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Preface

Prior to the development of quantitative structural theories in the mid-18th century and
since, builders relied on an intuitive and highly developed sense of structural behaviour.
The advent of modern mathematical modelling and numerical methods has to a large
extent replaced this skill with a reliance on computer generated solutions to structural
problems. Professor Hardy Cross' aptly expressed his concern regarding this in the
following quote:

‘There is sometimes cause to fear that the scientific technique, the proud servant of
the engineering arts, is trying to swallow its master.’

It is inevitable and unavoidable that designers will utilize continually improving computer
software for analyses. However, it is essential that the use of such software should only be
undertaken by those with the appropriate knowledge and understanding of the
mathematical modelling, assumptions and limitations inherent in the programs they use.

Students adopt a variety of strategies to develop their knowledge and understanding of
structural behaviour, e.g. the use of:

e computers to carry out sensitivity analyses,

e physical models to demonstrate physical effects such as buckling, bending, the
development of tension and compression and deformation characteristics,

o the study of worked examples and carrying out analyses using ‘hand’ methods.

This textbook focuses on the provision of numerous fully detailed and comprehensive
worked examples for a wide variety of structural problems. In each chapter a résumé of the
concepts and principles involved in the method being considered is given and illustrated
by several examples. A selection of problems is then presented which students should
undertake on their own prior to studying the given solutions.

Students are strongly encouraged to attempt to visualise/sketch the deflected shape of a
loaded structure and predict the type of force in the members prior to carrying out the
analysis; i.e.

(i) in the case of pin-jointed frames identify the location of the tension and
compression members,

(i1) in the case of beams/rigid-jointed frames, sketch the shape of the bending moment
diagram and locate points of contraflexure indicating areas of tension and
compression.

A knowledge of the location of tension zones is vital when placing reinforcement in

reinforced concrete design and similarly with compression zones when assessing the
effective buckling lengths of steel members.

xiii
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When developing their understanding and confirming their own answers by studying the
solutions provided, students should also analyse the structures using a computer analysis,
and identify any differences and the reasons for them.

The methods of analysis adopted in this text represent the most commonly used ‘hand’
techniques with the exception of the direct stiffness method in Chapter 7. This matrix
based method is included to develop an understanding of the concepts and procedures
adopted in most computer software analysis programs. A method for inverting matrices is
given in Appendix 3 and used in the solutions for this chapter — it is not necessary for
students to undertake this procedure. It is included to demonstrate the process involved
when solving the simultaneous equations as generated in the direct stiffness method.

Whichever analysis method is adopted during design, it must always be controlled by the
designer, i.e. not a computer! This can only be the case if a designer has a highly
developed knowledge and understanding of the concepts and principles involved in
structural behaviour. The use of worked examples is one of a number of strategies adopted
by students to achieve this.

In this 2™ Edition the opportunity has been taken to modify the x-y-z co-ordinate system/
symbols and Chapter 6 on buckling instability, to reflect the conventions adopted in the
structural Eurocode EN 1993-1-1 for steel structures, i.e.

x-x along the member,

y-y the major principal axis of the cross-section (e.g. parallel to the flange in a steel
beam) and

z-z the minor principal axes of the cross-section (e.g. perpendicular to the flange in a
steel beam).

Local and flexural buckling equations as given in the EN 1993-1-1 are also considered.
Chapter 4 for the analysis of beams has been expanded to include moment redistribution
and moment envelopes. Chapter 5 has been expanded to include the analysis of singly-
redundant, rigid-jointed frames using the unit load method.

In addition, two new chapters have been added: Chapter 9 relating to the construction and

use of influence lines for beams and Chapter 10, the use of approximate methods of
analysis for pin-jointed frames, multi-span beams and rigid-jointed frames.

1 Cross, H. Engineers and Ivory Towers. New York: McGraw Hill, 1952

William M.C. McKenzie
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1. Structural Analysis and Design

1.1 Introduction

The design of structures, of which analysis is an integral part, is frequently undertaken
using computer software. This can only be done safely and effectively if those undertaking
the design fully understand the concepts, principles and assumptions on which the
computer software is based. It is vitally important therefore that design engineers develop
this knowledge and understanding by studying and using hand-methods of analysis based
on the same concepts and principles, e.g. equilibrium, energy theorems, elastic,
elasto-plastic and plastic behaviour and mathematical modelling.

In addition to providing a mechanism for developing knowledge and understanding,
hand-methods also provide a useful tool for readily obtaining approximate solutions during
preliminary design and an independent check on the answers obtained from computer
analyses.

The methods explained and illustrated in this text, whilst not exhaustive, include those
most widely used in typical design offices, e.g. method-of-sections/joint resolution/unit
load/McCaulay’s method/moment distribution/plastic analysis etc.

In Chapter 7 a résumé is given of the direct stiffness method; the technique used in
developing most computer software analysis packages. The examples and problems in this
case have been restricted and used to illustrate the processes undertaken when using
matrix analysis; this is not regarded as a hand-method of analysis.

1.2  Equilibrium
All structural analyses are based on satisfying one of the fundamental laws of physics, i.e.

F=ma Equation (1)
where
F is the force system acting on a body
m 1is the mass of the body
a 1is the acceleration of the body

Structural analyses carried out on the basis of a force system inducing a dynamic
response, for example structural vibration induced by wind loading, earthquake loading,
moving machinery, vehicular traffic etc., have a non-zero value for ‘a’ the acceleration. In
the case of analyses carried out on the basis of a static response, for example
stresses/deflections induced by the self-weights of materials, imposed loads which do not
induce vibration etc., the acceleration ‘a’ is equal to zero.

Static analysis can be regarded as a special case of the more general dynamic analysis in
which:

F=ma=0 Equation (2)

F can represent the applied force system in any direction; for convenience this is normally
considered in either two or three mutually perpendicular directions as shown in Figure 1.1.
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The application of Equation (2) to the force system indicated in Figure 1.1 is:
Sum of the forces in the direction of the X-axis 2F=0 Equation (3)
Sum of the forces in the direction of the Y-axis XFy,=0 Equation (4)
Sum of the forces in the direction of the Z-axis 2F,=0 Equation (5)

Since the structure is neither moving in a linear direction, nor in a rotational direction a
further three equations can be written down to satisfy Equation (2):

Sum of the moments of the forces about the X-axis M, =0 Equation (6)
Sum of the moments of the forces about the Y-axis XM, =0 Equation (7)
Sum of the moments of the forces about the Z-axis IM,=0 Equation (8)

Equations (3) to (8) represent the static equilibrium of a body (structure) subject to a three-
dimensional force system. Many analyses are carried out for design purposes assuming
two-dimensional force systems and hence only two linear equations (e.g. equation (3) and
equation (5) representing the x and z axes) and one rotational equation (e.g. equation (7)
representing the y-axis) are required. The X, y and z axes must be mutually perpendicular
and can be in any orientation, however for convenience two of the axes are usually
regarded as horizontal and vertical, (e.g. gravity loads are vertical and wind loads
frequently regarded as horizontal). It is usual practice, when considering equilibrium, to
assume that clockwise rotation is positive and anti-clockwise rotation is negative. The
following conventions have been adopted in this text:

x-direction: horizontal direction - positive is left-to right —» +ve
z- direction: vertical direction - positive is upwards T +ve
y- direction: rotation about the y-axis - positive is clockwise ™ tve
Z
plane (XZ) of the structure X

Figure 1.2
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Structures in which all the member forces and external support reactions can be
determined using only the equations of equilibrium are ‘statically determinate’ otherwise
they are ‘indeterminate structures’. The degree-of-indeterminacy is equal to the number of
unknown variables (i.e. member forces/external reactions) which are in excess of the
equations of equilibrium available to solve for them, see Section 1.5

The availability of current computer software enables full three-dimensional analyses of
structures to be carried out for a wide variety of applied loads. An alternative, more
traditional, and frequently used method of analysis when designing is to consider the
stability and forces on a structure separately in two mutually perpendicular planes, i.e. a
series of plane frames and ensure lateral and rotational stability and equilibrium in each
plane. Consider a typical industrial frame comprising a series of parallel portal frames as
shown in Figure 1.3. The frame can be designed considering the X-Z and the Y-Z planes as
shown.

transverse wind loading

diagonal wind bracing longitudinal wind loading

snow load — wind load H rafter Individual frames designed

€ 1§ 1§

plane for dead/imposed and
\ rigid connections /

transverse wind loads.

< <——> In the Y-Z plane bracing is
column column . ...

transverse transverse provided (pin-jointed) to

wind load wind load  transfer the longitudinal wind
forces.
wind load ﬁ

lo_ngitudinal ie b longitudinal
wind load simple connections tie beam wind load

R R

longitudinal

Figure 1.3
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1.3 Mathematical Modelling

The purpose of mathematical modelling is to predict structural behaviour in terms of loads,
stresses and deformations under any specified, externally applied force system. Since
actual structures are physical, three-dimensional entities it is necessary to create an
idealized model which is representative of the materials used, the geometry of the structure
and the physical constraints e.g. the support conditions and the externally applied force
system.

The precise idealisation adopted in a particular case is dependent on the complexity of the
structure and the level of the required accuracy of the final results. The idealization can
range from simple two-dimensional ‘beam-type’ and ‘plate’ elements for pin-jointed or
rigid jointed plane frames and space frames to more sophisticated three-dimensional
elements such as those used in grillages or finite element analyses adopted when analysing
for example bridge decks, floor-plates or shell roofs.

It is essential to recognise that irrespective of how advanced the analysis method is, it
is always an approximate solution to the real behaviour of a structure.

In some cases the approximation reflects very closely the actual behaviour in terms of both
stresses and deformations whilst in others, only one of these parameters may be accurately
modelled or indeed the model may be inadequate in both respects resulting in the need for
the physical testing of scaled models.

1.3.1 Line Diagrams

When modelling it is necessary to represent the form of an actual structure in terms of
idealized structural members, e.g. in the case of plane frames as beam elements, in which
the beams, columns, slabs etc. are indicated by line diagrams. The lines normally coincide
with the centre-lines of the members. A number of such line diagrams for a variety of
typical plane structures is shown in Figures 1.4 to 1.9. In some cases it is sufficient to
consider a section of the structure and carry out an approximate analysis on a sub-frame as
indicated in Figure 1.8.

Beam

Three-pinned
Portal frame

Figure 1.4




Structural Analysis and Design 5

Cantilever

Figure 1.5
Multi-span Beam

Figure 1.6

Braced pin-jointed frame

Figure 1.7
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\

Plan of typical floor

-

B8
BB

Section x-x

. Rigid-jointed
Figure 1.9 frame

1.3.2 Load Path

The support reactions for structures relate to the restraint conditions against linear and
rotational movement. Every structural element and structure must be supported in order to
transfer the applied loading to the foundations where it is dissipated through the ground.
For example beams and floor slabs may be supported by other beams, columns or walls
which are supported on foundations which subsequently transfer the loads to the ground. It
is important to trace the load path of any applied loading on a structure to ensure that
there is no interruption in the flow as shown in Figure 1.10.

IEESESENESSEENNENEENNN]
== ke ==

-—
-

1

_<—|:\<—[‘<—|:\<—[‘<—[

INEEEEENNNE]

A ey ey s 2

Load path for a typical frame

Figure 1.10
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The loads are transferred between structural members at the joints using either simple or
rigid connections (i.e. moment connections). In the case of simple connections axial and/or
shear forces are transmitted whilst in the case of rigid connections in addition to axial and
shear effects, moments are also transferred.

The type of connections used will influence the degree-of-indeterminacy and the method
of analysis required (e.g. determinate, indeterminate, pin-jointed frame, rigid-jointed
frame). Connection design, reflecting the assumptions made in the analysis, is an essential
element in achieving an effective load path.

1.3.3 Foundations

The primary function of all structural members/frames is to transfer the applied dead and
imposed loading, from whichever source, to the foundations and subsequently to the
ground. The type of foundation required in any particular circumstance is dependent on a
number of factors such as the magnitude and type of applied loading, the pressure which
the ground can safely support, the acceptable levels of settlement and the location and
proximity of adjacent structures.

In addition to purpose made pinned and roller supports the most common types of
foundation currently used are indicated Figure 1.11. The support reactions in a structure
depend on the types of foundation provided and the resistance to lateral and rotational
movement.

! i 3 ] i

~

square pad foundations

rectangular pad foundation rectangular combined foundation

piled foundation

strip foundations

raft foundation

Figure 1.11
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1.4 Structural Loading

All structures are subjected to loading from various sources. The main categories of
loading are: permanent (e.g. self-weight) and variable loads (e.g. imposed and wind loads).
In some circumstances there may be other loading types which should be considered, such
as settlement, fatigue, temperature effects, dynamic loading, or impact effects (e.g. when
designing bridge decks, crane-gantry girders or maritime structures). In the majority of
cases design considering combinations of permanent, imposed and wind loads is the most
appropriate.

Most floor systems are capable of lateral distribution of loading. In situations where lateral
distribution is not possible, the effects of the concentrated loads should be considered with
the load applied at locations which will induce the most adverse effect, e.g. maximum
bending moment, shear and deflection. In addition, local effects such as crushing and
punching should be considered where appropriate.

In multi-storey structures it is very unlikely that all floors will be required to carry the full
imposed load at the same time. Statistically it is acceptable to reduce the total floor loads
carried by a supporting member by varying amounts depending on the number of floors or
floor area carried. Dynamic loading is often represented by a system of equivalent static
forces which can be used in the analysis and design of a structure.

The primary objective of structural analysis is to determine the distribution of internal
moments and forces throughout a structure such that they are in equilibrium with the
applied design loads.

Mathematical models which can be used to idealise structural behaviour include: two- and
three-dimensional elastic behaviour, elastic behaviour considering a redistribution of
moments, elasto-plastic/plastic behaviour and non-linear behaviour. The following
chapters illustrate most of the hand-based techniques commonly used to predict structural
member forces and behaviour.

In braced structures (i.e. those in which structural elements have been provided
specifically to transfer lateral loading) where floor slabs and beams are considered to be
simply supported, vertical loads give rise to different types of beam loading. Floor slabs
can be designed as either one-way spanning or two-way spanning as shown in
Figures 1.12(a) and (b).

main beam .
\ main beam
tle beams R
rnaln beam N /
maln beam \ \/
. main beam
tie beam l main beam 1
one-way spanning slab two-way spanning slab
(a) (b)

Figure 1.12

In the case of one-way spanning slabs the entire load is distributed to the two main beams.
Two-way spanning slabs distribute load to main beams along all edges. These differences
give rise to a number of typical beam loadings in floor slabs as shown in Figures 1.13.
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1.5 Statical Indeterminacy

Any plane-frame structure which is in a state of equilibrium under the action of an
externally applied force system must satisfy the following three conditions:

e the sum of the horizontal components of all applied forces must equal zero,

e the sum of the vertical components of all applied forces must equal zero,

e the sum of the moments (about any point in the plane of the frame) of all applied
forces must equal zero.

This is represented by the following ‘three equations of static equilibrium’

Sum of the horizontal forces equals zero +ve XFy =0 —»
Sum of the vertical forces equals zero +ve ZF, =0 T
Sum of the moments about a point in the plane of the forces equals zero +ve TM =0 ¢\

In statically determinate structures, all internal member forces and external reactant forces
can be evaluated using the three equations of static equilibrium. When there are more
unknown member forces and external reactant forces than there are available equations of
equilibrium a structure is statically indeterminate and it is necessary to consider the
compatibility of structural deformations to fully analyse the structure.

A structure may be indeterminate due to redundant components of reaction and/or
redundant members. i.e. a redundant reaction or member is one which is not essential to
satisfy the minimum requirements of stability and static equilibrium, (Note: it is not
necessarily a member with zero force).

The degree-of-indeterminacy (referred to as /p in this text) is equal to the number of
unknown variables (i.e. member forces/external reactions) which are in excess of the
equations of equilibrium available to solve for them.

1.5.1 Indeterminacy of Two-Dimensional Pin-Jointed Frames
The external components of reaction (7) in pin-jointed frames are normally one of two
types:

i) aroller support providing one degree-of-restraint, i.e. perpendicular to the roller,
ii) a pinned support providing two degrees-of-restraint, e.g. in the horizontal and
vertical directions.

as shown in Figure 1.14

A

roller supports: providing one pinned supports: providing two
restraint perpendicular to the roller. mutually perpendicular restraints

Figure 1.14
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It is necessary to provide three non-parallel, non-concentric, components of reaction to
satisfy the three equations of static equilibrium. Consider the frames indicated in
Figures 1.15 and 1.16

15 kN 15 kN

» g External
N\ @ Force
;\\C System
%Vc
,,,,,,,,,,,,, c_
External Force System / y \
A G F) >»E
Hy T« < Hy,
Figure 1.16 ) 6.0m * 6.0m ? 6.0m Ei'
Va 30 kN Vi Vi

In Figures 1.15 and 1.16 the applied forces and the external components of reaction
represent co-planar force systems which are in static equilibrium. In Figure 1.15 there are
three unknowns, (Ha, Va and V), and three equations of equilibrium which can be used to
determine their values: there are no redundant components of reaction.

In Figure 1.16 there are five unknowns components of reaction, (Ha,Va, V¢, Hg and Vi),
and only three equations of equilibrium; there are two redundant reactions in this case.

The internal members of pin-jointed frames transfer either tensile or compressive axial
loads through the nodes to the supports and hence reactions. A simple pin-jointed frame is
one in which the minimum number of members is present to ensure stability and static
equilibrium.

Consider the basic three member pinned-frame indicated in Figure 1.15. There are three
nodes and three members. A triangle is the basis for the development of all pin-jointed
frames since it is an inherently stable system, i.e. only one configuration is possible for
any given three lengths of the members.
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Consider the development of the frame shown in Figure 1.17:

ns me  ns mg  Hg
m ms 7 Mg

nm ™ g, ms  ny

M3

iy

mio ny mi, ng
n; — node number m; — member number
Figure 1.17

Initially there are three nodes and three members. If the number of members in the frame
is to be increased then for each node added, two members are required to maintain the
triangulation. The minimum number of members required to create a simple frame can be
determined as follows:

m = the initial three members + (2 X number of additional joints)

=3+2(n-3) = (21 —3)
e.g. in this case n =8 and therefore the minimum number of members = [(2 x 8) — 3)]
Som=13

Any members which are added to the frame in addition to this number are redundant
members and make the frame statically indeterminate; e.g.

XN DN

one redundant member two redundant members
Figure 1.18

It is also essential to consider the configuration of the members in a frame to ensure
that it is triangulated. The simple frames indicated in Figure 1.19 are unstable.

m = (2n — 3) but one bay is
not triangulated

¥

m < (2n — 3) and the central
section is not triangulated

Figure 1.19

As indicated previously, the minimum number of reactant forces to maintain static
equilibrium is three and consequently when considering a simple, pin-jointed plane-frame
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and its support reactions the combined total of members and components of reaction is
equal to:

2 (number of members + support reactions) = (m +r)=(2n—-3)+3 =2n

Consider the frames shown in Figure 1.20 with pinned and roller supports as indicated.

B number of joints n =3
number of members m=3
2n-3)=3
number of support reactions r=>3
A C (m+r)=6=2n
Hy The frame is statically determinate
:‘%“VA (a) Ve =0
B C P number of joints n =7
number of members m=11
2n-3)=11
number of support reactions r=>3
(m+r)y=14=2n
A G F E  The frame is statically determinate
Hy 4 $ Ip=0
Va (b) Ve
B C D E number of joints n =38
number of members m =14
2n-3)=13
number of support reactions r =3
(m+r)=17>2n
The frame is statically indeterminate with
H A G F one redundant internal member
A
H 9 =1
Va (C) Ve
Vb
& D Hp number of joints n =38
number of members m=15
2n-3)=13
number of support reactions r==6
B E (m+r)=21>2n
The frame is statically indeterminate and
has 5 redundancies:
(2 internal members + 3 external reactions)
A F 1 D~ 5
'S H G A
Va Ve
(d) Figure 1.20

The degree of indeterminacy Ip= (m +r)—2n
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Compound trusses which are fabricated from two or more simple trusses by a structural
system involving no more than three, non-parallel, non-concurrent, unknown forces can
also be stable and determinate. Consider the truss shown in Figure 1.21(a) which is a
simple truss and satisfies the relationships m = (2n —3) and Ip = 0.

A additional two
forces at the pin

(a) (b) in this member
Figure 1.21

This truss can be connected to a similar one by a pin and an additional member as shown
in Figure 1.21(b) to create a compound truss comprising two statically determinate trusses.
Since only an additional three unknown forces have been generated the three equations of
equilibrium can be used to solve these by considering a section A-A as shown (see
Chapter 3 — Section 3.2. - Method of Sections for Pin-Jointed Frames: Problem 3.4).

1.5.2 Indeterminacy of Two-Dimensional Rigid-Jointed Frames

The external components of reaction (7) in rigid-jointed frames are normally one of three
types:
i) aroller support providing one degree-of-restraint, i.e. perpendicular to the roller,
ii) a pinned support providing two degrees-of-restraint, e.g. in the horizontal and
vertical directions,
iii) a fixed (encastre) support providing three degrees-of-restraint, i.e. in the
horizontal and vertical directions and a moment restraint
as shown in Figure 1.22

T2 R E S

roller supports: providing pinned supports: providing fixed supports: providing
one restraint perpendicular  two mutually perpendicular ~ two mutually perpendicular
to the roller. restraints restraints and one moment

. restraint.
Figure 1.22

In rigid-jointed frames, the applied load system is transferred to the supports by inducing
axial loads, shear forces and bending moments in the members. Since three components of
reaction are required for static equilibrium the total number of unknowns is equal to:
[(3 xm)+r]. Ateachnode there are three equations of equilibrium, i.e.
X the vertical forces F,=0;
X the horizontal forces Fy = 0;
2 the moments M =0, providing (3 x n) equations.

The degree of indeterminacy Ip=[(3m)+r]—3n
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Consider the frames shown in Figure 1.23

B C B C
D E
=4
G Hg F | Hr
Vs Ve
(b)
My
=1\
A “' < B
Va ID =3
D
CL ‘ HD
(d) 5 :
Ve Vb

Va Figure 1.23

The existence of an internal pin in a member in a rigid-frame results in only shear and
axial loads being transferred through the frame at its location. This reduces the number of
unknowns and hence redundancies since an additional equation is available for solution
due to the sum of the moments about the pin being equal to zero, i.e. £ My =0

Consider the effect of introducing pins in the frames shown in Figure 1.24

B ‘\ C

pin

In = {[(3m) + r] = 3n} — 1 due to the
H release of the moment capacity at the
ATTRTA . .
position of the pin.

(a) Vi Ih={9+5]-12}-1=1
M,
Hy o \A
A<
Va Ip= {[(3m) + 1] - 3n} — 1 due to the
release of the moment capacity at the
position of the pin.
h={9+6]-12} -1=2
(b)

Figure 1.24
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The existence of an internal pin at a node with two members in a rigid-frame results in the
release of the moment capacity and hence one additional equation as shown in
Figure 1.25(a). When there are three members meeting at the node then there are
effectively two values of moment, i.e. M; and M, and in the third member M; = (M, + M,)
The introduction of a pin in one of the members produces a single release and in two
members (effectively all three members) produces two releases as shown in
Figure 1.25(b).

In general terms the introduction of ‘p’ pins at a joint introduces ‘p’ additional equations.
When pins are introduced to all members at the joint the number of additional equations
produced equals (number of members at the joint — 1).

M
MAaN u M
Y T , Jero
N d M, + M, W M
no releases one release
Zero
<§_ 7ero A1 Zero
Zero Zero ZEero
\\ S
pm one release 7610 \J ze10
two releases

(a) (b)
Figure 1.25

Consider the frame shown in Figure 1.26.

B N In = {[Bm) + r] — 3n} — 3 due to the
pin release of the moment capacity at the
positions of the pins.
pin
M, Ib={[Bx6)+7]-3@x7)}-3=1
A\ H,
Va Figure 1.26

The inclusion of an internal roller within a member results in the release of the moment
capacity and in addition the force parallel to the roller and hence provides two additional
equations. Consider the continuous beam ABC shown in Figure 1.27. in which a roller has
been inserted in member AB

My

A
SR
B C
Hy ° & /W % &’HC
Va roller Vs Ve
Figure 1.27

Ip = {[(3m) + r] — 3n} — 2 due to the release of the moment and axial load capacity at the
roller s h={[(3x2)+6]-3x3)-2=1
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Consider the same beam AB with a pin added in addition to the roller.

A A\L\
24
HA R P4 S‘\ eeol B C HC
w \ 3+
Va P roller VB? )

Ve
Figure 1.28

Ip = {[(3m) + r] — 3n} — 3 due to the release of the moment capacity at the position of the
pin and the release of the moment and axial load capacity at the roller

Ih={(3x2)+6]-(3%x3)-3=0 The structure is statically determinate.

A similar approach can be taken for three-dimensional structures; this is not considered
in this text.

1.6  Structural Degrees-of-Freedom

The degrees-of-freedom in a structure can be regarded as the possible components of
displacements of the nodes including those at which some support conditions are provided.
In pin-jointed, plane-frames each node unless restrained, can displace a small amount &
which can be resolved in to horizontal and vertical components ¢y and dy as shown in
Figure 1.29.

Each component of displacement can be
regarded as a separate degree-of-freedom
and in this frame there is a total of three
degrees-of-freedom i.e. the wvertical and
horizontal displacement of node B and the
horizontal displacement of node C as
indicated. Figure 1.29

In a pin-jointed frame there are effectively two possible components of displacement for
each node which does not constitute a support. At each roller support there is an additional
degree-of-freedom due to the release of one restraint. In a simple, i.e. statically
determinate frame, the number of degrees-of-freedom is equal to the number of members.
Consider the two frames indicated in Figures 1.20(a) and (b):

In Figure 1.20 (a): the number of members m =3
possible components of displacements at node B =2
possible components of displacements at node support C =1
Total number of degrees-of-freedom =m)=3

In Figure 1.20 (b): the number of members m =11
possible components of displacements at nodes =10
possible components of displacements at support E =1

Total number of degrees-of-freedom =m =11
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In the case of indeterminate frames, the number of degrees-of-freedom is equal to the
(number of members — Ip); consider the two frames indicated in Figures 1.20 (c) and (d):

In Figure 1.20 (c): the number of members m =14
possible components of displacements at nodes =12
possible components of displacements at support G =1
degree-of-indeterminacy I =
Total number of degrees-of-freedom (m—-1Ip) =13

In Figure 1.20 (d): the number of members m =15
possible components of displacements at nodes =10
degree-of-indeterminacy I =
Total number of degrees-of-freedom (m—-1Ip) =10

In rigid-jointed frames there are effectively three possible components of displacement for
each node which does not constitute a support; they are rotation and two components of
translation e.g. 6, & and Oy, At each pinned support there is an additional degree-of-
freedom due to the release of the rotational restraint and in the case of a roller, two
additional degrees-of-freedom due to the release of the rotational restraint and a
translational restraint. Consider the frames shown in Figure 1.23.

In Figure 1.23 (a): the number of nodes (excluding supports) =2
possible components of displacements at nodes =6
possible components of displacements at support D =
Total number of degrees-of-freedom =17

In Figure 1.23 (b): the number of nodes (excluding supports) =4
possible components of displacements at nodes =12
possible components of displacements at support G =~ =
possible components of displacements at support F =1
Total number of degrees-of-freedom =14

In Figure 1.23 (c¢): the number of nodes (excluding supports) =3
possible components of displacements at nodes =9
possible components of displacements at support A =
Total number of degrees-of-freedom =10

In Figure 1.23 (d): the number of nodes (excluding supports) =1
possible components of displacements at nodes =3

possible components of displacements at support C =
possible components of displacements at support D =
Total number of degrees-of-freedom =6

The introduction of a pin in a member at a node produces an additional degree-of-freedom.
Consider the typical node with four members as shown in Figure 1.30. In (a) the node is a
rigid connection with no pins in any of the members and has the three degrees-of-freedom
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indicated. In (b) a pin is present in one member, this produces an additional degrees-of-
freedom since the rotation of this member can be different from the remaining three,
similarly with the other members as shown in (c¢) and (d).

5\/ 1 QA v \é‘v H
~o Lo = (1 9 01~ 5
0 1 . lrvo) ~ \E,OJ ~ N %\
Il 0> T 03/ 0, h 03 O‘)éz\\
(b) (©) (d
Figure 1.30

Degrees-of-freedom:
(a) total=3  one of rotation - &, two of translation - oy, dv
(b) total=4  two of rotation - 8, 6, two of translation - Oy, Jv
(c) total=5  three of rotation - 8, 6, 6; two of translation - 0y, dvy

(d) total=6  four of rotation - 8,,8, 05 84  two of translation - oy, v

In many cases the effects due to axial deformations is significantly smaller than those due
to the bending effect and consequently an analysis assuming axial rigidity of members is
acceptable. Assuming axial rigidity reduces the degrees-of-freedom which are considered;
consider the frame shown in Figure 1.31.

Ovs 6VC»\ Onc
n
B 5 Sus C ’GC Sve No axial rigidity 4
Svp Degrees-of-freedom:
N D) Our three at nodes B, C, D and E
D 'gD E[* O one at node F
two at node G
Qv G g O F Total = [(3 x 4) + 1 +2] =15
s = eG - 0 F
N N Jnc Assume all columns to be axial rigid
B 0 OuB C JHC Degrees-of-freedom:
B 5 Sue two at nodes B, C, D and E
-) — '\‘ > one at node F
D fp E O two at node G
Total=[2 x4)+1+2]=11

a8
ok
>
Oi%
jas)
Q
-
5
-

O '_\a-IB: Shc Assume all beams and columns to
be axial rigid

Degrees-of-freedom:

DK E ,\5HD= Oue  one rotation at B, C, D, and E

9 v one translation at levels BC and DE
b O one at node F
A G Suc FAN, two at node G
= o, F Total=[(1 x4)+2+1+2]=9

Figure 1.31
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1.6.1 Problems: Indeterminacy and Degrees-of-Freedom

Determine the degree of indeterminacy and the number of degrees-of-freedom for the
pin-jointed and rigid-jointed frames indicated in Problems 1.1 to 1.3 and Problems 1.4 to

1.6 respectively.

jeste)
RRSa

Problem 1.2

Problem 1.1

Problem 1.3

Problem 1.4

Problem 1.5

Problem 1.6



22 Examples in Structural Analysis

1.6.2 Solutions: Indeterminacy and Degrees-of-freedom

Solution
Topic: Indeterminacy and Degrees-of-freedom
Problem Numbers: 1.1 to 1.6

Degree-of-Indeterminacy:
Ip=(m+r)-2n=(12+4)-2x7)=2
Total number of degrees-of-freedom:
(m-Ip)=(12-2)=10

2

Degree-of-Indeterminacy:
Ih=(m+r)-2n=(12+5)-2x7)=3 n
Total number of degrees-of-freedom: m
(m-Ip)=(12-3)=9 - r

Degree-of-Indeterminacy:
Ihb=(m+r)-2n=09+4)-2x6)=1
Total number of degrees-of-freedom:
(m=Ip)=0O-1)=8

Degree-of-Indeterminacy: /Ip=Bm+r)—3n—1 (Note: one internal pin)
Internal pins = 1

h=[3%x8)+7-3%x9)]-1=3

The number of nodes (excluding supports) =6

Displacements at nodes = (3 X 6) + 1 =19

Displacements at supports = 2

Total number of degrees-of-freedom: = 21

Degree-of-Indeterminacy: Ip = (3m +r) - 3n
Lh=[B3x7)+6—-3x7)]=6

The number of nodes (excluding supports) = 5
Displacements at nodes = (3 x 5) =15
Displacements at supports = 0

Total number of degrees-of-freedom: = 15

Degree-of-Indeterminacy: I = (3m +r) — 3n
Ih=[3%x8)+8-(3x%x9)]=5

The number of nodes (excluding supports) =5
Displacements at nodes = (3 x 5) =15
Displacements at supports = 4

Total number of degrees-of-freedom: = 19




2. Material and Section Properties

2.1 Introduction

Structural behaviour is dependent upon material characteristics such as elastic constants
which describe the stress/strain relationships and the geometry of the cross-section of
individual members. This section describes the principal characteristics and properties
which must be considered and evaluated to enable mathematical modelling to be
undertaken.

2.1.1 Simple Stress and Strain

The application of loads to structural members induces deformations and internal resisting
forces within the materials. The intensity of these forces is known as the stress in the
material and is measured as the force per unit area of the cross-sections which is normally
given the symbol ¢ when it acts perpendicular to the surface of a cross-section and 7
when it acts parallel to the surface. Different types of force cause different types and
distributions of stress for example: axial stress, bending stress, shear stress, torsional stress
and combined stress.

Consider the case of simple stress due to an axial load P which is supported by a column
of cross-sectional area 4 and original length L as shown in Figure 2.1. The applied force
induces an internal stress o such that:

P=(oxA) andhence o =P/A (i.e.load/unit area)

P T,

A “
b o-pu

Figure 2.1

The deformation induced by the stress is quantified by relating the change in length to the
original length and is known as the strain in the material normally given the symbol &
where:

£= (change in length/original length) = (d/L)
Note: the strain is dimensionless since the units of dand L are the same.
The relationship between stress and strain was first established by Robert Hook in 1676

who determined that in an elastic material the strain is proportional to the stress. The
general form of a stress/strain graph is shown in Figure 2.2.
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Stress (0)
A
i Plastic Region Fracture
elastic [------------------ '
limit
Elastic Region
(4 : ‘
Strain (g)
Figure 2.2

The point at which this graph ceases to obey Hook’s Law and becomes non-linear is the
‘elastic limit’ or ‘proportional limit’.

A typical stress-strain curve for concrete is shown in Figure 2.3(a). This is a non-linear
curve in which the peak stress is developed at a compressive strain of approximately 0.002
(depending upon the strength of the concrete) with an ultimate strain of approximately
0.0035. There is no clearly defined elastic range over which the stress varies linearly with
the strain. Such stress/strain curves are typical of brittle materials.

A typical stress-strain curve for hot-rolled mild steel is shown in Figure 2.3(b). When a
test specimen of mild steel reinforcing bar is subjected to an axial tension in a testing
machine, the stress/strain relationship is linearly elastic until the value of stress reaches a
yield value, e.g. 250 N/mm* (MPa).

At this point an appreciable increase in the stretching of the sample occurs at constant
load, this is known as yielding. During the process of yielding a molecular change takes
place in the material which has the effect of hardening the steel. After approximately 5%
strain has occurred sufficient strain-hardening will have developed to enable the steel to
carry a further increase in load until a maximum load is reached.

