becoming plastic.
The initial position of this material is therefore HDE, where H is the intersection of
OE with the parallel to DE through B. While the deformation in these two regions
consists of simple shear in the respective directions of motion, the material originally
in OCDH is finally displaced to GCDB through a complicated mode of deformation.
The particles initially lying on the surface OH are drawn along the wedge face so
as to remain in contact with it over the length GB in the final state.

(ii) Distortion of a square grid The geometrical configuration in which the char-
acteristic length c appears as the unit of length is called the unit diagram. A particle

Table 8.2 Results for indentation of a block by a smooth symmetrical wedge

ψ◦ 0 15 30 45 60 75 90

θ◦ 0 5.43 17.34 32.94 50.84 70.11 90
c/b 1.0 0.800 0.647 0.498 0.341 0.174 0
q/2k 1.0 1.095 1.302 1.575 1.887 2.224 2.571
h/b∗ 2.0 1.858 2.089 2.932 4.295 6.230 8.772
c∗/h 0.5 0.430 0.310 0.170 0.079 0.028 0
V/U 0 0.268 0.216 0.225 0.197 0.163 0.127
φ◦ 0 0 7.51 21.99 39.07 56.21 73.65

† The effect of work-hardening is to decrease the slope of the raised lip while increasing its length
for a given depth of penetration.

‡ D. S. Dugdale, J. Mech. Phys. Solids, 2: 14 (1953).
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Figure 8.8 Variation of geometrical parameters with wedge semiangle in the indentation of a block.

P whose position vector is r in the actual physical plane is represented in the unit
diagram by a point P′ whose position vector is ρ = r/c. In view of the geometrical
similarity of the process, the stress and velocity at each stage are functions of the
single variable ρ. If the velocity dr/dc of the particle P is denoted by v, the velocity
dρ/dc of the corresponding point P′ in the unit diagram is given by†

c(dρ/dc) = v − ρ (11)

which is readily obtained on differentiating the relation r = cρ. The above equation
indicates that P′ moves toward a focus S whose position vector is v in the unit
diagram. The path of the particle P in the physical plane is represented by the
trajectory of the point P′ in the unit diagram.

Since the velocity v has the constant magnitude
√

2 sin ψ throughout the deform-
ing region, the focus for the entire field must lie on a circular arc of radius

√
2 sin ψ

with centre O′, which is the image of the fixed origin O in the unit diagram (Fig. 8.9).
The arc NM of angular span θ is defined by the radii O′N and O′M drawn parallel to
AC and DE respectively. Let A′C′D′E′B′ be the image of the slipline field ACDEB.

† R. Hill, E. H. Lee, and S. J. Tupper, op. cit. An approximation to the distortion, based on assumed
stress discontinuities, has been presented by P. G. Hodge, J. Appl. Mech., 17: 257 (1950).
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Figure 8.9 Unit diagram showing trajectories of particles in wedge indentation.

Since O′N is inclined to A′B′ at an angle of 45◦, it follows from the geometry of the
triangle A′O′N that N lies on A′B′. Further, M lies on E′B′ produced, since the sum
of the projections of O′M and O′A′ perpendicular to B′E′ is equal to the projection of
A′B′ in view of Eq. (8). It is important to note that O′A′NM is actually the hodograph
of the process, with O′A′ representing the velocity of the wedge and A′N the velocity
discontinuity along the wedge face.

Until a particle is overtaken by the expanding slipline field, its velocity is zero,
and consequently the trajectory of its image in the unit diagram is a straight line
directed toward O′. When the image point crosses the boundary A′C′D′E′, the
particle has been engulfed by the plastic flow field. There are three kinds of tra-
jectory in the unit diagram, depending on whether the point enters the image field
by crossing A′C′, C′D′, or D′E′. In the domains A′C′B′ and D′E′B′, the trajectories
are straight lines directed toward the foci N and M respectively. In the remaining
domain C′D′B′, the trajectory is curved, and the focus moves from N to M as the
point moves from D′B′ to C′B′. The focus S at any instant is the intersection of the
arc NM with the perpendicular from O′ to B′P′. It may be noted that all particles
originally situated on the same radius through O have the same trajectory in the unit
diagram.

To find the distortion of an originally square grid, it is necessary to calculate
the final position of the corner of a square whose initial position is r0. Let c0 (less
than c) be the depth of penetration of the wedge when the corner is first overtaken
by the expanding slipline field. A line drawn through O′ in the direction of r0 meets
the boundary A′C′D′E at a point whose position vector is ρ0 = r0/c0. This point
subsequently moves along the trajectory through the tip of the vector ρ0 as the depth
of penetration is increased from c0 to c. If the distance traversed by the point during
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this interval, and the final focal distance, are denoted by s and f (s) respectively, then
by (11),

dc

c
= ds

f (s)
or ln

c

c0
=
∫ s

0

ds

f (s)
(12)

When the trajectory has been found, s can be calculated in terms of c by using (12),
and the final position r = cρ therefore follows. In A′C′B′ and D′E′B′, the result is
simplified by the fact that f (s) = d − s, where d is the distance of the point ρ0 from
the appropriate focus N or M. Then the solution is

c

c0
= d

d − s

The integral in (12) must be evaluated numerically in the domain C′D′E′. The
calculated distortion of the grid for a 60◦ wedge is shown in Fig. 8.10.

(iii) Influence of friction When the wedge is rough, and the wedge angle not too
large, the slipline field is modified as shown in Fig. 8.11a, only one half of the field
being considered. The raised lip remains straight, but is reduced in both height and
slope with BE exceeding AB. The straight α lines now meet the wedge face at an
angle λ < π/4, so that the normal pressure on the contact surface is p + k sin 2λ and
the frictional stress is k cos 2λ, where p is the hydrostatic pressure in the region
ABC. Since p = k(1 + 2θ) by Hencky’s equation, where θ is the fan angle CBD, the
coefficient of friction is

µ = cos 2λ

1 + 2θ + sin 2λ
(13)

in view of the relative motion between the wedge face and the material. The normal
pressure q acting on the wedge face is

q = k(1 + 2θ + sin 2λ) (14)

Figure 8.10 Deformed square grid after indentation by a lubricated rigid wedge.
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For a given value of µ, λ and θ depend on the wedge semiangle ψ. From geometry,
the angle made by the raised lip BE with the horizontal is ψ − φ, where

φ = θ + λ − π/4

If the contact length AB is denoted by b, then the lip BE is of length
√

2b cos λ. The
fact that E lies on the original surface is expressed by the relation

b[ cos ψ − √
2 cos λ sin(ψ − φ)] = c (15)

Figure 8.11 Slipline fields for indentation by a rough wedge. (a) Without false nose; (b) with false
nose.
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Figure 8.12 Variations of θ and λ with coefficient of friction and wedge semiangle.

The condition of continuing geometrical similarity during the penetration furnishes
the relation

c[ sin ψ + √
2 cos λ cos(ψ − φ)] = √

2b cos λ cos φ (16)

which is easily derived from the constancy of volume. For selected values of λ and
ψ, the corresponding values of φ and b/c can be calculated from (15) and (16) by
a process of trial and error.† The variations of θ and λ with µ for different values
of ψ are shown in Fig. 8.12. When θ and λ have been found, the contact pressure q
can be calculated from (14). The vertical load per unit width of the wedge is easily
shown to be

P = 2qb( sin ψ + µ cos ψ)

† J. Grunzweig, I. M. Longman, and N. J. Petch, J. Mech. Phys. Solids, 2: 81 (1954).
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Table 8.3 Results for the limiting field corresponding to Fig. 8.11a

ψ◦ 0 15 30 45 60 75 90

θ◦ 45.00 54.74 67.67 82.79 84.12 86.29 90.00
b/c 1.000 1.196 1.459 1.888 2.777 5.568 ∞
P/kc 2.00 4.11 7.43 10.10 23.74 53.91 ∞
µ 0.389 0.344 0.297 0.257 0.195 0.102 0

Computations indicate that the effect of friction is to decrease b/c by a fraction
1
4µ sin 2ψ, and increase q/2k by a fraction µ(1+ 1

4 sin 2ψ) to a close approximation.
When ψ tends to zero, b/c tends to unity and θ tends to π/4 − λ.

As µ increases, one or other of two limiting situations can arise. For ψ �π/4,
the angle λ vanishes, and the frictional stress is equal to the shear yield stress k,
with µ = 1/(1 + 2θ). As ψ increases from 0 to 45◦, the critical value of µ decreases
from 0.389 to 0.257 approximately. Higher values of µ are without effect on the
slipline field. When ψ �π/4, the solution is valid for those values of µ for which
AC is inclined to the downward vertical at an angle less than π/4, in order that the
rigid corner at A is not overstressed. The limiting value of λ in this case is ψ − π/4.
Numerical values of θ, b/c, µ, and P/kc corresponding to the limiting state are
given in Table 8.3.

For obtuse-angled wedges, when the friction is sufficiently high, the slipline
field involves a 90◦-cap of dead metal ABC attached to the wedge face† as shown
in Fig. 8.11b. There is a velocity discontinuity of amount U/

√
2 propagating along

BCDE, where U is the downward speed of the wedge. If AB is taken to be of length
b, then

BE = 2b sin ψ AC = b(sin ψ − cos ψ)

The acute angle between the lip BE and the wedge axis is equal to the fan angle θ,
which means that the lip angle is π/2 − θ. Hence the depth of penetration is

c = b(cos ψ − 2 sin ψ cos θ) (17)

Since the triangles ABE and OAE must be equal in area due to the incompressibility
of the material, we have

c(1 + 2 sin θ) = 2b sin(ψ + θ)

Eliminating b/c between the last two relations, we obtain after some algebra,

cot ψ = 4 cos θ(1 + sin θ) (18)

† W. Johnson, F. U. Mahtab, and J. B. Haddow, Int. J. Mech. Sci., 6: 329 (1964); J. B. Haddow,
Int. J. Mech. Sci., 9: 159 (1967).
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Table 8.4 Indentation by a rough obtuse-angled wedge, Fig. 8.11b

ψ 45◦ 50◦ 60◦ 70◦ 80◦ 90◦

θ 82.79 83.95◦ 85.85◦ 87.38◦ 88.73◦ 90◦
b/c 1.888 2.078 2.669 3.905 6.587 ∞
P/kc 10.10 15.70 23.10 37.04 76.92 ∞
µ 0.257 0.240 0.193 0.027 0.013 0

Since the material in the dead metal cap is not necessarily plastic, the actual distri-
bution of the contact pressure cannot be estimated. The vertical load per unit width
of the indenter is

P = 4kb(1 + θ)sin ψ (19)

in view of the uniform normal pressure k(1 + 2θ) and the tangential stress k acting
along BC, which is of length

√
2h sin ψ. Numerical values of θ, b/c, and P/kc for

various semiangles of the wedge are given in Table 8.4.
The value of P/kc in the false nose solution are found to be slightly lower than

those corresponding to the limiting frictional condition in the solution without the
false nose. For 77◦ < ψ < 90◦, the false nose solution gives a lower value of P/kc
than for the frictionless wedge. Since the limit theorems are not directly applicable
to this problem, in which the change in geometry is unspecified, it is not possible
to say that the lower load gives a better bound. The minimum coefficient of friction
required by the false nose solution may be estimated by assuming a uniform plastic
state of stress existing in the cap. The minimum value of µ is then obtained by setting
λ = ψ − π/4 in (13), and is included in Table 8.4. This value is slightly smaller than
the limiting value of µ in the preceding solution.

(iv) Critical penetration for finite thickness Suppose that a block of finite thick-
ness h rests on a smooth horizontal base and is penetrated normally by a smooth
symmetrical wedge of semiangle ψ. For sufficiently small values of the depth of
penetration, the deformation mode is identical to that for a semi-infinite block. At
some stage of the indentation, the element of the rear surface directly below the
wedge tip is stressed to the yield limit, and a second plastic zone begins to spread
upward from the foundation. Eventually, the upper plastic zone extends continu-
ously downward to join the lower plastic zone. At this stage, the constraint fails
and the rigid ends begin to separate by sliding over the foundation. In the proposed
slipline field, Fig. 8.13, the two bounding sliplines BFGHS intersect one another
at a point T which is situated at a height δ above the foundation.† The defining
angle CBF, denoted by φ, depends on the wedge semiangle ψ. The critical depth
of penetration c∗ and the associated length of contact b∗ are determined from the
condition that the resultant horizontal thrust across BATS is zero.

† The slipline field is due to R. Hill, J. Mech. Phys. Solids, 1: 265 (1953). The problem of oblique
penetration has been treated by S. A. Meguid and I. F. Collins, Int. J. Mech. Sci., 19: 361 (1977).
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Figure 8.13 Critical penetration of a wedge into a block of finite depth (ψ � 22.17◦). (a) Slipline field;
(b) hodograph.
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Since the sliplines meet AT at 45◦, the angular span of the fan ACJ is equal
to π/2 − ψ. The material triangle STS is under a uniform tensile stress 2k acting
parallel to SS. The stress is also uniform in the square AJIJ, where the horizontal
principal stress is less than 2k. Since the hydrostatic pressure has the value k at E
and −k at T , the contact pressure along AB may be written as

q = 2k
(π

2
− ψ + 2φ

)
= 2k(1 + θ) (20)

where θ is defined by (9). The above relation enables us to calculate φ for any given
ψ. The longitudinal tensile force Q acting across AT is obtained from Eq. (147),
Chap. 6, where it is necessary to write π/2 − ψ for ψ, φ for α, b∗ for 2a, and −p0
for p0. Since the mean compressive stress at C is p0 = q − k, the result is

Q = 2kb∗[−4L(φ, ξ) + I0(2
√

φξ)] ξ = π

2
− ψ + φ

in view of (20). The condition of zero resultant horizontal force across STAB
requires Q + 2kδ = qb∗ cos ψ. Substituting in the above equation, we get

δ = b∗[(1 + θ)cos ψ + 4L(φ, ξ) − I0(2
√

φξ)] (21)

By Eq. (146), Chap. 6, where s = d − δ and 2a = b∗, the height of the vertex A above
the foundation is

d = b∗[(1 + θ)cos ψ + 2F1(φ, ξ) + 4L(φ, ξ)] (22)

For a given wedge angle, δ/b∗ and d/b∗ can be computed from (21) and (22), using
interpolations based on TableA-3. The proposed slipline field holds for φ � 0, which
is equivalent to

θ + ψ � π/2 − 1 or ψ � 22.17◦ θ � 10.53◦

The limiting case φ = 0 corresponds to d/b∗ = (1 + θ)cos ψ � 1.096, giving
h/b∗ � 1.820 and c∗/h � 0.398, the point T being at a height 0.096h above the
foundation.

The construction of the hodograph begins with the vector PQ of magnitude V ,
representing the unknown velocity of the rigid ends. There is a velocity discontinuity
of amount

√
2V across the sliplines BFGTS on either side. The triangle STS moves

vertically upward with a speed V , and the particle just above T moves downward
with the same speed. The remainder of the hodograph is defined by the equal circular
arcs T ′G′F ′ centered at Q and having an angular span ξ. The velocity of the wedge
is represented by the vector PR, where R is located by drawing C′R at an angle ψ to
the vertical. If the speed of the wedge is denoted by U, then from geometry,

U

V
= PN

PQ
+ NC′

PQ
cot ψ
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where C′N is perpendicular to PR. Since the ratios PN/PQ and NC′/PQ can be
obtained from the appropriate table (Appendix), the ratio V/U can be computed for
any given ψ. As φ tends to zero, V/U approaches the value tan 11.09◦ � 0.196.

The ratio δ/b∗ given by (21) vanishes when ψ � 29.5◦ and ψ � 54.5◦, its value
for ψ = 60, 75, and 90◦ being 0.07, 0.37, and 0.91 respectively. For 29.5◦ <

ψ < 54.5◦, the vertical principal stress at T becomes compressive and the triangle
STS disappears. The height of the wedge tip is then given by

d = b∗[I0(2
√

φξ) + 2F1(φ, ξ)]

in view of (146), Chap. 6. The angle φ must be determined from the condition that the
resultant horizontal thrust qb∗ cos ψ on the wedge face is equal to the longitudinal
tensile force Q across AT. Using (147), Chap. 6, it is easily shown that

I0(2
√

φξ) − 4L(φ, ξ) − (1 + θ)cos ψ

I0(2
√

φξ) + 2F1(φ, ξ)
= 1 + θ − φ − ξ (23)

where ξ = π/2 − ψ + φ. When φ has been estimated from (23) by trial and error,
d/b∗ and h/b∗ can be evaluated. For 54.5◦ < ψ � 90◦, the plastic triangle reappears
at the base, and Eqs. (20) to (22) again hold for the geometry of the field.

For ψ � 22.17◦, the plastic zone extending from the wedge tip to the foundation
consists of an isosceles right triangle as shown in Fig. 8.14a. The sideways thrust
on each contact face is then balanced by a uniform tension 2k across the height of
the triangle. Equating qb∗ cos ψ to 2k(h − c∗), and using (7) and (10), we obtain

h = b∗[(2 + θ)cos ψ − sin(ψ − θ)] ψ � 22.17◦ (24)

The material in the triangle FAF rises vertically with a speed V = U tan ψ, which is
also the speed of separation of each rigid half. The material in the corner CAF is not
overstressed, since the pressure difference 2k(1 + θ) across the faces AC and AF is
less than 2k(π/2 − ψ) when ψ < 22.17◦. The calculated values of h/b∗, c∗/h, V/U,
and φ over the whole range of values of ψ are given in Table 8.2. A graphical plot
of c∗/h against ψ is included in Fig. 8.8. The effect of friction on the wedge face is
to decrease the critical penetration by an amount µ(h − c∗)cos2 ψ approximately.

If a block of thickness 2h is indented on opposite sides by a pair of identical
wedges with their vertices approaching one another, the point T of Fig. 8.13 must
always lie on the horizontal axis of symmetry, which replaces the smooth founda-
tion. The principal stress normal to this axis has intensity 2k(φ + ξ − θ − 1), where
φ is given by (23). This stress is tensile in the range 29.5◦ < ψ < 54.5◦, and com-
pressive outside it. The limit of validity of the field corresponds to φ = 0, which is
equivalent to

θ + ψ + (1 + θ)cos ψ = π

2
or ψ � 19.48◦

The values of h/b∗ and c∗/h for this limiting case are 1.752 and 0.429 respectively.
For smaller values of ψ, an expression for h/b∗ may be written down on the basis of



chakra-08.tex 28/12/2005 17: 10 Page 656

656 theory of plasticity

Figure 8.14 Critical penetration
and subsequent separation due to
indentation (ψ � 22.17◦). (a) Onset
of separation; (b) a later instant
during the process.

a uniform tensile stress t = 2k(π/2 − ψ − θ) acting across the section between the
wedge tips. The condition of horizontal equilibrium is t(h − c∗) = qb∗ cos ψ, which
gives

h

b∗ = π/2 + 1 − ψ

π/2 − θ − ψ
− sin(ψ − θ) ψ � 19.48◦ (25)
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in view of the relations (7) and (10). The ratio h/b∗ according to this formula
steadily decreases with ψ, reaching the limiting value 1.637 when ψ is vanishingly
small.†

(v) Cutting of metal strips The above analysis is directly applicable to the cutting
operation in which a metal strip or sheet is split in two by a smooth knife-edged tool.
The initial penetration of the tool gives rise to the piling-up mode of deformation
in which the plastic zone does not extend to the base. When the penetration reaches
the critical depth, the two halves begin to separate, and no further material is raised
to the upper surface.‡ If the sheet is placed on a rigid base, and the semiangle
of the wedge is less than 22.2◦ (which is the case of practical interest), the upper
plastic zone ACDEB begins to unload, while a depression appears along the base
of a plastic triangle FAF having its vertex at the wedge tip. During the period
of separation, consider an instant when the tool has penetrated by an additional
distance c − c∗, as depicted in Fig. 8.14b, the speed of the tool being taken as unity.
The material at each instant is sheared along the momentary plastic boundaries
terminating at the tool tip. The triangle FAF is stressed to the yield point by a uniform
tension 2k, the material outside this region being nonplastic. Since the upward speed
of the plastic material at each stage is tan ψ, the total height of the depression
is (c − c∗)tan ψ, which is the distance between FF and F ′F ′. The perpendicular
distance of F ′ from AF is (c − c∗)(1 + tan ψ)/

√
2, while the displacement of F ′

parallel to AF is
√

2(c − c∗)tan ψ. Hence the instantaneous simple shear at each
stage is of amount

γ = 2 tan ψ

1 + tan ψ

which increases from 0 to 0.534 as ψ is increased from 0 to 20◦. The horizontal
distance between F and F ′ is (c − c∗)(1 + 2 tan ψ), and the height of A above FF is

d = (h − c∗) − (c − c∗)(1 + tan ψ) (26)

The separation is complete when d vanishes. The corresponding value of c/h can
be calculated from the above equation, using Table 8.2. In actual practice, failure
by fracture will occur before this limiting penetration is attained. The horizontal
thrust on each contact face must be equal to 2kd for equilibrium. Consequently, the
vertical load per unit width during the process is 4kd tan ψ, which decreases linearly
with the depth of penetration. Since the load increases linearly with penetration for
c � c∗, the greatest value of the load is 4k(h − c∗)tan ψ, which occurs at the moment

† The effect of friction along the wedge face on the critical penetration for indentation by opposed
wedges has been investigated by W. Johnson and H. Kudo, Int. J. Mech. Sci., 2: 294 (1961). The
corresponding problem for a block resting on a smooth foundation has been considered by B. Dodd and
K. Osakada, Int. J. Mech. Sci., 16: 931 (1974).

‡ R. Hill, op. cit. The separation process in the cutting of a strip by a pair of opposed tools has
been treated by H. Kudo and K. Tamura, JSME, Semi-Int. Symp., 168: 139 (1967).
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when the separation begins. The variation of the load P with the penetration c may
be written from (26) as

P

4kh
=

( c

c∗ − c

h

)
tan ψ c � c∗

P

4kh
=

(
1 − c

h

)
tan ψ − c − c∗

h
tan2 ψ c � c∗

(27)

The work done per unit width of the strip before the beginning of separation is
2kc∗(h − c∗)tan ψ, and that during the separation process is kγ(h − c∗)2. The total
work done during the entire cutting operation does not differ significantly from the
value kh2 tan ψ. When there is friction on the tool face, the cutting load is multiplied
by the factor (1 + µ cot ψ) approximately.

(vi) Estimation of the critical width If the width of the block is small compared to
its thickness, the plastic zone spreads out to the sides of the block as the indentation
continues. For a given depth of penetration, the critical width 2w is such that a
slipline AGHJKL extends from the wedge tip to the lateral surface of the block
(Fig. 8.15). At this moment, the deformation mode involves a lateral displacement

Figure 8.15 Slipline field for a block of critical width corresponding to given penetration by a rigid
wedge.
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of the rigid corner by sliding over the slipline JKL. Since two rigid bodies can slide
over one another only if the surface of contact is cylindrical, JK must be a circular
arc of some radius r. It is also necessary to include straight segments JH and KL
of lengths s and t respectively, and a plastic triangle KLM in a state of uniaxial
compression 2k parallel to the surface.† The field CDFJHG is constructed in the
usual manner, starting from the circular arcs CD and CG with angular spans θ and
φ respectively.

By simple geometry, the net angle turned through in going from L to A along the
slipline LKJHGA is π/2 − (ψ + φ) in the counterclockwise sense. Since the mean
compressive stress is equal to k at both E and L, the Hencky equations indicate that
the stress will be continuous at any point, such as C, if

φ = π

4
− ψ − θ

2

where θ is given by (9). It follows from Hencky’s first theorem that the angle turned
through by JK is also equal to φ. The rigid material in the corner A will be stressed
below the yield limit so long as AG is inclined at an angle greater than π/4 to the
downward vertical. The validity of the slipline field therefore requires

φ + ψ � π/2 or ψ � 50.6◦

The three unknown quantities r, s, and t can be determined from the conditions
of overall equilibrium of the rigid shoulder. This is ensured by the vanishing of
the resultant force components and the resultant couple due to the tractions dis-
tributed over BAGHJKL. When the unknowns have been found, the critical width of
the block is obtained from simple geometry, using the fact that HJ makes a clock-
wise angle (ψ − θ)/2 with the horizontal. The perpendicular distance of H from
the axis of symmetry is equal to x0 cos ψ + (b/2 − y0)sin ψ, where (x0, y0) are the
rectangular coordinates of H, their values being obtainable from the appropriate
table (Appendix).

The distribution of normal and shear stresses over the circular arc JK is statically
equivalent to the forces kr( cos φ + sin φ − 1) and kr(2φ + cos φ − sin φ − 1) per
unit width acting at its center of curvature T (not shown), along TJ and parallel to JH
respectively, together with a counterclockwise couple equal to kr2φ per unit width.
The distribution of tractions along the slipline AGH is equivalent to the specific
forces −P − k(1 + 2θ)(b/2 − y0) and Q − k(1 + 2θ)x0 acting at H in the x and y
directions respectively, together with the specific clockwise couple

M − Py0 − Qx0 + k

(
1

2
+ θ

){
x2

0 +
(

b

2
− y0

)2
}

where −P, Q, and M are the equivalent forces and couple at the origin O corre-
sponding to zero hydrostatic stress in ABC. The ratios P/kb, Q/kb, and 4M/kb2 are

† R. Hill, Phil. Mag., 41: 745 (1950).
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identical to those of Table A-1 for the same angular coordinates (θ, φ). In setting
up the equations of equilibrium, it is generally convenient to take moment about H,
and resolve the forces parallel to the coordinate axes, noting the fact that HJ makes
a counterclockwise angle of (ψ + θ)/2 with the x axis.

Using the equations of force equilibrium, s/b and t/b can be expressed as linear
functions of r/b. In the limiting case of ψ = 50.6◦, for which θ = φ = 39.4◦, these
relations are found to be

s

b
= 1.3882 − 0.4565

r

b

t

b
= 0.9832 − 0.4113

r

b

Inserting them into the equation of couple equilibrium reduces it to the quadratic

0.0989
r2

b2 + 0.3309
r

b
− 1 = 0

and the solution for the particular geometry of the field finally becomes

r

b
= 1.920

s

b
= 0.512

t

b
= 0.194

These values furnish w = 3.201b, which means that the critical width is 4.142 times
the width of the impression. The point L is found to be at a distance 2.078b below
the corner N . For a knife-edged indenter (ψ � 0), the inner boundary of the rigid
shoulder consists of a pair of circular arcs, and an explicit analytical solution is
possible, the results being

r

b
= 4

π

s

b
= 4

π
− 1√

2

t

b
= √

2 − 4

π
(28)

The critical semiwidth is w = b(π + 4)/π, which is 2.273 times the depth of pene-
tration. The rigid shoulder in this case is symmetrical about the bisector of the angle
at the corner N .

When the semiangle of the wedge is greater than 50.6◦, the plastic zone spreads
around the vertex A to include a finite length of the axis of symmetry. The fan angle
at A is then equal to π/2 − ψ, so that AG is inclined at π/4 to the axis, while the
circular base of the rigid shoulder has an angular span equal to θ > π/2 − ψ. The
continuation of this slipline to the left meets the axis at a point where it is intersected
by the slipline to the left meets the axis at a point where it is intersected by the slipline
through B that makes an angle π/4 − (ψ − θ)/2 with BD. No calculation has been
made for the critical width based on the modified slipline field, but its value cannot
differ appreciably from that given by the simple formula

w = b(2eθ − sin ψ)
π

4
< ψ � π

2
(29)

For ψ = 50.6◦ and ψ = 90◦, this formula coincides with the result obtained from
the statically admissible extension of the basic slipline field involving a stress-free
boundary generated through E.
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8.3 Compression of a Wedge by a Flat Die

(i) Yield point of a blunt wedge An infinite wedge of angle 2ψ is truncated by
a horizontal plane perpendicular to the axis of symmetry. The wedge is vertically
compressed by a flat die which is at least as wide as the plane section AA = 2a. The
deforming zone at the yield point is represented by the field ACDBA (Fig. 8.16), in
which the central triangle ACA moves vertically downward with the same speed as
that of the die. The material within CDBA is instantaneously displaced sideways,
with the streamlines coinciding with the sliplines parallel to CDB. The pressure on

Figure 8.16 Compression of a truncated wedge by a flat die. (a) ψ � 27.34◦; (b) ψ � 27.34◦.
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the die is uniformly distributed and is given by

q = 2k(1 + ψ)

which is independent of the frictional condition along the die. The result has been
found to be in good agreement with experiment.† The die pressure is the same for
all fields whose boundaries lie between the slipline OLMN and ACDB provided the
die is perfectly smooth.

To show that the rigid region is able to support the stresses across the boundaries
ACDB, the slipline field is extended‡ as far as the principal stress trajectory BEFEB
passing through the terminals B. The extended field is uniquely defined by the equal
circular arcs CD and their straight continuations DB. Let the absolute values of the
radii of curvature of the α and β lines of the field defined by CD be denoted by R
and S respectively. From (83), Chap. 6, we may express R and S in the form

R(α, β) = √
2a

{
I0(2

√
αβ) + ∂

∂α
[I0(2

√
αβ)]

}

S(α, β) = √
2a

{
I0(2

√
αβ) + ∂

∂β
[I0(2

√
αβ)]

} (30)

where (α, β) are the angles turned through from C along the base sliplines. Consid-
ering the field BDE to the left of the axis of symmetry, let h denote the length of the
straight segment of the β line through any point of the boundary BE. The local radius
of curvature of the α line through this point is numerically equal to R(α, ψ) + h(α),
so that

dh = −[R(α, ψ) + h(α)]dα

along the boundary, substitution for R(α, ψ) from (30) leads to the differential
equation

d

dα
[
√

2aI0(2
√

αψ) + h] = −[
√

2aI0(2
√

αψ) + h]

Since h = √
2a at B, where α = 0, the integration of the above equation results in

h = √
2a[2e−α − I0(2

√
αψ)] (31)

For sufficiently large values of ψ, h vanishes at E, which corresponds to α = θ �ψ

(Fig. 8.16a), the relationship between θ and ψ being

I0(2
√

θψ)exp(θ) = 2 (32)

The angles θ and ψ are equal to one another when ψ � 27.34◦. For ψ � 27.34◦,
θ decreases as ψ increases, reaching the value θ � 16.39◦ when ψ = π/2. For

† A. Nadai, Z. angew. Math. Mech., 1: 20 (1921).
‡ M. Sayir, Z. angew. Math. Phys., 20: 298 (1969).
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ψ � 27.34◦, the point E corresponds to α = ψ (Fig. 8.16b), and the slipline field
involves an isosceles triangle EFE of height

c = a[2e−ψ − I0(2ψ)]

The triangle is in a uniform plastic state of stress, the principal stress normal to the
axis of symmetry being tensile and of amount 2kψ.

When ψ exceeds 27.34◦, the central part EFE of the trajectory is defined by the
relation R dα = −S dβ along its length. Using (30) for R, the equation for the curve
EFE may be written as

d[I0(2
√

αβ)] = −I0(2
√

αβ)d(α + β)

Since the trajectory passes through the point (θ, ψ) satisfying (32), the above
equation integrates to

I0(2
√

αβ)exp(α + β − ψ) = 2 (33)

The point F, where the trajectory intersects the axis of symmetry, corresponds to
α = β = φ (say), where

I0(2φ)exp(2φ − ψ) = 2 (34)

When ψ = π/2, representing the indentation of a flat surface, (34) furnishes
φ � 47.67◦. It follows from (34) that 2φ �ψ for all values of ψ � 103.6◦.

The normal pressure q0 transmitted across the trajectory varies along its length.
At any point of BE, the pressure is equal to 2k(1 − α), where α is the angle turned
through along this curve. For ψ � 27.34◦, the normal pressure at any point of the
curve EE is 2k(1 + ψ − α − β), its greatest value being 2k(1 + ψ − 2φ) occurring
at F. The intensity of q0 is therefore nowhere greater than 2k whenever ψ is less
than 103.6◦. The stress distribution in the rigid region lying below the trajectory will
be statically admissible if we assume a typical element in this region to be in a state
of uniaxial compression q in a direction normal to the trajectory. The curve BEEB
then becomes a line of stress discontinuity. For equilibrium, q must vary along the
normal so as to be inversely proportional to the radius of curvature of the transverse
principal stress trajectory. Since the normal stress must be continuous across the
discontinuity, we have

q

(
1 + n

ρ

)
= q0

where n is the normal distance of the element from the discontinuity, and ρ the radius
of curvature of the discontinuity where it is intersected by the normal. The value of ρ

at any point of BE is
√

2 times the radius of curvature of the curved sliplines through
that point. Along the curve EFE, it is easy to show that ρ is equal to

√
2RS/(R + S).

Since ρ is discontinuous at the point E, the stress is also discontinuous across the
normals through these points.
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Figure 8.17 Slipline field and unit diagram for finite compression of a wedge with a smooth flat die.

(ii) Finite compression for a pointed vertex Consider the symmetrical compres-
sion of an infinite wedge of semiangle ψ by a smooth flat die whose plane face is
normal to the bisector of the wedge angle.† The wedge initially has a pointed vertex
O, so that the deformation at each stage is geometrically similar. At any instant
during the compression, let c be the depth of the flattened surface AA below O, and b
the semiwidth of the surface of contact (Fig. 8.17). The deformed part of the wedge
therefore forms another wedge of semiangle θ < ψ. The sliplines through E meet at
B on the axis of symmetry, the portion CD of each of these sliplines being a circular
arc of angular span θ. The material being incompressible, the triangles OBE and
ABE must be equal in area. Since the perpendicular distances of E from BA and OB
are b cos θ and b(1 + sin θ) respectively, we have

b2 cos θ = cb(1 + sin θ)

or
b

c
= 1 + sin θ

cos θ
= tan

(
π

4
+ θ

2

)
(35)

The height of O above E is c + b cos θ. The condition that E lies on the original
wedge face therefore gives

tan ψ = b(1 + sin θ)

c + b cos θ
= (1 + sin θ)2

cos θ(2 + sin θ)
(36)

in view of (35). If the downward speed of the die is taken as unity, the particles
in the deforming region move with uniform speed

√
2 along the sliplines parallel

† R. Hill, Proc. 7th Int. Congr., Appl. Mech., London (1948). For asymmetric compression, see
K. L. Johnson, J. Mech. Phys. Solids, 16: 395 (1968); I. F. Collins, Int. J. Mech. Sci., 22: 735 (1980).
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Table 8.5 Results for the finite compression of a wedge

ψ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦

θ 5.62◦ 21.05◦ 35.59◦ 49.57◦ 63.21◦ 76.66◦ 90◦
b/c 1.103 1.456 1.945 2.716 4.199 8.551 ∞
q/2k 1.098 1.367 1.621 1.865 2.103 2.338 2.571

to BCDE. It follows from the Hencky equations that the uniform die pressure is of
amount

q = 2k(1 + θ)

As ψ is decreased, θ also decreases, eventually vanishing for tan ψ = 1
2 , or ψ � 26.6◦.

The displaced surface AE is then vertical and of length equal to c. The die pressure
in this limiting case is equal to the plane strain yield stress 2k. The solution is not
valid for smaller wedge angles. Values of θ, b/c, and q/2k for various semiangles
of the wedge are given in Table 8.5.

The material originally occupying the triangle OBC has been sheared parallel
to BC to assume the final position BFC, where OF is inclined at 45◦ to the die
face. Similarly, the material finally in the triangle ADE has been sheared parallel
to DE from its initial position HDE, where H is the point of intersection of OE
and the parallel to ED through A. The region OCDH in the initial state has been
displaced into the region FCDA in the final state. The left-hand half of Fig. 8.17
may be regarded as the unit diagram in which the foci lie on the circular arc FG of
angular span θ. Since the projection of AB perpendicular EA is equal to the sum of
the projections of OB and OG in view of (35), G lies on EA produced.

There is another possible solution which is valid for any condition of friction
over the die face. The displaced surface AE is still straight, but the slipline through
E passes through the opposite end A of the surface of contact (Fig. 8.18). A wedge-
shaped cap of dead metal ACA is attached to the die as it moves downward with
increasing compression. From geometry, AE is equal to the width of the surface of
contact, denoted by 2b. Equating the areas of the triangles OBE and ABE as before,
and using the geometry of the figure, it is easily shown that

b

c
= 1 + 2 sin θ

2 cos θ
tan ψ = (1 + 2 sin θ)2

4 cos θ(1 + sin θ)
(37)

This solution is valid for θ � 0, or ψ � tan−1 (1/4) � 14◦. The normal pressure on
the die is still equal to 2k(1 + θ), but its value for a given wedge angle is slightly
higher than that in the preceding solution.†

† The situation where the die and the wedge are of comparable hardness has been discussed by
W. Johnson, F. U. Mahtab, and J. B. Haddow, Int. J. Mech. Sci., 6: 329 (1964).
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Figure 8.18 Slipline field for finite compression of a wedge with a rough flat die.

(iii) Yielding of a tapered projection A block of material having a straight-sided
symmetrical projection is vertically compressed by a smooth flat die.†The semiwidth
b of the horizontal surface of contact exceeds the length a of the inclined faces of
the projection. Figure 8.19 shows one half of the slipline field and the associated
hodograph when the load has reached the yield point. The angle ψ of the centered
fan ACD is equal to the angle of inclination of the side AB with the vertical. The
usual field ABCDE is extended by considering a second fan BCF of angular span
θ. The circular arcs CD and CF of equal radii uniquely define the field CDGF and
its extension DGHE. The remaining field EHO is constructed from the slipline EH
and the frictionless condition along EO. The angle θ must be such that the bounding
slipline through B terminates at the die center O.

The die pressure has the constant value 2k(1 + ψ) along AE, but its intensity
steadily increases from E to reach the value 2k(1 + ψ + 2θ) at O. The mean pressure
acting over OA can be written down from Eq. (147), Chap. 6, by setting p0 = k, s = b,
and replacing 2a by a. Setting ψ + θ = ξ, the mean die pressure q may be written as

q

2k
= (θ + ξ) + a

b
[I0(2

√
θξ) − 4L(θ, ξ)] (38)

where
b

a
= I0(2

√
θξ) + 2F1(θ, ξ)

For a given angle of inclination ψ, the above expressions furnish the relationship
between q/2k and b/a parametrically through θ, the quantities I0, L, and F1 being

† Slipline fields for both smooth and rough dies have been proposed by W. Johnson and P. B. Mellor,
Engineering Plasticity, pp. 623–624, Van Nostrand, London (1973).
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Figure 8.19 Plastic compression of a tapered projection in a large block. (a) Slipline field;
(b) hodograph.

obtained from Table A-3 or A-4. The rigid material in the corner FBJ is found not
to be overstressed if

θ � π

4
− ψ

2

The plastic state of stress at the corner for the limiting value of θ involves a singularity
at B over an angular span θ, lying between a rectangular zone and a triangular zone
of constant stress. The results based on (38) are shown graphically in Fig. 8.20 for
various values of ψ, the limit of applicability of the solution being shown by the
broken line.

The velocity of the rigid die is represented by the vertical vector PQ of mag-
nitude U in the hodograph (Fig. 8.19). A velocity discontinuity of amount

√
2U

occurs across the slipline through O, which is mapped as the circular arc O′F ′ of
angular span ψ + θ. The field O′F ′C′E′ of the hodograph is defined by O′F ′ and its
reflection in O′E′, which is the image of the die face OA. The material triangle ABC
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Figure 8.20 The mean die pressure at the yield point for a tapered projection.

is instantaneously displaced with a velocity that is represented by the vector PC′.
The sense of rotation of the sliplines and their corresponding images indicates that
the plastic work rate is nowhere negative.

8.4 Cylindrical Depression in a Large Block

(i) Indentation by a cylindrical indenter A semi-infinite block of metal is indented
by the curved surface of a smooth circular cylinder of radius R. The depth of inden-
tation is assumed small in comparison with the width of the area of contact between
the cylinder and the block. At any instant during the process, let c denote the depth
of the lowest point of the cylinder below the original surface, and a the correspond-
ing semiwidth of the cylindrical depression (Fig. 8.21). The cylinder exerts normal
pressure over the surface of contact CA, while the remainder of the surface is trac-
tion free. The problem is to determine the position of the point A, the shape of the
raised surface AB, and the pressure distribution along CA. The downward speed of
the cylinder is taken as unity with c as the time scale.

The associated slipline field ACDEB may be considered as an appropriate mod-
ification of the field A′OD′E′B, which corresponds to the indentation by a flat punch
of width equal to 2a. If the velocity field for the flat punch is assumed as a first
approximation for the cylindrical indenter, the deformed free surface at each stage
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Figure 8.21 Indentation of a plane surface by a cylindrical punch. The perturbed slipline field is only
diagrammatic.

moves with a velocity whose vertical component is unity.† Let c1 be the value of c
for which deformation first occurs at a given surface particle specified by its distance
x from the vertical axis, and c2 the instant when the same particle comes in contact
with the indenter. If y denotes the vertical height of the particle above the original
surface, then

dy

dc
= 1 (c1 < c < c2)

dy

dc
= −1 (c > c2)

During the interval 0 < c < c1, the particle remains at rest. Since geometry changes
are neglected, we immediately get on integration,

y = c − c1 c1 � c � c2

y = −c + 2c2 − c1 c � c2
(39)

If the configuration of Fig. 8.21 corresponds to c > c2, the considered particle lies on
AC, and the height of the particle above C is 2c2 − c1 by (39). Then from geometry

x2 = 2R(2c2 − c1)

The distance x is related to the value of a corresponding to the instants c1 and c2 by
the expression

x = a(c2) = 2a(c1)

† A. J. M. Spencer, J. Mech. Phys. Solids, 10: 17 (1962).
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The above equations can be satisfied by assuming c2/c1 to have a constant value m
(say). Then

a(c1) =
√

R

(
m − 1

2

)
c1 a(c2) =

√
2R

(
2 − 1

m

)
c2

which will be mutually consistent if m = 4. The semiwidth of the region of contact
is therefore given by

a(c) = √
7Rc/2 (40)

Substituting the values c1 = x2/(14R) and c2 = 4c1 in (39), the equation of the
deformed surface is obtained as

y = −c + x2

2R
0 � x � a

y = c − x2

14R
a � x � 2a

(41)

The height of A above the original surface is therefore equal to 3
4 c. The slipline field

ACDEB can now be constructed from the known shapes of AB and AC, and the given
conditions along them. It may be verified that the volume of the raised lips above
the original surface is equal to the volume of the depression below this surface, as
required by the incompressibility of the material.

Consider the α line through a typical point on the surface of contact, the position
of the point being specified by the distance x. The point of intersection of this slipline
with AB is situated at a distance 2a − x from the axis of symmetry, to the above order
of approximation. By (41), the slopes of AC and AB at the extremities of this slipline
are numerically equal to x/R and (2a − x)/7R respectively. The angle turned through
by this slipline is therefore equal to

π

2
− 2(a + 3x)

7R

Substituting from (40), and using Hencky’s equation, the normal pressure q at a
generic point on the surface of contact is obtained as

q

2k
=

(
1 + π

2

)
−

{√
2c

7R
+ 6x

7R

}
(42)

The vertical load applied to the block is 2k(2 + π)a approximately, where a is given
by (40). In order to improve this approximation, and to derive the slipline field around
the indenter, it is necessary to consider a second approximation for the velocity
field.†

† The plastic deformation of a plane surface produced by rolling contact with a rigid circular
cylinder has been examined by E. A. Marshall, J. Mech. Phys. Solids, 16: 243 (1968).
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Figure 8.22 Expansion of
a semicylindrical cavity.
(a) Slipline field; (b) unit
diagram.

(ii) Expansion of a semicylindrical cavity Consider the related problem in which
a semicylindrical cavity is expanded from a point O on the plane surface of an
infinitely extended medium.† The shape of the cavity is maintained at each stage by
the application of a suitably distributed radial pressure over the cylindrical surface
AC of radius c (Fig. 8.22). The surface of the coronet ABE is free from external

† R. Hill, Proc. 7th Int. Congr., Appl. Mech., London (1948); The Mathematical Theory of
Plasticity, pp. 223–226, Clarendon Press, Oxford (1950).
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forces, and the region ADEB is carried outward as a rigid body, a part of it having
been unloaded from a previous plastic state. The sliplines AD and DE are assumed
straight, inclined at 45◦ to the original plane surface. The normal and shear stresses
across these sliplines are each equal to k, with the direction of the shear stress as
shown, so that conditions of force and moment equilibrium of ADEB are identically
satisfied.

All β lines in the field ACD are straight, meeting the cavity surface at 45◦. The
α lines are the involutes of a circle with center O and radius c/

√
2. These lines may

therefore be generated by unwinding a taught string from the circular evolute. Let θ

denote the angular position of any point K on the cavity surface with respect to the
point C. The angle between the β lines through C and K is also θ, and consequently
the length KL is equal to cθ/

√
2. The normal pressure at K must have the value

q = 2k
(

1 + π

2
− θ

)
(43)

by Hencky’s equations. The greatest pressure therefore occurs at the deepest point C
of the cavity. Since the areas OAC and ABE must be equal to one another, while AD
is of length πc/2

√
2, the length AB must be equal to the cavity radius c. The entire

configuration remains geometrically similar during the formation of the cavity. It
can be shown that the rigid material below CDE is capable of supporting the stresses
acting across the boundary.

Since the normal component of velocity vanishes along the plastic boundary
CDE, the velocity component along the straight sliplines is zero throughout the field
ACD. The particles therefore move along the curved sliplines with a constant speed√

2, the rate of radial expansion of the cavity being unity when c is the time scale.
This is compatible with the assumed rigid body motion of the coronet, which slides
over DE with a speed equal to

√
2. In the unit diagram, the foci lie on the circular

arc B′N with center O′ and radius
√

2, where O′B′ and O′N are parallel to the α

directions at D and C respectively. The figure O′C′N ′B′ is in fact the hodograph of
the process with O′ representing the pole and O′C′ the radial velocity of the cavity
surface at C.

The trajectories of the particles in the unit diagram are straight in the region
A′D′E′B′ and curved in the region A′C′D′. The tangent at any point P′ on a curved
trajectory passes through the corresponding focus S. This is located by drawing the
tangent P′T to the circle with center O′ and radius 1/

√
2, and then producing the

radius OT to meet the focal circle at the required point. Since O′S is inclined at 45◦
to O′Q′, where Q′ is the point of intersection of P′T and C′A′, it follows that Q′S
is tangential to the boundary circle and is of unit length. Let (ρ, φ) be the polar
coordinates of P′ with respect to O′ and the downward vertical, and let ψ denote
the angle O′P′S. Since SQ′ = O′Q′ = 1, it follows from the geometry of the triangle
O′Q′P′ that

ρ2(1 − cos ψ) = 1 or cos ψ = ρ2 − 1

ρ2
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The differential equation of the trajectory in the region A′C′D′ is

dφ

dρ
= − tan ψ

ρ
= −

√
2ρ2 − 1

ρ(ρ2 − 1)
(44)

The arc element ds, measured in the direction of increasing φ, is −dρ sec ψ.
Substitution in (12) gives

dc

c
= ds

ρ
= −dρ

ρ
sec ψ = − ρdρ

ρ2 − 1

Let c0 be the value of the cavity radius when a particle, whose image is P′ in the
final state, is overtaken by the plastic boundary. If (ρ0, φ0) are the coordinates of the
point P′

0 where the trajectory meets the boundary C′D′, the integration of the above
equation furnishes

c2(ρ2 − 1) = c2
0(ρ2

0 − 1) (45)

To find the final position P of a corner P0 in a square grid, c0 is first obtained by
drawing O′P′

0 parallel to OP0, which is of length c0ρ0. Equation (45) then gives
ρ, and the final angle φ is obtained by the integration of (44). The distortion of the
square grid computed in this way is shown in Fig. 8.23.

It follows, from the unit diagram, that the material which finally occupies the
triangle BDE has always moved parallel to DE after becoming plastic. Hence, this
material was originally contained in the triangle ODE, and has suffered a simple
shear parallel to DE on crossing the plastic boundary. The elements that form the
cylindrical surface of the cavity were originally situated along OC, and have suffered
heavy distortions of a complex character. Due to the nature of the loading assumed
in this problem, the height of the coronet is somewhat greater than that expected
when a semicylindrical indenter is used to form the cavity.

Figure 8.23 Distortion of a square grid around an expanded semicylindrical cavity (after R. Hill).
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8.5 Compression Between Smooth Platens

A rectangular block of material is compressed symmetrically by a pair of rigid par-
allel platens under conditions of plane strain. Zones of plastic material are initiated
at the corners of the platens, the width of which is assumed smaller than the width
of the block. Since the material is rigid/plastic, the platens cannot approach one
another until the plastic zones have spread through the thickness of the block. When
the load attains the yield point value, the plastic compression of the block begins,
and the rigid overhangs are thrust apart. In a real material, with a low rate of work-
hardening, the load-compression curve has a pronounced bend, which marks the
beginning of large plastic strains. The mean load corresponding to the bend is very
closely equal to the rigid/plastic yield point load. The following solution applies to
the initial yielding and the continued deformation of an ideally plastic material with
a well-defined yield point.†

(i) Width/height ratios between 1 and 2 Consider the slipline field in the upper
left-hand quadrant of the block when the ratio of the width 2w of the platens to the
current height 2h of the block lies between 1 and 2 (Fig. 8.24). Depending on the
value of the ratio w/h, there are two types of field, both involving a stress singularity
at the edge of the platen. All sliplines meet the axes of symmetry AF and DF, and the
frictionless boundary OA, at an angle of 45◦. It follows from this boundary condition
that the angle turned through by each curved slipline of the various domains is equal
to the angle ψ of the centered fan OBC. The field shown in (a) holds for w/h �

√
2

and contains a region BCGHED where one family of sliplines is straight having
a constant length λ1. The field shown in (b) holds for w/h �

√
2, and involves a

region CEGHIJ in which one family of sliplines is again straight and of length λ2.
For given values of h and ψ, the semiwidths of the platen corresponding to the two
fields are denoted by w1 and w2 respectively. The straight part of the exit slipline
OBD disappears when w1 = w2 = √

2h, while the curved part of the exit slipline
vanishes for ψ = 0, giving w1 = h and w2 = 2h.

To analyze the field of Fig. 8.24a, the sliplines OC and FE are represented by
vectors σ1 and σ′

1 respectively (Sec. 6.5(iii)). Then the curves GC and HE, generated
on the concave and convex sides of OC and FE, are represented by T−1

ψ σ1 and Tψσ′
1

respectively. Since the radius of curvature at any point of GC numerically exceeds
that at the corresponding point of HE by the amount λ1, we have

T−1
ψ σ1 = Tψσ′

1 + λ1c

where c is the vector representing a circular arc of unit radius. Similarly, the fact
that BC and DE are given by Qψψσ1 and T−1

ψ σ′
1 respectively, leads to the relation

Qψψσ1 = T−1
ψ σ′

1 − λ1c

† A. P. Green, Phil. Mag., 42: 900 (1951).
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Figure 8.24 Slipline fields for
compression of a block between
smooth platens. (a) 1 � w/h �

√
2;

(b)
√

2 � w/h � 2.

where Qψψ = (Tψ −T−1
ψ )/2. The elimination of c and σ′

1 from the above equations
readily furnishes

σ′
1 = 1

2σ1 (T−1
ψ − 1

2 Tψ)σ1 = λ1c (46)

The first relation of (46) shows that the sliplines OC and FE are similar in the ratio
2:1, and the associated fields OCG and FED are therefore similar in the same ratio.

Turning now to the field of Fig. 8.24b, let σ2 and σ′
2 represent the curves AI

and DE respectively. The curves HI and GE are then given by T−1
ψ σ2 and Tψσ′

2
respectively. Since the normal distance between the two curves is λ2, we have

T−1
ψ σ2 = Tψσ′

2 + λ2c



chakra-08.tex 28/12/2005 17: 10 Page 676

676 theory of plasticity

The vectors representing the curves CB and CE are λ2c and Tψσ2 + λ2c respec-
tively. By (77), Chap. 6, σ′

2 may be written as

σ′
2 = Pψψ(λ2c) + Qψψ(Tψσ2 + λ2c)

= Tψ(λ2c) + Qψψ(Tψσ2)

since Pψψ + Qψψ =Tψ. Premultiplying this equation by the operator T−1
ψ gives

T−1
ψ σ′

2 = Qψψσ2 + λ2c

Substituting for Qψψ, and proceeding as before, it is readily shown that

σ′
2 = 1

2σ2 (T−1
ψ − 1

2 Tψ)σ2 = λ2c (47)

The first of these relations indicates that the fields AIJ and DEG are similar to one
another in the ratio 2:1, which means that AJ = 2DG, and that the vertical distance
of I from the platen is twice the vertical distance of E from the longitudinal axis of
the block.

It follows from (46) and (47) that σ1/λ1 and σ2/λ2 satisfy the same operational
equation, and are therefore equal to one another. In other words, the sliplines rep-
resented by σ1 and σ2 are similar in the ratio λ1:λ2, and so are the fields defined by
them on either side. Thus, the straight face OG of (a) is proportional to the length
AH of (b) in the ratio λ1:λ2. Since the field FEH of (a) is one half of the similar
field generated by OC on its convex side (not shown), the length AJ of (b) and FH
of (a) are in the ratio 2λ2:λ1. Consequently,†

w1

h
= λ1

λ2

w2

h
= 2λ2

λ1
w1w2 = 2h2 (48)

When λ1 = λ2 = 0, we obtain σ1 = σ2 = σ, which is found to satisfy the matrix
equation T2

ψσ = 2σ. This indicates that σ is the eigenvector of the matrix Tψ, the

corresponding eigenvalue being equal to
√

2. The value of ψ that corresponds to the
eigenfield is found to be 19.67◦ approximately.

For a selected value of ψ < 19.67◦, the vector σ1/λ1 or σ2/λ2 can be determined
from (46) or (47) by a process of matrix inversion. The coefficients of the vector
σ1/λ1 having been found, it is a straightforward matter to compute the ratios w1/λ1
and h/λ1 from the construction of the domains OCG and FEH. When w1 and λ1
are thus found in terms of h, the corresponding quantities w2 and λ2 are known
from (48). The conditions of zero horizontal force across the slipline OBD gives
the hydrostatic pressure at O, considered on this slipline. The stress distribution
throughout the field than follows from Hencky’s equations.

† A. P. Green, Phil. Mag., 42: 900 (1951); I. F. Collins, Proc. R. Soc., A, 303: 317 (1968).
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(ii) Further properties of the field Let p1 and p2 denote the hydrostatic pressures
in the uniformly stressed regions AGH and OCJ of the fields (a) and (b) respec-
tively. The mean normal pressures exerted on the plane boundary by the regions
of variable stress in the two fields are denoted by s1 and s2 respectively, when the
hydrostatic pressure origins are taken at G and J . If the mean normal pressures on
OA corresponding to the fields (a) and (b) are q1 and q2 respectively, the vertical
equilibrium requires

q1w1 = s1(w1 − t1) + kt1 + p1w1

q2w2 = s2(w2 − t2) + kt2 + p2w2

where t1 = λ1/
√

2 and t2 = λ2/
√

2. In view of the similarities established above,
the mean normal pressures acting across HF in (a) and AH in (b) are −s2 and −s1
respectively. Since the resultant horizontal force across AF is zero, we have

−s2(h − t1) − kt1 + p1h = 0

−s1(h − t2) − kt2 + p2h = 0

Eliminating s1 and s2 between the two sets of equations, and using (48), we arrive
at the result

q1 = q2 = p1 + p2 (49)

Thus, for a given value of ψ, the mean normal pressures in the two cases are
identical. To calculate the value of this mean pressure, it is only necessary to find the
hydrostatic pressures in the regions of constant stress. The results of the computation
are presented in Table 8.6, and a graphical plot for the mean pressure is shown in
Fig. 8.25.

For reasons of symmetry, velocity discontinuities can only occur along OCEF in
(a), and along OBDEIA in (b). The outward speed of the rigid overhang is (w1/h)U in
the first case and (w2/h)U in the second case, where U is the downward speed of the
upper platen. In (a), the velocity is continuous across the exist slipline OBD which
is mapped into a single point B′ in the hodograph having its pole at P (Fig. 8.26).
The particles immediately above and below the discontinuity OCF are mapped into
the parallel curves O′C′F ′ and O′′C′′F ′′ respectively. The velocity is constant along
each straight slipline, the triangle AGH being carried down the platen with velocity

Table 8.6 Data for plane strain compression of a block between smooth flat dies

ψ◦ λ1/h λ2/h w1/h w2/h p1/k p2/k q/k

0.00 1.4142 1.4142 1.0000 2.0000 1.0000 1.0000 2.0000
4.00 1.1959 1.0550 1.1335 1.7644 0.9787 1.0359 2.0146
8.00 0.9361 0.7491 1.2497 1.6004 0.9077 1.1345 2.0422

12.00 0.6388 0.4767 1.3401 1.4924 0.7781 1.2879 2.0660
16.00 0.3126 0.2238 1.3968 1.4318 0.5849 1.4928 2.0778
19.67 0 0 1.4142 1.4142 0.3533 1.7263 2.0796
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Figure 8.25 Variation of the mean die pressure with the width/height ratio for frictionless compression.

U. In (b), the particles immediately to the right of the slipline OBD are mapped
into the circular are B′D′, whose center Q maps the rigid overhang. The velocity
discontinuity propagating along the slipline DEIA gives rise to the parallel curves
D′E′A′ and D′′E′′A′′ in the hodograph. The slipline field and the hodograph in each
case form identical networks, and the plastic work rate is found to be everywhere
positive.

Consider now the artificial deformation mode in which the hodograph of
Fig. 8.24a is represented by Fig. 8.26b by suitably modifying the velocity boundary
conditions. The artificial mode differs from the actual one in that there is a velocity
discontinuity along OBDEH, instead of one along OCEF, and in addition there is a
uniform normal velocity on AH. This additional velocity is represented by the vector
RA′ in the hodograph, and its magnitude is equal to (t2/h)U. Equating the rate at
which material enters the deforming zone across OA and HA, and leaves it across
OD, we get

w1 + t1t2
h

= w2

since the velocity of the rigid overhand is now of magnitude (w2/h)U. The above
relation may be combined with (48) to obtain†

w2
1 + 1

2λ2
1 = w2

2 − λ2
2 = 2h2 (50)

† I. F. Collins, J. Mech. Phys. Solids, 16: 137 (1968).
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Figure 8.26 Hodographs for com-
pression between smooth parallel
platens. (a) 1 � w/h �

√
2; (b)√

2 � w/h � 2.

The new mode of deformation introduced above has no physical significance. Such
artificial modes are, however, occasionally useful for establishing certain relations
in a straightforward manner.

(iii) An explicit solution for 1 � w/h � 2 Since the fan angle ψ is fairly small, it is
a good approximation to assume the curved part of the exit slipline to be a circular
arc, its radius of curvature being denoted by

√
2ρ1 for the first field and

√
2ρ2 for

the second field.† Considering the field (a) of Fig. 8.27, let CL and EN be drawn
perpendiculars from the vertices to the opposite sides of the similar domains OCG
and FED. By Eqs. (149), Chap. 6, the position of C relative to O in field (a) is given
by the distances

OL � 1
2 (w1 − t1)(1 + sin ψ) CL � (h − t1)(1 − sin ψ)

† J. Chakrabarty, unpublished work (1978). For a different approximation, see W. Johnson and
I. E. McShane, Appl. Sci. Res., A9: 169 (1960).
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Figure 8.27 Compression between smooth platens (1 � w/h � 2). The curved part of the exit slipline
is assumed as a circular arc of radius ρ1 in (a) and ρ2 in (b).

Since EN = 1
2 CL, and the height of C above E is t1(cos ψ − sin ψ), it follows from

simple geometry that

3
2 (h − t1)(1 − sin ψ) + t1(cos ψ − sin ψ) = h

The horizontal distance between C and E is t1(cos ψ + sin ψ). Since FN = 1
2 OL in

view of the similarity of OCG and FED, we have

3
4 (w1 − t1)(1 + sin ψ) + t1(cos ψ + sin ψ) = w1

The above equations immediately furnish the ratios t1/h and w1/h in terms of the
angle ψ. Thus

t1
h

= 1 − 3 sin ψ

3 − 2 cos ψ − sin ψ

w1

h
= 4 cos ψ + sin ψ − 3

3 − 2 cos ψ − sin ψ
(51)

As ψ increases from zero, t1/h decreases from unity and w1/h increases from unity.
By (148), Chap. 6,

ρ1

h
= 1 − t1/h

1 − cos ψ + sin ψ
= 2

3 − 2 cos ψ − sin ψ
(52)

The hydrostatic pressure at O on OB is p0 = p1 + 2kψ by Hencky’s equation, where
p1 is the pressure in GAH. The hydrostatic pressure along the straight segment DB is
equal to p1. Using Eq. (150), Chap. 6, the condition of zero horizontal thrust across
ABD may be written as

(h − t1)(p1 + 2kψ) + k[ 1
2 (w1 − t1) − 2ρ1ψ] + t1(p1 − k) = 0

or

p1

k
= 2ψ

(
ρ1 + t1

h
− 1

)
+ 3t1 − w1

2h
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Substituting from (51) and (52), the expression for p1/k in terms of ψ is obtained as

p1

k
= 1 − 4(1 + ψ)sin ψ − 4ψ cos ψ

3 − 2 cos ψ − sin ψ
(53)

The region BCED in the field (b) may be constructed by the vectorial superposition
of the centered fans defined by BC and BD. Considering the perpendicular drawn
from E on OA, it can be shown to the above order of approximation that

OT � 1
2 wz(1 + sin ψ) + t2(1 − cos ψ) ET � h(1 − sin ψ) + t2(1 − cos ψ)

Let L and N be the feet of the perpendiculars drawn from I and E on OA and DF
respectively. Since the vertical and horizontal projections of EI are t2(cos ψ + sin ψ)
and t2(cos ψ − sin ψ) respectively, we obtain from geometry,

IL = (h + t2)(1 − sin ψ) − 2t2 cos ψ EN = h sin ψ − t2(1 − cos ψ)

JL = ( 1
2 w2 − t2)(1 + sin ψ) GN = 1

2 w2(1 − sin ψ) − t2(2 − cos ψ)

In view of the similarity of the regions JIA and GED, we have IL = 2EN and
JL = 2GN. The above relations therefore furnish

t2
h

= 1 − 3 sin ψ

4 cos ψ + sin ψ − 3

w2

h
= 2(3 − 2 cos ψ − sin ψ)

4 cos ψ + sin ψ − 3
(54)

It may be verified that (51) and (54) identically satisfy (48) and (50), whereλ1 = √
2t1

and λ2 = √
2t2. Since the height of B above D is h − t2(cos ψ + sin ψ), it follows

from (148), Chap. 6, that

ρ2

h
= 1 − (t2/h)(cos ψ + sin ψ)

1 − cos ψ + sin ψ
= 3 cos ψ

4 cos ψ + sin ψ − 3
(55)

The hydrostatic pressure along OB is p0 = p2 − 2kψ, where p2 is the pressure in the
triangle OCJ. The horizontal compressive force acting on the slipline BD is given
by Eq. (150), Chap. 6, with a and b denoting the horizontal and vertical projections
of BD. Equating the resultant horizontal force across OBD to zero, we get

h(p2 − 2kψ) + k[ 1
2 w2 − 2t2(cos ψ − sin ψ)] − 2kρ2ψ = 0

Inserting from (54) and (55), and simplifying the resulting expression, we arrive at
the formula

p2

k
= 1 + 2

{
ψ + 3 cos ψ(ψ − sin ψ) − sin ψ(1 − 3 sin ψ)

4 cos ψ + sin ψ − 3

}
(56)

According to this approximate analysis, λ1 = λ2 = 0 when the fan angle ψ is equal to
sin−1(1/3) � 19.47◦, and this corresponds to w1 = w2 = √

2 h and ρ1 = ρ2 � 2.56h.
The value of q1 = q2 in this case is 2.067k, which may be compared with the exact
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value 2.080k obtained by the matrix analysis. The approximate solution is
represented by the chain-dotted curve in Fig. 8.25.

(iv) General width/height ratios greater than unity For all integral width/height
ratios greater than unity, the block instantaneously deforms as a number of rigid
units sliding along a crisscross of straight sliplines inclined at 45◦ to the smooth
platens.† There is a constant velocity discontinuity of amount

√
2U initiated at the

block center and propagated along the length of the block by successive reflections
from the platens. This simple solution cannot be valid for nonintegral values of
w/h, since the velocity discontinuity then terminates on the exit sliplines, a situation
which is incompatible with the rigid body motion of the overhangs. The solution for
intermediate width/height ratios must therefore be such that it degenerates into the
crisscross pattern when w/h approaches an integral value.

The obvious extensions of the fields of Fig. 8.24 for w/h greater than 2 are
shown in Fig. 8.28. Each field involves m number of curvilinear triangles bordering
the platen.‡ The boundaries of the successive domains of the field meet the platen at
G1, E2, etc., and the horizontal axis of symmetry at E1, G2, etc. The unknown initial
slipline is determined from the condition that Gm and Em lie on the same vertical
axis. If the initial slipline of the centered fan in (a), or the first regular domain in (b)
is represented by σ, it can be shown that

[Pψψ − (1 + 2m)Qψψ]σ = 2mλc (57)

where λ is the length of the straight segment of the exit slipline. For a given value
of m, the fields (a) and (b) coincide when λ = 0, the corresponding vector being an
eigenvector satisfying the equation

mT2
ψσ = (1 + m)σ

The eigenvalue of the matrix Tψ is evidently equal to
√

(1 + m)/m. The width/height
ratio corresponding to this eigenfield is found to have the value

√
m(1 + m). The

generalizations of (48) and (50) are easily shown to be

w1

h
= mλ1

λ2

w2

h
= (1 + m)

λ2

λ1
w1w2 = m(1 + m)h2

w2
1 + 1

2 mλ2
1 = w2

2 − 1
2 (1 + m)λ2

2 = m(1 + m)h2

(58)

where the subscripts 1 and 2 refer to the fields (a) and (b) respectively. The mean
pressure on the platen in both cases is readily shown to be equal to the sum of the
hydrostatic pressures in the uniformly stressed regions as before. The variation of
q/2k with w/h is shown in Fig. 8.25. The pressure oscillates between maxima and

† When the dies overlap the block, the die pressure is 2k for all width/height ratios, the sliplines
being straight with an inclination of 45◦ to the die face.

‡ A. P. Green, Phil. Mag., 42: 900 (1951); I. F. Collins, Proc. R. Soc., A, 303: 317 (1968).
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Figure 8.29 Compression between frictionless platens. (a) Velocity discontinuity pattern; (b) plane
strain compression test.

minima corresponding to eigenfields and integral width/height ratios respectively.
The oscillatory nature of the solution has been confirmed by experiment.†

An upper bound solution for the compression problem can be obtained by assum-
ing the block to be divided into a number of independent rigid units formed by a
symmetrical crisscross of lines inclined at a constant acute angle θ to the horizontal
(Fig. 8.29a). The deformation of the block is produced by sliding of the rigid triangles
along their boundaries, the velocity discontinuity being of amount U cosec θ, where
U is the speed of compression. If there are m triangular units in contact with each
platen, the rate of energy dissipation for a quarter of the block is mkhU cosec2θ, the
dimension of the block in the direction of zero strain being taken as unity. According

† A. B. Watts and H. Ford, Proc. Inst. Mech. Eng., 1B: 448 (1952). See also B. B. Murdi and
K. N. Tong, J. Mech. Phys. Solids, 4: 121 (1956).
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to the upper bound theorem, this energy must exceed the rate of external work which
is equal to qwU. Since tan θ = mh/w, the upper bound formula based on equating
the rate of external work to the rate of energy dissipation becomes†

q

2k
= 1

2

(
w

mh
+ mh

w

)
(59)

For any given ratio w/h, the integer m in (59) should be such that the corresponding
value of q/k is the least. The largest width/height ratio for a given m is equal to√

m(1 + m), which corresponds to a peak value of the pressure. The upper bound
pressure given by (59) is shown by the broken curve in Fig. 8.25. A minimum value of
2k for q occurs for integral values of w/h, as in the exact solution. An obvious lower
bound is q = 2k, which is the minimum pressure required for plastic compression
of the block.

The stress-strain curve of a strip metal is accurately obtained by the plane strain
compression test, in which the strip is compressed between a pair of opposed dies
completely spanning its width (Fig. 8.29b). The dies are sufficiently long and narrow,
so that the constraint of the nonplastic material on either side inhibits lateral spread,
and the deformation is essentially plane strain. The ratio of the die width to the
strip thickness should be maintained between 2 and 4 by appropriately changing the
dies during the test. The load is applied incrementally, the specimen being removed
and measured at each stage with careful lubrication of the strip before each load
increment. The current value of the yield stress is obtained by extrapolating to
zero deformation for each particular test involving 1 to 2 percent reduction. This
technique ensures that friction is not able to build up during the test. The reduction
at each increment of load must be sufficient to surmount the knee of the stress-strain
curve at each stage.‡

8.6 Compression Between Rough Platens

(i) Perfectly rough platens (w/h � 3.64) Consider the plastic compression of a
block between a pair of rough parallel platens, when there is an overhang of rigid
material on either side of the compressed region. For sufficiently small values of the
width/height ratio greater than unity,§ the solution involves a wedge-shaped rigid
material extending over the whole platen (Fig. 8.30). The exit slipline AC is straight,
making an angle of 45◦ with the horizontal axis of symmetry. The angle θ of the
centered fan ABC depends on the ratio w/h. The circular arc CB and its reflection
in the axis define the remaining field CBD, where D is at the center of the block.
The equilibrium of the overhang requires the mean compressive stress on AC to be
equal to k. Since we do not know the stress distribution in the rigid region above

† The upper bound solution, due to R. Hill, has been presented by A. P. Green, op. cit.
‡ A. B. Watts and H. Ford, Proc. Inst. Mech. Eng., 169: 1141 (1955).
§ The slipline field is essentially due to L. Prandtl, Z. angew. Math. Mech., 3: 401 (1923).
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Figure 8.30 Compression of a block between perfectly rough parallel platens when 1 � w/h � 3.64.
(a) Slipline field; (b) hodograph.

the slipline ABD, only an average pressure over the platen can be calculated. By
Eq. (99), Chap. 6, the average value of the normal pressure is given by

q

2k
= h

w
{I0(2θ) + 2θ[I0(2θ) + I1(2θ)]} (60)

where w/h corresponding to any given θ is obtained directly from the table
(Appendix). The above pressure is identical to that for the indentation of a block
between a pair of flat dies with a height/width ratio equal to w/h (Sec. 8.1(ii)).
The solution is valid for 0 � θ �π/4, which is equivalent to 1 � w/h � 3.64. In the
limiting case of θ = π/4, the radial slipline AB is coincident with the surface of the
platen, and the frictional stress is then equal to the yield stress in shear.

If the speed of each platen is denoted by U, there is a tangential velocity discon-
tinuity of amount

√
2U along the boundary of the rigid zone. The particle situated

immediately to the left of D moves horizontally with a velocity represented by the
vector PD′ in the hodograph. The slipline DBA is mapped into the circular arc D′B′
which defines the remaining field D′B′C′ of the hodograph. The velocity is continu-
ous across the slipline AC, and is represented by the vector PC′. It follows from the
similarity of the slipline field and the hodograph that the vector PC′ is of magnitude
(w/h)U, as required by the incompressibility of the material. The plastic work rate
is found to be everywhere positive.

For a given value of w/h, the coefficient of friction µ on the platens must exceed
a critical value µ∗ in order that the above solution can be valid. The minimum
coefficient of friction is the least possible ratio of tangential stress to the normal
pressure for which the rigid corner at A reaches the yield limit. Using (33) and (35),
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Table 8.7 Results for compression between rough parallel platens

θ 0◦ 10◦ 20◦ 30◦ 40◦ 45◦

w/h 1.0 1.383 1.853 2.440 3.190 3.644
q/2k 1.0 1.049 1.172 1.342 1.551 1.667
µ∗ 0 0.149 0.261 0.343 0.383 0.389

Chap. 6, with λ1 = π/4, λ2 = θ, α = π/4 − θ, and q1 = k(1 + 2θ), it is found that

µ∗ = sin 2θ

1 + 2θ + cos 2θ
(61)

As θ increases from zero, µ∗ also increases from zero, reaching the limiting value
0.39 when θ is π/4. Numerical values of w/h, q/2k, and µ∗ for different values of
θ are given in Table 8.7.

The solution is independent of the amount of compression, provided h is taken to
be the current semiheight of the block. The width/height ratio therefore increases as
the plastic compression continues. To find the equation of the contour of the material
squeezed out during a finite compression, let 2t be the thickness of the overhang at a
distance z from the exit plane AA. The considered section of the overhang coincided
with AA when the block thickness was 2t. During an incremental compression
specified by the thickness change 2dh, the same section moves out through a distance
dz = −(w/h)dh. By the time the thickness is reduced to 2h, this section has moved
to the distance z, where

z = w ln

(
t

h

)
or t = h exp

( z

w

)
(62)

It follows from above that the tangent to the free surface at the edge of the platen
passes through the block center. The total displacement of the overhang is equal to
w ln(h0/h), where 2h0 is the initial thickness of the block.

(ii) Perfectly rough platens (w/h � 3.64) For w/h � 3.64 and µ� 0.39, the α lines
meet the platens tangentially† over a certain length d (Fig. 8.31), where the frictional
stress has its greatest value k. The ratios d/h and w/h are defined by the angle θ

between radial sliplines AC and AD. The rigid region above MN moves down with
the platen, losing material to the plastic region as the compression proceeds. The
region CBE is one half of the field defined by the equal circular arcs CB, while BEFM
is part of the field defined by BE and the limiting state of friction along the platen
(Sec. 6.7(i)). The slipline EF and the condition of symmetry about the horizontal

† The slipline field was given by L. Prandtl, op. cit., in relation to the compression between a pair of
overlapping platens. Computations based on Prandtl’s field have been carried out by R. Hill, E. H. Lee,
and S. J. Tupper, J. Appl. Mech., 18: 46 (1951). For experimental evidence, see G. T. Van Rooyen and
W. A. Backofen, J. Mech. Phys. Solids, 7: 163 (1959).
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Figure 8.31 Slipline field, hodograph, and pressure distribution in compression between perfectly
rough parallel platens (w/h � 3.64). The hodograph corresponds to the upper quadrant of the block.

axis define the remaining field EFN. By an analytical treatment for this region, it
can be shown that†

w

h
= I0(2ξ) + 2F1(ξ, ξ) − 2

{√
θ

η
I1(2

√
θη) + 2F2(θ, η)

}
(63)

where F1 and F2 are mathematical functions introduced in Sect. 6.6, and

ξ = π

4
+ θ η = π

2
+ θ

The first two terms appearing on the right-hand side of (63) represent the value of
x/h at the point (ξ, ξ) of the field defined by equal circular arcs through C, which

† The result follows from a direct analysis using the conditions of continuity and symmetry. The
solution has been obtained by J. Chakrabarty, Int. J. Mech. Sci., 33: 89 (1991).
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is taken as the origin of angular coordinates. Since the normal pressure across the
horizontal axis at N is equal to 2k(1 + 2ξ) by Hencky’s equations, the resultant
vertical force P acting over ACN per unit width may be expressed as

P

2kh
= I0(2ξ) + 2ξ[I0(2ξ) + I1(2ξ)] − 2

{
(1 + 2ξ) f (θ) − 2

∫ θ

0
f (α) dα

}

where f (θ) denotes the expression in the curly bracket of (63). The first two terms
of the above equation have been written down by analogy with (60). Evaluating the
integral, we have†

P

2kh
= (1 + 2ξ)

{
I0(2ξ) − 2

√
θ

η
I1(2

√
θη)

}
+ 2ξI1(2ξ)

+ 4[F1(θ, η) − θI0(2
√

θη)] (64)

Let Q denote the vertical load per unit width over AM of length d. The expressions
for d and Q in terms of the angle θ are obtained from Eqs. (127) and (128), Chap. 6,
with χ = π/4 and p0 = k(1 + π/2). The result is

d

h
= √

2

{
I0(2

√
θξ) −

√
θ

ξ
I1(2

√
θξ) + 2F1(θ, ξ) − 2F2(θ, ξ)

}
(65)

Q

2kh
= 1√

2

{(
1 + π

2

)
I0(2

√
θξ) +

(π

2
− 1

)√
θ

ξ
I1(2

√
θξ)

+ 2F1(θ, ξ) + 2F2(θ, ξ)

}
(66)

When θ is a multiple of 15◦, d/h is directly obtained from Table A-10. The normal
pressure q on the platen at a generic point of BM is equal to k(1 + π/2 + 4α), and the
distance of this point from A is given by the right-hand side of (65) with α written
for θ, and ξ denoting the quantity π/4 + α. The pressure distribution on the platen
is represented by the upper solid curve in Fig. 8.31, only an average value of the
pressure being considered over the rigid part MT. If the mean pressures over AT and
MT are denoted by q and q∗ respectively, then

q = p

w
q∗ = P − Q

w − d

The calculated values of w/h, d/h, q/2k, and q∗/2k covering the whole range of
values of θ are given in Table 8.8. The empirical formula

q

2k
= 3

4
+ w

4h

w

h
� 1 (67)

† The integral is readily found on using the relations dF2/dθ = √
θ/η I1(2

√
θη) and

dN/dθ = F2(θ, η), in view of (62), Chap. 6, where N is given by (95), Chap. 6.
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Table 8.8 Compression of a block between perfectly rough platens

θ 0◦ 10◦ 20◦ 30◦ 40◦ 45◦

w/h 3.644 4.282 4.956 5.658 6.369 6.718
d/h 1.414 1.881 2.414 3.035 3.771 4.194
q/2k 1.667 1.828 1.999 2.179 2.360 2.447
q∗/2k 1.908 2.218 2.534 2.867 3.221 3.412

predicts the mean pressure on the platen to within 1 percent when w/h � 2.5. By an
extension of the slipline field of Fig. 8.31, we can obtain the solution for w/h > 6.72,
but no calculations have been made for this range of width/height ratios. The relation
(67) agrees with experiments when the rate of work-hardening is small.

The velocity of the upper platen relative to the horizontal axis is represented
by the vector PQ, of magnitude U, in the hodograph (Fig. 8.31). The rigid/plastic
boundary NM is mapped into the circular are N ′M ′ of radius

√
2U, which is the

magnitude of the velocity discontinuity across this boundary. The shape of the
hodograph is identical to that of the slipline field, except that certain boundaries
are interchanged. The vector PC′, representing the velocity of the rigid overhang,
is therefore of magnitude (w/h)U. Since the horizontal component of velocity over
each vertical section increases from the platen to the axis of symmetry, a vertical
line is deformed into a curve which is convex outward.†

The slipline fields of Figs. 8.30 and 8.31 also apply to the compression of a
rectangular block of width 2w between a pair of overlapping platens under identical
frictional conditions. The triangular region ACA at the end of the block is then
uniformly stressed to the yield point, and is moved outward as a rigid whole. The
free ends of the block therefore remain plane, and the solution continues to hold
as the compression proceeds. The particles on the free surface gradually move round
the corners to come in contact with the platens during the compression.

(iii) Partially rough platens Consider the situation where the frictional stress is a
constant fraction of the normal pressure, whenever the magnitude of the shear stress
is less than the yield stress (Fig. 8.32). The angular span θ of the fan ABC depends on
the coefficient of friction µ which is given by the right-hand side of (61). The triangle
ABE is uniformly stressed to the yield point with the α lines meeting the platen at an
angle π/4 − θ. The construction of the field CBD furnishes the slipline EF, which
in conjunction with the given frictional condition along EG defines the field EFG.
Since the normal pressure increases along EG, the frictional stress would reach the
limiting value k at some point S, provided µ is sufficiently high. Beyond this point,
the sliplines must meet the platen tangentially and normally as in the preceding
solution. The field may be continued as far as the slipline LN passing through the

† The compression of a block between two rough plates of unequal widths has been investigated
by W. Johnson and H. Kudo, Int. J. Mech. Sci., 1: 336 (1960). See also I. F. Collins, J. Mech. Phys.
Solids, 16: 73 (1968), who treated the compression of a block resting on a foundation.
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Figure 8.32 Compression of a block between partially rough platens. (a) Slipline field; (b) hodograph.

assumed block center N . The construction of the slipline field is facilitated by the
graphical method explained in Sec. 6.4(iv). In Mohr’s stress plane, the normal and
shear stresses transmitted to the platen at any point between E and S are represented
by a point X which lies on a straight line passing through the origin and inclined
at an angle tan−1 µ with the negative σ axis,† the corresponding pole of the circle
being on the horizontal through X.

When the semiwidth of the platen has a value between OK and ON, the velocity
discontinuity initiated at the centre of the block disappears on the surface of the
platen, and the shape of the hodograph remains unchanged. If, on the other hand,
the block center is located somewhere between H and K , the velocity discontinuity
is reflected at the platens and finally terminated at the edge A. The hodograph is
then modified by the presence of subsidiary regions where the characteristics of one
or both families are straight. The solution is not valid when the semiwidth of the
platen is less than OH, since the velocity discontinuity then terminates on the exit
slipline AC, which renders the velocity distribution incompatible with the motion of
the rigid overhang.‡ For such values of the width/height ratio, the exit slipline must
be assumed curved as in the case of smooth platens.

† The graphical solution and associated numerical results have been given by J. M. Alexander,
J. Mech. Phys. Solids, 3: 233 (1955).

‡ When the platens overlap the block, the proposed slipline field holds for all geometrically possible
width/height ratios, since the velocity discontinuity can terminate on the edge of the block, causing a
change in shape of the plastic edge. See J. F. W. Bishop, J. Mech. Phys. Solids, 6: 132 (1958).
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As the coefficient of friction decreases, the position of the point where the
frictional stress first attains the value k moves farther from the edge of the platen.
Unless the platen is sufficiently wide, the boundary of the central rigid zone would
not meet the platen tangentially. The entire plastic material in contact with the
platen would therefore consist of alternate regions of constant and variable stresses.
The magnitude of the velocity discontinuity is gradually reduced as it propagates
by successive reflections at the platens. When the rigid/plastic boundary meets the
platen in a region of variable pressure, the velocity discontinuity terminates at the
edge of the platen, thus giving an acceptable solution. The calculated pressure
distributions for w/h = 7 and suitable values of µ are shown graphically in Fig. 8.33,
the mean pressures over the central rigid zone being indicated by broken lines.
The lowest die pressure in each case occurs near the edge of the platen, and is of
magnitude 2k(θ + cos2θ). It may be noted that the frictional stress is equal to k over
a substantial part of the platen for the higher values of µ.

If we assume, for simplicity, that the frictional condition on the compression
platen induces a constant shear stress mk(m � 1), the sliplines meet the platens
at constant angles. In this case, the slipline field and the hodograph form identical

Figure 8.33 Pressure distribu-
tion on the platens for w/h = 7
(after J. M. Alexander). The
broken lines indicate mean pres-
sures over the central rigid zone.
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networks.†The angle which the α lines make with the platens is λ, where cos 2λ = m.
The magnitude of the velocity discontinuity propagated from the center of the block
is multiplied at each reflection from the platens by a constant factor tan λ. The discon-
tinuity is therefore progressively diminished toward the edge, and the straight line
regions of the slipline field are correspondingly reduced in length toward the center.
The solution is only valid for those width/height ratios for which the discontinuities
terminate at the edges of the platens.

(iv) Prandtl’s cycloid solution When the width of the block is large compared to its
height 2h, the slipline field at sufficiently large distances from either end of the block
would approach a limiting configuration. The limiting field is most conveniently
obtained by considering the rectangular components of the stress, where the x axis
is taken along the horizontal axis of symmetry and the y axis through the left-hand
edge of the block. Since the slipline directions are independent of x, it follows that
τxy and σx − σy are also independent of x. We therefore write

τxy = kf (y) σx − σy = 2k
√

1 − f 2

in view of the yield criterion. Substituting for σx and τxy into the equilibrium
equations (3), Chap. 6, we have

∂σy

∂x
+ kf ′(y) = 0

∂σy

∂y
= 0

The second of these equations indicates that σy is independent of y. In view of the
symmetry condition f (0) = 0, the first equation furnishes

f (y) = y

b
σy = −k

(x

b
+ c

)
where b and c are constants. Considering the generalized frictional condition
τxy = mk on y = h, where 0 � m � 1, we get b = h/m. The stress distribution
therefore becomes‡

σx = −k
(

c + mx

h

)
+ 2k

√
1 − m2y2

h2

σy = −k
(

c + mx

h

)
τxy = k

(my

h

) (68)

The constant c can be determined from the condition that the resultant horizontal
thrust on a vertical section must balance the frictional resistance 2mkx. Hence

c = 1

m
sin−1 m +

√
1 − m2 (69)

† A. P. Green, J. Mech. Phys. Solids, 2: 73 (1954); I. F. Collins, Int. J. Mech. Sci., 11: 971 (1969).
‡ L. Prandtl, Z. angew. Math. Mech., 3: 401 (1923); A. P. Green, J. Mech. Phys. Solids, 2:

73 (1954).
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It may be noted that the derivative ∂σx/∂y along the interface y = ±h tends to infin-
ity as m tends to unity. A perfectly rough platen corresponds to m = 1, for which
c = π/2. Assuming the solution (68) to hold as far as the edge x = 0, the pressure
distribution for m = 1 is shown by the broken curve in Fig. 8.31. It is evident that the
above solution is a good approximation even up to a distance h from the edge. The
actual pressure distribution approaches the limiting distribution in a quasi-oscillatory
manner. A similar approach would result for m < 1, though probably more slowly
the smaller the value of m. If (68) is assumed to hold for 0 � x � w, the average
pressure on the platen becomes

q = k
(

c + mw

2h

)
When the platens are perfectly rough, the above formula differs only slightly from
the empirical equation (67).

The slipline field corresponding to (68) may also be expressed analytically. It
follows from Mohr’s circle for the stress that the slope of the α line at any point of
the field is

dy

dx
= −2(k − τxy)

σx − σy
= −

√
1 − my/h

1 + my/h
(70)

The slope of the β line is given by the reciprocal of above with a change in sign.
Setting my/h = sin 2ψ on the right-hand side, we have

dy

dx
= ∓

(
1 ∓ tan ψ

1 ± tan ψ

)
= ∓tan

(π

4
∓ ψ

)
where the upper sign corresponds to the α lines and the lower sign to the β lines. It
follows from the above equation that ψ is the counterclockwise angle turned through
along a slipline from its point of intersection with the axis of symmetry. Substituting
for y on the left-hand side, and integrating, we obtain the equations of the sliplines
in the parametric form

x = d ∓ h

m
[2ψ ± (1 − cos 2ψ)] y = h

m
sin 2ψ (71)

The constant d is evidently equal to the distance between the origin and the point of
intersection of a given slipline with the axis of symmetry. The sliplines are cycloids
(Fig. 8.34), generated by a circle of radius h/m with its center on the axis. The radii
of curvature of the sliplines are numerically equal to

2h

m

√
2
(

1 ± my

h

)
= 4h

m
cos

(π

4
∓ ψ

)
The sliplines meet the platens at constant angles λ and π/2 + λ, where cos 2λ = m.
When m = 1, the horizontal projection of each slipline between the two platens is
πh, the radius of curvature of a slipline at the point of its tangency with a platen
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Figure 8.34 Compression of a sufficiently wide block between perfectly rough platens (m = 1).
(a) Slipline field; (b) hodograph.

being 4h. If the solution is assumed to hold in the central part of a sufficiently large
block, the semiwidth of the rigid wedge would be (1 + π/2)h when m = 1.

At sufficiently large distances from the center of the block, the velocity distribu-
tion should approach a limiting state, such that the strain rates are independent of x.
In view of the boundary conditions vy = −U, y = h, and vy = 0, y = 0, the velocity
components vx and vy satisfying the incompressibility condition may be written as

vx = U
[x

h
+ g(y)

]
vy = −U

( y

h

)
(72)

where g(y) must be determined from the stress-strain relation expressed by Eq. (5),
Chap. 6. Using (68), we get

g′(y) = 2my/h2√
1 − m2y2/h2

and the integration of this equation results in

g(y) = c′ − w

h
− 2

m

√
1 − m2y2

h2 (73)

where c′ is a constant. The term w/h has been included for convenience. The rate of
horizontal flow across a vertical section must be equal to the rate at which material
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to the right is displaced by the platens. Hence

−
∫ h

0
vx dy = (w − x)U

The substitution for vx results in c′ = c/m, where c is given by (69). From (71), (72),
and (73), the velocity components may be expressed as

vx = d′ ∓ U

m
[2ψ ∓ (1 − cos 2ψ)] vy = −U

m
sin 2ψ (74)

where

d′ = −U

(
2 − c

m
+ w − d

h

)
Equations (74) define the hodograph net, which consists of two orthogonal families
of cycloids. The upper sign applies to the α′ curves and the lower sign to the β′
curves shown in Fig. 8.34.

If the rate of change following the motion is denoted by a dot, so that ẏ = vy

and ḣ = −U, the second equation of (72) gives

dy

dh
= − ẏ

U
= y

h
or

d

dh

( y

h

)
= 0

Thus, a given particle remains at the same relative distances from the axis and the
platen. Equally spaced horizontal lines therefore continue to be equally spaced.
Consider, now, the horizontal displacement of a generic particle P during the com-
pression. At any instant of time, when the block thickness is 2h, let ξ be the distance
by which P is in advance of the surface particle Q which was vertically above P in
the initial state. The difference between the horizontal velocities of P and Q is ξ,
which gives

−dξ

dh
= ξ̇

U
= ξ

h
+ 2

m



√

1 − m2y2

h2 −
√

1 − m2




in view of (72) and (73). Since y/h remains constant during the compression, the
above equation is immediately integrated. The result may be expressed as

(
mhξ

h2
0 − h2

+
√

1 − m2

)2

+ m2y2

h2 = 1 (75)

where 2h0 is the initial thickness of the block. It follows from (75) that an original
vertical line is distorted into an ellipse with semimajor axis h/m and semiminor axis
(h2

0 − h2)/mh. When m = 1, the ellipse is tangential to the platens at the extremities
of its major axis. For m < 1, the block may be imagined as part of a thicker block of
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Figure 8.35 Upper bound modes for compression with Coulomb friction. (a) Discontinuity pattern;
(b) hodograph.

height 2h0/m. The calculated distortion for perfectly rough platens has been found
to be in good agreement with experiment.†

(v) Approximate solutions An upper bound solution for plane strain compression
between partially rough platens may be obtained by assuming an instantaneous
sliding of rigid blocks over a crisscross of planes equally inclined to the die face.‡
The number of discontinuities in each quadrant is denoted by m, the discontinuity
pattern and the hodograph when m is odd being shown in Fig. 8.35. The velocity of
each triangular block which slips over the die face is determined from the condition
that the component of this velocity in the direction of the resultant traction is constant
along the die face (see Sec. 2.6(iii)). It follows that the lower vertices of the velocity
triangles must lie on a straight line inclined at an angle λ = tan−1µ to the horizontal.
The magnitude of the velocity discontinuity across the lines through a typical point

† See, for example, A. Nadai, Theory of Flow and Fracture of Solids, p. 537, McGraw-Hill, New
York (1950); J. F. Nye, J. Appl. Mech., 18: 337 (1951).

‡ I. F. Collins, J. Mech. Phys. Solids, 17: 323 (1969).
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on the axis of symmetry is
√

1 + d2/h2 times the vertical component of velocity
of the included material triangle. By the geometry of the hodograph, these velocity
components are

V1 =
(

1 + ν

1 − ν

)
V0, V2 =

(
1 + ν

1 − ν

)2

V0, . . . , Vn =
(

1 + ν

1 − ν

)n

V0

where V0 is the vertical speed of compression, and

ν = µd

h
= µw

mh
n = m − 1

2

Since the length of each discontinuity is equal to
√

d2 + h2, the upper bound on the
mean normal pressure q is given by

qwV0 = k

(
h + d2

h

)
(V0 + 2V1 + · · · + 2Vn)

Substituting for the velocities, and summing up the geometric series, the die pressure
is obtained as

q

2k
= 1

2

(
w

m2h
+ h

w

){
1 + ν

ν

(
1 + ν

1 − ν

)n

− 1

ν

}
(76)

When m is even, say equal to 2n, the velocity discontinuity emanates from the
center of the die face, while the material triangle containing the vertical centerline is
at rest. The associated hodograph may be constructed as before, using the condition
that the rigid blocks sliding over the die face have a constant component V0 cos λ in
the direction of the resultant traction. The application of the upper bound theorem
then leads to

qwV0 = k

(
h + d2

h

)
(2V1 + 2V2 + · · · + 2Vn)

where V1, V2, … are the vertical velocity components given by

Vr = V0

1 − ν

(
1 + ν

1 − ν

)r−1

r = 1, 2, . . .

The parameter ν is the same as before, and the dimensionless die pressure finally
becomes

q

2k
= 1

2

(
w

m2h
+ h

w

){
1

ν

(
1 + ν

1 − ν

)n

− 1

ν

}
(77)

If the friction is vanishingly small, ν tends to zero, and expressions in the curly
brackets of (76) and (77) reduce to m. Both these expressions then coincide with
(59), derived for frictionless compression. Figure 8.36 shows the predicted variation
of the upper bound pressure with the width/height ratio for various values of the
coefficient of friction.
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Figure 8.36 Upper bounds on the mean pressure for compression between partially rough platens.

For µ exceeding a certain critical value, improved upper bounds would result
from the assumption of sticking friction occurring along the die face on one or more
of the sliding blocks. The corresponding hodograph must be modified by using the
condition that the vertical component of velocity of each of these blocks is equal
to V0. The modified upper bounds are incorporated in the appropriate graphical
plots of Fig. 8.37. The last two segments of the rising part of the upper solid curve
correspond to partial sticking friction, while the horizontal segment corresponds to
sticking friction over the whole die face.†

For practical purposes, it is useful to consider an approximate solution based
on assumptions similar to those in von Karman’s theory of rolling. Let q denote
the normal pressure on the platens at a distance x from the left-hand edge, and p
the mean horizontal compressive stress on the corresponding vertical section. If x
is less than a critical distance x0, the frictional stress is equal to µq < k, and the
equilibrium of a vertical slice of thickness dx requires

dp

dx
= µq

h

† The upper bound results for partial and full stictions will be found in Probs. 8.16 and 8.17.
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Figure 8.37 Comparison of approximate solutions with exact solution for plane strain compression
with friction.

If the friction is sufficiently small, the yield criterion may be written approximately as

q − p = 2k

Eliminating p between the above equations, and using the boundary conditions
q = 2k at x = 0, we obtain the pressure distribution

q = 2k exp
(µx

h

)
x � x0 (78a)

The derivation of (78a) actually involves the relation dp/dx = dq/dx, which may
be considered as reasonably accurate for fairly large frictional stresses. When the
platens are sufficiently wide, the frictional stress µq becomes equal to the shear
yield stress k at x = x0, and the above equation furnishes

x0 = h

µ
ln

1

2µ
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For x � x0, the frictional stress has a constant value k, and the equilibrium equation
becomes

dq

dx
� dp

dx
= k

h
Since the pressure must be continuous at x = x0, the integration of the above equation
gives the linear pressure distribution

q = k

{
x

h
+ 1

µ

(
1 − ln

1

2µ

)}
x � x0 (78b)

The analysis holds equally good for compression between overlapping platens pro-
vided x is measured from the edge of the block. The pressure steadily increases with
x, attaining a peak value at the center of the platen. Substituting from (78) into the
relation q = (

∫ w
0 q dx)/w, the mean pressure on the platens is obtained as†

q

2k
= h

µw

{
exp

(µw

h

)
− 1

} µw

h
� ln

1

2µ

q

2k
= h

µw

{(
1

4µ
− 1

)
+ 1

4µ

(
1 + µw

h
− ln

1

2µ

)2
}

µw

h
� ln

1

2µ

(79)

The dimensionless mean pressure (79) is plotted as a function of the width/height
ratio in Fig. 8.38 for various values of µ. The technological solution is compared
with the slipline field and upper bound solutions in Fig. 8.37. It is evident that the
approximate theories are reasonably good for relatively small values of µ. When
w/h and µ are both small, the mean pressure exceeds 2k by the factor µw/2h to a
close approximation.‡

(vi) Compression between rough inclined platens A mass of rigid/plastic material
is symmetrically compressed between a pair of platens that are inclined to one
another at a small angle 2α (Fig. 8.39). The platens are so rough that the material
is caused to shear along them over the region of relative sliding. If the compressed
material extends sufficiently far, the stress distribution at the yield point would attain
a limiting state, as in the case of parallel platens. Using polar coordinates (r, θ) with
respect to the axis of symmetry and the virtual apex O, and neglecting terms of order
1/r, the equilibrium equations may be written approximately as

∂σr

∂r
+ 1

r

∂τrθ

∂θ
� 0

∂τrθ

∂r
+ 1

r

∂σθ

∂θ
� 0

Since the slipline directions for the limiting field are independent of r, we assume

τrθ = kθ

α
σr − σθ = 2k

√
1 − θ2

α2

† J. M. Alexander, J. Mech. Phys. Solids, 3: 233 (1955); J. F. W. Bishop, ibid., 6: 132 (1958).
‡ The compression of a strip without edge constraints has been discussed by R. Hill, Phil. Mag.,

41: 733 (1950).



chakra-08.tex 28/12/2005 17: 10 Page 702

702 theory of plasticity

Figure 8.38 Variation of mean die pressure with width/height ratio for compression between rough
platens (technological theory).

Figure 8.39 Slipline field for compression of a plastic mass between perfectly rough inclined platens.
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in the region of converging flow of the plastically compressed material. These expres-
sions identically satisfy the yield criterion, and are consistent with the equations of
equilibrium. A simple integration leads to the stress distribution†

σr = −k

(
A + 1

α
ln

r

a

)
+ 2k

√
1 − θ2

α2

σθ = −k

(
A + 1

α
ln

r

a

)
τrθ = kθ

α

(80)

where a is the radius to the left edge of the block, and A is a constant. Since σθ is
independent of θ, it is numerically equal to the normal pressure on the platen at any
radius r. If the solution is assumed to hold at r = a, the condition of zero resultant
horizontal force across this cylindrical surface would furnish A. Since cos θ � 1, we
have ∫ α

0
σr dθ = −kαA + 2k

∫ α

0

√
1 − θ2

α2 dθ = kα
(
−A + π

2

)
= 0

giving A = π/2. The normal pressure varies along the platens as the logarithm of the
radial distance r, the pressure at r = a being equal to πk/2. By analogy with (70),
the differential equations for the two families of sliplines are

r
dθ

dr
= ∓

√
α ∓ θ

α ± θ

where the upper sign holds for the α lines and the lower sign for the β lines.
Performing the integration, the polar equations of the sliplines are obtained as

ln

(
r

r0

)
= −α +

√
α2 − θ2 ∓ α sin−1

(
θ

α

)
(81)

where r0 is the length of the radius vector to the point of intersection of a slipline
with the axis of symmetry. The radial distances from O to the extremities of any
slipline between the platens are in the ratio exp(πα). When α is vanishingly small,
(80) reduces to (68) with m = 1, and (81) becomes equivalent to (71).

Let the radial and circumferential velocities of a typical particle be denoted by
u and v respectively. In view of the incompressibility equation

∂u

∂r
+ u

r
+ 1

r

∂υ

∂θ
= 0

the velocity distribution for the compressed material must be of the form

u = U

α

[
1 + f (θ)

r

]
v = −Uθ

α

† The solution for the stresses is essentially due to A. Nadai, Z. Phys., 30: 106 (1930).
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where U is the inward speed of each compression platen normal to its plane. The
components of the strain rate are readily found as

ε̇r = −ε̇θ = −Uf (θ)

αr2 γ̇rθ � Uf ′(θ)

2αr2

The fact that the principal axes of stress and strain rate coincide is expressed by

2γ̇rθ

ε̇r − ε̇θ

= 2τrθ

σr − σθ

or
f ′(θ)

f (θ)
= − 2θ√

α2 − θ2

This equation integrates to f (θ) = − c exp(2
√

α2 − θ2), where c is a positive constant,
and the velocity field becomes

u = U

α

{
1 − c

r
exp

(
2
√

α2 − θ2
)}

v = −Uθ

α
(82)

The relative velocity of sliding between the material and the platen is of magnitude
(U/α)(1 − c/r), which changes sign at the radius r = c.

When the compressed material extends from r = a to r = b, the stress distri-
bution in the region a � r � c is directly given by (80), while that in c � r � b is
obtained from (80) by changing the sign of τrθ and replacing ln(r/a) by ln(b/r).
The constant A is again equal to π/2 for the resultant longitudinal force to vanish
across the end r = b. The continuity of the radial stress at r = c requires c = √

ab.
The distribution of normal pressure on the platen represents a friction hill with a
peak value occurring at r = c. The mean die pressure q is given by

q

2k
= π

4
+ 1

2α

(√
ρ − 1√
ρ + 1

)
(83)

where ρ denotes the ratio b/a, which is equal to the ratio of the end thicknesses of
the block. For a given value of the mean width/height ratio, the mean pressure on
the die increases as the wedge angle is increased.†

8.7 Yielding of Notched Bars in Tension

A flat bar of ductile material is symmetrically notched on opposite sides and is pulled
in tension along the longitudinal axis under conditions of plane strain. The bar is
sufficiently long so that the stress distribution around the notch is independent of
the end conditions. As the load is increased to a critical value, yielding occurs at the
roots of the notches due to the existence of local stress concentration. With further
increase in load, the plastic zones spread inward, while the overall extension of the
bar remains of the elastic order of magnitude. At some stage during the loading, a
second plastic zone begins to form on the longitudinal axis. The yield point state is
eventually reached as a result of fusion of the primary and secondary plastic zones,

† A slipline field solution for compression between perfectly rough inclined platens has been
presented by W. Johnson and H. Kudo, Appl. Sci. Res., A9: 206 (1960).
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and large deformations become imminent. The average longitudinal stress across
the minimum section at the yield point is 2k multiplied by a certain factor, known
as the constraint factor, which depends on the geometry of the notch.

(i) Bars of supercritical thickness When the notches are sufficiently deep, the
initial deformation at the yield point is confined to a region in the neighborhood of
the notch root. The constraint factor is then independent of the ratio of the thickness
of the bar to that of the minimum section. We begin with a notch whose shape is
a circular arc of radius c, the thickness of the neck being denoted by 2a. The yield
point corresponds to the moment when the sliplines from the points A and B on the
notch surface meet the geometric center O of the bar (Fig. 8.40a). At this stage, the
ends of the bar are free to move apart, and the extension can continue momentarily
under constant load, provided the rate of work-hardening is small. The sliplines in
the field AOB are logarithmic spirals (Sec. 5.8(ii)), the principal stress trajectories
being radial lines through G and concentric circular arcs. If 2ψ is the angle subtended
by the arc AB at the center, then

a = c(eψ − 1) or ψ = ln
(

1 + a

c

)
(84)

The hydrostatic tension has the value k along the notch surface. Hence the longi-
tudinal tensile stress across the minimum section is σ = 2k(1 + φ) at a point whose
distance from the notch root is z = c(eφ − 1), where φ denotes the corresponding
angular distance along the notch. The stress steadily increases as we go inward from
the notch root. The yield point load per unit width is

T = 2
∫ a

0
σ dz = 4kc

∫ ψ

0
(1 + φ)eφdφ = 4kcψeψ

Figure 8.40 Tension of a bar with symmetrical circular notches. (a) Slipline field; (b) hodograph.
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The elastic stress concentration is dispersed by the plastic yielding which reverses
the stress gradient near the root. Substituting from (84), we get

T = 4ka
(

1 + c

a

)
ln
(

1 + a

c

)
(85)

The ratio T/4ka is equal to the constraint factor, which rises from unity as the value
of a/c is increased from zero.

There is a velocity discontinuity of amount
√

2U across the sliplines OA and OB,
where U denotes the speed with which the ends of the bar are drawn outward. The
velocities of the rigid ends are represented by the vectors PQ and PR in the hodograph
(Fig. 8.40b). The image of the point O, considered to the right of the vertical axis, is
defined by the vertex O′ of the isosceles right triangle QO′R. The sliplines OA and
OB are mapped into the circular arcs O′A′ and O′B′, which define the field O′A′B′.
The broken curve A′B′ forms the image of the notch surface, and is given by the
relation α + β = ψ, where (α, β) are the angular coordinates referred to the circular
base curves. Since the velocity vector is known in direction and magnitude at each
point of the bar, the distortion of a square grid can be easily calculated.

Consider, now, aV-notched bar of included angle π − 2ψ, having a circular fillet
of radius c (Fig. 8.41). The circular root of angle 2ψ joins smoothly to the straight
sides of the notch at A and B. When a/c � eψ − 1 the plastic zone does not extend
to the straight sides, and the constraint factor is the same as that given by (85). For
a/c > eψ − 1, the slipline field involves triangular regions AGK and BHL adjacent
to the boundary. The obvious continuation of the field across the neck leads to the
uniformly stressed region DEF, having a depth

b = a − c(eψ − 1) � 0

The longitudinal stress across the minimum section varies from C to D as before,
but along DO it has the constant value 2k(1 + ψ). The total longitudinal load per
unit width at the yield point is†

T = 4k[cψeψ + b(1 + ψ)] = 4ka
[
(1 + ψ) − c

a
(eψ − 1 − ψ)

]
(86)

which holds in the range a/c � eψ − 1. The expression in the square bracket of
(86) is equal to the constraint factor, which steadily increases with the angle ψ.
The dependence of the constraint factor on the notch angle and root radius is shown
graphically in Fig. 8.42. When the notch is sharp (c = 0), the constraint factor reduces
to the value 1 + ψ, the slipline field in that case being identical to that for the plastic
compression of a truncated wedge of semiangle ψ (Sec. 8.3(i)).

The material in DEF remains stationary as a rigid block, while velocity dis-
continuities of a constant amount propagate along the sliplines EK, EB, FA and

† R. Hill, Q. J. Mech. Appl. Math., 2: 40 (1949). The solution for elliptic notches has been discussed
by P. S. Symonds, J. Appl. Phys., 20: 107 (1949). The tension of rectangularly notched bars has been
investigated by E. H. Lee, J. Appl. Mech., 21: 140 (1954).
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Figure 8.41 Tension of a V-notched bar with circular fillets. (a) Slipline field; (b) hodograph.

FL. The resultant velocity is constant along each straight slipline in the regions
ADEG and BDFH. An inspection of the slipline field and the hodograph indicates
that the rate of plastic work is everywhere positive. There is an alternative mode
of deformation, giving the same constraint factor, in which the bounding sliplines
are considered through the point O as indicated in the figure. However, the actual
potentially deformable region consistent with the yield point load must extend as
far as the sliplines EK and FL as shown.

The preceding solutions are based on the assumption that the bar is long enough
to permit the deformation to be confined in the central region. If the bar is too short,
the deformation spreads to the ends of the bar,† and the yield point load then depends
on the ratio l/a, where l is the semilength of the bar. Suppose that the longitudinal
velocity at the ends is constrained to be uniform, while the tractions are kept shear
free. For a sharply notched bar, the longitudinal stress across the minimum section is
then numerically equal to the pressure required for indenting a block of height 2l by
opposed punches of width 2a (Sec. 8.1(ii)). The stress attains the value 2k(1 + ψ)
when l increases to a critical value l∗, beyond which the deformation becomes
localized in the neck. The critical length ratios for various values of ψ are given in

† This problem has been examined by J. Salencon, C. R. Acad. Sci., Paris, A264: 613 (1967).
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Figure 8.42 Constraint factors for V-notched tension bar with circular fillets.

the following table:

ψ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

l∗/a 2.16 3.09 4.14 5.38 6.90 8.72

(ii) Critical and subcritical thicknesses For a given depth of the minimum section,
the deformation is localized in the neck so long as the thickness of the bar is greater
than a critical value. The critical thickness can be estimated by suitably extending
the plastic stress field giving the same constraint factor. For a bar with sharp notches,
a statically admissible extension of the Prandtl field ABCD is shown in Fig. 8.43a.
The field generated by the circular arc BC is continued as far as FGHD, where F
is defined by the bisector of the fan ABC. The region DHK is associated with the
traction-free boundary DK whose tangent at K is parallel to the longitudinal axis.
The tangent may therefore be taken as the flat side of the bar. By Eq. (139), Chap. 6,
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Figure 8.43 Quarter slipline fields giving upper bounds on the critical thickness. (a) Sharply notched
bar; (b) round-notched bar.

the corresponding semithickness is

h∗ = a(2eψ − 1) (87)

All stresses are set to zero in the region to the right of DK, which is therefore an
admissible discontinuity. The material beneath the slipline FGHK can be shown to
be capable of supporting the boundary tractions without being overstressed. The
possible deformation is of course restricted to the zone ABCD. Since the stress field
is statically admissible, the yield point load is underestimated for a notched bar
of thickness 2h∗. Equation (87) therefore provides an upper bound to the critical
thickness. A lower bound estimate, based on a field involving instantaneous rotation
of rigid shoulders, is found to be remarkably close to the upper bound value.† It
follows that (87) is a very good approximation to the actual critical thickness, the
error being less than 0.2 percent over the whole range of values of ψ.