The stress-strain curve falls after this point due to a local reduction in the diameter of the
sample (known as necking) with a consequent smaller cross-sectional area and load
carrying capacity. Eventually the sample fractures at approximately 35% strain.

load falling off due
maximum tensile stress {0 necking of the
specimen
upper/lower %
S 5 yield stresses
2 < | X .
w2 1 .
o ' | 2 effect of strain  fracture point!
& fracture point ", = | ) hardening '
' n linearly !
! ¥ elastic !
' region |
Strain (&) Strain (€)
(a) (b)

Figure 2.3
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The characteristics of the stress/strain curves are fundamental to the development and use
of structural analysis techniques. A number of frequently used material properties relating
to these characteristics are defined in Sections 2.1.2 to 2.1.6.

2.1.2 Young’s Modulus (Modulus of Elasticity) — E

From Hooke’s Law (in the elastic region): stress o< strain ... stress = (constant X strain).
The value of the constant is known as ‘Young’s Modulus® and given the symbol ‘E’. Since
strain is dimensionless the units of £ are the same as those for stress. It represents a
measure of material resistance to axial deformation. For some materials the value of
Young’s Modulus is different in tension than it is in compression. The numerical value of
E is equal to the slope of the stress/strain curve in the elastic region, i.e. tan@in Figure 2.2.

2.1.3 Secant Modulus - E,

The ‘secant modulus’ is equal to the slope of a line drawn from the origin of the
stress—strain graph to a point of interest beyond the elastic limit as shown in Figure 2.4.

Stress (0)
A

point of interest

secant modulus = tan 3

B

Strain (¢) o Figure 2.4

The secant modulus is used to describe the material resistance to deformation in the
inelastic region of a stress/strain curve and is often expressed as a percentage of Young’s
Modulus, e.g. 75% - 0.75E.

2.1.4 Tangent Modulus - E,

The ‘tangent modulus’ is equal to the slope of a tangent line to the stress—strain graph at a
point of interest beyond the elastic limit as shown in Figure 2.5.

Stress (0)
A

. AN
} point of interest
.t:.‘.f. -
a
tangent modulus = tan o

Figure 2.5

v

Strain (&)

The tangent modulus can be used in inelastic buckling analysis of columns as shown in
Section 6.3.6 of Chapter 6.
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2.1.5 Shear Rigidity (Modulus of Rigidity) - G

The shear rigidity is used to describe the material resistance against shear deformation.
similar to Young’s Modulus for axial or normal stress/strain. The numerical value of G is
equal to the slope of the shear stress/strain curve in the elastic region, where the shear
strain is the change angle induced between two perpendicular surfaces subject to a shear
stress.

2.1.6 Yield Strength

The yield strength corresponds with the point on the stress/strain graph where permanent
deformation begins in the material. In some cases, e.g. in Figure 2.3(a) there is no distinct
yield point whilst in others, such as in Figure 2.3(b) there is a well-defined yield region. In
the former case a percentage offset is often used to obtain an approximate yield point, e.g.
a 0.2% offset point can be determined by drawing a line parallel to the elastic linear line of
the graph starting at a point 0.2% (0.002) along the strain axes as shown in Figure 2.6. The
intersection of this line with the stress—strain curve defines the 0.2% yield point.

Stress (0)
A

ield Stress f--------mmmmmmmm oo
y AN N

7 i 0.2% offset point

elastic limit | ______________ ’

,
' :
1 , 1
' l

,

:
,
4 1

1

.8 : .,
0.002 Strain (£)

N

Figure 2.6

2.1.7 Ultimate Tensile Strength

The ‘ultimate strength’ is the maximum stress which a material is capable of sustaining
and corresponds to the highest point on the stress/strain curve; see Figure 2.3(b). In
engineering terms this is normally the value adopted, however if a specimen undergoes
considerable necking prior to fracture the true value will differ from this.

2.1.8 Modulus of Rupture in Bending

The ‘modulus of rupture’ represents the ultimate strength in bending obtained during a
bending test. It is determined by calculating the maximum bending stress in the extreme
fibres in a member at failure.

2.1.9 Modulus of Rupture in Torsion

The ‘modulus of rupture’ represents the ultimate strength in torsion obtained during
torsion test. It is determined by calculating the maximum shear stress in the extreme fibres
of a circular member at failure.
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2.1.10 Poisson’s Ratio — v

The ‘Poisson’s Ratio’ for a material is a dimensionless constant representing the ratio of
the lateral strain to the axial strain as shown in Figure 2.7.

lateral strain =~ £

longitudinal strain

(4b/b)  (Ah/h)

(A1) (A1)

glongitudinal

b— Abl\L - Original geometry

Figure 2.7

2.1.11 Coefficient of Thermal Expansion -«

The linear coefficient of thermal expansion describes by how much a material will expand
for each degree of temperature increase/decrease, e.g. the change in the length of a bar
made from a particular material is given by:

éZz = O!LAT
where
«  1is the coefficient of thermal expansion for the material,
L s the original length,
Ay is the change in temperature — a reduction being considered negative and an increase
being positive.
The unit for coefficient of thermal expansion is typically °C™".

2.1.12  Elastic Assumptions

The laws of structural mechanics are well established in recognised elastic theory using
the following assumptions:

e the material is homogeneous which implies its constituent parts have the same
physical properties throughout its entire volume,

e the material is isotropic which implies that the elastic properties are the same in
all directions,

¢ the material obeys Hooke’s Law, i.e. when subjected to an external force system
the deformations induced will be directly proportional to the magnitude of the
applied force (i.e. P o< 9),

e the material is elastic, which implies that it will recover completely from any
deformation after the removal of load,

o the modulus of elasticity is the same in tension and compression,

e plane sections remain plane during deformation. During bending this assumption
is violated and is reflected in a non-linear bending stress diagram throughout
cross-sections subject to a moment; in most cases this can be neglected.
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2.2 Elastic Cross-Section Properties

An evaluation of the elastic section properties of a cross-section is fundamental to all
structural analyses. These encompass a wide range of parameters such as the cross-
sectional area, position of the centroid and the elastic neutral axes, the second moment of
area about the centroidal axes and any parallel axes and the elastic section modulus (Note:
not the Elastic Modulus of Elasticity which is discussed in Section 2.1). Each of these
parameters is discussed separately in Sections 2.2.1 to 2.2.8.

Most structural elements have a cross-section for which standard properties are known,
e.g. square, rectangle, triangle, trapezium, circle etc., or comprise a combination of one or
more such shapes. If the properties of each shape which makes up a complete cross-
section are known, this information can be used to determine the corresponding properties
of the composite shape. A number of examples are given to illustrate this in the following
sections.

In structural steelwork a variety of hot-rolled standard sections are available, the cross-
sectional properties of which are given in published tables. A selection of the most
commonly used ones are shown in Figure 2.8.

Zan LT/T

Equal angle (UKA) Unequal angle (UKA) T-section (TUB or TUC)
=
Universal Beam (UKB) Universal Column (UKC) Channel (UKPFC)

» Q O

Rectangular hollow section (RHS) Square hollow section (SHS) Circular hollow section (CHS)

Figure 2.8

2.2.1 Cross-sectional Area
The cross-sectional area of a composite shape can be expressed as:

number of parts
Atotal = z Ai
i=1
where:
Awa 18 the total area of the composite cross-section
A; is the cross-sectional area of each component part
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Consider the composite shapes indicated in (i) to (ix) and determine the value of A

()
é g L 10 mm
S
:
£ g\
& - 3
number of parts
Aga= D 4 =[(90x10)+ (90 x 8)] = 1620 mm’ Figure 2.9
i=1
(ii)
90 mm 82 mm
T [ F Fﬁ 8 mm
g
g
’ JJL 8 mm 777@ 8 mm
number of parts
Awa= D> 4 =[(150x8) + (82 x 8)] = 1856 mm’ Figure 2.10
i=1
(iii)
£ 100 mm N 100 mm ‘
g F 10 mm
2 | DD ]
X 8 mm
g
g
3
10 mm
| 100mm |

Figure 2.11

number of parts

A= >4 =[(100x 10) + (150 x 8) + (100 x 10)] = 3200 mm’
i=1
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(iv) 30 mm 30 mm

g 8 mm

g 7T

S = po L E==m [ 10mm

< 7# 8 mm S

30 mm

g 3

g " = 10 mm

- Figure 2.12
number of parts

Aoa= 34 =[(130x8) + (30 X 10) + (30 x 10)] = 1640 mm’
i=1

\))

10 mm 130 mm 10 mm

= Hj § T, ]
R } T :

Note: the cross-sectional
area of these parts was
calculated in (iii) and (iv)
above.

Figure 2.13

number of parts

Ao = Y 4 =(3200 +1640) =4840 mm’
i=1
(vi)
g
g
R
L30 mmL 70 mm L 50 mm L 30 mm | L 70 mm L | 50 mm L

Figure 2.14

number of parts

A= >4 =[(0.5x30x50)+(70x 50) + (0.5 x 50 x 50)] = 5500 mm’
i=1
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Note: For a trapezium in general;

Figure 2.15

number of parts

Aroral = ZAi =[(0.5 x xy X h) + (b x h) + (0.5 X x5 X })]
i=1

= (O.SXI +b+ OSXZ)h = 0.5()61 +2b +X2)h
Aot = [0.5 X (the sum of the lengths of the parallel sides) X (perpendicular height)]

Check the area of the trapezium in (vi): Ao = [0.5 X (70 + 150) X 50] = 5500 mm?
In a similar manner to adding the individual areas of component parts to obtain the total
area, section properties can be evaluated by subtracting areas which do not exist, e.g. in

hollow sections. Consider examples (vii) to (ix).

(Vii) 10 mm 10 mm
o — - Q“ 10 mm o
g | : £ £
g g g
S [ - [
N N (=}
I\ g : 9\ IS
Qe .............. i 10 mm d

120 mm 120 mm 100 mm

number of parts

A= >4 =[(220 x 120) - (200 x 100)] = 6400 mm’ Figure 2.16
i=1

60 mm 10 mm

(viii)

220 mm
220 mm

110 mm

L 50 mm

7

120 mm 120 mm

number of parts

Atotal = ZAi = [(220 x 120) — (100 x 50)] = 21,400 mm’ Figure 2.17

i=1
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(ix) 2270 mm
¥ %
160 mm 375 mm 1200 mm 375 mm 160 mm

| | £

17 T

wv

o~

_

g

g

4/125 mm diameter ducts a

<+

! g

225 mm 3 at 250 mm centres ;225 mm g

— S

1200 mm
y 2270 mm Yy 375mm 375 mm

T

:

4/125 mm diameter ducts

405 mm

L 1200 mm |

Figure 2.18
number of parts
Aot = ZAi
i=1
= [0.5 % (1200 + 2270) x (600)] — 2[(0.5 x 375 x 405) ] — 4 [rt x 62.5%]
= 840,038 mm”

2.2.2 Centre of Gravity and Centroid

The centre of gravity of an object is the point through which the force due to gravity on the
total mass of the object is considered to act. The corresponding position on a plane surface
(i.e. relating to the cross-sectional area) is known as the centroid; both are indicated in

Figure 2.19 z

x - 1 \ Position of the

centre-of-gravity :
—— weight of the mass !
i z

z Figure 2.19

Position of the centroid
of the cross-section
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Consider the cross-section 4 shown in Figures 2.20(a) and (b) which can be considered to
be an infinite number of elemental areas each equal to d4. The 1% moment of area
(i.e. area X perpendicular lever arm) of the total area about any axis is equal to the sum of
the 1® moments of area of each individual area about the same axis, i.e.

AXy = (64xy) oy =) (64xy)/4
AXZ =) (54%z) o Z =) (64xz)/4

is the total area of the cross section
is the distance in the y direction to the centroid for the total area

A

y

z 1s the distance in the z direction to the centroid for the total area

v is the distance in the y direction to the centroid of the elemental area

z 1s the distance in the z direction to the centroid of the elemental area
Z Z

A A

/Total area=A

y Elemental area = 04

N|

>Y > Y

(a) (b)
Figure 2.20

In precise terms, £04y/A and X0A4z/A are the integrals for the shape being considered,
however in most practical cases the cross-sectional area comprises a number of standard
shapes (instead of the elemental area) i.e. rectangles, triangles, circles etc. in which the
position of the centroid is known as shown in Figure 2.21

Z Z V4 Z
A A A A
hod? ho| 7 Wl B
- ¥ A z
: A T
»Y >Y >Y >Y

¥ =b/2 y =b/2 ¥ =(a+b)3 y =d?
zZ =h2 zZ =h/3 Z =h/3 z =d/2

Figure 2.21
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Consider the composite shapes (i) to (ix) indicated previously to determine the
co-ordinates of their centroids.

(i) 7 A 7 A
90 mm
g, i
E A R R ] ] 2
= v é
g
- E ) 45 mm A
E ] NI E
=) ;
' >Y ‘ >Y
LL 8 mm LL 8 mm

Figure 2.22

=[(90 x 10)(45) + (90 x 8)(45)] / 1620 =45 mm (Vertical axis of symmetry)

744 8 mm
¥ =[(150 X 8)(4) + (82 x 8)(49)] / 1856 = 19.91 mm Figure 2.23
7 =[(150 x 8)(75) + (82 x 8)(146)] / 1856 = 100.1 mm

Z Z
A A
50 mm
E —
: g
o v
50 mm | * ;
> Y e 1Ly v —— i S gl , Y
5 mm
Figure 2.24

¥ =[(100 x 10)(50) + (150 x 8)(50) + (100 x 10)(50)] / 3200 = 50.0 mm
Z = [(100 x 10)(165) + (150 x 8)(85) + (100 x 10)(5)] / 3200 = 85.0 mm
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Note: If there are axes of symmetry then the centroid lies at the intersection point of the

axes.
@iv)
V4 V4 V4
g ,“ 30 mm 1 15 mm I
=) 7
.
g R 4 mm g
: :
-Y Y ccc. oo IR '4
= —%L 15 mm
Figure 2.25

¥ =[(30 x 10)(15) + (130 x 8)(4) + (30 x 10)(15)] / 1640 = 8.02 mm

=75.0 mm (Horizontal axis of symmetry)
v)
The values of y and z for the sections in (iii) and (iv) are used in this calculation.
Z zZ z
A A 1&
10{mm 130 mm 10 mm
8 mm W g 8.02 mm
- < | NN
i -
- 75 mm
g
=
b
169.98 mm
:
=Y > Y

Figure 2.26

y =75.0 mm (Vertical axis of symmetry)
z =[(3200)(85) + (1640)(169.98)] / (3200 + 1640) = 113.80 mm
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(vi) V4
Z

A

. -y
30 mm| 70mm | 50 mm 20 mm 16.67 mm 16.67 mm
| | 116.67 mm
Figure 2.27
¥y =[(0.5 %30 x 50)(20) + (70 x 50)(65) + (0.5 x 50 x 50)(116.67)] / 5500= 70.61 mm
z =[(0.5 %30 % 50)(16.67) + (70 x 50)(25) + (0.5 x 50 x 50)(16.67)] / 5500 = 21.97 mm
(vii) 7 Z Z
A A A
1I0mm 10 mm
o """""""" i 10 mm
g } } 60 mm
g —
o =)
Q i i E
10 mm =
Lo ~Y - Y
120 mm
Figure 2.28
y =60.0 mm (Vertical axis of symmetry)
z =110.0mm  (Horizontal axis of symmetry)
(viii) V4 Z 4
A A A
60 mm 10 mm
1 g
VA ﬁL N j
— 85 mm
g void [ -
£ \
(=}
3 : :
= =
— > Y — >

126 mm
Figure 2.29

= [(220 x 120)(60) — (100 x 50)(85)] / 21400 = 54.16 mm

y
7 =[(220 x 120)(110) — (100 x 50)(160)] / 21400 = 98.32 mm



(ix)

y
z

Material and Section Properties 37

Z
2270 mm L
1 7
160 mm 375 mm 1200 mm 375 mm 160 mm
| ! £
W -
"y
\ _
g
g
)
(=]
4/125 mm\; =
diameter
ducts ‘ ‘ 5 ‘ - .Y
225mm 3 at 250 mm centres 225 mm g
Z ; : : S
1200 mm
T Z 2270 mm
1 o
356.67 mm 178.33 mm 1200 mm 178.33 mm 356.67 mm
[ L L ye
i |
g
g
(=]
S
O
. ® > Y
535 mm 1200 mm 535 mm
71 1
A 7
1860 mm
410 mm
E\ 4/125 mm diameter voids
:Noooo¥
: ] - > Y
760mm 250 mm 250 mm 250 mm
1 ‘ 1 Figure 2.30

=(2270) /2= 1135 mm (Vertical axis of symmetry)

= {[(0.5 x 535 x 600)(400) + (1200 x 600)(300) + (0.5 X 535 x 600)(400)]
— [(0.5 x 375 x 405)(390) + (4 x X 62.5% )(120) + (0.5 x 375 x 405)(390)]}/840,038

=332.46 mm
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2.2.3 Problems: Cross-sectional Area and Position of Centroid
Determine the cross-sectional area and the values of y and z to locate the position of the

centroid for the sections shown in Problems 2.1 to 2.6. Assume the origin of the
co-ordinate system to be at the bottom left-hand corner for each section.

350 mm
L 240 mm L 240 mm ‘ é /T T
g, | | 1 E S 200mm
g1 | ] é T ] L 1
2 - E Je— | |
JR - £ _ H 8
T A Ly = Ly o
£ - T
g 3l g T g
2 g 8 mm g
A [
. -T—» o g § z
%L 10 mm z
g i L» L I
Problem 2.1 E L é  200mm ]
— 7 9\l f f
180 mm -
Problem 2.3
‘ 220 mm ‘ Problem 2.2
W 8 mm ¢ W
L A~ 90 mm
J ! L :[ g _ 1420 mm L
15 mm Lk 15 mm g |
ﬁ — S
y | |
_ | y
< g T I
S —
457 x 152 x 52 UKB 2 Z
L»' J- ) £ Lv
Problem 2.4 g 10mm W 1200 mm H 10 mm
Problem 2.5
Section Properties for UKB sections:
457 x 152 x 52 UKB 5
Overall depth h =449.8 mm 1 1
Area A =66.6 cm’ f C—=— 533x210x 82 UKB
2" Moment of area 1, =21400 cm® Y |
2" Moment of area 1, =645 cm* hi2 9.6 mm
i L y
533 x 210 x 82 UKB T
Overall depth h = 5283 mm h2 =
Flange width b = 208.8 mm 457 x 152 x 52 UKB
Area A =105.0 cm’ JZ—LI
Web thickness t, = 9.6 mm

2™ Moment of area
2™ Moment of area

I,y = 47500 cm®
L, =2010 cm*

Problem 2.6
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2.2.4 Solutions: Cross-sectional Area and Position of Centroid

Solution
Topic: Cross-sectional Area and Position of Centroid
Problem Numbers: 2.1 to 2.6 Page No. 1

Problem 2.1:

A =[(240 x 15) + (360 x 10)] = 7200 mm*

y lies on the vertical axis of symmetry

y =(240/2) =120 mm

zZ =[(240 x 15)(367.5) + (360 x 10)(180)]/7200 = 273.75 mm

Problem 2.2:

A =[(240 x 15) + (400 x 8) + (180 x 15)] = 9500 mm*

y lies on the vertical axis of symmetry

y =(240/2) =120 mm

7 =[(240 x 15)(422.5) + (400 x 8)(215) + (180 x 15)(7.5)]/9500 = 234.66 mm

Problem 2.3:

A =[(350 x 10) + (200 x 12) + (300 x 8) + (200 x 12)] = 10700 mm*
y lies on the vertical axis of symmetry

y =(350/2) =175 mm

z =[(350 x 10)(329) + (200 x 12)(318) + (300 x 8)(162) + (200 x 12)(6)]/10700
=216.63 mm

Problem 2.4:

A =[(220 x 8) +2 (82 x 15) + 6660] = 10880 mm”

y lies on the vertical axis of symmetry

y =(220/2) =110 mm

7 =[(220 x 8)(449.8 + 4) +2(82 x 15)(449.8 — 41) + (6660)(449.8/2)]/10880
=303.51 mm

Problem 2.5:

A =[(1420 x 20) + 2 (500 x 10) + (1220 x 12)] = 53040 mm?

y lies on the vertical axis of symmetry

y =(1420/2) =710 mm

7 = [(1420 x 20)(522) + 2(500 x 10)(262) + (1220 x 12)(6)]/53040 = 330.56 mm

Problem 2.6:

A =[6660 + 10500] = 17160 mm*

¥y =[(10500)(208.8/2) + (6660)(208.8/2 + 9.6/2 + 449.8/2)]/17160 = 193.55 mm
7 =(528.3/2) =264.15 mm

z lies on the horizontal axis of symmetry
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2.2.5 Elastic Neutral Axes

Consider a beam of rectangular cross-section which is simply supported at the ends and
carries a distributed load, as shown in Figure 2.31.

b — uniformly distributed load = w kN/m length
L T T T T T T T T
;;JZ__._ ........... e _
cross-section k\\k“‘ﬁ L R
’ Figure 2.31 ’

The beam will deflect due to the bending moments and shear forces induced by the applied
loading, resulting in a curved shape as indicated in Figure 2.32.

§t0p

§bottom 5bott0m

tension

N

L

Original length of the beam before deformation = L
Final length of the top edge after deformation = (L — 24,p) i.e. shortening
Final length of the bottom edge after deformation = (L + 2dotom)  i.€. lengthening

Figure 2.32

Clearly if the ends of the beam are assumed to remain perpendicular to the longitudinal
axis, then the material above this axis must be in compression, whilst that below it must be
in tension. At a point between the top and the bottom of the beam a layer of fibres exist
which remain at their original length and consequently do not have any bending stress in
them. This layer of fibres forms the ‘neutral surface’ and on a cross-section is indicated
by the ‘neutral axis’ as shown in Figure 2.33.

el /é —
b <
u‘/ compression
P
) A .
neutral surface ; neutral axis

h 2 .

y Y tension °
v .~

The neutral axis coincides with the centroidal axis discussed in Section 2.2.2

Figure 2.33
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2.2.6 Second Moment of Area —I and Radius of Gyration —i

Two of the most important properties of a cross-section are the ‘second moment of area’
and the ‘radius of gyration’. Consider the area shown in Figure 2.20(b). If the elemental
area 04 has its centroid at a perpendicular distance ‘i’ from a given axis, the second
moment of area of the element about the given axis is the product of the area of the

element and the square of the distance of the centroid from the axis, i.e.
Second moment of area / = (34 X i°)
The second moment of area of the total area A is equal to £(J4:%) over the whole area.

It is convenient to consider two mutually perpendicular axes which intersect at the
centroid of a cross—section and hence:

Ly = Ail, and I, = Ai,
Alternatively:
1 1
Iy = 4= and = |2
N4 A

where iy, and i,, are known as the ‘radii of gyration’ about the y-y and z-z axes
respectively.
Consider the rectangular cross-section shown in Figure 2.34.

b b
!Z !Z
1] 6z Ly
}T‘“‘ bt « dy
1 Z 1
R AN . e | Y nl Yl _._. LY
] ]
1 1
o 2 Figure 2.34 o 'z

I, for element = §4z° = (b X 2°)
+h/2

I,y total area = j bz*dz
~h/2

b2 T o (0] i
Iy=2| 2| =2 —x(—j =20
3, 3702 12

2.2.6.1 The Parallel Axis Theorem

It can also be shown that the second moment of area of a cross—sectional area 4 about an
axis parallel to any other axis is equal to the second moment of area of 4 about that other

1,, for element = 84y = (hy X °)
+b/2

1,, total area = I by*dy
—b/2

w1 Tn (b ] wp?
L,=2|2 1 =2 —x(—j -
3, 3702 12
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axis plus the area multiplied by the square of the perpendicular distance between the axes.
Consider the rectangular areas shown in Figure 2.35:

1
i I
i ; ! -
é i :
y | y 1 i
d i Yol Y |4
! i !
A - | ! L
1 'z 1
S -=P é
n hb?
Iy = (Iyy"'Azz) = b1_2 + (bh x 7% Iog =, + Ay") = % + (bh x y%)

Figure 2.35

These relationships are used extensively to determine the values of the second moment of
area and radius of gyration of compound sections comprising defined areas such as
rectangles, triangles circles etc.

Consider the cross-sectional area shown in Figures 2.24 and determine the values of the
second moment of area and radius of gyration about the centroidal axes. Data from
Figure 2.24 is indicated in Figure 2.36:

Area = 3200 mm* (see Figure 2.11)

Iop = (Iyy + AZ*) for each rectangle in which P—P is

é the y—y axis for the whole section.
= bh’
Iy = Z e +bhz* | for each flange and the web
g 100x10° 8x150°
S = 2| ———+100x10x80> | +
= 12 12

(Note: the second term is zero for the web since the
P-P axis coincides with its’ centroidal axis.

10 mm

Iy, =15.07 x 10° mm*

Figure 2.36

lIog = (L + Ay?) for each rectangle in which Q-Q is the z—z axis for the whole section. In
this case the second term for each rectangle is equal to zero since the Q—Q axis coincides
with their centroidal axes.

3 3
I,= ﬂ for each flange and the web = 2(1071200
iZZ =

2
I 6

iy = (|2 = [P0 _ 6863 mm;
4 3200

3
J+ 1308 _ 1 67 % 10° mm*

12
6
[ = [LOTXIO _ ) 85 mm
4 3200
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2.2.7 Elastic Section Modulus — W,

The bending moments induced in a beam by an applied load system generate bending
stresses in the material fibres which vary from a maximum in the extreme fibres to zero at
the level of the neutral axis as shown in Figure 2.33 and Figure 2.37.

O-top
The magnitude of the bending stresses at any vertical
cross-section can be determined using the simple theory '
. . . . . (o
of bending from which the following equation is z
derived: T
y me b fae y
M E o . Mz ) )
7 R 2 S0 I Bending Stress Diagram
Figure 2.37 OChottom
where:
M is the applied bending moment at the section being considered,
E s the value of Young’s modulus of elasticity,
R is the radius of curvature of the beam,
o is the bending stress,
z s the distance measured from the elastic neutral axis to the level on the cross-section
at which the stress is being evaluated,
I is the second moment of area of the full cross-section about the elastic neutral axis.

It is evident from the equation given above that for any specified cross-section in a beam
subject to a known value of bending moment (i.e. M and / constant), the bending stress is
directly proportional to the distance from the neutral axis; i.e.

o= constant X z R o 0 A4

This is shown in Figure 2.37, in which the maximum bending stress occurs at the extreme
fibres.

In design it is usually the extreme fibre stresses relating to the zyaximum Values at the top and
bottom which are critical. These can be determined using:

M B M
Orop = and Obottom = ———————
VVC],YJOP VVel,y,bottom

where o and M are as before,

1
Wely top is the elastic section modulus relating to the top fibres and defined as —*-

4 top

Weiypotom 1s the elastic section modulus relating to the bottom fibres and defined as
1

Yy

Zpottom
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If a cross-section is symmetrical about the y—y axis then Weyiwop = Weiybotom In
asymmetric sections the maximum stress occurs in the fibres corresponding to the smallest
W, value. For a rectangular cross-section of breadth » and depth / subject to a bending

moment M about the major y—y axis, the appropriate values of /, z and W, are:

bh’ h bh?
I = maximum — L We minimum — T
D) ‘ 2 b 6
In the case of bending about the minor z—z axis:
hb® b hb*

[zz = Ymaximum — Wel,z,minimum

12 2 6
Consider the cross-sectional area shown in Figures 2.29/2.38 and determine the values of
the maximum and minimum elastic section modulii about the centroidal axes.

z 1 7 4 7 4

60 mm 10 mm 50 mm

-

85 mrp

|
100 mj

160 mm|

\J
=

=54.16 mm and Zz =98.32 mm Area=21,400 mm’
Figure 2.38

<

3 3
Iy = [%+120x220x010—98.32)2j - (w+50x100x(160—98.32)2j
= 86.89 x 10® mm*
3 3
I, = [%+120x220x(60—54.16)1 - (%+50x100x(85—54.16)2j

=26.78 x 10° mm*

] 6
w . 8689x107 _ ges 25 v 10° mm?

We ottom =
bybotom 98.32
[ 6
Wy = -2 = D080 _ 51469 4 10° mm’
o (220-9832)
6
Wains = —zz = 2078100 _ 404 46 % 10° mm’
Vins 54.16
6
Warts = —2— = 2078107 _ 466 74 % 10° mm’

Vs (120-54.16)



Material and Section Properties 45

2.2.8 Problems: Second Moments of Area and Elastic Section Modulii

Determine the following values for the sections indicated in Problems 2.1 to 2.6.
(1)  the second moment of areas /,y and /,, and
(i1)  the elastic section modulii Weyy and W .

2.2.9 Solutions: Second Moments of Area and Elastic Section Modulii

Solution
Topic: Second Moments of Area and Elastic Section Modulii
Problem Number: 2.7 Page No. 1

Section dimensions for Problem 2.1:

z1 =[(360 + 7.5) — 273.75]
=93.75 mm

z, =[273.75 — 180]
= 93.75 mm

Note: [, = 2" moment of area

about the centroidal axis for
an element of the cross-
section.

Iyy = Z([Cg,yy + Azz)

3 3
_ {[2401%15J+(240x15x93.752)} + H%}@éoxlox%ﬂsz)}

=102.23 x 10° mm®

_ 2y _ | 15x240°  360x10° | _ 6
Iz = Z(Icg,zz +AX) - |: 2 + 12 =17.31 x 10° mm

Z€1o

6
Wy potom = — 00— = 10223X100 3z s 10° mm?
Zbottom 27375

6
Wapyap = 00 = 102233107 509 6o 10° mum?
Zy  (375-273.75)

1, _1731x10°
120

=144.25 x 10* mm’

Wel,ZZ,LHS =

1 ) .
Wezzrus = = —ZZ_ (vertical axis of symmetry) = 144.25 x 10> mm’
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Solution
Topic: Second Moments of Area and Elastic Section Modulii
Problem Number: 2.8 Page No. 2

Section dimensions for Problem 2.2:

z1 =[(15+ 400 + 7.5) — 234.66]
= 187.84 mm

z; =[234.66 — (15 +200)]
=19.66 mm
=[234.66 — 7.5]
=227.16 mm

# 180mm ﬁL

z
Iy = Y (1 +A2*)

3 3
_ H%}(Momsxlsmﬂ)} + ngfzoo J+(400x8x19.662)}

3
" K%}(lswwxznmz)} =31037 x 10°mm*

15x240° 400x8°> 15x180°
L= (1. +A*) = + + =24.59 x 10° mm®
2= Yllegon '})&) { 12 12 12 }

Z€1ro
Iy, 31037x10°

W1y bottom = = = 1322.64 x 10> mm®
Pvbotom 234.66

6
W,y top = Lyy _ 31037x107 1588.87 x 10° mm’
Zp  (430-234.66)

I, _ 24.59x10°

YLHs 120

1 1 . )
Wezzrus = ZZ_ = 2L _(vyertical axis of symmetry) = 204.92 x 10° mm®
JYRrHS YLHs

Wezzius = =204.92x 10° mm’
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Solution
Topic: Second Moments of Area and Elastic Section Modulii
Problem Number: 2.9 Page No. 3

Section dimensions for Problem 2.3:

z1 =[(12+ 300 + 12 + 5) — 216.63]
=112.37 mm

z; = [(12 + 300 +6) —216.63]
=101.37 mm

z3 =[216.63 — (12 + 150)]
= 54.63 mm

z4 =[216.63 — 6]
=210.63 mm

;12mrn 10 mm

300 mm

IYY = Z(ICg,yy + AZZ)

3 3
= K%}(ssomoxmsﬁ)} + K%}(zoomleolwz)}

3 3
¥ stlszoo ]+ (8><300><54.632)} + H%}r (200X12X210-632)}

=200.58 x 10°mm®

10x350° 12x200° ) 300x8’
I, = I.. +\Xy?*)= +2 + =51.74 x 10° mm®
2= 2l \iy ) { 12 ( 12 ] 12 }

Z€T1o

W I, _ 200.58x10°
el,YY,bottom — -
T 216.63

Zpottom

=925.91 x 10* mm’

6
Lyy 20038107 _ 1506 96 x 10° mm?

[334.0-216.63]

_ 51.74x10°
175

Wel,YY,top =
z top

IZZ

Wezzius = =295.66x 10> mm’

YLHs
g _ 1oz (vertical axis of symmetry) = 295.66 x 10° mm’

Wel,zz,RHs =
YRus YLHs
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Solution
Topic: Second Moments of Area and Elastic Section Modulii
Problem Number: 2.10 Page No. 4

Section dimensions for Problem 2.4:
y1=[110-7.5]=102.5 mm
¥, =[110-7.5]=102.5 mm

z1 =[(449.8 + 4) — 303.51]
=150.29 mm

z, =[(449.8 —41) — 303.51]
=105.29 mm

z3 =[303.51 — (449.8/2)]
=78.61 mm

For 457 x 152 x 52 UKB:
h =449.8 mm

A = 66.6 cm’

I,y = 21400 cm*

I, =645 cm*

457 x 152 x 52 UB
2
Iyy = Z([Cg,yy + Az )

3 3
_ Kzz?;s J+(220><8><150.292)} +2 {[15;82 ]+(15><82><105-292)}

4 [(21400><104)+(6660><78.612)J = 32357 x 10° mm°

b= 31+ ) (8><122203J+2 {82;;153 +(82><15><102.52)}+(645><104)

=39.44 x 10° mm®

Iyy _ 323.57x10°

Zyottom 303.51

Ly _ 323.57x10°
[449.8 +8.0—303.51]

=1066.09 x 10* mm®

Wel,YY,bottom =

=2097.16 x 10* mm’

Wel,YY,top =
Ziop
6
Wszis = ~22- = 22400 356 552010 mnn?
Yius 110
1 1 . .
ZZ_ — —ZZ_ (vertical axis of symmetry) = 358.55 x 10’ mm’
Yrus YiHs

Wel,ZZ,RHS =
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Solution
Topic: Second Moments of Area and Elastic Section Modulii
Problem Number: 2.11 Page No. 5

Section dimensions for Problem 2.5:

y1=[(1200/2) + 5] = 605 mm
¥ =[(1200/2) + 5] = 605 mm

z1 =[(12 + 500 +10) — 330.56]
191.44 mm
z; =[330.56 — (12 + 250)]
= 68.56 mm
z3 =[330.56 — 6]
=324.56 mm

1 330.56 mm

= D (Lgyy +42°)
- K%}(mzoxzommmz)} +2 HT}(10><500><68.562)}

3
+ K%} (1220><12><324.562)} = 2839.47 x 10°mm®

IZZ: Z(Icg,zz +Ay2)
3 3 3
_(20x1420 s 500x10 +(1O><500><6052) N 12x1220
12 12 12
=10248.30 x 10° mm®

Iy _ 2839.47x10°

Zooon 330.56
6

Wayyap = 200 = 283947107 4095 86 x 10° mm’
Zop  [532.0-330.56]

1, _ 10248.3x10°
Yins 710

I
Iz~ 1z _ Ty (vertical axis of symmetry) = 14434.23 x 10°> mm’
YRrus Yins  Vins

= 8589.88 x 10° mm’

Wel,YY,bottom =

= 1443423 x 10° mm®

Wel,ZZ,LHS =

W zz rus =
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Solution
Topic: Second Moments of Area and Elastic Section Modulii
Problem Number: 2.12 Page No. 6

Section dimensions for Problem 2.6:

v =[193.55 — (208.8/2] = 89.15 mm
v, = [(208.8/2) + (9.6/2) + (449.8/2) — 193.55] = 140.55 mm

<«

For 457 x 152 x 52 UKB:
h=4498mm A =66.6cm’ 1o
I,y =21400 cm® I, =645 cm® 1 96n

457 x 152 x 52 UKB

Z
533x210x82UKB ' Vi1 , 0
. | N
i
i
m
1

1
i
1
i
m
1
|

For 533 x 210 x 82 UKB: :
h=2088mm  h=528.3 mm .
A=1050cm’>  £,=9.6 mm |, 264.15mm
I, = 47500 cm*  1,,=2010 cm® P e

| -
193.55 mm
¢ >

Z
Iyy= (I, + AX (7 o+ X2
Yy cgyy 533 x210x82UB cg,zz 457 x 152 x 52 UB

 [(47500%10° )+ (64510 )| 481.45 2 105

Iz = (Icg,zz + Ay12 ) 533x210x82UB T ([Cg,zz +AJ/22) 457 x 152 x 52 UB
=[2010x10° +(10500x89.157) | +] 21400 +(6660x140.55 ) | = 235.14 x 10° mm’

Iyy _ 481.45x10°
264.15

=1822.64 x 10° mm’

Wel,YY,bottom =

Zpottom
IYY I YY

V4

3

We,vY top (horizontal axis of symmetry) = 1822.64 x 10> mm

top Zpottom

I, _ 235.14x10°
Vs 193.55
Iy _ 235.14x10°

Ves [(208.8/2)+4.8+449.8-193.55 ]

=1214.88 x 10° mm’

Wel,ZZ,LHS =

=643.43 x 10° mm’

Wel,ZZ,RHS =
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2.3  Plastic Cross-Section Properties

When using elastic theory in design, the acceptance criterion can be based on
“permissible” or “working” stresses. These are obtained by dividing the “yield stress” f
of the material by a suitable factor of safety. The loads adopted to evaluate an actual
working stress are “working loads”.