When the notch is circular, an upper bound to the critical thickness can be
obtained by considering the field of Fig. 8.43b. The region OBHF is defined by
the spiral OB and its reflection in the longitudinal axis, the position of F being
determined by the slipline through C. The angles subtended by the segments OE,
CE, and EF are each equal to ψ/2. The slipline BH defines the traction-free boundary
BK and the associated field BHK. The tangent to BK at K is parallel to OF, and is
therefore taken as the side of the bar, the material to the right of BK being assumed

† Both upper and lower bound estimates for the critical thickness of a V-notched bar have been
obtained by D. J. F. Ewing and R. Hill, J. Mech. Phys. Solids, 15: 115 (1967). See also J. E. Neimark,
J. Appl. Mech., 35: 111 (1968).
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stress free. It can be shown that the rigid part of the bar below FHK is able to support
the tractions across this slipline. By (143), Chap. 6, with b = ceψ, we have

h∗ = ceψ(eψ − 1) = aeψ = a
(

1 + a

c

)
(88)

on using (84). For a semicircularly notched bar,† the critical semithickness is
therefore 2a (since c = a), and the corresponding value of the constraint factor is
2 ln 2 � 1.389. The upper bound formula (88) predicts the critical thickness with
an error not exceeding 0.1 percent. Both the fields of Fig. 8.43 have the interesting
property that the distance of K from the horizontal axis of symmetry is twice the
distance OF.

Consider now aV-notched bar with a circular root of radius c and angle 2ψ. When
the deformation spreads to the straight sides of the notch (Fig. 8.41), the slipline
field can be extended into the rigid region by generating a stress-free boundary
beginning at L. The boundary is continued through an angle ψ to the point where
the tangent to the boundary is parallel to the vertical axis. The resulting slipline field
is the vector resultant of the field for a circular notch of radius c, and the field for a
sharp notch with neck depth 2b, corresponding to the same angular measure ψ (Sec.
6.8). The upper bound to the critical thickness is therefore obtained by an identical
combination of the results for circular and sharp notches. Using (87) and (88), we get

h∗ = b(2eψ − 1) + ceψ(eψ − 1)

= a(2eψ − 1) − c(eψ − 1)2 (89)

This formula holds for b � 0, which is equivalent to a/c � eψ − 1, and provides a
close approximation for the critical thickness of the bar.‡ For a/c � eψ − 1, the
critical thickness is identical to that for a circular notch, and is given by the last
expression of (88).

When the thickness of the bar is less than critical, the deformation spreads
out to the sides of the bar, the effect of which is to decrease the constraint fac-
tor for decreasing thickness. Indeed, any removal of material from the potentially
deformable region must lower the actual yield point load. The construction of Fig.
8.43 can be used to generate a statically admissible stress field for any specimen
geometrically contained in that having the critical thickness. For a sharp V-notched
bar, the field involves a smaller fan angle θ, giving a lower bound value 1 + θ for the
constraint factor. It is only necessary to write h for h∗ and θ for ψ in (87) to obtain
the required geometrical relationship. The lower bound formula for a sharp notch

† This particular geometry has been considered by D. N. de G. Allen and R. V. Southwell, Phil.
Trans. R. Soc., A242: 270 (1950), to obtain an elastic/plastic solution using the relaxation method. The
solution shows a constraint factor of about 1.22, which is somewhat smaller than the rigid/plastic value.
The discrepancy is apparently due to an inherent flaw in their method of solution. For a full discussion
of this point, see R. Hill, The Mathematical Theory of Plasticity, pp. 245–247, Clarendon Press, Oxford
(1950).

‡ The closeness of the approximation is verified by a lower bound estimate based on a kinematically
admissible field. See D. J. F. Ewing, J. Mech. Phys. Solids, 16: 81 (1968).
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therefore becomes

T

4ka
= 1 + ln

{
1

2

(
1 + h

a

)}
h � h∗ (90)

When the V-notched bar has a circular root, the semiangle of the root covered by the
statically admissible field may be denoted by θ. The relationship between θ, h/a,
and c/a is given by (89), and the corresponding lower bound for the constraint factor
by (86), with θ written for ψ and h written for h∗. Thus

T

4ka
= (1 + θ) − c

a
(eθ − 1 − θ)

h

a
= (2eθ − 1) − c

a
(eθ − 1)2

h � h∗ (91)

These relations express the constraint factor as a function of h/a and c/a paramet-
rically through θ. In the subcritical range, θ must be less than the smaller of the two
quantities ψ and ln(1 + a/c). Equations (91) also apply to a notch of circular shape,
for which h � h∗ means θ � ln(1 + a/c). For a given h/a less than the appropriate
critical value, θ must be determined by trial and error before the constraint factor
can be calculated. The lower bound value cannot differ from the actual constraint
factor by more than 0.2 percent. It is evident that the constraint factor of the notched
bar is independent of the notch angle in the subcritical range. The radius of the notch
root has only a marginal effect on the constraint factor when the thickness is less
than critical.†

(iii) Necking of a V-notched bar If a notched bar made of nonhardening material
is stretched beyond the yield point, the thickness of the minimum section gradually
decreases as the deformation proceeds. We shall analyze the development of the neck
for a sharp V-notched bar on the assumption that the deforming part of the notch
retains its shape while the included angle is progressively reduced.‡ At any stage
during the necking, let the notch angle be equal to π − 2θ when the neck thickness
is reduced to 2t. The upper end of the bar is assumed fixed, the lower end being
moved downward with a constant speed. The instantaneous position of the minimum
section AE is denoted by its height c above the x axis as shown in Fig. 8.44a. The
normal velocity on AE is unity, if the increment of time scale is −dc.

Since the normal velocity vanishes on BCD, the velocity component along
the straight β lines in the region ABCD must be zero. The magnitude of the velocity

† Upper bound solutions for subcritical thicknesses have been discussed by D. J. F. Ewing and
R. Hill, J. Mech. Phys. Solids, 15: 115 (1967) for the sharp notch, and by D. J. F. Ewing, op. cit., for
the circular notch.

‡ This solution is due to O. Richmonds, J. Mech. Phys. Solids, 17: 83 (1969). An alternative, but
somewhat less realistic, solution has been presented by E. H. Lee, J. Appl. Mech., 19: 331 (1952), on
the assumption that the plastic zone remains geometrically similar throughout the process.
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Figure 8.44 Finite extension of a V-notched bar. (a) Slipline field; (b) neck profiles for c0 = ψ = 0.

therefore has a constant value along each α line in this domain. The velocity field
will be compatible with the assumed deformation mode if we write

u = −C
(√

2 − r

t

)
v = 0 in ABC

where r is the radius to a circular arc, and C is a constant. The velocity is therefore
continuous across the rigid/plastic boundary. In the region ABE, the components u
and v are constant along the straight lines x − y = const and x + y = const respec-
tively. The velocity field which is continuous across AB, and satisfies the symmetry
condition u = v along BE, may be written as

u = − C√
2

(
1 + x − y + c

t

)
v = − C√

2

(
1 − x + y − c

t

)
in ABE

The boundary condition on AE is u + v = −√
2, which gives C = 1. The strain rate

is constant in this region, the rate of extension at the minimum section being 1/t. The
nonzero component u within the triangle ACD is readily found from the condition
of continuity across AC. In particular, the velocity of the free surface is given by

u = −√
2

{
1 − 1

2

(x

t
− 1

)
cosec θ

}
v = 0 on AD (92)

The magnitude of the velocity decreases from
√

2 at A to zero at D. The equation of
the free surface is y = c + (x − t)cot θ. The rate of change of this equation, following
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the motion of the surface, becomes

−vy +
(

vx + dt

dc

)
cot θ + (x − t)cosec2θ

dθ

dc
= 1

where vx and vy are the components of the surface velocity referred to the rectangular
axes. Evidently, vx = u cos(π/4 − θ) and vy = u sin(π/4 − θ), where u is given by
(92). Substitution in the above equation furnishes

dt

dc
= tan θ + sec θ

dθ

dc
= − 1

2t
(93)

Eliminating c between these two equations, and using the initial conditions t = a
and θ = ψ, we obtain the integral

t

a
= (1 − sin θ)2

(1 − sin ψ)2 (94)

As the deformation proceeds, t/a steadily decreases from unity. Inserting (94) into
the second equation of (93), and integrating, we get

c0 − c

a
= f (θ) − f (ψ)

(1 − sin ψ)2

f (θ) = 3θ + cos θ(4 − sin θ)

(95)

where c0 is an arbitrary initial value of c. The elongation of the bar at any stage
is evidently equal to 2(c0 − c). As the thickness of the neck decreases, the extent
of the deforming zone is progressively reduced. A part of the material undergoing
deformation at the initial yielding therefore becomes rigid, forming a curved profile
given by the locus of the point D. The equation of the profile may be written in the
parametric form

x = t(1 + 2 sin θ) y = c + 2t cos θ

Typical neck profiles for an unnotched bar (ψ = 0) are shown in Fig. 8.44b. They
are found to be in broad agreement with experimentally measured profiles.† If the
necking could be continued down to a point (t = 0) without fracture, the displacement
of the minimum section would finally reach the value 0.71a approximately. The
longitudinal stress at the minimum section steadily increases, its value at any stage
being 2k(1 + θ). The total longitudinal force decreases, however, throughout the
necking process.‡

† O. Richmond, op. cit. Similar experimental results have also been reported by G. T. Hahn and
A. R. Rosenfeld, Acta Met., 13: 293 (1965).

‡ A solution in which the notch is assumed to become circular has been discussed by E. H. Lee
and A. J. Wang, Proc. 2d U.S. Nat. Congr. Appl. Mech., p. 489 (1954). The necking of a bar with
symmetrical circular notches has been investigated by A. J. Wang, Q. Appl. Math., 11: 427 (1953). See
also, M. Toulios and I. F. Collins, Int. J. Mech. Sci., 24: 61 (1982).
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Figure 8.45 Pure bending of a sharply notched bar. (a) ψ � 32.7◦; (b) ψ � 32.7◦.

Since the longitudinal strain rate at the minimum section is twice the rate of
change of θ in view of (93), the total strain at any stage is equal to 2(θ − ψ). It is
interesting to note that although the strain is uniform in the minimum section, its
magnitude is not given by ln(a/t). This is due to the fact that a portion of material
on the original section moves round the notch root to reach the free surface of
the notch during the stretching. Available experimental results tend to suggest that
work-hardening does not have a significant effect on the shape of the neck profile.

8.8 Bending of Single-Notched Bars

(i) Deep wedge-shaped notches A wide rectangular bar of metal, having a wedge-
shaped notch on one side, is subjected to pure bending under conditions of plane
strain. The bar is assumed long enough for the yield point couple to be independent
of the precise distribution of tractions at the ends. It is supposed that the bar is bent to
open the notch, so that the stress across the minimum section is tensile near the root
and compressive near the opposite side. If the notch is sufficiently deep, the region
of plastic deformation is confined in the neck, and the state of stress at the yield
point is independent of the thickness of the bar.†

Depending on the notch angle π − 2ψ, there are two possible solutions given
by the slipline fields of Fig. 8.45. In the neighborhood of the notch, the sliplines are
straight, meeting the surface at 45◦. The field is continued round the singularity A to

† The slipline fields for the bending of bars with wedge-shaped and circular notches are due to
A. P. Green, Q. J. Mech. Appl. Math., 6: 223 (1953), who produced some experimental evidence in
support of the theory.
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form the centered fan ADE on either side of the central axis. Near the plane surface
FF, the sliplines are again straight, and the state of stress is a uniform compression
2k parallel to the surface. In the solution corresponding to field (a), the two slipline
domains are extended across the minimum section to meet at a neutral point N , the
region AENE being in a state of uniform tension 2k(1 + ψ) acting across AN. The
position of N is determined from the condition that the resultant horizontal tension
across the minimum section is zero. Denoting the height of the triangle FNF by d,
we get

d(2 + ψ) = a(1 + ψ)

where a is the depth of the minimum section. The yield point couple M per unit
width of the bar is given by

M

ka2 = d

a
= 1 + ψ

2 + ψ
(96)

An unnotched bar of thickness a will yield under a moment equal to 1
2 ka2. The

ratio of the actual yield moment of the notched bar to that of the unnotched bar
is known as the constraint factor, denoted by f . In the case of a sharp notch, the
constraint factor is therefore twice the right-hand side of (96). The stress changes
discontinuously at N , which is evidently a point of stress singularity, the jump in the
hydrostatic pressure being 2k(1 + ψ). By (40), Chap. 6, the pressure jump must not
exceed the value πk in order to avoid overstressing of the rigid corners at N . The
field (a) is therefore valid for ψ � (π/2) − 1 � 32.7◦. In other words, the semiangle
of the notch must be less than or equal to 1 rad.

When ψ � 32.7◦, the solution involves the field (b), where the slipline domains
defined by the stress-free surfaces are connected by a pair of curved sliplines EF.
The rigid ends of the bar rotate by sliding along the curves EF, which must therefore
be circular arcs of some radius R. The fan angle θ at A cannot be greater than ψ,
since the rigid material in the corner EAE must not be overstressed. If the angular
span of EF is denoted by λ, it follows from geometry and Hencky’s equations that

λ − (ψ − θ) = π

2
λ − θ = 1

Since θ �ψ, we have λ�π/2. The above equations can be solved for λ and θ to
give

λ = π

4
+ ψ

2
+ 1

2
θ = π

4
+ ψ

2
− 1

2
(97)

For a given notch angle, the slipline field is completely specified by the radii b and
R of the circular arcs DE and EF, and the height d of the center C above GG. One
of the three relations necessary for finding these parameters is provided by the fact
that the sum of the vertical projections of GC, CE, and EA must be equal to a. Thus

d + R sin
(
λ − π

4

)
+ b cos

(
λ − π

4

)
= a (98)
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The other two relations are furnished by the conditions of zero horizontal and vertical
resultants of the tractions across the interface AEFG. Setting up the equations is
simplified by continuing the plastic stress field into the rigid region to form the
fictitious fan CEF. The normal stresses acting on CF and CE are then equal to −k
and s respectively, where s = k(2λ − 1). Considering the tractions along the path
AECG, we obtain

R(λ sin λ − θ cos λ) + b(λ sin λ + θ cos λ) = √
2d

R(θ sin λ + λ cos λ) − b(θ sin λ − λ cos λ) = 0
(99)

In view of the second equation, (R − b)sin λ is equal to
√

2λ times the distance t of
C from the vertical axis of symmetry. When the ratios d/a, R/a, and b/a have been
computed from (98) and (99), the yield point couple and the constraint factor can
be found from the formula

f = 2M

ka2 = 2d2

a2 −
(

R − b

a

)2

+ 2λ

(
R2 + b2

a2

)
(100)

which is obtained by taking moment of the tractions about C. When λ = π/2, we
have R = b, and the yield moment becomes identical to that gives by (96). The
constraint factor increases with increasing ψ until b vanishes. The condition b � 0
is equivalent to

tan λ � − λ

λ − 1
or ψ � 86.79◦

in view of the second equation of (99). When b = 0, the constraint factor has a
maximum value of 1.261. For all sharper notches (ψ > 86.79◦) the slipline field and
the constraint factor are independent of the notch angle. The geometrical parameters
and the constraint factors calculated from above are given in Table 8.9.

Since the stress is discontinuous across N in the field (a), there cannot be
a velocity discontinuity along the sliplines passing through this point. The rigid
ends of the bar instantaneously rotate about N , inducing a velocity distribution
along the boundaries of the deforming zones. The normal component of velocity
is readily shown to be constant along the free surface FF, which therefore remains
plane during the incipient distortion. The field (b), on the other hand, involves a

Table 8.9 Results for pure bending of sharply notched bars

ψ◦ λ◦ R/a b/a d/a t/a f h∗/a

15.00 · · · · · · · · · · · · · · 0.313 0.558 · · · · · · · 1.116 1.132
32.70 90.00 0.275 0.275 0.611 0 1.222 1.299
45.00 96.15 0.330 0.191 0.623 0.058 1.245 1.353
60.00 103.65 0.368 0.109 0.628 0.099 1.257 1.395
75.00 111.15 0.385 0.043 0.629 0.116 1.260 1.417
86.79 117.04 0.389 0 0.630 0.130 1.261 1.423
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Figure 8.46 Slipline fields for pure bending of a bar with a circular notch. (a) a/(a + c) � 0.64;
(b) a/(a + c) � 0.64.

velocity discontinuity of constant amount propagating along the sliplines AEFJH.
The velocity normal to the bar is constant along HH but increases linearly along
HG, while suffering an abrupt change across H. Depending on whether the bar is
bent to open or close the notch, either a bulge or a hollow should develop on the
surface at HH. The deformation mode and the constraint factor have been found to
be in close agreement with experiment.†

(ii) Notches of circular profile Consider the pure bending of a bar having a deep
notch in the form of a circular arc of radius c. The sliplines near the notch surface are
logarithmic spirals, which make an angle of 45◦ with any radial line drawn through
the center, extending over an angle 2ψ. For sufficiently small values of the ratio
a/c, the sliplines through B meet at a point N on the minimum section, as shown in
Fig. 8.46a. If the bar is bent to open the notch, the stress acting across the minimum
section is tensile above N and compressive below N . The tensile stress increases
from 2k at the notch root to 2k(1 + ψ) at the neutral point. The compressive stress
has the constant magnitude 2k, the sliplines in the triangle FNF being straight. The
resultant tension across AN is equal to 2kcψeψ, and this must be balanced by the

† The deformation pattern is revealed by etching, which darkens the regions of plastic flow. See
A. P. Green and B. B. Hundy, J. Mech. Phys. Solids, 4: 128 (1956).
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resultant compression 2kd acting across NE. Hence

d = cψeψ = a − c(eψ − 1)

where the last expression follows from simple geometry. The relationship between
a/c and ψ therefore becomes

a

c
= (1 + ψ)eψ − 1 (101)

The yield point couple is obtained by taking moment about N of the stress distribution
across the minimum section. Thus

M = kd2 + 2kc2
∫ ψ

0
(1 + φ)(eψ − eφ)eφ dφ

where φ is the angle corresponding to any point on AN. Performing the integration
and substituting for d, we obtain

f = 2M

ka2 = c2

a2

{
2ψ(1 + ψ)e2ψ − (e2ψ − 1)

}
(102)

Equations (101) and (102) give the constraint factor f as a function of a/c. It is easy
to see that f tends to unity as a/c tends to zero. The range of application of the
solution is determined by the condition that the hydrostatic pressure jump across N
cannot exceed πk. This gives ψ �π/2 − 1 � 32.7◦ as before, or equivalently,

a

c
� π

2
exp

(π

2
− 1

)
− 1 � 1.78 or

a

a + c
� 0.64

The hodograph corresponding to the right-hand half of the field is shown in
Fig. 8.47a, the instantaneous angular velocity of the rigid end being denoted by
ω. The boundary of the deforming region is mapped as the geometrically similar
curve B′N ′F ′ rotated through 90◦ in the clockwise sense. The region N ′A′B′ of the
hodograph is defined by the logarithmic spiral N ′B′ and its reflection in the vertical
through N ′. The broken curve A′B′ intersects the characteristics at 45◦, and repre-
sents the image of the free surface of the notch. The triangle N ′F ′E′ consists of
straight characteristics, the base E′F ′ forming the image of the free surface EF.

For higher values of a/c, the slipline field of Fig. 8.46b becomes applicable.
The upper slipline domain is bounded by the spirals IE through a point I on the
minimum section. These sliplines are continued as circular arcs EF to join with the
straight-line field on the lower side. The material on the concave side of IEFJ acts
as a rigid pivot, permitting the ends of the bar to rotate as rigid bodies. If the angles
turned through by BE and EF are denoted by θ and λ respectively, the compatibility
of the hydrostatic pressures at B and F requires λ − θ = 1 by Hencky’s equations.
From geometry, OE is inclined at an angle λ − π/2 to the vertical. The angles λ and
θ are therefore given by (97) in terms of the angle subtended by the arc AB. Since the
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Figure 8.47 Hodographs for the bending of a bar with a circular notch. (a) ψ � 32.7◦; (b) ψ � 32.7◦.

sum of the vertical projections of GC, CE, and OE is equal to a + c, the geometrical
relationship becomes

d + R sin
(
λ − π

4

)
+ c(eθ sin λ − 1) = a (103)

where d is height of the center C above the base GG.
The normal tensile stress across the radial line TE is 2k(1 + φ) at a point situated

at a distance ceφ from 0, where φ denotes the angular position of the corresponding
point on the notch surface. The counterclockwise moment about O of the stress
distribution along TE due to the material on its right is

G0 = 2kc2
∫ θ

0
(1 + φ)e2φ dφ = kc2[θe2θ + 1

2 (e2θ − 1)] (104)

per unit width. The resultant tension across TE per unit width is readily found to be
2kcθeθ . The components of this force along Ox and Oy are

Fx = 2kcθeθ sin λ Fy = −2kcθeθ cos λ

Thus, the stress distribution across TE is statically equivalent to a force 2kcθeθ acting
through O, together with a counterclockwise couple G0. The moment of the stresses
about C, acting in the clockwise sense, therefore has the value

G = kc2[θe2θ − 1
2 (e2θ − 1)] + √

2kRcθeθ (105)

Assuming the plastic region to extend into the fan CEF as before, and considering the
tractions along the path TECG, the equations of horizontal and vertical equilibrium
may be written as

√
2(d − cθeθ sin λ) − R(λ sin λ − θ cos λ) = 0

√
2cθeθ cos λ + R(θ sin λ + λ cos λ) = 0

(106)
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Since λ and θ are obtained from (97) for any chosen value of ψ � 32.7◦, Eqs. (103)
and (106) can be easily solved for the ratios d/a, R/a, and c/a. The distance 2t
between the centers C can be found from the expression

t = R cos
(
λ − π

4

)
− ceθ cos λ

The triangle HJH is of height d + t − √
2R by simple geometry. Considering the

moment about C of the tractions acting along the entire path TECG, and using
(105), it is easy to show that

f = 2M

ka2 = 2d2 + c2

a2 + (1 + 2θ)
R2

a2 + 2
√

2
Rc

a2 θeθ + (2θ − 1)
c2

a2 e2θ (107)

The above solution is applicable to any notch having a circular root, so long as the
deformation remains confined to the circular contour. When c is vanishingly small, ψ
attains the limiting value 86.79◦, corresponding to tan λ = −λ/(λ − 1), the limiting
constraint factor being 1.261. The slipline field dimensions and the constraint factor
are given in Table 8.10 as functions of the parameter a/(a + c), which varies between
zero and unity.

The material in the central pivot is mapped into the pole C′ of the hodograph
shown in Fig. 8.47b, which refers to the right-hand half of the slipline field. The
boundary B′E′F ′G′ of the hodograph is geometrically similar to the boundary of
the deforming region, the radius of the circular arc E′F ′ being equal to the velocity
discontinuity across the slipline LIEFJH. The segment EI is mapped into the circular
arc E′I ′, of angular span λ − π/2, and the field E′I ′L′B′ is constructed from the base
curves E′B′, and E′I ′. The particles immediately to the left of IL are mapped into
I ′′L′′, which defines the field I ′′A′L′′, with the characteristics inclined at 45◦ to A′I ′′
and A′L′′. The broken curves B′L′ and L′′A′ form the image of the notch surface AB.
The remainder of the hodograph is self-explanatory, the distance J ′H ′ being ω times
the corresponding distance JH. The rate of plastic work is found to be everywhere
positive.

(iii) V-notch with circular fillet Suppose that a deep wedge-shaped notch is pro-
vided with a circular fillet of radius c and angular span 2ψ. If the ratio a/c is

Table 8.10 Pure bending of bars with circular notches on one side

a/(a + c) ψ◦ λ◦ R/a d/a t/a f h∗/a

0.285 10.00 · · · · · · · · · · · · · 0.522 · · · · · · 1.030 1.045
0.477 20.00 · · · · · · · · · · · · · 0.542 · · · · · · 1.061 1.096
0.640 32.70 90.00 0 0.568 0 1.100 1.166
0.757 45.00 96.15 0.132 0.589 0.015 1.141 1.238
0.870 60.00 103.65 0.251 0.609 0.052 1.190 1.313
0.944 75.00 111.15 0.338 0.623 0.092 1.234 1.378
1.000 86.79 117.04 0.389 0.630 0.120 1.261 1.423
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sufficiently large, for a given value of ψ, the slipline field extends to the straight
sides of the notch covering a length AB = √

2b on either side of the central axis.
For ψ � 32.7◦, the regions of tension and compression meet at a neutral point N on
the minimum section as shown in Fig. 8.48a. The longitudinal tensile stress in the
region EFEN has the constant value 2k(1 + ψ), the depth of this region being equal
to

√
2b. It follows from simple geometry that

d + √
2b + c(eψ − 1) = a

where d is the height of the triangle GNG, having a uniform horizontal compression
2k. The condition of zero resultant tension across the minimum section gives

−d + √
2b(1 + ψ) + cψeψ = 0

Solving the above equations, the deep notch parameters b and d can be expressed
in terms of the notch geometry as

√
2b = (a + c) − c(1 + ψ)eψ

2 + ψ

d = (a + c)(1 + ψ) − ceψ

2 + ψ

(108)

The stresses across the minimum section are statically equivalent to a pure couple,
whose magnitude per unit width is

M = k(d2 + 2b2) + kψ(
√

2b + ceψ)2 − 1
2 kc2(e2ψ − 1)

Figure 8.48 Pure bending of a V-notched bar with a circular fillet. (a) ψ � 32.7◦; (b) ψ � 32.7◦.
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Substituting from (108), and simplifying the expression, the constraint factor is
obtained as

f = 2M

ka2 =
{

1 − c

a
(eψ − 1)

}2 + ψ

2 + ψ

{
1 + c

a
(eψ + 1)

}2 − c2

a2 (e2ψ − 1) (109)

which reduces to (96) when c = 0. The jump in the hydrostatic pressure at N does
not exceed πk if ψ � 32.7◦, which ensures that the rigid corners at N are not over-
stressed. The validity of the solution also requires b � 0, or

a

c
� (1 + ψ)eψ − 1

For values of a/c lower than the above critical value, the solution for the circular
notch should hold.

The slipline field for ψ � 32.7◦ is shown in Fig. 8.48b, where the tension and
compression regions are connected by circular arcs of radius R and angular span λ.
From geometrical considerations, it is easily shown that

d + R sin
(
λ − π

4

)
+ b cos

(
λ − π

4

)
+ c(eθ sin λ − 1) = a (110)

where d is the height of the center C, and θ the angle turned through by the slipline
AI. The angles λ and θ are defined by the given angle ψ through (97). The remaining
equations involving d, R, and b are obtained by adding

√
2 times cθeθ sin λ and

cθeθ cos λ to the left-hand side of the first and second equations respectively of (99),
expressing the force equilibrium. The corresponding modification of (100), that
includes the moment of the tractions along AI, leads to the constraint factor†

f = 2d2 + c2

a2 −
(

R − b

a

)2

+ 2λ

(
R2 + b2

a2

)

+ 2
√

2
(R + b)c

a2 θeθ + (2θ − 1)
c2

a2 e2θ (111)

which reduces to (107) when b = 0. For a given angle ψ, only those values of a/c
are relevant for which b � 0. If a/c is less than that for which b = 0, the solution for
the circular notch should apply. The variation of the constraint factor with the fillet
angle for various values of a/(a + c) is shown in Fig. 8.49. The region to the right of
the broken curve (b = 0) corresponds to the circular notch, and the constraint factor
is then independent of the notch angle.‡

† The constraint factors have been obtained numerically by G. Lianis and H. Ford, J. Mech. Phys.
Solids, 7: 1 (1958). Lower bound solutions based on discontinuous stress fields have also been given
by these authors, who produced some experimental results supporting the theory.

‡ The slipline field and lower bound solutions for a trapezoidal notch have been presented by
G. Lianis and H. Ford, J. Mech. Phys. Solids, 7: 1 (1958).
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Figure 8.49 Constraint factors for single-notched bars having a deep V-notch with circular fillet.

(iv) The critical bar thickness The ratio of the notch depth to the core thickness
has a critical value above which the deep notch solution is applicable.† As in the
tension bar problem, an accurate estimate of the critical thickness can be obtained
by continuing the plastic stress field into the rigid region. When the notch is either
wedge-shaped or circular, a logical extension of the field containing a stress singu-
larly N is illustrated in Fig. 8.50. The construction in each case involves a stress-free
boundary beginning from the notch surface at B, and continued as far as K where
the tangent is perpendicular to the axis of symmetry. The thickness of the bar is
such that the tangent coincides with the surface of the bar, the material between BK
and the notch surface being assumed stress free.

The angle turned through by each of the sliplines BJ and JK must be half the
angle ψ turned through by BK. By Hencky’s first theorem, the angle of the fan
centered at N is therefore equal to ψ/2. The wedge-shaped notch involves a regular
field DEGH defined by a pair of circular arcs of radius b, and its natural extension
DHJB. By (139), Chap. 6, the position of the point K is given by

√
2w = b(2eψ − 1) d = √

2b[I0(ψ) + A0(ψ)]

† For shallower notches, the deformation spreads to the surface of the bar, as has been shown
experimentally by B. B. Hundy, Metallurgia, 49: 109 (1954). Possible slipline fields have been suggested
by A. P. Green, J. Mech. Phys. Solids, 6: 259 (1956).
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Figure 8.50 Slipline fields giving an approximation to the critical thickness. (a) Wedge-shaped notch;
(b) circular notch.

where
√

2b = a/(2 + ψ) in view of (96). Hence, the corresponding thickness of the
bar is

h∗ = a + √
2b(eψ − 1) = a

(
1 + eψ − 1

2 + ψ

)
(112)

It is reasonable to suppose that the rigid material outside the field is able to support
the tractions acting across the boundary FNGHJK. The above formula then provides
an upper bound on the critical thickness.† In any case, the actual critical value cannot
differ from that obtained from (112) by more than 0.2 percent.

For a notch with a circular profile, the singular field NBJ of angular span ψ/2
at N can be determined in analytical terms‡ following the method of Sec. 6.6(ii).
The stress-free boundary BK is also found analytically by the method of Sec. 6.7(ii).
The radius of curvature of the stress-free surface increases from c(eψ − 1) at B to
ceψ sin h ψ at K , where the center of curvature is on the horizontal axis through N .

† Slipline fields giving both upper and lower bound approximations to the critical thickness have
been discussed by A. P. Green, op. cit., and D. J. F. Ewing, J. Mech. Phys. Solids, 16: 205 (1968).

‡ J. Chakrabarty, Int. J. Mech. Sci., 33: 89 (1991).
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The position of K relative to N is given by

w = c

2
(e2ψ − 1) d = ceψA0(ψ)

where ψ depends on c/a according to (101). The approximation to the critical
thickness is obtained as

h∗ = a + w − c(eψ − 1) = a + c

2
(eψ − 1)2 (113)

When a V-notched bar has a circular fillet of semiangle ψ � 32.7◦, the expressions
for h∗ and d can be written down by using the principle of superposition. Thus, for
b � 0, we write

h∗ = a + √
2b(eψ − 1) + c

2
(eψ − 1)2

d = √
2b[I0(ψ) + A0(ψ)] + ceψA0(ψ)

(114)

where b is given by (108) in terms of a, c, and ψ. The slipline field in this case
is obtained by combining the sharp-notch and round-notch fields, following the
principle of vectorial superposition.†

For ψ � 32.7◦, the singular field of N is replaced by a regular field in which
one of the base sliplines is a circular arc of radius R and angular span ψ/2. No
simple algebraic expressions are available for this range, since the angles θ and ψ

are unequal, although an analytical treatment is still possible along the lines of Sec.
6.7(ii). The calculated values of h∗/a for sharp- and round-notched bars are given
in Tables 8.9 and 8.10 respectively. The value of h∗/a − 1 for a V-notched bar with
circular fillets, when b � 0, may be obtained by adding b/a times the sharp notch
value of (a/b)(h∗/a − 1) to c/a times the round notch value of (a/c)(h∗/a − 1),
using identical values of the angle ψ.

(v) The Izod and Charpy tests The analysis for the pure bending of single-notched
bars is easily modified to deal with notch-bend tests, where the bar is subjected
to transverse impact loading that tends to open the notch. The purpose of these
tests is to assess the toughness of metals under severe conditions of service. In
the Izod test, the specimen has a square cross section with a 45◦ V-notch on one
face, and is loaded as a cantilever firmly clamped up to the minimum section. The
Charpy test differs from the Izod test in that the specimen is loaded as a simply
supported beam under symmetrical three-point loading, the specimen being struck
centrally on the opposite flat surface. Since the breadth of the region of deformation
is everywhere considerably smaller than the width of the bar, a plane strain condition
is approximately achieved. The following analysis is based on the assumption that

† The combined bending and tension of double- and single-notched bars have been treated by
B. Dodd and M. Shiratori, Int. J. Mech. Sci., 20: 451 and 465 (1978), 22: 127 (1980).
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Figure 8.51 Slipline fields for the Izod test. (a) Sharp notch-root; (b) rounded notch-root.

the material is rigid nonhardening, and that the effect of impact loading is separable
from the plastic flow problem.†

The slipline field corresponding to the Izod test is shown in Fig. 8.51a, neglecting
the small fillet radius which is usually present at the root. It is assumed that the notch
is sufficiently deep and that the deformation does not spread to the sides of the notch.
There is a stress singularity at the point F on the flat surface where the clamping
block ends. The region DEF is uniformly stressed in compression by an amount 2k
parallel to the surface. The free end of the bar rotates by sliding along the circular arc
AB of radius R and angular span λ. The resultant velocity is constant in magnitude
and direction along each radial line in BDF, and also along each slipline normal
to DE. The hodograph consists of a curve geometrically similar to ABDE, rotated
through 90◦ in the clockwise sense.

Let φ denote the angle of the fan BDF, and b the radius of the circular arc BD.
Since A is directly above F, and the distance between the two points is a, we have
the geometrical relations

b + R sin λ = a cos
(π

4
− φ

)
R(1 − cos λ) = a sin

(π

4
− φ

)

† A. P. Green and B. B. Hundy, J. Mech. Phys. Solids, 4: 128 (1956); J. M. Alexander and
T. J. Komoly, ibid., 10: 265 (1962).
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which give

R

a
= sin((π/4) − φ)

1 − cos λ

b

a
= sin(φ + λ/2 − π/4)

sin(λ/2)
(115)

If the fan CAB is assumed to be plastically stressed as before, the normal pressure
on CB and CA are k(1 + 2φ) and k(1 + 2φ − 2λ) respectively. The resultant traction
across FBCA is most conveniently resolved along FB and CB, leading to the force
relations

b − R sin λ + (1 + 2φ)R(1 − cos λ) + 2λR cos λ = F cos
(π

4
− φ

)
(1 + 2φ)(b + R sin λ) + R(1 − cos λ) − 2λR sin λ = −F sin

(π

4
− φ

) (116)

where kF is the applied shearing force at a distance l from the minimum section.
Since the resultant moment about C of the tractions acting along FBA must balance
the moment of the applied force, we get

1

2
(1 + 2φ)b2 + R(b + R) =

[
l + R cos

(
λ + φ − π

4

)]
F (117)

The set of five equations (115) to (117) may be solved for the five unknowns b,
R, λ, φ, and F, using a trial-and-error procedure. The bending moment at the
minimum section is kFl, and the constraint factor is f = 2Fl/a2. In the standard Izod
test, a = 8 mm and l = 22 mm, giving f � 1.224. The thickness of the specimen is
h = 10 mm, which is found to be slightly higher than the critical thickness (about
9.8 mm) for the deep notch solution.†

It is not difficult to allow for a circular fillet of radius c. The sliplines in the
neighborhood of the fillet are logarithmic spirals meeting the notch surface at 45◦,
as shown in Fig. 8.51b. The tractions across the boundary LM, having an angular
span θ, give rise to a resultant tension 2kcθeθ in the direction perpendicular to OL,
the moment of the tractions about C being given by (105). The line of action of the
resultant traction makes an acute angle of λ − π/4 with the direction CB. If kP and
kQ denote the resolved components of this resultant along BF and BC respectively,
due to the material on the left of OL, then

P = 2cθeθ sin
(
λ − π

4

)
Q = 2cθeθ cos

(
λ − π

4

)
(118)

† The critical thickness ratio is about 1.22, which is slightly lower than the actual ratio of 1.25.
The critical thickness ratio for the same bar under pure bending is about 1.39 (D. J. F. Ewing, op. cit.).
The standard Izod specimen is therefore not deep enough for the pure bending solution to apply.
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The force relations (116) must now be modified by the addition of the quantities P
and Q on the right-hand side. The geometrical relations (115) are modified to

b + R sin λ + ceθ cos
(
λ − π

4

)
= (a + c)cos

(π

4
− φ

)
R(1 − cos λ) + ceθ sin

(
λ − π

4

)
= (a + c)sin

(π

4
− φ

) (119)

where θ = λ − φ − 1 by Hencky’s pressure relations along DBLM. The equation of
equilibrium of the moments about the point C becomes

1

2
(1 + 2φ)b2 + R(b + λR) + G =

[
l + R cos

(
η − π

4

)
+ ceθ cos η

]
F (120)

whereη = λ + φ, and kG represents the right-hand side of (105). The angle subtended
by the arc AM is equal to 2λ − π/2 − 1, which must be less than the semiangle
ψ of the fillet for the validity of the solution. This condition is satisfied for the
standard Izod notch, where ψ = 67.5◦ and c = 0.25 mm. The results of the numerical
computation with and without the fillet† are shown in Table 8.11.

The state of stress in the minimum section near the notch root is of some practical
interest. The tensile stress σ across the minimum section increases from 2k at the
root to a maximum value which occurs at the elastic/plastic boundary. The position
of this boundary is most likely to lie between the points S and T (not shown), where
LS is the circular principal stress trajectory through L, and LT is the continuation of
the slipline ML. The stress is constant along LS and has the magnitude 2k(λ − φ).
If the plastic region is assumed to extend as far as T , the stress at this point is equal
to 2k(2λ − π/2). The maximum stress should lie between these two values of σ

irrespective of the root radius. Experiments seem to indicate that fracture occurs in
notched specimens when the maximum tensile stress reaches a critical value.‡

The slipline field for the idealized (quasi-static) problem of the Charpy test is
symmetrical about the minimum section, each half of the field being identical to
that for the Izod test. In practice, the central load would have to be supported over
a finite length of the surface, which would separate the two singularities at the base
by a distance equal to the indenter width. The effect of neglecting the indenter width
is, however, unlikely to lead to significant errors in the overall mode of deformation
and the stress distribution near the notch root.§ In the standard Charpy test, the end
load kF acts at a distance l = 20 mm from the minimum section, the corresponding
results being included in Table 8.11. The theoretical predictions have been verified
by experiments on the yielding of bars in slow bend tests.¶

† These results are due to D. J. F. Ewing, J. Mech. Phys. Solids, 16: 205 (1968). Similar calculations
have been made earlier by J. M. Alexander and T. J. Komoly, ibid., 10: 265 (1962).

‡ J. F. Knott, J. Iron Steel Inst., 204: 104 (1966); J. Mech. Phys. Solids, 15: 97 (1967).
§ D. J. F. Ewing (op. cit.) calculated the field for finite widths of the indenter, assuming it to be

flat-topped, but neglected its effect on the bending moment at the minimum section. His constraint
factors for nonzero indenter widths are therefore somewhat approximate.

¶ A. P. Green and B. B. Hundy, J. Mech. Phys. Solids, 4: 128 (1956). See also T. R. Wilshaw and
P. I. Pratt, ibid., 14: 7 (1966).
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Table 8.11 Theoretical results for Izod and Charpy tests (all dimensions are in
millimeters)

l R b λ◦ φ◦ F f

c = 0 22 3.963 2.478 103.55 7.31 1.780 1.224
20 4.022 2.032 102.38 7.38 1.945 1.216

c = 0.25 22 3.844 2.533 101.44 7.69 1.771 1.218
20 3.909 2.460 100.37 7.76 1.936 1.210

8.9 Bending of Double-Notched Bars

Consider the yielding of a rectangular bar containing a pair of identical deep notches
with their common axis perpendicular to the longitudinal sides. Before examining
the slipline fields under pure bending, it would be instructive to obtain elementary
bounds on the constraint factor without reference to the notch geometry. To deter-
mine an upper bound, let us assume an incipient rigid body rotation of the ends of
the bar about a central pivot formed by a pair of equal circular arcs of angle 2λ

(say) passing through the notch roots. The radius of curvature of each circular arc
is R = 1

2 a cosec λ, where a is the depth of the minimum section. Since the velocity
discontinuity that occurs along the circular arcs is of amount ωR, where ω is the
angular velocity of rotation, the rate of internal energy dissipation due to shearing
along the circular arcs is equal to 4kωR2λ. Equating this to the rate of external work
2Mω done by the applied couples M, we obtain the upper bound

M = 2kR2λ = 1
2 ka2λ cosec2λ

The yield couple has a minimum value when tan λ = 2λ, or λ � 66.8◦, and the
upper bound then becomes M = 0.69ka2. An obvious lower bound is M = 0.5ka2,
furnished by the stress distribution corresponding to pure bending of a uniform bar
of thickness a. A pair of longitudinal stress discontinuities are considered through
the notch roots, the material above and below these lines being assumed stress free. It
follows that the constraint factor 2M/ka2 must lie between 1 and 1.38, irrespective
of the shape of the notch. These bounds also apply to single-notched bars with
arbitrary notch profiles.

(i) Wedge-shaped and circular notches In the pure bending of a bar which is sym-
metrically notched on opposite sides, the slipline field becomes symmetrical about
both the longitudinal axis and the minimum section. For deep wedge-shaped notches
with a sufficiently large included angle π − 2ψ, the stress across the minimum sec-
tion is 2k(1 + ψ) above the neutral point and −2k(1 + ψ) below the neutral point,
giving a constraint factor of 1 + ψ as the tension bar problem. The jump in the
hydrostatic pressure across the neutral point is 2k(1 + 2ψ), which must not exceed
πk for the solution to be valid, leading to the restriction ψ � 16.35◦. The minimum
thickness of the bar for which the deep-notch solution is applicable is aeψ, where a
is the thickness at the notch root.
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When the notch profile is a circular arc of radius c, there are two identical fields
of logarithmic spirals meeting at the center of the minimum section. The relationship
between the yield point moment M and the geometrical parameters a and c may be
expressed as

M = kc2{1 − (1 − 2ψ)e2ψ} a = 2c(eψ − 1)

where ψ is the semiangle of the notch covered by the slipline field. Eliminating ψ

from above, we get†

f = 2M

ka2 =
(

1 + 2c

a

)2

ln
(

1 + a

2c

)
−

(
2c

a
+ 1

2

)
(121)

The solution is valid for ψ � 16.35◦, which is equivalent to a/c � 0.661, or
a/(a + c) � 0.398. The critical thickness of the bar is twice the dimension w shown
in Fig. 8.50b, and consequently,

h∗ = c(e2ψ − 1) = a
(

1 + a

4c

)
When a V-notched bar is provided with a circular fillet of radius c and semiangle
ψ � 16.35◦, the length of the straight sides of the notch covered by the slipline field
for sufficiently large values of a/c is

√
2b = a

2
− c(eψ − 1)

The stress distribution across the minimum section is equivalent to a pure couple M,
and the constraint factor becomes

f = 2M

ka2 =
{

1 − 2c

a
(eψ − 1)

}2

+ ψ

(
1 + 2c

a

)2

− 2c2

a2 (e2ψ − 1) (122)

which holds for b � 0. The critical thickness is readily obtained by the superposition
of the results for c = 0 and b = 0, and is expressed by the relation

h∗ = 2
√

2beψ + c(e2ψ − 1) = aeψ − c(eψ − 1)2 (123)

The effect of a circular root in a V-notched bar is therefore to reduce the critical
thickness as well as the constraint factor.

Figure 8.52 shows the slipline fields for pure bending of a bar with symmetrically
formed sharp and round notches corresponding to ψ � 16.35◦. Each field involves
a pair of identical circular arcs EF of radius R and angular span 2λ, with centers C
on the longitudinal axis of the bar. The hydrostatic pressure continuously changes
from −k at D to k at G, vanishing at the center of the arc EF. If the angle turned

† A. P. Green, Q. J. Mech. Appl. Math., 6: 223 (1953); G. Lianis, Ing.-Arch., 29: 55 (1960).
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Figure 8.52 Pure bending of double-notched bars with ψ � 16.35◦. (a) Wedge-shaped notch;
(b) circular notch.

through by DE is denoted by θ, geometrical considerations and Hencky’s equations
lead to

λ − (ψ − θ) = π

4
λ − θ = 1

2

Thus, λ�π/4 in the relevant range θ �ψ, the expressions for λ and θ in terms of
ψ being

2λ = π

4
+ ψ + 1

2
2θ = π

4
+ ψ − 1

2
(124)

In view of the symmetry of the fields, the equations of horizontal equilibrium are
identically satisfied. The sharp notch field is completely defined by the radii R and
b, which are obtained from the geometry of the field and the condition of vertical
equilibrium. Assuming the plastic region to extend into the fan CEF, with the normal
pressure on CF equal to 2kλ, it is easy to show that

R(2λ cos λ − sin λ) − b(2λ sin λ − cos λ) = 0

2(R sin λ + b cos λ) = a
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These equations are readily solved for R and b to give

2R

a
= 2λ sin λ − cos λ

2λ − sin 2λ

2b

a
= 2λ cos λ − sin λ

2λ − sin 2λ
(125)

The resultant moment about C of the tractions acting along CE and EA must be
equal to half the yield moment M, giving the constraint factor

f = 2M

ka2 = 4

{
bR

a2 + λ

(
b2 + R2

a2

)}
(126)

As the notch angle decreases, the constraint factor increases, until ψ reaches the
value 59.91◦, which corresponds to b = 0, or tan λ = 2λ. The constraint factor at this
stage has a maximum value of 1.38, and the slipline field reduces to a pair of circular
arcs through the notch roots. For ψ � 59.91◦, the slipline field and the constraint
factor remain unchanged.

In the case of circular notches, the resultant tension transmitted across DE per
unit width is equal to 2kcθeθ acting at right angles to DE, the vertical component of
the force being 2kcθeθ sin (λ − π/4). The equilibrium equations and the geometrical
relation therefore become

R(2λ cos λ − sin λ) − 2cθcθ sin
(
λ − π

4

)
= 0

R sin λ + ceθ cos
(
λ − π

4

)
− c = 1

2
a

Using the fact that 2θ = 2λ − 1, the ratios R/c and a/c may be expressed in the form

R

2c
= θeθ sin(λ − π/4)

2λ cos λ − sin λ
1 + a

2c
=

√
2eθ(λ − sin2 λ)

2λ cos λ − sin λ
(127)

The counterclockwise moment about C due to the tractions on CE is kλR2, while
that due to the tractions on DE exerted by the material on its left is given by (105).
The constraint factor is easily shown to be

f = 2M

ka2 = 4

(
λ

R2

a2 + √
2

Rc

a2 θeθ

)
+ 2c2

a2 {1 − 2(1 − λ)e2θ} (128)

where λ and θ are given by (124). The results for both sharp and round notches are
shown in Table 8.12. The constraint factor for the double-notched bar is compared
with that for the single-notched bar in Fig. 8.53.

When a V-notched bar is provided with a circular fillet of radius c and angular
span 2ψ, and the deformation spreads to the straight faces of the notch, the radii R
and b defining the slipline field can be determined from the equations

R(2λ cos λ − sin λ) − b(2λ sin λ − cos λ) = 2cθeθ sin
(
λ − π

4

)
R sin λ + b cos λ + ceθ cos

(
λ − π

4

)
− c = a

2

(129)
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Table 8.12 Results for pure bending of double-notched bars

Sharp notch Circular notch

ψ◦ λ◦ R/a b/a f R/a a/(a + c) f

10.00 · · · · · · · · · · 0.354 1.175 · · · · · 0.276 1.061
16.35 45.00 0.354 0.354 1.285 0 0.398 1.102
20.00 46.82 0.399 0.306 1.314 0.084 0.459 1.129
30.00 51.82 0.480 0.198 1.356 0.262 0.624 1.203
45.00 59.32 0.533 0.082 1.379 0.437 0.841 1.306
59.91 66.78 0.544 0 1.380 0.544 1.000 1.380

Figure 8.53 Constraint factors for the bending of bars containing circular notches.

where λ and θ are related to ψ through (124). When R/a and b/a have been calculated
for given c/a and ψ, the constraint factor can be found from the formula

f = 4

{
bR

a2 + √
2

(R + b)c

a2 θeθ + λ

(
b2 + R2

a2

)}
+ 2c2

a2 {1 − 2(1 − λ)e2θ} (130)

For a given ψ, the solution is valid for those values of c/a which correspond to b � 0.
The results are shown graphically in Fig. 8.54, where the broken curve represents
the limit of applicability of (130).
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Figure 8.54 Variation of the constraint factor with notch angle for double-notched bars with circular
fillets.

(ii) Solution for trapezoidal notches A bar subjected to pure bending is provided
with a symmetrical pair of trapezoidal notches having their oblique faces inclined at
an angle ψ to the longitudinal axis. The applied couples tend to open the upper notch
so that the stresses are tensile in the upper half and compressive in the lower half
of the bar. Let c denote the semiwidth of the horizontal free surface of the notch.
If c/a is less than a critical value, that depends on the angle ψ, the deformation
spreads to the inclined free surfaces involving a length AB = √

2b on either side.
The existence of the plastic stress field around the notch requires that the fans ACD
and AEF centered at A must have an angular span equal to ψ/2.

When ψ is sufficiently small, the sliplines through B meet in a single point N on
the horizontal axis, Fig. 8.55a. The hydrostatic stress changes discontinuously across
the neutral point N , the magnitude of the stress jump being equal to 2k(1 + 2ψ).
To avoid yielding of the rigid corners at N , the discontinuity in stress must be less
than the amount πk, giving ψ � 16.35◦ as the condition for validity of the field.
The longitudinal stress across the minimum section increases from 2k to 2k(1 + ψ)
along CL, where CDLD is defined by equal circular arcs of radius

√
2c. If the depth

OL is denoted by d, then
√

2b = a

2
− d � 0
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Figure 8.55 Pure bending of
double-notched bars with sym-
metrical trapezoidal notches. (a)
ψ � 16.35◦; (b) ψ � 16.35◦.

The resultant horizontal tension per unit width across ADL is Q + kd, where Q
denotes the force corresponding to zero hydrostatic stress at O. The clockwise
moment about O of the tractions along ADL, due to the material on its left, is
equal to G + 1

2 k(d2 − c2) per unit width, where G is the clockwise moment when
the hydrostatic stress vanishes at O. Since the resultant moment of the tractions
along ADLN about N is equal to half the applied moment M, we have

M = (kd + Q)a − k(d2 − c2) − 2G + 4k(1 + ψ)b2

Values of Q/kc and G/kc2, corresponding to the angular coordinates (ψ/2, ψ/2), are
directly found from Table A-1. The ratio d/c is also obtained from the same table,
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and the constraint factor is calculated from the formula

f = 2M

ka2 = 1 + ψ

(
1 − 2d

a

)2

+ 2

(
Q

ka
− d

a

)
+ 2

(
c2 + d2

a2 − 2G

ka2

)
(131)

For a given ψ, the ratio c/a must be less than that corresponding to 2d = a. The
limiting value of 2c/a in this solution decreases from 1.0 to 0.77 as ψ increases from
zero to 16.35◦. When c = 0, the constraint factor reduces to the sharp-notch value
1 + ψ as expected.

The slipline field for ψ � 16.35◦ is shown in Fig. 8.55b. The deforming zone
around the notch is extended as far as BEFGHLK, the angle turned through by
the segment GH being denoted by θ. The sliplines KLH are continued as circular
arcs HJ of radius R and angular span λ. The centered fans ACD and AEF have an
angular span ψ/2, while b denotes the radius of the circular arc EF. In view of the
opposing nature of the stresses above and below the horizontal axis of symmetry,
the hydrostatic pressure must vanish at J . It is easy to show that

λ + θ = π

4
+ ψ

2
λ − θ = 1

2
(1 + ψ)

The first of these relations follows from simple geometry, while the second relation
is a consequence of Hencky’s equations. Thus

2λ = π

4
+ 1

2
+ ψ 2θ = π

4
− 1

2

Let (−P, Q) be the rectangular components of the resultant force per unit width
across ADL, and G the clockwise moment of the tractions on ADL about O due to
the material on the left of this line, when the hydrostatic stress at C is taken as zero.
The hydrostatic tension k existing at C is responsible for additional forces k(c − e)
and kd, and an additional moment about O equal to 1

2 k(d2 − c2 + e2). If M ′ denotes
the counterclockwise moment per unit width about the point I due to the tractions
acting on ADL, then

M ′

kc2 = t

c

(
1 − e

c

)
+ 1

2

(
1 − d2 + e2

c2

)
+ a

2c

(
d

c
+ Q

kc

)
− Pt + G

kc2 (132)

where (d, e) are the rectangular coordinates of L, and t is the distance of I from
the vertical axis of symmetry. Evidently, t = R cos λ − b sin λ − e. The equilibrium
condition is most conveniently established by considering the fictitious plastic fan
HIJ, which gives a uniform normal tension equal to 2kλ along IH. The geometrical
relationship and the equation of vertical equilibrium are easily shown to be

R sin λ + b cos λ + d = a

2

R(2λ cos λ − sin λ) − b(2λ sin λ − cos λ) = −(c − e) + P

k

(133)
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Figure 8.56 Constraint factors for double-notched bars with trapezoidal notches.

For a given notch geometry, the ratios R/c and b/c can be determined from (133)
using the appropriate table. The constraint factor is obtained by taking moment of
the tractions acting along the path ADLHI about the center I . In terms of the moment
M ′ given by (132), the result may be expressed as

f = 2M

ka2 = 4

{
bR

a2 + λ

(
b2 + R2

a2

)
+ M ′

ka2

}
(134)

The solution holds only for those values of c/a and for which b � 0. Outside this
range, the deformation does not extend to the inclined faces of the notch, and the
constraint factor is then independent of the notch angle. The variation of f with
ψ for different values of 2c/a is shown in Fig. 8.56. The broken curve gives the
relationship between c/a and ψ that corresponds to b = 0. When the semiangle of
the notch is less than 30.09◦ (which includes the rectangular notch), the constraint
factor is independent of ψ for all c/a ratios.

8.10 Bending of Beams and Curved Bars

(i) The yield point of a cantilever The influence of transverse shear on the yield
point load of wide beams can be estimated by using the theory of slipline fields.
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Figure 8.57 Slipline fields for an end-loaded cantilever with strong support. (a) l/h � 13.74;
(b) l/h � 13.74.

We begin by considering a uniform cantilever of rectangular cross section under a
terminal load. The width of the beam is assumed to be at least five times its thickness,
so that the incipient deformation is essentially one of plane strain. The load which
the cantilever can carry naturally depends on the manner in which it is supported
at the built-in end.† When the support is perfectly strong, and the length l of the
beam is not too large compared to its thickness h, the slipline field is symmetrical
about the centroidal axis, as shown in Fig. 8.57a. The deformation mode consists
of a rotation of the rigid end of the cantilever by sliding over the circular arc DE
which connects the regions of tension and compression. The plastic triangles ABC

† This solution has been discussed by A. P. Green, J. Mech. Phys. Solids, 3: 1 (1954), for the more
general case of a symmetrically tapered cantilever. See also, E. T. Onat and R. T. Shield, Proc. 2d. U.S.
Nat. Congr. Appl. Mech., 535 (1954).
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and HGF are uniformly stressed, with the sliplines meeting the free surfaces at an
angle of 45◦.

If the angle subtended by the arc DE at the centre O is denoted by 2λ, the angular
span of each of the fans centered at A and H is θ = π/4 − λ. Since the hydrostatic
pressure varies from −k to k along CDEF, the Hencky equations immediately furnish
the second relation 2(λ − θ) = 1. Thus

λ = π

8
+ 1

4
� 36.82◦ θ = π

8
− 1

4
� 8.18◦

The pressure naturally vanishes at the center of the arc DE. If the radii OD and AD
are denoted by R and b respectively, then by geometry,

2(R sin λ + b cos λ) = h

The resultant horizontal force across the plastic boundary is identically zero. The
condition for vertical equilibrium is most conveniently established by considering
DOE as a fictitious plastic fan, the normal pressure on OE being then equal to 2kλ.
If the applied shearing force per unit width is denoted by kF, then the distribution
of tractions along OEH furnishes

R(2λ cos λ − sin λ) + b(cos λ − 2λ sin λ) = F

2

From the last two equations, the ratios R/h and b/h can be expressed in terms of
F/h. Using the value of λ, we get

R

h
= −0.0461 + 1.2283

F

h

b

h
= 0.6592 − 0.9197

F

h
(135)

The distance of O from the plane AH is R cos λ − b sin λ. Considering moment of
the tractions and the applied shear force about the point O, it is easy to show that

2bR + 2λ(b2 + R2) = F(l + R cos λ − b sin λ)

The expression in the bracket is the distance of the load point from O. Substituting
for R, b, and λ, we obtain the quadratic

0.5005 −
(

l

h
− 0.4320

)
F

h
− 0.7674

F2

h2 = 0 (136)

which is easily solved for F/h corresponding to any given value of l/h, the results
being shown in Table 8.13. As the length/height ratio increases, R/h decreases and
b/h increases. The condition for the above solution to be valid is R � 0, which is
equivalent to

F

h
� 1 − 2λ tan λ � 0.0375 l/h � 13.74
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Table 8.13 Yield point state of a uniform cantilever under a terminal load

Strong support Weak support

l/h F/h R/h b/h F/h R/h b/h d/h

1.00 0.518 0.591 0.183 0.498 0.529 0.174 0.594
1.50 0.370 0.409 0.319 0.358 0.357 0.298 0.554
2.00 0.281 0.298 0.401 0.273 0.252 0.373 0.552
3.00 0.185 0.181 0.489 0.181 0.139 0.454 0.535
5.00 0.108 0.086 0.560 0.107 0.046 0.520 0.521
7.595 0.0694 0.039 0.596 0.0689 0 0.554 0.514

13.74 0.0375 0 0.625 0.0374 0 0.588 0.508

The hodograph would be identical to the slipline field, rotated through 90◦ in the
clockwise sense, the rigid rotating part of the beam being mapped into a geomet-
rically similar figure. The centroid of the loaded end has a vertically downward
motion at the incipient collapse.

For higher values of l/h, the slipline field is modified to that of Fig. 8.57b, where
the fan angles are less than 8.18◦, and point D is a singularity of stress. The yield
criterion is not violated in the rigid corners at D, since the hydrostatic pressure jump
across this point is less than 2k times each included angle. The relationship between
F/h and l/h is closely approximated by the empirical formula

h

F
� 2l

h
− 7

8

l

h
� 13.8

The angle θ varies approximately as the square root of F/h, which tends to zero as
l/h tends to infinity.

Suppose that the cantilever fits into a horizontal slot in a rigid support. The beam
is supported by upward and downward reactions acting over narrow regions near the
ends of the inserted length.† If the unsupported length l is not too large compared to
the thickness h, the slipline field is of the form shown in Fig. 8.58a. The field is no
longer symmetrical about the horizontal axis of the beam, the center of rotation O of
the rigid end being at some distance d > 1

2 h from the upper free surface. The plastic
triangle near the upper surface is not anchored at the corner A, and the singularity
at this point is absent. If λ is the angle made by OE with the horizontal, and θ the
angle of the fan centered at H, it is readily shown that

λ = 1

2
� 28.65◦ θ = π

4
− 1

2
� 16.35◦

The hydrostatic pressure increases along the circular arc CE from −k at C to λk/2
at E. Proceeding as before, the geometrical relation and the force equations may be

† A. P. Green, J. Mech. Phys. Solids, 3: 1 (1954). The bending problem has also been treated by
C. Anderson and R. T. Shield, Int. J. Solid Struct., 3: 935 (1967).
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Figure 8.58 Slipline fields
for an end-loaded cantilever
with weak support. (a) l/h �
7.60; (b) l/h � 7.60.

written as

R sin λ + b cos λ = h − d

R
(π

2
sin λ + cos λ

)
+ b

(π

2
cos λ + sin λ

)
= 2d

R
(π

2
cos λ − sin λ

)
+ b

(
cos λ − π

2
sin λ

)
= F

(137)

Substituting the value of λ in the above equations, it is possible to express R/h, b/h,
and d/h in terms of F/h. Thus

R

h
= −0.0851 + 1.2348

F

h

b

h
= 0.6145 − 0.8850

F

h
d

h
= 0.5015 + 0.1847

F

h

(138)
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Taking moment about O, the equation of couple equilibrium is written in the form

bR + π

4
(b2 + R2) + d2 = F(l + R cos λ − b sin λ)

The relationship between F/h and l/h now follows on substitution from (138). The
result may be expressed as

0.5015 −
(

l

h
− 0.3693

)
F

h
− 0.7540

F2

h2 = 0 (139)

When F/h has been found by solving (139) for any given l/h, the dimensions of
the field can be calculated from (138). The results are given in Table 8.13. The
limit of applicability of the field corresponds to R = 0, which gives F/h � 0.069 and
l/h � 7.60. For longer beams, the slipline field reduces to that shown in Fig. 8.58b,
where the fan angle at H is less than 16.35◦. A sufficiently accurate empirical formula
in this range is

h

F
= 2l

h
− 3

4

l

h
� 7.6

The influence of the shearing force on the yield point state is most conveniently
demonstrated by considering the relationship between M/M0 and F/h, where M
is the bending moment per unit width at the built-in end, and M0 the fully plastic
moment under pure bending. Referring to (136) and (139), and noting the fact that
2Fl/h2 = M/M0, the required relationship may be written as

M

M0
� 1 + 1.532

F

h

(
0.564 − F

h

)
strong support

M

M0
� 1 + 1.508

F

h

(
0.492 − F

h

)
weak support

(140)

These expressions are correct to within 0.3 percent over the range 0 � F/h � 0.6.
The curve for M/M0 against F/h shows a maximum for F/h � 0.28 with strong
support, and F/h � 0.25 with weak support, the maximum values of M/M0 being
1.12 and 1.09 respectively (Fig. 8.59). The simple beam theory assumes M � M0,
whatever the magnitude of the shearing force.

The theory developed for a concentrated load is directly applicable to the case of
uniform loading if the effect of the surface pressure on the slipline field is neglected.
The error involved in this approximation is found to be insignificant.† Then, for a
given total load kF per unit width, the greatest bending moment for an end-loaded
cantilever of length l is identical to that for a uniformly loaded cantilever of length 2l.
Consequently, the solution for the distributed loading is obtained from Table 8.13,
with l representing the semilength of the beam. Equations (140) evidently remain
unchanged when the load is uniformly distributed.

† See, for example, W. Johnson and R. Sowerby, Int. J. Mech. Sci., 9: 433 (1967).
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Figure 8.59 Influence of shear on the yield moment for the plane strain bending of beams.

(ii) Fixed-ended and simply supported beams Consider a beam of uniform rect-
angular cross section with thickness h and length 2l, and having built-in support
at both ends. Fig. 8.60a represents the situations where the beam is brought to the
yield point by a central load W per unit width, the length over which its acts being
negligible compared to 2l. The collapse mode consists of rotation of the two halves
of the beam about the central pivot B and the end pivots A. If the ends of the beam are
prevented from moving laterally, there is a horizontal thrust at each end, which can
be determined from the condition that the pivot B moves vertically downward. This
requires that the line joining the two instantaneous centers of rotation of each half
relative to its support and the pivot must be horizontal. The larger the end thrust, the
higher is the center at A and the lower is the center at B. However, the effect of the
end thrust on the collapse load is small, and is therefore neglected in the following
analysis.†

The deformation on either side of pivot B will be identical to that of a cantilever
of length l with weak support and under an end load W/2 per unit width. At A, there
is either a strong or a weak support, and W is dependent on this support condition.

† A. P. Green, J. Mech. Phys. Solids, 3: 143 (1954). The corresponding problem in plane stress has
also been discussed by Green in the same paper.
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Figure 8.60 Yield point of fixed-ended beams with strong supports. (a) Central loading; (b) uniform
loading.

If the magnitudes of the bending moments at A and B are MA and MB respectively,
the equilibrium requirement for each half of the beam furnishes

MA + MB

2M0
= Wl

4M0
= W

W0
= W

2kh

(
l

h

)

where W0 is the load predicted by the elementary theory that assumes MA =
MB = M0. In the above expression, MB/M0 is given by the second relation of (140)
with F replaced by W/2k, while MA/M0 is given by the first or the second relation
according to whether there is a strong or weak support at A. The relationship between
W/W0 and l/h therefore becomes

(
W0

W

)2

−
(

1 − 0.803
h

l

)
W0

W
− 1.520

h2

l2
= 0 strong support

(
W0

W

)2

−
(

1 − 0.742
h

l

)
W0

W
− 1.508

h2

l2
= 0 weak support

(141)
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For sufficiently long beams, W0/W decreases almost linearly with h/l, the last term
of each equation being negligible in that case.

Suppose, now, that the load W carried by the beam per unit width is uniformly
distributed over its length 2l (Fig. 8.60b). The deforming zone near the central section
is bounded by a pair of straight sliplines intersecting at a point O on this section.
For l/h greater than about 3, the effect of the surface pressure on the regions of
deformation may be neglected. Then for strong end support, O lies on the horizontal
axis of the beam, and the end thrust is zero. In the case of weak end supports, there
is a positive end thrust which we neglect. The bending moment at the central section
of the beam is then equal to M0. The overall equilibrium of each half of the beam
requires

1 + MA

M0
= Wl

4M0
= 2W

W0
= W

2kh

(
l

h

)

where W0 is the load corresponding to the simple theory, based on the assumption
MA = M0. Substituting for MA/M0, which is given by the appropriate expression in
(140) with F replaced by W/2k, the relationship between W/W0 and l/h may be
written as(

W0

W

)2

−
(

1 − 0.864
h

l

)
W0

W
− 3.064

h2

l2
= 0 strong support

(
W0

W

)2

−
(

1 − 0.742
h

l

)
W0

W
− 3.016

h2

l2
= 0 weak support

(142)

The variation of W/W0 with l/h for fixed-ended beams under both concentrated
and distributed loads is shown graphically in Fig. 8.61. The ratio W/W0 is greater
than unity over the practical range of values of l/h. A maximum value of W/W0
is attained for l/h equal to about 4 with concentrated loading, and about 8 with
distributed loading.

The collapse load for a beam which is simply supported at both ends can be
determined in a similar manner. When the beam is loaded by a concentrated load at
the midspan, the distribution of the bending moment is identical to that in the central
half of a centrally loaded fixed-ended beam with weak supports. The ratio W/W0
for a simply supported beam of length l is therefore given by the second equation of
(141). If the load applied to a simply supported beam is uniformly distributed over
its length, the region of deformation consists of a pair of plastic triangles of the type
shown in Fig. 8.60b. The height of the upper triangle, denoted by d, is less than
that of the lower triangle, the ratio d/h being dependent on the surface pressure w.
There is a uniform compressive stress 2k + w in the upper triangle, and a uniform
tensile stress 2k in the lower triangle, both acting parallel to the axis of the beam.
The condition of zero resultant horizontal thrust gives

d = h

2 + w/2k
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Figure 8.61 Graphical representation of the relationship between W/W0 and l/h for fixed-ended beams.

Equating the moment of the stresses across the central section to that produced by
the external forces, we get

(2k + w)d2 + 2k(h − d)2 = wl2

where 2l denotes the length of the beam. If the effect of the surface pressure on the
plastic region is ignored, the triangles are identical in size, and the corresponding
value of the surface pressure is w0 = k(h/l)2, as predicted by the elementary theory.
Substituting for d, the last equation may be expressed in the dimensionless form

(w0

w

)2 −
(

1 − 0.5
h2

l2

)
w0

w
− 0.25

h2

l2
= 0 (143)

which gives w/w0 as a function of l/h. The effect of the surface pressure is to
strengthen the beam when it is sufficiently short. For example, w exceeds w0 by 6.2,
2.8, and 1.6 percent, when l/h is equal to 2, 3, and 4 respectively. For higher values
of l/h, the elementary theory is sufficiently accurate.
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Figure 8.62 Yielding of a cantilever under combined shear and axial loading with two of four possible
slipline fields.

(iii) Cantilever under shear load and axial thrust A cantilever of length l and
uniform thickness h is rigidly supported at one end, and is subjected to a shear
load kF and an axial compressive force kN per unit width at the other end.† For
sufficiently small values of N/h, in relation to the length ratio l/h, the slipline field
involves a pair of centered fans as shown in Fig. 8.62a. The radii of the circular arcs
CD, EF, and DE are denoted by a, b, and R respectively. If the angles made by OD
and OE with the horizontal are ψ and λ respectively, the angular spans of the fans at

† The slipline fields and the associated numerical results have been given by A. P. Green, J. Mech.
Phys. Solids, 3: 1 and 143 (1954). The bending of an I-beam under combined loading has been treated
by A. S. Ranshi, N. R. Chitkara and W. Johnson, Int. J. Mech. Sci., 18: 375 (1976).
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A and H are φ = (π/4)−ψ and θ = (π/4)−λ. The Hencky relations therefore furnish

λ + ψ = π

4
+ 1

2
λ − φ = ψ − θ = 1

2

The specification of any one of the angles fixes the others. Since A is directly above
H, and AH is equal to h, we have

a sin ψ − b sin λ + R(cos λ − cos ψ) = 0
a cos ψ + b cos λ + R(sin λ + sin ψ) = h (144)

To set up the equilibrium equations, we extend the plastic stress field into the fan
ODE as before. Then the hydrostatic tension along OD is 2kλ, and the hydrostatic
compression along OE is 2kψ. Using (144), and considering the tractions along
ADOEH, the equations of force equilibrium may be expressed as(

1 + π

2

)
(b sin λ − R cos λ) + 2R(sin λ + sin ψ) = h − F

(
1 + π

2

)
(b cos λ + R sin λ) + 2R(cos λ − cos ψ) = 2λh + N

(145)

When N = 0, the field is symmetrical, with λ = ψ = (π/8) + (1/4). As N increases
from zero for a given l/h, ψ increases and λ decreases, until φ vanishes with ψ = π/4
and λ = 1/2. For any assumed value of λ or ψ lying between these limits, the ratios
a/h, b/h, R/h, and N/h can be determined in terms of F/h by solving (144) and
(145). The corresponding relationship between l/h and F/h is then obtained from
the moment equation

λ(R2 + a2) + ψ(R2 + b2) + R(a + b) = F(l + t) + N

(
h

2
− d

)
(146a)

where t and d denote the horizontal and vertical distances between points O and A.
By simple geometry,

t = R cos ψ − a sin ψ d = R sin ψ + a cos ψ (146b)

The results of the computation are presented† in Table 8.14. It is found that R/h
decreases with increasing l/h for a given N/h, or with increasing N/h for a given l/h.

A limit of applicability of the solution therefore corresponds to R = 0, which gives

F

h
= 1 − m

(
1 + π

2

)
sin λ sin ψ

N

h
= m

(
1 + π

2

)
cos λ sin ψ − 2λ

l

h
= m2(λ sin2 λ + ψ sin2 ψ)

h

F
+ m

(
sin ψ + N

F
cos ψ

)
sin λ − N

2F

(147)

† The last row of results for l/h = 8 are based on relations that are given in Prob. 8.39.
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Table 8.14 Numerical results for cantilevers yielding under terminal load and
axial thrust

l/h F/h N/h θ φ R/h b/h d/h

8 0.0656 0.093 0.163 0.234 0.033 0.616 0.412
0.0646 0.279 0.203 0.083 0.021 0.657 0.394
0.0595 0.652 0.227 0 0 0.767 0.350

4 0.136 0.002 0.163 0.123 0.120 0.552 0.366
0.134 0.275 0.203 0.083 0.107 0.593 0.349
0.131 0.459 0.243 0.043 0.082 0.643 0.337
0.124 0.658 0.285 0 0.041 0.706 0.332

2 0.280 0.089 0.163 0.123 0.297 0.419 0.272
0.278 0.267 0.203 0.083 0.284 0.461 0.255
0.273 0.445 0.243 0.043 0.257 0.512 0.244
0.264 0.638 0.285 0 0.214 0.577 0.240

where m � 1.0422. These expressions relate F/h and N/h to the ratio l/h. As N
increases from zero, l/h corresponding to R = 0 decreases from the value 13.74.
For l/h equal to 12, 10, and 8, the limiting values of N/h are 0.22, 0.33, and 0.45
respectively.† Another limit of the solution is reached when φ = 0, which furnishes
the relations

R

h
= −0.1139 + 1.2409

F

h

N

h
= 0.6757 − 0.1437

F

h

0.4456 −
(

l

h
− 0.5180

)
F

h
− 0.7831

F2

h2 = 0

(148)

Both R and φ are zero when F/h � 0.092, giving N/h � 0.663 and l/h � 5.30. As
the length ratio decreases from this limiting value, F/h increases and N/h decreases
when φ = 0. The values of N/h for l/h equal to 3.0 and 2.0 are 0.651 and 0.638
respectively, so long as φ vanishes.

When N/h exceeds the value predicted by (148) for a given l/h < 5.30, the
slipline field of Fig. 8.62b becomes applicable. The field is not anchored at the corner
A, so that the distance AD progressively increases as the axial force is increased.
The angles λ and θ have constant values, equal to 1/2 and (π/4) − (1/2) respectively.
The geometrical parameters R, b, and d can be expressed in terms of F and N , using
(137), with N added to the right-hand side of the second equation. The results are

† The possibility of buckling is not considered here. In reality, this would impose a further limitation
on the l/h ratio.
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easily shown to be

R

h
= −0.0851 + 1.2348

F

h
− 0.0425

N

h

b

h
= 0.6145 − 0.8850

F

h
+ 0.3073

N

h
(149)

d

h
= 0.5015 + 0.1847

F

h
− 0.2493

N

h

Since the effect of axial force is to expand the region of compression and contract
the region of tension, b increases and d decreases with increasing N . The relative
magnitudes of F and N at the yield point depend on the length of the beam according
to the equation

bR + π

4
(b2 + R2) + d2 = F(l + R cos λ − b sin λ) + N

(
h

2
− d

)

for moment equilibrium. Substituting from (149), and using the value of λ, we obtain
the relation

0.5015 −
(

1

h
− 0.3693

)
F

h
− 0.7540

F2

h2 = N

h

(
0.1246

N

h
− 0.1846

F

h
− 0.0015

)
(150)

which may be compared with (139), where N = 0. For a given value of l/h, both
F/h and R/h decrease with increasing N/h. A limit is therefore reached when R = 0,
and this corresponds to

F

h
= 0.0689 + 0.0344

N

h

l

h
� 7.594 − 3.458

N

h

The preceding solutions are not valid for l/h less than a certain critical value, that
depends on N/h, for which yielding extends to the free end of the cantilever. This
critical value is approximately given by the condition that the mean shear stress
across the axis of the beam is equal to k. The critical length ratio is found to increase
linearly with the axial pressure.

When the beam is longer than that for which R vanishes under a given axial
force, the slipline field becomes similar to that of either Fig. 8.57b or Fig. 8.58b,
depending on whether N is small or large. In the first case, the fans centered at A and
H are of unequal sizes, the sum of their angular spans being less than (π/4) − (1/2)
to avoid yielding of the rigid corners at D. In the second case, the upper fan is absent,
and the angle of the lower fan is less than (π/4) − (1/2). The ranges of applicability
of the different types of solution are indicated in Fig. 8.63. The region below the
broken line represents yielding extended to the loaded end of the cantilever.

Let M denote the bending moment kFl per unit width at the built-in cross section.
A relationship between M, N , and F can be written down on the basis of (150), the
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Figure 8.63 Range of validity of the various fields for a cantilever under combined end load and axial
thrust.

range of applicability of which may be extended by a slight adjustment of some of
the coefficients. For practical purposes it is sufficiently accurate to use the expression

M

M0
= 1 −

(
N

2h

)2

+ 0.742
F

h

(
1 + N

2h

)
− 1.508

F2

h2 (151)

provided the axial force is large enough for the slipline field to be detached from the
top corner of the beam. The above formula would be free from such a restriction if
the beam were weakly supported. The last two terms on the right-hand side of (151)
represent the influence of transverse shear on the bending of beams in the presence
of axial forces.

The variations of F/h and M/M0 (= 2Fl/h2) with N/h are shown graphically
in Fig. 8.64 for three different values of l/h. The former set of curves represent
parts of the yield loci for the cantilever, giving possible yield point states under
combined loading. The latter set of curves indicate the effect of transverse shear on
the relationship between the bending moment and the axial force. The broken curve
has the equation

M

M0
= 1 −

(
N

2h

)2
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Figure 8.64 Variations of F/h and M/M0 with N/h for a uniform cantilever under combined loading.

given by the elementary theory which neglects the effect of the shearing force. For
N/h less than about 0.7, M/M0 is within 12 percent of the value given by this
equation, which strictly holds for an infinitely long beam.†

(iv) Yielding of a semicircular bar A curved bar, whose cylindrical surfaces are
formed by concentric semicircles of radii a and b, is brought to the yield point by
radially outward shearing forces kF per unit width applied at the ends.‡ Depending
on the ratio b/a, there are two types of solution, one-half of the slipline field in
each case being shown in Fig. 8.65. The field (a) consists entirely of logarithmic
spirals having their pole at the center O, while a stress discontinuity occurs across
the neutral point N whose distance from O is denoted by c. If the angles subtended
by AB and DE are denoted by θ and ψ respectively, the geometry of the field requires

θ = ln
c

a
ψ = ln

b

c
θ + ψ = ln

b

a

† The plastic collapse of knee-frames has been considered by W. Johnson, Appl. Sci. Res., A11:
318 (1961), and by W. Johnson and R. Sowerby, Int. J. Mech. Sci., 9: 433 (1967). The bending of a
cantilever containing holes of various shapes has been investigated by A. S. Ranshi, N. R. Chitkara, and
W. Johnson, Int. J. Mech. Sci., 15: 15, 329 (1973).

‡ This solution is due to W. Johnson and R. Sowerby, Int. J. Mech. Sci., 9: 433 (1967).
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Figure 8.65 Yielding of a semicircular bar due to radial shear loading, only one-half of the slipline field
being shown. (a) b/a � 5.37; (b) b/a � 5.37.

The tensile stress across AN increases outward from 2k at A, and the compressive
stress across EN decreases inward from 2k at E. The resultant tensile and compres-
sive forces acting across AN and EN per unit width are 2kcθ and 2kcψ respectively.
The condition of horizontal equilibrium therefore gives

F = 2c(θ − ψ) = 2c ln
c2

ab
(152)

The normal stress distribution along the line AN due to the material on its left
produces a clockwise moment about O, and its magnitude per unit width is given
by (104), with c replaced by a. The moment of the tractions along EN, considered
in the same sense, is also obtained from (104) by writing b and −ψ for c and
θ respectively. Since the sum of the two moments must vanish for equilibrium,
we get

a2(1 + 2θ)e2θ + b2(1 − 2ψ)e−2ψ = a2 + b2

or

2c2

ab

(
1 + ln

c2

ab

)
= b

a
+ a

b
(153)

from which c/a can be calculated for any given b/a. The collapse load then fol-
lows from (152). The limit of validity of the solution is defined by the condition
that the hydrostatic pressure jump across N must not exceed πk. The pressures
immediately below and above N are k(1 − 2ψ) and −k(1 + 2θ) respectively, giving
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θ − ψ � (π/2) − 1. Substituting for θ and ψ, and using (153), this restriction may
be written as

b

a
+ a

b
� π exp

(π

2
− 1

)
or

b

a
� 5.374

Higher values of b/a are associated with the field (b), in which the tension and
compression regions are connected by a circular arc DE of radius R and angular
span π/2. The sliplines in AHDB and GKEF are logarithmic spirals with pole at O.
The points D and E lie on a radial line inclined at an angle λ to the vertical axis. If θ

and ψ denote the angles turned through by BD and EF respectively, it follows from
geometry and Hencky’s equations that

√
2R = be−ψ − aeθ θ − ψ = π

2
− 1 (154)

To set up the equations of equilibrium, it is convenient to suppose that the region
CDE is a plastically stressed centered fan. Then the hydrostatic tension along CD
is k(1 + 2θ) and the hydrostatic compression along CE is k(1 − 2ψ). The stresses
acting across CD and CE are statically equivalent to a force passing through D,
having components kP and kQ along Ox and Oy, respectively, together with a couple
kG in the counterclockwise sense. It is easily shown that

P = √
2R(θ − ψ) Q = √

2R(θ + ψ) G = kR2(1 − θ − ψ)

The resultant tensile and compressive forces per unit width transmitted across LD and
ME are equal to 2kaθeθ and 2kbψe−ψ respectively. The conditions of equilibrium
of the forces, resolved along and perpendicular to OG, give the relations

F sin λ = P F cos λ = 2(aθeθ − bψe−ψ) + Q

Substituting for P and Q, and using (154), the above relations may be expressed as

F sin λ =
(π

2
− 1

)
(be−ψ − aeθ)

F cos λ =
(π

2
− 1

)
(be−ψ + aeθ)

(155)

The counterclockwise moment of the tractions on DCE about O is equal to
(G − Qaeθ) per unit width. The moments of the stresses acting across LD and ME
are obtained as before. The condition of zero resultant moment of the tractions along
LDCEM about the point O furnishes

a2(1 + 2θ)e2θ + b2(1 − 2ψ)e−2ψ = a2 + b2 + 2(G − Qaeθ)

The substitution for G and Q, and the subsequent elimination of R, result in

(π

2
− 1

)
e4θ −

{
b2

a2 − 2b

a
exp

(π

2
− 1

)
+ 1

}
e2θ +

(π

2
− 1

)
eπ−2

(
b

a

)2

= 0 (156)
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Table 8.15 Yield point of a semicircular bar with end loads

b/a θ ψ c/a R/a λ F/(b − a) M/M0

2.0 0.404 0.289 1.498 … … 0.344 1.032
3.0 0.685 0.414 1.983 … … 0.537 1.074
4.0 0.898 0.488 2.455 … … 0.671 1.119
5.374 1.126 0.555 3.084 0 0 0.805 1.173
6.0 0.803 0.232 … 1.786 0.347 0.848 1.188
7.0 0.667 0.097 … 3.207 0.488 0.898 1.193

This is a quadratic in e2θ , and is readily solved for any given value of b/a. When θ

has been found, the quantities ψ, R/a, F/a, and λ can be calculated from (154) and
(155). The results are summarized in Table 8.15. The ratio M/M0 appearing in the
last column represents the quantity F(b + a)/(b − a)2. It is the ratio of the bending
moment about the center of the vertical section, to the fully plastic moment under
pure bending.

The field (a) is associated with a continuous distribution of velocity vanishing
at N . The material outside the field instantaneously rotates as a rigid body about
the point N . The field (b) involves a velocity discontinuity of amount ωR prop-
agating along JHDEKN, where ω is the angular velocity of the rigid end of the
bar rotating about the point C. In both cases, a hollow develops at the upper free
surface, and a bulge develops at the lower free surface, during the deformation at
the plastic collapse. The hodograph may be constructed in the same way as that
for the bending of notched bars, and the plastic work rate shown to be nowhere
negative.

8.11 Large Bending of Wide Sheets

(i) Bending without tension Consider the pure bending of a metal sheet which is
so wide that the strain in the width direction is negligible. The material is assumed
to be nonhardening, and the strains in the plane of bending are supposed to be of
unlimited magnitude. In the region well away from the loaded ends, the distributions
of stress and strain must be identical for all transverse sections of the sheet. The
original plane surfaces of the sheet are assumed to be cylindrical due to bending,
the radii of curvature of the internal and external surfaces at any stage being a and
b respectively (Fig. 8.66). The principal stresses in the plane of bending act in the
radial and circumferential directions, and the equation of equilibrium is

∂σr

∂r
= σθ − σr

r
(157)

where (r, θ) are the polar coordinates with respect to the instantaneous center of
curvature. If c denotes the radius of the instantaneous neutral surface, the yield
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Figure 8.66 Stress distribution in the plane strain bending of a wide sheet.

criterion becomes

σr − σθ = 2k a � r � c

σθ − σr = 2k c � r � b

All fibers inside the neutral surface are momentarily compressed, and those outside
the neutral surface are momentarily extended. Substituting in (157) from above, and
using the boundary conditions σr = 0 on r = a and r = b, we obtain

σr = −2k ln
r

a
σθ = −2k

(
1 + ln

r

a

)
a � r � c

σr = −2k ln
b

r
σθ = 2k

(
1 − ln

b

r

)
c � r � b

(158)

The magnitude of the hoop stress steadily increases toward r = c in the region of
compression, and decreases toward r = c in the region of tension. The condition of
continuity of the radial stress across the neutral surface gives

c

a
= b

c
or c = √

ab

The radial stress has its greatest numerical value k ln(b/a) on the neutral surface,
where the jump in the circumferential stress is of the amount 4k. It follows from
(157) that

∫ b

a
σθ dr =

∫ b

a

∂

∂r
(rσr)dr = [rσr]b

a = 0
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The condition of zero resultant force across any section is therefore automatically
satisfied. The applied couple per unit width is

M =
∫ b

a
σθr dr = 1

2
k(a2 + b2 − 2c2) = 1

2
k(b − a)2 (159)

The associated velocity field should correspond to a circumferential extension of
fibers outside the neutral surface, and contraction of fibers inside the neutral surface.
Since the material is incompressible and isotropic, the components of the strain rate
must satisfy the relations ε̇r + ε̇θ = 0 and γ̇rθ = 0. If the radial and circumferential
velocities are denoted by u and v respectively, the velocity equations become

∂u

∂r
+ u

r
+ 1

r

∂v

∂θ
= 0

∂v

∂r
− v

r
+ 1

r

∂u

∂θ
= 0

The solution of these equations, giving an axially symmetrical distribution of strain
rate, with the center of curvature assumed to be momentarily fixed in space, may be
written as

u = − 1

2α

(
r + c2

r

)
v = rθ

α
(160)

where θ is measured from the vertical axis of symmetry, and α denotes the angle of
bending per unit length. The components of the corresponding strain rate are found
to be

−ε̇r = ε̇θ = 1

2α

(
1 − c2

r2

)
γ̇rθ = 0

Since u depends only on r, the surfaces of the sheet remain cylindrical, in accordance
with the initial assumption. In view of the linear variation of v with r, the radial
planes remain plane during the bending. It follows from (160) that the instantaneous
rates of change of the internal and external radii are

ȧ = − 1

2α

(
a + c2

a

)
= −a + b

2α
ḃ = − 1

2α

(
b + c2

b

)
= −a + b

2α
(161)

Thus ḃ − ȧ = 0, which indicates that the sheet thickness h = b − a remains
unchanged. The couple M is therefore independent of the amount of bending, the
material being nonhardening. Denoting the original length of the sheet by l, and
equating the initial and final volumes, we get

l(b − a) = 1

2
(b2 − a2)lα or α = 2

a + b

It follows that the fiber which currently coincides with the central surface has under-
gone zero resultant change in length due to equal amounts of compression and
extension during the bending.
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Consider the movement of a typical fiber situated at a distance 1
2 eh from the

central plane in the unbent state (−1 � e � 1). Let r denote the current radius of
the fiber in the bent state. Since the fiber divides the section into areas that remain
constant during the bending,

r2 − a2

b2 − r2 = 1 + e

1 − e
or

r2 = 1
2 {(b2 + a2) + e(b2 − a2)} (162)

The original central fiber (e = 0) moves to the convex side during bending, its radius
of curvature in the final state being

r0 =
√

a2 + b2

2

The initial position of the fiber finally coinciding with the neutral surface (r = c)
corresponds to e = −(b − a)/(b + a). The neutral surface itself approaches the inner
boundary from its initial position which coincides with the central plane. Hence, all
fibers initially above the central plane are progressively extended, while all fibers
finally inside the neutral surface are progressively compressed. The fibers which are
contained in the region corresponding to

−
(

b − a

b + a

)
< e < 0 or c < r <

√
a2 + b2

2

are first compressed and then extended, being overtaken by the neutral surface at
some intermediate stage. In actual practice, therefore, these fibers would be subject
to the Bauschinger effect. The initial position of the fiber that suffers equal amounts
of extension and contraction is given by 2e = −(b − a)/(b + a), which is obtained
by setting r = 1

2 (a + b) in (162). Since the bending occurs under constant couples,
the work done per unit width is Mαl, and its value per unit volume is equal to
k(b − a)/(b + a). Figure 8.67 shows the initial and final positions of the unstretched
fiber as well as those which define the region of reversed loading.†

(ii) Bending under tension Consider, now, the situation where the sheet is bent
by couples M and tensions T per unit width applied at the ends. The tensions are
assumed to act in the circumferential directions at each stage, their inward resultant
being balanced by a uniform normal pressure p applied over the inner boundary.
The condition for equilibrium is evidently

T = ap

† R. Hill, The Mathematical Theory of Plasticity, pp. 287–294, Clarendon Press, Oxford (1950).
The analysis for the stress distribution has also been given by J. D. Lubahn and G. Sachs, Trans. ASME,
72: 201 (1950).
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Figure 8.67 Relative movement of selected longitudinal fibers in sheet bending.

On the convex side of the neutral surface, the stresses are still given by (158), while
on the concave side, the stresses are modified to

σr = −p − 2k ln
r

a
σθ = −p − 2k

(
1 + ln

r

a

)
a � r � c

The radius of the neutral surface is obtained from the condition that σr must be
continuous across r = c. Thus

c2 = ab exp
(
− p

2k

)
= ab exp

(
− T

2ka

)
(163)

which shows that the effect of tension is to move the neutral surface toward the
inner boundary. If T acts along the tangent to the central fiber, the equilibrium of
the moments about the center of curvature requires

M =
∫ b

a
σθr dr − 1

2 T (a + b)

Substituting for σθ and integrating, we obtain

M = 1

2
k

{
a2 + b2 − 2ab exp

(
− T

2ka

)}
− 1

2
Tb (164)

The velocity distribution is again given by (160), but the thickness of the sheet no
longer remains constant. If the thickness at any stage is denoted by h, then by (161),
its rate of change is

ḣ = ḃ − ȧ = − 1

2α
(b − a)

(
1 − c2

ab

)
= − h

2α
(1 − e−p/2k)
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which shows that the thickness is decreased by the application of the tension.
Dividing the above relations by a similar one for ȧ, we get

dh

da
= h(ep/2k − 1)

h + a(ep/2k + 1)
= h(eλh/a − 1)

h + a(eλh/a + 1)

where 2kλ denotes the applied tensile stress T/h. The last equation may be expressed
in the more convenient form

dh

h
= −

(
eλh/a − 1

2 + h/a

)
a

h
d

(
h

a

)

If the variation of λ is prescribed during the bending, the thickness variation can be
found by numerical integration. Assuming λ to be maintained constant, and denoting
the initial thickness by h0, we obtain the solution

ln
h0

h
� λ ln

(
1 + h

2a

)
− 1

2

(
λh

2a

)2

(165)

to a sufficient accuracy when λh/a is less than about 0.5. The thickness progressively
decreases for all positive values of λ, which must be less than unity to avoid necking
of the sheet. Figure 8.68 indicates how the thickness of the sheet decreases with
continued bending under constant values of the applied tensile stress.

When h/a is less than about 0.2, the transverse stresses may be neglected as a
first approximation. The neutral surface is then at a distance 1

2λh from the central
surface. The thickness of the sheet at any stage is less than the original thickness
by a factor λh/2a approximately. The longitudinal strain in any fiber at a distance
y from the neutral surface is of amount y/a to the same order. This strain may
be regarded as produced by a continuous extension or contraction of the fiber. The
work done per unit volume of the sheet is easily shown to be (1 + λ2)kh/2a. If the
bent sheet is straightened under the same tension, there is a further thinning of an
equal amount, involving the same amount of work. The total thinning during the
process of bending and unbending is therefore a fraction λh/a of the original sheet
thickness.

(iii) Inclusion of strain-hardening If the material work-hardens, the thickness of
the sheet progressively decreases as the bending proceeds even when no tension
is applied. The velocity field (160) continues to hold, but c is now less than

√
ab,

while α is greater than 2/(a + b). The movement of the longitudinal fibers is still
represented by Fig. 7.67, where r2

0 = (a2 + b2)/2 as before. The condition of the
constancy of volume of the material readily furnishes

α = 2h0

b2 − a2 = h0

h

(
2

a + b

)
= h0

hρ
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Figure 8.68 Variation of thickness ratio with progressive bending of a sheet under tension.

where ρ is the mean radius of the bent sheet, while h0 and h are the initial and final
thicknesses. Introducing dimensionless variables

ξ = b − a

b + a
= h

2ρ
η = h

h0

the ratios of the final and initial lengths of fibers coinciding with the inner, outer,
and neutral surfaces may be written as

aα = 1 − ξ

η
bα = 1 + ξ

η
cα = c

ρη
(166)

In view of (161), the thickness of the sheet changes at the rate

dh

dα
= ḃ − ȧ = − h

2α

(
1 − c2

ab

)
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Using (166), and the fact that dα/α = dξ/ξ − 2dh/h, the above equation can be
expressed in the dimensionless form

dη

dξ
=

{
1 − (1 − ξ2)

ρ2

c2

}
η

2ξ
(167)

Initially, ξ = 0 and η = c/ρ = 1, while dη/dξ vanishes in the limit. In order to solve
(167) numerically, it is necessary to establish a second relationship between c/ρ, ξ,
and η, depending on the strain-hardening property of the material.

The material below the neutral surface r = c has been hardened by progressive
compression, while that above the radius r = r0 has been hardened by progressive
extension. The stresses in these regions may be calculated by expressing the uniaxial
stress-strain law in the form

σ = √
3 k

{
1 + m

[
1 − exp

(
−

√
3

2
nε

)]}

where m and n are empirical constants, and k is the initial yield stress in shear. In
view of the plane strain condition, ε is equivalent to (2/

√
3)εθ for r � r0, and to

−(2/
√

3)εθ for r � c. Since εθ = ln(rα), the yield criterion may be written as

σθ − σr = 2k{1 + m[1 − (rα)−n]} r0 � r < b

σθ − σr = −2k{1 + m[1 − (rα)n]} a � r � c
(168)

The hardening process is rather complex over the region c � r � r0, where each
fiber has suffered a reversal of stress from compression to tension at some stage
during the bending. The Bauschinger effect that would result in a real material may
be approximately allowed for by assuming the yield stress to vary linearly† with
ln(r/c). Taking the initial yield stress in reversed loading as 2k, we write

σθ − σr = 2k

{
1 + m

ln(r/c)

ln(r0/c)
[1 − (r0α)−n]

}
c � r � r0 (169)

so that the yield stress becomes continuous at r = r0. The distribution of σr follows
from a straightforward integration of (157), using (168) and (169). The position of
the neutral surface in the absence of tension is given by

∫ b

a
(σθ − σr)

dr

r
= 0

† P. Dadras and S. A. Majilessi, J. Eng. Ind., Trans. ASME, 104: 224 (1982). For an analysis that
neglects the Bauschinger effect, see H. Verguts and R. Sowerby, Int. J. Mech. Sci., 17: 31 (1975). The
residual stresses and springback associated with the bending have been discussed by C. C. Chu, Int. J.
Solids Struct., 22: 1071 (1986). See also P. Pourboghrat and E. Chu, Int. J. Mech. Sci., 37: 327 (1995).
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carrying out the integration separately over the three regions, and using the
fact that

r0α = α

√
a2 + b2

2
=

√
1 + ξ2

η
(170)

in view of (166), the result may be expressed in the dimensionless form

(
c

ρη

)n

+ 2n

(
1 + 1

m

)
ln
(ρ

c

√
1 − ξ2

)
− n

2

{
1 +

(
η√

1 + ξ2

)n}
ln
(ρ

c

√
1 + ξ2

)

=
(

1 − ξ

η

)n

−
(

η

1 + ξ

)n

+
(

η√
1 + ξ2

)n

(171)

Equation (167) must be considered simultaneously with (171) to obtain c/ρ and η

as functions of ξ. The differential equation (167) may be solved by the Runge-Kutta
numerical method, the ratio c/ρ for approximate values of ξ and η being found from
(171) using an iterative procedure.

The continued bending of a work-hardening sheet following the yield point
requires the application of an increasing bending moment. The magnitude of the
moment is most conveniently obtained from the equation (Sec. 5.5(i))

M = 1

2

∫ b

a
(σθ − σr)r dr

Substituting from (168) and (169), the bending moment per unit width (assuming
n �= 2) may be written as†

M

kρ2 =
(

1 − c2

ρ2 + ξ2
){

(1 + m) − (m/4)[1 − (η/
√

1 + ξ2)n]

ln [(ρ/c)
√

1 + ξ2]

}

+ mη2

n + 2

{(
c

ρη

)n+2

−
(

1 − ξ

η

)n+2
}

+ mc2

2ρ2

− mη2

n − 2


n

2

(
η√

1 + ξ2

)n−2

−
(

η

1 + ξ

)n−2

 (172)

† J. Chakrabarty, unpublished work (1983). The influence of planar anisotropy on sheet bending
has been discussed by Z. Tan, B. Persson, and C. Magnusson, Int. J. Mech. Sci., 37: 405 (1995).
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Figure 8.69 Results for the finite bending of a work-hardening sheet (m = 1.5, n = 4.0).

on using relations (166) and (170). For a nonhardening material, m = 0 and
c2 = ρ2(1 − ξ2), reducing (172) to the result M = 1

2 kh2 obtained previously.
The results of the computation based on m = 1.5 and n = 4.0 are presented in

Fig. 8.69. The broken curve represents the variation of c/ρ for a nonhardening
material. In the absence of tension, the thickness change that occurs in bending is
seen to be fairly small. The ratio c/

√
ab steadily decreases from unity to reach a

value of 0.91 approximately when ρ becomes equal to h. The depth of the zone of
reversed loading, when ρ = h, is found to be about 17 percent of the total thickness
of the sheet.

Problems

8.1 The velocity discontinuity pattern of Fig. A may be used to obtain an upper bound solution for the
plane strain indentation of a semi-infinite block by a smooth flat punch. Find the angle θ that minimizes
the mean punch pressure q, and evaluate the best upper bound in terms of the shear yield stress k.

Answer: θ = tan−1
√

2, q = 4
√

2k.
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Figure A Figure B

8.2 A lower bound solution for the indentation of a semi-infinite block by a smooth flat punch may be
obtained by using the stress discontinuity pattern of Fig. B. Construct a statically admissible stress field
based on the proposed discontinuities, and estimate the lower bound on the mean punch pressure.

Answer: q = 5k.

8.3 Figure C shows a possible upper bound mode for the indentation of a block of finite width by
a smooth flat punch. The rate of deformation is constant in the region ABDC, outside which a simple
block sliding occurs. Minimizing the punch pressure with respect to b/a, obtain the upper bound

q

k
= 2 +

√
2w

a
− 1

w

a
� 7.19

Show that for a sufficiently narrow block, an improved bound is q = k(1 + w/a), obtained on the basis
of a single discontinuity originating from a corner of the punch and terminating on the opposite vertical
side of the block.

Figure C Figure D
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8.4 The slipline field of Fig. D furnishes an upper bound solution for the co-indentation of a block,
resting on a smooth foundation, by a pair of identical punches separated by a distance 2c. Show that the
mean punch pressure q is given by

q

2k
=

(
1 + c

2a

)
f

(
h

2a + c

)
h

a
� 2 + c

a

where 2kf (h/a) denotes the pressure corresponding to indentation by a single punch. Assuming c = a,
find the range of values of h/a for which this solution gives a lower punch pressure than that produced
by the two punches acting independently, as well as that in which the deformation is localized around
the punch.

Answer: 3.0 � h/a � 11.6.

Figure E

8.5 In the indentation of a semi-infinite block by a rigid wedge, shown in Fig. E, let q denote the normal
pressure and τ the frictional stress acting on the wedge faces. Assuming a uniform state of stress in the
region AOA of the wedge, and a stress discontinuity across AA, show that the wedge will remain rigid if

q + τ cot ψ < 2k′(1 + ψ) τ < k′ sin 2ψ

where k′ is the shear yield stress of the wedge material. Plot the critical value of k′/k against the
semiangle ψ � 15◦ for the limiting cases of perfectly smooth and perfectly rough wedge faces.

8.6 In the orthogonal indentation of a semi-infinite block by a symmetrical wedge of semiangle ψ, a
mean shear strain γ may be defined as that whose product with k is equal to the plastic energy per unit
volume of the deformed material. Prove that

γ = c

b

(
2

2 + θ

)(q

k
sin ψ + τ

k
cos ψ

)
where q is the normal pressure and τ the frictional stress on the wedge faces, the quantities c, b, and θ

being the same as those introduced in Sec. 8.2. Show a graphical comparison of the dependence of γ

on ψ � π/4 for a fictionless wedge with that for a perfectly rough wedge.

8.7 Let (x0, y0) be the initial coordinates of a typical particle in a large block indented by a smooth rigid
wedge of semiangle ψ. If (x, y) are the final coordinates of the particle, when the depth of penetration
is c, show that a linear relationship of the type

x = Ax0 + By0 + Dc y = Ex0 + Fy0 + Gc
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holds for all particles finally occupying the regions ACG and BDE (Fig. 8.7), the axes of x and y being
taken along OE and OA respectively. Find the coefficients of the above equations for both these regions
when ψ = 30◦.

Answer: A = 0.817, B = −0.683, D = 0.683, E = 0.049, F = 1.183, G = −0.183 in ACG, and A = 0.738,
B = 0.414, D = 0.597, E = 0.166, F = 1.262, G = −0.378 in BDE.

Figure F

8.8 Figure F shows one-quarter of the slipline field for the indentation of a block of thickness 2h by
a pair of perfectly rough opposed wedges, with ψ � π/4, when the depth of penetration is critical. Using
the results of Prob. 6.13, show that the angle φ defining the critical field is given by

B + 2[L(φ, ξ) + N(φ, ξ)]

F1(φ, ξ) + F2(φ, ξ)
= φ + ξ − θ

where 2B = √
2θ cos ψ + sin(π/4 − ψ), and ξ = π/4 − ψ + φ, the expression in the denominator being

equal to d/
√

2b∗. Draw the associated hodograph, and compute the values of φ, h/b∗, and c∗/h when
ψ = 15◦.

Answer: φ = 46.24◦, h/b∗ = 3.180, c∗/h = 0.263.

8.9 A block of metal of thickness 2h is indented by a pair of opposed wedge-shaped tools of semiangle
ψ � 45◦, the frictional condition being such that a 90◦ cap of dead metal is attached to the wedge face.
Draw the slipline field corresponding to the critical depth of penetration c∗, and show that the fan angle
φ defining the ratio c∗/h is given by

{I0(2φ) + 2φ[I0(2φ) + I1(2φ)]} a

H
= 1 + θ

where a is the semiwidth of the impression, H the height of the raised lip above the horizontal axis of
symmetry, and θ the fan angle corresponding to the piling-up mode. Compute the values of φ, h/b∗,
and c∗/h for a perfectly rough 90◦ wedge.

Answer: φ = 73.3◦, h/b∗ = 5.339, c∗/h = 0.099.

8.10 Consider the indentation of a block of critical semiwidth w by a rough obtuse-angled wedge of
semiangle ψ, when a false cap of dead metal is attached to the wedge face. Construct a statically
admissible extension (similar to Fig. 8.43) of the field corresponding to the piling-up mode, based on
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a stress-free boundary that meets the sides of the block at a depth d below the original free surface.
Assuming ψ = 50.6◦, calculate the ratios w/a and d/c, where a is the semi-width of the impression,
and c the depth of penetration for which the width is critical.

Answer: w/a = 7.68, d/c = 10.63.

8.11 Figure G shows a statically admissible extension of the slipline field for the indentation of a block
by a smooth rigid wedge of semiangle ψ = 50.6◦, giving an estimate of the critical semiwidth w. The
extended field is symmetrical about the perpendicular bisector of the surface of contact AB between the
wedge and the block, the material to the right of EK being assumed stress-free. Using Eqs. (138), Chap.
6, show that

w

b
= 2eθ − cos θ

d

b
= 2 sin θ(1 + sin θ)

Figure G

where θ is the angle of the fan. Compute the numerical values of w/a and d/c, using the appropriate
value of θ.

Answer: w/a = 4.148, d/c = 4.710.

8.12 Draw the slipline field and the hodograph for the indentation of a block whose width 2w is critical
for the depth of penetration c of a smooth knife-edged tool of vanishingly small angle. Establish the
equations of equilibrium of the rigid shoulder that undergoes an incipient rotation at the yield point, and
evaluate the parameters that define the geometry of the field. Hence deduce the results

w

c
= 1 + 4

π

d

c
= 2 − 4

π
(
√

2 − 1)

where d is the depth of the point where the line of velocity discontinuity meets the vertical side of the
block, and c the depth of penetration.

8.13 Figure H represents the initial stages of the symmetrical extrusion of a billet through a lubricated
tapering die of semiangle ψ. As the billet moves on, the square corner of the billet is deformed into the
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region ACDEB, whose shape remains geometrically similar. Derive an expression for the mean punch
pressure pe in terms of c/H, ψ, and θ, where c is the punch travel and H the semithickness of the
undeformed billet. Assuming ψ = 30◦, and an extrusion ratio of 2, find the range of values of c/H and
pe/2k for which the solution is valid. Obtain also the range of values when the die is perfectly rough.

Answer: c/H � 0.438, pe/2k � 0.441; c/H � 0.360, pe/2k � 0.669.

8.14 A perfectly rough circular cylinder of radius R fits exactly into a preformed cavity on the surface
of a semi-infinite medium (Fig. I). The proposed slipline field for the incipient indentation involves a
90◦ cap of dead metal attached to the cylinder. Show that the required vertical force on the cylinder per
unit width corresponding to an angle of contact 2ψ � π/2 is

p = 2kR

{(
1 + 3π

2
− 2ψ

)
sin ψ − 3 cos ψ + 2

√
2

}

Figure H

Figure I
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Is it possible to associate a consistent velocity field with the assumed slipline field? Comment on the
nature of this solution.

8.15 A composite block of width 2w is made of an inner layer of material of thickness h1 and yield
stress 2k1, bonded between two equal outer layers of another material of total thickness h2 and yield
stress 2k2. The block is symmetrically compressed by a pair of rough platens under conditions of plane
strain. Using the technological method, show that the variation of the die pressure q with the distance
x from the central vertical axis is given by

q

2k
= exp

{
2µ

(
w − x

h1 + h2

)}
2w

h1 + h2
� 1

µ
ln

(
k2

2µk

)

where k denotes the quantity (k1h1 + k2h2)/(h1 + h2). Assuming µ = 0.15, k2/k1 = 0.8,
w/h1 = w/h2 = 7, calculate the value of q/2k1, where q is the mean die pressure.

Answer: 1.592.

8.16 An upper bound solution for the plane strain compression of a block between perfectly rough
platens may be obtained by using the velocity discontinuity pattern of Fig. 8.35. Draw the associated
hodograph and deduce the upper bound formula

q

2k
= 1

2

(
mh

w
+ w

mh

)
+

(
1 − 1

m2

)
w

4h

where m is the number of discontinuities, assumed odd. Plot the upper bound mean pressure against the
width/height ratio, and compare it with that predicted by the slipline field solution.

8.17 Referring to the velocity discontinuity pattern of Fig. 8.35, let the coefficient of friction µ be large
enough for sticking friction to occur on n number of sliding blocks. Draw the modified hodograph for
n = 1 and n = 2 using seven discontinuities. Assuming w/h = 7, show that the mean die pressure for
n = 1 and n = 2 are given by

q

2k
= 5

7
+ 4(1 + 3µ)

7(1 − µ)2 and
q

2k
= 1 + 6

7

(
1 + µ

1 − µ

)

respectively. For what value of µ would Coulomb’s law of friction give way to sticking friction over
the whole platen according to the upper bound solution?

Answer: µ = 1/3.

Figure J
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Figure K

8.18 Figure J shows a quarter slipline field for the compression of a block between partially rough
overlapping platens, the fan angle θ being dependent on the coefficient of friction µ. Show that the
mean die pressure q may be written as

q

2k
= w0

w
f
(w0

h

)
+ (1 + 2θ)

(
1 − w0

w

)
where f (w0/h) is the dimensionless mean pressure when w = w0. Assuming µ = 0.2, find the range of
values of w/h for which the field is applicable, and estimate the corresponding range of values of q/2k.
Construct the associated hodograph, and compute the horizontal component of velocity of the rigid
triangle AEF per unit speed of compression.

Answer: 1.568 � w/h � 2.762, 1.102 � q/2k � 1.272, V/U = 2.165.

8.19 Figure K shows one half of the slipline field for the compression of a block, resting on a perfectly
rough foundation, using a sufficiently rough punch, the range of values of w/h being fairly small. Show
that the mean punch pressure q is given by

q

2k
= 1 + π

2
+ 2θ + h

w

{
d

2h
−

∫ θ

0

( x

h

)
dα

}

where the integral is taken along the segment FG. Using Table A-9, compute the values of w/h and
q/2k corresponding to θ = 15, 30, and 45◦, and determine in each case the least coefficient of friction
µ required on the punch face. Discuss the hodograph associated with the slipline field.

Answer: w/h = 1.069, 1.517, 2.097; q/2k = 2.662, 2.870, 3.153.

8.20 The slipline field for the compression of a block resting on a rigid perfectly rough foundation is
shown in Fig. L, when the punch is perfectly smooth and the width/height ratio is moderate. Explain
how the domain HJL may be constructed from an extension of EDFG, using the principle of vectorial
superposition. Show that the dimensionless mean punch pressure is

q

2k
= 1 + π

2
+ 2θ − 4h

w

∫ θ

0
f
(
α,

π

4
+ α

)
dα

Figure L
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where f (α, β) represents x/h for the field OFGE with the base point at O. Use Table A-9 to calculate
w/h and q/2k corresponding to θ = 15, 30, and 45◦, following a numerical method of integration.

Answer: w/h = 2.138, 3.034, 4.194; q/2k = 2.659, 2.870, 3.151.