In a structure fabricated from linearly elastic material, the factor of safety (F. of S.) can
also be expressed in terms of the load required to produce yield stress and the working
load. This is known as the Load Factor (A).

1= Collapse load
Working load

2.3.1 Stress/Strain Relationship

The plastic analysis and design of structures is based on collapse loads. A typical stress-
strain curve for a ductile material having the characteristic of providing a large increase in
strain beyond the yield point without any increase in stress, (e.g. steel) is given in
Figure 2.39.

------------- ultimate stress

Stress

upper yield stress

f F- 7 lower yield stress
y guaranteed minimum yield stress

1 2 % Strain (g) 10 20
Figure 2.39

When adopting this curve for the theory of plasticity (see Chapter 8) it is idealised as
indicated in Figure 2.40

2
2
@
f e D E
Y inception of strain hardening
Ja[~7B
A Ll | Ll | |
0.1 03 05 1.0 1.5

% Strain (£)

Figure 2.40
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If a beam manufactured from material with a characteristic stress/strain curve as shown in
Figure 2.39 has a rectangular cross section and is subjected to an increasing bending
moment only, then the progression from elastic stress/strain distributions to plastic
stress/strain distributions are as indicated in Figure 2.41.

’kba‘ <&y Ey > gy >>g,
?
h/{ C
L /
1 <f; £
f /. 4
w2 | c Fe Fe
h/i T Fr Fr Fr lever arm
L ‘7_ 7_ Fr1 <
<ty Iy Sy Sy
elastic limiting elastic elasto-plastic plastic
moment moment moment moment
(a) (b) (c) (d)
Figure 2.41

Initially at low values of applied moment (a) the maximum stress and strain values are less
than the permissible working values as indicated in Figure 2.41 (i.e. between points A and
B in Figure 2.40).

As the applied moment increases, then the stress and strain values increase until at stage
(b), both attain the yield values &, and f;. This corresponds to point C in Figure 2.40.

A further increase in the applied moment induces yield in some of the inner fibres of the
material. Whilst the extreme fibre strains must now exceed &, the stress must obviously
remain at f;. This corresponds to point D in Figure 2.40 and (c) in Figure 2.41.

As the applied moment increases still further, so the whole section eventually reaches the
yield stress. (As indicated in (d) there is a very small region around the neutral axis which
has not reached yield, but this can be ignored without any appreciable error). When the
whole section has attained yield stress then the section cannot provide any further moment
resistance and a plastic hinge is formed allowing the beam to rotate at the location of the
beam. The value of the applied moment at which this occurs is known as the Plastic
Moment of Resistance (M,).

2.3.2 Plastic Neutral Axis

At all stages of loading, the compression force (F¢) induced by the applied moment must
equal the tension force (Fr). This being so, then at the formation of the plastic hinge
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where all the material is subjected to the same stress i.e. f;, the plastic neutral axis must
be that axis which equally divides the area into two separate parts, i.e.

The compression force Fr = (AcX fy) The tension force Fr = (A1 X fy)
where
Ac = Area in compression, At = Area in tension

Jy = yield stress

Force in compression = Force in tension

Fe=Fr
(Ac X fy) = (A1 X fy)
S AC =AT 1.€.

The area of the cross-section in compression = The area of the cross-section in tension
In plastic analysis the neutral axis is the equal area axis.

2.3.3 Evaluation of Plastic Moment of Resistance and Plastic Section Modulus

In elastic analysis the limiting elastic moment can be expressed in terms of the yield stress
and the elastic section modulus, at the limit of elasticity;

Mo = (fy X Wa) where W, is the elastic section modulus

Similarly in plastic analysis, the plastic moment of resistance can be expressed in terms of
the yield stress and the plastic section modulus.

My = (fy X W) where W, is the plastic section modulus

Consider the section shown in Figure 2.42.

- b -

| | 5
h/2 C » Fc

AT T bbbt b b . -y
lever arm = A/2
h/2 T Fr <
Sy
Cross-section Bending Stress Diagram
Figure 2.42

If the rectangular section is subjected to a moment equal to the plastic moment of
resistance M, of the section then we can determine a value for the plastic section modulus.
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€8  Myy =1y X Wiy
My = (Fc * lever arm) or [(Fr % lever arm)]
. My = (stress x area X lever arm)
=[f, % (b x h/2) x (h/2)] = f, bh*/4
2
Hence for a rectangular section the Plastic Section Modulus W,y = %

The Plastic Section Modulus W, = 1* moment of area about the equal area axis

2.3.4 Shape Factor

The ratio of the plastic modulus to the elastic modulus (or plastic moment to limiting
elastic moment) is known as the shape factor given by the symbol v.

Forarectangle v = — = —*— =1.5; For most I sections V = 1.15

2.3.5 Section Classification
In design codes the compression elements of structural members are classified into four
categories depending upon their resistance to local buckling effects which may influence
their load carrying capacity. The compression may be due to direct axial forces, bending
moments, or a combination of both. There are two distinct types of element in a cross-
section identified in the code:

1. Outstand elements — elements which are attached to an adjacent element at one
edge only, the other edge being free, e.g. the flange of an I-section.

2. Internal elements — elements which are attached to other elements on both
longitudinal edges, including:
— webs comprising the internal elements perpendicular to the axis of
bending
— flanges comprising the internal elements parallel to the axis of bending
e.g. the webs and flanges of a rectangular hollow section.

The classifications specified in the Eurocode for structural steelwork (EN 1993-1-1) are:

Class 1 (My=fy X Wy),
Class 2 (Mp=fy X W),
Class 3 (Mu=fy X W),
Class 4 (Meff :fy X Weffective)-

Further explanation of local buckling and section classification is given in Chapter 6.

2.3.5.1 Aspect Ratio

The aspect ratio for various types of element can be determined using the variables
indicated in the code for a wide range of cross-sections. A typical example is the
hot-rolled I-section indicated in Figure 2.43.
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Element Aspect ratio
outstand of compression
flange c/t
web C/ty
Figure 2.43

The limiting aspect ratios given must be modified to allow for the design strength f;. This
is done by multiplying each limiting ratio by £ which is defined as:
2
2 . . .
£= [%J in EN 1993-1-1. In the case of the web of a hybrid section £ should be based
y

on the design strength f; of the flanges. In addition to & some limiting values also include
parameters relating to stress ratios, these are not considered further here.

2.3.5.2 Type of Section

The type of section e.g. universal beam, universal column, circular hollow sections,
welded tubes, hot finished rectangular hollow sections, cold formed rectangular hollow
sections etc. also influences the classification.
The classifications given in codes indicate the moment/rotation characteristics of a section,
as shown in Figure 2.44.

Sections which have full

A plastic moment and hinge
A Class 1 rotation capacity.

Sections which have full plastic
My | Class 2 moment capacity but not sufficient

hinge rotation capacity
Class 3 . . . L
Sections in which the capacity is

Mege |/ restricted to the limiting elastic moment
Class 4

Moment

Slender Sections in which the capacity is
reduced and based on effective cross—sections.

>

Rotation
Figure 2.44
where:
M, = the plastic moment of resistance,
M, = the limiting elastic moment of resistance, (i.e the maximum stress = f;).
M. = the elastic moment of resistance based on effective cross-section properties.

These characteristics determine whether or not a fully plastic moment can develop within
a section and whether or not the section possesses sufficient rotational capacity to permit
the section to be used in plastic design.
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Consider a section subject to an increasing bending moment; the bending stress diagram
changes from a linearly elastic condition with extreme fibre stresses less than the design
strength (fy), to one in which all of the fibres can be considered to have reached the design

strength, as shown in Figure 2.45.

Compression o<fy o=fy o=fy

Tension o< fy o=/ o=fy
Meseray = (ox Weff,yy) Mray = (fy X Wel,yy) Myiray = (fy X Wpl,yy)
Class 4 Class 3 Classes 2 and 1
(a) (b) (©)

where:
Wetyy = effective section modulus; Weyy = elastic section modulus;

Wiy = plastic section modulus; o= bending stress;  f, = design strength (yield stress)
Figure 2.45

2.4 Example 2.1: Plastic Cross-section Properties —Section 1
Determine the position of the plastic neutral axis z,,.;. , the plastic section modulus Wy yy

and the shape factor v for the welded section indicated in Figure 2.46.

g, |da %0 mm Iy " Weyy = 34.9 x 10° mm’

EZ; ( Y oIiIIIiiiIiiiiiip = Cl A = (Act1 + Aca + A7)

- T ACZ- - T- o FC2 Fcompression = Ftension
Fei+Fep=Fr

g AT Eplastic Fre— (ACI Xf}") + (ACZ Xf}‘/) = (AT ><fy)

& l (Aci + Acz) = Ar

LL 15 mm Jy Figure 2.46

(1) Position of plastic neutral axis (Eplastic)

A =[(90 x 10) + (90 x 15)] =2250 mm*>  4/2 = (2250/2) = 1125 mm’

For equal area axis:
z =1125/15=75 mm

plastic

(ii) Plastic section modulus: (1* moment of area about the plastic neutral axis)
Wity = [(90 x 10) x 20] + [(15 x 15) x 7.5)] + [(75 x 15) x 37.5)] = 61.875 x 10’ mm’

plyy ©

(iii) Shape factor v =

Woryy _ | 61875x10° |
: :
34.9%10

elyy
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2.5 Problems: Plastic Cross-section Properties
Determine the following values for the welded sections indicated in Problems 2.13 to 2.16,

1)
(1)
(iii)

8 mm #

15 mm

400 mm

15 mm

position of the plastic neutral axis

zZ plastic »

the plastic section modulus W,,, and
the shape factor .

“——— 240 mm -

g

g

i dmm A4 2
g
o — . — . —. =<y g
r g

Eplastic g

g

S

Problem 2.13

i a—

m

J% 180 mm ﬁL

Problem 2.15

235 mm

250 mm

10 mm

A

Problem 2.14

1 112mm

S T y
A4 10 mm
Eplastic
1”712 mm *\L

JL 100 mm#

Problem 2.16

57
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2.6  Solutions: Plastic Cross-section Properties

Solution
Topic: Plastic Cross-section Properties
Problem Number: 2.13

Z plastic

(i) Position of plastic neutral axisz.

plastic

A =[2(240 x 10) + 2(360 — 20) x 8)] = 10240 mm’
A/2 = (10240/2) = 5120 mm”

For equal area axis:

zZ =10+ [5120 — (240 x 10)]/(2 x 8) = 180 mm

z .
plastic
(i.e. concentric with the elastic neutral axis at mid-height for a symmetrical section)

(i) Plastic section modulus W}y

Wiy = 1* moment of area about the equal area axis
=2 x[(240 x 10 x 175) + 2(170 x 8 x 85)]
=1302.4 x 10° mm’

(iii) Shape factor (v)
1

Yy
Distance to extreme fibres

W
V= P

; where Wy =
elyy

12
~ [199.45><106

_ | 240%x360°  224x340°
[yy_ -

} =199.45 x 10° mm*

elyy —

=1108.06 x 10* mm’
(360/2)

=1.18

=
W 1108.06x10°

elyy

Wy _ { 1302.4x10° }
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Solution
Topic: Plastic Cross-section Properties
Problem Number: 2.14 Page No. 1

|
[

L 100 mm

() Position of plastic neutral axis Z ;.

A=1[2(100 x 10) + (250 x 8)] = 4000 mm*
A/2 = (4000/2) = 2000 mm”

For equal area axis:

Z wi.= 10+ [2000 — (100 x 10)]/8 = 135 mm

z .
plastic
(i.e. concentric with the elastic neutral axis at mid-height for a symmetrical section)

(i) Plastic section modulus W}y
Woiyy=2 % [(100 x 10 x 130) + (125 x 8 x 62.5)]
=385 x 10’ mm’

(iii) Shape factor (v)

]yy
; where  Weyy = —
Distance to extreme fibres

W;ﬂ,yy

U =
elyy

3 3
by [ (5,031

| 44.23x10°
el,yy - T~
(270/2)

} =327.63 x 10> mm’

3
S LU
327.63x10
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Solution
Topic: Plastic Cross-section Properties
Problem Number: 2.15 Page No. 1

Z plastic

180 mm

() Position of plastic neutral axis Z,q;

A =[(240 x 15) + (400 x 8) + (180 x 15)] = 9500 mm>
A/2 =(9500/2) = 4750 mm®

For equal area axis:

Z,. = 15+[4750 — (180 x 15)]/8 =271.25 mm

plastic

(i1) Plastic section modulus W,y
Wiy = [240 x 15 x (422.5 — 271.25)] + [(415 — 271.25) x 8 x 0.5(415 — 271.25)]
+[256.25 x 8 x (0.5 x 256.25)] + [180 x 15 x (271.25 — 7.5)]
=1601.94 x 10> mm’

(iii) Shape factor (v)

]Yy
; where  Weyy= —
Distance to extreme fibres

— W;Lyy

elyy

Weiyy = 1322.64 % 10° mm® (see Problem No. 2.8)

V= =1.21

Wy _ {1601.94x103}

w. 1322.64%10°

elyy
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Solution
Topic: Plastic Cross-section Properties
Problem Number: 2.16 Page No. 1

plastic

1~ {12mm QL
, 100 mm |,

(i) Position of plastic neutral axis z

plastic
A =1[(235 x 10) + 2(90 x 12)] = 4510 mm’
A/2 = (4510/2) = 2255 mm’

For equal area axis:

z =[2255-(90 x 12)}/10=117.5 mm

Z .
plastic
(i.e. concentric with the elastic neutral axis at mid-height for a symmetrical section)

(i1) Plastic section modulus W,y

Wiy = 1* moment of area about the equal area axis
=2 {[117.5 x 10 x (117.5/2)] + [90 x 12 x (117.5 - 6)]}
=378.9 x 10° mm’

(iii) Shape factor (v)

I
where W= — =
Distance to extreme fibres

Wpl,yy

w.

elyy

U:

_[100x235° (90x211°
Iyy— -

H =37.69 x 10° mm*

12 12

_ 37.69%10°
Y (235/2)

W 3
oo Moy _ 378.9><1o3 g
W, 320.8%10

elyy

} =320.80 x 10° mm’

61




3. Pin-Jointed Frames

3.1 Introduction

The use of beams/plate-girders does not always provide the most economic or suitable
structural solution when spanning large openings. In buildings which have lightly loaded,
long span roofs, when large voids are required within the depth of roof structures for
services, when plated structures are impractical, or for aesthetic/architectural reasons, the
use of roof trusses, lattice girders or space-frames may be more appropriate.

Such trusses/girders/frames, generally, transfer their loads by inducing axial tension or
compressive forces in the individual members. The magnitude and sense of these forces
can be determined using standard methods of analysis such as ‘the method of sections’,
‘the method of joint-resolution’, ‘the method of tension coefficients’ or the use of
‘computer software’. The first three methods indicated are summarized and illustrated in
this Chapter.

3.2  Method of Sections

The method of sections involves the application of the three equations of static equilibrium
to two-dimensional plane frames. The sign convention adopted to indicate ties (i.e. tension
members) and struts (i.e. compression members) in frames is as shown in Figure 3.1.

o—<¢ > L
Joint Strut — compression member  Joint
@ > —¢ L

Tie — tension member

Figure 3.1

The method involves considering an imaginary section line which cuts the frame under
consideration into two parts A and B as shown in Figure 3.4.

Since only three independent equations of equilibrium are available any section taken
through a frame must not include more than three members for which the internal force is
unknown.

Consideration of the equilibrium of the resulting force system enables the magnitude and
sense (i.e. compression or tension) of the forces in the cut members to be determined.

3.2.1 Example 3.1: Pin-Jointed Truss

A pin-jointed truss supported by a pinned support at A and a roller support at G carries
three loads at joints C, D and E as shown in Figure 3.2. Determine the magnitude and
sense of the forces induced in members X, Y and Z as indicated.
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10 kN 10 kN 10 kN
E F
g
<
(@\]
Q00 ‘k
RS H QG s

P 4 baysat2.0 m=8.0 m

Figure 3.2
Step 1: Evaluate the support reactions. It is not necessary to know any information

regarding the frame members at this stage other than dimensions as shown in Figure 3.3,
since only externally applied loads and reactions are involved.

10 kN 10 kN 10 kN

l 2.0m 2.0m 2.0m 2.0m

Figure 3.3
Apply the three equations of static equilibrium to the force system:

+ve ] SF, =0 VoA—(10+10+10)+ V=0 Va+ Vo=30kN
+ve —= SF,=0 A Hy=0
tve JEMy=0 (10X 2.0)+ (10 x4.0) + (10 X 6.0) — (V X 8.0) = 0
VG=15kN
Hence V,=15KkN T

Step 2: Select a section through which the frame can be considered to be cut and using
the same three equations of equilibrium determine the magnitude and sense of the
unknown forces (i.e. the internal forces in the cut members).
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Sectioln line

10 kN 10 kN : 10 kN
|
B \ 4 C yD > Fpp | Fpp < vE F
| [
!
FEl : FEI
|
zero g > Fui | Fui <
fra J I ! H th
|
15 kN i 15 kN
Part A Section line PartB
Figure 3.4

It is convenient to assume all unknown forces to be tensile and hence at the cut section
their direction and lines of action are considered to be pointing away from the joints (refer
to Figure 3.4). If the answer results in a negative force this means that the assumption of a
tie was incorrect and the member is actually in compression, i.e. a strut.

The application of the equations of equilibrium to either part of the cut frame will enable
the forces X (Fpg), Y (Fg) and Z (Fy;) to be evaluated.

Note: the section considered must not cut through more than three members with
unknown internal forces since only three equations of equilibrium are available.

Consider Part A:

Zero —sg- — - - — - — - - Mmoo >
hS A J I
15 kN
] 2.0m J 2.0m ‘ Figure 3.5

Note: sin@= i =0.707, cos@= i =0.707,

12 12
+ve } SF=0 +15.0-10.0-10.0 + F sind=0
5.0

sin@

FE]:+ =+ 7.07 kN

Member EI is a tie



Pin-Jointed Frames 65

+ve — ZFXIO +FDE+FH1 +FE1 cos@ =0

+Ve) SMi=0 +(15.0 x4.0) - (10.0 x 2.0) + (Fpg X 2.0)=0
FDE =—20.0 kN
Member DE is a strut

hence Fy =— Fpg — Fgicos@=— (—20.0) — (7.07 X cos8) = + 15.0 kN
Member HI is a tie

These answers can be confirmed by considering Part B of the structure and applying the
equations as above.

3.3  Method of Joint Resolution

Considering the same frame using joint resolution highlights the advantage of the method
of sections when only a few member forces are required.

In this technique (which can be considered as a special case of the method of sections),
sections are taken which isolate each individual joint in turn in the frame, e.g.

10 kN 10 kN 10 kN
B C" DV X "\’E ‘:\’F
Y
7 L L
: A J | H G = .
Figure 3.6
15 kN 1S kN

In Figure 3.6 four sections are shown, each of which isolates a joint in the structure as
indicated in Figure 3.7.

Frg 10 kKN
FEF F FEH F,
:Z FH
FDE E FEF
FGH G FFH ¢
F F
FFG H H GH FEI
15.0 kKN Fen
Joint G Joint F Joint H Joint E
Figure 3.7

Since in each case the forces are coincident, the moment equation is of no value, hence
only two independent equations are available. It is necessary when considering the
equilibrium of each joint to do so in a sequence which ensures that there are no more than
two unknown member forces in the joint under consideration. This can be carried out until
all member forces in the structure have been determined.
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Consider Joint G:

+ve }ZF,=0  +15.0+ Frg=0
Frg

FFG =—15.0 kN
+Ve_>2FX:0 _FGH=0
Fgn G
Member GH is a zero member
15.0 kN Member FG is a strut

Consider Joint F: substitute for calculated values, i.e. Frg (direction of force is into the

joint)
Fer F tve} TF,=0  +15.0 - Fpucos6=0
;0 Fey=+15.0/0.707
Fry Fya=+21.21 kKN
15.0 kN tve—>XF, =0 — Fgp— Fpusind=0
Frr=-21.21x0.707
Fgr=-15.0 KN

Member FH is a tie
Member EF is a strut

Consider Joint H: substitute for calculated values, i.e. Fgy and Fry

- +ve TZFZ=O + Fpg+21.21 sin8=0
B FEH=—21.21 x 0.707

21.21 kN
FEH =—15.0 kN
f tve—2XF, =0 —Fy+21.21cosf@=0
Fi 0 Fiu=+21.21x0.707

H
FHI =+ 15.0 kN
Member EH is a strut
Member HI is a tie

Consider Joint E: substitute for calculated values, 1.e. Frr and Fry

10kN +ve $5F,=0  +15.0~10.0 - Fy cosf=0
For . 15 kN FEI =+5.0/0.707
FEI =+7.07 kKN
o tve—>3IF, =0 —Fpp—15.0 — Fy sinf=0
FEI Fpg =—20.0 kN
15 kN Member EI is a tie

Member DE is a strut
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3.3.1 Problems: Method of Sections and Joint Resolution

67

Determine the support reactions and the forces in the members of the pin-jointed frames

indicated by the ‘*’ in Problems 3.1 to 3.4 using the method of sections.
D

B

Problem 3.1
Problem 3.2
A
24 G« F |
z\% 6.0m H 6.0 m l? 45m |
30kN  60kN  60kN 60kN 60kN 60kN 30kN
B{ C D L E F G L H
* £
"
0 p Qi * R S T = Problem 3.3
* g
)
G H
K

9 equal bays at 3.0 m each

Problem 3.4

3.0m
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Determine the support reactions and the forces in the members of the pin-jointed frames
indicated in Problems 3.5 to 3.10 using the method of joint resolution.

B 15 kN
’ S5kN B
=
S
© =
S
A C e
C
RS 12 kKN A
! 4.0m | ; 40m | 20m ¥ problem 3.6
Problem 3.5 6.0 m
B ) 25 kN 50 kN 25 kN
12 kN
B C D
g
=)
v
K A E
5 ) —r
F 3
20 kN #" 5.0m J 5.0m ?
Problem 3.7 o5m . 25m Problem 3.8
J 15KN |
B D
e 10 KN =——>
g
\n
o
g
v
o
| E Problem 3.9

3.0m

4kny Problem 3.10
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3.3.2 Solutions: Method of Sections and Joint Resolution

Solution
Topic: Pin-Jointed Frames — Method of Sections
Problem Number: 3.1

Y
30 kN
h=(3.0 x tan 60°) =5.196 m

Determine the Support Reactions
Consider the rotational equilibrium of the frame:
+Ve) IMA=0 + (30 x 6.0) +(45.0 x 12.0) = (Vg x 18.0) =0 Equation (1)
.. Vg =+40.0 KN T

Consider the horizontal equilibrium of the frame:
+ve —3XF, =0 +tHA=0 Equation (2)
- Hy = zero
Consider the vertical equilibrium of the frame:
+ve T F,=0 +Va—=30.0-450+ V=0 Equation (3)
Va=30.0+45.0-40.0 s Va=+35.0 kN

Consider a section x—x through members BC, CG and FG:

Readers should consider the
equilibrium of the right-hand-
side of the section x-x and
confirm the values for the
unknown forces Fpc, Fcg and
Fra.

———

e )IMG=0  +(35.0 % 6.0)+ (Fyc x5.196)=0 .. Fyc=—40.42 kN (Strut)

———

tve}TF,=0  +35.0-30.0+ (Feosin609) =0 . Feg=—5.77 kN (Strut)

——

tve —=2F =0 _40.42—5.77 c0s60° + Frg=0.. Fc =+ 43.31 kN (Tie)
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Solution
Topic: Pin-Jointed Frames - Method of Sections
Problem Number: 3.2 Page No. 1

20 kN 40 kN
| c

A
Hp =
V,;' 6.0 m

Determine the Support Reactions
Consider the rotational equilibrium of the frame:
+V€) IMA=0 Equation (1)
+(15.0 x 6.0) + (40.0 x 6.0) + (30.0 x 12.0) + (10.0 x 16.5) — (V5 x 12.0)=0
S Vg=+T71.25kN

Consider the horizontal equilibrium of the frame:
+ve —XF, =0 + Hx+15.0=0 Equation (2)
- Hy=-15.0 kN
Consider the vertical equilibrium of the frame: «—
+ve T 2F,=0 Equation (3)
+ V2 —20.0-40.0-30.0-10.0+ V=0 s Va=+100.0-71.25

s Va=+28.75 kN
Consider section x—x through members CD, DH and GH.

Readers should consider the
equilibrium of the right-hand-
side of the section x—x and
confirm the values for the
unknown forces Fcp, Fpy and
A _ Fon.
15.0 kN <= X > — 0= 45°
2875 k “?‘ : . sin@=0.707; cos@=0.707

———

Ve)EMy=0  +(28.75%6.0)~ (200 % 6.0) + (Fep x 6.0) =0
<. Fep=— 8.75 kN (Strut)

tve T SF,=0 +28.75-20.0 —40.0 + (Fpy sind5°) =0
. Fpu =+ 44.2 kN (Tie)

tve—=2F =0 —15.0-8.75+(44.2 x cos45°) + Fy =0 —
. Fgu=—17.5 kN (Strut)
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Solution
Topic: Pin-Jointed Frames - Method of Sections
Problem Number: 3.2 Page No. 2

Consider section y—y through members CD, DH, DG and FG.
20 kN 40 kN

28.75 kN 71.25 kN

0=45° sin@=0.707; cos@=0.707

+ve } IF, =0

+28.75 —20.0 —40.0 + 71.25 + (44.2 x sin45°) + Fpg =0
FDG =—-"T71.25 kN (Strut)

tve—>=2F =0 _150-8.75+ (44.2 x c0s45°) + Frg =0 —
FFG =—75kN (Strut)

Readers should consider the equilibrium of the right-hand-side of the sections x—x
and y-y and confirm the values for the unknown forces Fpg and Frg,
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Solution
Topic: Pin-Jointed Frames - Method of Sections
Problem Number: 3.3 Page No. 1

30kN  60kN  60kN  60kN 60kN 60kN  30kN
C p| E F G

S 2o T

| 20m | 2.0m | 2.0m

7 7

Determine the Support Reactions
Consider the rotational equilibrium of the frame:
+V€) IMA=0 Equation (1)
+[60.0 x (2.0 +4.0+ 6.0 + 8.0 + 10.0)] + (30.0 x 12.0) — (V1 x 12.0) =0

s V1=+180.0 kKN
Consider the horizontal equilibrium of the frame:
+ve —XF, =0 +Hx=0 Equation (2)

.. Hy = zero
Consider the vertical equilibrium of the frame:

+ve T 2F,=0 Equation (3)
+ Va—30.0-(5.0x60.0)-30.0+ V=0 .. VA=+360.0-180.0
. VA=+180.0 kN

Consider section x—x through members DE, EQ, LQ and LM.
Normally a section which cuts through three unknown forces is considered. In this
case use can be made of the symmetry of the frame and loading.

30kN 60 kN 60 kN

Joint Q

The forces in members DE and LM are equal in magnitude and opposite in sense.

At joint Q it is evident that the forces in members EQ and LQ must also be equal in
magnitude and opposite in sense since DQ and MQ have no horizontal components
of force. 1.€. FDE = _FLM and FEQ = _FLQ
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Solution
Topic: Pin-Jointed Frames — Method of Sections
Problem Number: 3.3

30kN 60 kN

Lig=v2.0>+1.5 =2.5m
Lig=25m
sind=(1.5/2.5)=0.6
cosf=(2.0/2.5)=10.8

Fpg=—Fium
FEQ:_FLQ

+ve ) ZMo=0
+(180.0 x 4.0) — (30.0 X 4.0) — (60.0 % 2.0) + (Fpe X 1.5) = (Fu X 1.5)=0 _y_«_
+480.0 + (—I.SFLM) - 1-5FLM =0 FLM =+ 160.0 kKN (Tie)

———

- Fpg =—=160.0 kN (Strut
+ve } £F, =0 . (Struh

+180.0 — 30.0 — 60.0 — 60.0 + (Frq sin) — (Fiq sind) = 0 .
+30.0 + (= 0.6FLq) — 0.6Fo =0 <. Fio =+ 25.0 kN (Tie)

———

<. Fgg=—25.0 kN (Strut)

Consider section y—y through members DE, EQ, EL, LR and KL.

30 kN 60 kN 60 kN
Y
Ng— 160.0 kN

,)\ FgL

#25.0 kN

Since the frame and loading are symmetrical Fx; = Frv and Fir = Fig ———
- Fgi, =+ 160.0 kN (Tie)

—_—

o Frr =+ 25.0 kN (Tie)

+ve $ TF, =0

+180.0 — 30.0 — 60.0 — 60.0 + (Fig siné) — (25.0 x sin@) + Fyr =0
+30.0 +(25.0 X 0.6 ) — (25.0 x 0.6) + Fiz. = 0 <. Fgr =—30.0 kN (Strut)

———
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Solution
Topic: Pin-Jointed Frames - Method of Sections
Problem Number: 3.4 Page No. 1

g

75 kN 75 kN

9 equal bays at 3.0 m each

This frame is similar to the frame given in Chapter 1: Figure 1.21 comprising two
statically determinate frames.

There are four unknown reactions, however in addition to the three equations of
static equilibrium, at support N the magnitude of the forces in members MN and NO
are equal. (Note: the horizontal components must balance each other). This provides
an additional equation which can be used to solve the problem.