8.21 Figure M shows one half of a possible slipline field for the compression of a symmetrical tapered
projection on a large block of material by a rough flat die. The frictional condition is such that a cap of
rigid material is attached to the whole die face. If the mean normal pressure on the die is denoted by q,
show that

q

2k
=

(
1 + b

a
cosec ψ

)
ln
(

1 + a

b
sin ψ

)
f

{
ψ

(
1 + 2b

a
cosec ψ

)}

Figure M

the function f being the same as that defined in Table 7.5. Compute the value of q/2k when b/a = 2 and
ψ = 30◦. Draw the associated hodograph, and estimate the angle η which the direction of motion of the
free surface AB makes with the horizontal.

Answer: q/2k = 2.124, η = 10.26◦.

8.22 A bar of thickness 2h, containing symmetrical notches of arbitrary shape, is pulled longitudinally
under conditions of plane strain. An upper bound on the yield point load is obtained by assuming a
deformation mode that consists of block sliding along a pair of mutually perpendicular lines OA and
OB as shown in Fig. N. Show that the constraint factor is

f = 1

2

(
cot θ + h

a
tan θ

)

Figure N
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Figure O

Find the value of θ that minimizes the constraint factor, and obtain the least upper bound
√

h/a for the
constraint factor f .

8.23 Figure O shows a stress discontinuity pattern for the yielding of a tension bar of semithickness h
containing a symmetrical pair of circular notches of radius c. Construct a statically admissible stress
field based on the assumed discontinuities, and obtain the lower bound f = (h/a)(1 − cos 2φ) for the
constraint factor, the angle φ being given by

(
1 + c

a

)
cot φ − h

a
tan φ = c

2a
cosec2φ

Assuming the notches to be semicircular with c = a, compute the value of φ and the constraint factor.
Answer: φ = 34.2◦, f = 1.264.

8.24 Draw the slipline field and the hodograph for the yielding of a tension bar of minimum thickness
2a, containing a pair of deep trapezoidal notches of included angle π − 2ψ and root width 2c, assuming
the plastic deformation to extend to the inclined faces of the notch, show that the yield point load T is
given by

T

4ka
= (1 + ψ)

(
1 − d

a

)
+ Q

2ka

where Q is the longitudinal force per unit width across the minimum section between the notch root
and the apex of a plastic triangle of height a − d, having its base on the longitudinal axis. Assum-
ing c/a = 0.41, draw a graph showing the variation of the constraint factor with ψ over the range
0 � ψ � π/2.

8.25 In the necking of a V-notched bar under longitudinal tension, a possible deformation mode is
one in which the slipline field remains geometrically similar. The initial and final configurations are
indicated by broken and full lines respectively in Fig. P, the lower end of the bar being assumed fixed
during the extension. Show that the angle θ which the deformed free surface makes with the vertical
axis is given by

tan θ = (sec ψ + 2 tan ψ)2

4(sec ψ + tan ψ)

where π/2 − ψ denotes the semiangle of the notch. Show also that the thickness of the neck
decreases by an amount c(sec ψ + 2 tan ψ) when the minimum section has moved vertically through a
distance c.
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Figure P Figure Q

8.26 A bar containing a symmetrical pair of opposed V notches of semiangle π/2 − ψ is brought to
the yield point by an axial force T and a bending moment M. The notches are sufficiently deep, and the
notch angle large enough for a stress discontinuity to occur on the notch axis. Draw the slipline field,
and deduce the relationships

(
T

T0

)2

+ (1 + ψ)
M

M0
= (1 + ψ)2

where T0 = 2ka and M0 = 1
2 ka2, the thickness of the minimum section being denoted by a. Draw a graph

showing the variation of M/M0 with T/T0 for ψ = 15◦, and compare it with that for ψ = 0. Construct
the hodograph associated with the slipline field.

8.27 An upper bound solution for the pure bending of a single notched bar with an arbitrary notch
profile may be obtained by assuming the deformation mode associated with the slipline field of Fig.
Q. There is a velocity discontinuity initiated at A and terminated at C. Using kinematical arguments,
derive the upper bound expression

M = k

(
λ − 1

2

)
R2 + k

[
a − R sin

(
λ − π

4

)]2

Find the values of λ and R/a for which the yield moment M is a minimum, and calculate the
corresponding constraint factor.

Answer: λ � 117◦, R/a = 0.389, f = 1.261.

8.28 In the pure bending of a bar containing a deep V notch, a lower bound solution is furnished by the
stress discontinuity pattern of Fig. R. The triangle DCE is the mirror image of ACB with respect to the
horizontal through C. Assuming the material below DET to be in a state of uniaxial compression 2k,
show that the lower bound on the constraint factor is

f = 2

(
1 + sin ψ

2 + sin ψ

)
ψ � π

6
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Figure R

What would be the lower bound value when ψ � π/6? Obtain a graphical plot for the lower bound f
against ψ, and compare it with that given by the slipline field.

8.29 The discontinuity pattern of Fig. R may be used to obtain a lower bound solution for a curved notch
by taking AB as tangential to the notch surface. Assuming a circular notch of radius c, and maximizing
the constraint factor with respect to the angle ψ which AB makes with the horizontal, show that the
relationship between f and c/a may be written parametrically as

f = 2[cos ψ − (c/a)(1 − cos ψ)]2

(1 − sin ψ)(2 + sin ψ)
1 + a

c
= (1 + sin ψ)(1 + 2 sin ψ)

cos ψ(1 − sin ψ)

Find the range of values of c/a for which this solution is valid, and modify the lower bound outside this
range.

Answer: c/a � 0.169, f = 1.2(1 − 0.155c/a)2.

8.30 Draw the slipline field for pure bending of a bar containing a deep rectangular notch whose root is
of width 2c. The ratio c/a (where a is the minimum thickness) is such that the state of stress involves a
discontinuity on the notch axis at some distance d below the notch root. Show that the constraint factor
is given by

f = 2

(
1 − d

a

)2

+ c2 + d2

a2 + 2

(
Qd − G

ka2

)
a

c
= Q

2kc
+ 3d

2c

where Q and G have the same significance as that in Sec. 8.9(ii). Find the range of values of 2c/a for
which the field is valid, and obtain the corresponding range of values of f .

Answer: 1 � 2c/a � 0.565, 1 � f � 1.029.

8.31 Consider the plane strain yielding of a rigid/plastic bar with an Izod notch under pure bending.
A solution to this problem may be obtained on the assumption that the notch is deep enough for the
slipline field of Fig. 8.48 to apply. Using the geometry of the Izod notch, compute the dimensions R, b,
and d of the slipline field for the standard value of a, and compute the constraint factor. Find also the
critical thickness of the bar in pure bending.

Answer: R = 2.813 mm, b = 0.394 mm, d = 5.003 mm, f = 1.243, h∗ = 11.10 mm.

8.32 Figure S shows the slipline field for the bending of a symmetrically tapered cantilever under a
concentrated end load kF per unit width, when the ratio l/h is increased to a critical value. Show that
the depth of the cross section at C is equal to 2h, and that

2l

h
= cot ψ(sin 2ψ + cos 2ψ)

F

h
= 2 sin 2ψ
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Discuss the solution for l/h ratios exceeding the critical value for a given angle ψ. Prove that the solution
is valid for ψ � 15◦, and construct a statically admissible stress field for ψ � 15◦.

Figure S Figure T

8.33 The limiting slipline field for the bending of a cantilever, whose bottom face is inclined at an angle
ψ to the horizontal, is shown in Fig. T. The plastic triangles forming the field are of unequal sizes, and
the field is not anchored to the bottom corner of the beam. Prove that

l

h
= tan ψ + 2(1 + cot ψ)

2 + tan2ψ

F

h
= 4 tan ψ

2 + tan2ψ

at the yield point, and find the range of values of ψ for which the solution is valid. Comment on the
possible slipline field and the yield point load when l/h exceeds the limiting value for a given ψ.

Answer: ψ � 30.36◦.

8.34 For sufficiently small values of the length/thickness ratio, the yield point state of a tapered can-
tilever, which is symmetrical about its longitudinal axis, is represented by the slipline field of Fig. U.
Assuming ψ = 10◦, show that the collapse load is given by

0.2725 −
(

l

h0
− 1.0336

)
F

h0
− 1.1641

F2

h2
0

= 0

where h0 is the beam thickness at the built-in end. Find the greatest value of l/h for which the field is
valid, and compute the corresponding values of F/h and b/h.

Answer: l/h = 3.416, F/h = 0.685, b/h = 1.297.

Figure U
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Figure V

8.35 When the beam and its vertical support are made of one piece of material, the slipline field for
a sufficiently short cantilever, carrying a concentrated load at the free end, is that shown in Fig. V.
Assuming a uniform thickness h, obtain the relationship between F/h and l/h in the form

0.6950 −
(

1

h
− 0.1863

)
F

h
− 0.0971

F2

h2 = 0

Find the range of values of F/h and l/h for which the solution is geometrically possible and statically
admissible.

Answer: 0.590 � F/h � 1, 1.307 � l/h � 0.784.

8.36 An upper bound solution to the preceding problem for any l/h ratio may be obtained by assuming
an incipient rigid body rotation of the beam caused by sliding over a concave circular arc passing through
the corners A and H. Show that the relationship between F/h and l/h may be expressed parametrically
in the form

F

h
= 1 − 2λ cot λ

2l

n
= cot λ + λh

F
cosec2λ

where 2λ is the angle subtended by the circular arc at its center of curvature, which is on the longitudinal
axis of the beam. Compute the upper bound value of F/h when l/h = 1, and compare it with that given
by the slipline field.

Answer: F/h = 0.782.

8.37 A uniform beam of length 2l and thickness h is strongly built-in at one end and simply supported
at the other. The beam is loaded to the point of collapse by a load W per unit width at the midspan.
Show that

W

W0
= 1 + 0.783

F

h
− 1.516

F2

h2

where kF is the magnitude of the shearing force per unit width at the built-in end, given by

1.520
F2

h2 +
(

l

h
− 0.803

)
F

h
− 1 = 0

and W0 is the collapse load according to the elementary theory. Compute the values of F/h and W/W0
when l/h = 4.

Answer: F/h = 0.276, W/W0 = 1.101.

8.38 Suppose that the beam of the preceding problem carries a load W per unit width, uniformly
distributed over its length 2l. Neglecting the effect of surface pressure on the regions of plastic
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deformation, show that

W

W0
=

(√
ρ + 1√
2 + 1

)2 2l

h
= (

√
ρ + ρ)

h

F

at the incipient collapse, where (ρ − 1)M0 and kF are the magnitudes of the bending moment and
shearing force respectively per unit width at the built-in end. Assuming l/h = 4 find the numerical
values of F/h and W/W0.

Answer: F/h = 0.441, W/W0 = 1.024.

8.39 Draw the slipline field for a strongly supported cantilever yielding under a terminal shear load
kF and an axial thrust kN per unit width, when the stress state involves a discontinuity with the tensile
plastic triangle detached from the supporting wall. Using the notation of Fig. 8.62, show that

F√
2b

= sin θ − θ(cos θ − sin θ)

N + 2h√
2b

= cos θ + (1 + θ)(cos θ + sin θ)

where b/h depends on l/h and θ according to the relationship

[2(1 + θ) + sin 2θ]
b

h
=

(
N

b
+ 2h

b

)
− 2Fl

bh

Assuming l/h = 8, find the angle θ for which the upper plastic zone becomes attached to the corner of
the beam, and calculate the corresponding ratios F/h and N/h.

Answer: θ = 13.3◦, F/h = 0.059, N/h = 0.523.

8.40 A symmetrical frame of channel section, shown in Fig. W, is subjected to shear loads kF per unit
width across the end sections. For an optimum design of the frame, its horizontal and vertical members
are intended to reach the yield point simultaneously when the load attains a critical value. Using the
slipline fields as indicated, show that the collapse load is given by

F

2h
= −

(
1 + 2a

h

)
+

√
1 +

(
1 + 2a

n

)2

Figure W
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Figure X

Assuming a/h = 2, determine the thickness ratio h′/h that corresponds to the proposed optimum design.
Answer: h′/h = 0.851.

8.41 Figure X shows a possible slipline field for the plastic collapse of a 90◦ symmetrical knee-frame
under equal and opposite compressive forces kP per unit width at the end sections. The field is made
up of two isosceles triangles and two circular arcs on either side of the axis of symmetry. Show that the
relationship between P/h and l/h is

0.694
p2

h2 +
(

1.414
l

h
− 0.524

)
p

h
− 1.003 = 0

Draw a graph showing the variation of P/h with l/h over the range 1 � l/h � 5. Find the greatest l/h
ratio for which the solution is applicable.

Answer: l/h � 7.35.

8.42 The cross section of a cylinder of constant wall thickness h consists of two concentric squares, the
length of each side of the inner square being 2a. At the onset of plastic collapse, due to the application of
an internal pressure p, sliplines emanating from the inner corners meet the external surface in a manner
indicated in Fig. X. In addition, deformation occurs in each member through a pair of central triangular
zones of the type shown in Fig. W. Show that

0.819
(p

k

)2 +
(

0.5 − 0.371
h

a

)
p

k
−

(
h

a

)2

= 0

to a close approximation. Compute the dimensionless collapse pressure when h/a = 0.25, 0.5, and 0.75.
Answer: p/k = 0.123, 0.393, 0.705.
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CHAPTER

NINE
COMPUTATIONAL METHODS

The solution of engineering problems involving the plastic deformation of met-
als generally requires the use of some kind of numerical technique based on an
approximation that provides results with the desired level of accuracy. The advent
of high-speed digital computers has enabled engineers to deal with a wide range
of problems involving complex geometries and material properties with increasing
degrees of efficiency and success. This chapter is concerned with the fundamentals
of the computational methods that are related to the solution of plasticity problems.
We shall begin our discussion with some of the frequently employed methods of
numerical analysis, such as polynomial interpolation, numerical quadrature, numer-
ical linear algebra, and numerical solution of differential equations. This is followed
by the finite difference method for the solution of boundary-value problems. The
remainder of the chapter deals with the finite element method, based on a variational
principle associated with work-hardening elastic/plastic materials.

9.1 Numerical Mathematics

(i) Lagrangian interpolation Interpolation is a device for finding a continuous
function that satisfies prescribed conditions at a given number of points in space.
The function f may be regarded as an approximation to an unknown function passing
through the specified number of points. In the case of the Lagrangian interpolation,
f is a polynomial in terms of the independent variables, taking the given function
values at the specified points.

Consider the one-dimensional interpolation involving n points defined by x =
x1, x2, . . . , xn, the corresponding function values being specified as f = f1, f2, . . . , fn.

780
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The associated Lagrangian interpolation polynomial may be expressed in the form

f (x) = N1 f1 + N2 f2 + · · · + Nn fn =
n∑

i=1

Ni(x) fi (1)

where N1, N2, . . . , Nn are functions of x. The quantity Ni(xj) is identical to the
Kronecker delta δij, whose value is unity when i = j and zero when i �= j. It is easily
shown that

N1 = (x − x2)(x − x3) . . . (x − xn)

(x1 − x2)(x1 − x3) . . . (x1 − xn)

N2 = (x − x1)(x − x3) . . . (x − xn)

(x2 − x1)(x2 − x3) . . . (x2 − xn)

Nn = (x − x1)(x − x2) . . . (x − xn−1)

(xn − x1)(xn − x2) . . . (xn − xn−1)

(2)

Evidently, each of the interpolation functions Ni(x) is a polynomial of degree n − 1.
For any value of x not equal to xi, the Lagrangian polynomial f (x) depends on all
the prescribed function values.

In the special case of linear interpolation (n = 2), it is convenient to express the
interpolation formula in terms of a dimensionless local coordinate ξ, known as the
natural coordinate, which is defined by the linear transformation

x = 1
2 (a + b) + 1

2 (b − a)ξ (3)

where x1 = a and x2 = b. Thus, ξ varies between the limits −1 and 1 as x varies
between a and b. It follows from (2) that the linear Lagrangian interpolation (n = 2)
corresponds to

N1 = 1
2 (1 − ξ) N2 = 1

2 (1 + ξ) (3a)

When the given points xi are equally spaced, the results for higher order Lagrangian
interpolation can be easily obtained in terms of ξ using transformation (3), with a and
b denoting the x-values at the end points of the interval. Considering the quadratic
interpolation (n = 3), and setting x1 = a, x2 = (a + b)/2, and x3 = b, we obtain

N1 = − 1
2ξ(1 − ξ) N2 = (1 − ξ)(1 + ξ) N3 = 1

2ξ(1 + ξ) (4)

In the case of cubic interpolation (n = 4), we have 2(x − x1) = (b − a)(1 + ξ), and
x2 − x1 = x3 − x2 = x4 − x3 = (b − a)/3, yielding the result

N1 = − 1
16 (1 − ξ)(1 + 3ξ)(1 − 3ξ) N2 = 9

16 (1 − ξ)(1 + ξ)(1 − 3ξ)

N3 = 9
16 (1 + ξ)(1 − ξ)(1 + 3ξ) N4 = − 1

16 (1 + ξ)(1 − 3ξ)(1 + 3ξ)
(5)
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The local coordinate ξ is useful not only for constructing simplified expression for
the interpolation function, but also for the derivation of formulas for numerical
integration.

The Lagrangian type of interpolation can be extended to multidimensional cases
in a straightforward manner. Consider the two-dimensional situation in which the
values of an unknown function f (x, y) are given at n points along each of the m straight
lines parallel to the x-axis. Since, the expression for f along a typical line y = yj is
given by (1), where f1, f2, . . . , fn are replaced by f1j, f2j, . . . , fnj, the interpolation
function can be written as

f (x, y) =
n∑

i=1

m∑
j=1

Ni(x)Mj(y) fij (6)

where fij denotes the value of f at a typical point (xi, yj). The function Ni(x) is
directly given by (2), while Mj(y) is given by the right-hand side of (2) with the
x-coordinates replaced by the corresponding y-coordinates. The interpolation for-
mulas for three-dimensional cases can be similarly constructed.As a simple example
of two-dimensional Lagrangian interpolation, consider a bilinear rectangular domain
(n = m = 2), which is bounded by x = ±a and y = ±b. Since x varies from x1 = −a
to x2 = a, and y varies from y1 = −b to y2 = b, the interpolation formula becomes

f (x, y) = N1(x) M1(y) f11 + N1(x) M2(y) f12 + N2(x) M1(y) f21 + N2(x) M2(y) f22

where N1, N2, M1, and M2 are the one-dimensional interpolation functions given by

2N1 = 1 − x

a
2N2 = 1 + x

a
2M1 = 1 − y

b
2M2 = 1 + y

b
(7)

Evidentally, the actual interpolation functions in this case are the products
N1M1, N1M2, N2M1, and N2M2. When the origin of coordinates is not at the center
of the rectangle, it is only necessary to interpret x and y in (7) as the coordinates
relative to the center of the rectangle. In certain problems, such as the bending of
beams and plates, not only the function values but also the spatial derivatives of the
function are specified at a given number of points. An interpolation function that
satisfies these conditions is called the Hermite interpolation function.

(ii) Numerical quadrature The numerical evaluation of a definite integral is based
on an appropriate integration formula that involves the values of the integrand at
a certain number of points, each one of these function values being multiplied by a
weighting factor that depends on the nature of the approximation. The widely used
Newton-Cotes integration formula, based on the appropriate Lagrangian polynomial
passing through n equidistant base points can be written as

∫ b

a
f (x) dx = h

n∑
i=1

wi f (xi) hwi =
∫ b

a
Ni(x) dx (8)
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where wi is the weighting factor corresponding to a typical base point x = xi, and
h = (b − a)/(n − 1) is the width of the spacing. The Newton-Cotes formula gives the
exact value of the integral if the given function f (x) is a polynomial of degree n or
less when n is odd, and a polynomial of degree n − 1 or less when n is even.

The evaluation of the coefficients wi is facilitated by the substitution of (3) which
gives 2(x − a) = (b − a)(1 + ξ) and 2 dx = (b − a)dξ. When n = 2 we have b − a = h,
and the integration based on (3a) gives w1 = w2 = 1/2, defining the trapezoidal rule
(with an error of order h2). When n = 3 and b = a = 2a, the evaluation of the integral
using (4) gives w1 = w3 = 1/3 and w2 = 4/3, corresponding to Simpson’s one-third
rule (with an error of order h4). When n = 4 and b − a = 3h, an independent calcu-
lation based on (5) and (8) leads to the results w1 = w4 = 3/8, and w2 = w3 = 9/8,
which correspond to Simpson’s three-eighth rule (with an error of order h4).

We shall now discuss an improved method of numerical quadrature, known as the
Gaussian quadrature, in which the base points xi are unspecified. Since the weighting
coefficients wi are also unknown, there will be 2n undetermined parameters, where
n is the number of base points. The Gaussian integration formula, based on an
approximation of the given function by a polynomial of degree n − 1 can be formally
expressed as∫ b

a
f (x) dx = 1

2
(b − a)

∫ 1

−1
F(ξ) dξ = 1

2
(b − a)

n∑
i=1

wiF(ξi) (9)

where ξ is a dimensionless variable related to x by the linear transformation (3),
wi are the weighting factors corresponding to the base points ξi and

F(ξ) = f

(
b + a

2
+ b − a

2
ξ

)
(10)

For a selected value of n, the unknown parameters can be determined by using the
condition that the integral is exactly given by (9) when F(ξ) is a polynomial of
a degree equal to or less than 2n − 1. Setting F(ξ) = ξm in (9), and integrating, we
have

n∑
i=1

wiξ
m
i =

{
2/(1 + m), m = 0, 2, 4, . . . , 2(n − 1)

0, m = 1, 3, 5, . . . , 2n − 1

}
(11)

These relations enable us to set up the equations necessary for finding ξi and wi for
any given value of n. For example, when n = 2, a set of four equations are obtained
by substituting m = 0, 1, 2, and 3 in (11), and the solution is

−ξ1 = ξ2 = 1/
√

3, w1 = w2 = 1 (n = 2)

giving the results for the two-point Gaussian quadrature. When n = 3, a set of
six equations for the six unknown parameters are obtained from (11) on setting
m = 0, 1, 2, . . . , 6. These equations are easily solved to furnish the results

−ξ1 = ξ3 =
√

3
5 ξ2 = 0 w1 = w3 = 5

9 w2 = 8
9 (n = 3)
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corresponding to the three-point Gaussian quadrature that involves a quadratic
approximation of F(ξ). The nature of the approximations represented by n = 2 and 3
is illustrated in Fig. 9.1.

It can be shown that the values of ξi for a given n in the Gaussian quadrature
are identical to the roots of the nth degree Legendre polynomial, denoted by Pn(ξ),
which is defined by the recursion relation

Pn+1(ξ) =
(

2n + 1

n + 1

)
ξPn(ξ) −

(
n

n + 1

)
Pn−1(ξ) (12)

together with the fact that P0(ξ) = 1 and P1(ξ) = ξ. The repeated application of (12)
therefore gives

P2(ξ) = 1
2 (3ξ2 − 1) P3(ξ) = 1

2ξ(5ξ2 − 3)

P4(ξ) = 1
8 (35ξ4 − 30ξ2 + 3) P5(ξ) = 1

8ξ(63ξ4 − 70ξ2 + 15)
(13)

Once the Gauss points ξi are found as the roots of the equation Pn(ξ) = 0, the
weighting factors wi can be evaluated from the relation

wi = 2

(1 − ξ2
i )[P′

n(ξi)]2
(14)

where P′
n(ξ) is the derivative of Pn(ξ) with respect to ξ. The results quoted above for

the special cases of n = 2 and 3 may now be verified by using (13) and (14), which
are generally more convenient for the evaluation. The numerical values of ξi and wi
corresponding to n = 2, 3, 4, and 5 are given in Table 9.1.

The Gaussian quadrature is more frequently used in computational mechanics
than the Newton-Cotes quadrature, because the former requires fewer points to
achieve the same degree of accuracy. The Gaussian integration is not appropriate,
however, when f (x) is not algebraically defined as a function of x.

x

(a)

j � �1 j � �1
j � �j0 j � j0

j � 0 j � 0j �1 j � 1

f (x)f (x)

x
j � �j1 j � j1

(b)

Figure 9.1 Graphical representation of Gaussian quadrature. (a) Two-point quadrature (ξ0 = 1/
√

3);
(b) three-point quadrature (ξ1 = √

0.6).
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Table 9.1 Weighting factors and base points in the
Gaussian quadrature

n ξi wi

2 ±0.57735 02691 89626 1.00000 00000 00000
3 ±0.77459 66692 41483 0.55555 55555 55555

0.00000 00000 00000 0.88888 88888 88889
4 ±0.86113 63115 94053 0.34785 48451 37454

±0.33998 10435 84856 0.65214 51548 62546
5 ±0.90617 98459 38664 0.23692 68850 56189

±0.53846 93101 05683 0.47862 86704 99366
0.00000 00000 00000 0.56888 88888 88889

(iii) Multiple integration The methods of numerical integration discussed for sin-
gle variables can be extended in a straightforward manner to deal with multiple
integrals. We begin our discussion with the situation where the limits of integration
are constant. Consider the numerical evaluation of the double integral

I =
∫ d

c

∫ b

a
f (x, y) dx dy =

∫ b

a

{∫ d

c
f (x, y) dy

}
dx (15)

based on the Newton-Cotes approximation (9) for a single-variable integration. If
we assume n base points in the x direction for a constant y, and m base points in the
y direction for a constant x, then the corresponding spacings are

h = b − a

n − 1
k = d − c

m − 1

Denoting the weighting factors in the y direction by vj, and the corresponding base
point by yj, and treating x as a constant, we have

∫ d

c
f (x, y) dy = k

m∑
j=1

vj f (x, yj)

If the base points and weighting factors in the x direction are denoted by xi and wi,
respectively, then the double integral becomes

I = k
m∑

j=1

∫ b

a
{vi f (x, yj)} dx = hk

m∑
j=1

vj

n∑
i=1

wi f (xi, yj)

It may be noted that xi = a + (i − 1)h and yj = c + ( j − 1)k. The preceding result
furnishes the integration formula in the form

I =
∫ d

c

∫ b

a
f (x, y) dx dy = hk

n∑
i=1

m∑
j=1

wivj f (xi, yj) (16)
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The coefficients wi and vj can be readily evaluated from the known weighting fac-
tors for the Newton-Cotes approximation adopted for integration in the coordinate
directions. Assuming for example, Simpson’s one-third rule for both the directions,
with m = 3 and n = 5, the integration formula (16) can be written in the pictorial
form

I = hk

9




1 4 2 4 1
4 16 8 16 4
1 4 2 4 1


 f (xi, yj)

Similar arrays of numbers can be written down for other combinations of the Newton-
Cotes integration rules which need not be the same in both the directions. It may be
noted that the subscripts i and j correspond to the location in the row and column
respectively in the array of coefficients, each of which is a multiplying factor in the
summation.†

A more efficient method of integration when f (x, y) is algebraically defined is
provided by the Gaussian quadrature.‡ The first step in this method is to change the
variables from x and y into ξ and η, each of which can vary between the limits −1
and 1. This is accomplished by using the linear transformation

x = 1
2 (b + a) + 1

2 (b − a)ξ y = 1
2 (d + c) + 1

2 (d − c)η

which changes the double integral (15) into

I = 1

4
(b − a)(d − c)

∫ 1

−1

∫ 1

−1
F(ξ, η) dξ dη

where

F(ξ, η) = f

{(
b + a

2
+ b − a

2
ξ

)
,

(
d + c

2
+ d − c

2
η

)}
(17)

Let ξi and wi denote the Gauss points and weighting factors, respectively, for the
single-variable Gaussian quadrature in the ξ direction, and ηj and vj the correspond-
ing quantities in the η direction. The Gaussian quadrature formula for the double
integral then becomes

I =
∫ d

c

∫ b

a
f (x, y) dx dy = 1

4
(b − a)(d − c)

n∑
i=1

m∑
j=1

wivjF(ξi, ηj) (18)

where n and m denote the number of Gauss points selected along each straight line
with varying ξ and η respectively. Using Table 9.1, the integral can be evaluated

† C. F. Gerald and P. O. Wheatley, Applied Numerical Analysis, 6th ed., Addison-Wesley, Reading,
MA (1999).

‡ See, for example, C. E. Fröberg, Introduction to Numerical Analysis, Addison Wesley, Reading,
MA (1965). See also A. H. Stroud and D. Secrest, Gaussian Quadrature Formulas, Prentice Hall,
Englewood Cliffs, NJ (1966).
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from (17) and (18) in a straightforward manner. In the special case of m = n = 3, we
can express (18) in the pictorial form

I = 1

4
(b − a)(d − c)

(
25

81

){
1.0 1.6 1.0
1.6 2.56 1.6
1.0 1.6 1.0

}
F

{
(−α, −α) (0, −α) (α, −α)
(−α, 0) (0, 0) (α, 0)
(−α, α) (0, α) (α, α)

}

where α = √
0.6. When m = n = 2, the summation in (18) is equal to the sum of the

function values at the four Gauss points (±3−1/2, ±3−1/2).
The preceding analysis for numerical quadrature must be modified to deal with

the situation where the limits of integration are not constant. Consider, for example,
the double integral

I=
∫ g(x)

0

∫ b

a
f (x, y) dx dy

where the upper limit of integration in the y direction is a given function of x. We
change the variables x and y into ξ and η using the transformation

x = 1
2 (b + a) + 1

2 (b − a)ξ y = 1
2 (1 + η)G(ξ)

where G(ξ) is obtained by inserting the above expression for x into the given function
g(x). Since x depends only on ξ, the Jacobian of the transformation is

J = dx

dξ

∂y

∂η
= 1

4
(b − a)G(ξ)

and the transformed integral is

I =
∫ 1

−1

∫ 1

−1
F(ξ, η)J dξ dη = 1

4
(b − a)

∫ 1

−1

∫ 1

−1
F(ξ, η)G(ξ) dξ dη

where

F(ξ, η) = f

{
b + a

2
+ b − a

2
ξ,

1

2
(1 + η)G(ξ)

}

G(ξ) = g

(
b + a

2
+ b − a

2
ξ

) (19)

If wi and vj denote the weighting factors associated with the variables ξ and η

respectively, we obtain the modified quadrature formula as

I =
∫ g(x)

0

∫ b

a
f (x, y) dx dy = 1

4
(b − a)

n∑
i=1

m∑
j=1

wivjF(ξi, ηj)G(ξi) (20)

where ξi and ηj are the Gauss points corresponding with wi and vj respectively. For
selected values of m and n, the integration formula can be represented pictorially
in a manner similar to that indicated above. An extension of the procedure to triple
integrals is obvious.
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(iv) Runge–Kutta methods The numerical solution of initial-value problems of
ordinary differential equations is most efficiently carried out by a group of methods
known as Runge–Kutta methods, which are suitable for both linear and nonlinear
equations of arbitrary order. We begin by considering the first-order differential
equation in the form

dy

dx
= f (x, y) (21)

which must be solved under the initial condition y = y0 at x = x0. The solution
proceeds by advancing the value of x in steps of h and computing the corresponding
value of y at each step. In the second-order Runge–Kutta method, when y = yi is
known at some point x = xi, the solution can be continued by writing

yi+1 = yi + (w1k1 + w2k2)h (22a)

where k1 and k2 are the values dy/dx at x = xi and x = xi + αh, and are given by

k1 = f (xi, yi), k2 = f (xi + αh, yi + k1αh) (22b)

while w1 and w2 are the weighting factors associated with the slopes k1 and k2
respectively. Expanding by Taylor’s series, we get

k2 = f (xi, yi) + αh

(
∂f

∂x
+ k1

∂f

∂y

)
+ 0(h2)

and the substitution into the approximate solution (22a) furnishes

yi+1 − yi = (w1 + w2)k1h + αw2

(
∂f

∂x
+ k1

∂f

∂y

)
h2 + 0(h3)

Since y is a function of x, and k1 is the value of dy/dx at x = xi, we have

yi+1 − yi = k1h + 1

2

(
∂f

∂x
+ k1

∂f

∂y

)
h2 + 0(h3)

The two preceding equations will be compatible if w1, w2, and α satisfy the relations

w1 + w2 = 1 αw2 = 1
2

In the modified Euler method, α = 1 and w1 = w2 = 1/2, and k2 is then an estimated
slope of the end of the interval, the solution being then given by

yi+1 = yi + 1
2 (k1 + k2)h k2 = f (xi + h, yi + k1h) (22c)

This solution effectively represents the trapezoidal rule of integration, except for
an approximation introduced for the estimation of k2. The midpoint method, on the



Chakra-09.tex 3/2/2006 13: 57 Page 789

computational methods 789

other hand, is based on the assumption w1 = 0, w2 = 1, and α = 1/2, and the solution
then becomes

yi+1 = yi + k2h k2 = f

(
xi + h

2
, yi + k1

h

2

)
(22d)

The most widely used method of numerical integration, which is also noted
for its accuracy, is the fourth-order Runge–Kutta method that resembles Simpson’s
one-third rule of integration. The solution involves multiple slopes, and is given by

yi+1 = yi + 1
6 (k1 + 2k2 + 2k3 + k4)h (23)

where k1, k2, k3, and k4 are the various slopes defined as

k1 = f (x1, y1) k2 = f

(
xi + 1

2
h, yi + 1

2
k1h

)

k3 = f

(
xi + 1

2
h, yi + 1

2
k2h

)
k4 = f (xi + h, yi + k3h)

(24)

Evidently, k2 and k3 are two different estimates for the midpoint slope of the curve
defined by y = y(x), and (23) implies the use of a suitable mean value of this slope.
The local error in the fourth-order Runge–Kutta method is of order h5, and the
global error is of order h4. Figure 9.2a illustrates the nature of the approximation
involved in the estimation of the slopes. A slight modification of this method, which

y

x

y1

k1

k2

k4

k3

y0

x0 x0 � h�2 x0 � h

(a)

u

Solution
2

Solution
1

a xb

ub

ua

(b)

Figure 9.2 Graphical representation of numerical integration of differential equations. (a) Fourth-order
Runge–Kutta method; (b) shooting method.
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is expected to give more accurate results, is obtained by replacing k3 with (k2 +k3)/2
in the above expression for k4.

The Runge–Kutta methods are also mutable for solving higher-order differential
equations, which are fairly common in engineering applications. The necessary first
step is to reduce the given higher-order equation into a system of simultaneous first-
order equations. Consider, for example, a second-order differential equation in the
form

d2x

dt2 = f

(
t, x,

dx

dt

)
x(t0) = x0 x′(t0) = x′

0

where the initial conditions are specified at t = t0. Treating the derivative dx/dt as
a second dependent variable, we obtain a pair of equivalent first-order equations as

dx

dt
= y

dy

dt
= f (t, x, y)

which must be solved under the initial conditions x(t0) = x0, y(t0) = y0. In gen-
eral, an nth-order differential equation can be similarly converted into a system
of n simultaneous first-order equations with n initial conditions available for their
solution.

The fourth-order Runge–Kutta method can be used for the solution of a system of
differential equations. To illustrate the procedure, we consider the pair of equations

dx

dt
= f (t, x, y)

dy

dt
= g(t, x, y) (25)

together with the initial conditions x(t0) = x0 and y(t0) = y0. To obtain the values of
x1 = x(t0 + h) and y1 = y(t0 + h), we begin by computing the initial slopes

k1x = f (t0, x0, y0) k1y = g(t0, x0, y0)

which are used to estimate the two sets of midpoint slopes, which are given by

k2x = f

(
t0 + h

2
, x0 + h

2
k1x, y0 + h

2
k1y

)

k2y = g

(
t0 + h

2
, x0 + h

2
k1x, y0 + h

2
k1y

)

k3x = f

(
t0 + h

2
, x0 + h

2
k2x, y0 + h

2
k2y

)

k3y = g

(
t0 + h

2
, x0 + h

2
k2x, y0 + h

2
k2y

)
(26a)

The last two parameters furnish the initial predictions for x and y, respectively, at
the end point t = t0 + h, the corresponding slopes being given by

k4x = f (t0 + h, x0 + hk3x, y0 + hk3y)

k4y = g(t0 + h, x0 + hk3x, y0 + hk3y)
(26b)
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The final values of x and y at the end point t = t0 + h are finally given by the solution

x1 = x0 + 1
6 (k1x + 2k2x + 2k3x + k4x)h

y1 = y0 + 1
6 (k1y + 2k2y + 2k3y + k4y)h

(27)

The numerical solution can be continued in a similar manner to evaluate x and y
for higher values of t in successive steps of h. The procedure outlined above can
easily be extended to deal with a large number of simultaneous first-order differential
equations.

The solution to a differential equation of second or higher order constitutes
a boundary-value problem when the conditions imposed on the dependent vari-
able are specified at two different values of the independent variable. Consider, for
example, the second-order differential equation

d2u

dx2 + P
du

dx
+ Qu = R u(a) = ua u(b) = ub (28)

where P, Q, and R are functions of x and y, the value of u being prescribed at the
boundary points x = a and x = b. A convenient way of solving such a differential
equation, which may be nonlinear, is provided by the shooting method, in which
the boundary-value problem is converted into an initial-value problem that requires
a reasonable initial guess for the value of u′(x) at x = a. The given differential Eq. (28)
is therefore transformed into a pair of first-order equations in the form

du

dx
= v

dv

dx
= R − Qu − Pv (29)

the initial conditions being u(a) = ua and v(a) = va. Assuming v(a) � (ub − ua)/
(b − a) as an initial guess for the unknown parameter va, the solution can be carried
out using the fourth-order Runge–Kutta method as explained earlier for the solution
of (26).

The value of u(b) obtained from the first numerical solution will generally differ
from the specified value ub, which will suggest a second guess for va. The solution of
(29) based on the second guess will furnish a new value of u(b), which is also likely
to differ from the specified value. A linear interpolation based on the end results of
the two solutions gives the modified value

v(a) = [v(a)]1 + �v(a)

�u(b)
{ub − [u(b)]1} (30)

where the subscript 1 refers to the first solution, and the prefix � represents the
difference between the two solutions, the nature of the two trial solutions being
indicated in Fig. 9.2b. If the differential Eq. (28) is linear, the linear interpolation will
provide not only the correct value of the initial slope u′(a) but also the intermediate
values of u given by the trial solutions. In the case of nonlinear differential equations,
the process of iteration must be continued until the difference between two successive
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solutions is considered as negligible. The shooting method can be quite laborious,
however, for nonlinear differential equations of fourth order or higher.

Standard software packages have great capabilities for solving ordinary differ-
ential equations. Matlab, in particular, has built-in functions for the implementation
of Runge–Kutta methods with automatic step size adjustment. There are two ver-
sions of the ode solver in the Matlab, namely ode 23 and ode 45. The former uses
the second- and third-order formulas to achieve medium accuracy, while the latter
uses the fourth- and fifth-order formulas for higher accuracy.

(v) Simultaneous algebraic equations For the solution of large systems of alge-
braic equations, which arise in the numerical analysis of engineering problem, the
process of matrix inversion can be time consuming and expensive. It is computa-
tionally more efficient to employ other methods of solution, such as the Gaussian
elimination and Crout decomposition, which will be discussed in what follows.
Consider a systems of n algebraic equations expressed in the form



a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
. . . .

. . . . . . .

. . . .

an1 an2 an3 . . . ann







x1
x2
.

.

.

xn




=




b1
b2
.

.

.

bn




(31)

In the Gaussian elimination scheme, we begin by dividing the first equation
by a11 (which is assumed nonzero) and then by subtracting this equation times
a21, a31, . . . , an1 from the second, third, . . . , and nth equation respectively. All the
coefficients of the first column of the matrix occurring below the diagonal coef-
ficient a11 are therefore reduced to zero. Next, the second equation is divided by
the modified leading coefficient a′

22 = a22 − (a21/a11)a12 and then multiplied and
subtracted in the same way to reduce all the coefficients in the second column below
the corresponding diagonal coefficient to zero. This procedure is continued, using
each successive diagonal coefficient as the first element, and the matrix equation
eventually assumes the form



c11 c12 c13 . . . c1n
0 c22 c23 . . . c2n
. . . .

. . . . . . .

. . . .

0 0 0 . . . cnn







x1
x2
.

.

.

xn




=




d1
d2
.

.

.

dn




where c1j = a1j( j = 1, . . . , n), c2j = a2j − (a21/a11)a1j ( j = 2, 3, . . . , n), etc., and
d1 = b1, d2 = b2 − (a21/a11)b1, etc. The reduced matrix is evidently an upper trian-
gular matrix, which permits the solution to be obtained by back substitution in the
sequence of xn, xn−1, . . . , x1. The Gaussian elimination method is usually satisfac-
tory, although suitable interchanging of equations is sometimes necessary to reduce
the round-off error.



Chakra-09.tex 3/2/2006 13: 57 Page 793

computational methods 793

An upper triangular matrix [U] can be associated with a lower triangular matrix
[L], such that the product of the two matrices gives the coefficient matrix [A] for the
given systems of equations. The decomposition of a given square matrix into lower
and upper triangular matrices, known as the LR decomposition, leads to a simplified
solution for the unknown variables. Such a decomposition is, however, by no means
unique. We shall discuss here one of the methods, known as the Crout reduction
method,† in which each of the diagonal coefficients of [U] are taken as unity.
Considering the special case of n = 4, we write




l11 0 0 0
l21 l22 0 0
l31 l32 l33 0
l41 l42 l43 l44







1 u12 u13 u14
0 1 u23 u24
0 0 1 u34
0 0 0 1


 =




a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44


 (32)

To determine the unknown coefficients, we alternate between getting a column of
L and a row of U. Thus, we multiply the rows of L by first column of U, and then
multiply the first row of L by the columns of U to obtain

l11 = a11 l21 = a21 l31 = a31 l41 = a41

u12 = a12

l11
u13 = a13

l11
u14 = a14

l11

Similarly, multiplying the rows of L by the second column of U, and then multiplying
the columns of U by the second row of L furnish

l22 = a22 − l21u12 l32 = a32 − l31u12 l42 = a42 − l41u12

u23 = a23 − l21u13

l22
u24 = a24 − l21a14

l22

Proceeding in the same manner, the remaining coefficients are obtained as

l33 = a33 − (l31u13 + l32u23) l43 = a43 − (l41u13 + l42u23)

u34 = a34 − (l31u14 + l32u24)

l33
l44 = a44 − (l41u14 + l42u24 + l43u34)

It should be noted that the determinant of the coefficient matrix [A] is equal to the
product of the diagonal elements of the lower triangular matrix [L].

† P. D. Crout, Trams. AIEE, 60 (1941). When the matrix is symmetric, a different type of
decomposition method, known as the Cholesky method, has certain computational advantages.
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The preceding results are easily generalized for an n × n square matrix A, the
coefficients of the corresponding L and U matrices being given by

li1 = ai1 (i = 1, 2, . . . , n) u1j = l1j/l11 ( j = 2, 3, . . . , n)

lij = aij −
j−1∑
k=1

likukj j = 2, 3, . . . , n i = j, j + 1, . . . , n

uij =
aij −

i−1∑
k=1

likukj

lii
i = 2, 3, . . . , n − 1 j = i + 1, i + 2, . . . , n

(33)

The decomposition procedure is therefore straightforward, and is easily programmed
using a few concise loops. The method has the additional benefit of economizing
the storage space. Since there is no need to store the zeros and ones appearing in
the triangular matrices, the essential elements of the U matrix can be stored in the
L matrix by replacing its zeros.

When the two triangular matrices have been found, we can return to the original
matrix Eq. (31) for its solution. Since this equation can be written as

[L][U]{x} = {b}
the solution is conveniently obtained by considering the two separate equations

[L]{d} = {b} [U]{x} = {d}
where {d} is an auxiliary vector. Writing out the L and U matrices, for which
a truncated form is given in (32), we employ the forward and backward substitution
processes to obtain the solution. For an n × n coefficient matrix, the solution is

d1 = b1

l11
di =

bi −
i−1∑
k=1

likdk

lii
i = 2, 3, . . . , n

xn = dn xj = dj −
n∑

k=j+1

ujkxk j = n − 1, n − 2, . . . , 1

(34)

The Crout decomposition method is easily amenable to computer implementation,
and is quite efficient when the coefficient matrix is symmetric (aij = aji).

A variant of the decomposition method, in which the diagonal elements of the L
matrix are unity while those of the U matrix have different values, is implicit in the
Gaussian elimination process. The U matrix in this case is that which the coefficient
matrix is reduced to at the end of the elimination process. The L matrix, on the
other land, has its off-diagonal elements identical to the multiplying factors a21/a11,
a′

32/a′
22, etc. used for eliminating the corresponding elements in the A matrix.

The preceding results for the Crout decomposition process are directly applica-
ble to the numerical solution of banded equations for which the coefficient matrix
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is also banded.† Consider, for example, a tridiagonal matrix in which the nonzero
entries occur along its main diagonal and in the positions adjacent to the diagonal.
Assuming a system of n linear equations, we have the tridiagonal matrix in the form



a11 a12 0 0 . . . 0 0
a21 a22 a23 0 . . . 0 0
0 a32 a33 a34 . . . 0 0
. . . . . .

. . . . . .

. . . . . .

0 0 0 0 . . . an,n−1 an,n







x1
x2
x3
.

.

.

xn




=




b1
b2
b3
.

.

.

bn




The coefficients of the tridiagonal matrix and of the decomposed triangular matrices
are characterized by

aij = 0 for |i − j| � 2 lij = 0 for i − j � 2 uij = 0 for j − i � 2

The Crout decomposition also requires uii = 1. Using (33), the remaining nonzero
coefficients of the L and U matrices can be written as

l11 = a11, u12 = a12/a11 li,i−1 = ai,i−1 (i = 2, 3, . . . )

lii = aii − ai,i−1ui−1,i ui,i+1 = ai,i+1/lii (i = 2, 3, . . . )
(35a)

It may be noted that the off-diagonal elements of the L matrix are identical to the
corresponding elements of the given square matrix. In view of (34), the solution to
the system of equations is given by

d1 = b1/a11 di = (bi − li,i−1di−1)/lii (i = 2, 3, . . . , n)

xn = dn xi = di − ui,i+1xi+1 (i = n − 1, n − 2, . . . , 1)
(35b)

The augmented matrix of a tridiagonal system of n equations can be stored in a 4 × n
matrix. The first column of the matrix begins with a zero, and is followed by the
leading nonzero coefficients of the succeeding rows. Similarly, the third column
containing the last nonzero coefficients ends with a zero at the bottom. The fourth
column holds the right-hand side of the given matrix equation.

The inversion of matrices, though not recommended for the solution of systems
of linear equations, does constitute a significant operation in matrix algebra. The
inverse of a square matrix [A] is another square matrix [A]−1, which is defined by

[A][A]−1 = [A]−1[A] = [I]

where [I] is the identity matrix whose diagonal elements are unity and all other
elements are zero. Since [A] = [L][U] by the decomposition principle, we have

† R. L. Burden and J. D. Faires, Numerical Analysis, 5th ed., Prindle, Wheeler, and Schmidt,
Boston (1993); B. N. Datta, Numerical Linear Algebra and Applications, Brooks-Cole, Pacific Grove,
CA (1995).
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[L]−1[A] = [U]. The Gaussian elimination process that transforms a square matrix
into an upper triangular matrix may therefore be interpreted as an application of
the matrix operator [L]−1 on both sides of the original matrix equation. The multi-
plication of the preceding equation by [L]−1 gives

[U][A]−1 = [L]−1[1] = [L]−1

In the case of Gaussian elimination, the two matrices [U] and [L]−1 are therefore
simultaneously furnished by the same numerical operation performed on [A] and [I]
respectively. The application of back substitution for each column of the unknown
matrix [A]−1 now furnishes all its coefficients. The Gaussian elimination method,
including the inversion process, is easily programmed using looping functions, and
the storage requirements are considerably reduced when the coefficient matrix is
symmetric.

9.2 Finite Difference Method

An effective method of obtaining numerical solutions of boundary-value problem in
engineering is the method of finite differences. In this method, the governing differ-
ential equation is replaced by its finite difference form, which reduces the problem to
the solution of a set of simultaneous algebraic equations involving unknown values
of the dependent variable at a number of discrete points in the physical domain.

(i) Finite difference approximation We begin by considering ordinary differential
equations, which involve derivatives of functions of a single variable x. Suppose
a continuous function f (x) is known at a number of equidistant points at intervals
of �x = h. The forward Taylor series expansion of f (x) in the neighborhood of
a typical point x = xi furnishes

f (xi + h) = f (xi) + hf ′(xi) + 1
2 h2f ′′(xi) + · · · (36a)

If we truncate this series by neglecting the second and higher derivatives, we obtain
the forward difference approximation for the first derivative as

f ′(xi) � f (xi+1) − f (xi)

h
+ 0(h)

where xi+1 = xi + h. Similarly, considering the backward expansion of the Taylor
series in the form

f (xi − h) = f (xi) − hf ′(xi) + 1
2 h2f ′′(xi) − · · · (36b)

and setting xi−1 = xi − h, the backward difference approximation for the first
derivative is obtained as

f ′(xi) � f (xi) − f (xi−1)

h
+ 0(h)
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A more accurate expression for the first derivative at x = xi can be obtained by
subtracting the Taylor series expansion of f (xi − h) from that of f (xi + h), giving

df

dx
� f (xi+1) − f (xi−1)

2h
+ 0(h2) (37)

This is known as the first central difference at x = xi. The truncation error in this
approximation is of order h2, the error involved in the other two approximations
being of order h. The second central difference at x = xi is obtained by adding
together the forward and backward series expansions, the result being

d2f

dx2 � f (xi+1) − 2f (xi) + f (xi−1)

h2 + 0(h2) (38)

The third central difference is obtained from (38) by the application of the opera-
tor d/dx defined by (37), while the fourth central difference follows from (38) on
reapplying the operator d2/dx2. The results are easily shown to be

d3f

dx3 � 1

2h3
{ f (xi+2) − 2f (xi+1) + 2f (xi−1) − f (xi−2)}

d4f

dx4 � 1

h4
{ f (xi+2) − 4f (xi+1) + 6f (xi) − 4f (xi−1) + f (xi−2)}

(39)

It is interesting to note that the coefficients of the function values in the central
difference expression for an even order n are identical to those of the successive
terms in the binomial expansion of (a − b)n expressed in power of a and b.

Finite difference formulas of order h2, based on the forward or backward dif-
ference approximation, are easily obtained using (36). Since the neglected term of
order h2 in the expansion of f (xi − h) is (h2/2) f ′′(x), where f ′′(x) is given by (38)
with i − 1 written for i, the backward difference result for the first derivative of f (x)
at x = xi becomes

df

dx
= 3f (xi) − 4f (xi−1) + f (xi−2)

2h
+ 0(h2) (40)

The forward difference expression for the first derivative of order h2 can be similarly
written down.

In the case of a function of two variables x and y, the central difference approx-
imations for the partial derivatives of f with respect to x and y can be obtained
following the same arguments as above. With f (i, j) denoting the value of the func-
tion at a generic point (xi, yj), and assuming the intervals �x = �y = h, the first-order
derivatives of the function f at (xi, y) can be expressed in the finite difference form

∂f

∂x
� f (i + 1, j) − f (i − 1, j)

2h
,

∂f

∂y
� f (i, j + 1) − f (i, j − 1)

2h
(41)

which are similar to (37). The finite difference approximations for the second par-
tial derivatives with respect to x and y can be written down in analogy with (38),
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while those for the remaining second-order derivatives are found by combining the
differential operators defined by (41). Thus,

∂2f

∂x2 � 1

h2 { f (i + 1, j) − 2f (i, j) + f (i − 1, j)}

∂2f

∂y2 � 1

h2 { f (i, j + 1) − 2f (i, j) + f (i, j − 1)} (42)

∂2f

∂x ∂y
� 1

4h2 { f (i + 1, j + 1) − f (l + 1, j − 1) − f (i − 1, j + 1) + f (i − 1, j − 1)}

The finite difference formulas for higher order partial derivatives can be obtained
in a similar manner.† All these approximations are based on the central difference
scheme having a truncation error of order h2.

(ii) Consideration of boundary conditions When the derivatives appearing in a dif-
ferential equation are replaced by the corresponding finite difference formulas, the
result is an algebraic equation that refers to each inner point of the physical domain,
which is divided into a network of orthogonal straight lines, as shown in Fig. 9.3a.
Using appropriate boundary conditions, these equations can be solved simulta-
neously to obtain the numerical values of the function at the nodal points of the
network. The solution becomes particularly simple when the governing differential
equation is linear, and the boundary of the region is rectangular.

Many engineering problems involve irregular boundaries of the physical
domain. The straight lines generating a square mesh meet the curved boundary
at a number of points forming triangular regions, such as the element cde shown
in Fig. 9.3b. Since the lengths of the straight sides of the triangle are less than h,
it is necessary to modify the finite difference expressions for the partial derivatives
corresponding to the nodal point c. Let the midpoints of the intervals on the two
sides of c in the x direction be represented by a and b. Denoting the point c by (i, j),
the central difference approximations for the first partial derivatives of the functions
f with respect to x at the neighboring midpoints a and b can be written as(

∂f

∂x

)
a

� f (i, j) − f (i − 1, j)

h
,

(
∂f

∂x

)
b

� f (i + 1, j) − f (i, j)

αh
(43)

where αh is the length of the interval ce. The application of linear interpolation
results in the first derivative at c as(

∂f

∂x

)
c

� 1

1 + α

{(
∂f

∂x

)
b
+ α

(
∂f

∂x

)
a

}

† See, for example, R. V. Southwell, Relaxation Methods in Theoretical Physics, Clarendon Press,
Oxford (1946).
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Figure 9.3 Finite difference network. (a) Uniform square mesh; (b) irregular boundary.

The second partial derivative of f (x, y) with respect to x is obtained, to the same
order of approximation, by using the relation

(
∂2f

∂x2

)
c

� 2

(1 + α)h

{(
∂f

∂x

)
b
−

(
∂f

∂x

)
a

}

Substituting from (43) into the preceding relations, the finite difference forms of the
first and second derivative at c with respect to x may be expressed as

(
∂f

∂x

)
i, j

� 1

αh

{
f (i + 1, j) − α2f (i − 1, j)

1 + α
− (1 − α)f (i, j)

}
(

∂2f

∂x2

)
i, j

� 2

αh2

{
f (i + 1, j) + αf (i − 1, j)

1 + α
− f (i, j)

} (44)

Following the same procedure, the finite difference approximations for the first and
second derivatives of f (x, y) with respect to y can be deducted as

(
∂f

∂y

)
i, j

� 1

βh

{
f (i, j + 1) − β2f (i, j − 1)

1 + β
− (1 − β)f (i, j)

}
(

∂2f

∂y2

)
i, j

� 2

βh2

{
f (i, j + 1) + βf (i, j − 1)

1 + β
− f (i, j)

} (45)

The preceding equations can be used to set up the finite difference form of the
differential equation at any nodal point adjacent to a curved boundary.