Determine the Support Reactions

Consider the rotational equilibrium of the frame:

+ve ) ZM; =0

+(27.0 x V) = (75.0 x 21.0) = (75.0 x 18.0) + (In x 13.5) =0 Equation (1)
+27.0V4—2925.0+ 13.5/y s Va=+108.33-0.5Vy

Consider the horizontal equilibrium of the frame:
tve —2XF, =0 +Hy,=0 Equation (2)

- Hy =1zero
Consider the vertical equilibrium of the frame:
+ve § 5F, =0
+VAa=75.0-750+Vy+ V=0 Equation (3)

S V=4 150.0 - VA — N

Consider section x—x at support N

Lno=Lun= V1.5 +1.52 =2.121m
sind=(1.5/2.121) = 0.707
cos@=(1.5/2.121) = 0.707

+ VN+(FN()SiIl€)+(FMNSin6):O also FNO:FMN
+ Nt [2 X (FMN X 0707)]: 0 A 0.707 VN
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Solution
Topic: Pin-Jointed Frames — Method of Sections
Problem Number: 3.4

Consider section y—y through members DE, EO and MN.
p y

Fgo sina Fro

75kN 75kN == » Fgocosa

4 bays @ 3.0 m each

Leo=+v1.5> +3.0° =3.354m
sina = 3.0/3.354 = 0.894  cosa=1.5/3.354 =0.447

+Ve) 2Me=10

+(13.5 % V) = (75.0 x 7.5) = (75.0 x 4.5) — (Fyncos® x4.5)=0  Equation (1)
+13.57, — 900.0 — 3.182Fyy = 0 v Fyn =+ 42437, — 282.84

From section x—x: Fyn=-0.707Vy
—0.707Vn=+4.243V, —282.84 S Va=—0.167Vy + 66.66

From Equation (1): V4 =+ 108.33 —0.5Vy
—0.167Vy +66.66 =+ 108.33 — 0.5V o Vx=+125.14 kN T

Va=-1(0.167 x 125.14) + 66.66 - Va=+45.76 kN T

From Equation (3): V;=+150.0 - Vs — Wy
Vi=+150.0-45.76 — 125.14 s V1=-20.9 kN l

———

Fux =+ (4.243 x 45.76) — 282.84 7+ Fyx =—88.68 kN (Strut)

+ve } 2F, =0
+ ¥y =750 =750+ Vx+ (Fynsin6) + (Frosine) =0
Fyo= [~ 45.76 +75.0 + 75.0 — 125.14 — (- 88.68 x 0.707)}/0.894 = 0
- Fgo =+ 46.75 kN (Tie)

+ve —+2F, =0

+HA +FDE + (FMNCOSH) + (FE()COSC() =0
Fog = [ze10 — (— 88.68 x 0.707) — (46.75 x 0.447)] = 0 e
- Fpp=—41.80 kN (Tie)
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Solution
Topic: Pin-Jointed Frames - Joint Resolution
Problem Number: 3.5 Page No. 1

B
Hg
Z b,
Vs £
2 Lc=v4.0> +3.0* =5.0m
X A sinf=(3.0/5.0)= 0.6
H\ —>g ONC cos@=(4.0/5.0)=0.8
3
VA | 4.0m |

Determine the Support Reactions
Consider the rotational equilibrium of the frame:
+Ve) ZMA=0 +(Hz x3.0)+(12.0x4.0)=0 Equation (1)

HB =—-16.0 kKN
<

Consider the horizontal equilibrium of the frame:
+ve —=XF, =0 +Hg+Hx=0 So—160+HA=0 Equation (2)
o Hy=+16.0 KN
Consider the vertical equilibrium of the frame: —
tve T YF,=0 +Va+V —12.0=0 Equation (3)
Ve =+12.0-V,4
Consider joint A:

A A

HAX'FAC = 16.0kN—$> Fac

Va Va

+ve § 5F, =0

s Va=1zero
From Equation (3) Vg =+ 12.0 -V, s Vg =+12.0 kN T

+tve = 2F, =0
———

+16.0 + Faoc=0 s Fac =—16.0 kN (Strut)

B
Consider joint C: 16.0 kN K
12.0kN

20.0 kN

12 kN A c

16.0 kN —%‘— 16.0 kN
+ve T 2F,=0 z€ero 12 kN

—_—

—12.0 + Fpesin=0 .. Fag=(12.0/0.6) Fac =+ 20.0 kN (Tie)
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Solution
Topic: Pin-Jointed Frames - Joint Resolution
Problem Number: 3.6 Page No. 1

Lag=V4.0°+3.0°=50m
sind= (3.0/5.0) = 0.6
cos@=(4.0/5.0)=0.8

Lpc = V2.0 +3.0*> =3.606 m

sinf3= (3.0/3.606) = 0.832
40m | 20m cos3= (2.0/3.606) = 0.555

7

6.0 m

Determine the Support Reactions
Consider the rotational equilibrium of the frame:
+ve) SMpA=0 + (5.0 x3.0) + (15.0 x 4.0) = (Vcx 6.0)=0 Equation (1)
nVe=+125kN 4

Consider the horizontal equilibrium of the frame:
+ve —=XF, =0 +Hy,+50=0 Equation (2)
HA =—5.0 kN
Consider the vertical equilibrium of the frame: «
+ve TZFZ:O + VA— 15.0 + VCZO VA: 15.0 - VC Equation (3)
Va=15.0-125 . VAa=+25kN

Consider joint A:

FaB

FaB A
A
HA f FAC _ 5.0 kN f FAC

Va 2.5kN > Fp cosf

+ve —2XF, =0 —5.0 + Fapcos@ + Fac=0 Equation (a)

+ve T 2F,=0 +2.5+ Fygsind=0 Equation (b)

From Equation (b): ——
Fap=—(2.5/sinf) =—(2.5/0.6) . Fap=—4.17 kN (Strut)

From Equation (a): ——
Fac=+5.0-(—4.17 x 0.8) 7+ Fac=+8.34 kN (Tie)
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Solution
Topic: Pin-Jointed Frames - Joint Resolution
Problem Number: 3.6 Page No. 2

Consider joint C:

FBC sinﬂ
A
1
|
|
1
1
1
1
|
|

12.5 kN
Fpc cosff <+

+ve —+XF,=0  —834—Fgccosff=0 Equation (a)
+ve $ 5F, =0 +12.5 + Fyc sin=0 Equation (b)

From Equation (a): —~—
Fyc =—(8.34/cos ) = — (8.34/0.555 ) . Fpc =—15.03 kN (Strut)

or

From Equation (b): —~—
Fgc=—(12.5/sinf) = — (12.5/0.832 ) . Fpc =—15.03 kN (Strut)

The reader should consider the equilibrium of joint B to confirm the calculated
values are correct by checking that:

+ve —2F, =0 and +ve TZFZ=O




Pin-Jointed Frames 79

Solution
Topic: Pin-Jointed Frames - Joint Resolution
Problem Number: 3.7 Page No. 1

Lag =v4.0 +5.0° =6.403 m
Lpc = 6.403 m

sin@= (5.0/6.403) = 0.781
cos@=(4.0/6.403) = 0.625

20 kN

Determine the Support Reactions
Consider the rotational equilibrium of the frame:
+ve) SMA=0 +(20.0 x4.0) - (Vcx8.0)=0 Equation (1)
" Ve=+100kN 1
Consider the horizontal equilibrium of the frame:
+ve —3F, =0 tTHA=0 Equation (2)
.. Hy =zero
Consider the vertical equilibrium of the frame:

+ve $ 5F, =0 +Va=200+Ve=0 . Va=20.0- V¢ Equation (3)
Va=200-100 .. Vy=+10.0kN }

Consider joint A:

FaB
" A A /
A _‘f FAp ¥
T :
» Fapcosé

Va 10.0 kN
tve —2XF, =0 + Fagcos@ + Fap=0 Equation (a)
+ve $ 5F, =0 +10.0 + Fap sinf=0 Equation (b)

From Equation (b): -
Fap=-(10.0/sin@) = —(10.0/0.781) o Fagp=—12.8 kN (Strut)

From Equation (a): ———
Fap=—(—12.8 x 0.625) . Fap =+ 8.0 kN (Tie)
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Solution
Topic: Pin-Jointed Frames - Joint Resolution
Problem Number: 3.7 Page No. 2

Consider joint D:

Fgp FBD

D D
Fap Fep = 8.01 kN Fcp

20 kN 20 kN
tve —2XF, =0 —-8.01+Fxp=0 Equation (a)

+ve $ 5F, =0 ~20.0 + Fp=0 Equation (b)

— <

From Equation (a): o Fcp =+ 8.01(Tie)

—

From Equation (b): .~ Fgp=+20.0 (Tie)

Consider joint C: (or by symmetry)

10.0 kN  Fpccosd

+ve —=2XF, =0 — Fgccos@ —Fcp=0 Equation (a)
+ve T 2F,=0 +10.0 + Fpc sind=0 Equation (b)

From Equation (b): P
Fgc=-(10.0/sin8) =— (10.0/0.781) . Fgc =—12.8 kN (Strut)

From Equation (a): ———
Fep=—(—12.8 x 0.625) o Fap =+ 8.0 kN (Tie)
B

The reader should consider the
equilibrium of joint B to confirm the
calculated values are correct by
checking that:

+ve —3F,=0 and +ve } F,=0
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Solution
Topic: Pin-Jointed Frames - Joint Resolution
Problem Number: 3.8 Page No. 1

Lgr =~/5.0° +5.0>=7.071 m

LDF =7.071 m
sin@= (5.0/7.071) = 0.707
cos6=(5.0/7.071) = 0.707

A V4

Hy |
Vi 50m ) 50m
X

Determine the Support Reactions
Consider the rotational equilibrium of the frame:
+V€) IMy=0  +(12.0%5.0)+(50.0 x 5.0) + (25.0 x 10.0) = (Vg x 10.0)=0
Equation (1)
. Vg =+56.0 kN T

Consider the horizontal equilibrium of the frame:
tve —=+XF, =0 +HA+12.0=0 Equation (2)
o Hy=-12.0 kN
4_

Consider the vertical equilibrium of the frame:
+ve T SF,=0 +Va—25.0-50.0-25.0+ V=0 Equation (3)
= Va=100.0 - Vg Va=100.0-56.0 .. Va=+44.0kN T

Consider joint A:

tve —=2XF, =0 —12.0+ Far=0 Equation (a)

+ve $ 5F, =0 +44.0+Fa3=0 Equation (b)
——

From Equation (a): o Fap=+12.0 KN (Tie)
———

From Equation (b): .. Fag=—44.0 kKN (Strut)
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Solution

Topic: Pin-Jointed Frames - Joint Resolution

Problem Number: 3.8

Consider joint B:

25kN
B

+Ve—>2FX:0 +12.0+FBFCOS€+FBC:0

tve | TF,=0  +44.0-25.0 - Fye sinf=0
From Equation (b):

Fge =+ (19.0/sin@) = + (19.0/0.707 )

From Equation (a):

Fpc=-12.0-(26.87 x 0.707)

Consider joint C:

50 kN S50 kN

C C
Fac Fcp 31.0 kN Fcp

Fcr Fcr

+VC_VZFXZO +31-O+FCD:O

+ve } 2F, =0

-500-Fcr=0

From Equation (a):

From Equation (b):

Page No. 2

> Fgpcosé

\/
FBF sin@ FBF

Equation (a)

Equation (b)

—

S FBF =+ 26.87 kN (Tie)

———

FBC =—-31.0 kN (Strut)

Equation (a)

Equation (b)

———

FCD =—-31.0 kN (Strut)

———

FCF =—150.0 kKN (Strut)




Solution
Topic: Pin-Jointed Frames - Joint Resolution
Problem Number: 3.8

Consider joint D:
25 kN
FCD%D
Fpr
FpE
+ve —2F, =0 +31.0 — Fppcos@=0
tve | ZF,=0  —25.0 - Fppsind — Fpp=0

From Equation (a):
Fpr=+(31.0/cos@) =+ (31.0/0.707 )

From Equation (b):
Fpg=-25.0-(43.85%0.707)

Consider joint E:

50.0 kN 43.85 kN
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Page No. 3

Fprcos@

]

1

|

1

v
FpF FpF siné

Equation (a)
Equation (b)

—_—

S FDF =+ 43.85 kN (Tie)

———

<. Fpg = —56.0 kN (Strut)

.. Fgr = zero member

The reader should consider the
equilibrium of joint F to confirm
the calculated values are correct
by checking that:

+tve = 2XF, =0

and

+VeTZFZ=O
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Solution
Topic: Pin-Jointed Frames - Joint Resolution
Problem Number: 3.9 Page No. 1

Lag=+2.5*4+5.0> =5.59m

Determine the Support Reactions
Consider the rotational equilibrium of the frame:
+Ve) IMA=0 +(10.0 x 5.0) + (15.0 x 5.0) = (Vg x 10.0) =0 Equation (1)
o Vg=+125kN T

Consider the horizontal equilibrium of the frame:
+ve —XF, =0 THA+10.0=0 Equation (2)
= Hy=-10.0 kN
4_

Consider the vertical equilibrium of the frame:
+ve TZFZZO +VA—150+ V=0 .. VA=150- Vg Equation (3)
Va=150-125 . Va=+25kN T

Consider joint A:

FaB

FaB

A Far A Far

Ha = 100kN
Va

Far sina

2.5kN - FABCOSH

A Fafpcosa

sin@= (5.0/5.59) = 0.894 cosf=(2.5/5.59) = 0.447
sino/= (2.5/5.59) = 0.447 cosar = (5.0/5.59) = 0.894

+ve —+2F, =0 —10.0 + Fagcos@ + Far cosa=0 Equation (a)

+ve ? >F,=0 + 2.5+ Fagsin@ + Fapsina=0 Equation (b)
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Solution
Topic: Pin-Jointed Frames - Joint Resolution
Problem Number: 3.9 Page No. 2

From Equation (a):
Fap=[+10.0 — (Fr x 0.894)]/ 0.447 oo Fap=+22.371 - 2.0F ¢

Substitute for Fag in Equation (b)

+2.5+(22.371 = 2.0FAf) sin@ + Fapsina=0

+2.5+[(22.371 x 0.894) — (2.0F A x 0.894) + (Far x 0.447) =0 e
+22.5-1.341F\r=0 o Fxp=+16.78 KN (Tie)

———

Fap=+22371-(2.0 x 16.78) ~ Fap=—11.19 kN (Strut)

Consider joint B:

B B
IOkN—ﬁVFBC IOkN_ﬁ’FBC§

FBF FBF
Fag 1119 kN

11.19 kN

B
f I"" FgE siny
'8 4
: v
-

B 119sing  Fercosy FBF

11.19 cosf

sinf= (2.5/5.59) = 0.447 cos3= (5.0/5.59) = 0.894
siny= (2.5/3.536) = 0.707 cosy= (2.5/3.536) = 0.707

+ve —2XF, =0 +10.0 + 11.19 sinf + Fgpsiny + Fgc =0 Equation (a)
+ve $ 5F, =0 +11.19 cosf8 — Fir cosy =0 Equation (b)

From Equation (b):
Fpr =+ (11.19 cosf/cosy) =+ [(11.19 x 0.894)/0.707 )] ———
S FBF =+ 14.15 kN (Tie)

From Equation (a):
Fgc=—[10.0 +(11.19 x 0.447) + (14.15 x 0.707)] —~~
.. Fgc =—25.0 kN (Strut)

Consider joint C:
15kN

C
Fgc Fcp

Fcr

——
+ve —2XF, =0 +25.0+ Fcp=0 <. Fcp =—25.0 kN (Strut)

———
+ve $ 5F, =0 —15.0-Fer=0 . Fep=—15.0 kN (Strut)
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Solution
Topic: Pin-Jointed Frames - Joint Resolution
Problem Number: 3.9 Page No. 3

Consider joint D:

D
. D --» FpE sin
25.0 kN D Fopsiny=-- /
- F7 \ 7
DF i
Fpg |

FpE Fog

sinf= (2.5/5.59) = 0.447 cos3= (5.0/5.59) = 0.894
siny=(2.5/3.536) = 0.707 cosy= (2.5/3.536) = 0.707

+ve —=XF,=0  +25.0— Fppsiny + Fpgsinf=10 Equation (a)
+ve T XF,=0 — Fpr cosy — Fpg cosff=0 Equation (b)

From Equation (a):
Fpg=[-25.0+ (Fpr x 0.707)]/ 0.447 o Fpg=—55.928 + 1.582Fpr

Substitute for Fpg in Equation (b)

— Fpr cosy — Fpg cosff=0

— (Fpr % 0.707) — [(=55.928 + 1.582Fp ) x 0.894] =0

+50.0-2.121Fpr =0 - Fpp =+ 23.57 kN (Tie)
——

Fpg=—55.928 + (1.582 x 23.57) . Fpg =—18.64 kN (Strut)

Consider joint E:

1864kN = E
|

Fer -0—> 18.64 cos@
= . H

125kN 18.64 kN Fer cosar

18.64 siné

sinf= (5.0/5.59) = 0.894 cosf= (2.5/5.59) = 0.447
sinar = (2.5/5.59) = 0.447 cosa = (5.0/5.59) = 0.894

tve —2F, =0 +(18.64x cos@)— Fgrcosax=0
—>

Fer =+ (18.64 x 0.447)/0.894 . Fgp=+9.32 kN (Tie)




Pin-Jointed Frames 87

Solution
Topic: Pin-Jointed Frames - Joint Resolution
Problem Number: 3.9 Page No. 4

The values obtained above can be checked by confirming the horizontal and vertical
equilibrium at joint F as follows:

Joint F:

16.78 kN 9.32 kN

siny= (2.5/3.536) = 0.707 cosy= (5.0/3.536) = 0.707
sinar = (2.5/5.59) = 0.447 cosa = (5.0/5.59) = 0.894

+ve —2F,

=—16.78 cosar— 14.15 cosy+ 9.32 cosa + 23.57 cosy

= — (16.78 x 0.894) — (14.15 x 0.707) + (9.32 x 0.894) + (23.57 x 0.707)
= Zero

+ve } 2F, =0
=—-16.78 sinax + 14.15 siny— 9.32 sina+ 23.57 siny— 15.0

= — (16.78 x 0.447) + (14.15 x 0.707) — (9.32 x 0.447) + (23.57 x 0.707) — 15.0
= Zero

15 kN
B C
25.0 kN ng= 25.0 KN

b

1415kN 15.0 kN  23.57 kN

Y

18.64 kN
F
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Solution
Topic: Pin-Jointed Frames - Joint Resolution
Problem Number: 3.10 Page No. 1

a\ B
D’

G

30m 3.0m F‘ 6.0 m

L =v3.0249.0> =9.487m; Lac=Lcr=+v3.02+3.0> =4.243 m
Consider triangle CEG:

sin@= (3.0/9.487) = 0.316; cos@=(9.0/9.487) = 0.949
sinf=(9.0/9.487) =0.949;  cosf=(3.0/9.487)=0.316

Consider triangle DEF:
Sinﬂ: (LDE/LEF) LDE = LEF Sinﬂ: (60 X 0949) =5.692m

Consider triangle DED”:
sin@ = (Lpp'/Lpg) ~. Lpp=Lpgsin@=(5.692 x 0.316) = 1.8 m
cos@= (Lgp/Lpg) o Lgp=Lpgcos@=(5.692 x 0.949) =5.4 m
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Solution
Topic: Pin-Jointed Frames - Joint Resolution
Problem Number: 3.10 Page No. 2

Determine the Support Reactions
Consider the rotational equilibrium of the frame:
+Ve) 2Mg=0  Itis convenient to consider joint E in this case
+(12.0 x V) +(12.0 x V) + (3.0 x Hg) — (12.0 x 9.0) — (4.0 x 9.487) — (24.0 x 5.4)
-(8.0x5.692)=0
 +12.0V4+12.0V5 + 3.0Hg = 321.1 Equation (1)
Consider the horizontal equilibrium of the frame:
+ve —2F, =0
+ Hp + Hg — (4.0 cosff) — (8.0 cosf) — (4.0 cosp) =0
“+Hy+ Hg—1.264-2.528-1.264=0
. +Ha+Hg=5.06 Equation (2)
Consider the vertical equilibrium of the frame:
+ve $ 5F,= 0
+ Va+ Vg —12.0 - (4.0 sinf) —24.0 — (8.0 sinff) — 12.0 — (4.0 sinf) =0
+ Va+Vp—12.0-3.796 -24.0-7.592 -12.0-3.796 =0
©+ VAt Vp=063.18 Equation (3)

Consider joint B: B

Hy _@’FBC
3 +ve } SF,=0 V=0  Vy=zero

15:)

From Equation (3): + Va+ V3 =63.18 o Va=+63.18 kN T
From Equation (1): +12.0V4 + 12.0V5 +3.0Hg =321.1 -«

+(12.0 x 63.18) + (3.0Hp ) = 321.1 - Hy =—145.69 kN
From Equation (2): + Hx + Hg=5.06 —

+ Hp — 145.69 = 5.06 - Hy,=+150.75 kN

+ve —2XF, =0 .
+ HB + FBC =0 FBC =+ 145.69 kN (Tie)
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Solution
Topic: Pin-Jointed Frames - Joint Resolution
Problem Number: 3.10 Page No. 3

Consider joint A:

Fac

F
AP A A
o — 150.75 kKN 2
A TE FaG = s !
: o
| Lo F a
A AC COS

Va 63.18 kKN
sina=(3.0/4.243) = 0.707 cosa = (3.0/4.243) = 0.707
+ve —2XF, =0 +150.75 + Faccosa+ Fag=0 Equation (a)
tve ? XF,=0 +63.18 + Facsin=0 Equaton (b)
. -
From Equation (b): Fac=-(63.18/0.707)=0 oo Fac=—89.36 kN (Strut)

From Equation (a): Fag=—150.75 - (- 89.36 x 0.707) —~—
~. Fag =—87.57 kN (Strut)

Consider joint G:
Feg

—.1—>
———

+ve —=XF, = 0 +87.57 + Frg=0 -, Frc =— 87.57 kN (Strut)

+ve T 2F,=0 +Feg=0 .. Fcg =zero member

Consider joint C:
12 kN 12 kN

4 kN 4 kN
C
Fac 145.69 kN
Fcp Fep

89.36 kKN
Fac Frg For zero FcF

89.36 kN Fee sing
Co C Fcp sinf
B
\J
Fcp cosf Fep

89.6 sina

a

89.36 cosaxr

sina = (3.0/4.243) = 0.707 cosa=(3.0/4.243) = 0.707
sinf8= (9.0/9.487) = 0.949 cosf3= (3.0/9.487) = 0.316
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Solution
Topic: Pin-Jointed Frames - Joint Resolution
Problem Number: 3.10 Page No. 4

+ve —2F

—145.69 + 89.36 cosar— 4.0 cosf+ Fcp sinax + Fep sinff=0
— 145.69 + (89.36 x 0.707) — (4.0 x 0.316) + (Fer x 0.707) + (Fep * 0.949) = 0
— 83.776 + 0.707Fcr + 0.949Fcp = 0 Equation (a)

+ve } ZF,=0

—12.0 +89.36 sinar— 4.0 sinff— Fcr cosex — Fep cosff=0

—12.0 + (89.36 x 0.707) — (4.0 x 0.949) — (Fez x 0.707) — (Fep x 0.316) = 0
+47.382 — 0.707Fcx — 0.316Fcp = 0 Equation (b)

From Equation (a):
Fep=(+83.776 — 0.949F -p)/ 0.707 o Fop=+118.5-1.342Fp

Substitute for Fcr in Equation (b)

+47.382 - 0.707Fcr — 0.316Fcp =0

+47.382 —[0.707 x (118.5 — 1.342Fcp)] — 0.316Fcp = 0 ———
+36.4+0.633Fp=0 ~. Fcp =+ 57.50 kN (Tie)

—_—

oo Fep=+4118.5—(1.342 x 57.5) o Fep=+41.34 kN (Tie)

Consider joint F:

41.34 kN
4134kN  For

o)
87.57 kN AL»F |

-
F EF 4134cosa F

-
41.34 sinx

7

sina= (3.0/4.243) = 0.707 cosa=(3.0/4.243) = 0.707
sin= (9.0/9.487) = 0.949 cosf3= (3.0/9.487) = 0.316

+ve = 2XF, =0 +87.57 — 41.34 cosar + FprcosfS + Fgr =0 Equation (a)

+ve T XF,=0 +41.34 sina + Fppsinff=0 Equation (b)

From Equation (b):

Fpr=—(41.34 sina/sinf) =-[(41.34 x 0.707)/0.949)] —~—
F])]: =—-30.8 kN (Strut)

From Equation (a): —

Fep=—-87.57+(41.34 x 0.707) — (— 30.8 X 0.316) - Fgr=—48.61 kN (Strut)
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Solution
Topic: Pin-Jointed Frames - Joint Resolution
Problem Number: 3.10 Page No. 5

Consider joint E:

12 kN 12 kN

4KN 4xN - FED

Fep FEp
s -

Fgp 48.61 kKN

E E

sinf=(3.0/9.487)=0.316 cos@=(9.0/9.487) = 0.949
sinfi=(9.0/9.487) = 0.949 cosff=(3.0/9.487)=0.316
+ve —2F,

+48.61 — 4.0 cosff— Fgp cosf@=0 Equation (a)
Fep = [48.61 — (4.0 x 0.316)]/0.949 <. Fup=+49.9 kN (Tie)

—_—

or

+ve } ZF,=0

—12.0-4.0sinf + Fgp sin6=0 Equation (b)
Fep=1[12.0 + (4.0 x 0.949)]/0.316 - Fgp =+ 49.9 kN (Tie)

—_—

145.69 kN

24 kN
8 kN

D
89.36 kN 12 kKN

49.9 kN
zero 30.8 kN 4 kN
150.75 kN A
87.57 kN 87.57 kN ° 48.61 kN

E

63.18 kN

The reader should consider the equilibrium of joint D to confirm the calculated values
are correct by checking that: +ve — XF, =0 and +ve TZFZ =0
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3.4 Method of Tension Coefficients

The method of tension coefficients is a tabular technique of carrying out joint resolution in
either two or three dimensions. It is ideally suited to the analysis of pin-jointed space-
frames.

Consider an individual member from a pin-jointed plane-frame, e.g. member AB shown in
Figure 3.8 with reference to a particular X—Z co-ordinate system.

If AB is a member of length Lap having a tensile force in it of Txg, then the components of
this force in the X and Z directions are Txp cos@ and Txp sin@respectively.

If the co-ordinates of A and B are (X4, Z4) and (X, Zg), then the component of Txp in the
x-direction is given by :

(X5 = X,)
x-component = Tap ~——= =g (X — X4)
LAB
V4
A
/S
Zp b-------
A
> X
Xa
Figure 3.8
T, . . . .
where 1, = —2B and is known as the tension coefficient of the bar. Similarly, the
‘AB

component of T»p in the z-direction is given by:

Zo—7
z-component = Tag = —2——2 = 1,p(Zg — Z»)
AB
If at joint A in the frame there are a number of bars, i.e. AB, AC ... AN, and external loads
Xa and Z, acting in the X and Z directions, then since the joint is in equilibrium the sum of
the components of the external and internal forces must equal zero in each of those
directions.

Expressing these conditions in terms of the components of each of the forces then gives:
fAB (XB—XA)+tAc(XC—XA)+ ............ tAN(XN—XA)+XA:0 (1)

IAB (ZB_ZA)+tAC(ZC_ZA)+ ........... . tAN(ZN_ZA)+ZA:0 (2)
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A similar pair of equations can be developed for each joint in the frame giving a total
number of equation equal to (2 X number of joints)

In a statically determinate triangulated plane-frame the number of unknown member
forces is equal to [(2 X number of joints) — 3], hence there are three additional equations
which can be used to determine the reactions or check the values of the tension
coefficients.

Once a tension coefficient (e.g. ag) has been determined, the unknown member force is
given by the product:

Tap = tasLap ( Note: Tap = Tsa)
Note: A member which has a — ve tension coefficient is in compression and is a strut.

3.4.1 Example 3.2: Two-Dimensional Plane Truss
Consider the pin-jointed, plane-frame ABC loaded as shown in Figure 3.9.

10 kN
Lag=50m 20 kN B
LAC =7.0m
LBC =4.243m E
Z -
| A :
o— X Ay )
Aﬁﬁ 4.0 m | 30m T C,

Figure 3.9

Construct a table in terms of tension coefficients and an X/Z co-ordinate system as shown
in Table 3.1.

The equilibrium equations are solved in terms of the ‘¢’ values and hence the member
forces and support reactions are evaluated and entered in the table as shown in Table 3.1.

Consider joint B:
There are only two unknowns and two equations, hence:

Adding both equations
- 4IAB + 3IBC +20=0
—3tﬁ—3lm— 10:0
— TtaB +10=0 tag=+1.43
substitute for #5p in the first equation tge=—4.76
Force in member AB=fxg X Lag=+(1.43x5.0)=+7.15kN Tie

Force in member BC = fgc X Lgc =— (4.76 X 4.243) =—20.2 kN Strut

Joints A and C can be considered in a similar manner until all unknown values, including
reactions, have been determined.
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The reader should complete this solution to obtain the following values: Fac =+ 14.28 kN
A=+20kN A,=-429kN C,=+ 1428 kN

Joint Equilibrium Equations | Member t Length | Force
(m) (kN)
A X | 4tag + Ttac + AB +1.43 5.0 +7.15
Z 3t AC ? 7.0 ?
BC —4.76 4.243 | -20.20
B X | Adtap+3tgc 20 =0 Support Reactions (kN)
Z —3tag—3tgc— 10 =0 Component X z
C X | =Ttac — 3tsc =0 Support A
Z +3tgc + C, =0 Support C Zero
Table 3.1

In the case of a space frame, each joint has three co-ordinates and the forces have
components in the three orthogonal X, Z and Y directions. This leads to (3 X Number. of
joints) equations which can be solved as above to determine the ‘# values and
subsequently the member forces and support reactions.

3.4.2 Example 3.3: Three-Dimensional Space Truss

The space frame shown in Figure 3.10 has three pinned supports at A, B and C, all of
which lie on the same level as indicated. Member DE is horizontal and at a height of 10 m
above the plane of the supports. The planar dimensions (z—x, x—y and z—y) of the frame
are indicated in Figure 3.11.

Determine the forces in the members when the frame carries loads of 80 kN and 40 kN
acting in a horizontal plane at joints E and D respectively as shown.

Figure 3.10 - A
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Z (m)
A D,E
10 —

€+ X (m)

Figure 3.11
Solution:
Length of members: L = (x2 +y7 4+ zz)
Lps=10.0m LAE=\/(10.02 +15.0°+10.0°) =20.62 m
Lap :\/(10.02 +5.0°+10.0*) = 15.0m Leg =\/(1o.02 +5.0°+10.0’)=15.0m
Lep =\/(10.o2 +5.0°+10.0°)=15.0m Lk =\/(1o.02 +5.0°+10.0*)=15.0m

The equations from the Tension Coefficient Table are used to determine the ‘#’ values.
Since only three equations are available at any joint, only three unknowns can be
determined at any one time, i.e. identify a joint with no more that three unknown member
forces to begin the calculation; in this case the only suitable joint is D.
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Solve the three simultaneous equations at joint D to determine the tension coefficients
tAD, IDE and tcp, 1.€.

Consider Joint D: Equations (10), (11) and (12)

Equation (12) _IOtAD + IOtCD= 0 tap = 0
Equation (1 1) +5tAD - StCD - IOtDE +40=0 —)> tpg =+ 4.0
Equation (10) —IOtAD — IOICD =0 tcp = 0

Similarly for the next joint in which there are no more than three unknowns, i.e. Joint E

Consider Joint E: Equations (13), (14) and (15)

Equation (13) _10tAE — IOIBE + IOICE +80=0 N 0
Equation (14) +15tAE - StBE + StCE + IOIDE =0 —)> g =+ 4.0
Equation (15) _1OtAE - lOtBE - lOICE =0 fcg = — 4.0

The support reactions can be determined after the tension coefficient values have been
determined using Equations (1) to (9).

The sum of the reactions in the x, y and z directions should be checked by ensuring that
they are equal and opposite to the applied load system.

Joint Equilibrium Equations Member t Length Force
(m) (kN)
1 X | T1025g + 10t5p +Ax=0 AD 0 15.0 0
2 | A | Y | ~15%e—5%D +Ay=0 AE 0 20.62 0
3 7 | T10tag + 1045p +4,=0 BE +4.0 15.0 +60.0
4 X |+ 10 +Bx=0 CD 0 15.0 0
5 B | Y| +By=0 CE —40 15.0 - 60.0
6 z |+ 10%e +Bz =0 DE +4.0 10.0 +40.0
7 X | — 10tcp — 10tce +Cx=0 Support Reactions (kN)
8 | C | Y |t 5D~ 5Sice +Cy=0 Component x y z
9 7 | t10tcp + 10tce +Cz=0 Support A zero zero zero
10 X | ~10tap + 10cp =0 Support B —40.0 | -20.0 | —40.0
1| o | v | +5p—5tp— 10 +40 =0 Support C —40.0 | —20.0 | +40.0
12 7 —lOtAD— 10tCD =0
2 Applied forces in X-direction = + 80 kN
13 X —IOIAE—IOtBE +1OICE+80=O
2 Applied forces in Y-direction = + 40 kN
+15¢sg — Stgg + Stegp + 10tpp =0
HlELY AE o < or 2 Applied forces in Z-direction = zero
15 Z —IOIAE— IOtBE—IOICE =0

Table 3.2
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3.4.3 Problems: Method of Tension Coefficients

The pin-jointed space-frames shown in Problems 3.11 to 3.16 have three pinned supports
at A, B and C as indicated. In each case the supports A, B and C are in the same plane.
Using the data given determine:

(i) the member forces and
(ii) the support reactions,

when the frames are subjected to the loading indicated.

L.«

Problem 3.11

v4 70.0 kKN

Problem 3.12
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Problem 3.13

Problem 3.14
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2.0kN

3.0kN

Problem 3.15

20.0 kN

Problem 3.16



Pin-Jointed Frames 101

3.4.4 Solutions: Method of Tension Coefficients

Solution
Topic: Pin-Jointed Frames — Method of Tension Coefficients
Problem Number: 3.11 Page No. 1

Ly =(tan 30° x 2.0)=1.16 m
L,=+2.0"+1.16> =231 m

Length of member: L = (x2 +yt+ zz)

Length of members AD, BD and CD: Lap, sp,cp = \/(2.02 +1.16* + 6.02) =6.43m

See Equations in Tension Coefficient Table

Consider Joint D: Equations (10), (11) and (12)

Equation (10)  —2.0¢ap +2.0tgp +15.0=0 tap=+1.53
Equation (11)  — 1.16¢ap — 1.16¢gp +2.31tcp =0 tsp =—5.97
Equation (12)  —6.0¢ap — 6.0tgp — 6.0tcp —40=0 tecp=—2.22

Consider Joint A: Equations (1), (2) and (3)

Equation (1) +2.0tap +4x=0 A,=-3.06 kN
Equation (2) +1.16tap +4,=0 Ay=-1.76 kN
Equation (3) +6.0tap+A4,=0 A,=—9.18 kN

Consider Joint B: Equations (4), (5) and (6)

Equation (4) —20tp +B=0 B,=—-11.94 kN
Equation (5) +1.16t5p + By =0 By=+6.87kN
Equation (6) +6.0tgp+B,=0 B,=+35.82kN

Consider Joint C: Equations (7), (8) and (9)

Equation (7) +Cx=0 Ci=z

Equation (8) -231tecp +C=0 Cy=-5.11kN
Equation (9) +6.0tcp+C,=0 C,=+13.32 kN
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Solution
Topic: Pin-Jointed Frames — Method of Tension Coefficients
Problem Number: 3.11 Page No. 2

Note: +ve tension coefficient values indicate tension members
—ve tension coefficient values indicate compression members

Equilibrium Equations Member Length (m) | Force (kN)
+2.0 tap +A4,=0 AD 6.43 +9.84

+1.16 tap +4,=0 BD 6.43 —38.38
+6.0 tap +4,=0 CD 6.43 —14.27

—Z.OtBD +BX:0
+1~16[BD +By:0

+6.0 8D +Bz:0

+C =0
231 tep +Cy=0
+6.0 t(j[) + C7:0

=2.02ap +2.0t5p + 15.0 =0 Support Reactions (kN)

—1.16 top — 1.16 tgp +2.31 tcp =0 | Component X y z

N < XN < XN < XN < X

—6.0 top — 6.0 tgp —6.0 tcp —40=10 Support A —3.06 —-1.76 —-9.18

Support B —11.94 + 6.87 + 35.82

Support C zero —5.11 +13.32

2 Applied forces in X-direction = + 15.0 kN
2 Applied forces in Y-direction = zero

3 Applied forces in Z-direction = — 40.0 kN
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Topic: Pin-Jointed Frames — Method of Tension Coefficients

Problem Number: 3.12

Page No. 1

Z (m)

Solution:

Length of members: L = (

Length of member AD: Lap =\/ 8.0 +8.0% + 4.02) =12.0m

Length of member BD: Lgp =\/ 2.0° +4.0° + 4.02) =6.0m

Length of member CD: Lcp = (3.02 + 4.02) =50m

See Equations in Tension Coefficient Table.
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Solution
Topic: Pin-Jointed Frames — Method of Tension Coefficients
Problem Number: 3.12 Page No. 2

Consider Joint D: Equations (10), (11) and (12)

Equation (1) —8.0tap — 2.0tgp + 3tcp =0 tap="+2.5kN
Equation (2) —8.0tap +4.0t5p=0 tsp =+ 5.0 kN
Equation (3) —4.0tap — 4.0tgp — 4.0tcp + 70.0=0 tcp =+ 10.0 kN

Consider Joint A: Equations (1), (2) and (3)

Equation (1) + 8.0tap +44x=0 A, =-20.0 kN
Equation (2) +8.0tap +4,=0 Ay =-20.0 kN
Equation (3) +4.0tap +A4,=0 A,=—10.0kN

Consider Joint B: Equations (4), (5) and (6)

Equation (4) +2.0t5p+By,=0 B,=-10.0kN
Equation (5) —4.0tgp + By =0 By, =+20.0 kN
Equation (6) +4.0tgp+B,=0 B,=-20.0kN

Consider Joint C: Equations (7), (8) and (9)

Equation (7) —3.0tcp+ Cx=0 Cy=+30.0 kN
Equation (8) +Cy=0 C, = zero
Equation (9) +4.0tcp+ C,=0 . =—40.0 kN

Note: +ve tension coefficient values indicate tension members
—ve tension coefficient values indicate compression members

Equilibrium Equations Member t Length (m) | Force (KN)
+8.0tap +4,=0 AD +2.5 12.0 +30.0

+8.0¢ap +4,=0 BD +5.0 6.0 +30.0
+4.0tp +4,=0 CD +10.0 5.0 +50.0

+ 2.0tgp +B, =0 Support Reactions (kN)

—4.0tgp +By=0 Component x y

+4.0tp +B,=0 Support A —20 —20

—3.0tcp +Cy=0 Support B —10
+C,=0 Support C +30

+ 4-OICD + Cz =0

—8.0tap — 2.0tnp + 3lcp ~0 2 Applied forces in X-direction = zero

—8.0tap +4.0tsp ~0 2 Applied forces in Y-direction = zero

2 Applied forces in Z-direction =+ 70 kN

N < XN < XN < X|IN < X

_4~0tAD - 4~0[BD - 4-OtCD +70.0=0
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Solution
Topic: Pin-Jointed Frames — Method of Tension Coefficients
Problem Number: 3.13

Z (m) 200 kKN

8 E
5 D
200 kN
A C \.B
L X (m) 3 %
5 10

15

Solution:

Length of members: L =, [(x2 +y + zz)

Length of member AD: Lap =\/(5.02 +5.0°+ 5.02) =8.66 m

Length of member BD: Lgp Z\/(S.O2 +5.0° + 5.02) =8.66 m
Length of member CD: Lcp =5.0 m
Length of member CE: Leg = ,/(10.0° +8.0°) =12.81m

Length of member DE: Ly = [(10.0° +3.0°) = 10.44 m

See Equations in Tension Coefficient Table.
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Solution
Topic: Pin-Jointed Frames — Method of Tension Coefficients
Problem Number: 3.13 Page No. 2

Consider Joint E: Equations (13) and (15)
Equation (13)  —10.0pg — 10.0zcg =0 tcg =—40.0
Equation (15)  —3.0¢pg — 8.0tcg — 200 =0 tor =+ 40.0

Consider Joint D: Equations (10), (11) and (12)

Equation (10)  — 5.0¢ap — 5.0tgp + 10.0/pg =0 tap=+40.0
Equation (11)  —5.0¢ap +5.0t5p =0 tsp = +40.0
Equation (12)  —5.0¢ap — 5.0¢pp + 3.0¢pg — 5.0¢cp =0 tcp=—156.0

Similarly, the support reactions can be obtained by substituting the values of the
tension coefficients in Equations (1) to ( 9).

Note: -+ve tension coefficient values indicate tension members
—ve tension coefficient values indicate compression members

Equilibrium Equations Member t Length (m) | Force (kN)
+5.0tap +4,=0 AD +40.0 8.66 +346.4

+5.0tap +4,=0 BD +40.0 8.66 +346.6
+5.0¢ap +4,=0 cb —-56.0 5.0 —280.0

+5.0t5p +B,=0 CE —40.0 12.81 —-5122

—5.0t3p +B,=0 DE +40.0 10.44 +417.6
+ S-OtBD + Bz =0

Support Reactions (kN)

+10.0zcg +Cy=0 Component X y

+Cy=0 Support A
+5.0tcp + 8.0fcg +C,=0 Support B

- S.OtAD - S.OIBD + IOOIDE =0 Support C

- S.OIAD + S.OIBD =0

—=5.0t5p —5.0tgp +3.0tpg —5.0cp = 0 | X Applied forces in X-direction = zero

—10.0tpg — 10.0¢cg =0 > Applied forces in Y-direction = zero
2 Applied forces in Z-direction = — 200 kN

N < XN < XN < XN < XN < X

— 3.0tpg — 8.0tcg — 200
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Solution
Topic: Pin-Jointed Frames — Method of Tension Coefficients
Problem Number: 3.14 Page No. 1

> Y (m)

Solution:

Length of members: L = (x2 +yt+ zz)

Length of members AD and AE: Lap, Ak =\/(3.02 +1.0* + 1.02) =332m

Length of member BD: Lgp =\/(3.02 +1.0% + 2.02) =374 m

Length of member BE: Ly :\/(3.02 +3.0°+2.0°)=4.69 m

Length of member CE: Lcg = (3.02 + 3.02) =424 m

Length of member DE: Lpg = 2.0 m
See Equations in Tension Coefficient Table
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Solution
Topic: Pin-Jointed Frames — Method of Tension Coefficients
Problem Number: 3.14 Page No. 2

Consider Joint D: Equations (10), (11) and (12)

Equation (10)  —3.0¢tap—3tgp =0 tap=+10.0
Equation (11)  + 1.0¢ap — 1.0t5p + 2.0tpg — 40.0 =0 tgp=—10.0
Equation (12)  + 1.0¢ap — 2.0t5p — 30.0=0 top =+ 10.0

Consider Joint E: Equations (13), (14) and (15)

Equation (13)  —3.0tap — 3.0t5g — 3.0t =0 tap=+1.82
Equation (14)  — 1.0¢ap — 3.0tgg — 2.0tpg = 0 tgg =— 7.28
Equation (15)  + 1.0¢sg — 2.0tgg — 3.02cg =0 tcg =+ 5.46

Similarly, the support reactions can be obtained by substituting the values of the
tension coefficients in Equations (1) to ( 9).

Note: -+ve tension coefficient values indicate tension members
—ve tension coefficient values indicate compression members

Length
(m)
+3.0tap +3.01%¢ +4,=0 AD +10.0 3.32

Equilibrium Equations Member t

—1.0txp + 1.06x¢ +4,=0 AE +1.82 3.32
= 1.0tAp — 1.0tag +4,=0 BD -10.0 3.74

+3.0tgp + 3.0fgg +B,=0 BE _ 728 4.69
+ I.OIBD + 3~0tBE + By =0 CE +5.46 4.24
+2.0t5p + 2.0tge +B,=0 DE +10.0 2.0

+3.0tcp +C=0 Support Reactions

+Cy=0 Component x y

+ 3.0tk +C,=0 Support A | _355kN

—3.0¢ap —3tsp =0 Support B | 4 51.8 kKN

+ IAOIAD —l.OtBD +2-0tDE -40.0=0 Support C —16.4 KN

+ l.OtAD _Z.OIBD -30.0 =0

% Applied forces in X-direction = zero
- 30tAE - 3-0tBE - 3~OICE =0
2 Applied forces in Y-direction = — 40 kN
- 1-0tAE - 3-OtBE - Z.OtDE =0
2 Applied forces in Z-direction = — 30 kN

N < XIN < XN < XN < XN < X

+ I.OIAE - Z.OtBE - 3~0tCE =0
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Solution
Topic: Pin-Jointed Frames — Method of Tension Coefficients
Problem Number: 3.15 Page No. 1

Solution:

Length of members: L = (x2 +yt+ z2)

Length of members AD and AE: Lp, ae =\/(2.o2 +6.0° + 4.02) =7.48 m
Length of members BD, DE and CE: Lgp pg, cg = 4.0 m
Length of member BE: Lys =,/(4.0° +4.0°) =5.66 m

See Equations in Tension Coefficient Table.
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Solution
Topic: Pin-Jointed Frames — Method of Tension Coefficients
Problem Number: 3.15 Page No. 2

Consider Joint D: Equations (10), (11) and (12)

Equation (10)  + 2.0¢ap +4.0tpg =0 tan=+0.5
Equation (1 1) — 6.0tAD +3.0=0 fsp = — 1.75
Equation (12) — 4-OtAD — 4-OtBD -50=0 fpg = — 0.25

Consider Joint E: Equations (13), (14) and (15)

Equation (13)  —2.0¢ag — 4.0tpg — 4.0tg + 2.0 =0 tap=+0.5
Equation (14) —6.0ta4+3.0=0 tgg=+0.5
Equation (15)  —4.0tap — 4.0t5g — 4.0tcg — 5.0=0 tcg=—2.25

Similarly, the support reactions can be obtained by substituting the values of the
tension coefficients in Equations (1) to ( 9).

Note: -+ve tension coefficient values indicate tension members
—ve tension coefficient values indicate compression members

Equilibrium Equations Member t Length (m) | Force (kN)
—2.0tap + 2.0t55 +4,=0 AD +0.5 7.48 +3.74

+6.0tAp + 6.0255 +4,=0 AE +05 7.48 +3.74
+4-0[AD +4~OZAE +Az:0 BD —1.75 4.0 -7.0

+ 4.0t5p +B=0 BE +0.5 5.66 +2.83

+By=0 CE -225 4.0 90
+4.0tgg + 4.0tgp +B,=0 DE ~025 4.0 ~1.0

+C=0 Support Reactions (kN)

+Cy=0 | Component x y z

+ 4.0tcg +C,=0 | SupportA — 4.0 KN

+2.0tap + 4.0tpg =0 Support B +5.0 kKN

—6.0tAp +3.0=0 Support C +9.0 kN

- 4-OZAD - 4.013[) -5.0=0
2 Applied forces in X-direction =+ 2 kN

- Z.OIAE - 4-OtDE - 4-OtBE +2.0=0
3 Applied forces in Y-direction =+ 6 kN
—6.0tAE +3.0=0
2 Applied forces in Z-direction =+ 10 kN

N < XIN < X|IN < X|N < XN < X

- 4~0tAE - 4-0tBE - 4~0tCE -50=0
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Solution
Topic: Pin-Jointed Frames - Method of Tension Coefficients
Problem Number: 3.16 Page No. 1

Solution:

Length of members: L = (x2 +y° + zz)

Length of members AE and AF: Lagar = (4.02 + 2.02) =447 m

Length of member CE: Lcg = (2.02 + 2.02) =283 m

Length of members AD, BE, CF and EF: Lappgcrer =2.0 m
Length of members DF and DE: Lpgpg =4.0 m

See Equations in Tension Coefficient Table.
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Solution
Topic: Pin-Jointed Frames — Method of Tension Coefficients
Problem Number: 3.16 Page No. 2

Consider Joint D: Equations (10), (11) and (12)
Equation (10) + l.OIDE - 1.0tD1: =0 faAD = — 10.0
Equation (11)  +3.87tpg +3.87pr +8.0=0 tog =—1.03
Equation (12) —2.0¢4p—20.0=0 tor =—1.03
Consider Joint F: Equations (16), (17) and (18)
Equation (16) + 1-0tAF + l.OtDF + 2-0tEF =0 A=+ 1.03
Equation (17) —3.87tar —3.87tpr =0 tgF = Z€r0
Equation (18) — 2-0tCF — 2-0tAF -20.0=0 fcp=— 11.03
Consider Joint E: Equations (13), (14) and (15)
Equation (13) — l.OtAE — 2-0tCE — l.OtDE— 2.01131: =0 IAg =+ 1.03
Equation (14) — 3.87tAE — 3.87IDE =0 == [gg=— 11.03
Equation (15) - 2-OtAE - 2-OtCE - 2.0[]35 —-20.0=0 Icg = Z€ro
Similarly, the support reactions can be obtained by substituting the values of the
tension coefficients in Equations (1) to ( 9).
Note: +ve tension coefficient values indicate tension members

—ve tension coefficient values indicate compression members
Equilibrium Equations Member t Length (m) | Force (kN)

+1.0tap — 10055 +4,=0 AD -10.0 2.0 -20.0
+3.87tpp + 3.8715r +4,=0 AE +1.03 4.47 +4.61
+2.0ap +2.004p + 2.0tap +4,=0 AF +1.03 4.47 +4.61

+B,=0 BE -11.03 2.0 —22.06
+By=0 CE zero 2.83 zero
+2.0t8g +B,=0 CF -11.03 2.0 ~22.06

+2.0tcp +G=0 DE -1.03 4.0 —4.13
+6,=0 DF -1.03 4.0 —4.13
+2.0tcg + 2.0t +C,=0 EF Zero 2.0 Zero

+1.0pg — 1.0tpg =0 Support Reactions (kN)

+3.87tpg + 3.87tpr + 8.0 =0 Component X y

—2.0tzp -20.0 =0 Support A —8.0

- l.OtAE —ZAOICE —IAOtDE - ZAOtEF =0 Support B
—3.87tar —3.87tpe =0 Support C

- Z.OtAE —Z.OtCE —ZAOIBE -20.0=0
> Applied forces in X-direction = zero

+ 1.0tar + 1.0tpp + 2.0t
2 Applied forces in Y-direction =+ 8 kN
—3.87tar — 3.87tpF
2 Applied forces in Z-direction = — 60 kN
— 2.0tAr — 2.0fcp

N < XN < XN < XN < XN < X|N < X
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3.5 Unit Load Method for Deflection

The Unit Load Method of analysis is based on the principles of strain energy and
Castigliano’s 1% Theorem. When structures deflect under load the work-done by the
displacement of the applied loads is stored in the members of the structure in the form of
strain energy.

3.5.1 Strain Energy (Axial Load Effects)

Consider an axially loaded structural member of length ‘L’, cross-sectional area ‘4’, and
of material with modulus of elasticity ‘£’ as shown in Figure 3.12(a).

Fixed ‘ —
supponﬁ}‘\ ‘ N P
2 s
J,\ L AE JA Jh L A E JhdLWL
(a) (b)
Figure 3.12

When an axial load ‘P’ is applied as indicated, the member will increase in length by ‘oL’

as shown in Figure 3.12(b). Assuming linear elastic behaviour, JL o< P, this relationship is
represented graphically in Figure 3.13.

Load
A

P

» Extension Figure 3.13
SL g

The work-done by the externally applied load ‘P’ is equal to:

(average value of the force X distance through which the force moves in its line of action)

i.e.  Work-done = [gx 5[}

For linearly elastic materials the relationship between the applied axial load and the
change in length is:

PL
SL= =
AE

Work-done = (gx élj
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This work-done by the externally applied load is equal to the ‘energy’ stored by the
member when it changes length and is known as the strain energy, usually given the
symbol ‘U”. It is this energy which causes structural members to return to their original
length when an applied load system is removed; (Note: it is assumed that the strains are
within the elastic limits of the material.)

Strain energy = Work-done by the applied load system
P’L
U=
2AE

(Note: the principles of strain energy also apply to members subject to shear, bending,
torsion etc.)

3.5.2 Castigliano’s 1" Theorem

Castigliano’s 1* Theorem relating to strain energy and structural deformation can be
expressed as follows:

‘If the total strain energy in a structure is partially differentiated with respect to an
applied load the result is equal to the displacement of that load in its line of action.’

In mathematical terms this is:

4-Y
ow
where:
U is the total strain energy of the structure due to the applied load system,
W 1is the force acting at the point where the displacement is required,
A s the linear displacement in the direction of the line of action of W.

This form of the theorem is very useful in obtaining the deflection at joints in pin-jointed
structures. Consider the pin-jointed frame shown in Figure 3.14 in which it is required to
determine the vertical deflection of joint B.

A B

Lag \
=3

Lap Lpp Lgc

%C LD\ Lcp
s E

" b | C
Py P,

Figure 3.14
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Step 1:
The member forces induced by the applied load system are calculated, in this case referred
to as the ‘P’ forces, as shown in Figure 3.15.

A B

P-forces

%CE PD}X]’ Peo C

Step 2: Py P
The applied load system is removed from the structure and an imaginary Unit load is
applied at the joint and in the direction of the required deflection, i.e. a vertical load equal
to 1.0 at joint B. The resulting member forces due to the unit load are calculated and
referred to as the ‘u’ forces, as shown in Figure 3.16.

Figure 3.15

1.0
A B
UaB
UAD Ugpp Upc u-forces
%ﬁ u \ u
) P D P C Figure 3.16

If both the Step 1 and the Step 2 load systems are considered to act simultaneously, then
by superposition the total force in each member is given by:

Q= (P+ fu)

where:

P is the force due to the applied load system

u 1is the force due to the applied imaginary Unit load applied at B

B is a multiplying factor to reflect the value of the load applied at B (Since the unit load
is an imaginary force the value of # = zero and is used here as a mathematical
convenience.)

The total strain energy in the structure is equal to the sum of the energy stored in all the
members:

0L
U_ZZAE
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Using Castigliano’s 1* Theorem the deflection of joint B is given by:

U
o
oU dJU _9dQ
TR
and
CURED o T
00 AE’ 0B
oU dJU _9dQ (P+ fu)L
40 e T T
Since = zero the vertical deflection at B () is given by:
PL
AB = Eu

i.e. the deflection at any joint in a pin-jointed frame can be determined from:

PL
o= > —u
Z AE
where:
0 is the displacement of the point of application of any load, along the line of action of
that load,

P is the force in a member due to the externally applied loading system,

u 1is the force in a member due to a unit load acting at the position of, and in the
direction of the desired displacement,

L/A 1is the ratio of the length to the cross-sectional area of the members,

E  is the modulus of elasticity of the material for each member (i.e. Young’s Modulus).

3.5.3 Example 3.4: Deflection of a Pin-Jointed Truss

A pin-jointed truss ABCD is shown in Figure 3.17 in which both a vertical and a
horizontal load are applied at joint B as indicated. Determine the magnitude and direction
of the resultant deflection at joint B and the vertical deflection at joint D.

10 kN

B 20 kN
Assume the  cross-

sectional area of all
members is equal to 4
and all members are
made from the same
material, i.e. have the
same  modulus  of
elasticity E

3.0m

3.0m

Figure 3.17
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Step 1: Evaluate the member forces. The reader should follow the procedure given in
Example 3.1 to determine the following results:

Horizontal component of reaction at support A Hy=—20.0kN
Vertical component of reaction at support A Va=-429kN
Vertical component of reaction at support C Ve=+ 1429 kN T

Use the method of sections or joint resolution as indicated in Section 3.2 and Section 3.3
respectively to determine the magnitude and sense of the unknown member forces (i.e. the
P forces).

The reader should complete this calculation to determine the member forces as indicated
in Figure 3.18.

10 kN
20 kN
B
+ve  — tension member
-ve  — compression member
+7.15 kN zero force —20.20 kN
A D
20 kN +14.29 kN —<4——p— +14.29 kN
k o
429 kN P — forces 14.29 kN

Figure 3.18

Step 2: To determine the vertical deflection at joint B remove the externally applied load
system and apply a unit load only in a vertical direction at joint B as shown in
Figure 3.19. Use the method of sections or joint resolution as before to determine the
magnitude and sense of the unknown member forces (i.e. the u forces).

The reader should complete this calculation to determine the member forces as indicated

in Figure 3.19.
1.0

| — Applied unit load
B
-0.71 zero force -0.81
A D C
Zero +0.57 ——<4¢——>p—+0.57
Ry o
0.43 0.57

The u forces for vertical deflection at joint B
Figure 3.19
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The vertical deflection dvp = Eu
’ AE
This is better calculated in tabular form as shown in Table 3.3.

Member | Length (L) | Cross-section (4) | Modulus (E) | P forces (kN) | u forces | PL X u (kNm)
AB 5.0m A E +7.15 —-0.71 —25.38
BC 424 m A E —20.20 —-0.81 +69.37
AD 4.0 m A E +14.29 +0.57 +32.58
CD 3.0m A E +14.29 +0.57 +24.44
BD 3.0m A E 0.0 0.0 0.0

> +101.01
Table 3.3

The +ve sign indicates that the deflection is in the same direction as the applied unit load.

. PL
Hence the vertical deflection dy :ZE” =+ (101.01/4E) l

Note: Where the members have different cross-sectional areas and/or moduli of elasticity
each entry in the last column of the table should be based on (PL X u)/AE and not only

(PL X u).

A similar calculation can be carried out to determine the horizontal deflection at
joint B. The reader should complete this calculation to determine the member forces as
indicated in Figure 3.20.

B 1.0
+0.71 zero force -0.61
A D C
1.0 +043 — <¢——p— +0.43
o \Q‘\ 3
0.43 Y The u forces for horizontal deflection at joint B 1 0.43
Figure 3.20
. . PL
The horizontal deflection dyp= ) —u
AE
Member | Length (L) | Cross-section (4) | Modulus (E) | P forces (kN) | u forces | PL X u (kNm)
AB 5.0m A E +7.15 +0.71 +25.74
BC 424 m A E —20.20 —0.61 +52.25
AD 4.0 m A E +14.29 +0.43 +24.58
CD 3.0m A E +14.29 +0.43 +18.43
BD 3.0m A E 0.0 0.0 0.0
X +121.00

Table 3.4
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. . PL
Hence the horizontal deflection 815 = Eu =+ (121.00/4E) —

The resultant deflection at joint B can be determined from the horizontal and vertical
components evaluated above, i.e.

————— >(121.00/4E)

oL’
R=\/(101.012+121.02)/AE=157.62/AE 50.15°7,
6=tan"'(121.00/101.01) = 50.15° v

A similar calculation can be carried out to determine the vertical deflection at joint D.
The reader should complete this calculation to determine the member forces as indicated
in Figure 3.21.

B
\
-0.71 +1.0 -0.81
A D A C
Z€Ero +0.57 ————¢—1—3p— +0.57
RS ! B
043 1.0 0.57

The member u forces for vertical deflection at joint D
Figure 3.21

PL

The vertical deflection yp= ) —u
AE

Member | Length (L) | Cross-section (4) | Modulus (E) | P forces (kN) | u forces | PL X u (kNm)
AB 5.0m A E +7.15 -0.71 —25.38
BC 4.24 m A E —20.20 —0.81 +69.37
AD 4.0m A E +14.29 +0.57 +32.58
CD 3.0m A E +14.29 +0.57 +24.44
BD 3.0m A E 0.0 +1.0 0.0

z +101.01
Table 3.5

Hence the vertical deflection 0y p = Z%u =+ (101.01/4E) l
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3.5.3.1 Fabrication Errors — (Lack-of-fit)

During fabrication it is not unusual for a member length to be slightly too short or too long
and assembly is achieved by forcing members in to place. The effect of this can be
accommodated very easily in this method of analysis by adding additional terms relating
to each member for which lack-of-fit applies. The JL term for the relevant members is
equal to the magnitude of the error in length, i.e. 4. where negative values relate to
members which are too short and positive values to members which are too long.

. . PL
(Note: under normal applied loading the L term :E ).

3.5.3.2 Changes in Temperature

The effects of temperature change in members can also be accommodated in a similar
manner; in this case the dL term is related to the coefficient of thermal expansion for the
material, the change in temperature and the original length,

ie. OL = aLAT

where

o  is the coefficient of thermal expansion,

L s the original length,

Ar is the change in temperature — a reduction being considered negative and an increase
being positive.

Since this is an elastic analysis the principle of superposition can be used to obtain results
when a combination of applied load, lack-of-fit and/or temperature difference occurs. This
is illustrated in Example 3.5.

3.5.4 Example 3.5: Lack-of-fit and Temperature Difference

Consider the frame indicated in Example 3.4 and determine the vertical deflection at
joint D assuming the existing loading and that member BC is too short by 2.0 mm,
member CD is too long by 1.5 mm and that members AD and CD are both subject to an
increase in temperature of 5°C. Assume =12.0 x 107%/°C and AE =100 x 10’ kN.

. 10 kN
Applied load /B/!? 20 kN Unit load /B/P\

+7.15 kN 0 —20.20 kN -0.71 +1.0 -0.81

+14.29 kN +14.29 kN

20 kN

429 kN 14.29 kN 0.43 ) 0.43

Lack—of-fit B Change in B
Agc =—2.0 mm temperature

ACD =+ 1.5 mm

ATy = ATcp =+ 5°C \
. |
- ol Figure 3.22 K 5 R
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The L value for member BC due to lack-of-fit 4 =—2.0 mm
The OL value for member CD due to lack-of-fit A; =+ 1.5 mm

The OL value for member AD due to temperature change =+ o Lap A 7 ap
=+ (12x107° x 4000 x 5.0)
A1r=+0.24 mm

The L value for member CD due to temperature change =+ o Lcp A r.cp
=+(12x107° x 3000 x 5.0)
Ar=+0.18 mm

Member | Length AE P-force | PL/AE 'y Ay u (PL/AE + A+ Ap) X u

(mm) (kN) (kN) (mm) | (mm) | (mm) (mm)

AB 5000 | 100x10° | +7.15 | +0.36 0 0 -0.71 —-0.26

BC 4243 | 100x10° | —20.20 | —0.86 | —2.0 0 —-0.81 +2.32

AD 4000 | 100x10° | +14.29 | +0.57 0 |+024]|+057 +0.46

CD 3000 | 100x10° | +14.29 | +0.43 | +1.5 | +0.18 | +0.57 +1.20

BD 3000 | 100 x 10° 0 0 0 0 1.0 0

>=+3.72
Table 3.6

The vertical deflection at joint D due to combined loading, lack-of-fit and temperature
change is given by:

PL
5\/’]) ZZ(E'FAI +AZ)XZ/I =+3.72 mm l

Note: Statically determinate, pin-jointed frames can accommodate small changes in
geometry without any significant effect on the member forces induced by the applied load
system, i.e. the member forces in Example 3.5 are the same as those in Example 3.4.
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3.5.5 Problems: Unit Load Method for Deflection of Pin-Jointed Frames

A series of pin-jointed frames are shown in Problems 3.17 to 3.20. Using the applied load
systems and data given in each case, determine the value of the deflections indicated.

Assume E =205 kN/mm” and o= 12 x 10°%/°C where required.

50 kN 50 kN
B C

The cross-sectional area of all
members is equal to 1500 mm®.

Determine the value of the
resultant deflection at joint D.

Problem 3.17

The  cross-sectional area  of
members AB, BC and CD is equal
to 500 mm?.

The cross-sectional area of all other
members is equal to 250 mm®.
Member BE is too short by 3.0 mm.

Determine the value of the

VA! 4.0m 40m 40m ‘ " vertical deflection at joint F and
the horizontal deflection at joint
Problem 3.18 B.
5kN § 30kN
5 3.5m N 3.5m . 3.5m
13 | D/ E
g —— 2kN =
v
o g
*— CL E " 10 kN
ﬂ [ag]
g
e
S — B F
~— BC F G I
a Ve
£ g
" n .
& A G e A The cross-sectional area of members AG,
—N 60° I BG, CF CG, FG, and EF is equal to
Hy R% “M-Hg Hy 400 mm’.
Vi Ve vy,  The crogs—sectional area _ of all other
members is equal to 100 mm”.
The cross-sectional area of all members is All members are subjected to a decrease in
2
equal to 1200 mm”. temperature equal to 20°C.
Determine the value of the horizontal Determine the horizontal deflection at
deflection at joint D. joint F.
Problem 3.19 Problem 3.20
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3.5.6 Solutions: Unit Load Method for Deflection of Pin-Jointed Frames

Solution
Topic: Unit Load Method for Deflection of Pin-Jointed Frames
Problem Number: 3.17 Page No. 1

The cross-sectional area
of all members is equal to
1500 mm’.

Determine the value of
the resultant deflection at
joint D.

E =205 kN/mm?*

sind=(3.0/5.0)=0.6 cosH (4.0/5.0)=0. 8
AE 1500 = (1500 x 205) = 307.5 x 10° kN .
Determine the Support Reactions
Consider the rotational equilibrium of the frame:
Ve) IMA=0 +(12.0 x3.0)+(50.0 x 4.0) + (100.0 x 8.0) = (Vg x4.0)=0
Vg =+259.0 kN

Consider the horizontal equilibrium of the frame: -«—
tve —> ZF=0 +H,y+12.0=0 oo Hy=—12.0 kN

Consider the vertical equilibrium of the frame:
YF,=0 + Va—50.0-50.0-100.0 + V=0 o Va=200.0 - Vg
Va=200.0 —259.0 o Va=-59.0 kN

Assume all unknown member forces to be tension and use joint resolution to
determine the P—forces in the frame.

Consider joint D:

+ve T XF,=0 —100.0 + Fcpsin@=0 Equation (a)
or=END ve - XF,=0  — Fpg— Fcpcosf=0 Equation (b)

From Equation (a): Fcp =+166.7 kN (Tie)

lookn  From Equation (b): Fpg =—133.3 kN (Strut)

Consider joint E:

Fcg
+ve —>XF, =0 —1333—-Frs=0 Equation (a)
Farg 133N oo} YF,=0  +Fcep+259.0=0 Equation (b)
3 From Equation (a): Fag =-133.3 kN (Strut)

59.0 kN From Equation (b): Fcg =-—259.0 kN (Strut)
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Solution
Topic: Unit Load Method for Deflection of Pin-Jointed Frames
Problem Number: 3.17 Page No. 2

Consider joint B:
50 kN
+ve > XF, =0 +12.0+ Fpc=0 Equation (a)
12 kN +ve T SF,=0 —500-Fxpg=0 Equation (b)
From Equation (a): Fgc =—12.0 kN (Strut)

Fag From Equation (b): Fag =—50.0 kN (Strut)

Consider joint C:

50 kKN
+ve > 2XF, =0 +12.0 +166.7c0s0 — Faccos@=0
12kN yc Fyc=+181.7 kN (Tie)

9
Fac 166.7 kN
259.0 kN

50 kN 50 kN

—12.0 kN
12kN

P - forces —50.0kN +18L7kN +166.7 kN

—259.0 kN
12.0 kN —1333kN=ﬂ=—1333kN >
’ 100 kN

59.0 kN 259.0 kN

Vertical deflection at joint D:
Apply a Unit Load in the vertical direction at joint D and determine the values of the
u-forces using joint resolution as before.

u - forces

Complete the Unit Load table to determine the value of ovp




Topic: Unit Load Method for Deflection of Pin-Jointed Frames

Problem Number: 3.17

Solution

Pin-Jointed Frames

Page No. 3

Member

Length (mm)

AE (kN)

P-force (kN)

PL/AE (mm)

(PLIAE ) X u

AB

3000

307.5 x 10°

-50.0

-0.49

0

AC

5000

307.5 % 10°

+181.7

+2.95

+4.93

AE

4000

307.5 % 10°

-133.3

-1.73

+2.31

BC

4000

307.5 % 10°

-12.0

-0.16

0

CD

5000

307.5 % 10°

+166.7

+2.71

+4.53

CE

3000

307.5 % 10°

-259.0

-2.53

+5.05

DE

4000

307.5 % 10°

-133.3

-1.73

+2.31

> =+19.13

PL

Horizontal deflection at joint D:
Apply a Unit Load in the horizontal direction at joint D and determine the values of
the u-forces using joint resolution as before.

u - forces

—qu =+19.13mm |

ovo :Z(AE

zero

zero

Complete the Unit Load table to determine the value of o p

Member

Length (mm)

AE (kN)

P-force (kN)

PL/AE (mm)

(PLIAE) X u

AB

3000

307.5 x 10°

- 50.0

-0.49

AC

5000

307.5 x 10°

+181.7

+2.95

AE

4000

307.5 % 10°

-133.3

-1.73

BC

4000

307.5 % 10°

-12.0

-0.16

CD

5000

307.5 % 10°

+166.7

+2.71

CE

3000

307.5 % 10°

-259.0

-2.53

DE

4000

307.5 % 10°

-1333

-1.73

Oup :Z(%qu =-346mm <—

Resultant deflection at joint D = orp = \/(1 0. 132 + 3.462) =19.44 mm A\ 10.3°

125
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Solution
Topic: Unit Load Method for Deflection of Pin-Jointed Frames
Problem Number: 3.18 Page No. 1

The cross-sectional area of
members AB, BC and CD
equals 500 mm®.

The cross-sectional area of all
other members is equal to
250 mm™.

Member BE is too short by
3.0 mm.

Determine the value of the vertical deflection at joint F and the horizontal
deflection at joint B.

E=205kN/mm” and o= 12x 10°°/°C; 0=45° sin@=0.707, cos&=10.707

Length of members AB, BE and CD LappEcD = 4.0°+4.0° =5.657m

AEs00= (500 x 205) = 102.5 X 10’ kN,  AE,50 = (250 X 205) = 51.25 x 10’ kN
Determine the Support Reactions

Consider the rotational equilibrium of the frame:

+Ve) EMA=0 +(25.0x4.0)+(25.0%x8.0)—(Vpx12.0)=0
. Vp=+25.0 kN T

Consider the horizontal equilibrium of the frame:
+ve — XF, =0 .. Hy =1zero

Consider the vertical equilibrium of the frame:
vedSF,=0 4 V,-250-250+Vp=0 - VA=50.0-25.0
~vi=+250kN |

Assume all unknown member forces to be tension and use joint resolution to
determine the P-forces in the frame.
Consider joint A:
FaB

+ve T XF,=0  +25.0+ Fapsin€=0 Equation (a)

4 Fap tve —XF, =0 + Fap+ Fagcos8=0 Equation (b)
A 3 From Equation (a): Fp =-35.36 kKN (Strut)
95 kN From Equation (b): Fap=+25.0 kN (Tie)

Consider joint F:

tve > 2XF, =0 — 250+ Fg=0 Equation (a)
+ve T XF,=0 +Fg-250=0 Equation (b)
From Equation (a): Fgr =+ 25.0 kKN (Tie)
From Equation (b): Fgr =+ 25.0 kN (Tie)
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Solution
Topic: Unit Load Method for Deflection of Pin-Jointed Frames
Problem Number: 3.18 Page No. 2

Consider joint B:

B

g e e PSF,=0 +35365in0 - 25.0 - Fiyrcos0=0
For Equation (a)

3536kN 0N +ve —=3F, =0 +35.36c0860 + Fpc + Fppsind=0
Equation (b)
From Equation (a): Fyg = zero
From Equation (b): Fgc =—25.0 kN (Strut)
By symmetry:
Fcp=—35.36 kN (Strut), Fpg=+25.0 kN (Tie),  Fcg =+ 25.0 kN (Tie)

%izs.ﬂ kN :&

P - forces —35.36 kN zero
+25.0 kN + 25.0 kKN

F
+25.0 kN =”= +25.0 kN

25kN

B

ABE =—3.0 mm

Lack—offit (4 )

Vertical deflection at joint F:

127

Apply a Unit Load in the vertical direction at joint F and determine the values of the

u-forces using joint resolution as before.

u - forces

0.67

Complete the Unit Load table to determine the value of Ov
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Solution
Topic: Unit Load Method for Deflection of Pin-Jointed Frames
Problem Number: 3.18 Page No. 3

Length AE P-force (PLIAE + AL )X u
(mm) (kN) (kN) (mm)
AB 5657 | 102.5%x10° | —35.36 +1.83
AF 4000 | 51.25%x10° | +25.0 +1.31
BC 4000 | 102.5%x10° | —25.0 +0.32
BE 5657 | 51.25%10° 0 ) +1.41
BF 4000 | 51.25%x10° | +25.0 +1.95
CD 5657 | 102.5%x10° | —35.36 +0.92
CE 4000 | 51.25%x10° | +25.0 +0.64
DE 4000 | 51.25%x10° | +25.0 +0.64
EF 4000 | 51.25%x10° | +25.0 +1.31

>=+10.33
5V,F=Z(%j><u =+10.33mm |

Horizontal deflection at joint B:
Apply a Unit Load in the horizontal direction at joint B and determine the values of
the u-forces using joint resolution as before.