The preceding discussion is adequate for dealing with the Dirichlet boundary
condition, in which the value of the unknown function is prescribed at each point of
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the boundary. In a variety of problems, however, we encounter the Neumann bound-
ary condition, in which the normal derivative of the function is prescribed along the
boundary. In this case, the function values at the nodal points of the boundary must
be determined as a part of the solution. This type of boundary condition is easily
handled when the boundary is a straight edge coinciding with one of the axes of
reference. Assuming that ∂f /∂x is given along the edge x = 0 (Fig. 9.3a), the central
difference formula for the derivative at a generic point on this line may be written as(

∂f

∂x

)
0, j

= f (1, j) − f (−1, j)

2h

where (−1, j) is a fictitious node lying outside the physical domain. Since the value
of the derivative at (0, j) is known, the function value at the fictitious node is easily
eliminated from the finite difference equation corresponding to the node (0, j) using
the above relation.

The formulation of the derivative boundary condition at an irregularly shaped
boundary is evidently more involved. Consider the nodal point e on the curved
boundary adjacent to the internal point c as depicted in Fig. 9.3b. A backward
difference approximation for ∂f /∂x of order h2 at c can be derived by using linear
interpolation based on those at a and b. It is easily shown that(

∂f

∂x

)
e
= 1

1 + α

{
(1 + 2α)

(
∂f

∂x

)
b
− α

(
∂f

∂x

)
a

}

Substituting from (43), the finite difference form of this expression is obtained as(
∂f

∂x

)
e
= 1

αh

{
(1 + 2α) f (i + 1, j) + α2f (i − 1, j)

1 + α
− (1 + α) f (i, j)

}
(46a)

In the special case of α = 1, this formula reduces to the two-dimensional analog of
(40) corresponding to the node (i + 1, j). The backward difference approximation
for ∂f /∂y of order h2 at the point e can be written down by analogy with (40) as(

∂f

∂y

)
e
� 1

2h
{3f (i + 1, j) − 4α f (i + 1, j − 1) + αf (i + 1, j − 2)

− (1 − α)[4f (i, j − 1) − f (i, j − 2)]} (46b)

Let ψ denote the counterclockwise angle which the outward normal to the boundary
at e makes with the x-axis. Then the normal derivative of f at e is given by(

∂f

∂n

)
e
=

(
∂f

∂x

)
e

cos ψ +
(

∂f

∂y

)
e

sin ψ

Since ∂f /∂n is prescribed and ψ is known from the geometry of the curve, the
substitution of (46) into the above relation furnishes an additional finite difference
equation that replaces the boundary condition. For the other boundary point d, which
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corresponds to (i, j + 1), the quantity ∂f /∂y is given by an expression that is similar
to (46a), with α replaced by β, while ∂f /∂x is given by a backward difference formula
similar to (46b). The finite difference form of the boundary condition at point d is
finally obtained on substitution of the derivatives into the preceding relation, where
ψ is interpreted as the angle of inclination of the surface normal at d with respect to
the x-axis.

(iii) Application to the torsion problem Consider, as an example, the problem of
torsion of a prismatic bar (Sec. 3.6). For sufficiently small values of the specific
angle of twist θ, the bar remains entirely elastic, and the stress function φ satisfies
the Poisson equation

∂2φ

∂x2 + ∂2φ

∂y2 = −2Gθ

where G is the shear modulus of the material. In view of (42), the finite difference
form of the differential equation for a typical nodal point (i, j) becomes

φ(i + 1, j) + φ(i, j + 1) + φ(i − 1, j) + φ(i, j − 1) − 4φ(i, j) = −2Gθh2 (47)

The boundary condition requires φ to have a constant value along the boundary of
the cross section. For a simply connected cross section, this constant may be taken
as zero.

We consider the special case of a bar of square cross section, each side of the
square being of length 2a. We begin with the simple approximation in which each
quarter of the domain is subdivided into four squares by setting h = a/2. In view
of the symmetry of the cross section, the nodes may be numbered as shown in
Fig. 9.4a. The application of (42) to each independent inner node leads to a set of
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Figure 9.4 Finite difference mesh for the torsion of a bar of square cross section. (a) h = a/2;
(b) h = a/3.
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three equations, which can be put in the matrix form
−4 4 0

1 −4 2
0 2 −4







φ0
φ1
φ2


 = −0.5Gθa2




1
1
1




in view of the boundary condition that requires φ3 = φ4 = φ5 = 0. The solution to
the matrix equation is obtained as

φ0 = 0.5625Gθa2 φ1 = 0.4375Gθa2 φ2 = 0.3438Gθa2

The normal derivative of φ has the greatest numerical value at the middle of the sides
of the square boundary, and is given by (40) as(

∂φ

∂x

)
3

= 3φ3 − 4φ1 + φ0

2h
� −1.1875Gθa

Using Simpson’s rule of integration in both the coordinate directions, which amounts
to setting m = n = 3 in the quadrature formula (16), the torque is obtained as

T = 2
∫∫

φ dx dy � 8

9
h2{(φ0 +4φ1 +φ3)+4(φ1 +φ4)} = 2

9
a2(φ0 +8φ1 +16φ2)

The applied torque and the maximum shear stress therefore become

T � 2.125Gθa4 τmax � −
(

∂φ

∂x

)
3

� 0.559
T

a3

These results may be compared with those of the exact analytical solution that gives

T = 2.250Gθa4 τmax = 0.600(T/a3)

The approximate solution with h = a/2 therefore underestimates the torque by
5.6 percent, and the maximum shear stress by 6.8 percent.

In order to improve the approximation, we subdivide each quarter of the cross
section into nine squares with h = a/3, the various nodal points being numbered as
shown in Fig. 9.4b. The finite difference equation is easily set up for each of the six
independent internal nodes, using the fact that φ6 = φ7 = φ8 = φ9 = 0. The resulting
equations are solved for the unknown stress functions as

φ0 = 0.5773Gθa2 φ1 = 0.5218Gθa2 φ2 = 0.4722Gθa2

φ3 = 0.3420Gθa2 φ4 = 0.3120Gθa2 φ5 = 0.2116Gθa2

The corresponding torque can be found by applying Simpson’s three-eighth rule of
integration in both the coordinate directions. Using (16) and (40), the torque and the
maximum shear stress are found as

T = a2

8
{φ0 + 6(φ1 + φ3) + 9(φ2 + φ5) + 18φ4} = 2.191Gθa4

τmax = −
(

∂φ

∂x

)
6

� −3φ6 − 4φ3 + φ1

2h
� 1.269Gθa = 0.579

T

a3
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This improved approximation underestimates the torque by 2.6 percent and the
maximum shear stress by 3.6 percent. To obtain higher accuracy in the numerical
solution, we need to use a finer mesh.

An improved accuracy based on the results of the two previous approxima-
tions can be achieved by using an extrapolation technique due to Richardson.† It
is assumed that the error in the finite difference solution is proportional to h2. If e1
and e2 denote the errors in the estimation of a physical quantity q in two successive
approximations based on mesh sizes h1 and h2 respectively, then e1/e2 = (h1/h2)2.
Since e1 − e2 is equal to the difference q1 − q2 between the corresponding values
of the same physical quantity, we have

e1 = h2
1

h2
1 − h2

2

(q1 − q2) e2 = h2
2

h2
1 − h2

2

(q1 − q2) (48)

The error is considered as positive when the result is overestimated and negative when
it is underestimated. In the torsion problem, the estimated torque is T1 = 2.125Gθa4

for h1 = a/2, and T2 = 2.191Gθa4 for h2 = a/3, giving e1 = −0.119Gθa4 and
e2 = −0.053Gθa4. Hence the improved estimate is T � 2.244Gθa4, which is only
0.26 percent lower than the exact value. Similarly, the extrapolated value of the
maximum shear stress is τmax � 0.595(T/a3), which differs by only 0.83 percent
from the exact value.‡

9.3 Finite Element Discretization

The finite element method is a powerful numerical method of solving boundary-value
problems in continuum mechanics. The method is based on a piecewise approxima-
tion in which the domain of interest is subdivided into a number of small regions,
or finite elements (Fig. 9.5) which are assumed to deform in a prescribed manner.
In selecting the velocity field, it is necessary to ensure continuity of the prescribed
behavior across the boundaries of adjacent elements. The deformation mode involves
unknown velocities at a number of discrete points or nodes. The solution is gener-
ally based on a variational principle without reference to the governing differential
equation. The method is particularly suitable for treating problems with complex
geometries and variable material properties.

(i) Linear triangular elements The simplest analysis for plane stress and plane
strain problems involves an assemblage of triangular elements in each of which
the velocity varies linearly with the rectangular coordinates. Since the triangle has

† L. F. Richardson, Phil. Trans. Roy. Soc. (London), Ser. A, 210: 307 (1910). See also, H. Crandall,
Engineering Analysis, McGraw-Hill, New York (1956).

‡ A numerical solution for the elastic/plastic torsion, when the material work-hardens, has been
given in Sec. 3.6(v). For a nonhardening material, φ in the plastic region is governed by the finite
difference form of (105), Chapter 3, the elastic/plastic boundary being given by the continuity of φ

across it.
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Figure 9.5 Finite element discretization of a body using triangular elements.

Figure 9.6 Geometry of a plane triangular element and the associated axisymmetric ring element.

straight sides, the continuity of nodal velocities automatically ensures continuity
of the velocity vector across the boundaries of the element. Consider, a typical
triangular element whose vertices are defined by the current rectangular coordinates
(x1, y1), (x2, y2), and (x3, y3) as shown in Fig. 9.6a. The velocity components (u, v)
of a typical particle in the triangle are taken in the form

u = α1 + α2x + α3y

v = α4 + α5x + α6y
(49)
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The six constants αi depend on the nodal velocities (u1, v1), (u2, v2), and (u3, v3).
The substitution into the above relations furnishes


u1
u2
u3


 =


1 x1 y1

1 x2 y2
1 x3 y3







α1
α2
α3




and a similar set of equations for v1, v2, and v3. The preceding equations are easily
solved for α1, α2, α3 in terms of u1, u2, and u3; the result being

2Aα1 =
3∑

i=1

aiui 2Aα2 =
3∑

i=1

biui 2Aα3 =
3∑

i=1

ciui (50)

where 2A denotes the determinant of the above square matrix, and

a1 = x2y3 − x3y2 b1 = y2 − y3 c1 = x3 − x2

a2 = x3y1 − x1y3 b2 = y3 − y1 c2 = x1 − x3

a3 = x1y2 − x2y1 b3 = y1 − y2 c3 = x2 − x1

(51)

The constant A is actually the area of the triangular element, and is given by

2A = a1 + a2 + a3 = x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2) (51a)

The expressions for α4, α5, and α6 are obtained from those of α1, α2, and α3
respectively by replacing ui with vi. The back substitution into (49) then furnishes

u =
n∑

i=1

Niui v =
n∑

i=1

Nivi Ni = 1

2A
(ai + bix + ciy) (52)

The quantity Ni is known as the interpolation function or shape function, whose value
is unity at the node i, and is zero at the other two nodes. Evidently, Ni(xi, yj) = δij,
where δij is the familiar Kronecker delta. In matrix notation

{v} =
{

u
v

}
=

{
N1 0 N2 0 N3 0
0 N1 0 N2 0 N3

}
{d} = [N]{d} (53)

where

{d}τ = [u1 v1 u2 v2 u3 v3]

The vector {d} represents the nodal velocities, also known as the nodal degrees of
freedom. The components of the strain rate corresponding to the proposed velocity
field are

ε̇x = ∂u

∂x
= α2 ε̇y = ∂v

∂y
= α6 γxy = ∂u

∂y
+ ∂v

∂x
= α3 + α5



Chakra-09.tex 3/2/2006 13: 57 Page 806

806 theory of plasticity

where γ̇xy denotes the engineering shear strain rate. Inserting the values of α2, α3,
α5, and α6 from (50) and its counterpart, the results may be put in the matrix form

{ε̇} =



ε̇x
ε̇y
γxy


 = 1

2A


b1 0 b2 0 b3 0

0 c1 0 c2 0 c3
c1 b1 c2 b2 c3 b3


{d} = [B]{d} (54)

The strain rate matrix [B] involves only the nodal coordinates, and is independent
of x and y. The strain rates are therefore constant throughout the element.

In problems of axial symmetry, the only nonzero velocities are u and w in the
radial and axial directions, respectively, characterized by the cylindrical coordinates
r and z. An axisymmetric finite element is in the form of a circular ring of uniform
cross section, which may be taken as triangular for simplicity (Fig. 9.6b). Assuming
a linear distribution of velocity as before, we have

u = α1 + α2r + α3z

w = α4 + α5r + α6z
(55)

The constant αi can be expressed in terms of ui and wi as for the plane triangle. The
velocity relations for the constant strain triangle are directly applicable here, with the
rectangular coordinates (x, y) replaced by the cylindrical coordinates (r, z). Thus,

u =
3∑

i=1

Niui w =
3∑

i=1

Niwi Ni = 1

2A
(ai + bir + ciz) (56)

where A denotes the area of the triangle and ai, bi, and ci are given by (51) with xi
and yi replaced by ri and zi, respectively. The nonzero components of the strain rate
associated with the deformation mode are

{ε̇} =




ε̇r
ε̇θ

ε̇z
γ̇iz


 = 1

2A




b1 0 b2 0 b3 0
λ1 0 λ2 0 λ3 0
0 c1 0 c2 0 c3
c1 b1 c2 b2 c3 b3


 {d} = [B]{d} (57)

where λi = Ni/r and {d} is the nodal velocity vector similar to that defined in (53).
Since the [B] matrix now involves the variables r and z, the strain rate is no longer
constant within the triangle. The variation is entirely due to the circumferential
component of the strain rate, denoted by ε̇θ .

A plastically deforming material rapidly approaches the condition of incom-
pressibility with increasing strain. The degrees of freedom of many common finite
elements are inadequate for satisfying this constraint. Consequently, the aggregate of
elements behave more stiffly than the material it is supposed to represent. A possible
remedy in plane problems is to adopt patterns of constant strain triangular elements
which form quadrilaterals with straight diagonals. When three of the four triangles
forming a quadrilateral satisfy the incompressibility condition, the fourth triangle
does so automatically.†

† J. C. Nagtegaal, D. M. Parks and J. R. Rice, Comp. Meth. Appl. Mech. Eng., 5: 133 (1974).
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(ii) Use of area coordinates In the case of triangular elements, it is instructive to
consider a system of natural coordinates, known as area coordinates. Let A1, A2, and
A3 denote the areas of triangles defined by an arbitrary interior point (x, y), denoted
by P, and the sides opposite to the vertices 1, 2, and 3, respectively (Fig. 9.7a). The
area coordinates of P are defined as

L1 = A1

A
L2 = A2

A
L3 = A3

A

where A is the total area of the element. For any given element, each of the areas
A1, A2, and A3 is proportional to the perpendicular distance of P from the respective
side of the element. It follows, therefore, that the coordinates L1, L2, and L3 vary
linearly along any straight line drawn in the element. The rectangular coordinates
may therefore be expressed as

x =
3∑

i=1

Lixi y =
3∑

i=1

Liyi (58)

These relations are consistent with the fact that Li has a value of unity at the ver-
tex i, and is zero at the other two vertices of the element. In view of the identity
L1 + L2 + L3 = 1, the complete set of equations can be written in the matrix form


1
x
y


 =


1 1 1

x1 x2 x3
y1 y2 y3







L1
L2
L3




These equations can be solved for the area coordinates L1, L2, and L3 by the matrix
inversion, and the result is easily shown to be


L1
L2
L3


 = 1

2A


a1 b1 c1

a2 b2 c2
a3 b3 c3







1
x
y


 (59)

where ai, bi, and ci are precisely those given by (51). The last Eq. (52) therefore
indicates that the area coordinates are identical to the shape functions for a linear
triangular element. Since the global coordinates (x, y) are specified by the same
interpolation functions as those for the field variables (u, v), in view of (58), the
linear triangular element is said to be isoparametric.

Let h and k denote the heights of the triangular element measured from vertices 1
and 2 respectively. A straight line QPR is drawn parallel to side 1, which is of length
l, to meet the other two sides 2 and 3 at Q and R respectively. If the perpendicular
distance of P from side 1 is denoted by ξh, it follows from similar triangles that R is
situated at a perpendicular distance (1 − ξ)k from side 2, where k is the height of the
triangle from vertex 2. Since QR = (1 − ξ)l, the similarity of triangles again indicates
that the length of the perpendicular from P on side 2 is ηk, where ηl denotes the
length of the segment PQ. The area coordinates of the generic point P may therefore
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Figure 9.7 Area and natural coordinates for triangular elements. (a) Linear triangle; (b) quadratic
triangle.

be written as

L1 = ξ L2 = η L3 = 1 − ξ − η

This simple correspondence allows us to evaluate certain integrals exactly. Consider
the integral

I =
∫

Lm
1 Ln

2Lp
3 dA

where m, n, and p are positive constants, and the integral is taken over the entire
area of the triangular element. Since dA = (h dξ)(l dη) = 2A dξ dη, we have

I = 2A
∫ 1

0

∫ 1−ξ

0
ξmηn(1−ξ−η)pdη dξ = 2A

∫ 1

0
ξm(1 − ξ)n+p+1dξ

∫ 1

0
tn(1− t)pdt

where t = η/(1 − ξ). The above integrals are in the standard form of beta functions
which can be expressed in terms of gamma functions. When m, n, and p are integers,
the result becomes

I =
∫

Lm
1 Ln

2 Lp
3 dA = m!n!p!(2A)

(m + n + p + 2)! (60)

The preceding results are readily extended to the axisymmetric case, where the
integration needs to be carried out over the volume of the ring element whose cross
section is the linear triangle. Since dV = 2πrdA = 2π(r1L1 + r2L2 + r3L3)dA, an
exact expression for the volume integral is easily obtained by using the integration
formula (60).

The area coordinates are also useful for constructing shape functions for higher
order triangular elements. Consider, for example, the quadratic triangle in which
each velocity component is represented by a second-degree polynomial in x and y.
The velocity is defined by its values at six nodal points, three of which are taken at
the vertices of the triangle and the other three at the midpoints of the sides of the
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triangle (Fig. 9.7b). In terms of the associated shape functions, the velocity field can
be written as

u =
6∑

i=1

Niui v =
6∑

i=1

Nivi (61)

Since each of the shape functions Ni is a quadratic function of x and y, it can be
expressed as a product of two of the area coordinates L1, L2, and L3. Noting the
fact that N1 is required to vanish not only at nodes 2, 3, and 5 where L1 = 0, but
also at nodes 4 and 6 where L1 = 0.5, we can express N1 as a constant multiple of
L1(L1 − 0.5). Since N1 must have a value of unity at node 1, where L1 = 1, we have
N1 = L1(2L1 − 1). The fact that N4 is unity at node 4 where L1 = L2 = 0.5, and is
zero at all other nodes where either L1 = 0, or L2 = 0, indicates that N4 = 4L1L2.
The remaining four shape functions are similarly obtained, the results being

N1 = L1(2L1 − 1) N2 = L2(2L2 − 1) N3 = L3(2L3 − 1)

N4 = 4L1L2 N5 = 4L2L3 N6 = 4L3L1
(62)

where L1, L2, and L3 are identical to N1, N2, and N3 defined in (56). In matrix
notation, the velocity distribution may be expressed, in view of (61), as

{v} =
{

u
v

}
=

[{N}τ {0}τ
{0}τ {N}τ

]{{du}
{dv}

}
= [N]{d} (63)

where {du} and {dv} are column vectors formed by ui and vi, respectively, and

{N}T = [N1 N2 N3 N4 N5 N6]

The components of the associated strain rate can be expressed in the form

{ε̇} =



ε̇x
ε̇y
γ̇xy


 =


{B1}T {0}T

{0}T {B2}T

{B2}T {B1}T


{

du
dv

}
= [B]{d} (64)

where {B1} and {B2} are vectors containing the x and y derivatives, respectively, of
the six shape functions. These derivatives are readily obtained with the help of the
transformation




∂

∂x
∂

∂y


 = 1

2A

[
b1 b2 b3
c1 c2 c3

]



∂

∂L1
∂

∂L2
∂

∂L3




(64a)

in view of (59), where bi and ci are given by (51). Since the strain rate varies linearly
with x and y, the quadratic triangle is also known as linear strain triangle. Such
an element is not isoparametric, though the quadratic shape functions (62) can be
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Figure 9.8 Bilinear quadrilateral element. (a) Physical plane; (b) natural coordinate plane.

used for the rectangular coordinates (x, y) to produce curvilinear triangles that are
isoparametric.†

(iii) Bilinear quadrilateral Consider a plane element in the form of a quadrilateral
of arbitrary shape with four nodes located at its corners (Fig. 9.8a). It is convenient
to define the element in terms of natural coordinates ξ and η, such that the opposite
sides of the quadrilateral correspond to ξ = ±1 and η = ±1. In the ξη plane, the
quadrilateral is mapped into a square with two units on each side as shown in Fig.
9.8b. The velocity components u and v in the physical plane, directed parallel to the
x and y axes, are assumed to the bilinear functions of ξ and η. We can express the
velocity field in the matrix form

{v} =
{

u
v

}
=

[
N1 0 N2 0 N3 0 N4 0
0 N1 0 N2 0 N3 0 N4

]
{d} = [N]{d} (65)

where Ni are the associated shape functions, while {d} is the nodal velocity vector
given by

{d}T = [u1 v1 u2 v2 u3 v3 u4 v4]

Each shape function can be expressed as a product of two linear functions of ξ and
η. From the properties of the shape functions, it is easy to establish that

N1 = 1
4 (1 − ξ)(1 − η) N2 = 1

4 (1 + ξ)(1 − η)

N3 = 1
4 (1 + ξ)(1 + η) N4 = 1

4 (1 − ξ)(1 + η)
(66)

† See, for example, C. S. Desai and J. F. Abel, Introduction to the Finite Element Method, Van
Nostrand Reinhold, New York (1972); K. H. Huebner and E. A. Thornton, The Finite Element Method
for Engineers, 2d ed., John Wiley, New York (1982); O. C. Zienkiewicz and R. L. Taylor The Finite
Element Method, 4th ed., Vol. I, McGraw-Hill, London (1989); R. D. Cook, S. D. Malkus, and M. E.
Plesha, Concepts and Applications of Finite Element Analysis, 3d ed., John Wiley, New York (1989);
K. J. Bathe, Finite Element Procedures, Prentice-Hall, Englewood Cliffs, NJ (1996).
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It may be verified that each shape function assumes the value of unity at the node
specified by its subscript, while vanishing at all other nodes. The shape functions
can be expressed by the single equation

Ni = 1
4 (1 + ξξi)(1 + ηηi)

where (ξi, ηi) are the natural coordinates of a typical node i. The linearity of the
sides of the quadrilateral implies that the element is isoparametric. Indeed, along
any straight line defined by a constant value of one of the natural coordinates, both
x and y vary linearly with the other coordinate. Evidently, the transformation law is

x =
4∑

i=1

Nixi y =
4∑

i=1

Niyi (67)

The interpolation functions Ni are the same as those given by (66). In the special case
of a rectangular element with sides 2a and 2b parallel to the x and y axes respectively,
we have ξ = (x − x0)/a and η = (y − y0)/b, where (x0, y0) represents the location of
the center of the rectangle.

Since the shape functions are expressed in terms of the natural coordinates ξ

and η, the partial derivatives of a field variable with respect to the global coordinates
x and y are most conveniently obtained by using the transformation


∂

∂ξ

∂

∂n


 =




∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η







∂

∂x

∂

∂y


 = [J]




∂

∂x

∂

∂y




where [J] is known as the Jacobian matrix, its determinant J being called the Jacobian
of the transformation. The substitution from (67) and use of (66) lead to

[J] = 1

4

[−(1 − η) (1 − η) (1 + η) −(1 + η)

−(1 − ξ) −(1 + ξ) (1 + ξ) (1 − ξ)

]


x1 y1

x2 y2

x3 y3

x4 y4


 =

[
J11 J12

J21 J22

]

(68)

Once the Jacobian matrix has been found, the partial derivatives with respect to the
global coordinates can be evaluated from the expression


∂

∂x

∂

∂y


 = [J]−1




∂

∂ξ

∂

∂η


 = 1

J

[
J22 −J12

−J21 J11

]


∂

∂ξ

∂

∂η


 (69)

where J is generally a function of ξ and η, and is equal to J11J22 − J12J21. It can be
regarded as a scale factor by which the infinitesimal area dξ dη must be multiplied
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to produce the corresponding area dx dy in the physical plane. In the case of a
rectangular element, J = ab = A/4, where A is the area of the element.

In order to obtain the components of the true strain rate, it is necessary to
determine the partial derivatives of u and v with respect to x and y. The corresponding
derivatives with respect to ξ and η are obtained from (65) and (66) in the form


u,ξ
u,η
v,ξ
v,η


 = 1

4


−(1 − η) 0 (1 − η) 0 (1 + η) 0 −(1 + η) 0

−(1 − ξ) 0 −(1 − ξ) 0 (1 + ξ) 0 (1 − ξ) 0
0 −(1 − η) 0 (1 − η) 0 (1 + η) 0 −(1 + η)
0 −(1 − ξ) 0 −(1 + ξ) 0 (1 + ξ) 0 (1 − ξ)


{d}

(70)

The inverse of the Jacobian matrix enables us to obtain the partial derivatives with
respect to x and y. Using (69), the components of the strain rate are expressed as




ε̇x
ε̇y
γ̇xy


 =




u,x
v,y

u,y +v,x


 = 1

J


 J22 −J12 0 0

0 0 −J21 J11
−J21 J11 J22 −J12







u,ξ
u,η
v,ξ
v,η




Substituting (70) for the velocity gradient vector, and denoting the right-hand side
of (70) by [H]{d}, we finally obtain the strain rate in the form

{ε̇} =



ε̇x
ε̇y
γ̇xy


 = 1

J


 J22 −J12 0 0

0 0 −J21 J11
−J21 J11 J22 −J12


[H]{d} = [B]{d} (71)

where [B] represents the strain rate matrix, analogous to that defined in (54). Since
the elements Bij in this matrix are functions of ξ and η, the strain rate varies within
the bilinear quadrilateral.

The integration of any function f (x, y) over the area of the quadrilateral is most
conveniently carried out numerically using the Gaussian quadrature method. Since

I =
∫∫

f (x, y) dx dy �
∫∫

f (x, y)J dξ dη =
∫ 1

−1

∫ 1

−1
φ(ξ, η)J(ξ, η) dξ dη

where φ(ξ, η) is the given function f (x, y) expressed in terms of ξ and η. Consid-
ering n Gauss points along each straight line of constant ξ or η, and denoting the
n associated weighting factors by wi, we can write down the Gaussian quadrature
formula analogous to (18) as

I =
n∑

i=1

n∑
j=1

wiwj φ(ξi, ηj) J(ξi, ηj) (72)

where (ξi, ξj) are the Gauss points for the selected value of n. When n = 3 the integral
becomes

I = 1

81

{
25

∑
(φe Je) + 64(φ0 J0) + 40

∑
(φcJc)

}
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where φ0 denotes the value of φ at the central Gauss point (0, 0), the subscript e refers
to the four end points (±α, ±α), with α = √

0.6, and the subscript c corresponds to
the four remaining midpoints. It may be noted that the sum of the products of the
weighting factors appearing in the integration formula is always equal to 4.

In problems of axial symmetry, we may consider a ring element whose cross
section is a bilinear quadrilateral. The cylindrical coordinates (r, z) and the cor-
responding velocity components (u, w) are defined by the shape functions (66) in
terms of the natural coordinates (ξ, η). It is therefore only necessary to replace (x, y)
by (r, z), and v by w in the preceding relations to obtain the corresponding results for
axial symmetry. The strain rate components ε̇r , ε̇z, and γ̇rz are given by the matrix
relation (71), where

{d}T = [u1 w1 u2 w2 u3 w3 u4 w4]

The remaining component ε̇θ must be computed from the relation

ε̇θ = u

r
=

[
N1

r
0

N2

r
0

N3

r
0

N4

r
0

]
{d}

which provides the additional row needed to complete the associated strain rate
matrix [B]. The integration of any given function f (r, z) over the volume of the
ring can be carried out by using the fact that dV = 2πr dr dz, and by setting
rf (r, z) = φ(ξ, η), which follows from the coordinate transformation similar to (67).
The Gaussian integration formula for the volume integral is then given by (72) with
a multiplying factor of 2π.

(iv) Linear tetrahedral element An obvious generalization of the linear triangular
element to deal with three-dimensional problems is the four-node tetrahedral element
shown in Fig. 9.9a. The nodes are numbered in such a way that any choice of the first

1

2

(a) (b)

1

2

3

4

5 6

7

8

9

10

3

P

4

z

x

y

Figure 9.9 Tetrahedral element. (a) Four-node linear element; (b) ten-node quadratic element.
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node makes the other three nodes follow a cyclic order in a counterclockwise sense.
The velocity components u, v, and w in the directions of the rectangular axes of x, y,
and z respectively are assumed to vary linearly within the element. Considering the
x component of the velocity, we write

u = α1 + α2x + α3y + α4z

where α1, α2, α3, and α4 are constants. The nodal values of this velocity are therefore
given by 


u1
u2
u3
u4


 =




1 x1 y1 z1
1 x2 y2 z2
1 x3 y3 z3
1 x4 y4 z4







α1
α2
α3
α4


 (73)

The solution to this system of linear algebraic equations for the constants αj, using
Cramer’s rule, can be written as

6Vα1 =
4∑

i=1

aiui 6Vα2 =
4∑

i=1

biui 6Vα3 =
4∑

i=1

αiui 6Vα4 =
4∑

i=1

diui

where 6V is equal to the determinant of the square matrix in (73), with V denoting
the volume of the tetrahedron. The parameters ai, bi, ci, and di are the cofactors of ui
in the determinants of the coefficients obtained by replacing the first, second, third,
and fourth column, respectively, of the matrix in (73) with the nodal velocities u1,
u2, u3, and u4. Thus†

a1 =
∣∣∣∣∣∣
x2 y2 z2
x3 y3 z3
x4 y4 z4

∣∣∣∣∣∣ b1 = −
∣∣∣∣∣∣
1 y2 z2
1 y3 z3
1 y4 z4

∣∣∣∣∣∣ c1 =
∣∣∣∣∣∣
1 x2 z2
1 x3 z3
1 x4 z4

∣∣∣∣∣∣ d1 = −
∣∣∣∣∣∣
1 x2 y2
1 x3 y3
1 x4 y4

∣∣∣∣∣∣
(74)

The remaining parameters follow from above by a cyclic interchange of the sub-
scripts 1, 2, 3, and 4. The substitution for α1, α2, α3, and α4 then furnishes the
velocity component u at any point in the element. The other two velocity compo-
nents v and w are similarly expressed in terms of ai, bi, ci, and di and the results are
collected together in the form

u =
4∑

i=1

Niui v =
4∑

i=1

Nivi w =
4∑

i=1

Niwi Ni = 1

6V
(ai+bix+ciy+diz)

(75)

† O. C. Zienkiewicz, The Finite Element Method, Chap. 6, 2d ed., McGraw-Hill, NewYork (1977).
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where Ni denotes the shape function that assumes the value of unity at node i and
vanishes at the other nodes. In matrix notations, the vector representing the velocity is




u
v

w


 = [

N1[I] N2[I] N3[I] N4[I]
]




{d1}
{d2}
{d3}
{d4}


 {di} =




ui
vi
wi


 (76)

where [I] is a 3 × 3 identity matrix. Since the velocity varies bilinearly with x and
y, it is automatically made continuous across the straight interfaces of the adjacent
elements.

In a three-dimensional deformation mode, there are generally six nonzero com-
ponents of the strain rate, given by the partial derivatives of u, v, and w with respect
to x, y, and z. Using (76), the vector representing the strain rate can be written as

{ε̇} =




ε̇x
ε̇y
ε̇z
γ̇xy
γ̇yz
γ̇zx




=




u,x
v,y
w,z

u,y +v,x
v,z +w,y
u,z +w,x




= [
[B1] [B2] [B3] [B4]

]



{d1}
{d2}
{d3}
{d4}




Each of the four submatrices appearing above is a 3 × 6 matrix given by

[Bi] =




Ni,x 0 0
0 Ni,y 0
0 0 Ni,z

Ni,y Ni,x 0
0 Ni,z Ni,y

Ni,z 0 Ni,x


 = 1

6V




bi 0 0
0 ci 0
0 0 di
ci bi 0
0 di ci
di 0 bi


 (77)

The coefficients of this matrix are therefore directly obtained from the nodal coor-
dinates using (74) and its counterparts. The true strain rate is finally evaluated from
the relation {ε̇} = [B]{d}, where

[B] = [
[B1] [B2] [B3] [B4]

] {d}T = [{d1}T {d2}T {d3}T {d4}T
]

Thus, [B] is the strain rate matrix that follows from the submatrices given by (77).
Since the strain rate matrix consists of constant coefficients, the linear tetrahedron
is a constant strain element.

We now introduce the volume coordinates Li of a generic point P within the
element (Fig. 9.9a). If Vi denotes the volume of the tetrahedron formed by its vertex
at P and having its base defined by the three nodes other than the node i, then

Li = Vi

V

∑
Li = 1 (i = 1, 2, 3, 4)
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The dimensionless natural coordinates Li vary linearly with the rectangular
coordinates (x, y, z) of point P. We may therefore write


1
x
y
z


 =




1 1 1 1
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4







L1
L2
L3
L4




The inversion of these equations leads to the expressions for L1, L2, L3, and L4,
which are found to be identical to those for N1, N2, N3, and N4, respectively. The
four-node tetrahedral element is therefore isoparametric. Using arguments similar
to those leading to (60), it can be shown that∫

Lm
1 Ln

2 Lp
3 Ls

4 dV = m!n!p!s!(6V )

(m + n + p + s + 3)! (78)

The volume coordinates are also useful for the derivation of shape functions of
higher-order tetrahedra. In the case of a quadratic tetrahedron, for example, there
are six additional nodes located at the midpoints of the sides of the three triangular
faces (Fig. 9.9b). Following the same procedure as that adopted for the triangular
element, it is easily shown that the shape functions associated with the corner nodes
are N1 = L1(2L1 − 1), etc., and those with the side nodes are N5 = 4L1L2, etc. The
tetrahedral elements are particularly suitable for three-dimensional problems with
irregular geometrics.

9.4 Finite Element Procedure

The finite element method is generally based on an appropriate variational principle
that establishes the relationship between the nodal velocity and nodal load rates
through a stiffness matrix. Since the deformation mode is separately defined for each
individual element, it is customary to apply the principle to a typical element to obtain
the corresponding stiffness equation. The global stiffness equation is subsequently
derived following an assembly rule that takes into account the contribution from all
the elements forming the assemblage.

(i) A variational formulation The nonzero components of the Jaumann stress rate
in a typical finite element are represented by a column vector {σ̊}, which is related
to the corresponding strain rate {ε̇} by the equation

{σ̊} = [C]{ε̇} (79)

where [C] is the constitutive matrix. In an elastic/plastic element obeying the Prandil-
Reuss flow rule, [C] is given by Eqs. (45) and (46), Chap. 2, corresponding to plane
strain and plane stress, respectively. For a three-dimensional state, we have

{σ̊}T = [σ̊x σ̊y σ̊z τ̊xy τ̊yz τ̊zx]
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and [C] is obtained from the plane strain matrix by the addition of appropriate rows
and columns. In an elastic element, the constitutive matrix is that which corresponds
to an infinite rate of hardening.

In general, the velocity distribution in a typical element, and the associated strain
rate can be expressed in the matrix form

{v} = [N]{d} {ε̇} = [B]{d} (80)

where [B] is the strain rate matrix and {d} the nodal velocity vector. It follows from
(79) and (80) that

σ̊ij ε̇ij = {ε̇}T {σ̊} = {ε̇}T [C]{ε̇}
A consistent stiffness equation is obtained on the basis of the variational principle

expressed by Eq. (109), Chap. 2.When the strains are so small that positional changes
are negligible, the second term in the volume integral can be omitted. The matrix
form of this equation then becomes

δ

(∫
{ε̇}T [C]{ε̇}dV − 2

∫
{v}T {Ḟ}dSF

)
= 0

where V is the volume of the element and SF is that part of its boundary where
traction rates are prescribed. The components of the traction rate are represented by
the column vector {Ḟ}. Substituting from (80) the variational equation is reduced to

{δd}T
(∫

[B]T [C][B]{d}dV −
∫

[N]T {Ḟ}dSF

)
= 0

Since the variation of the nodal velocity is arbitrary, the above equation requires the
expression in parentheses to vanish. The rate equation of equilibrium for the element
therefore becomes†

[ke]{de} = {Q̇e} (81)

where [ke] is the element stiffness matrix and {Q̇e} the associated load rate vector,
which are given by

[ke] =
∫

[B]T [C][B]dV {Q̇e} =
∫

[N]T {Ḟ}dSF (82)

For a constant strain triangular element, the volume integral in (82) is simply the
matrix product times hA, where h is the thickness and A the area of the triangle.

† The incremental finite element method for small strains has been developed by P. V. Marcal and
I. P. King, Int. J . Mech. Sci., 9: 143 (1967); Y. Yamada, N. Yoshimura and T. Sakurai, Int. J. Mech.
Sci., 10: 343 (1968). An initial strain approach has been used by J. H. Argyris, J. R. Aeronaut. Sci.,
69: 633 (1965). An initial stress approach has been considered by O. C. Zienkiewicz, S. Valliappan,
and I. P. King, Int. J. Num. Meth. Eng., 1: 75 (1969). See also D. R. J. Owen and E. J. Hinton, Finite
Elements in Plasticity, Theory and Practice, Pineridge Press, Swansca (1980).
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For an axisymmetric ring element, dV = 2πr dr dz and dSF = 2πr ds, where ds is a
line element of the boundary along the meridian. In general, numerical integration
would be necessary for evaluating the integrals, though it is frequently adequate to
use a mean value of the integrand based on its values at the midpoints of the sides
of the triangle.

In problems involving large plastic strains, the change in geometry cannot be
disregarded. The variational formulation then leads to an additional stiffness term
in the finite element equation. To derive the modified stiffness equation, we write†

vi = [Ni]{d} ε̇ij = [Bij]{d}
where [Ni] and [Bij] are row vectors identical to the appropriate rows of [N] and [B],
except for a factor of 1/2 that must be associated with the shear components. The
rate equation of equilibrium then becomes

([ke] + [ke
s ]){de} = {Q̇e} (83)

where [ke] is given by (82) while [ke
s ] is a second stiffness matrix given by

[ke
s ] =

∫
([Nk],Ti σij[Nk],j −2[Bki]

Tσij[Bkj])dV (84)

The comma denotes partial differentiation with respect to the coordinates, the usual
summation convention being implied for the repeated indices.

Consider now the overall problem of forming the matrix equation for the assem-
blage from those of the individual elements. Let n denote the total number of
elements, and N the total number of nodal degrees of freedom, the associated nodal
velocity being represented by the vector {U}. The load rate vector {Q̇e} for a generic
element e is expanded into the N vector {Ṙe} such that

{Ṙe}T = [{0}T {0}T · · · {0}T {Q̇e}T {0}T · · · {0}T ]

The location of {Q̇e} in {Ṙe} corresponds to that of {de} in {U}, following the
global node numbering. The element stiffness matrix {ke} is similarly expanded into
an N × N square matrix [Ke] by inserting the stiffness coefficients in appropriate
locations. Eq. (81) is therefore equivalent to

[Ke]{U} = {Ṙe}
The nodal velocity vector {U} for the assemblage appears in each element equation
when written in the expanded form. The overall equilibrium requires(

n∑
e=1

[Ke]

)
{U} =

n∑
e=1

{Ṙe}

† R. M. McMecking and J. R. Rice, Int. J. Solids Struct, 11: 601 (1974); see alsoY.Yamada, Comp.
Struct. 8: 533 (1978).
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The expression in the parenthesis is the global stiffness matrix [K], and that on the
right-hand side is the global load rate vector {Ṙ}, giving the global stiffness equation

[K]{U} = {Ṙ} (85)

For each incremental step, the stiffness matrix is always symmetric and banded.
The solution of (85) gives the nodal velocities, and the distribution of strain rates
throughout the body then follows from (80).

The global stiffness equation for large plastic flow problems can be established in
a similar manner. The changes in geometry that occur in large plastic flow problems
are most conveniently allowed for by taking the current configuration at each stage as
the reference configuration during a further increment of timescale. This procedure is
repeated sequentially to build up the complete history of the deformation process, and
the current configuration is thus available at each stage for solving the incremential
stiffness equation.

(ii) Evaluation of boundary integrals The load rate vector defined by the surface
integral in (82) cannot be determined when all the nodes of the element are located
interior to the physical domain. It is not even necessary then to evaluate this vec-
tor since each component of the load rate is cancelled by an equal and opposite
component existing in the adjacent element at the common interface. The surface
integral therefore becomes relevant when a face of the element coincides with a part
of the external boundary over which the traction rate is specified. We begin with
a two-dimensional problem in which a linear triangular element has its side 1 of
length l coinciding with the boundary (Fig 9.10a). The rectangular components of
the traction rate are assumed to be distributed linearly as

Ḟx = ṗ2 + ( ṗ3 − ṗ2)ξ Ḟy = q̇2 + (q̇3 − q̇2)ξ

where ξl denotes the distance along the side measured from node 2 while ( ṗ2, q̇2)
and ( ṗ3, q̇) are the traction rates acting at the extremities. Since N1 = 0, N2 = 1 − ξ,
and N3 = ξ along side 1 of the triangle, the contribution to the equivalent nodal load

y, z

x, r

p2

p3

q2

q3

3

(a) (b)

2

Side
1

j

j

q3
q2

p3

p22

5

4

x

6

3

y

11

Figure 9.10 Distribution of traction rates over an element side coinciding with the boundary. (a) Linear
triangle; (b) quadratic triangle.
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rates due to the prescribed boundary traction is

{Q̇e} =




Ṗ1

Q̇1

Ṗ2

Q̇2

P3

Q3




= hl
∫ 1

0
[N]′{Ḟ}dξ = hl

∫ 1

0




0 0

0 0

1 − ξ 0

0 1 − ξ

ξ 0

0 ξ




{
Ḟx

Ḟy

}
dξ (86)

where (Ṗi, Q̇i) is the equivalent load rate vector at a typical node i, and h is the
thickness of the element. Evidently, Ṗ1 and Q̇1 are identically zero. The x components
of the load rates at nodes 2 and 3 are

Ṗ2 = hl
∫ 1

0
[ ṗ2 + ( ṗ3 − ṗ2)ξ](l − ξ)dξ = 1

6
hl(2ṗ2 + ṗ3)

Ṗ3 = hl
∫ 1

0
[ ṗ2 + ( ṗ3 − ṗ2)ξ]ξ dξ = 1

6
hl( ṗ2 + 2ṗ3)

The y components of the nodal load rates, denoted by Q̇2 and Q̇3 are identical in form
to Ṗ2 and Ṗ3, respectively. The results may therefore be expressed collectively as{

Ṗ2
Q̇2

}
= 1

6
hl

{
2ṗ2 + ṗ3
2q̇2 + q̇3

} {
ṗ3
Q̇3

}
= 1

6
hl

{
ṗ2 + 2ṗ3
q̇2 + 2q̇3

}
(87)

When the traction rate is uniformly distributed along the boundary, so that ṗ2 = ṗ3,
and q̇2 = q̇3, the total load rate acting on the boundary is shared equally by the two
nodes located on the boundary. When ṗ2 = q̇2 = 0, the equivalent load rate at node 3
is twice that at node 2.

Consider, now, an axisymmetric ring element whose cross section is the linear
triangular element shown in Fig. 9.10a, where the axes of reference are changed from
x and y to r and z, respectively. Assuming the prescribed traction rate to be given by

Ḟr = ṗ2 + ( ṗ3 − ṗ2)ξ Ḟz = q̇2 + (q̇3 − q̇2)ξ

The equivalent nodal load rates for the boundary element can be evaluated by using
the relation

{Q̇e} = 2πl
∫ 1

0
[N]T {Ḟ}r dξ = 2πl

∫ 1

0




0 0
0 0

1 − ξ 0
0 1 − ξ

ξ 0
0 ξ




{
Ḟr

Ḟz

}
r dξ

which is a modified form of (86). Inserting the expressions for Ḟr and Ḟz, and setting
r = r2 + (r3 − r2)ξ, which holds for the isoparametric triangle, the radial components
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of the equivalent load rates at nodes 2 and 3 are expressed as

Ṗ2 = 2πl
∫ 1

0
[ ṗ2 + ( ṗ3 − ṗ2)ξ][r2 + (r3 − r2)ξ](1 − ξ)dξ

Ṗ3 = 2πl
∫ 1

0
[ ṗ2 + ( ṗ3 − ṗ2)ξ][r2 + (r3 − r2)ξ]ξ dξ

The axial components Q̇2 and Q̇3 of the nodal load rates are similarly expressed.
Carrying out the integration, we obtain{

Ṗ2

Q̇2

}
= πl

6

{
(3r2 + r3)ṗ2 + (r2 + r3)ṗ3

(3r2 + r3)q̇2 + (r2 + r3)q̇3

}

{
Ṗ3

Q̇3

}
= πl

6

{
(r2 + r3)ṗ2 + (r2 + 3r3)ṗ3

(r2 + r3)q̇2 + (r2 + 3r3)q̇3

} (88)

The contribution to the load rate at node 1 is identically zero. In the special case where
r2 = r3 = r, the equivalent load rates become 2π(r/h) times those defined by (87).
Eqs. (87) and (88) also hold for the equivalent load rates in a bilinear quadrilateral
having one of its sides coincident with the boundary.

As a final example, consider the boundary integral associated with a plane
quadratic triangle in which the traction rate is prescribed along one of its sides
(Fig. 9.10b). Let l denote the length of this side and ξl/2 the distance measured along
it from the central node 5. The nonzero shape functions along this side follow directly
from the one-dimensional quadratic functions expressed by (4). We therefore have

N2 = − 1
2ξ(1 − ξ) N5 = 1 − ξ2 N3 = 1

2ξ(1 + ξ)

where ξ varies from −1 at node 2 to 1 at node 3. The components of the traction
rate are assumed to vary linearly as before, and are given by

Ḟx = 1
2 (1 − ξ)ṗ2 + 1

2 (1 + ξ)ṗ3 Ḟy = 1
2 (1 − ξ)q̇2 + 1

2 (1 + ξ)q̇3

The equivalent nodal load rates due to the traction rate distribution along the
boundary apply only to the nodes 2, 3, and 5, their x components being given by




Ṗ2

Ṗ3

Ṗ5


 = 1

2
hl

∫ 1

−1




N2 0

N3 0

N5 0




{
Ḟx

Ḟy

}
dξ = 1

6
hl




ṗ2

ṗ3

2( ṗ2 + ṗ3)


 (89)

where h denotes the thickness of the element. The y components of the nodal
load rates, denoted by Q̇2, Q̇3, and Q̇5 are given by the right-hand side of (89)
by replacing ( ṗ2, ṗ3) with (q̇2, q̇3). When the traction rate is uniformly distributed,
two-thirds of the total load rate is carried by node 5, the remainder being shared
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Figure 9.11 Assembly of finite elements. (a) A set of three triangular elements; (b) a quadrilateral
element made up of four triangles.

equally by the other two nodes. The boundary integrals corresponding to the tetra-
hedral and other three-dimensional finite elements can be evaluated in a similar
manner.

(iii) Element assembly equations The assembly rule introduced in Sec. 9.4(i) can
be implemented by the direct addition of the stiffness coefficients and load rates
for the individual elements corresponding to the various locations in the global
stiffness matrix and load rate vector. To illustrate the procedure, consider, a finite
element mesh consisting of three linear triangular elements, as shown in Fig. 9.11a.
The correspondence between the local and global numbering of the nodes is also
indicated in the figure. The condition of continuity of the velocity at the nodes
common to the adjacent elements requires

{
u1

2

v1
2

}
=

{
u2

2

v2
2

}
=

{
U2

V2

} {
u1

3

v1
3

}
=

{
u2

1

v2
1

}
=

{
u3

1

v3
1

}
=

{
U3

V3

} {
u2

3

v2
3

}
=

{
u3

2

v3
2

}
=

{
U4

V4

}

The continuity of velocity at the interelement nodes ensures the continuity of velocity
along the interelement boundaries. It is convenient to write the stiffness equation for a
typical triangular element with local nodes 1, 2, and 3 in terms of 2×2 submatrices as†




[ke
11] [ke

12] [ke
13]

[ke
21] [ke

22] [ke
23]

[ke
31] [ke

32] [ke
33]







{de
1}

{de
2}

{de
3}


 =




{Q̇e
1}

{Q̇e
2}

{Q̇3}


 [ke

ji] = [ke
ij]

T (90)

† C. S. Desai and J. F. Abel, Introduction to the Finite Element Method, Van Nostrand-Reinhold,
New York (1972).
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where

[ke
ij] =

[
ke

2i−1,2j−1 ke
2i−1,2j

ke
2i,2j−1 ke

2i,2j

]
{de

i } =
{

ui

vi

}
{Q̇e

i } =
{

Ṗe
i

Q̇e
i

}
(91)

By writing out the terms in (90) following the above relations, we recover the
complete stiffness equation for the individual element.

To establish the stiffness equation for the assemblage, consider for example the
interelement node having global number 4. Since the resultant load rate vector {Ṙ4}
at this node is the sum of {Q̇2

3} and {Q̇3
2}, it is necessary to add the third row of the

matrix equation for element 2 to the second row of the matrix equation for element 3
to obtain the fourth row of the matrix equation for the assemblage. Referring to (90),
and invoking the correspondence between the local and global velocities, we derive
the fourth row of the assembly equation as

[k2
32]{U2} + ([k2

31] + [k3
21]){U3} + ([k2

33] + [k3
22]){U4} + [k3

23]{U5} = {Q̇2
3} + {Q̇3

2}
The coefficients of the velocity vectors in this equation are evidently the appropriate
submatrices in the fourth row of the global stiffness matrix [K]. The global stiffness
equation may be expressed as




[K11] [K12] [K13] [K14] [K15]

[K21] [K22] [K23] [K24] [K25]

[K31] [K32] [K33] [K34] [K35]

[K41] [K42] [K43] [K44] [K45]

[K51] [K52] [K53] [K54] [K55]







{U1}
{U2}
{U3}
{U4}
{U5}




=




{Ṙ1}
{Ṙ2}
{Ṙ3}
{Ṙ4}
{Ṙ5}




(92)

The global submatrices appearing in (92) are defined in the same way as the local
submatrices, the associated velocity and load rate vectors being defined as

{Ui} =
{

Ui

Vi

}
{Ṙi} =

{
Ṙi

Ṫi

}

The logical derivation of the element assembly equation according to the method
discussed above indicates that the various submatrices in the global stiffness matrix
can be obtained directly by mere inspection, taking into account the correspondence
between the element node numbers and the global node numbers. Each diagonal sub-
matrix is associated with a single node, and is given by the sum of the element
submatrices defined by the corresponding local node numbers. Each off-diagonal
submatrix is defined by a pair of nodal points, and is given by the sum of the cor-
responding submatrices for the elements, having a common side joining the two
nodes. When the pair of nodes do not belong to the same element, the corresponding
global submatrix is simply a 2 × 2 null matrix. The complete global stiffness matrix
and load rate vector for the assemblage, based on the element submatrices and load
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rates, are therefore given by

[K] =




[k1
11] [k1

12] [k1
13] [0] [0]

[k1
21] [k1

22] + [k2
22] [k2

23] + [k2
21] [k2

23 [0]

[k1
31] [k1

32] + [k2
12] [k1

33] + [k2
11] + [k3

11] [k2
13] + [k3

12] [k3
13]

[0] [k2
32] [k2

31] + [k3
21] [k2

33] + [k3
22] [k3

23

[0] [0] [k3
21] [k3

32] [k3
33]




{Ṙ} =




{Q̇1
1}

{Q̇1
2} + {Q̇2

2}
{Q̇1

3} + {Q̇2
1} + {Q̇3

1}
{Q̇2

3} + {Q̇3
2}

{Q̇3
3}




(93)

The comparison of (92) with (93) furnishes the correspondence between the local
and global vectors and matrices. The direct addition of stiffnesses of the individual
elements to form the global stiffness matrix eliminates the need for expanding each
element matrix into one of much higher order, depending on the total number of
global degrees of freedom in the assembly. When the problem involves a single scalar
function as the dependent variable, the submatrices reduce to the corresponding
matrix coefficients.

In the finite element analysis using constant strain triangles, four such elements
are often grouped together to form a quadrilateral, as shown in Fig. 9.11b. The
assembled element has an internal node at the common vertex at the global node 5,
which does not participate in connecting the quadrilateral with adjacent elements.
We may therefore eliminate the degrees of freedom associated with such an internal
node to reduce the order of the overall stiffness matrix. To illustrate the procedure
in general terms, consider an element in which the numbers of external and internal
degrees of freedom are denoted by subscripts r and s, respectively. We rearrange
and partition the stiffness equation for the element in the form[

[krr] [krs]
[ksr] [kss]

]{{dr}
{ds}

}
=

{{Q̇r}
{Q̇s}

}

This matrix equation is equivalent to the pair of equations

[krr]{dr} + [krs]{ds} = {Q̇r}
[ksr]{dr} + [kss]{ds} = {Q̇s}

(94)

The second equation of (94) gives the vector for the internal degrees of freedom as

{ds} = −[kss]
−1([ksr]{dr} − {Q̇s})
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The substitution of this result into the first equation of (94) leads to the effective
stiffness equation

[k]{dr} = {Q̇}
where [k] and {Q̇} denote the effective stiffness matrix and load rate vector
respectively. They are given by

[k] = [krr] − [krs][kss]−1[krs]T

{Q̇} = {Q̇r} − [krs][kss]−1{Q̇s}
(95)

The effective stiffness matrix and load rate vector, represented by the overbar, corre-
spond to the degrees of freedom of the condensed element.† The elimination process
just described is called static condensation, to distinguish it from a similar process
used in dynamics.

The solution of problems in solid mechanics requires the imposition of appropri-
ate boundary conditions. In the finite element method based on assumed deformation
modes, we need to specify only the geometric boundary conditions involving kine-
matic constraints on the nodal degrees of freedom. The traction boundary conditions
on the other hand, are easily incorporated in the global stiffness equation by specify-
ing the appropriate values of the nodal load rates. A general method of imposition of
geometric boundary conditions consists in partitioning the global stiffness equation
in the form [

[Kcc] [Kcf ]

[Kfc] [Kff ]

]{{Uc}
{Uf }

}
=

{
Ṙc

Ṙf

}
(96)

where {Uc} is the vector representing the constrained or known velocity, and {Uf }
the unconstrained or free velocity. The equation corresponding to the lower parti-
tion in (96) gives the unknown velocity {Uf }, and that corresponding to the upper
partition in (96) then furnishes the unknown load rate {Ṙc}. Thus,

{Uf } = [Kff ]−1({Ṙf } − [Kfc]{Uc})
{Ṙc} = [Kcc]{Uc} + [Kcf ]{Uf }

(97)

It should be noted that the load rate is specified where the velocity is unconstrained,
and is unspecified where the velocity is constrained. Also, [Kfc] = (Kcf )T in view of
the symmetry of the stiffness matrix.‡

(iv) Concluding remarks When the global velocities are known at all the interele-
ment nodes, the nodal velocities of each element follow from the correspondence
between the element and global node numbers. The associated strain rates and the
corresponding stress rates at any point in an element may then be computed from (79)

† For further details, see E. L. Wilson, Int. J. Num. Meth. Eng., 8: 198 (1974).
‡ An alternative treatment that preserves the symmetry of the matrix has been discussed by

J. N. Reddy, An Introduction to the Finite Element Method, 2d ed., McGraw-Hill, New York (1993).
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and (80). It is important to note that the variational principle on which the analysis
is based does not provide for interelement equilibrium, the predicted stresses being
discontinuous across interelement boundaries. It is therefore customary to assume
a mean value of the stress to be acting at the centroid of each element.