Member

B
1.0 -0.33

+0.47 —-0.47 —-0.47
u - forces \ +033
F E

+0.67

Complete the Unit Load table to determine the value of 0y

Length AE P-force | PL/AE i’y u (PL/AE + A) X u
(mm) (kN) (kN) | (mm) | (mm) (mm)

AB 5657 | 102.5x10° | —3536 | —1.95 0 -0.92
AF 4000 | 5125%x10° | +25.0 | +1.95 0 +1.31
BC 4000 | 102.5%x10° | —25.0 | -0.98 0 +0.32
BE 5657 | 51.25% 10° 0 0 -3.0 +1.41
BF 4000 | 5125%x10° | +25.0 | +1.95 0 0

CD 5657 | 102.5x10° | =35.36 | —1.95 +0.92
CE 4000 | 5125%x10° | +25.0 | +1.95 +0.64
DE 4000 | 5125%x10° | +25.0 | +1.95 +0.64
EF 4000 | 51.25%x10° | +25.0 | +1.95 +1.31
>=+5.63

Member

OuB =Z(§g)><u =+563mm —»
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Solution
Topic: Unit Load Method for Deflection of Pin-Jointed Frames
Problem Number: 3.19 Page No. 1

The cross-sectional area of all members is
equal to 1200 mm®.

Determine the value of the horizontal
deflection at joint D.

E =205 kN/mm?*

LDE = LEF = LFG: 2.887 m

LBp=2.887m LCF:3.81911'1
Leg=1443m Lgg=50m

o= tan"'(4.33/2.5) = 60°
G B=tan"'(2.887/2.5) =49.11°
o 60° sinar= 0.866 sinf=0.756
Hy == e coso.= 0.5 cosff=0.655
Vo 433m Yo tanar=1.732  tanf=1.155
I I

AE 1200 = (1200 x 205) = 246.0 x 10’ kN

Determine the Support Reactions

Consider the rotational equilibrium of the frame:
tve JIMA=0 —(5.0 x7.5)— (Vg x433)=0

A Ve=—866KN 4

Consider the horizontal equilibrium of the frame:
tve —> XFy=0 +Hyx+H;-50=0 s Hg=5.0-Hj

Consider the vertical equilibrium of the frame:
+ve TZFZ=O +Va—=300+7V5=0 = Va=30.0+8.66
- Va=+38.66 kN T

Assume all unknown member forces to be tension and use joint resolution to
determine the P-forces in the frame.

Consider joint A:

Fas +ve tzF, =0 +38.66+ Frs=0 Equation (a)
Hi +ve — XF, =0 +Hy=0 Equation (b)
From Equation (a): Fap=—38.66 kN (Strut)
From Equation (b): H, =zero
Hg=5.0 kN —

A s
38.66 kN
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Solution
Topic: Unit Load Method for Deflection of Pin-Jointed Frames
Problem Number: 3.19 Page No. 2

Consider joint D:

S00KN e SF, =0 — 5.0 + Fppsin30°= 0 Equation (a)

+ve T 2F,=0-30.0 - Fcp— Fpecos30°=0  Equation (b)

30°
D

From Equation (a): Fpg =+ 10.0 kN (Tie)
Fep FPE - From Equation (b): Fcp =—38.66 kN (Strut)

Consider joint E: Resolve forces perpendicular and parallel to Fpg and Fgp

10.0 kN , ,
+ve 7 ZF peendicular = 0 — Fcpsin60°= 0 Equation (a)
60°

Fce E

+ve \ ZFparane] =0 + FDE - FEF + FVCECOS600 =0
Equation (b)
From Equation (a): Fyc =1zero
From Equation (b): Fgr=+10.0 kN (Tie)
Consider joint C:

FEf

38.66 kN , _
+ve—> XF, =0 + Fcpsinf =0 Equation (a)

+ve b SF,=0-38.66 - Fuc— Fercosf=0  Equation (b)
C

B

From Equation (a): Fcr=1zero

Fer From Equation (b): Fyc = — 38.66 kN (Strut)

Fgc

Consider joint F: Resolve forces perpendicular and parallel to Frg

10.0 kN
Zero +ve 7 X F perpendicular = 0 — Fppsin60° = 0 Equation (a)

Fgr ¥

tve N ZFpuia =0 +10.0 = Fig + Fpycos60° =0
Equation (b)
From Equation (a): Fgr=zero
From Equation (b): Frc =+ 10.0 kN (Tie)

Frg

Consider joint B:
38.66 kN

+ve— XF, =0 + Fpgsina=0
B Zero
a
Fgg
38.66 kN
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Solution
Topic: Unit Load Method for Deflection of Pin-Jointed Frames
Problem Number: 3.19 Page No. 3

Horizontal deflection at joint D:
Apply a Unit Load in the horizontal direction at joint D and determine the values of
the u-forces using joint resolution as before.

ﬂ30 kN

I\

N\

—38.66 KN zero +10.0 kN 73 zero +2.0

—38.66 kN zero _ +10.0 kN - L

5.0 kN  zero —s—(3
G

B
38.66 kN

P - forces u - forces

Complete the Unit Load table to determine the value of oy p

Length AE P-force | PL/AE (PL/AE) X u
(mm) (kN) (kN) | (mm) (mm)
AB 2500 | 246.0x10° | —38.66 | —0.39 +0.68
BC 2500 | 246.0 x10° | —38.66 | —0.39 +0.68
BF 2887 | 246.0 x10°
BG 5000 | 246.0 x10°
CD 2500 | 246.0 x10°
CE 1443 | 246.0 x10°
CF 3819 | 246.0 x10°
DE 2887 | 246.0 x10°
2887 | 246.0 x10°
2887 | 246.0 x10°

Member

ﬂ Xu =+2.73mm <—
AE
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Solution
Topic: Unit Load Method for Deflection of Pin-Jointed Frames
Problem Number: 3.20 Page No. 1

The cross-sectional area of members
AG, BG, CF, CG, EF, and FG is equal
to 400 mm®.

The cross-sectional area of all other
members is equal to 100 mm®.

All members are subjected to a decrease
in temperature equal to 20°C.
Determine the horizontal deflection
at joint F.

E =205 kN/mm” and o= 12 x 107%/°C

Lacsccrer =V3.57 +3.5% = 4950 mm’
sind5°=0.707,  cos45°=0.707
AE 40 = (100 x 205) = 20.5 x 10’ kKN
AE400 = (400 x 205) = 82.0 x 10’ kN
The OL value for members AG, BC, CF and EF due to temperature change:
Ar=—odAr=—(12x 107 °x 4950 x 20.0) =— 1.19 mm
The L value for all other members due to temperature change:
Ar=—alAr=—(12x 10" °x 3500 x 20.0) = — 0.84 mm

Determine the Support Reactions

Consider the rotational equilibrium of the frame:

+Ve) IMA=0 —-(2.0x7.0)+(10x10.5)-(Vex7.0)=0
- Vp=+13.0 KN T
Consider the horizontal equilibrium of the frame:

tve —> XF,=0 +H\,-20=0 S Hy=120kKN —

Consider the vertical equilibrium of the frame:
vel SF,=0  +Va-100+7=0 - VA=10.0-13.0
Va=—30kN |

Assume all unknown member forces to be tension and use joint resolution to
determine the P-forces in the frame.

Consider joint A:
+tve = XF, =0 + 2.0+ Fagcos45°=0 Equation (a)

FaB
tve }SF, =0 —3.0+ Fap+ Fagsind5° =0  Equation (b)

FaG
2.0kN| s

A From Equation (a): F,g=-2.83 kN (Strut)
3.0kN From Equation (b): Fxp =+*5.0 kN (Tie)
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Solution
Topic: Unit Load Method for Deflection of Pin-Jointed Frames
Problem Number: 3.20 Page No. 2

Consider joint B:
e Ve tsr,=0 5.0+ Fyesind5® =0 Equation (a)
+ve —-2F, =0 + Fgg+ Fccosd5° =0 Equation (b)

B 45 F
* From Equation (a): Fyc=+7.07 kN (Tie)

50 kN From Equation (b): Fgg =—5.0 kN (Strut)

Consider joint G:
Fea +ve T XF,=0 + 2.83c0845°+ Fcg=0 Equation (a)
G = fr6 +ve —ZF,=0+5.0+2.83sin45° + Frg =0 Equation (b)
® From Equation (a): Fcg=-2.0 kN (Strut)
From Equation (b): Frg=-—"17.0 kN (Strut)

Consider joint C:

20 € e tsF,=0 +2.0 — 7.07sin45° — Feg sind5° =0

b Equation (a)

+tve —=-2F, =0 —2.0—-"7.07c0s45° + Fcpcos45°+ Fep =0
Equation (b)

From Equation (a): Fcrp=-4.24 kN (Strut)
From Equation (b): Fcp=+10.0 kKN (Tie)

Consider joint D:

100kN D Fop  TVE —3F. =0 —-100+Fp=0 Equation (a)

+ve T 2F,=0 —Fpr=0 Equation (b)

From Equation (a): Fpg =+10.0 kN (Tie)
From Equation (b): Fpr=zero

Consider joint E:
10.0kN E

45° tve =& 2F,=0 —10.0 — Fgpcos45°=0

Fer 10.0kN Fgr=—14.14 kN (Strut)

133
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Solution
Topic: Unit Load Method for Deflection of Pin-Jointed Frames
Problem Number: 3.20 Page No. 3

Horizontal deflection at joint F:
Apply a Unit Load in the horizontal direction at joint F and determine the values of
the u-forces using joint resolution as before.

D

E
2 kN +10.0 kN +10.0 kN
/j i 10 kN
+7.07 kN —4.24 kN —14.14 kN

C
Zero
-0.71 -

+5.0kN —2.83kN

A

P - forces

u - forces
0.5
The &L value for members (AG, BC, CF and EF) due to temperature change:
Ar=-1.19 mm
The JL value for all other members due to temperature change: Ar=—-0.84 mm
Complete the Unit Load table to determine the value of Oy

Length AE P-force | PLIAE | A, (PLIAE + Ay) X u
(mm) (kN) (kN) [ (mm) [ (mm) (mm)

AB 3500 | 20.5x10° | +5.0 | +0.85 | —0.84 -0.01

AG 4950 | 82.0x10° | —2.83 | —0.17 | —1.19 -1.92

BC 4950 | 205%10° | +7.07 | +1.71 | —1.19 —0.37

BG 3500 | 82.0x10° | —5.0 | —0.21 | —0.84 -0.53

CD 3500 | 20.5x10° | +10.0 | +1.71 | —0.84 0

CF 4950 | 82.0x10° | —4.24 | —0.26 | —1.19 +1.02

CG 3500 | 82.0x10° | —2.0 | —0.09 | —0.84 -0.93

DE 3500 | 20.5x10° | +10.0 | +1.71 | —0.84 0

DF 3500 | 20.5x10° 0 0 —0.84 0

EF 4950 | 82.0x10° | —14.14 | —0.85 | —1.19 0

3500 | 82.0x10° | —7.0 | —0.30 | —0.84

Member

ﬂ Xu =—4.45 mm <€—
AE
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3.6  Unit Load Method for Singly-Redundant Pin-Jointed Frames

The method of analysis illustrated in Section 3.5 can also be adopted to determine the
member forces in singly-redundant frames. Consider the frame shown in Example 3.6.

3.6.1 Example 3.6: Singly-Redundant Pin-Jointed Frame 1

Using the data given, determine the member forces and support reactions for the
pin—jointed frame shown in Figure 3.23.

The cross-sectional area of all members is
equal to 175 mm”.

3.0m

E =205 kN/mm?

- Figure 3.23

The degree—of—indeterminacy In=(m +r)—2n=(5+4)-(2x4)=1
Assume that member BD is a redundant member and consider the original frame to be the

superposition of two structures as indicated in Figures 3.24(a) and (b). The frame in
Figure 3.24(b) can be represented as shown in Figure 3.25.

§B C
HB @)

(@)

Figure 3.24

]l
A

>X Fgp

Figure 3.25
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To maintain compatibility in the length of member BD in the original frame the change in
length of the diagonal BD in Figure 3.24(a) must be equal and opposite to that in
Figure 3.24(b) as shown in Figure 3.26.

>XFBD =0

Figure 3.26

(0%p due to P-forces) + (d p due to unit load forces) X Fpp =0

PL ul
ie. i+ | Yy X Fap=0 s Fgp=-
AE ( AE] op B0 Z /Z

Using joint resolution the P-forces and the u-forces can be determined as indicated in
Figure 3.27.

[ B C
10.0 kN %T:+100 zero%ﬁ -0.71
Zero ZkN 0.71 1.0 /=
+

1414 kN { +1.0 071 »>X Fgp=0
1.0
A D A D
10.0 kKN zero {) zero -0.71
J
10.0 kKN 10 kN N 071
P - forces u - forces
Figure 3.27
Member Length AE P-force | PL/AE u (PLIAE)X u | (uL/AE )X u | Member
(mm) (kN) (kN) (mm) (mm) (mm) forces
BC 3000 35.88 x10° | +10.00 | +0.84 | —0.71 —-0.59 0.04 +4.38
CD 3000 35.88 x10° | +10.00 | +0.84 | —0.71 —0.59 0.04 +4.38
DA 3000 | 35.88 x10° 0 0 -0.71 0 0.04 -5.62
AC 4243 35.88x10° | —14.14 | —1.67 | +1.00 —-1.67 0.12 —6.23
BD 4243 35.88 x10° 0 0 +1.00 0 0.12 +7.91
X=-2.85 >=+0.36

PL ul
Fan=-3 220 /S =1 2.85/0.36 =+ 7.91 kN (Tie
Bb ZAE /ZAE (Tie)
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The final member forces = [P-forces + (u-forces X 7.91)] and are given in the last
column of the table

Vy=+10.0 — (0.71 X 7.91) = + 4.38 kN T

Hy,=+10.0 + zero =+ 10.0 kN —
Vg =zero + (0.71 X 7.91) = + 5.62 kN T
Hg=-10.0 + zero =—10.0 kN -«
B C
10.0 kN %ﬁ-k 4.38 KN L
s
5.62 kN

+7.91 kN

o
6.23 kN “ Final member forces and
. support reactions
D
10.0 kN -5.62kN —k
& .
4.38 kN 3.0m 10 kKN Figure 3.28

3.6.2 Example 3.7: Singly-Redundant Pin-Jointed Frame 2

Using the data given, determine the member forces and support reactions for the
pin-jointed frame shown in Figure 3.29.

The cross—sectional area of all members is equal to 140 mm®. Assume E =205 kN/mm’

30.0 kN

J 3.0m \ 3.0m 3.0m Figure 3.29

All member lengths L =3.0 m

AE = (140 x 205) = 28.7 x 10’ kN

sin 60°=0.866  cos60° = 0.5

Consider the applied load as two components ~ 30.0sin60° = 25.98 kN l
30.0c0s60°=15.0kN —»

The degree of indeterminacy In=(m+r)—2n=8+7)-2x7)=1
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Consider the vertical reaction at support F to be redundant. The equivalent system is the
superposition of the statically determinate frame and the (unit load frame X V) as
shown in Figures 3.30 and 3.31.

25.98 kN

Figure 3.30

VA” VGII VE” }

Figure 3.31

Using joint resolution the P-forces and the u-forces can be determined as indicated in
Figures 3.32 and 3.33.

25.98 kKN
B C D
15.0 kN zero /\ zZero 7
zero —-30.0 kN zero zero zero zero P -forces
zero zero
4AA 150 kN 4G F E-
zero 25.98 kN zero

Figure 3.32



B

C

Pin-Jointed Frames 139

D
/\ Zero /\ +0.58 7\

zero zero +0.58 —0.58 —0.58 +0.58
u - forces
zero 0.29
4=A 029 4G E
1.0
zero 0.5 0.5
Figure 3.33
Member Length AE P-force | PLIAE u (PL/IAE )X u | (uL/AE )% u | Member
mm) | &N | &N) | (mm) (mm) (mm) forces
AB 3000 28.7 x10° 0 0 0 0 0 0
BC 3000 28.7 x10° 0 0 0 0 0 0
CD 3000 28.7 x10° 0 0 +0.58 0 0.035 0
DE 3000 28.7 x10° 0 0 +0.58 0 0.035 0
DF 3000 28.7 x10° 0 0 —0.58 0 0.035 0
CF 3000 28.7 x10° 0 0 —-0.58 0 0.035 0
CG 3000 28.7 x10° 0 0 +0.58 0 0.035 0
BG 3000 28.7x10° | —30.00 | —3.14 0 0 0 —30.00
Y =zero X=+0.18
PL ul
1.e —u Z—u X Ve=0
AFE AE
Ve=— z /z u =0/0.18 = zero

The final member forces = [P-forces + (u-forces X 0)] and are given in the last column

of the table.

Ve=+2598kN |
H=-15.0 kN «—

All other reactions are equal to zero.

25.98 kN

B C
15.0 kN%\ zero /\ zero

zero

zero

zero

30.0 kN

15.0 kN

zero

G

25.98 kN

Zero

zero

zero

zero

zero

Zero

Final member forces
and support reactions

Figure 3.34
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3.6.3 Problems: Unit Load Method for Singly-Redundant Pin-Jointed Frames

Using the data given in the singly-redundant, pin-jointed frames shown in Problem 3.21 to
Problem 3.24, determine the support reactions and the member forces due to the applied
loads. Assume E = 205 kN/mm® and o= 12 x 10™%/°C where required.

50 kN 100 kN 50 kN The cross-sectional area of
members AH, GH, EF and
FG is equal to 200 mm®.

The cross-sectional area of
all other members is equal to
500 mm’.

The support at G settles by
12 mm.

Problem 3.21

The  cross-sectional
area of all members
is equal to 180 mm”.

Problem 3.22
The cross-sectional area of member 30 kKN
BD is equal to 100 mm®.
The cross-sectional area of all other g N
members is equal to 300 mm®. “
[«

Member AD is too long by 1.5 mm
and all members are subject to an
increase in temperature of 10°C.

Problem 3.23

The cross-sectional area of all
members is equal to 150 mm®.

Member BD is 2.0 mm too short

Problem 3.24
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3.6.4 Solutions: Unit Load Method for Singly-Redundant Pin-Jointed Frames
Solution

Topic: Unit Load Method for Singly-Redundant Pin-Jointed Frames
Problem Number: 3.21 Page No. 1

50 kN 100 kN

The cross—sectional area of members AH, GH, EF and FG is equal to 200 mm?’
The cross-sectional area of all other members is equal to 500 mm”.

The support at G settles by 12 mm.

E =205 kN/mm”

LB, 86, pG.DE =N 3.0 +3.0° =4.243 m
sin@= (3.0/4.243) = 0.707 cos@ = (3.0/4.243) = 0.707
AE>0 = (200 x 205) =41.0 x 10° kN

AEsqp = (500 x 205) = 102.5 x 10* kN

Consider the vertical reaction at support G to be redundant.
The equivalent system is the superposition of the statically determinate frame
and the (unit load frame X V) as shown:

S50 kN 100 kN S50 kN

P - forces

u - forces
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Solution
Topic: Unit Load Method for Singly-Redundant Pin-Jointed Frames
Problem Number: 3.21 Page No. 2

Determine the Support Reactions for the statically determinate frame.

Consider the rotational equilibrium of the frame:
+ve) XMA=0 +(50.0 x3.0)+ (100 x 6.0) + (50.0 X 9.0) — (15.0 x 3.0)
- (Ve x12.0)=0 s Ve =+96.25 kN T

Consider the horizontal equilibrium of the frame:
+tve —> XF,=0 +H\-150=0 S HY=+150kN —>

Consider the vertical equilibrium of the frame:
+ve T XF,=0 + ¥V, —50.0-100.0-50.0 + Vg"=0 .. Vy" =200.0-96.25
= Va'=+103.75 kN

Assume all unknown member forces to be tension and use joint resolution to
determine the P-forces in the frame.

Consider joint A:
+ve TZFZ =0 +103.75 + Fapsin@=0 Equation (a)
+tve — XF,=0 +15.0 + Fag+ Fapcos@=0  Equation (b)

FaB
150N

A s From Equation (a): Fap=-146.70 kN (Strut)

103.75 kKN From Equation (b): Fay =+ 88.75 kN (Tie)

Consider joint H:
+ve T >F,=0 +Fgu=0 Equation (a)
Fon +ve —» XF, =0 —88.75 + Fgn =0 Equation (b)
88.75 kN Fgu

- From Equation (a): Fygy = zero

From Equation (b): Fgn =+ 88.75 kN (Tie)

Consider joint B:
50 kN +velZF,=0  —50.0+ 146.7cos6— Fygcosé =0
Equation (a)
Fge Tve —>XF,=0 +146.7sin@ + Fps sin@ + Fgc =0
Equation (b)

Fgc  From Equation (a): Fgg =+ 76.0 kN (Tie)
From Equation (b): Fgc =—157.45 kN (Strut)
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Solution
Topic: Unit Load Method for Singly-Redundant Pin-Jointed Frames
Problem Number: 3.21 Page No. 3

Consider joint C:
100.0 kN
157.45 KN +ve }3F,=0  —100.0-Fes=0  Equation (a)
+ve — 2XF,=0 + 15745+ Fp=0 Equation (b)

From Equation (a): Fcg=-100.0 kN (Strut)
From Equation (b): Fcp =-157.45 kN (Strut)

Consider joint G:

100.0 kN
76.0 kN Foo  +vel TE,=0  —100.0+76.0 sind + Fogsind=0
Equation (a)
tve —=3F, =0 —88.75 - 76.0c0s8 + Fpgcosd + Frg =0
Equation (b)

o\ %
88.75kN G Fpg

From Equation (a): Fpg =+ 65.42 kN (Tie)
From Equation (b): Frg =+ 96.25 kN (Tie)

Consider joint F:

Fpp +ve T 2F,=0 +Fpr=0 Equation (a)
tve—= 2F,=0 —-9623+Fg =0 Equation (b)

96.25kN F  fFpp From Equation (a): Fpr =zero
From Equation (b): Fgr=+96.25 kN (Tie)

Consider joint E:
Fpg
N E +ve—> XF, =0 —96.25— Fpgcosf@=0
96.25 kN Fpe =—136.12 kN (Strut)

R o
96.25 kN

S0 kN 100 kN 50 kN

D
~157.45 kN:!:—157.45 kN 15 kN
C V4
~1467kN || +760kN | +65.42kN | —136.12kn P - forces
zero \— 100.0 kN/ zero
n

150 kN A H G F
+88.75 KN+ 88.75 KNYZ + 96.25 KN ===+ 96.25 kKN

103.75 kN 96.25 kN
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Solution
Topic: Unit Load Method for Singly-Redundant Pin-Jointed Frames
Problem Number: 3.21 Page No. 4

Apply a Unit Load in the vertical direction at support G and determine the values of
the u-forces using joint resolution as before.

B C D
+1.0 +1.0
+0.71 -0.71 -0.71 +0.71 u - forces

E
-05 -05 ,
0.5 ‘

(Ovg due to P-forces) + (Jvg due to unit forces) X Vg =—12.0 mm
. PL
1e. ) —u +

AE (

V= (—12.0 - ZE

Complete the Unit Load table to determine the value of Vg

Length AE P-force | PL/IAE u (PLIAE)X u | (uL/AE )X u | Membe
(mm) (kN) (kN) (mm) (mm) (mm) forces

AB 4243 | 102.5x10° | —146.70 | —-6.07 | +0.71 —4.293 +0.021
AH 3000 | 41.0x10° | +88.75 | +6.49 | —0.50 —3.247 +0.018
BC 3000 | 102.5x10° | —157.45 | —4.61 | +1.00 — 4.608 +0.029
BG 4243 | 102.5%10° | +76.00 | +3.15 | —0.71 —2.224 +0.021
BH 3000 | 102.5 x10° 0 0 0 0 0
CD 3000 | 102.5x10° | —157.45 | —4.61 | +1.00 — 4.608 +0.029
CG 3000 | 102.5x10° | —100.00 | —2.93 0 0 0
DE 4243 | 102.5x10° | —136.12 | —-5.63 | +0.71 —3.984 +0.021
DG 4243 | 102.5x10° | +65.42 | +2.71 | -0.71 - 1915 +0.021
DF 3000 | 102.5 x10° 0 0 0 0 0
EF 3000 | 41.0x10° | +96.25 | +7.04 | —0.50 —-3.521 +0.018
FG 3000 | 41.0x10° | +96.25 | +7.04 | —0.50 —-3.521 +0.018
GH 3000 | 41.0x10° | +88.75 | +6.49 | —0.50 —3.247 +0.018
>=-35169 | ==+0.215

Vo= (—12.0 - ]/ZAE” — [ 12.0 - (- 35.169)/0.215 = + 107.76 kN 1

The final member forces = [P-forces + (u-forces X 107.76)] and are given in the last
column of the table

Va=103.75-(0.5x 107.76) =+ 49.87kN },  H,=+150kN —>

Ve =96.25—(0.5x 107.76) = + 42.37 kKN T

Member
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Solution
Topic: Unit Load Method for Singly-Redundant Pin-Jointed Frames
Problem Number: 3.22 Page No. 1

10m 2.0m

The cross-sectional area of all members is equal to 180 mm”.
E =205 kN/mm’

LAB, cD— 3.606 m LAF, DE — 3.162m LBE, CE — 6.708 m
sinar= (3.0/3.606) = 0.832 cosar=(2.0/3.606) = 0.555
sinff= (6.0/6.708) = 0.894 cosf = (3.0/6.708) = 0.447
sind=(3.0/3.162) = 0.949 cos@=(1.0/3.162) =0.316
AE 5= (180 x 205) =36.9 x 10’ kN

Consider member CF to be redundant.
The equivalent system is the superposition of the statically determinate frame

and the (unit load frame X Fcyr) as shown:

P - forces

10m 20m
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Solution
Topic: Unit Load Method for Singly-Redundant Pin-Jointed Frames
Problem Number: 3.22 Page No. 2

Determine the Support Reactions for the statically determinate frame.

Consider the rotational equilibrium of the frame:
+Ve) SMA=0 +(40.0x3.0) —(Vp’x12.0)=0 s V' =+10.0 kN T

Consider the horizontal equilibrium of the frame:
tve—> ZF=0 +H) =0 - H\ =zero

Consider the vertical equilibrium of the frame:
el SF,=0  +7)/—-400+Vy =0 - VA =40.0-10.0
. Vi =+30.0 kN

Assume all unknown member forces to be tension and use joint resolution to
determine the P-forces in the frame.

Consider joint A:
+ve T 2F,=0 + 30.0 + Fap cosar — Fapcos@= 0 Equation (a)
+ve —= XF, =0 + Fagsino. + Fap sin@=0 Equation (b)

From Equation (a): Fag=-—36.06 kN (Strut)

30.0 KN From Equation (b): Far =+ 31.6 kN (Tie)

Consider joint F:
+ve T YF,=0 +31.6cos@ —40.0 + Fgr = 0 Equation (a)

For +ve —» SF, =0 —31.6sin6+ Fgr = 0 Equation (b)

31.6 kN
F)
F =" From Equation (a): Fgr=+30.0 kN (Tie)

From Equation (b): Fgr=+30.0 kKN (Tie)
40.0 kN

Consider joint B:
velSF,=0  =30.0+36.06 cosa— Fypcosf=0
Equation (a)
al|B +ve — XF, =0 + 36.06sina+ Fgg sinff+ Fpc =0
36.06 kN FBE Equation (b)
30.0 kN

B Fpc

From Equation (a): Fgg =—22.34 kN (Strut)
From Equation (b): Fgc =—10.0 kN (Strut)
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Solution
Topic: Unit Load Method for Singly-Redundant Pin-Jointed Frames
Problem Number: 3.22 Page No. 3

Consider joint E:
Fcg . '
2234 kN +ve — XF, =0 —30.0 +22.34sinf8 + Fpgsinf=0
2 Equation (a)
300kN  EIDE tve TEFZ =0  —22.34cosf + Fpecos@ + Fep =0 '
Equation (b)

From Equation (a): Fpg =+10.57 kN (Tie)
From Equation (b): Fcg =+ 6.65 kN (Tie)

Consider joint D:

+ve > 2XF, =0 —10.57sin@— Fcpsina=0

FCD = —12.06 kN (Strllt)
10.57 kN

+30.0 kN —22.34 kN

\(4 +30.0 kNXL

F
40 kN

Apply a Unit Load at joints F and C in the direction of member FC and determine
the values of the u-forces using joint resolution as before.

zero zero u - forces

—0.45 -0.45
zero Zero
-0.89

zero
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Solution
Topic: Unit Load Method for Singly-Redundant Pin-Jointed Frames
Problem Number: 3.22 Page No. 4

(¢ due to P-forces) + (¢ due to unit forces) X Fcg = 0

PL L
s Fep= _ZAEM/ZZEM

Complete the Unit Load table to determine the value of Fr

Length AE P-force | PL/AE (PLIAE)X u | (ML/AE)X u

Member | “om) | &Ny | &N | (mm) (mm) (mm)

Member
forces

AB 3606 | 36.9 x10° | —36.06 | —3.52 0 0

—36.06

AF 3162 | 36.9x10° | +31.60 | +2.71 0 0

+ 31.60

BC 6000 | 36.9 x10° | —10.00 | —1.63 +0.130

—21.31

BE 6708 36.9x10° | —22.34 | —4.06 . +0.182

—9.69

BF 3000 | 36.9 x10° | +30.00 | +2.44 +0.016

+24.35

CD 3606 | 36.9x10° | —12.06 | —1.18 0

—12.06

CE 3000 | 36.9x10° | +6.65 | +0.54 +0.016

+1.00

CF 6708 | 36.9 x10° 0 0 +0.182

+12.65

3162 | 36.9x10° | +10.57 | +0.91 0

+10.57

6000 | 36.9x10° | +30.00 | +4.88 +0.130

+ 18.69

2=+ 0.656

L
%u = — (- 8.30)/0.656 = + 12.65 kN (Tie)

The final member forces = [P-forces + (u-forces X 12.65)] and are given in the last

column of the table

Va=+300kN 1 Hy=zero Vp=+100kN }
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Solution
Topic: Unit Load Method for Singly-Redundant Pin-Jointed Frames
Problem Number: 3.23 Page No. 1

The cross-sectional area of member BD is equal to 100 mm?.

The cross-sectional area of all other members is equal to 300 mm?.

Member AD is too long by 1.5 mm and all members are subject to an increase in
temperature of 10°C.

E=205kN/mm’  a=12x107°C

LAB,BC:3-162m LAD,CD:3-O41 m LBDIO.Sm

The OL value for all members due to temperature change:
Arapsc =— 0dAr=—(12x107°x 3162 x 10.0) =+ 0.38 mm
Arapcp =— ol Ar=—(12x 107° x 3041 x 10.0) =+ 0.36 mm
Arpp =— oAy =— (12 x 107 °x 500 x 10.0) = + 0.06 mm

sinar=(1.0/3.162) = 0.316 cosa = (3.0/3.162) = 0.949
sinf= (0.5/3.041) = 0.164 cos6 = (3.0/3.041) = 0.987
AE 0= (100 x 205) = 20.5 x 10> kN AE300= (300 x 205) = 61.5 x 10’ kN

Consider member BD to be redundant.
The equivalent system is the superposition of the statically determinate frame
and the (unit load frame X Fgp) as shown:
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Solution
Topic: Unit Load Method for Singly-Redundant Pin-Jointed Frames
Problem Number: 3.23 Page No. 2

Determine the Support Reactions for the statically determinate frame.

Consider the rotational equilibrium of the frame:
+Ve) SMA=0 +(30.0%x3.0) —(V'x6.0)=0 sV =+15.0 kN T

Consider the horizontal equilibrium of the frame:
+Ve—>zFx:0 +HA’+HC,:0 HC,:—HA,

Con?ider the vertical equilibrium of the frame:

2F,=0 + VA =300+V =0 Vi=300-150

+ve
. V' =+15.0 KN T

Assume all unknown member forces to be tension and use joint resolution to
determine the P-forces in the frame.

Consider joint B:
30.0 kN +ve } F, =0  —30.0 - Fyasine — Facsin@=0  Equation (a)
B +ve —» XF, =0 — Fgacoso + Fpccosa=0 Equation (b)
2 £ From Equation (a): Fys =—47.47 kN (Strut)
Fpa Fge  From Equation (b): Fyc=—47.47 kN (Strut)

Consider joint A:
sarn tve FEF, =0 +15.0 - 47.47siner + Fapsind=0  Equation (a)

- +ve — XFy=0 H,—47.47cosa + Fapcos@=0  Equation (b)
AD

From Equations (a): Fap =1zero
From Equation (b): H,=+45.0 kN
Hc=-45.0 kN
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Solution
Topic: Unit Load Method for Singly-Redundant Pin-Jointed Frames
Problem Number: 3.23 Page No. 3

Consider joint C:

+ve T 2F,=0 +15.0-47.47sina + Fcpsind=0 Equation (a)
Fcp = zero

47.47 kN

Fep
45.0 kN

P - forces

151

Apply a Unit Load at joints B and D in the direction of member BD and determine

the values of the u-forces using joint resolution as before.

(p due to P-forces) + (dp due to unit forces) X Fgp =0

i.e.Z(%+AL +ATju + (ZZ_LE”) X Fp =0

. Fgp=-— Z(PL
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Solution
Topic: Unit Load Method for Singly-Redundant Pin-Jointed Frames
Problem Number: 3.23 Page No. 4

PL . .
The termZ(E +4 + ATJ is evaluated separately here for convenience, normally

this would be incorporated in one table.

Length AE P-force | (PL/AE) Temp. (PL/AE +4,,+ Ay)
(mm) (kN) (kN) (mm) change (mm)

AB 3162 | 61.5x10° | —47.47 | —2.44 +10 -2.06

BC 3162 | 61.5x10° | —47.47 | —2.44 +10 -2.06

BD 500 | 20.5x10° 0 0 +10 +0.06

CD 3041 | 61.5x10° 0 0 +10 +0.36

DA 3041 | 61.5 x10° 0 0 ) + 10 +1.86

Member

Complete the Unit Load table to determine the value of F gp

(PLIAE
Length AE A+ Ar)

(mm) (kN) (mm)
AB 3162 | 61.5x10° | —2.06 +3.261 +0.129 —29.80
BC 3162 | 61.5%x10° | —2.06 +3.261 +0.129 —29.80
BD 500 | 20.5x10° | +0.06 +0.060 +0.024 —11.17
CD 3041 | 61.5x10° | +0.36 +1.110 +0.457 —33.97
DA 3041 | 61.5x10° | +1.86 +5.671 +0.457 —33.97
¥ =+13.363 >=+1.196

(PLIAE +4, + Av) Xu | (uL/AE )X u | Member

Member (mm) (mm) forces

Fep=— ), E+AL + A |u Zﬂu =—13.363/1.196 = — 11.17 kN (Strut)
AE AE
The final member forces = [P-forces + (u-forces X (-=)11.17)] and are given in the

last column of the table

Vi=+15.0 + zero =+ 15.0 KN T
Hy,=+450-(1.5%x(-)11.17) =+ 61.76 kKN —>

Ve=+15.0 + zero =+ 15.0 kN T
Hc=-45.0+(1.5%x(-)11.17)=-61.76 KN <*—
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Solution
Topic: Unit Load Method for Singly-Redundant Pin-Jointed Frames
Problem Number: 3.24 Page No. 1

The cross-sectional area of all members is
equal to 150 mm”.

Member BD is 2.0 mm too short.
E =205 kN/mm”

AE;50= (150 x 205) = 30.75 x 10’ kKN

452\ P g §in45°=0.707
D
< cos45° =0.707

15

Consider member AB to be redundant.
The equivalent system is the superposition of the statically determinate frame

and the (unit load frame X F,g) as shown:

VDH

(u —forces) X Fap
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Solution
Topic: Unit Load Method for Singly-Redundant Pin-Jointed Frames
Problem Number: 3.24 Page No. 2

Assume all unknown member forces to be tension and use joint resolution to
determine the P-forces in the frame.

Consider joint B:
+ve — XF, =0 +25.0+ Fgpcos@=0 Equation (a)
+ve T >F,=0 + Fgc—Fgpsind=0 Equation (b)

From Equation (a): Fgp =—35.36 kN (Strut)
From Equation (b): Fgc =—25.0 kN (Strut)

Consider joint C:
VC‘ +ve T YF,=0 +250+ V=0 Equation (a)
He Ve = ZXF=0+ H =0 Equation (b)

From Equation (a): Ve’ =-25.0 kN l
From Equation (b): H/ = zero

Consider joint D:

3536 kN +ve }2F,=0  —3536sin0 + 7y =0 Equation (a)
+ve —= XF, =0 +35.36cos@+ Hy' =0 Equation (b)

H ’
® " From Equation (a): Vp' =+ 25.0 KN
From Equation (b): Hp =—25.0kN <«
25.0 kN

o

Lack-of-fit

AB[) =—-2.0 mm
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Solution
Topic: Unit Load Method for Singly-Redundant Pin-Jointed Frames
Problem Number: 3.24 Page No. 3

Apply a Unit Load at joints A and B in the direction of member AB and determine
the values of the u-forces using joint resolution as before.

1.42

u - forces

+ 1.0 kN

1.0
A D
0.71 # X 0.71
0.71 0.71

(O due to P-forces) + (Iap due to unit forces) X Fag =0
. PL ul
1.€. —+ + —u | XFag=0
Z(AE ALJ” (Z AE”) e
PL L
. FAB:—Z(M+4J M/ZIZ;EM

PL . . .
The term Z(EJFAL] is evaluated separately here for convenience, normally this

would be incorporated in one table.

Length AE P-force | (PL/AE) (PLIAE +4,)
(mm) (kN) (kN) (mm) (mm)

AB 2000 | 30.75 x10° 0 0 0

BC 2000 | 30.75x10° | —25.00 | —1.63 - 1.63

BD 2000 | 30.75x10° | —35.36 | —2.30 ) —4.30

Member
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Solution
Topic: Unit Load Method for Singly-Redundant Pin-Jointed Frames
Problem Number: 3.24 Page No. 4

Complete the Unit Load table to determine the value of Fap

(mm)

Length AE

(kN)

(PLIAE+4;)
(mm)

(PLIAE +A, )X u
(mm)

(uL/AE )X u
(mm)

Member
forces

2000

30.75 x10°

0

0

+0.065

2000

30.75 x10°

-1.63

-2.315

+0.131

2000

30.75 x10°

—4.30

—4.300

+0.065

2 =-6.615

X =+0.261

Fap=— Z(Z”L ALj u/ZZéu =+6.615/0.261 = 25.34 kN (Tie)

The final member forces = [P-forces + (u-forces X 25.37)] and are given in the last
column of the table

V= zero — (0.71 X 25.34) = — 17.99 kN l
H, =zero — (0.71 X 25.34) = - 17.99 kN “—

Ve=-—25.0 +(1.42 x 25.34) =+ 10.98 KN T
H¢ = zero

Vo =+ 25.0 — (0.71 X 25.34) =+ 7.01 kN

Hp=—25.0+(0.71x2534)=—7.01 KN  «—




4. Beams

4.1 Statically Determinate Beams

Two parameters which are fundamentally important to the design of beams are shear force
and bending moment. These quantities are the result of internal forces acting on the
material of a beam in response to an externally applied load system.

4.1.1 Example 4.1: Beam with Point Loads

Consider a simply-supported beam as shown in Figure 4.1 carrying a series of secondary
beams each imposing a point load of 4 kN.

KK K K

6 @ 600 mm = 3600 mm

Figure 4.1
This structure can be represented as a line diagram as shown in Figure 4.2:

4 kN 4 kN 4 kN 4kN 4kN

[ TTTTT

Val 6 @ 600 mm = 3600 mm
Figure 4.2

o

N

Since the externally applied force system is in equilibrium, the three equations of static
equilibrium must be satisfied, i.e.

+ve TEFZ =0  The sum of the vertical forces must equal zero.

+V€) XM =0  The sum of the moments of all forces about any point on the plane of
the forces must equal zero.

+ve—XFy =0 The sum of the horizontal forces must equal zero.

The assumed positive directions are as indicated. In this particular problem there are no
externally applied horizontal forces and consequently the third equation is not required.
(Note: It is still necessary to provide horizontal restraint to a structure since it can be
subject to a variety of load cases, some of which may have a horizontal component.)
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Consider the vertical equilibrium of the beam:

+ve } 5F,=0

+ VA — (5 X 40) +V5=0 o Vat+Ve=20KkN Equation (1)
Consider the rotational equilibrium of the beam:

+Ve) MA=0

Note: The sum of the moments is taken about one end of the beam (end A) for
convenience. Since one of the forces (V) passes through this point it does not produce a
moment about A and hence does not appear in the equation. It should be recognised that
the sum of the moments could have been considered about any known point in the same
plane.

+(4.0x0.6)+(40x12)+(4.0x1.8)+(4.0x24)+(4.0%x3.0)—(V5%x3.6)=0

= Vo=10kN Equation (2)
Substituting into Equation (1) gives Va=10KkN
This calculation was carried out considering only the externally applied forces, i.e.
4 kN 4 kN 4 kN 4 kN 4 kN
l l l l l structure
____________________________ o
A B C D E F G
T 6 @ 600 mm = 3600 mm I
N T
Figure 4.3

The structure itself was ignored, however the applied loads are transferred to the end
supports through the material fibres of the beam. Consider the beam to be cut at
section X—X producing two sections each of which is in equilibrium as shown in
Figure 4.4.

X <

S R I R R B . A R R A N

I\ ﬂ:l |Q_,_—f—fﬁ\//|T|f—i’\‘l
E X « cut surfaces

1500 mm

]

4KN 4KkN 4KN 4kN 4kN 4KN 4KN 4kN 4kN 4kN

P P
10 kN okn otk | PO 2100mm fe gy

v

O
Section A X Section B

Figure 4.4
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Clearly if the two sections are in equilibrium there must be internal forces acting on the cut
surfaces to maintain this; these forces are known as the shear force and the bending
moment, and are illustrated in Figure 4.5

4kN 4kN 4kN 4kN 4 kN
l l shear force V' l
| bending moment M ( T
A 1 B C x l | x D E F G
10 kN
10 kN shear force V'
Section A Section B
Figure 4.5

The force V' and moment M are equal and opposite on each surface. The magnitude and
direction of ¥ and M can be determined by considering two equations of static equilibrium
for either of the cut sections; both will give the same answer.

Consider the left-hand section with the ‘assumed’ directions of the internal forces V and M
as shown in Figure 4.6.

4KN  4KN
+ve } £F,=0
M
l l | +10-40-40-V=0 .~ V=2kN
A B C x l)
10kN v +Ve)ZMA=O
600 600 300 | +(4.0x0.6)+(4.0x1.2)+(Vx 1.5 =M=0
‘ s M=10.2 kNm
Figure 4.6

4.1.2 Shear Force Diagrams
In a statically determinate beam, the numerical value of the shear force can be obtained by
evaluating the algebraic sum of the vertical forces to one side of the section being
considered. The convention adopted in this text to indicate positive and negative shear
forces is shown in Figure 4.7.

@L (Vxlgi;’é
v = == v

shear induced by a +ve shear force  shear induced by a —ve shear force

Figure 4.7
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The calculation carried out to determine the shear force can be repeated at various
locations along a beam and the values obtained plotted as a graph; this graph is known as
the shear force diagram. The shear force diagram indicates the variation of the shear force
along a structural member.

Consider any section of the beam between A and B:

l4kN

A B 0 <x <600 mm

10 kN

>
»

Note: The value immediately under the point load at the cut section is not being
considered.

The shear force at any position x = X vertical forces to one side
=+10.0 kN

This value is a constant for all values of x between zero and 600 mm, the graph will
therefore be a horizontal line equal to 10.0 kN. This force produces a +ve shear effect, i.e.

o~

+ve shear effect A S \’\ES
T S

Consider any section of the beam between B and C:

l4kN 4 kN

A B C 600 mm < x < 1200 mm

10 kN
X

The shear force at any position x = X vertical force to one side
=+10.0-4.0=6.0kN

This value is a constant for all values of x between 600 mm and 1200 mm, the graph will
therefore be a horizontal line equal to 6.0 kN. This force produces a +ve effect shear
effect.

Similarly for any section between C and D:

14 kN l4kN 4kNl

A B C D
10 kN N

1200 mm < x < 1800 mm
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The shear force at any position x = X vertical forces to one side
=+10.0-4.0-4.0=2.0kN

Consider any section of the beam between D and E:

141(1\1 l4kN 4kNl 4kNl

A B C D E
10 kN X

»

1800 mm < x <2400 mm

The shear force at any position x = X vertical forces to one side
=+10.0-40-4.0-40=-2.0kN

m N
In this case the shear force is negative: {/\/—f\ T

Similarly between E and F 2400 mm < x <3000 mm
The shear force at any position x = X vertical forces to one side
=+10.0-40-40-4.0-4.0=-6.0kN
and

between F and G 3000 mm <x < 3600 mm
The shear force at any position x = X vertical forces to one side
=+10.0-40-40-40-4.0-40=-10.0kN

In each of the cases above the value has not been considered at the point of application of
the load.
Consider the location of the applied load at B shown in Figure 4.8.

|X| 14 kN
~— 7
e —— A T B
10 kN
600 mm
» N N
t 600 mm

Figure 4.8

The 4.0 kN is not instantly transferred through the beam fibres at B but instead over the
width of the actual secondary beam. The change in value of the shear force between
x <600 mm and x > 600 mm occurs over this width, as shown in Figure 4.9.
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4 kN
: B secondary beam
AL —
j i —
I |>
10 kN g==
600 mm
10 kN 10 kN
6 kN
Figure 4.9

The width of the secondary beam is insignificant when compared with the overall span,
and the shear force is assumed to change instantly at this point, producing a vertical line
on the shear force diagram as shown in Figure 4.10.

10 kN 10 kN ;

6 kN

Figuf‘e 4.10

The full shear force diagram can therefore be drawn as shown in Figure 4.11.

4 kNl 4 kN l 4 kNl 14 kN 14 kN

A B C D E F G
10 kN
v 6 kN
2 kN
2 kN
—ve
6 kN 10 kN

Shear Force Diagram
Figure 4.11

The same result can be obtained by considering sections from the right-hand side of the
beam.
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4.1.3 Bending Moment Diagrams

In a statically determinate beam the numerical value of the bending moment (i.e. moments
caused by forces which tend to bend the beam) can be obtained by evaluating the algebraic
sum of the moments of the forces to one side of a section. In the same manner as with
shear forces either the left-hand or the right-hand side of the beam can be considered. The

convention adopted in this text to indicate positive and negative bending moments is
shown in Figures 4.12(a) and (b).

Bending inducing tension on the underside of a beam is considered positive.

I X X:
o] T
/X Xi T\
tension on underside tension on underside

+ve bending
Figure 4.12 (a)

Bending inducing tension on the top of a beam is considered negative.

tension on top X . tension on top

N X /7
| or | |
' X X !

—ve bending

Figure 4.12 (b)

Note: Clockwise/anti-clockwise moments do not define +ve or —ve bending moments. The

sign of the bending moment is governed by the location of the tension surface at the point
being considered.

As with shear forces the calculation for bending moments can be carried out at various
locations along a beam and the values plotted on a graph; this graph is known as the
‘bending moment diagram’. The bending moment diagram indicates the variation in the
bending moment along a structural member.

Consider sections between A and B of the beam as before:

4 kN

0 <x<600mm

10 kN X

In this case when x = 600 mm the 4.0 kN load passes through the section being considered
and does not produce a bending moment, and can therefore be ignored.
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Bending moment = X algebraic sum of the moments of the forces to one side of a section.
=X (Force X lever arm)
M, =10.0 xx=10.0 x kNm

Unlike the shear force, this expression is not a constant and depends on the value of ‘x’
which varies between the limits given. This is a linear expression which should be
reflected in the calculated values of the bending moment.

x=0 M, =10.0 x 0 = zero

x=200mm M,=10.0x0.2=2.0KkNm
x=400mm M,=10.0x0.4=4.0kNm
x=600mm M,=10.0x0.6=6.0kNm

Clearly the bending moment increases linearly from zero at the simply-supported end to a
value of 6.0 kNm at point B.

Consider sections between B and C of the beam:

600 mm < x <1200 mm

10 kN

Bending moment = X algebraic sum of the moments of the forces to ‘one’ side of a section
M, =+ (10.0 xx) — (4.0 X [x — 0.6] )

4.0kN
bending effect of 5 bending effect of l
10.0 kN load is +ve / 4.0 kN load is —ve

10.0 kN tensién

x=800mm  M,=+(10.0x0.8)—-(4.0x0.2)=7.2 kNm
x=1000mm M,=+(10.0x1.0)—(4.0x 0.4) =8.4 kNm
x=1200mm M,=+(10.0x1.2)—-(4.0x0.6) =9.6 kNm

i tension

As before the bending moment increases linearly, i.e. from 7.2 kNm at x = 800 mm to a
value of 9.6 kNm at point C.

Since the variation is linear it is only necessary to evaluate the magnitude and sign of the
bending moment at locations where the slope of the line changes, i.e. each of the point
load locations.
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Consider point D:

j4kN l4kN 4kNl

A B C D

10 kN x |

»|
gl

x=1800mm  M,=(10.0x 1.8) — (4.0 x 1.2) — (4.0 X 0.6) = 10.8 kNm

l4kN l4kN 4kNl 4kNl
E

A B C D
10 kN X

Consider point E:

J
d

x=2400mm M,=(10.0x2.4)—-(4.0x1.8)-(4.0x1.2)—(4.0x0.6)=9.6 kNm
Similarly at point F:
x=3000mm M,=(10.0%x3.0)-—(4.0x2.4)-(4.0x1.8)—(4.0x1.2)—(4.0x0.6)
=6.0 kNm

The full bending moment diagram can therefore be drawn as shown in Figure 4.13.

4 kN 4 kN 4 kN 4 kN 4 kN
A T B C D E F IG
Va=10.0 kN 6 @ 600 mm = 3600 mm V=10kN
6.0 kNm 6.0 kKNm
9.6 kNm 9.6 kNm
10.8 kKNm

Bending Moment Diagram
Figure 4.13
The same result can be obtained by considering sections from the right-hand side of the

beam. The value of the bending moment at any location can also be determined by
evaluating the area under the shear force diagram.
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Consider point B:
10 kN
6 kN
—‘—‘ 2 kN
B
2 kN
600 mm 6 kN
10 kN
6.0 kNm 6.0 kKNm

9.6 kNm 9.6 kNm

10.8 kNm

Bending moment at B = shaded area on the shear force diagram
Mp=(10.0x0.6)=6.0 kKNm as before

Consider a section at a distance of x = 800 mm along the beam between B and C:

IOkN—\—
6 kN
2 kN

800 mm 2kN
~ 6 kKN

10 kN

6.0 kNm

10.8 kNm -0 kNm

9.6 kNm
Bending moment at x = shaded area on the shear force diagram
M, =(10.0 X 0.6) + (6.0 X 0.2) = 7.2 kNm as before

Consider a section at a distance of x =2100 mm along the beam between D and E:

10 kN
6 kN

—Vve arca

L + ve area 2 kN
2100 mm 6 kN

10 kN

9.6 kNm 10.8 kKNm 9.6 kNm

Bending moment at x = shaded area on the shear force diagram
M, =(10.0x0.6) + (6.0 X 0.6) + (2.0 X 0.6) — (2.0 x 0.3)
=10.2 kNm

(Note: A maximum bending moment occurs at the same position as a zero shear force).
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4.1.4 Example 4.2: Beam with a Uniformly Distributed Load (UDL)

Consider a simply-supported beam carrying a uniformly distributed load of 5 kN/m as
shown in Figure 4.14.

— 5.0 kN/m
L T T
AA AB
9 kN 9 kN
| 3.6m ‘
Figure 4.14

The shear force at any section a distance x from the support at A is given by:
Vx = algebraic sum of the vertical forces

5.0 kN/m

The force inducing +ve shear = 9.0 kN

The force inducing —ve shear = (5.0 X x) = 5.0x kN
A

9kN

* Vi=+9.0-5.0x

>
»|

This is a linear equation in which ¥y decreases as x increases. The points of interest are at
the supports where the maximum shear forces occur, and at the locations where the
maximum bending moment occurs, i.e. the point of zero shear.

Vi=0 when +9.0-50x=0 Sx=18m

Any intermediate value can be found by substituting the appropriate value of ‘x’ in the
equation for the shear force; e.g.

x=600mm V;=+9.0-(5.0x%x0.6)=+6.0kN

x=2100 mm V,=+9.0-(5.0x2.1)=-15kN
The shear force can be drawn as shown in Figure 4.15.

|
|
>TL 1.5 kN
600 mm 9 kN

2100 mm J

- Shear Force Diagram
Figure 4.15

The bending moment can be determined as before, either using an equation or evaluating
the area under the shear force diagram.

Using an equation: 5.0 kN/m

[ T

A
9 kN x

>
>

Bending moment at x: M, =+ (9.0 x x) — [(5.0 X x) X (x/2)] = (9.0x — 2.5x%)
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In this case the equation is not linear, and the bending moment diagram will therefore be
curved.
Consider several values:

x=0 M, = zero

x=600mm M, =+(9.0x0.6) - (2.5%0.6°) =4.5 kNm

x=1800mm M,=+(9.0x 1.8)—(2.5x 1.8%)=8.1 kNm

x=2100mm M,=+(9.0x2.1)—(2.5%2.1*)=7.88 kNm

Using the shear force diagram:

x =600 mm 9 kKN "\‘6kN
[ 600 mm

9 kN
M, = shaded area =+ [0.5 X (9.0 + 6.0) X 0.6] = 4.5 kNm
x=1800mm kN
1800 mm
9 kN
M, = shaded area =+ [0.5 X 9.0 X 1.8] = 8.1 kNm
x=2100 mm
9 kN
+ve
1800 mm 1300 1.5 kN —ve
2100 mm [ 9 kN
i

M, = shaded area =+ [8.1 — (0.5 x 0.3 x 1.5)] = 7.88 kNm
The bending moment diagram is shown in Figure 4.16.

WMMMHMMMMMWW

8.1 kNm

Bending Moment Diagram
Figure 4.16
The UDL loading is a ‘standard’ load case which occurs in numerous beam designs and

can be expressed in general terms using L for the span and w for the applied load/metre or
Wio (= wlL) for the total applied load, as shown in Figure 4.17.
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w kN/m Wiotal KN
W_L INRRNNRNNNNNNNRNNNRdNNNNNNNNNRRNNNNNNNNnnnnnnnn W_L INRRNNNNNNNNNNNNNRNUNNNRNNNNRNNRRNRRNNNRRRNNNNN|
2 v T 2 Wiotal v r Wiotal
L L | 2| L [ 2
wL W

wL \‘ VI/tOtEﬂ

Shear Force Diagram - Shear Force Diagram )
WL2 I/Vtotal L
8 8
Bending Moment Diagram Bending Moment Diagram
Figure 4.17

Clearly both give the same magnitude of support reactions, shear forces and bending
moments.

In cantilever beams, all support restraints are provided at one location, i.e. an ‘encastré’ or
‘fixed’ support as shown in Example 4.3.

4.1.5 Example 4.3: Cantilever Beam

Consider the cantilever beam shown in Figure 4.18 which is required to support a
uniformly distributed load in addition to a mid-span point load as indicated.

Figure 4.18

Support Reactions
Consider the rotational equilibrium of the beam: +Ve) SMA=0

My +(6.0x6.0)(3.0)+(15.0x3.0)=0 S MA=-153.0 kNm)
Consider the vertical equilibrium of the beam: +ve ? 2F,=0

¥y —(6.0%6.0)—15.0=0 ~vi=+510kN |
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Shear force at B:
Ve=1[51.0—(6.0 x 3.0)] = 33.0 kN
and = (33.0 — 15.0) = 18.0 kN
51.0 kN
33.0 kN

18.0 kN

A B C

Shear Force Diagram

Bending moment at B:
Mg =—(6.0 x 3.0%/2) =—27.0 kNm

153.0 kNm

27.0 KNm

Bending Moment Diagram

tension topside

4.1.6 Problems: Statically Determinate Beams — Shear Force and Bending Moment

A series of simply-supported beams are indicated in Problems 4.1 to 4.10. Using the
applied loading given in each case:

i) determine the support reactions,
ii) sketch the shear force diagram and
iii) sketch the bending moment diagram indicating the maximum value(s).

Problem 4.1



Beams 171

12 kN/m

Problem 4.5

Problem 4.6
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Problem 4.7

Problem 4.8

Problem 4.9

Problem 4.10
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4.1.7 Solutions: Statically Determinate Beams — Shear Force and Bending Moment

Solution
Topic: Statically Determinate Beams — Shear Force and Bending Moment
Problem Number: 4.1

Support Reactions
Consider the rotational equilibrium of the beam: +Ve) IMaA=0

+(12.0 X 3.0) + (8.0 X 8.0)(4.0) — (Ve 8.0) =0 o Ve=+365kN 1
Consider the vertical equilibrium of the beam: +ve ? 2F,=0
VA= 12.0—(8.0x8.0)+ Ve=0 va=+395kN |

Shear Force Diagram

39.5kN 15.5 kN
A 3.5 kN c
B
X ——»

Position of zero shear force x =[3.0 + (3.5/8.0)] =3.438 m
(This corresponds with the position of the maximum bending moment in the beam.)

36.5 kN

Bending Moment Diagram
M, =+ (39.5 x 3.438) — (8.0 x 3.438%/2.0) — (12.0 x 0.438) =+ 83.3 KNm

Alternatively, calculating the area under the shear force diagram:
M, =+10.5(39.5 + 15.5)(3.0)] + (0.5 x 0.438 x 3.5) =+ 83.3 kNm

B C
CTTETTTTITTITT
83.3 kNm

tension underside
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Solution
Topic: Statically Determinate Beams — Shear Force and Bending Moment
Problem Number: 4.2 Page No. 1

12 kKN/m

Support Reactions
Consider the rotational equilibrium of the beam: +Ve) IMA=0
+ (6.0 X 2.0)(1.0) + (15.0 X 2.0) + (12.0 X 6.0)(2.0 + 3.0) — (Ve X 8.0) = 0

s Ve=+50.25 kN

Consider the vertical equilibrium of the beam: tve T 2, =0
+ Va—(6.0%x2.0)—-15.0-(12.0x6.0)+ Vc=0
o Va=+48.75 kN T

Shear Force Diagram
36.75kN

4875 kN 21.75kN
A

Position of zero shear force x =[2.0 + (21.75/12.0)] =3.813 m
(This corresponds with the position of the maximum bending moment in the beam.)

Bending Moment Diagram
M, =+ (48.75 x 3.813) — (6.0 x 2.0)(3.813 — 1.0) — (15.0 x 1.813) — (12.0 x1.813%*2)
=+105.2 kNm

Alternatively, calculating the area under the shear force diagram:
M, =+10.5(48.75 +36.75)(2.0)] + (0.5 x 1.813 x 21.75) =+ 105.2 kNm

C

T
105.2 kNm
|

tension underside
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Solution
Topic: Statically Determinate Beams — Shear Force and Bending Moment
Problem Number: 4.3 Page No. 1

Support Reactions
Consider the rotational equilibrium of the beam: +Ve) My =0

+(3.0 X 2.0)(1.0) + (5.0 X 2.0) + (2.0 x 4.0)(4.0) + (10.0 x 4.0) + (5.0 x 6.0)
+(4.0 X 2.0)(7.0) — (Vi X 8.0) =0

o Ve=+2175kN 1

Consider the vertical equilibrium of the beam: +ve ? XF,=0
+Va—-(3.0%x2.0)-50-(2.0x4.0)-10.0-50-(4.0x2.0)+ V=0

. Va=+2025kN 1
Shear Force Diagram

20.25 kN 14.25 kN
9.25 kN 5.25 kKN o
A E
B C
4.75 kN 8.75kN
13.75 kN 21.75 kN

X ——————»

Position of zero shear force x =4.0 m
(This corresponds with the position of the maximum bending moment in the beam.)

Bending Moment Diagram
M, =+(20.25 x4.0) - (3.0 x 2.0)(3.0) — (5.0 x 2.0) — (2.0 x 2.0)(1.0) = + 49.0 kKNm

Alternatively, calculating the area under the shear force diagram:
M, =+10.5(20.25 + 14.25)(2.0)] + [0.5(9.25 + 5.25)(2.0)] =+ 49.0 kNm

A B C D

[TTTTTTTTTTTIA
49.0 kNm
[

tension underside
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Solution
Topic: Statically Determinate Beams — Shear Force and Bending Moment
Problem Number: 4.4 Page No. 1

Support Reactions
Consider the rotational equilibrium of the beam: +Ve) My =0

+ (3.0 X 2.0)(1.0) + (8.0 X 2.0) + (6.0 x 6.0)(6.0) + (12.0 x 6.0) — (Vi X 9.0) = 0
. Vg =+ 34.44 kKN T

Consider the vertical equilibrium of the beam: +ve T 2F,=0
+Va—=(3.0%x2.0)-8.0-(6.0x6.0)-12.0+ V=0

" Va=+27.56 kN1
Shear Force Diagram

27.56 KN 21.56 kN
13.56 kN
D
A

B C
4.44 kN

F x_— » 1644KkN
34.44 kKN

Position of zero shear force x =[3.0 +(13.56/6.0)] =5.26 m (3.74 m from E)
(This corresponds with the position of the maximum bending moment in the beam.)

Bending Moment Diagram
M, =+ (34.44 x 3.74) — (6.0 x 3.74*/2) — (12.0 x 0.74) =+ 77.96 KNm

Alternatively, calculating the area under the shear force diagram:
M, =+1[0.5(34.44 + 16.44)(3.0)] + (0.5 x 0.74 x 4.44) =+ 77.96 KNm

A B C D
[T
77.96 kNm

tension underside
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Solution
Topic: Statically Determinate Beams — Shear Force and Bending Moment
Problem Number: 4.5 Page No. 1

Support Reactions
Consider the rotational equilibrium of the beam: +Ve) My =0

+ (2.0 x 4.0)(2.0) + (6.0 x 2.0)(5.0) + (12.0 x 6.0) — (Vi x 4.0) = 0
. Vg=+37.0 kN T

Consider the vertical equilibrium of the beam: +ve T XF,=0

+Va—(2.0%x4.0)-(6.0%x2.0)—120+ V=0
 Va=—50KN +

Nﬁ kN
C

13.0 kN

Shear Force Diagram

Position of zero shear force x =4.0 m
(This corresponds with the position of the maximum bending moment in the beam.)

Bending Moment Diagram
M, =—(5.0 x 4.0) — (2.0 x 4.0%/2) = — 36.0 KNm

Alternatively, calculating the area under the shear force diagram:
M, =-10.5(5.0+13.0)(4.0)] = — 36.0 kKNm
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Solution
Topic: Statically Determinate Beams — Shear Force and Bending Moment
Problem Number: 4.6 Page No. 1

10 kN/m

Support Reactions
Consider the rotational equilibrium of the beam: ~ 1V ) IMA=0
+(10.0 X 6.0)(3.0) + (5.0 x 2.0)(7.0) + (8.0 x 7.0) = (V5 x 6.0) =0
s Vg=+51.0 kN

Consider the vertical equilibrium of the beam: +ve T 2F,=0
+ V= (10.0 X 6.0) = (5.0 X 2.0) = 8.0 + Vg =0
£ Va=+270kN 4
Shear Force Diagram
27.0 kN

5.0 kN
D

B C
33.0 kN

Positions of zero shear force: x=(27.0/10.0)=2.7m and x=6.0m
(These correspond with the positions of the maximum bending moments in the beam.)

Bending Moment Diagram
M=+ (27.0 x 2.7) = (10.0 x 2.7%/2) = + 36.5 KNm
Mp=—(5.0x2.0)(1.0) — (8.0 x 1.0) =—18.0 kNm

Alternatively, calculating the area under the shear force diagram:

My =—(0.5x%x2.7x%27.0)=+36.5kNm

Mg =-10.5(18.0 + 13.0)(1.0)] + (0.5 x 1.0 x 5.0) =+ 18.0 kNm
18.0 kNm

point of contraflexure \ ; m

36.5 kNm

tension underside
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Solution
Topic: Statically Determinate Beams — Shear Force and Bending Moment
Problem Number: 4.7 Page No. 1

Load between A and B = (0.5 x 1.0 x 6.0) = 3.0 kN: centre of gravity is 0.67 m from A
Load between B and C = (6.0 x 3.0) =18.0 kN: centre of gravity is 2.50 m from A
Load between C and D = (0.5 x 1.0 x 6.0) = 3.0 kN: centre of gravity is 4.33 m from A

Support Reactions

Consider the rotational equilibrium of the beam: +ve) ZMA=0
+(3.0x0.67) + (18.0 X 2.5) + (3.0 x 4.33) + (20.0 x 5.0) + (4.0 x 4.0)(7.0)
- (V£x9.0)=0

© Ve=+3022kN 1

Consider the vertical equilibrium of the beam: *Vve T 2F,=0
+Va—3.0-18.0-3.0 —20.0-(4.0x4.0)+ Vg=0 o Va=+29.78 kN T

Shear Force Diagram (Note: the diagram is curved from A to B and from C to D)
26.78 kN

29.78 kN
8.78 kN
A 5.78 kN E
B C D
14.22 kN
X 4>‘ 30.22 kN

Position of zero shear force x =5.0 m
(This corresponds with the position of the maximum bending moment in the beam.)