In the finite element analysis, the numbering system adopted for the nodal
points and individual elements has a profound effect on the bandwidth of the overall
stiffness matrix. Our objective is to minimize the bandwidth in order to reduce
both the solution time and storage space. If the numbering of the nodal velocities
is based on the assigned node numbers, then the bandwidth is determined by the
largest difference r between any two external node numbers associated with a single
element. The semi-bandwidth is equal to (l + r)m, where m is the number of degrees
of freedom at each node. Since it is not generally easy to generate a satisfactory
node numbering based on inspection, various automatic schemes are used for the
bandwidth reduction.

Once the elastic limit is exceeded, the material parameters and element stiffness
matrices no longer remain constant, and the subsequent analysis has to be carried
out in a stepwise manner under a succession of load increments.At every stage of the
incremental analysis, the constitutive matrix is updated, based on the computed plas-
tic modulus at the end of the previous increment, and the solution based on the modi-
fied stiffness equation then furnishes the strain increment in each element. The plastic
part of the strain increment is then computed to obtain the effective plastic strain
increment, which is required for updating the constitutive matrix. For higher accu-
racy, a limited number of iterations may be necessary for each load increment.†

In many metal working processes, the plastic strains completely dominate the
elastic strains, which are of the order of the yield stress divided byYoung’s modulus.
Nevertheless, it is still necessary to include the elastic strains for predicting the stress
distribution in regions of contained plastic flow, where the elastic and plastic strain
increments are of comparable magnitudes. An analysis based on the rigid/plastic
model fails to provide the necessary information, since such regions are then con-
sidered as rigid, and not enough equations are available for the solution. It is evident
that a complete elastic/plastic analysis is necessary for the calculation of residual
stresses, and the assessment of the possibility of forming defects such as internal or
surface cracks.‡

Several commercial software packages for finite element analysis are currently
available, and their capabilities are continually changing with increasing degrees of
sophistication. They provide convenience in handling the preparation of input data,
evaluation of numerical results, and examination of output data. Efficient computer
programs include facilities for automatically generating the finite element mesh, and

† Iterative methods of solution have been discussed by C. Nyssen, Comp. Struct., 13: 63 (1981),
and C. C. Chang, ibid., 43: 255 (1992).

‡ Rigid/plastic finite element methods have been discussed by K. Osakada, J. Nakaro, and K. Mori,
Int. J . Mech. Sci., 24: 459 (1982), S. I. Oh, ibid., 24: 479 (1982); O. C. Zienkiewicz and P. N. Godbole,
J. Strain Anal., 10: 180 (1975); J. H. Kim and S. Kobayashi, Int. J. Mach. Tool Des. Res., 18: 209 (1978).
Several examples have been presented by S. Kobayashi, S. I. Oh, and T. Altan, Metal Forming and the
Finite Element Method, Cambridge University Press, New York (1989).
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for numbering the associated nodes and elements. It is generally useful to have the
results displayed in a graphical form, and it is also possible to automate this process
with the help of the computer software.

9.5 Illustrative Examples

In order to carry out an elastic/plastic analysis, the load necessary to initiate plastic
yielding must be first estimated. The initial yield point is most conveniently obtained
by solving the elastic problem corresponding to a unit load, and finding the ratio of
the greatest equivalent stress σ to the uniaxial yield stress Y . Using the constitutive
matrices appropriate for the elastic and plastic elements, the individual and global
stiffnesses are constructed to obtain the increments of nodal displacement corre-
sponding to a specified load increment �P. The strain increments for the individual
elements are then computed from (80) and are used to calculate the equivalent strain
increment �ε in each element. This enables us to identify the transition elements
which become plastic during the load increment. Denoting the least value of the ratio
(Y − σ)/�σ in the transition region by ρ, the computation is repeated with a mean
constitutive matrix for these elements. The mean value of [C], obtained by adding
ρ times the elastic matrix to (1 − ρ) times the elastic/plastic matrix, has been found
to be quite satisfactory. Since the transition region is fairly small compared to the
whole structure, the mean coefficients would converge rapidly on iteration.† While
continuing the solution, it is necessary at each stage to check the sign of �σ in the
plastically deforming elements. A negative sign of �σ would imply unloading and
the calculations should be modified accordingly.

(i) Tension of a perforated sheet Consider, as an example, the longitudinal tension
of a strip containing a central circular hole whose diameter is one-half of the width
of the strip.‡ The material is aluminum having an initial yield stress Y = 238 MPa,
Young’s modulus E = 68.7 GPa, and Poisson’s ratio ν = 0.3. The stress–strain curve
in the plastic range is closely approximated by a straight line with a constant plastic
modulus H = 2.21 GPa. The finite element analysis has been carried out on the basis
of a mesh of simple triangular elements as shown in Fig. 9.12a, the curved boundary
of the hole being approximated by linear segments. Finer subdivisions have been
used over the region where the stress and strain gradients are expected to be large.
The development of the plastic enclaves during a succession of load increments,
equal to 0.2 and 0.1 times the load at the initial yielding, is shown in Fig. 9.12b.
These enclaves are found to be in substantial agreement with those observed exper-
imentally. Figure 9.13 shows the variation of the maximum longitudinal strain ε

with the applied tensile stress σ. The solid curve represents the computed result,
and the upper broken curve represents the experimental result. Calculations based

† This may be avoided by using the Ramberg-Osgood equation for the stress–strain curve, which
allows the same constitutive matrix to be used throughout the body as long as no unloading takes place.
See, for example, G. Venkateswara Rao and A. V. Krishnamurthy, Nucl. Eng. Des., 17: 297 (1971).

‡ P. V. Marcal and I. P. King, op. cit.; O. C. Zeinkiewicz, S. Valliappan, and I. P. King, Int. J. Num.
Meth. Eng., 1: 75 (1969); S. Theocaris and E. Marketos. J. Mech. Phys. Solids, 12: 377 (1964).
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Figure 9.12 Quadrant of a perforated strip under tension. (a) Finite element network; (b) spread of
plastic zone.

on the neglect of work-hardening furnish the lower broken curve, whose divergence
from the work-hardening curve is apparent at higher loads. For the nonhardening
material, the plastic zone starts to grow fairly rapidly as the load is nearly twice
that at the initial yielding. When H = 0, it is necessary at each stage to compute the
increment of plastic strain that corresponds to the prescribed increment of stress,
and check the sign of the equivalent plastic strain increment which must be positive
in the plastically deforming elements.

(ii) Plane strain extrusion of a billet As an example of a large plastic flow problem,
consider the frictionless extrusion of a billet of initial thickness 2a using a die having
zero slopes and curvatures at both ends. The die has an axial length equal to 1.2a and
permits a fractional reduction in thickness equal to 25 percent. Since the estimation
of residual stresses in the extruded billet is of great practical importance, a complete
elastic/plastic analysis of the process is essential. In the initial configuration, the billet
is assumed to be machined to conform to the die profile.The billet material is assumed
to be prestrained aluminum with an elastic modulus E = 107 psi, an initial yield
stress Y = 27.5 ksi, and a linear strain hardening with a constant tangent modulus
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Figure 9.13 Variation of the applied stress with maximum longitudinal strain in a perforated plate. The
theoretical curves are due to Marcal, and the experimental curve is due to Theocaris and Marketos.

T = 0.0165E. The adopted pattern of finite element mesh consists of constant strain
triangular elements forming quadrilaterals with straight diagonals. This arrangement
is helpful in overcoming the constraint of near incompressibility of the material at
large plastic strains. The deformation of the these elements, which is determined
sequentially as the extrusion proceeds, gives us a convected network that deforms
with the material. Figure 9.14 depicts the initial configuration of a square mesh in
the undeformed state and the deformed network when most of the billet has been
extruded through the die.†

In the numerical computation, the die profile is represented by a fifth-degree
polynomial that is defined by the conditions of zero slope and curvature at each
end of the die. This provides a smooth variation of curvature of the die. The finite
element analysis is based on Eqs. (83) and (84), derived earlier for large plastic flow
problems in which positional changes are duly allowed for, by sequentially updating
the deformed configuration. A network of 216 quadrilateral elements covering one-
half of the billet, results in an instantaneous global stiffness matrix that is symmetric
of order 518, after the elimination of 432 degrees of freedom corresponding to
the internal nodes using the static condensation method, described in Sec. 9.4(iii).
By an appropriate ordering of the node numbers, the semi-bandwidth of the matrix
is minimized to a value of 18. A compressed storage scheme is used which involves
storing only the nonzero diagonals of the lower triangular part of the banded matrix.

Since the nominal traction rate Ḟj is not prescribed along the rigid die face, the
evaluation of the associated boundary integral must be treated separately. Choosing
local coordinates (x1, x2) at a generic particle on the boundary, where x1 is directed
along the velocity of sliding, and x2 is along the outward normal, and noting the fact

† E. H. Lee, R. L. Mallett, and W. H. Yang, Comp. Meth. Appl. Mech. Eng., 10: 339 (1977).
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Figure 9.14 Assemblage of quadrilateral finite elements before and after plane strain extrusion through
a curved die.

that the components of the unit normal are l1 = 0 and l2 = 1, we have

Ḟj δvj = li ṫij δvj = ṫ21 δv1 = σ22

(
∂v1

∂x2

)
δv1

in view of (90) and (87), Chap. 1, and the conditions v2 = 0 and σ12 = σ̇12 = 0 along
the boundary. Since ∂v1/∂x2 represents the angular velocity of the element, and
is equal to κv1, where κ is the curvature of the die profile, the boundary integral
therefore becomes∫

Ḟj δvj dSF =
∫

σ22κv1 δv1 δSF = −
∫

pκv δv dSF

where p is the normal pressure exerted by the die, and v1 = v is the magnitude of the
unknown sliding velocity of the particle. In the numerical computation, the nodal
velocity vector is taken along an appropriate chord of the boundary curve, so that
the average normal velocity vanishes during an incremental deformation. Hence,
the surface integral effectively introduces stress-dependent terms in the incremental
stiffness matrix. The boundary integral evidently vanishes along the smooth ram as
well as along the axis of symmetry of the billet.

At the exit from the die, the boundary condition changes discontinuously from
sliding contact to one of a stress-free surface. In the numerical solution, the discon-
tinuity is eliminated by reducing the normal traction incrementally to zero during
the time interval required by two successive boundary nodes to leave the exit point
of the die. As the deformation continues in the elastic/plastic range, more and more
elements adjacent to the die become plastic, and the ram pressure gradually settles
down to a steady-state value. The displacement of the ram during the time interval
between the beginning of the process and the attainment of steady state is found to
be equal to 5.59a. Experience indicates that the use of other patterns of triangular
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Figure 9.15 Distribution of the longitudinal component of the residual stress in the extruded sheet (after
Lee et al.).

elements lead to a continuation of the increase in ram pressure with displacement,
in contradiction with the observed behavior.

The billet emerges from the die effectively as a rigid body, and involves unload-
ing strains of the elastic order occurring in the material. The unloading of the extruded
billet results in a uniform distribution of residual stresses, except in the transition
regions adjacent to the die exit and the free end of the billet. The longitudinal com-
ponent σx of the residual stress varies symmetrically over the cross section of the
extruded billet, and is self-equilibrating in order to produce a zero resultant. The
transition regions involve the development of variable shearing stresses to maintain
equilibrium with the longitudinal normal stress. Figure 9.15 shows the distribution
of the longitudinal residual stress in the fully extruded billet. Each curve corresponds
to a different row of centroids of 36 quadrilateral elements, the initial transverse dis-
tance of each row from the center line of the billet being as indicated in the figure.
The region between x � 8.5a and 11.0a clearly represents a steady-state distribution
of residual stress in the extruded billet.†

† The elastic/plastic bending of plates by the finite element method has been considered by
T. Belytschko and P. G. Hodge. J. Eng. Mech. Div., Proc. ASCE, 98: 277 (1972). For an analysis of
elastic/plastic shells of revolution, see P. V. Marcal, J. Amer. Inst. Aeronaut. Astronaut, 8: 1628 (1970).
A finite element analysis of cracked plates in plane strain has been presented by J. L. Swedlow, Int. J.
Fract. Mech., 5: 33 (1969). An analysis for the stresses in a rolling disc has been given by C. Anand and
H. Shaw, Int. J. Mech. Sci., 19: 37 (1977). A solution for the stress distribution in a solid sphere pressed
against a rigid flat plate has been given by L. Kogut and I. Etsion, J. Appl. Mech., 69: 657 (2002).
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Problems

9.1 Consider a one-dimensional quadratic element having three equally spaced nodes over its length l.
Using the interpolation functions (4), evaluate the integrals

Mij =
∫ l

0
NiNj dx Sij =

∫ l

0

(
dNi

dx

dNj

dx

)
dx (i, j = 1, 2, 3)

and derive the associated matrices

[M] = l

30


 4 2 −1

2 16 2
−1 2 4


 [S] = 1

3l


 7 −8 1

−8 16 −8
1 −8 7




9.2 Consider a four-node cubic line element extending from x = a to b, where b − a = l. Using the
Lagrangian interpolation functions in terms of the natural coordinate ξ, evaluate the integrals

Mi =
∫ b

a
N2

i dx (i = 1, 2, 3, 4)

exactly with the help of Gaussian quadrature involving an appropriate number of base points for the
integration.

Answer: M1 = M4 = 0.0762l, M2 = M3 = 0.3857l.

9.3 Using Crout’s decomposition method, solve the following system of equations expressed in the
matrix form: 


1 −2 5 0
0 −1 3 1
3 1 6 −10
1 4 1 3







x1
x2
x3
x4


=




28
14
16

4




Answer: x1 = 7, x2 = −3, x3 = 3, x4 = 2.

9.4 Consider a tridiagonal system of linear equations expressed in the matrix form


2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2







x1
x2
x3
x4


 =




4
0

−2
3




Decompose the coefficient matrix into L and U matrices using Crout’s method, and hence obtain the
solution to the above system of equations.

Answer: x1 = 3, x2 = 2, x3 = 1, x4 = 2.

9.5 The elastic/plastic buckling of an axially loaded column of variable moment inertia I , and extending
from x = 0 to x = l is governed by the differential equation

d2v

dx2 +
(

I0

I

)
k2v = 0 k =

√
P

Tl0

where v is the transverse defection, T the tangent modulus, and I0 the value of I at x = 0. Obtain the
finite difference equation

vi−1 −
[

2 −
(

I0

I

)
k2h2

]
vi + vi+1 = 0
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If the column is simply supported at its ends, and I varies linearly from I0 at either end to a value 2l0 at
x = l/2, show that the critical stress for h = l/4 is σ = 16(r0/l)2T , where r0 is the radius of gyration of
the end sections of the column.

9.6 Consider the elastic torsion of a bar whose cross section is a rectangle of sides 2a and 3a. Adopting
a uniform square mesh of size h = a/2 and using the interior node numbers 0, 2, 4 along the longer axis
of symmetry and 1, 3, 5 along the adjacent mesh lines parallel to it, obtain the finite difference solution

φ0 = 0.784Gθa2 φ1 = 0.597Gθa2 φ2 = 0.722Gθa2

φ3 = 0.552Gθa2 φ4 = 0.499Gθa2 φ5 = 0.388Gθa2

Evaluate the corresponding twisting moment T and the magnitude of the maximum shear stress in
the bar.

Answer: T = 4.525Gθa4, τmax = 0.354T/a3.

9.7 Consider a linear triangular element of the type shown in Fig. 6.6. Using the integration formula
(60) for plane triangles, prove that

∫∫
xy dx dy = A

12

{
3∑

i=1

(xiyi) + 9x̄ ȳ

}

where A is the area of the triangle, and (x, y) denotes the coordinates of its centroid. Using the dimen-
sionless coordinates (ξ, η) introduced in Sec. 9.3(ii) and referring to the axisymmetric ring element
formed by the triangle, show that∫∫

1

r
dr dz = 2A

r2 − r3

{
r2

r2 − r1
ln

(
r2

r1

)
− r3

r3 − r1
ln

(
r3

r1

)}

9.8 In an axisymmetric ring element generated by a linear triangle right-angled at node 2 (Fig. 9.6b),
the line joining nodes 2 and 3 being taken as parallel to the z-axis at a radial distance R from the origin.
The lengths of the sides of the triangle opposite nodes 3 and 1 are denoted by a and b, respectively.
Using the shape functions given by (56), evaluate the integrals

Sij =
∫∫ (

∂Ni

∂r

∂Nj

∂r
+ ∂Ni

∂z

∂Nj

∂z

)
dr dz Mij =

∫∫
NiNjr dr dz

Setting α = b/a and β = a/R, show that the above integrals form the coefficients of the following square
matrices:

[S] = 1

2α


 α2 −α2 0

−α2 1 + α2 −1
0 −1 1


 [M] = abR

120


2(5 − 3β) 5 − 2β 5 − 2β

5 − 2β 2(5 − β) 5 − β

5 − 2β 5 − β 2(5 − 2β)




9.9 Figure A shows a bilinear rectangular element of sides a and b, referred to a pair of local rectangular
axes x and y as indicated. Show that the shape functions are

N1 =
(

1 − x

a

)(
1 − y

b

)
N2 = x

a

(
1 − y

b

)
N3 = xy

ab
N4 =

(
1 − x

a

) y

b

Prove that the quantity Ni dx dy integrated over the area of the element is equal to A/4. Setting b/a = α,
evaluate the integrals Sij defined in Prob. 9.8, where the independent variables are now replaced by x and
y, and obtain the associated matrix

[S] = 1

6α




2(1 + α2) 1 − 2α2 −(1 + α2) −(2 − α2)

1 − 2α2 2(1 + α2) −(2 − α2) −(1 + α2)

−(1 + α2) −(2 − α2) 2(1 + α2) 1 − 2α2

−(2 − α2) −(1 + α2) 1 − 2α2 2(1 + α2)
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y

x

34

b

1 2

a
Figure A

9.10 Figure B shows a bilinear quadrilateral, in which the sides joining node 1 with nodes 2 and 4
coincide with local rectangular axes. Assuming α = 1.5, obtain the transformation equations

x

a
= 1

8 (1 + ξ)(5 + η)
y

b
= 1

8 (1 + η)(5 + ξ)

where ξ and η are the natural coordinates, each varying between −1 and 1. Also show that the Jacobian
of the transformation is given by

[J] = ab

64

[
5 + η 1 + η

1 + ξ 5 + ξ

]
J = ab

16
(6 + ξ + η)

9.11 Considering the four-node quadrilateral element of the previous problem, and using the associated
Jacobian matrix for the transformation, show that the corresponding strain rate matrix is given by

[B] = ab

128J


−2 − ξ + 3η 0 3 + ξ − 2η 0 2(1 + η) 0 −3(1 + η) 0

0 −2 + 3ξ − η 0 −3(1 + ξ) 0 2(1 + ξ) 0 3 − 2ξ + η

−2 + 3ξ − η −2 − ξ + 3η −3(1 + ξ) 3 + ξ − 2η 2(1 + ξ) 2(1 + η) 3 − 2ξ + η −3(1 + η)




Using Gaussian quadrature, determine exactly the vector {z} formed by the integrals
∫

Ni dA, taken over
the area of the quadrilateral.

Answer: {z}t = (ab/24) [11 15 13 15].

y

x

4

b

1 2

a

3
(aa, ab)

Figure B
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9.12 The integration formula (60) can be used for evaluating integrals for higher order triangular
elements. Considering the integral

Mij =
∫∫

NiNj dx dy

taken over the area of a quadratic triangle, for which the shape functions are given by (62), show that
the matrix formed by the values of the integral for varying i and j is

[M] = A

90




3 −0.5 −0.5 0 −2 0

−0.5 3 −0.5 0 0 −2

−0.5 −0.5 3 −2 0 0

0 0 −2 16 8 8

−2 0 0 8 16 8

0 −2 0 8 8 16




9.13 Consider a six-node quadratic triangle whose shape functions are given by (62). Using (64a) to
transform the shape function derivatives, evaluate the integrals

Sij =
∫∫ (

∂Ni

∂x

∂Nj

∂x

)
dx dy

taken over the area of the triangle, assuming selected values of i and j, and verify the displayed coefficients
of the associated matrix

[S] = 1

12A




3b2
1 −b1b2 −b1b3 4b1b2 0 4b1b3

−b1b2 3b2
2 −b2b3 4b1b2 4b2b3 0

−b1b3 −b2b3 3b2
3 0 4b2b3 4b1b3

· · · · · ·
· · · · · ·
· · · · · ·




9.14 The deformation mode of a flexure element is defined not only by the transverse deflection but also
by its spatial derivative at each nodal point of the element. Considering a two-node element, starting
with a cubic polynomial for the transverse deflection v, and setting θ = dv/dx, show that

v = N1v1 + N2(lθ1) + N3v2 + N4(lθ2)

where (v1, θ1) and (v2, θ2) denote the degrees of freedom at nodes 1 and 2 respectively, while N1, N2, N3,
and N4 are the associated interpolation functions. If the length of the element is denoted by l, and x is
measured from node 1, prove that

N1 =
(

1 − x

l

)2
(

1 + 2x

l

)
N2 = x

l

(
1 − x

l

)2

N3 = x2

l2

(
3 − 2x

l

)
N4 = x2

l2

(
1 − x

l

)

9.15 The coefficients of the stiffness matrix for a typical element of an elastic beam of flexural rigidity
EI, and the components of the equivalent nodal load vector due to a distributed load of intensity q per
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unit length, are given by

ke
ij = EI

∫ 1

0

d2Ni

dx2

d2Nj

dx2 dx Qe
i =

∫
Ni q(x)dx

where Ni is the interpolation function corresponding to node i. Using the results of Prob. 9.15, and
assuming a linear load distribution variation with q = q1 at x = 0 and q = q2 at x = l, show that

[ke] = 2EI

l3




6 3 −6 3

3 2 −3 1

−6 −3 6 −3

3 1 −3 2


 {Qe} = l

20




7q1+3q2

q1+2

3
q2

3q1+7q2

−2

3
q1−q2




9.16 The application of the principle of minimum potential energy for an elastic beam of flexural rigidity
EI leads to the finite element stiffness equation in the form

[ke]




v1

lθ1

v2

lθ2




=




F1

M1/l

F2

M2/l




+ {
Qe}

where (F1, M1) are the downward shearing force and counterclockwise bending moment to the left
of node 1, and (F2, M2) the corresponding quantities to the right of node 2. Considering the propped
cantilener of Fig. C, construct the global stiffness matrix and load vector, and determine the central
deflection and support reactions in terms of the peak intensity of loading equal to q0.

Answer: v2 = 0.088q0l4/EI , R1 = 0.06q0l, R2 = 0.94q0l, M0 = 0.189q0l2.

21 3 x

q0

M0

R1 R2
l l

Figure C

9.17 The elastic torsion of a prismatic bar of shear modulus G and specific angle of twist θ (Sec. 3.6)
is governed by the finite element stiffness equation

[ke]{φe} = {Fe} Fe
i = 2Gθ

∫∫
Ni dx dy

where {φe} is the vector representing the nodal values of the stress function φ, defined by the interpolation
functions Ni. The coefficients ke

ij of the stiffness matrix [ke] are similar to Sij defined in Prob. 9.8.
Assuming the cross section to be a square of sides 2a, and using linear triangular elements to subdivide
the cross section as shown in Fig. D, set up the global stiffness equation for the finite element mesh.
Using the boundary conditions φ4 = φ5 = φ6 = 0, evaluate the remaining nodal values of φ, and compute
the torque.

Answer: φ1 = 0.583Gθa2, φ2 = 0.417Gθa2, φ3 = 0.375Gθa2, T = 1.944Gθa4.
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1

1

1

3

33

3

4

4

11

y

2

a

a

x
2

2

2

Figure D

9.18 Figure E shows one quarter of the cross section of a primatic bar subdivided into four equal
square elements. Adopting the result of Prob. 9.9 for the stiffness matrix of each element, and using
the direct stiffness method for the assembly of coefficients, obtain the condensed matrix equation for
elastic torsion of the bar in the form


4 −1 −1 −2

−1 8 −2 −2
−1 −2 8 −2
−2 −2 8 16







φ1
φ2
φ4
φ5


 = 3

4
Gθa2




1
2
2
4




Evaluate the unknown stress functions using the Gaussian elimination method, and compute the
corresponding twisting moment.

Answer: φ1 = 0.621Gθa2, φ2 = φ4 = 0.482Gθa2, φ5 = 0.386Gθa2, T = 2.047Gθa4.

3 4

2

4
5

6

32
1

7 8 9

a

a
x

1

Figure E

9.19 Figure F shows a rectangular element of sides 2a and 2αa, formed by the combination of four
linear triangular elements. Considering the elements 1 and 4 only, express the corresponding strain rate
matrices in terms of the parameters a and α. Assuming an isotropic elastic material with ν = 0.3, prove
that the plane strain element stiffness matrix can be written in the form

[ke] = 0.1wE

2.08α




7 + 2α2 ±5α ∓(7 − 2α2) α −(7λ2 + 2λ1α
2) (2λ2 − 3λ1)α

2 + 7α2 −α ∓(2 − 7α2) (3λ2 − 2λ1)α −(2λ2 + 7λ1α
2)

7 + 2α2 ∓5α −(7λ2 + 2λ1α
2) −(2λ2 − 3λ1)α

2 + 7α2 −(3λ2 − 2λ1)α −(2λ2 + 7λ1α
2)

7λ2
2 + 2λ2

1α
2 0

symmetric 2λ2
2 + 7λ2

1α
2
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where w is the width of the element. The upper sign holds for element 1 and the lower sign for element
4. Also, λ1 = 2 and λ2 = 0 for element 1, and λ2 = 2 and λ1 = 0 for element 4.

4

2

2

3
3

3
5

4

1
1

21
1

2

3

3

1

2

2aa

2a

y

x Figure F

9.20 Combining the four triangular elements shown in Fig. F, with α = 2, using the direct stiffness
method for the assembly, and eliminating the internal degrees of freedom corresponding to the central
node 5 following the static condensation procedure, obtain the 8 × 8 stiffness matrix for the rectangular
element in the form

[k] = wE

4.16




2.083 1.000 −0.483 0.200 −0.917 −1.000 −0.683 −0.200
4.169 −0.200 1.433 −1.000 −1.833 0.200 −3.767

2.083 −1.000 −0.688 0.200 −0.917 1.000
4.167 −0.20 −3.767 1.00 −1.833

2.083 1.000 −0.483 0.200
4.167 −0.200 1.433

2.083 −1.000
Symmetric 4.167




Note that the associate nodal velocity vector has eight degrees of freedom with two components at each
corner node.
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TableA-1 Slipline field (10◦ equiangular) defined by circular arcs of equal radii
(Fig. 6.14)

(α0, β0) x/a y/a
∫ α

0

x

a
dt

∫ α

0

y

a
dt P/2ka Q/2ka M/ka2

(10, 10) 1.38332 0.00000 0.22220 0.01713 0.50000 0.76067 1.6298
(10, 20) 1.57730 0.23137 0.24971 0.05618 0.50455 0.96049 2.2247
(10, 30) 1.73236 0.50019 0.27033 0.10005 0.59173 1.18900 3.0534
(10, 40) 1.84131 0.79987 0.28323 0.14751 0.77302 1.42368 4.1338
(10, 50) 1.89806 1.12245 0.28777 0.19721 1.05457 1.63865 5.4850
(10, 60) 1.89793 1.45876 0.28357 0.24768 1.43630 1.80580 7.1114
(10, 70) 1.83785 1.79872 0.27051 0.29736 1.91132 1.89626 9.0036
(10, 80) 1.71656 2.13158 0.24872 0.34470 2.46558 1.88186 11.1382
(10, 90) 1.53472 2.44626 0.21864 0.38817 3.07791 1.73683 13.4778
(20, 20) 1.85262 0.00000 0.54940 0.07724 0.50000 1.24397 3.2065
(20, 30) 2.09558 0.28998 0.60453 0.17015 0.60710 1.57921 4.5695
(20, 40) 2.29410 0.63439 0.64393 0.27405 0.83920 1.94125 6.3825
(20, 50) 2.43655 1.02661 0.66542 0.38628 1.21358 2.29807 8.7025
(20, 60) 2.51224 1.45763 0.66731 0.50374 1.74042 2.61163 11.5740
(20, 70) 2.51193 1.91614 0.64841 0.62301 2.42109 2.83925 15.0264
(20, 80) 2.42827 2.38877 0.60814 0.74039 3.24668 2.93561 19.0680
(20, 90) 2.25626 2.86043 0.54660 0.85206 4.19690 2.85490 23.6943
(30, 30) 2.44045 0.00000 1.00076 0.19663 0.50000 2.05487 6.7079
(30, 40) 2.75042 0.37015 1.08423 0.36321 0.76609 2.59096 9.6027
(30, 50) 3.00816 0.81758 1.14022 0.54898 1.22398 3.15118 13.3881
(30, 60) 3.19622 1.33579 1.16458 0.74947 1.89971 3.68814 18.1924
(30, 70) 3.29774 1.91460 1.15386 0.95930 2.80944 4.14448 24.1329
(30, 80) 3.29717 2.54004 1.10551 1.17239 3.95646 4.45459 31.3103
(30, 90) 3.18117 3.19459 1.01807 1.38201 5.32851 4.54726 39.8045
(40, 40) 3.19044 0.00000 1.60306 0.39709 0.50000 3.35163 14.0424
(40, 50) 3.59178 0.47948 1.71618 0.66415 1.01224 4.18605 19.9700
(40, 60) 3.93022 1.06725 1.78593 0.96148 1.81912 5.03998 27.6681
(40, 70) 4.18047 1.75724 1.80519 1.28227 2.95989 5.84212 37.4273
(40, 80) 4.31724 2.53793 1.76789 1.61812 4.45967 6.50515 49.5398
(40, 90) 4.31632 3.39212 1.66929 1.95924 6.32460 6.92807 64.2927
(50, 50) 4.16156 0.00000 2.39319 0.70812 0.50000 5.37010 28.9370
(50, 60) 4.68742 0.62844 2.53785 1.11209 1.39095 6.64714 40.8364
(50, 70) 5.13587 1.40755 2.61736 1.56150 2.73267 7.93540 57.2701
(50, 80) 5.47104 2.33214 2.62031 2.04645 4.58426 9.12701 75.8899
(50, 90) 5.65607 3.38925 2.53668 2.55444 6.98430 10.08908 100.3936
(60, 60) 5.43401 0.00000 3.42154 1.16981 0.50000 8.45941 58.6747
(60, 70) 6.12961 0.83152 3.60020 1.76042 1.96931 10.39168 82.3086
(60, 80) 6.72822 1.87186 3.68369 2.41738 4.12428 12.32054 113.0190
(60, 90) 7.17956 3.11739 3.65436 3.12667 7.05361 14.08301 152.2482
(70, 70) 7.11722 0.00000 4.75666 1.83668 0.50000 13.13398 117.5106
(70, 80) 8.04448 1.10870 4.97238 2.68222 2.84634 16.03367 164.1977
(70, 90) 8.84843 2.50624 5.05131 3.62287 6.22928 18.90505 225.0838
(80, 80) 9.36106 0.00000 6.49179 2.78427 0.50000 20.14922 233.4019
(80, 90) 10.60500 1.48762 6.74819 3.97780 4.16776 24.47367 325.4187
(90, 90) 12.37126 0.00000 8.75376 4.11483 0.50000 30.61170 461.3014

(Continued)
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Table A-1 (Continued)

(α0, β0) x/a y/a
∫ α

0

x

a
dt

∫ α

0

y

a
dt P/2ka Q/2ka

(10, 100) 1.29502 2.73171 0.18094 0.42630 3.72038 1.43947
(10, 110) 1.00217 2.99726 0.13658 0.45777 4.35902 0.97372
(10, 120) 0.66203 3.17302 0.08674 0.48140 4.95496 0.33066
(10, 130) 0.28553 3.31019 0.03281 0.49625 5.46591 −0.49023
(20, 100) 1.99362 3.31467 0.46455 0.95414 5.23957 2.55253
(20, 110) 1.64111 3.73423 0.36347 1.04287 6.33053 1.99299
(20, 120) 1.20279 4.10157 0.24551 1.11470 7.41432 1.14268
(20, 130) 0.68609 4.39947 0.11351 1.16645 8.42545 −0.01708
(30, 100) 2.93927 3.85743 0.89123 1.58103 6.89550 4.34905
(30, 110) 2.56471 4.50493 0.72601 0.76210 8.60800 3.78830
(30, 120) 2.05507 5.11128 0.52477 1.91789 10.39655 2.79975
(30, 130) 1.41283 5.64930 0.29127 2.04135 12.17195 1.32945
(40, 100) 4.15581 4.29688 1.50633 2.29465 8.53719 6.99978
(40, 110) 3.81735 5.22382 1.27788 2.61240 11.05235 6.60401
(40, 120) 3.28742 6.13958 0.98499 2.90000 13.79425 5.62541
(40, 130) 2.55846 7.00658 0.63106 3.14474 16.65451 3.95676
(50, 100) 5.65465 4.55761 2.35834 3.07055 9.94323 10.66669
(50, 110) 5.43276 5.80729 2.07965 3.57771 13.43582 10.68783
(50, 120) 4.96062 7.09980 1.69797 4.05709 17.39435 9.97060
(50, 130) 4.21463 8.38852 1.21406 4.48860 21.70310 8.33232
(60, 100) 7.43079 4.55369 3.49635 3.87017 10.81620 15.47748
(60, 110) 7.42864 6.15439 3.19645 4.62581 15.42909 16.26758
(60, 120) 7.12198 7.88039 2.74501 5.36790 20.85566 16.18914
(60, 130) 6.46450 9.67964 2.13681 6.06766 26.99456 14.96047
(70, 100) 9.45897 4.19164 4.96688 4.63926 10.78175 21.50263
(70, 110) 9.80113 6.14905 4.69470 5.70552 16.59299 23.52194
(70, 120) 9.79797 8.34567 4.21400 6.78956 23.69032 24.60446
(70, 130) 9.37403 10.73037 3.50902 7.85351 32.02063 24.34732
(80, 100) 11.69017 3.37440 6.81001 5.30685 9.39390 28.72855
(80, 110) 12.51924 5.66370 6.63786 6.74432 16.37699 32.54568
(80, 120) 12.98655 8.33838 6.19504 8.25363 25.25168 35.45737
(80, 130) 12.98195 11.35760 5.44967 9.78869 36.06112 36.95285
(90, 100) 14.04879 2.00646 9.05499 5.78509 6.14764 37.02934
(90, 110) 15.51978 4.56449 9.08124 7.64681 14.12631 43.31076
(90, 120) 16.64932 7.68420 8.77483 9.66259 24.73173 48.90600
(90, 130) 17.28909 11.34762 8.08135 11.78104 38.16630 53.13019
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TableA-2 Slipline field (15◦ equiangular) defined by circular arcs of equal radii
(Fig. 6.14)

(α◦, β◦) x/a y/a
∫ α

0

x

a
dt

∫ α

0

y

a
dt P/2ka Q/2ka −R/

√
2a

(15, 15) 1.60541 0.00000 0.37164 0.04090 0.50000 0.96895 1.34060
(15, 30) 1.91528 0.40491 0.42950 0.13968 0.61237 1.37230 1.70216
(15, 45) 2.12146 0.90445 0.46096 0.25365 0.96882 1.80840 2.08539
(15, 60) 2.19542 1.47161 0.46203 0.37572 1.60112 2.17596 2.49098
(15, 75) 2.11580 2.07087 0.43064 0.49775 2.50406 2.35742 2.91967
(15, 90) 1.87091 2.66013 0.36688 0.61106 3.62855 2.23167 3.37218
(15, 105) 1.46073 3.19343 0.27322 0.70704 4.87903 1.68941 3.84928
(15, 120) 0.89812 3.62413 0.15438 0.77778 6.11605 0.64970 4.35174
(15, 135) 0.20913 3.90864 0.01720 0.81665 7.16450 0.92401 4.88033
(30, 30) 2.44045 0.00000 1.00076 0.19663 0.50000 2.05487 1.89226
(30, 45) 2.88691 0.58452 1.11593 0.45396 0.96924 2.87076 2.41384
(30, 60) 3.19622 1.33579 1.16458 0.74947 1.89971 3.68814 2.98997
(30, 75) 3.31111 2.22250 1.13451 1.06585 3.35366 4.32217 3.62402
(30, 90) 3.18117 3.19459 1.01807 1.38201 5.32851 4.54726 4.31949
(30, 105) 2.76883 4.18467 0.81330 1.67427 7.73744 4.11828 5.08003
(30, 120) 2.05507 5.11128 0.52477 1.91789 10.39655 2.79975 5.90946
(30, 135) 1.04421 5.88403 0.16397 2.08889 13.02181 0.40114 6.81175
(45, 45) 3.64393 0.00000 1.97186 0.53657 0.50000 4.25200 2.77261
(45, 60) 4.30787 0.87046 2.14535 1.04635 1.65558 5.81401 3.54894
(45, 75) 4.78130 2.02238 2.18847 1.63077 3.68655 7.31428 4.43210
(45, 90) 4.96154 3.41994 2.07375 2.25687 6.71115 8.40663 5.43136
(45, 105) 4.75043 4.99259 1.78192 2.88235 10.73082 8.65837 6.55657
(45, 120) 4.06556 6.63459 1.30500 3.45755 15.58708 7.58567 7.81819
(45, 135) 2.85214 8.20819 0.64880 3.92844 20.92823 4.70737 9.22731
(60, 60) 5.43401 0.00000 3.42154 1.16981 0.50000 8.45942 4.17299
(60, 75) 6.44410 1.32557 3.65497 2.08138 2.95498 11.36579 5.35480
(60, 90) 7.17956 3.11739 3.65436 3.12667 7.05362 14.08300 6.72829
(60, 105) 7.46466 5.33563 3.36483 4.24800 13.01725 15.96404 8.31425
(60, 120) 7.12198 7.88039 2.74501 5.36790 20.85566 16.18914 10.13510
(60, 135) 5.99181 10.58699 1.77370 6.39201 30.27937 13.82527 12.21503
(75, 75) 8.15773 0.00000 5.56721 2.26986 0.50000 16.28967 6.40387
(75, 90) 9.72015 2.05192 5.86139 3.82252 5.37585 21.60466 8.23274
(75, 105) 10.87560 4.86968 5.75159 5.60559 13.29815 26.48027 10.39236
(75, 120) 11.32964 8.41166 5.13494 7.52168 24.67692 29.71845 12.92463
(75, 135) 10.77297 12.53548 3.92972 9.43481 39.54042 29.78754 15.87547
(90, 90) 12.37126 0.00000 8.75376 4.11483 0.50000 30.61170 9.96930
(90, 105) 14.81817 3.21530 9.10614 6.69403 9.82539 40.21826 12.83452
(90, 120) 16.64932 7.68420 8.77483 9.66259 24.73173 48.90601 16.25925
(90, 135) 17.37652 13.36870 7.57409 12.85879 45.97204 54.47900 20.32313
(105, 105) 18.97064 0.00000 13.52919 7.15272 0.50000 56.50182 15.68904
(105, 120) 22.83928 5.08568 13.92919 11.38185 17.91480 73.71759 20.22026
(105, 135) 25.76136 12.22120 13.18442 16.26217 45.45436 89.11389 25.68809
(120, 120) 29.40511 0.00000 20.76709 12.10816 0.50000 102.90486 24.89870
(120, 135) 35.56721 8.10339 21.18790 18.99868 32.49360 133.55544 32.11773
(135, 135) 46.02632 0.00000 31.86576 20.15697 0.50000 185.52815 39.77868
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Table A-3 Some mathematical functions associated with slipline fields (10◦
equiangular net)

(α◦, β◦) I0(2
√
αβ) I1(2

√
αβ) F1(α,β) F2(α,β) L(α,β) N(α,β)

(10, 10) 1.030694 0.177205 0.176313 0.015347 0.015308 0.000890
(10, 20) 1.061858 0.254422 0.179005 0.015503 0.015464 0.000897
(10, 30) 1.093494 0.316325 0.181725 0.015661 0.015622 0.000904
(10, 40) 1.125609 0.370768 0.184472 0.015819 0.015780 0.000911
(10, 50) 1.158207 0.420752 0.187247 0.015979 0.015939 0.000918
(10, 60) 1.191293 0.467794 0.190050 0.016140 0.016100 0.000925
(10, 70) 1.224872 0.512784 0.192881 0.016302 0.016262 0.000932
(10, 80) 1.258949 0.556297 0.195741 0.016466 0.016425 0.000939
(10, 90) 1.293528 0.598728 0.198629 0.016631 0.016590 0.000946
(20, 20) 1.125609 0.370768 0.363505 0.062805 0.062176 0.007219
(20, 30) 1.191293 0.467794 0.374578 0.064082 0.063446 0.007330
(20, 40) 1.258949 0.556297 0.385875 0.065379 0.064735 0.007442
(20, 50) 1.328616 0.640362 0.397400 0.066695 0.066043 0.007555
(20, 60) 1.400334 0.722044 0.409157 0.068032 0.067372 0.007669
(20, 70) 1.474145 0.802549 0.421149 0.069386 0.068720 0.007785
(20, 80) 1.550091 0.882657 0.433380 0.070766 0.070089 0.007903
(20, 90) 1.628212 0.962911 0.445852 0.072163 0.071479 0.008021
(30, 30) 1.293528 0.598728 0.573459 0.146764 0.143516 0.024930
(30, 40) 1.400334 0.722044 0.599462 0.151225 0.147917 0.025502
(30, 50) 1.511843 0.842615 0.626252 0.155787 0.152418 0.026085
(30, 60) 1.628212 0.962911 0.653848 0.160453 0.157023 0.026678
(30, 70) 1.749569 1.084404 0.682267 0.165224 0.161731 0.027282
(30, 80) 1.876067 1.208073 0.711528 0.170102 0.166547 0.027897
(30, 90) 2.007856 1.334622 0.741650 0.175090 0.171470 0.028523
(40, 40) 1.550091 0.882657 0.820172 0.275045 0.264483 0.061021
(40, 50) 1.708553 1.043706 0.869138 0.286116 0.275295 0.062886
(40, 60) 1.876067 1.208073 0.920065 0.297521 0.286437 0.064798
(40, 70) 2.052987 1.377542 0.973012 0.309269 0.297916 0.066756
(40, 80) 2.239681 1.553356 1.028041 0.321369 0.309742 0.068761
(40, 90) 2.436525 1.736469 1.085212 0.333828 0.321921 0.070815
(50, 50) 1.919401 1.249907 1.121081 0.459701 0.432953 0.124209
(50, 60) 2.145089 1.464591 1.203301 0.482606 0.455043 0.128947
(50, 70) 2.386341 1.689962 1.289593 0.506373 0.477973 0.133831
(50, 80) 2.643907 1.927660 1.380110 0.531026 0.501768 0.138862
(50, 90) 2.918564 2.179034 1.475009 0.556591 0.526454 0.144045
(60, 60) 2.436525 1.736469 1.498741 0.718262 0.660265 0.225772
(60, 70) 2.751674 2.026500 1.627776 0.760679 0.700564 0.236078
(60, 80) 3.091896 2.336920 1.764379 0.804992 0.742694 0.246760
(60, 90) 3.458608 2.669688 1.908886 0.851269 0.786722 0.257828
(70, 70) 3.151136 2.390779 1.983040 1.075568 0.962297 0.380655
(70, 80) 3.586986 2.785893 2.177079 1.148565 1.030463 0.400842
(70, 90) 4.061601 3.214701 2.384184 1.225329 1.102267 0.421883
(80, 80) 4.132711 3.278872 2.614174 1.566356 1.360992 0.608956
(80, 90) 4.732810 3.819994 2.897875 1.685740 1.470452 0.645659
(90, 90) 5.477845 4.491456 3.446708 2.238922 1.886494 0.937955
(10, 100) 1.328616 0.640362 0.201546 0.016796 0.016755 0.000953

(Continued)
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Table A-3 (Continued)

(α◦, β◦) I0(2
√
αβ) I1(2

√
αβ) F1(α,β) F2(α,β) L(α,β) N(α,β)

(10, 110) 1.364216 0.681412 0.204492 0.016964 0.016922 0.000960
(10, 120) 1.400334 0.722044 0.207467 0.017132 0.017091 0.000967
(10, 130) 1.436976 0.762388 0.210472 0.017302 0.017260 0.000974
(20, 100) 1.708553 1.043706 0.458570 0.073582 0.072890 0.008141
(20, 110) 1.791156 1.125346 0.471538 0.075022 0.074321 0.008263
(20, 120) 1.876067 1.208073 0.484759 0.076483 0.075774 0.008386
(20, 130) 1.963329 1.292083 0.498237 0.077966 0.077248 0.008511
(30, 100) 2.145089 1.464591 0.772652 0.180189 0.176504 0.029161
(30, 110) 2.287926 1.598418 0.804554 0.185401 0.181650 0.029810
(30, 120) 2.436525 1.736469 0.837376 0.190728 0.186910 0.030470
(30, 130) 2.591052 1.879067 0.871138 0.196173 0.192287 0.031143
(40, 100) 2.643907 1.927660 1.144590 0.346656 0.334464 0.072918
(40, 110) 2.862227 2.127607 1.206240 0.359861 0.347377 0.075071
(40, 120) 3.091896 2.336920 1.270228 0.373452 0.360671 0.077275
(40, 130) 3.333337 2.556168 1.336622 0.387438 0.374355 0.079532
(50, 100) 3.211118 2.445268 1.574451 0.583097 0.552058 0.149384
(50, 110) 3.522405 2.727451 1.678604 0.610571 0.578608 0.154881
(50, 120) 3.853290 3.026622 1.787639 0.639042 0.606131 0.160542
(50, 130) 4.204671 3.343795 1.901732 0.668539 0.634657 0.169349
(60, 100) 3.853290 3.026622 2.061646 0.899580 0.832716 0.269295
(60, 110) 4.277487 3.409478 2.223021 0.949997 0.880747 0.281172
(60, 120) 4.732810 3.819994 2.393384 1.002595 0.930888 0.293472
(60, 130) 5.220936 4.259915 2.573124 1.057451 0.983124 0.306207
(70, 100) 4.577475 3.679975 2.605027 1.306017 1.177799 0.443809
(70, 110) 5.137230 4.184478 2.840308 1.390792 1.257238 0.466650
(70, 120) 5.743616 4.731017 3.090753 1.479822 1.340746 0.490439
(70, 130) 6.399521 5.322469 3.357121 1.573280 1.428491 0.515208
(80, 100) 5.391235 4.413396 3.203014 1.812083 1.586472 0.684128
(80, 110) 6.112165 5.063302 3.530835 1.945713 1.709365 0.724436
(80, 120) 6.900012 5.774074 3.882639 2.086971 1.839459 0.766654
(80, 130) 7.759435 6.550255 4.259789 2.236212 1.977094 0.810860
(90, 100) 6.302675 5.235114 3.853727 2.427148 2.055662 1.001117
(90, 110) 7.213649 6.057226 4.294650 2.627550 2.236148 1.067679
(90, 120) 8.217512 6.964348 4.771660 2.840770 2.428559 1.137794
(90, 130) 9.321431 7.963378 5.287051 3.067476 2.633529 1.211621
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Table A-4 Some mathematical functions associated with slipline fields (15◦
equiangular net)

(α◦, β◦) I0(2
√
αβ) I1(2

√
αβ) F1(α,β) F2(α,β) L(α,β) N(α,β)

(15, 15) 1.069722 0.270874 0.267842 0.034861 0.034664 0.003021
(15, 30) 1.141848 0.396203 0.277073 0.035662 0.035461 0.003074
(15, 45) 1.216431 0.501694 0.286516 0.036476 0.036273 0.003126
(15, 60) 1.293528 0.598728 0.296173 0.037304 0.037098 0.003180
(15, 75) 1.373197 0.691604 0.306050 0.038147 0.037938 0.003234
(15, 90) 1.455494 0.782485 0.316148 0.039003 0.038792 0.003289
(15, 105) 1.540479 0.872645 0.326473 0.039875 0.039660 0.003345
(15, 120) 1.628212 0.962911 0.377028 0.040761 0.040543 0.003401
(15, 135) 1.718754 1.053859 0.347816 0.041661 0.041441 0.003459
(30, 30) 1.293528 0.598728 0.573459 0.146764 0.143516 0.024930
(30, 45) 1.455494 0.782485 0.612758 0.153493 0.150155 0.025792
(30, 60) 1.628212 0.962911 0.653848 0.160453 0.157023 0.026678
(30, 75) 1.812166 1.145918 0.696791 0.167649 0.164126 0.027588
(30, 90) 2.007856 1.334622 0.741650 0.175090 0.171470 0.028523
(30, 105) 2.215797 1.530998 0.788490 0.182781 0.179063 0.029484
(30, 120) 2.436525 1.736469 0.837376 0.190728 0.186910 0.030470
(30, 135) 2.670591 1.952162 0.888378 0.198940 0.195019 0.031483
(45, 45) 1.718754 1.053859 0.962585 0.359377 0.342163 0.088595
(45, 60) 2.007856 1.334622 1.059851 0.383882 0.365955 0.093193
(45, 75) 2.324529 1.632581 1.163695 0.409641 0.390976 0.097982
(45, 90) 2.670591 1.952162 1.274453 0.436705 0.417276 0.102968
(45, 105) 3.047949 2.296934 1.392472 0.465126 0.444908 0.108158
(45, 120) 3.458608 2.669688 1.518115 0.494960 0.473925 0.113557
(45, 135) 3.904669 3.073026 1.651761 0.526264 0.504385 0.119174
(60, 60) 2.436525 1.736469 1.498741 0.718262 0.660265 0.225772
(60, 75) 2.918564 2.179034 1.695111 0.782595 0.721396 0.241371
(60, 90) 3.458608 2.669688 1.908886 0.851269 0.786722 0.257828
(60, 105) 4.061601 3.214701 2.141233 0.924520 0.856473 0.275182
(60, 120) 4.732810 3.819994 2.393384 1.002595 0.930888 0.293472
(60, 135) 5.477845 4.491456 2.666634 1.085750 1.010220 0.312742
(75, 75) 3.603255 2.800611 2.277236 1.301627 1.147899 0.484119
(75, 90) 4.388336 3.509446 2.636430 1.444326 1.280029 0.525736
(75, 105) 5.284345 4.317061 3.034519 1.598892 1.423423 0.570198
(75, 120) 6.302675 5.235114 3.474713 1.766121 1.578846 0.617667
(75, 135) 7.455634 6.275774 3.960436 1.946854 1.747109 0.668313
(90, 90) 5.477845 4.491456 3.446708 2.238922 1.886494 0.937955
(90, 105) 6.746982 5.635961 4.069817 2.525787 2.144453 1.033963
(90, 120) 8.217512 6.964348 4.771660 2.840770 2.428559 1.137794
(90, 135) 9.913270 8.499616 5.559888 3.186103 2.740929 1.249978
(105, 105) 8.483823 7.205212 5.243406 3.741912 3.006923 1.705405
(105, 120) 10.533010 9.061593 6.292744 4.284116 3.479366 1.906840
(105, 135) 12.936870 11.245519 7.491859 4.887019 4.006998 2.127252
(120, 120) 13.311905 11.586790 8.046604 6.155953 4.719110 2.976105
(120, 135) 16.624721 14.606950 9.784528 7.140300 5.549216 3.372169
(135, 135) 21.088695 18.689985 12.468811 10.044348 7.360324 5.056309
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Table A-5 Field defined by identical logarithmic spirals (Fig. 6.15)

(α◦, β◦) x/b y/b −R/
√

2b −S/
√

2b G(α,β) H(α,β)

(10, 10) 0.35263 0.00000 1.03069 1.03069 0.16267 0.19352
(10, 20) 0.50848 0.17798 1.20089 0.92283 0.16522 0.19639
(10, 30) 0.61576 0.37087 1.35388 0.83311 0.16780 0.19928
(10, 40) 0.68301 0.55487 1.49258 0.75864 0.17040 0.20220
(10, 50) 0.71435 0.73129 1.61944 0.69698 0.17303 0.20515
(10, 60) 0.71453 0.89663 1.73650 0.64609 0.17568 0.20813
(10, 70) 0.68794 1.04826 1.84550 0.60425 0.17837 0.21113
(10, 80) 0.63861 1.13494 1.94786 0.57003 0.18108 0.21417
(20, 20) 0.72701 0.00000 1.12561 1.12561 0.31405 0.44219
(20, 30) 0.90062 0.20656 1.31665 1.06594 0.32405 0.45478
(20, 40) 1.02915 0.42887 1.49846 1.01944 0.33426 0.46762
(20, 50) 1.12886 0.63435 1.64224 1.01499 0.34468 0.48070
(20, 60) 1.15529 0.89624 1.84251 0.95815 0.35532 0.49404
(20, 70) 1.15536 1.13008 2.00807 0.94022 0.36617 0.50764
(20, 80) 1.11541 1.35687 2.17111 0.92907 0.37724 0.52150
(30, 30) 1.14692 0.00000 1.29353 1.29353 0.47130 0.77806
(30, 40) 1.35089 0.24303 1.51817 1.28250 0.49389 0.80981
(30, 50) 1.50884 0.51659 1.74181 1.28189 0.51718 0.84247
(30, 60) 1.61718 0.81435 1.96615 1.29027 0.54120 0.87607
(30, 70) 1.67268 1.12942 2.19265 1.30648 0.56595 0.91061
(30, 80) 1.67259 1.45420 2.42260 1.32954 0.59145 0.94613
(40, 40) 1.64034 0.00000 1.55009 1.55009 0.65129 1.24500
(40, 50) 1.88910 0.29670 1.50729 1.59289 0.69250 1.30941
(40, 60) 2.08842 0.64230 2.10668 1.64545 0.73543 1.37623
(40, 70) 2.22947 1.03049 2.39910 1.70687 0.78012 1.44551
(40, 80) 2.30375 1.45190 2.70296 1.77640 0.82663 1.51734
(50, 50) 2.24216 0.00000 1.91940 1.91940 0.87241 1.90419
(50, 60) 2.55424 0.37328 2.26362 2.02660 0.93998 2.02096
(50, 70) 2.81097 0.81797 2.62748 2.14520 1.01103 2.14301
(50, 80) 2.99678 1.32986 3.01304 2.27478 1.08568 2.27052
(60, 60) 2.99748 0.00000 2.43653 2.43653 1.15669 2.84200
(60, 70) 3.39779 0.47813 2.87802 2.62533 1.26095 3.04001
(60, 80) 3.73320 1.06053 3.35386 2.82994 1.37154 3.24840
(70, 70) 3.96608 0.00000 3.15114 3.15114 1.53214 4.18084
(70, 80) 4.48774 0.62335 3.72662 3.44735 1.68720 4.50248
(80, 80) 5.22835 0.00000 4.13271 4.13271 2.03572 6.09475
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Table A-6 Field defined by circular arcs of unequal radii (Fig. 6.16)

(α◦, β◦) x/a y/a P/2ka Q/2ka (α◦, β◦) x/a y/a P/2ka Q/2ka

(15, 0) 0.00000 0.00000 0.00000 1.00000 (60, 0) 0.00000 0.00000 0.00000 1.00000
(15, 15) 0.53569 −0.06972 −0.29226 1.17669 (60, 15) 0.36610 −0.47161 −0.73922 1.20022
(15, 30) 1.10787 0.00644 −0.52513 1.58964 (60, 30) 0.97205 −0.93176 −1.70361 1.84833
(15, 45) 1.67622 0.24277 −0.58917 2.22802 (60, 45) 1.84876 −1.29022 −2.74860 3.16706
(15, 60) 2.19542 0.64228 −0.37461 3.03787 (60, 60) 2.99748 −1.43653 −3.60430 5.35509
(15, 75) 2.61842 1.19504 0.21295 3.92072 (60, 75) 4.38036 −1.24892 −3.86964 8.53059
(15, 90) 2.90010 1.87752 1.23596 4.73775 (60, 90) 5.91362 −0.60716 −3.02902 12.66685
(30, 0) 0.00000 0.00000 0.00000 1.00000 (75, 0) 0.00000 0.00000 0.00000 1.00000
(30, 15) 0.51680 −0.21232 −0.39503 1.23480 (75, 15) 0.23998 −0.56824 −0.94076 1.06631
(30, 30) 1.14692 −0.29353 −0.78112 1.77375 (75, 30) 0.74832 −1.22250 −2.30940 1.61106

λ
=

0

(30, 45) 1.85772 −0.19809 −1.01977 2.66016 (75, 45) 1.60592 −1.87321 −4.01449 2.97792
(30, 60) 2.60026 0.11161 −0.94010 3.88423 (75, 60) 2.86960 −2.38931 −5.79017 5.54115
(30, 75) 3.31111 0.65971 −0.35750 5.36645 (75, 75) 4.55447 −2.60326 −7.15606 9.63359
(30, 90) 3.91609 1.45181 0.90053 6.94728 (75, 90) 6.61712 −2.32267 −7.40313 15.45114
(45, 0) 0.00000 0.00000 0.00000 1.00000 (90, 0) 0.00000 0.00000 0.00000 1.00000
(45, 15) 0.45978 −0.34969 −0.54917 1.25036 (90, 15) 0.08830 −0.63094 −1.12283 0.83892
(45, 30) 1.10430 −0.61371 −1.17984 1.88174 (90, 30) 0.43838 −1.45967 −2.92853 1.11929
(45, 45) 1.92517 −0.71875 −1.73723 3.01478 (90, 45) 1.18475 −2.41994 −5.44035 2.31010
(45, 60) 2.88811 −0.58866 −1.99136 4.72096 (90, 60) 2.45502 −3.38333 −8.46974 5.00032
(45, 75) 3.93047 −0.15299 −1.64978 6.98632 (90, 75) 4.34494 −4.15494 −11.52931 9.82565
(45, 90) 4.96154 0.64316 −0.38536 9.67740 (90, 90) 6.89342 −4.47785 −13.76240 17.34921

(15, 0) 0.51764 −0.13397 0.10566 1.00154 (60, 0) 0.36603 −0.50000 0.22116 1.14486
(15, 15) 1.07055 −0.06038 −0.00311 1.25583 (69, 15) 0.94596 −0.94036 −0.87402 1.53497
(15, 30) 1.61975 0.16780 −0.12478 1.72892 (60, 30) 1.78615 −1.28387 −1.78549 2.57865
(15, 45) 2.12146 0.55404 −0.01851 2.38013 (60, 45) 2.88810 −1.42419 −2.56956 4.38915
(15, 60) 2.53021 1.08818 0.40941 3.12623 (60, 60) 4.21573 −1.24406 −2.87142 7.09025

λ
=

15
◦

(15, 75) 2.80240 1.74766 1.22530 3.84447 (60, 75) 5.68870 −0.62752 −2.22520 10.67829
(15, 90) 2.90010 2.49696 2.45301 4.38121 (60, 90) 7.17955 0.52480 −0.09213 14.96097
(30, 0) 0.50000 −0.26795 0.17985 1.19481 (75, 0) 0.25882 −0.58226 0.25323 1.15793
(30, 15) 1.10786 −0.34629 −0.17210 1.42162 (75, 15) 0.74260 −1.20484 −1.35561 1.37248
(30, 30) 1.79368 −0.25420 −0.42647 2.09732 (75, 30) 1.56068 −1.82548 −2.81960 2.46235
(30, 45) 2.51020 0.04466 −0.42782 3.09092 (75, 45) 2.76818 −2.31861 −4.38714 4.59551

(Continued)
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Table A-6 (Continued)

(α◦, β◦) x/a y/a P/2ka Q/2ka (α◦, β◦) x/a y/a P/2ka Q/2ka

(30, 60) 3.19622 0.57361 −0.00403 4.34178 (75, 60) 4.38034 −2.52328 −5.64044 8.08936
(30, 75) 3.78013 1.33811 1.01001 5.71461 (75, 75) 6.35608 −2.25448 −5.94732 13.14459
(30, 90) 5.18510 2.32176 2.74336 6.99683 (75, 90) 8.58433 −1.32087 −4.47853 19.74038
(45, 0) 0.44829 −0.39279 0.20810 1.11280 (90, 0) 0.13397 −0.63397 0.30211 1.15110
(45, 15) 1.06800 −0.64664 −0.46731 1.53345 (90, 15) 0.46501 −1.41740 −1.85502 1.00451

λ
=

15
◦

(45, 30) 1.85772 −0.74768 −0.97710 2.41680 (90, 30) 1.17332 −2.32856 −3.99966 1.94970
(45, 45) 2.78454 −0.62245 −1.25448 3.81639 (90, 45) 2.38194 −3.24510 −6.64192 4.19304
(45, 60) 3.78819 −0.20295 −1.03537 5.73488 (90, 60) 4.18430 −3.98066 −9.36609 8.32158
(45, 75) 4.78129 0.56387 −0.01825 8.06687 (90, 75) 6.61710 −4.28891 −11.41745 14.86854
(45, 90) 5.65272 1.70637 2.09671 10.57332 (90, 90) 9.63232 −3.87792 −11.66858 24.16340

(15, 0) 0.96593 −0.24118 0.51858 0.87635 (60, 0) 0.86603 −1.00000 0.17121 1.20345
(15, 15) 1.46209 −0.03486 0.28688 1.17980 (60, 15) 1.61554 −1.30639 −0.82347 1.89193
(15, 30) 1.91527 0.31385 0.29157 1.64937 (60, 30) 2.60025 −1.43175 −1.49124 3.25207
(15, 45) 2.28442 0.79623 0.55175 2.22654 (60, 45) 3.78819 −1.27055 −1.80346 5.35800
(15, 60) 2.53021 1.39173 1.13257 2.81075 (60, 60) 5.10756 −0.71826 −1.36914 8.22650
(15, 75) 2.61842 2.06824 2.06390 3.27227 (60, 75) 6.44408 0.31481 0.27278 11.71603
(15, 90) 2.52339 2.78342 3.32876 3.46393 (60, 90) 7.64291 1.88807 3.59836 15.47931
(30, 0) 1.00000 −0.50000 0.36603 1.02360 (75, 0) 0.70711 −1.20711 0.14223 1.22379
(30, 15) 1.61974 −0.41678 0.11437 1.47195 (75, 15) 1.42920 −1.75484 −1.56180 1.84506
(30, 30) 2.26714 −0.14676 0.04245 2.20022 (75, 30) 2.49873 −2.19151 −2.83582 3.45470

λ
=

30
◦

(30, 45) 2.88691 0.33111 0.30021 3.16801 (75, 45) 3.93045 −2.37320 −3.90108 6.18271
(30, 60) 3.41436 1.02169 1.03541 4.27001 (75, 60) 5.68869 −2.13393 −4.23667 10.22130
(30, 75) 3.78012 1.91013 2.36838 5.33237 (75, 75) 7.67496 −1.30163 −3.14502 15.58088
(30, 90) 3.91609 2.95966 4.36411 6.11838 (75, 90) 9.72011 0.28034 0.19889 21.99270
(45, 0) 0.96593 −0.75882 0.24755 1.13517 (90, 0) 0.50000 −1.36603 0.16258 1.19481
(45, 15) 1.67621 −0.84969 −0.25488 1.73769 (90, 15) 1.11749 −2.16043 −2.40670 1.51481
(45, 30) 2.51020 −0.73700 −0.53399 2.77881 (90, 30) 2.17724 −2.96359 −4.51208 3.20442
(45, 45) 2.31364 −0.35938 −0.43561 4.26924 (90, 45) 3.76433 −3.61113 −6.74104 6.42451
(45, 60) 4.30786 0.33111 0.29950 6.13496 (90, 60) 5.91360 −3.88332 −8.48174 11.64602
(45, 75) 5.09271 1.36011 1.93497 8.18691 (90, 75) 8.58433 −3.51915 −8.79912 19.17994
(45, 90) 5.65272 2.72274 4.69419 10.10818 (90, 90) 11.63734 −2.23892 −6.44819 29.01780
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TableA-7 Unsymmetrical field defined by circular arcs of equal radii (Fig. 6.17)

(α◦, β◦) x/a y/a R/
√

2a −S/
√

2a F∗
1 (α,β) F∗

2 (α,β)

(0, 0) 1.00000 0.00000 1.00000 1.00000 0.00000 0.00000
(0, 10) 0.81116 0.15846 0.82547 1.00000 0.00000 0.00000
(0, 20) 0.59767 0.28171 0.65093 1.00000 0.00000 0.00000
(0, 30) 0.36603 0.36603 0.47640 1.00000 0.00000 0.00000
(0, 40) 0.12326 0.40883 0.30187 1.00000 0.00000 0.00000
(0, 50) −0.12326 0.40883 0.12734 1.00000 0.00000 0.00000
(10, 0) 1.15846 0.18884 1.00000 1.17453 0.17365 0.01519
(10, 10) 0.91129 0.33168 0.79788 1.14166 0.17101 0.01504
(10, 20) 0.65062 0.42668 0.60146 1.10927 0.16840 0.01489
(10, 30) 0.38523 0.47359 0.41065 1.07736 0.16581 0.01473
(10, 40) 0.12353 0.47370 0.22536 1.04593 0.16326 0.01458
(10, 50) −0.12664 0.42970 0.04552 1.01497 0.16072 0.01444
(20, 0) 1.28171 0.40233 1.00000 1.34907 0.34202 0.06031
(20, 10) 0.97747 0.51332 0.77073 1.27854 0.33160 0.05909
(20, 20) 0.67551 0.56682 0.55359 1.21004 0.32139 0.05789
(20, 30) 0.38546 0.56706 0.34823 1.14354 0.31139 0.05670
(20, 40) 0.11568 0.51972 0.15431 1.17898 0.30160 0.05554
(30, 0) 1.36603 0.63397 1.00000 1.52360 0.50000 0.13397
(30, 10) 1.01002 0.69705 0.74400 1.41072 0.47697 0.12990
(30, 20) 0.67567 0.69755 0.50729 1.30260 0.45465 0.12592
(30, 30) 0.37204 0.64439 0.28904 1.19910 0.43301 0.12204
(30, 40) 0.10570 0.54780 0.08846 1.10009 0.41205 0.11824
(40, 0) 1.40883 0.87674 1.00000 1.69813 0.64279 0.23396
(40, 10) 1.01011 0.87732 0.71770 1.53827 0.60279 0.22444
(40, 20) 0.65508 0.81525 0.46253 1.38721 0.46253 0.21522
(40, 30) 0.35024 0.70488 0.23298 1.24461 0.52765 0.20628
(40, 40) 0.09879 0.56024 0.02761 1.11015 0.49240 0.19762
(50, 0) 1.40883 1.12325 1.00000 1.87266 0.76604 0.35721
(50, 10) 0.98003 1.04842 0.69182 1.66127 0.70530 0.33896
(50, 20) 0.68396 0.89344 0.41928 1.46414 0.64769 0.32140
(50, 30) 0.32499 0.74898 0.17995 1.28061 0.59307 0.30452
(60, 0) 1.36603 1.36602 1.00000 2.04720 0.86603 0.50000
(60, 10) 0.92285 1.20575 0.66635 1.77978 0.78147 0.46910
(60, 20) 0.56915 1.01085 0.37750 1.53365 0.70220 0.43963
(60, 30) 0.26765 0.77826 0.12984 1.30760 0.62792 0.41154
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Table A-8 Bessel functions of the first kind and of integral orders

(α◦, β◦) J0(2
√
α,β) J1(2

√
α,β) J2(2

√
α,β) J3(2

√
α,β) J4(2

√
α,β) J5(2

√
α,β)

(10, 10) 0.969770 0.171888 0.015077 0.000312 0.000010 0.000000
(10, 20) 0.939998 0.239384 0.029848 0.002468 0.000153 0.000008
(10, 30) 0.910682 0.288696 0.044317 0.004500 0.000342 0.000021
(10, 40) 0.881815 0.328227 0.058486 0.006875 0.000604 0.000042
(10, 50) 0.853394 0.361292 0.072361 0.009535 0.000938 0.000074
(10, 60) 0.825413 0.389620 0.085943 0.012439 0.001342 0.000115
(20, 20) 0.881815 0.328227 0.058486 0.006875 0.000604 0.000042
(20, 30) 0.825413 0.389620 0.085943 0.012439 0.001342 0.000115
(20, 40) 0.770757 0.435898 0.112246 0.018858 0.002356 0.000235
(20, 50) 0.717810 0.472020 0.137421 0.025951 0.003637 0.000406
(20, 60) 0.666538 0.500628 0.161494 0.033589 0.005173 0.000633
(30, 30) 0.744072 0.455031 0.124973 0.022329 0.002964 0.000313
(30, 40) 0.666538 0.500628 0.161494 0.033589 0.005173 0.000633
(30, 50) 0.592694 0.532854 0.195594 0.045859 0.007934 0.001089
(30, 60) 0.522424 0.555201 0.227360 0.058887 0.011214 0.001692
(40, 40) 0.568879 0.541273 0.206438 0.050128 0.008971 0.001274
(40, 50) 0.477509 0.565724 0.247281 0.067895 0.013674 0.002180
(40, 60) 0.392166 0.578329 0.284217 0.086479 0.019205 0.003368
(50, 50) 0.371742 0.579977 0.292862 0.091214 0.020709 0.003710
(50, 60) 0.274897 0.580842 0.332705 0.115227 0.028901 0.005703
(60, 60) 0.169794 0.568870 0.373436 0.144341 0.040071 0.008720

Table A-9 Field defined by a circular arc and a straight limiting line (Fig. 6.18)

(α◦, β◦) x/a −y/a
∫ β

0

x

a
dt −

∫ β

0

y

a
dt −R/a −S/a

(15, 15) 0.26481 0.00000 0.06893 0.00301 1.03466 0.00000
(30, 15) 0.54173 0.03687 0.07279 0.02132 1.10602 2.28016
(30, 30) 0.54819 0.00000 0.28054 0.02459 1.14349 0.00000
(45, 15) 0.81715 0.15141 0.20105 0.00332 1.17975 0.57931
(40, 30) 0.86389 0.04245 0.42229 0.08212 1.29863 0.31945
(45, 45) 0.87131 0.00000 0.64990 0.08592 1.34182 0.00000
(60, 15) 1.06908 0.34526 0.25486 0.11128 1.25601 0.89809
(60, 30) 1.19650 0.18125 0.55312 0.17995 1.46430 0.68088
(60, 45) 1.25200 0.05164 0.87501 0.20919 1.60586 0.38527
(60, 60) 1.26101 0.00000 1.20454 0.21382 1.65821 0.00000
(75, 15) 1.27455 0.61379 0.29438 0.17897 1.33484 1.23718
(75, 30) 1.51724 0.42864 0.66157 0.31629 1.64096 1.08711
(75, 45) 1.67307 0.22784 1.08117 0.40202 1.89585 0.84303
(75, 60) 1.74240 0.06576 1.52995 0.43895 2.07263 0.48725
(75, 75) 1.75386 0.00000 1.98834 0.44486 2.13951 0.00000
(90, 15) 1.41152 0.94567 0.31586 0.25705 1.41628 1.59724
(90, 30) 1.79197 0.78843 0.73635 0.48610 1.82912 1.54109
(90, 45) 2.09707 0.55547 1.24748 0.66320 2.21408 1.38039
(90, 60) 2.29657 0.29812 1.82508 0.77477 2.54057 1.08990
(90, 75) 2.38683 0.08696 2.44032 0.82332 2.77097 0.64073
(90, 90) 2.40196 0.00000 3.06813 0.83116 2.85935 0.00000
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Table A-10 Field defined by a noncircular slipline and an inclined limiting line (Fig. 6.19)

(α◦, β◦) x/a y/a
∫ β

0

x

a
dt

∫ β

0

y

a
dt

(15, 15) 2.13815 1.00000 0.55865 0.25325
(30, 15) 3.01369 0.88076 0.77552 0.19457
(45, 15) 4.00492 0.46540 1.00577 0.06132

ψ
=

0

(30, 30) 3.03448 1.00000 1.56855 0.44567
(45, 30) 4.16709 0.84475 2.07942 0.23621
(45, 45) 4.19412 1.00000 3.17562 0.48403

(15, 15) 2.18524 1.58553 0.57344 0.40498
(30, 15) 3.25127 1.72024 0.84673 0.40410
(45, 15) 4.58814 1.53776 1.16955 0.31696
(60, 15) 6.12284 0.89411 1.51922 0.11486
(30, 30) 3.23806 1.86763 1.69621 0.87992

ψ
=

15
◦

(45, 30) 4.66080 2.04635 2.38396 0.79132
(60, 30) 6.50055 1.79407 3.17848 0.46879
(45, 45) 4.64303 2.24409 3.60186 1.36117
(60, 45) 6.59960 2.48871 4.89822 1.03633
(60, 60) 6.57500 2.76176 6.62281 1.73493

(15, 15) 2.07022 2.19524 0.54654 0.56378
(30, 15) 3.25620 2.67832 0.86159 0.64686
(45, 15) 4.89905 2.88566 1.27260 0.64584
(60, 15) 6.97534 2.60186 1.76479 0.51329
(75, 15) 9.37980 1.59287 2.30466 0.20144
(30, 30) 3.19518 2.84474 1.70420 1.37694
(45, 30) 4.82404 3.50705 2.54800 1.48974

ψ
=

30
◦

(60, 30) 7.13822 3.79792 3.61977 1.35542
(75, 30) 10.12669 3.38809 4.86947 0.85197
(45, 45) 4.73984 3.73655 3.79734 2.44769
(60, 45) 7.03302 4.66768 5.47850 2.47332
(75, 45) 10.35735 5.08415 7.56144 1.96693
(60, 60) 6.91406 4.99183 7.30057 3.75150
(75, 60) 10.20677 6.32735 10.25864 3.47441
(75, 75) 10.03541 6.79394 12.90314 5.21172

(α◦, β◦) x/a y/a
∫ β

0

x

a
dt

∫ β

0

y

a
dt

(15, 15) 1.78384 2.78384 0.47529 0.71806
(30, 15) 2.98186 3.69073 0.80735 0.90773
(45, 15) 4.88133 4.44401 1.28711 1.03467
(60, 15) 7.39945 4.76792 1.91813 1.03349
(75, 15) 10.65984 4.32188 2.68051 0.82849
(90, 15) 14.45794 2.72746 3.52453 0.34123
(30, 30) 2.86158 3.86158 1.56798 1.90382
(45, 30) 4.55170 5.13968 2.51628 2.29805
(60, 30) 7.21420 6.22284 3.83851 2.47941
(75, 30) 10.97579 6.69592 5.52659 2.27227

ψ
=

45
◦

(90, 30) 15.82512 6.03094 7.50702 1.47890
(45, 45) 4.38144 5.38143 3.67959 3.68583
(60, 45) 6.81353 7.21914 5.67615 4.25152
(75, 45) 10.70739 8.80177 8.37577 4.31110
(90, 45) 16.28666 9.50179 11.73085 3.51407
(60, 60) 6.56787 7.56787 7.41909 6.20233
(75, 60) 10.12359 10.25282 11.10462 6.82343
(90, 60) 15.89198 12.59552 15.95898 6.42124
(75, 75) 9.76368 10.76368 13.69518 9.59670
(90, 75) 15.02977 14.73803 20.00985 10.02563
(90, 90) 14.49573 15.49571 23.85592 14.01617

(15, 15) 1.32958 3.30289 0.36029 0.85537
(30, 15) 2.39941 4.67665 0.67539 1.16715
(45, 15) 4.29293 6.11033 1.18819 1.46068
(60, 15) 7.20903 7.29810 1.93160 1.65790
(75, 15) 11.26159 7.80906 2.91441 1.65649
(30, 30) 2.21268 4.83247 1.27207 2.41899
(45, 30) 3.76078 6.81883 2.24087 3.16336

ψ
=

60
◦

(60, 30) 6.54324 8.92420 3.73830 3.79181
(75, 30) 10.88585 10.69162 5.82946 4.08402
(90, 30) 16.99348 11.46013 8.50774 3.76055
(45, 45) 3.48955 7.04475 3.17982 4.98838
(60, 45) 5.76422 9.96108 5.34718 6.27878
(75, 45) 9.90310 13.09111 8.56041 7.21232
(90, 45) 16.43424 15.74751 12.90717 7.33037
(105, 45) 25.71302 16.91304 18.32006 6.06649
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APPENDIX

B
ORTHOGONAL CURVILINEAR COORDINATES

In the solution of special problems, it is frequently necessary to express the basic
equations in terms of a system of orthogonal curvilinear coordinates. The following
method is convenient for developing equations in curvilinear coordinates from the
corresponding equations in rectangular coordinates. Alternatively, recourse may be
made to general tensor calculus, not treated in this book, which furnishes equations
that are valid in any coordinate system.

We denote the curvilinear coordinates by α, β, γ , and associate them with an
orthogonal triad of unit vectors eα, eβ, eγ forming a right-handed system. These
vectors represent the directions of the maximum rate of change of the respective
coordinates at each point. The components of the unit base vectors with respect to
a fixed set of rectangular axes xj will be denoted by eαj , eβj , eγj . They are identical to
the components aαj, aβj, aγj of the transformation tensor aij defined by Eqs. (20),
Chap. 1. To avoid confusion, the summation convention will be used only for the
italic subscripts, denoting the rectangular components of vectors and tensors. If
vα, vβ, vγ denote the curvilinear components of the velocity vector vj of a typical
particle, then

vj = eαj vα + eβj vβ + eγj vγ (a)

It is convenient to begin with the gradient of a scalar function φ=φ(α,β, γ). Denot-
ing the line elements along the coordinate curves by h1 dα, h2 dβ, and h3 dγ , where
h1, h2, and h3 are functions of (α, β, γ), we have

gradφ = eα

h1

∂φ

∂α
+ eβ

h2

∂φ

∂β
+ eγ

h3

∂φ

∂γ
(b)
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Since the rectangular components of grad φ are ∂φ/∂xi, the operator ∂/∂xi is equal to
the ith component of the vector operator on the right-hand side of (b). The application
of this operator on Eq. (a) furnishes ∂vj/∂xi, and hence the strain rate ε̇ij, provided
due account is taken of the variation of the base vectors along the coordinate curves.
The curvilinear components of the strain rate are then obtained by comparison with
the expression

ε̇ij = eαi eαj ε̇αα + eβi eβj ε̇ββ + eγi eγj ε̇γγ + (eαi eβj + eβi eαj )ε̇αβ

+(eβi eγj + eγi eβj )ε̇βγ + (eγi eαj + eαi eγj )ε̇γα
(c)

A similar expression can be written down for the stress tensor σij. The condition
∂σij/∂xi = 0 for equilibrium, in the absence of body forces, leads to three equations
of equilibrium in the curvilinear coordinate system.

Consider, for example, cylindrical coordinates (r, θ, z), where r is the perpen-
dicular distance from a fixed axis, coinciding with the z axis, and θ is the angle
measured round this axis. In this case, h1 = h3 = 1 and h2 = r, giving

∂

∂xi
= er

i
∂

∂r
+ eθi

1

r

∂

∂θ
+ ez

i
∂

∂z
(d)

Since the base vectors are unit vectors, their variations along any curve are orthogonal
to these vectors. It follows from simple geometry that

∂er

∂θ
= eθ

∂eθ

∂θ
= −er ∂ez

∂θ
= 0 (e)

The derivatives of the base vectors with respect to r and z are identically zero.
Applying (d) on Eq. (a) with (α, β, γ) replaced by (r, θ, z), and using (e), we get

∂vj

∂xi
= er

i er
j
∂vr

∂r
+ er

i eθj
∂vθ

∂r
+ er

i ez
j
∂vz

∂r

+ 1

r

[
eθi er

j

(
∂vr

∂θ
− vθ

)
+ eθi eθj

(
vr + ∂vθ

∂θ

)
+ eθi ez

j
∂vz

∂θ

]

+ ez
i e

r
j
∂vr

∂z
+ ez

i e
θ
j
∂vθ

∂z
+ ez

i e
z
j
∂vz

∂z
( f )

The expression for ∂vi/∂xj is obtained by interchanging the subscripts i and j in ( f ).
A similar operation on the stress tensor σij, expressed in terms of the cylindrical
components and the base vectors, furnishes

∂σij

∂xi
= er

j

[
∂σrr

∂r
+ 1

r

(
∂σrθ

∂θ
+ σrr − σθθ

)
+ ∂σrz

∂z

]

+ eθj

[
∂σrθ

∂r
+ 1

r

(
∂σθθ

∂θ
+ 2σrθ

)
+ ∂σθz

∂z

]

+ ez
j

[
∂σrz

∂r
+ 1

r

(
∂σθz

∂θ
+ σrz

)
+ ∂σzz

∂z

]
(g)
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in view of the orthogonality of the base vectors. The curvilinear components of the
strain rate, the associated equations of equilibrium, and the components of the spin
tensor are finally obtained from the fact that

ε̇ij = 1

2

(
∂vi

∂xj
+ ∂vi

∂xi

)
∂σij

∂xi
= 0 ωij = 1

2

(
∂vi

∂xj
− ∂vj

∂xi

)

In the case of spherical coordinates (r, θ, φ), where r is the length of the radius
vector, θ the meridional angle measured from a fixed polar axis, and φ the angle mea-
sured round this axis, we have h1 = 1, h2 = r, h3 = r sin θ, leading to the expression

∂

∂xi
= er

i
∂

∂r
+ eθi

1

r

∂

∂θ
+ eφi

1

r sin θ

∂

∂φ
(h)

From geometry, the nonzero derivatives of the base vectors are easily shown to be

∂er

∂θ
= eθ

∂eθ

∂θ
= −er ∂er

∂φ
= sin θ eφ

∂eθ

∂φ
= cos θ eφ

∂eφ

∂φ
= −(sin θ er + cos θ eθ)

(k)

Using the above relations, ∂vj/∂xi and ∂σij/∂xi can be expressed in terms of the
curvilinear components of the field quantities and their derivatives with respect to r,
θ, and φ. These expressions furnish the strain rates and the equations of equilibrium
in spherical coordinates. The end results for cylindrical and spherical coordinates
are summarized below, using σr , σθ , τrθ , etc., for the components of the stress, and
ε̇r , ε̇θ , γ̇rθ , etc., for the components of the strain rate.

Cylindrical coordinates Setting vr = u, vθ = v, and vz = w, the components of the
strain rate in cylindrical coordinates (r, θ, z) may be written as

ε̇r = ∂u

∂r
2γ̇rθ = 1

r

∂u

∂θ
+ ∂v

∂r
− v

r

ε̇θ = u

r
+ 1

r

∂v

∂θ
2γ̇θz = ∂v

∂z
+ 1

r

∂w

∂θ

ε̇z = ∂w

∂z
2γ̇rz = ∂w

∂r
+ ∂u

∂z

In the absence of body forces, the stress equations of equilibrium in cylindrical
coordinates are

∂σr

∂r
+ 1

r

∂τrθ

∂θ
+ ∂τrz

∂z
+ σr − σθ

r
= 0

∂τrθ

∂r
+ 1

r

∂σθ

∂θ
+ ∂τθz

∂z
+ 2τrθ

r
= 0

∂τrz

∂r
+ 1

r

∂τθz

∂θ
+∂σz

∂z
+ τrz

r
= 0
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The cylindrical components of the vector ω= 1
2 curl v, given by the non-zero

components of the associated spin tensor, are easily shown to be of the form

2ωr = 1

r

∂w

∂θ
− ∂v

∂z
, 2ωθ = ∂u

∂z
− ∂w

∂r
, 2ωz = ∂v

∂r
+ v

z
− 1

r

∂u

∂θ

Spherical coordinates Setting vr = u, vθ = v, and vφ = w, the strain rates in
spherical coordinates (r, θ, φ) may be written as

ε̇r = ∂u

∂r
2γ̇rθ = 1

r

∂u

∂θ
+ ∂v

∂r
− v

r

ε̇θ = u

r
+ 1

r

∂v

∂θ
2γ̇θφ = 1

r sin θ

∂v

∂φ
+ 1

r

∂w

∂θ
− w

r
cot θ

ε̇φ = u

r
+ v

r
cot θ + 1

r sin θ

∂w

∂φ
2γ̇rφ = ∂w

∂r
− w

r
+ 1

r sin θ

∂u

∂φ

The corresponding equations of statical equilibrium, when body forces are absent,
take the form

∂σr

∂r
+ 1

r

∂τrθ

∂θ
+ 1

r sin θ

∂τrφ

∂φ
+ 1

r
(2σr − σθ − σφ + τrθ cot θ) = 0

∂τrθ

∂r
+ 1

r

∂σθ

∂θ
+ 1

r sin θ

∂τθφ

∂φ
+ 1

r
(σθ cot θ − σφ cot θ + 3τrθ) = 0

∂τrφ

∂r
+ 1

r

∂τθφ

∂θ
+ 1

r sin θ

∂σφ

∂φ
+ 1

r
(3τrφ + 2τθφ cot θ) = 0

The non-zero components of the spin tensor in spherical coordinates furnish the
corresponding components of the dual vector ω as

2ωr = 1

r

∂w

∂θ
+ w

r
cot θ − 1

r sin θ

∂v

∂φ

2ωθ = 1

r sin θ

∂u

∂φ
− ∂w

∂r
− w

r

2ωφ = ∂v

∂r
+ v

r
− 1

r

∂u

∂θ

When the stress distribution is symmetrical about a given axis, which is taken as
the z-axis, the equations in cylindrical coordinates are simplified by the fact that
τrθ = τθz = 0 at each point in the absence of torsion, while the remaining stresses
are independent of θ. If spherical coordinates are used, the situation of torsion-
less symmetry about the polar axis θ= 0 is characterized by τrφ = τθφ = 0, and the
independence of the stresses with respect to φ.
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APPENDIX

C
FUNDAMENTALS OF SOIL PLASTICITY

Coulomb’s Law of Failure

Problems of soil mechanics, such as those involving the stability of slopes, limiting
pressure on retaining walls, and bearing capacity of foundation slabs, are usually
treated as problems of plasticity. Failure of granular soils occurs by simple slip,
and may be described by a yield criterion in which the hydrostatic part of the stress
plays an important part. The magnitude of the shear stress τ acting on any slip plane
through a mass of isotropic soil is assumed to vary linearly with the normal stress σ
across the plane. This condition, originally proposed by Coulomb (1773), may be
stated as†

τ + σ tanψ = k (1)

where ψ is the angle of internal friction and k denotes the cohesion of the soil. The
shear stress across the slip plane is equal to k when the normal stress vanishes on
this plane. An ideally plastic material, which yields according to the maximum shear
stress criterion of Tresca corresponds to ψ= 0, the constant k being then equal to
the yield stress in pure shear.

A geometrical interpretation of Coulomb’s criterion can be established by con-
sidering Mohr’s circles involving the principal stressesσ1, σ2 andσ3 at the considered
point. The normal and shear stresses acting across any plane are represented by

† C. A. Coulomb, Mem. Pres. Par. Div. Sevants, 7: 343 (1773). Coulomb’s criterion has been
discussed by R. T. Shield, J. Mech. Phys. Solids, 4: 10 (1955). See also S. Kalizky, Plasticity Theory
and Engineering Applications, Chap. 8, Elsevier, Amsterdam (1989).
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Figure C1 Graphical representation of the Coulomb criterion in the Mohr stress plane.

a point that lies within the space between the three independent stress circles
(Fig. C1). The values of σ and τ satisfying (1) are represented by the points of tan-
gency of the largest stress circle with a pair of straight lines from the point (k cotψ,
0) inclined at angles ±ψ to the negative σ-axis. The tangent lines are known as the
critical lines which envelope a family of stress circles representing the critical states.
It follows from simple geometry of the Mohr circle that (1) is equivalent to

(σ1 − σ3) + (σ1 + σ3)sinψ = 2k cosψ σ1 � σ2 � σ3

where σ1 and σ3 are the algebraically greatest and least principal stresses respec-
tively. The remaining principal stress σ2 can have any value between σ1 and σ3. The
above criterion may be written alternatively as

(1 + sinψ)σ1 − (1 − sinψ)σ3 = 2k cosψ σ1 � σ2 � σ3 (2)

In the principal stress space, Coulomb’s yield surface is a right hexagonal pyramid
whose axis is equally inclined to the three axes of reference, and whose apex is at
a distance

√
3k cotψ from the origin. Since the yield stresses in uniaxial tension

and compression are equal to 2k cosψ/(1 ± sinψ) in view of (2), the edges of the
pyramid passing through the points representing the states of uniaxial tension and
compression are easily shown to be inclined at tan−1{2√

2 sinψ/(3 ± sinψ)} to the
axis of the pyramid. The deviatoric plane σ1 + σ2 + σ3 = 0 intersects the pyramid
in an irregular hexagon (Shield, 1955), whose geometry is specified by the corner
distances

OA = 2
√

6k cosψ

3 + sinψ
OB = 2

√
6 cosψ

3 − sinψ
(3)

as shown in Fig. C2a, the axis of the pyramid being inclined at an acute angle
of sin−1√2/3 with each coordinate axis. The plane stress yield locus obtained by
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Figure C2 Yield loci for a soil medium according to Coulomb and generalized Mises criteria.
(a) Deviatoric locus, OA:OB = (3 − sinψ):(3 + sinψ); (b) plane stress locus, OA:OB = (1 − sinψ):
(1 + sinψ).

the intersection of the yield surface with the plane σ3 = 0, is shown in Fig. C2b.
The inclined sides of the hexagon, joining the points representing uniaxial ten-
sion and compression on either side, make an angle 2δ with one another, where
δ= tan−1(sinψ). If the soil is unable to support any tension, the yield pyramid must
be truncated by the three planes σ1 = 0, σ2 = 0 and σ3 = 0. The plane stress yield
locus reduces in this case to the lower square OBEC shown in the figure.

The soil may be considered as a perfectly plastic material with the plastic poten-
tial coincident with the yield function. The vector representing the plastic strain rate
is therefore normal to the yield surface at a regular point, and lies between the adja-
cent normals at a singular point. The flow rule implies that the principal axes of
stress and plastic strain rate coincide. When the stress point is on a side such as
AB of the yield hexagon, the yield criterion is expressed by (2), which gives the
principal plastic strain rates as

ε̇1 = λ̇(1 + sinψ) ε̇2 = 0 ε̇3 = −λ̇(1 − sinψ) (4)

where λ̇ is a positive scalar. At a corner such as A, where σ2 = σ3, a possible plastic
strain rate is a linear combination of those corresponding to the sides AB and AF.
Consequently,

ε̇1 = (λ̇+ µ̇)(1 + sinψ) ε̇2 = −µ̇(1 − sinψ) ε̇3 = −λ̇(1 − sinψ)
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where µ̇ is also positive. Similar expressions hold for the other sides and corners of
the hexagon. In all cases, the three principal plastic strain rates satisfy the relation

(1 − sinψ)ε̇1 + (1 + sinψ)(ε̇2 + ε̇3) = 0 (5)

where ε̇1> ε̇2> ε̇3. Since ε̇1 is strictly positive according to the flow rule, (5) implies
an increase in volume by an amount which is found to be somewhat higher than that
experimentally observed. The rate of plastic work per unit volume for all possible
critical states is

Ẇ = σ1ε̇1 + σ2ε̇2 + σ3ε̇3 = (ε̇1 + ε̇2 + ε̇3)k cotψ

The right-hand side of the above equation is equal to 2k tan(π/4 −ψ/2) times the
magnitude of the numerically largest principal plastic strain rate. The rate of energy
dissipation appears in the plastic limit theorems which are equally applicable to soil
plasticity. If the soil is unable to support tension, the preceding relations continue
to hold, provided the stress point does not lie on the cut-off planes of the truncated
pyramid.

Plane Strain in Soil Media

Consider the situation where the deformation of the soil is prevented in the z direc-
tion, which coincides with one of the principal axes of stress and strain rate. Elastic
strains are neglected, so that σz is always the intermediate principal stress. The
remaining non-zero stress components σx, σy, and τxy, referred to a set of rectangular
axes, must satisfy the yield criterion (2), which is equivalent to

(σx + σy)sinψ +
{

(σx − σy)2 + 4τ2
xy

}1/2 = 2k cosψ (6)

The expression involving the curly bracket is twice the maximum shear stress of
magnitude τ0. If the weight of the soil is neglected for simplicity, the equations of
equilibrium become

∂σx

∂x
+ ∂τxy

∂y
= 0

∂τxy

∂x
+ ∂σy

∂y
= 0 (7)

The systems of stress Eqs. (6) and (7) are hyperbolic, as may be seen by considering
some curve C along which the stresses are given. If the x and y axes are temporarily
taken along the normal and tangent respectively to the curve at any point, the tangen-
tial derivatives ∂τxy/∂y and ∂σy/∂y are known along C, and the normal derivatives
∂σx/∂x and ∂τxy/∂x follow from (7). The remaining normal derivative ∂σy/∂x can
be uniquely determined from the relation

2τ0

(
∂σx

∂x
+ ∂σy

∂x

)
sinψ + (σx − σy)

(
∂σx

∂x
− ∂σy

∂x

)
+ 4τxy

∂τxy

∂x
= 0
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obtained by the partial differentiation of (6), unless the coefficient of ∂σy/∂x is
zero. When the coefficient vanishes, the above equation gives no information about
∂σy/∂x. The curve C will therefore be a characteristic if

σx − σy = 2τ0 sinψ, τxy = ±τ0 cosψ

satisfying the conditions that the maximum shear stress has the magnitude τ0. These
relations imply that the normal to the characteristic is inclined at an angle ±α to the
direction of the algebraically greatest principal stress, where α=π/4 −ψ/2. When
C is a characteristic, the preceding relations can be combined to give

∂τxy

∂x
± tanψ

∂σx

∂x
= 0 (8)

Thus, there are two distinct characteristics through each point, and the normal
and shear stresses acting across them correspond to the points of tangency of the
appropriate Mohr circle with the critical lines (Fig. C1). The characteristic direc-
tions therefore coincide with the slip directions, which are inclined at an angle
δ=π/4 +ψ/2 to the axis of the algebraically greatest principal stress.

The principal stresses in the plane of deformation will be denoted by σ1 and σ2,
where σ1>σ2. The two characteristics will be identified as α- and β-lines following
the convention that the axis of σ1 bisects the obtuse angle between the pair of
characteristics. The stresses acting on elements with sides parallel and perpendicular
to the characteristics are directed as shown in Fig. C3a, where σ− σ′ = 2τ0 sinψ
and τ= τ0 cosψ. When the x axis is normal to one of the characteristics, Eqs. (7)
and (8) give

∂τxy

∂x
∓ tanψ

∂τxy

∂y
= 0

where the upper sign holds if the characteristic is a β-line, and the lower sign if it is
an α-line. Assuming the former, it is easy to show that the tangential derivative of
τxy along the α-line is

∂τxy

∂sα
= cosψ

∂τxy

∂x
− sinψ

∂τxy

∂y
= 0

Consider now an arbitrary pair of rectangular axes through the considered point P,
and let φ denote the counterclockwise orientation of the α-line at P with respect to
the x axis. Then

τxy = 1
2 (σ1 − σ2)cos(ψ + 2φ) = τ0 cos(ψ + 2φ)

Differentiating this relation partially with respect to sα, and noting the fact that
φ= −ψ when the x axis is normal to the β-line, the condition ∂τxy/∂sα= 0 is found
to be equivalent to

cosψ
∂τ0

∂sα
+ 2τ0 sinψ

∂φ

∂sα
= 0 (9a)
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Figure C3 Characteristics in plane strain deformation of soil, including the stress and velocity
components (σ− σ′ = 2τ0 sinψ, τ= τ0 cosψ).

Similarly, considering the partial derivative of τxy with respect to sβ, and using the
fact that ∂τxy/∂sβ = 0 when the x axis is along the normal to the α-line (φ=π/2),
it can be shown that

−cosψ
∂τ0

∂sβ
+ 2τ0 sinψ

∂φ

∂sβ
= 0 (9b)

Introducing a dimensionless variable s, such that sk = τ0 cosecψ, which is equal
to the distance of the center of the Mohr circle from the meeting point of the two
critical lines, Eqs. (9) can be written in the integrated form†

cotψ ln s + 2φ = constant along an α-line

cotψ ln s − 2φ = constant along a β-line

}
(10)

These relations along the characteristics, together with the appropriate boundary
conditions, are sufficient to find s and φ throughout the field when the problem is
statically determinate. The application of (10) to a variety of plane problems in soil
mechanics has been discussed by Sokolovsky.‡

† R. T. Shield. Quart. Appl. Math., 11: 61 (1953). The relations along the characteristics were
given earlier in a different form by J. Mandel, Proc. 6th Int. Congr. Appl. Mech., Paris (1946). The
existence of the characteristics was known to L. Prandtl, Z. angew. Math. Mech., 1: 15(1921).

‡ V. V. Sokolovsky, Statics of Granular Media, Pergamon Press, Oxford (1960).
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When the weight of the soil is taken into account, the right-hand sides of
Eqs. (7) must be replaced by −ρg cos θ and ρg sin θ in the first and second
equation respectively, where ρg is the specific weight and θ the counterclock-
wise angle made by the x axis with the downward vertical through the consid-
ered point. Then the right-hand sides of Eqs. (9a) and (9b) become −ρg sinψ
sin(ω+ψ/2 −π/4) and ρg sinψ cos(ω−ψ/2 −π/4) respectively, where ω is the
counterclockwise orientation of the direction of σ1 with the horizontal. If h denotes
the vertical height of the particle above a fixed horizontal datum, then dh is equal
to sin(ω−ψ/2 −π/4)dsα along an α-line and cos(ω+ψ/2 −π/4)dsβ also along
a β-line. Since τ= τ0 cosψ, dτ= −tanψ dσ, and dφ= dω, we obtain the modified
relations along the characteristics as†

dσ − 2τ dω = cosψ sin(ω − α)

sin(ω − δ)
ρg dh, along an α-line

dσ + 2τ dω = cosψ cos(ω − δ)

sin(ω − α)
ρg dh, along an β-line


 (11)

where α=π/4 −ψ/2 and δ=π/4 +ψ/2, the relationship between σ and τ being
given by (1). Whenψ= 0 (τ= k), and the weight is disregarded, Eq. (11), which are
due to Kötter (1903), reduce to the well known Hencky equations for ideally plastic
metals (Sec. 6.1).

Velocity Field in Plane Strain

In general, the available stress boundary conditions are not sufficient for a complete
investigation of the problem, and the velocity equations are therefore necessary
along with the stress equations. Since the non-zero principal strain rates are

ε̇1 = λ̇(1 + sinψ) ε̇2 = −λ̇(1 − sinψ)

where λ̇ is a positive scalar, and the algebraically greater principal strain rate ε̇1
makes a counterclockwise angle of φ+π/4 +ψ/2 with the x axis, the rectangular
components of the strain rate may be written as

ε̇x = ∂vx

∂x
= λ̇[ sinψ − sin(ψ + 2φ)]

ε̇y = ∂vy

∂y
= λ̇[ sinψ + sin(ψ + 2φ)]


 (12)

γ̇xy = 1

2

(
∂vx

∂y
+ ∂vy

∂x

)
= λ̇ cos(ψ + 2φ)

where (vx, vy) are the rectangular components of the velocity of the considered
particle. These equations for the velocity field are easily shown to be hyperbolic,

† F. Kötter, Berlin Acad. Bericht., 229 (1903). See also R. Hill, The Mathematical Theory of
Plasticity, Clarendon Press, Oxford (1950); J. Massau, Edition du Centenaire, p. 154, Mons (1952).
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with the velocity characteristics coincident with the stress characteristics (Sec. 6.1).
The rate of extension vanishes along the characteristics, since(

∂vx

∂x

)
φ=0

=
(
∂vy

∂y

)
φ=−ψ

= 0

in view of (12). To obtain the velocity relations along the characteristics, let (u, v)
denote the orthogonal projections of the velocity vector on the tangents to the
α- and β-lines respectively, as shown in Fig. C3b. From simple geometry, we have

u = vx cosφ + vy sin φ

v = vy cos(ψ + φ) − vx sin(ψ + φ)

}
(13)

These relations can be inverted to give vx and vy in terms of u and v, but this will not
be necessary for the present purpose. The partial differentiation of Eqs. (13) with
respect to x and y gives

∂u

∂sα
=
(
∂φ

∂sα

)
(vy)φ=0,

∂v

∂sβ
=
(
∂φ

∂sβ

)
(vx)φ=−ψ

Inserting the values of vy and vx at φ= 0 and φ= −ψ respectively using (13), the
variations of u and v along the characteristics are obtained as†

du − (u tanψ + v secψ) dφ = 0 along an α-line

dv+ (v tanψ + u secψ) dφ = 0 along a β-line

}
(14)

These equations, which are due to shield (1953), reduce to the well-known Geiringer
equations in classical plasticity when ψ= 0. An alternative treatment of the veloc-
ity field leading to more complicated canonical equations have been given by
Spencer,‡ who assumed the soil to be incompressible and introduced a stress–strain
relation that made the velocity characteristics coincide with the stress characteristics.

In a region where both families of characteristic are straight (φ= constant), the
stress is uniform throughout the region in view of (10), but the associated velocity
field satisfying (14) is not necessarily uniform. When one family of characteristics
consists of concurrent straight lines, the other family consists of logarithmic spirals
intersecting each straight line at an acute angle equal to π/4 ±ψ/2. The velocity
component along each spiral varies exponentially with the angular distance, if the
component along each straight line vanishes by virtue of the boundary condition.

A line of discontinuity in the velocity field must be regarded as a thin layer
of continuous change in velocity. Since the rate of extension parallel to the dis-
continuity must be negligible compared with the associated shear strain rate, the
discontinuity must be a characteristic in view of (12). Due to the associated change
in volume, a discontinuity �u in the tangential velocity must be accompanied by

† R. T. Shield, Quart. Applied Math., 11: 61 (1953).
‡ A. J. M. Spencer, J. Mech. Phys. Solids, 12: 337 (1964).
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a discontinuity�v in the normal velocity. The ratio of the two components of velocity
discontinuity is

�v

�u
= ε̇

γ̇
= ∂f /∂σ

∂f /∂τ
= tanψ

where f denotes the expression on the left-hand side of Eq. (1). The rate of energy
dissipation per unit area of the discontinuity is τ�u + σ�v= k�u. It follows that
a rigid body sliding is not possible along a circular arc, which must be replaced by
a logarithmic spiral.†

A Modified Mises Criterion

For the treatment of problems other than those in plane strain, it is sometimes
convenient to employ a regular yield criterion that reduces to Coulomb’s law when
the deformation is plane. In its simplest form, the proposed yield criterion is a
modification of the von Mises criterion where the hydrostatic part of the stress is
included in the yield function. Following Drucker and Prager (1952), the modified
yield criterion may be taken as‡

f (I1, J2) = βI1 +√
J2 = c (15)

whereβ and c are positive constants, while I1 and J2 are the first and second invariants
of the actual and deviatoric stress tensors respectively. Thus

I1 = σii = σ1 + σ2 + σ3 J2 = 1

2
sijsij = 1

2
(s2

1 + s2
2 + s2

3) (16)

In the principal stress space, the modified yield surface is a right circular cone with
its axis equally inclined to the three coordinate axes, Fig. C4, and having its apex
at the point σ1 = σ2 = σ3 = c/3β. If the plastic potential is taken as identical to the
yield function, the expression for the plastic strain rate becomes

ε̇ij = ∂f

∂σij
= λ̇

(
βδij + 1

2
J−1/2

2 sij

)
(17)

where λ̇ is a positive factor of proportionality. The rate of plastic dilatation according
to (17) is 3βλ̇, and the rate of plastic work per unit volume is cλ̇, where λ̇ is related
to the magnitude of the plastic strain rate through the equation

ε̇ij ε̇ij = λ̇2
(

1

2
+ 3β2

)

Since the yield stresses in uniaxial tension and compression are in the ratio
(1 − √

3β):(1+√
3β), according to (15), the semi-angle of the conical yield surface

† The Limit analysis of soil mechanics problems has been discussed by D. C. Drucker, J. Mech.
Phys. Solids, 1: 217 (1953). See also W.F. Chen, Limit Analysis and Soil Plasticity, Elsevier, Amsterdam
(1976).

‡ D. C. Drucker and W. Prager, Quart. Appl. Math., 10: 152 (1952).
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Figure C4 Yield surfaces corresponding to Coulomb and Drucker–Prager criteria matched along the
compression meridians.

is easily shown to be tan−1(
√

6β). The radius of the circle formed by the intersection
of the cone with the deviatoric plane is equal to

√
2c.

The constants c and β may be related to Coulomb’s constants k and ψ by
considering the special case of plane strain and neglecting the elastic part of the
strain rate. In view of (17), the condition ε̇3 = 0 gives

−2β
√

J2 = s3 = 1

3
(2σ3 − σ1 − σ2) (18)

Multiplying the square of Eq. (18) by 3
4 , and subtracting it from the second equation

of (16), we get

(1 − 3β2)J2 = 1

2

(
s2

1 + s2
2 − 1

2
s2

3

)
= 1

4
(σ1 − σ2)2

In view of the last equation, σ3 can be expressed in terms of σ1 and σ2 by means of
(18). The first equation of (16) then furnishes

I1 = 3

2

{
(σ1 + σ2) − β(σ1 − σ2)√

1 − 3β2

}
σ1 > σ2

The substitution for I1 and J2 from the last two equations into the yield criterion
(15) gives

(σ1 − σ2) + 3β(σ1 + σ2)√
1 − 3β2

= 2c√
1 − 3β2

(19)
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which holds for σ1>σ2, but σ3 is not required to lie between σ1 and σ2. The
comparison of Eq. (19) with Eq. (2), where σ3 is replaced by σ2, reveals that

√
3β = sinψ√

3 + sin2ψ
c =

√
3k cosψ√

3 + sin2ψ
(20)

It may be noted that the ratio of the yield stresses in simple tension and compression
predicted by the Drucker–Prager criterion (15) is different from that given by the
Coulomb criterion (2). In the case of plane stress (σ3 = 0), the Drucker–Prager yield
locus is easily shown to be an ellipse with its center at a distance away from the
origin of the stress plane, the major axis of the ellipse being along the bisector of
the stress axes (Fig. C2(b)).

It is instructive to consider the mathematical expression for the three-
dimensional failure surface corresponding to Coulomb’s law. Using Eqs. (32),
Chap. 1, the principal stresses appearing in the Coulomb criterion (2) can be
expressed in terms of the invariants I1 and J2, together with an auxiliary angle
θ, in the form

σ1 = I1

3
+ 2

√
J2

3
cos θ, σ3 = I1

3
− 2

√
J2

3
cos
(π

3
− θ

)
where 0� θ�π/3. The substitution of these expressions into Eq. (2) furnishes the
generalized Coulomb criterion as

I1 sinψ +√
3J2

[√
3 sin

(π
3

+ θ
)

+ cos
(π

3
+ θ

)
sinψ

]
= 3k cosψ (21)

In the principal stress space, (21) defines the irregular hexagonal pyramid referred
to earlier. The edges of the pyramid intersecting the positive σ1-axis and the negative
σ3-axis meet the deviatoric plane at points A and B respectively, whose distances
from the origin are given by (3). If the Drucker–Prager criterion (15) is employed
as an approximation to the generalized Coulomb criterion (21), it is only necessary
to specify the size of the cone so that the two criteria agree with one another for
an appropriate state of stress. The special case of plane strain has already been
examined. If, on the other hand, the cone is made to coincide with the pyramid
along the compression meridian, then

√
3β = 2 sinψ

3 − sinψ
c = 2

√
3k cosψ

3 − sinψ
(22)

obtained by setting θ=π/3 in (21) and comparing it with (15). The deviatoric
yield locus and the biaxial yield locus corresponding to (15) in this particular case
are included in Fig. C2 for comparison with those corresponding to the Coulomb
criterion. It may be noted that the elliptic locus in the biaxial stress plane passes only
through the two corners of the hexagon, which represent uniaxial compression.†

† A generalized formulation of the stress–strain relations for granular soils has been discussed by
A. Sawczuk and P. Stutz, Z. angew. Math. Phys., 19: 770 (1968). See also J. Mandel, J. Mech. Phys.
Solids, 14: 303 (1966).
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The Drucker–Prager theory described above predicts a change in volume that
is significantly higher than that experimentally observed in granular soils. Non-
associated flow rules, in which the plastic potential differs from the yield function,
have therefore been proposed in the past, the soil material being regarded as incom-
presssible.† The predicted deformation mode based on such a theory, in which the
velocity characteristics do not coincide with the stress characteristics under condi-
tions of plane strain, is found to be in agreement with the observed flow behavior of
dry sand. The velocity field determined on the basis of the flow rule that is associated
with the yield criterion seems to depart even qualitatively from the actual velocity
field.‡

† See, for example, A. W. Jenike and R. T. Shield, J. Appl. Mech., 26: 599 (1959); R. M. Haythorn-
waite, Plasticity, Proc. 2nd Symp. Nav. Struct. Mech., 135, Pergamon Press, New York (1960). A modi-
fication of Coulomb’s criterion has been proposed by H. Ziegler, Z. angew. Math. Phys., 20: 65 (1969).

‡ W. Szczepinsky, Arch. Mech. Stos., 23: 885 (1971). See also M. Oda and K. Iwashita, Introduction
to Granular Materials, Chapman and Hall, London (1999).
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