Bending Moment Diagram: (consider the right-hand side)

M, =+ (30.22 x 4.0) — (4.0 x 4.0°/2) =+ 88.9 KNm
Alternatively, calculating the area under the shear force diagram:
M, =+0.5(14.22 + 30.22)(4.0) = + 88.9 kNm

A B C D E
T
88.9 kNm

tension underside
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Solution
Topic: Statically Determinate Beams — Shear Force and Bending Moment
Problem Number: 4.8 Page No. 1

Support Reactions
Consider the rotational equilibrium of the beam: +Ve) IMg=0

— (6.0 x 1.0)(0.5) + (0.5 x 8.0 x 5.0)(4.0) + (0.5 x 2.0 x 4.0)(9.0) — (Vp X 8.0) = 0
o Vp=+1413 kN

Consider the vertical equilibrium of the beam: +ve T 2F,=0
—(6.0x1.0)+ V5 —(0.5%x8.0%x5.0)—(0.5x20x4.0)+Vp=0
.. Vp=+15.87 KN T
Shear Force Diagram

5 kN/m

h (h/x)=(5.0/4.0) .. h=125x
B Amm]]]ﬂ];ﬂ]]]]]]]]]]] C Force over length x = (0.5 x x x 1.25x) = 0.625x
x —% This force must equal 9.78 for zero shear at x
4.0 m4>‘
Position of zero shear force x: 9.78 =0.625x> .. x =3.956 m from B

soh=(1.25 x3.956) = 4.945

Bending Moment Diagram

M, =— (6.0 x 1.0)( 4.456) + (15.87 x 3.956) — [(0.625 x 3.9567)(3.956/3.0)]
=+23.15 kNm

Mg=—(6.0x1.0°/2==3.0kNm; Mp=—(0.5x 2.0 x4.0)(1.0) = + 4.0 kNm

3.0 kN c 40KN
A BS [ x> E

point of 3 23.15 KNm | point of
contraflexure  contraflexure

tension topside Y tension topside

. C .
tension underside
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Solution
Topic: Statically Determinate Beams — Shear Force and Bending Moment
Problem Number: 4.9 Page No. 1

Support Reactions
Consider the rotational equilibrium of the beam: +Ve) My =0

M+ (8.0 2.0)(1.0) + (20.0 x 2.0) + (4.0 X 1.5)(2.75)=0 .. My=—T25 kN@

Consider the vertical equilibrium of the beam: +ve T YF,=0
+Va—(8.0%x2.0)-20.0-(4.0x1.5)=0 o Va=+42.0 kN T

Shear Force Diagram

42.0 kN

A

Bending Moment Diagram
Mp==-72.5kNm
Mp =—(4.0 x 1.5)(0.75) =— 4.5 kNm

Alternatively, calculating the area under the shear force diagram:
Ma=-10.5(42.0 + 26.0)(2.0)] = (0.5 x 1.5 x 6.0) =—72.5 kNm
Mp=—-(0.5x1.5%6.0)=—4.5 kNm

72.5 kNm




182  Examples in Structural Analysis

Solution
Topic: Statically Determinate Beams — Shear Force and Bending Moment
Problem Number: 4.10 Page No. 1

8 kN/m 15 kN

2 ME
LT TTATTIN
A4

C D

|

7

Support Reactions
Consider the rotational equilibrium of the beam: +ve) SMe=0

—(10.0 % 5.0) — (8.0 X 4.0)(2.0) — (15.0 x 2.0) + Mz =0 . M=+ 144.0 kN C

Consider the vertical equilibrium of the beam: tve T XF,=0
~10.0 - (8.0 x 4.0) = 15.0+ Vg =0 o Ve=+57T0kN T

Shear Force Diagram
A B

10.0 kN 10.0 KN

Bending Moment Diagram

My = Mg = zero

Mc=-(10.0 x 1.0) == 10.0 KNm

Mp=—(10.0 x 3.0) — (8.0 x 2.0°/2) = — 46.0 kNm
Mg =—-144.0 KNm

Alternatively, calculating the area under the shear force diagram:

Mc=-(10.0 x 1.0) =—10.0 kNm

Mp=—(10.0 x 1.0) = [0.5(10.0 + 26.0)(2.0)] = — 46.0 kNm

Mg =-(10.0 x 1.0) — [0.5(10.0 + 26.0)(2.0)] — [0.5(41.0 + 57.0)(2.0)] = — 144.0 kNm

Diagram straight
from B to C <——>Curved from C to E

zero moment 46.0 KNm
from A to B

tension topside
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4.2 McCaulay’s Method for the Deflection of Beams

In elastic analysis the deflected shape of a simply-supported beam is normally assumed to
be a circular arc of radius R (R is known as the radius of curvature), as shown in

Figure 4.19.

Consider the beam AB to be subject to
a variable bending moment along its
length. The beam is assumed to deflect
as indicated.

R is the radius of curvature,

L is the span, 7

I is the second moment of area about ,r
the axis of bending,

E is the modulus of elasticity,

de

ds is an elemental length of beam
measured a distance of x from the
left-hand end

M is the value of the bending moment
at position x.

The slope of the beam at position x is given by:
M
—d

dz
slope= — = X
dx EI

Differentiating the slope with respect to x gives:

2
%= % and hence:
X
2
EI% =M
X

Integrating Equation (1) with respect to x gives

% jde
dx

Integrating Equation (2) with respect to x gives
Elz = [[(Mdx)dx

Figure 4.19

Equation (1) — bending moment (M)

Equation (2) — EI X slope (EI8)

Equation (3) — EI X deflection (EIJ)

Equations (1) and (2) result in two constants of integration A and B; these are determined
by considering boundary conditions such as known values of slope and/or deflection at

positions on the beam.
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4.2.1 Example 4.4: Beam with Point Loads
Consider a beam supporting three point loads as shown in Figure 4.20.

5 IN IOlkN 8 lkN
A B C D E
VA VE
12.0m ‘ 4.0m ‘ 3.0m ‘I.Om,
K K N N )
Figure 4.20

Step 1: Formulate an equation which represents the value of the bending moment at a
position measured x from the left-hand end of the beam. This expression must include all
of the loads and x should therefore be considered between points D and E.

5kN 10 kN 8 kN

l "

B C D .

Va

1
1
I
1
I
>y
1

>
>~ —>p
=

Figure 4.21

Consider the vertical equilibrium of the beam:
+ve t 2F,=0
Va—5.0-10.0-8.0+Vg=0 s Va+VE=23kN (1)

Consider the rotational equilibrium of the beam:

+ve ) ZMy =0
(5.0%x2.0)+(10.0x 6.0) + (8.0x9.0) — (Vg x 10.0)=0 (i1)
. Vg=14.2KkN
Substituting into equation (i) gives Va=8.8kN

The equation for the bending moment at x:

2
EIC;— =M,=+88x—5.0x—-2]-10.0[x— 6] —8.0[x — 9] Equation (1)
x

The equation for the slope (8) at x:

88 > 5.0 10.0
2

E[——IMd =+ A —2F -l — 67— éo[x—9]2+A

Equation (2)
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The equation for the deflection (0) at x:

Elz= | (MdX)dx:+% 3_—[ -27 —M[ — 6]’ ——[ —OF +Ax+ B

Equation (3)
where A and B are constants of integration related to the boundary conditions.

Note: It is common practice to use square brackets, i.e. [ |, to enclose the lever arms for
the forces as shown. These brackets are integrated as a unit and during the calculation for
slope and deflection they are ignored if the contents are —ve, i.e. the position x being
considered is to the left of the load associated with the bracket.

Boundary Conditions
The boundary conditions are known values associated with the slope and/or deflection. In
this problem, assuming no settlement occurs at the supports then the deflection is equal to
zero at these positions, i.e.

whenx=0, z=0

+ ﬁfﬁ&zf &[\){6]3\%x9]3+/1x+3 =0
6 6 6 6

ignore ignore ignore
Substituting for x and z in equation (3) gives B =0
whenx=10.0, z=0

881 5.0 10.0 8.0

3 i I oY . 3 —
0"~ ==[10- 2F 10~ 6 110 9F +(4x10)=0

+(1.466 x 10%) — (0.426 x 10° ) — (0.106 x 10* ) — 1.33 + 104 =0
A=-93.265

The general equations for the slope and deflection at any point along the length of the
beam are given by:
The equation for the slope at x:

EI£=E]¢9 + — 838 X — >0 Sk -21 - 10—O[x 6]* - 8;O[x—9]2—93.265
dx 2 2 2 2
Equation (4)
The equation for the deﬂection at x:
8.8 e 10.0
Elz=Fl6 =+ — ——[ —2]——[ —6]——[ — 9]’ - 93.265x
Equation (5)

e.g. the deflection at the mid-span point can be determined from equation (5) by
substituting the value of x = 5.0 and ignoring the [ | when their contents are — ve, i.e.

g S5 2005 op 1O g S op - 93.265%5)

ignore ignore
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3
o=+ 18333 - 22.5 — 466325 o 3055 {m}m

CEl EI

The maximum deflection can be determined by calculating the value of x when the slope,
i.e. equation (4) is equal to zero and substituting the calculated value of x into equation (5)
as above.

In most simply-supported spans the maximum deflection occurs near the mid-span point.
This can be used to estimate the value of x in equation (4) and hence eliminate some of the
[ ] brackets, e.g. if the maximum deflection is assumed to occur at a position less than
6.0 m from the left-hand end the last two terms in the [ ] brackets need not be used to
determine the position of zero slope. This assumption can be checked and if incorrect a
subsequent calculation carried out including an additional bracket until the correct answer
is found.

Assume Zpaimum Occurs between 5.0 m and 6.0 m from the left-hand end of the beam,
then:

The equation for the slope at x is:

EI% __’_ﬁ 2 5.0 [ _2] g :[x 6] &Ex 9] —93.265 —Oforzmax1mum
X

ignore ignore
This equation reduces to:

1.9x% + 10x — 103.265 = 0 and hence x=52m
since x was assumed to lie between 5.0 m and 6.0 m ignoring the two [ | terms was correct.

The maximum deflection can be found by substituting the value of x = 5.2 m in
equation (5) and ignoring the [ | when their contents are —ve, i.e.

E]Zma)nmum =+ %5 23 - _[5 2 2] - %6] - N&% 9] - (93 265 X 5 2)

ignore ignore
E[Zmaximum =+4+206.23 —27.31 —484.98 e Zoaximum = — % m

Note: There is no significant difference from the value calculated at mid-span.

4.2.2 Example 4.5: Beam with Combined Point Loads and UDLs

A simply-supported beam ABCD carries a uniformly distributed load of 3.0 kN/m
between A and B, point loads of 4 kN and 6 kN at B and C respectively, and a uniformly
distributed load of 5.0 kN/m between B and D as shown in Figure 4.22. Determine the
position and magnitude of the maximum deflection.
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4.0 kN 6.0 kKN
T?».O kN/m 5.0 kN/m
A A B C A D
Va 2.0m 2.0m 2.0m Vb
6.0 m
Figure 4.22

Consider the vertical equilibrium of the beam:
+ve } 5F,=0
Va—(3.0x2.0)-4.0-6.0-(5.0x4.0)+ Ip=0

Consider the rotational equilibrium of the beam:

S Va+Vp=36kN (i)

+ve ) ZM =0
(3.0x2.0x1.0)+(4.0x2.0)+(6.0x4.0)+(5.0x4.0x4.0)— (Vpx6.0)=0 (i1)
. Vp=19.67 kN
Substituting into equation (i) gives Va=16.33 kN
4.0kN 6.0 kKN
—3.0kN/m | — 5.0 kN/m
rroarrarpar AR AT
A y N B C I “D
16.33 kN * . 19.67 kN

Figure 4.23

In the case of a UDL when a term is written in the moment equation in square brackets,
[ ] this effectively applies the load for the full length of the beam. For example in
Figure 4.23 the 3.0 kN/m load is assumed to apply from A to D and consequently only an
additional 2.0 kN/m need be applied from position B onwards as shown in Figure 4.24.

4.0 kN 6.0 kN

— 3.0 kN/m

2.0 kN/m

IR RRNNNNNNRNNNNNRRRNNNRNE]

At B C

16.33 kN d

Figure 4.24

-
lg

D
19.67 kN
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The equation for the bending moment at x is:

d*z x? [x 2]2 .
EI— = +1633x- 3.0 —4.0[x—-2.0] -2.0———— — 6.0[x — 4] Equation (1)
dx’? 2 2
The equation for the slope at x is:
2 3 _ 2 _ 3 _ 2
B~ ()= +1633 ERE AP ] PN ] P k]
dx 6 2
Equation (2)
The equation for the deflection at x is:
3 4 _5P _ 3
E=(8)=+16332 30X _40 ] PN ] NP Sl
6 24 6 24

Equation (3)
where A and B are constants of integration related to the boundary conditions.

Boundary Conditions
In this problem, assuming no settlement occurs at the supports then the deflection is equal
to zero at these positions, i.e.

when x = 0 z= 0

3
+1633— 30 \% \k 2f \b 4 +Ax+ B

ignore zgnore zgnore
Substituting for x and z in equation 3) .. B =0
whenx=6.0, z=0
3 4 3 Y B
PR S AP ] PR e MY e P
6 24 6 24
3 4 3 4 3
+16.33 6.0° _ 3.0 607 _ 4.0 407 2.0 407 6.0 2.0 +6.04 =0
24 6 24

w4 =-5898

The general equations for the slope and bending moment at any point along the length of
the beam are given by:

The equation for the slope at x:

2 3 2 3 2
g% 16335 305 o[x_z] 72‘0[x—2] 76.0[’“_4]
dx 2 6 2 6

—58.98

Equation (4)
The equation for the deflection at x:

3 4 3 4
Elz=+16332—-3.02-_40 =2 2.0 v —2]
6 24 24

-6.0

3
[x _64] — 5898 x

Equation (5)
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Assume Zpaimum Occurs between 2.0 m and 4.0 m from the left-hand end of the beam,
then:
The equation for the slope at ‘x’ is:

2 3 2 3 2
% 16335 305 a0l 5 olm2F NE-4F g0
dx 2 6 2 6 %)

ignore

This cubic can be solved by iteration.

Guess a value for x, e.g. 3.1 m
(16.33 x3.1%)/2 — (3.0 x 3.1°)/6 — (4.0 x 1.1%)/2 = (2.0 x 1.1°)/6 — 58.98 = 1.73 > 0

The assumed value of 3.1 is slightly high, try x =3.05 m
(16.33 x 3.05%)/2 — (3.0 x 3.05%)/6 — (4.0 x 1.05%)/2 — (2.0 x 1.05”)/6 — 58.98 = 0.20

This value is close enough. x = 3.05 m and since x was assumed to lie between 2.0 m and
4.0 m, ignoring the [x — 4] term was correct.

The maximum deflection can be found by substituting the value of x = 3.05 m in
equation (5) and ignoring the [ | when their contents are —ve, i.e.

3 4 _ 3 3 4 ~ 3
EI Zungsimam = + 16.33°— 3.0 -~ 4.0 -2 -2 6.0\54\ P qogs
6 24 6 24 N
ignore
El zZpaximum =+ 77.22 -10.82 - 0.77 - 0.1 - 179.89 <"+ Zmaximum = — 11;;4 m

4.3  Equivalent Uniformly Distributed Load Method for the Deflection of Beams

In a simply-supported beam, the maximum deflection induced by the applied loading
always approximates the mid-span value if it is not equal to it. A number of standard
frequently used load cases for which the elastic deformation is required are given in
Appendix 2 in this text.

In many cases beams support complex load arrangements which do not lend themselves
either to an individual load case or to a combination of the load cases given in Appendix 2.
Provided that deflection is not the governing design criterion, a calculation which gives an
approximate answer is usually adequate. The equivalent UDL method is a useful tool for
estimating the deflection in a simply-supported beam with a complex loading.

Consider a single-span, simply-supported beam carrying a non-uniform loading which
induces a maximum bending moment of M as shown in Figure 4.25.
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non-uniform loading —— Hm ”ﬂmm
T 1

Bending Moment Diagram

Figure 4.25
The equivalent UDL (w.) which would induce the same magnitude of maximum bending

moment (but note that the position may be different) on a simply-supported span carrying
a uniform loading can be determined from:

2
w,L

Maximum bending moment M =

_8M
=3
where w, is the equivalent uniform distributed load.

The maximum deflection of the beam carrying the uniform loading will occur at the mid-
4

We

Sw.L

384E1

span and will be equal to 0= (see Appendix 2)

Using this expression, the maximum deflection of the beam carrying the non-uniform
loading can be estimated by substituting for the w, term, i.e.

M\ 4
4 5% — 5
_Sw,L _ (L ) _ 0104 M L

384E1 384 EI EI

The maximum bending moments in Example 4.4 and Example 4.5 are 32.8 kNm and
30.67 kNm respectively (the reader should check these answers).
Using the equivalent UDL method to estimate the maximum deflection in each case gives:

0104 M I? 341.1 305.5
=— m (actual value = I m)

Example 4.4  Suaximum =

EI El
104 M I? 114. 114.4
Example 4.5  Onaximum = 010 =— 2 m (actual value = ——m)
EI EI EI

Note: The estimated deflection is more accurate for beams which are predominantly
loaded with distributed loads.
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4.3.1 Problems: McCaulay’s and Equivalent UDL Methods for Deflection of Beams

A series of simply-supported beams are indicated in Problems 4.11 to 4.15. Using the
applied loading given in each case determine the maximum deflection. Assume all

beams are uniform with Young’s Modulus of Elasticity = £ and Second Moment of
Area=1

12 kN/m

Problem 4.13

8 kN/m 15 kN

A =

Problem 4.15
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4.3.2 Solutions: McCaulay’s and Equivalent UDL Methods for Deflection of Beams

Solution
Topic: Statically Determinate Beams — Deflection
Problem Number: 4.11

6 kN/m  (Total gc = 12 kN/m)

B2
48.75 kN

(See Problem 4.2 for the support reactions)
The equation for the bending moment at x is:
2
EI% =M, =+48.75x — (6x*)/2 — 15.0[x — 2] — 6.0[x — 2]*/2 Equation (1)
X

The equation for the slope at x is:
El% =E[0=+2438x" - x —7.5[x -2 - [x—2] + 4 Equation (2)
X

The equation for the deflection at x is:
Elz = EI6=+8.13x’ = 0.25x * = 2.5[x — 2]’ = 0.25[x = 2]* + Ax+ B Equation (3)

where 4 and B are constants of integration related to the boundary conditions.

when x=0, z=0 and substituting for x and z in equation (3)
EI(0) =+ 8.13(0)’ — 0.25(0)" — 2\.5.[\12]3 - o\.2§J;Z 21*+4(0)+ B

ignore ignore

when x=8.0, z=0 and substituting for x and z in equation (3)
EI(0) =+ 8.13(8.0)’ — 0.25(8.0)* — 2.5[6.0]° — 0.25[6.0]* + 4(8.0)
oA =-284.32

The general equations for the slope and deflection at any point along the length of the
beam are given by substituting for A and B in equations (2) and (3)

The equation for the slope at x:
EI0=+2438x" —x’ — 7.5[x - 2] — [x — 2]’ — 284.32 Equation (4)

The equation for the deflection at x:
EIS=+8.13x" —0.25x * = 2.5[x — 2]’ = 0.25[x — 2]* — 284.32x Equation (5)
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Solution
Topic: Statically Determinate Beams - Deflection
Problem Number: 4.11 Page No. 2

193

The position of the maximum deflection at the point of zero slope can be determined

from equation (4) as follows:
Assume that zero slope occurs when 2.0 < x < 8.0 and neglect [ | when negative

EI6=0=+2438x"—x"—75[x—2] - [x— 2]’ — 284.32

Solve the resulting cubic equation by trial and error.

Guess x=39m  (i.e. slightly to the left of the mid-span)

+24.38(3.9)* —3.9° = 7.5(1.9)* — (1.9)’ — 284.32 = - 6.75 Increase x
try  x=23.95

+24.38(3.95)" —3.95% — 7.5(1.95)* — (1.95)° — 284.32 =— 1.49 Increase x
try  x=23.96

+24.38(3.96)* —3.96° — 7.5(1.96)*— (1.96)° — 284.32 = — 0.44

Accept x=3.96m

The maximum deflection is given by:
Onax. = {+ 8.13(3.96)* — 0.25(3.96) * — 2.5(1.96)* — 0.25(1.96)* — 284.32(3.96)}/EI

Omax. =— 705.03/E1

Equivalent Uniformly Distributed Load Method:
5max. ~ = (0'104MmaximumL2)/E]

The maximum bending moment = 105.2 kNm  (see Problem 4.2)

Omax. = — (0.104 x 105.2 x 8.0%)/EI =—700.2/EI
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Solution
Topic: Statically Determinate Beams - Deflection
Problem Number: 4.12 Page No. 1

B
20.25kN

(See Problem 4.3 for the support reactions)
The distributed loads must continue to the end of the beam from the point where they
begin. An equivalent load system is therefore required to ensure that the applied loads

are represented in the equations.

Equivalent Load System:

=
20.25kN

The equation for the bending moment at x is:

2
El% = M, =+20.25x — (3x°)/2 — 5.0[x — 2] + 1.0[x — 2]*/2 — 10.0[x — 4]
X

—5.0[x— 6] —2.0[x — 6]*/2 Equation (1)

The equation for the slope at x is:
EI% =EI0=+10.13x" - 0.5x" = 2.5[x — 2" + 0.17[x — 2> = 5.0[x — 4]
X

—2.5[x—6*-0.33[x—6]+4 Equation (2)
The equation for the deflection at x is:
Elz = EIS=+3.38x" —0.125x* — 0.83[x — 2]° + 0.04[x — 2]* — 1.67[x — 4]°
—0.83[x — 6]’ — 0.08[x — 6]' + Ax + B Equation (3)

where 4 and B are constants of integration related to the boundary conditions.
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Solution
Topic: Statically Determinate Beams - Deflection
Problem Number: 4.12 Page No. 2

whenx=0, z=0 and substituting for x and z in equation (3)

EI(0)=+3. 38(0) —0.125(0)* - 0§3{x2 o] + 051*[‘2 0'-1 6\7‘k4 01— 0\3&6 07’
—-0.0 ] +A4(0)+ B ignore ignore ignore ignore
ignore . B=0
when x = 8.0, z=0 and substituting for x and z in equation (3)
EI (0) =+ 3.38(8.0)° — 0.125(8.0)" — 0.83[6.0]° + 0.04[6.0]* — 1.67[4.0]°
—0.83[2.0]° — 0.08[2.0]* + A4(8.0) s A=-122.04

The general equations for the slope and deflection at any point along the length of the
beam are given by substituting for A and B in equations (2) and (3)

The equation for the slope at x:
EI6=+10.13x" — 0.5x° = 2.5[x — 2]* + 0.17[x — 2]’ = 5.0[x — 4] = 2.5[x — 6]°
—0.33[x— 6]’ — 122.04 Equation (4)

The equation for the deflection at x:
EIS=+3.38x"—0.125x" — 0.83[x — 2]* + 0.04[x — 2]* — 1.67[x — 4] - 0.83[x — 6]’

—0.08[x — 6]" — 122.04x Equation (5)

The position of the maximum deflection at the point of zero slope can be determined
from equation (4) as follows:
Assume that zero slope occurs when 4.0 < x < 6.0 and neglect [] when negatlve
EI0=0=+10.13x"— 0.5x° = 2.5[x — 2]* + 0.17[x — 2]> = 5.0[x — 4T 2\55\

— 0.3 6] - 122.04 ienore

ignore

Solve the resulting cubic equation by trial and error.
Guess x=4.1m EIf=+433>0 - reduce x
try x=4.05 EI6=+1.86>0 try x=4.02  EIf=+0.38
Acceptx=4.02 m

The maximum deflection is given by
Omax. = {1+ 3.38(4.02)° — 0.125(4.02)* — 0.83(2.02)* + 0.04(2.02)* — 1.67(0.02)’
—(122.04 x 4.02)}/EI
Omax. = — 309.84/E1

Equivalent Uniformly Distributed Load Method:

5max. ~ = (0 104MmaximumL2)/EI

The maximum bending moment = 49.0 kNm (see Problem 5.3)
Omax. ~ — (0.104 x 49.0 x 8.0%)/EI = — 326.14/EI
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Solution
Topic: Statically Determinate Beams - Deflection
Problem Number: 4.13 Page No. 1

27.56 kN 3444 kN
(See Problem 4.4 for the support reactions)
The distributed loads must continue to the end of the beam from the point where they
begin. An equivalent load system is therefore required to ensure that the applied loads
are represented in the equations.
Equivalent Load System:

12 kN
— 6 kKN/m (Total cpg = 6 kN/m)

The equation for the bending moment at x is:

d’z 2 2 2
EI7 =M,=+27.56x—(3x7)/2 - 8.0[x—2]+3.0[x—2]/2-6.0[x—3]7/2

—12.0[x — 6] Equation (1)

The equation for the slope at x is:
EIZ — 19 = 413787 - 0.5¢ — 40[x -2 +05[x-2-[x—3] —-6.0[x—6]"+4
X

Equation (2)
The equation for the deflection at x is:
Elz = EIS =+ 4.59x" — 0.125x" = 1.33[x — 2] + 0.125[x — 2]* = 0.25[x — 3]*
—2.0[x— 6] +A4x + B Equation (3)

where 4 and B are constants of integration related to the boundary conditions.




Beams 197

Solution
Topic: Statically Determinate Beams - Deflection
Problem Number: 4.13 Page No. 2

when x=0, z=0 and substituting for x and z in equation (3)

EI(0) =+4.59(0)° —0.125(0)* — 1.33\[\2‘0]3 - 0.1\25[\12.0]4 -~ 0.?5&3.0]4
- 2.0N0]3 —A0)+B ignore ignore ignore
ignore ~B=0
when x=9.0, z=0 and substituting for x and z in equation (3)
EI(0)=+4.59(9.0)° — 0.125(9.0)* — 1.33[7.0]* + 0.125[7.0]* — 0.25[6.0]*- 2.0[3.0]*
— A(9.0) sA=-221.32

The general equations for the slope and deflection at any point along the length of the
beam are given by substituting for A and B in equations (2) and (3)

The equation for the slope at x:
EI6=+13.78x"— 0.5’ —4.0[x — 2]* + 0.5[x = 2]> — [x — 3] — 6.0[x — 6]* — 221.32
Equation (4)

The equation for the deflection at x:

EIS =+4.59x° = 0.125x* — 1.33[x — 2]> + 0.125[x — 2]* = 0.25[x — 3]* = 2.0[x — 6]*
—221.32x Equation (5)

The position of the maximum deflection at the point of zero slope can be determined
from equation (4) as follows:

Assume that zero slope occurs when 3.0 <x<6.0 and neglect [ ] when negative
EIO =0=+13.78x* = 0.5x" = 4.0[x — 21" + 0.5[x — 2]’ — [x — 3]’ — 221.32

Solve the resulting equation by trial and error.
Guess x=4.6m EI6=-0.75>0 .. reduce x
try x=4.6lm EIO=+0.02>0 Accept x=4.61m

The maximum deflection is given by:

Omax. = {+4.59(4.61)° — 0.125(4.61)* — 1.33(2.61)* + 0.125(2.61)* — 0.25(2.61)*
—(221.32 x 4.61)}/EI

Omax. = — 656.5/EI

Equivalent Uniformly Distributed Load Method:

Oimax. = = (0.104M aximuml.*) ET

The maximum bending moment = 78.0 kNm (see Problem 5.4)
Omax. = — (0.104 x 78.0 x 9.0%)/El = — 657.4/EI
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Solution
Topic: Statically Determinate Beams - Deflection
Problem Number: 4.14 Page No. 1

144.0 kNm

el X

(See Problem 4.10 for the support reactions)

The equation for the bending moment at x is:

2
E]% =M, =-10.0[x — 1] - 8.0[x — 2]%/2 — 15.0[x — 4] Equation (1)
X

The equation for the slope at x is:
EI% =FEI0=-50[x—1]"—1.33[x -2’ = 7.5[x —4]* + 4 Equation (2)
X

The equation for the deflection at x is:
Elz=EI§ =—1.67[x — 177 = 0.33[x — 2]* = 2.5[x — 4]* + Ax+ B Equation (3)

where 4 and B are constants of integration related to the boundary conditions.

when x =6.0, dz/dx =0 and substituting for x and z in equation (2)
EI(0)=—-5.0(5.0" — 1.33(4.0)’ —7.5(2.0)* + 4
oA =+240.12

when x=6.0, z=0 and substituting for x and z in equation (3)
EI (0)=—1.67(5.0)° — 0.33(4.0)* — 2.5(2.0)’ + (240.12 x 6.0)+ B
s B=-1127.49

The general equations for the slope and deflection at any point along the length of the
cantilever are given by substituting for A and B in equations (2) and (3).

The equation for the slope at x:
EI6=—5.0[x— 11— 1.33[x — 2]’ — 7.5[x — 4]* + 240.12 Equation (4)

The equation for the deflection at x:
EIS=—1.67[x — 17’ = 0.33[x — 2]" — 2.5[x — 4]’ + 240.12x — 1127.49
Equation (5)
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Solution
Topic: Statically Determinate Beams - Deflection
Problem Number: 4.14 Page No. 2

The maximum deflection occurs at the free end of the cantilever i.e. when x = 0
neglecting all [ ] which are negative.

Omax. =— 1127.49 / EI

The deflection at any other location can be found by substituting the appropriate value
of x, e.g.

AtB: x=1.0
O = {+(240.12 x 1.0) — 1127.49}/EI Os =— 887.4/EI

AtC: x=2.0
& = {— 1.67(1)° + (240.12 x 2.0) — 1127.49}/EI & =— 648.9/EI

AtD: x=4.0
& = {— 1.67(3.0)° — 0.33(2.0)* + (240.12 x 4.0)— 1127.49}/EI o =-217.4/EI

Note: The Equivalent Uniformly Distributed Load Method only applies to
single-span beams.
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Solution
Topic: Statically Determinate Beams - Deflection
Problem Number: 4.15 Page No. 1

1.0m J l.Om‘
N

) N

51.0 kN
(See Problem 4.6 for the support reactions)
The distributed loads must continue to the end of the beam from the point where they
begin. An equivalent load system is therefore required to ensure that the applied loads
are represented in the equations.
Equivalent Load System:

10 kN/m

The equation for the bending moment at x is:

2
El% =M, =+27.0x — (10x)/2 + 51.0[x — 6] + 5.0[x — 6]*/2 — 8.0[x — 7]
X

Equation (1)

The equation for the slope at x is:

=EI0=+ 13.5x* - 1.67x> + 25.5[x — 6]* + 0.83[x — 6]’ —4.0[x — 7]* + 4

Equation (2)

The equation for the deflection at x is:
Elz = EI6=+4.5x" — 0.42x" + 8.5[x — 6]’ + 0.21[x — 6]* = 1.33[x = 7]’ + 4x + B
Equation (3)

where 4 and B are constants of integration related to the boundary conditions.
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Solution
Topic: Statically Determinate Beams - Deflection
Problem Number: 4.15 Page No. 2

whenx =0, z=0 and substituting for x and z in equation (3
EI (0) =+ 4.5(0) — 0.42(0)* + S.NOF +0.21%6.0]" - 1.332[\2&013 +A4(0) + B
ignore ignore ignore
~B=0
when x=6.0, z=0 and substituting for x and z in equation (3)
EI(0)=+4.5(6.0)* — 0.42(6.0)" + 4(6.0)

The general equations for the slope and deflection at any point along the length of the
beam are given by substituting for A and B in equations (2) and (3)

The equation for the slope at x:
EI6=+13.5x" — 1.67x° + 25.5[x — 6]* + 0.83[x — 6]° — 4.0[x — 7]* — 71.28

Equation (4)

The equation for the deflection at x:
EIS=+4.5x—0.42x" + 8.5[x — 6]’ + 0.21[x — 6]* — 1.33[x — 7]’ — 71.28x
Equation (5)

The position of the maximum deflection between A and B at the point of zero slope can
be determined from equation (4) as follows:

Assume that zero slope occurs when 3.0 <x<6.0 and neglect [ ] when negative
EI6=0=+13.5x — 1.67x’ — 71.28

Solve the resulting equation by trial and error.
Guess x=29m EI0=+1.53>0 .. reduce x
try x=2.85m EIf=-0.29<0 Acceptx=2.85m

The maximum deflection is given by:
OaBmax. = {+4.5(2.85)° —0.42(2.85)" — (71.28 x 2.85)}/EI OAB max. = — 126.69/E1

The maximum deflection of the cantilever occurs when x = 8.0 m

Op = {+4.5(8.0)° — 0.42(8.0)* + 8.5(2.0)° + 0.21(2.0)* — 1.33(1.0)’ — (71.28 x 8.0)}/EI
M max. = + 83.47/E1

Equivalent Uniformly Distributed Load Method:

This can be used to give a conservative estimate of d og assuming AB to be a simply

supported 6.0 m span without the cantilever

Simax. = = (0.104Mmosimuml*) EI

The maximum bending moment in span AB = 36.5 kNm (see Problem 5.6)

Omax. = — (0.104 x 36.5 x 6.0%)/EI = —136.7/EI
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4.4  The Principle of Superposition
The Principle of Superposition can be stated as follows:

‘If the displacements at all points in a structure are proportional to the forces causing
them, the effect produced on that structure by a number of forces applied simultaneously,
is the same as the sum of the effects when each of the forces is applied individually.’

This applies to any structure made from a material which has a linear load-displacement
relationship. Consider the simply-supported beam ABCD shown in Figure 4.26 which
carries two point loads at B and C as indicated.

16 kN 20 kN

Va=19.5kN 2om | 3om | 30m Vo=16.5kN
) 8.0 m )
Figure 4.26
19.5kN 19.5kN
3.5kN 3.5kN
A B C D Shear Force Diagram

16.5kN  16.5kN

A B C D
Bending Moment Diagram
390 kNm 49.5 kKNm
s S
% Ormid-span & Deflected Shape
Figure 4.27

Note: the maximum deflection does not necessarily occur at the mid-span point.

When the loads are considered individually the corresponding functions are as indicated in
Figure 4.28.
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12.0 kN

16 kN

A B C D A B C D A B C D
| WMWW
$ 4.0kN 4.0 kN 12.0 kKNm
12.0 kN 4.0 kN 24.0 kNm
\“\L\\—_\“_-‘—__,—""
%1 & + +
5mid—span]
20 kN 75kN  7.5kN

A B C D : A B C D

| O i L1
7.5kN 12.5kN 15.0 kNm

L \ 12.5 kN 37.5 kNm
o g .
mid-span 2 Figure 4.28
It is evident from Figure 4.28 that:
Va=(12.0+7.5)=19.5 kN; Vp=(4.0+12.5)=16.5kN
d3 = (d?yl + 632): &m’d—span = (dnid—spanl + &nid—sparﬁ); &: = (&l + &:2)

Shear Force at B 1ef_pand sige = (+ 12.0 + 7.5) =+ 19.5 kN
Shear Force at B righthand sice = (— 4.0 + 7.5) =+ 3.5 kN
Shear Force at C je_pand size = (— 4.0 + 7.5) =+ 3.5 kN
Shear Force at C yight—hand size = (— 4.0 — 12.5) = = 16.5 kN
Bending Moment at B = (+24.0 + 15.0) =+ 39.0 kNm
Bending Moment at C = (+ 12.0 + 37.5) =+ 49.5 kNm

This Principle can be used very effectively when calculating the deflection of beams,
(particularly non-uniform beams), as used in the Examples and Problems given in

Section 4.5. Examples 5.6 to 5.10 illustrate the application of the Principle.

4.4.1 Example 4.6: Superposition— Beam 1

45.0 kN Maximum bending moment

45 kN 35.0kN occurs at point of zero shear
5 kN/m
A B C
A B 10.0 kN
45.0 kN 30.0kN
2.0 m 4.0 m 80.0 kNm
60m Figure 4.29

Using superposition this beam can be represented as the sum of the two load cases shown
in Figure 4.30.
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45 kKN 30.0 kN
l B C A B C
@: B C: A I
$ 15.0 kN 15.0 kN W
30.0 kN 15.0 kN
60.0 kNm
+
5 kKN/m 15.0 kN 5 0kN
—— A B C
z B C ? A B
15.0 kN 20.0 kNm
15.0 kN 15.0 kN Figure 4.30
Va=(30.0+15.0) =45.0 kN; Ve=(15.0+15.0)=30.0 kN

Shear Force at B jef_hand siee = (+ 30.0 + 5.0) =+ 35.0 kN

Shear Force at B right-hand sige = (— 15.0 + 5.0) =+ 10.0 kN
Bending Moment at B = (+ 60.0 + 20.0) =+ 80.0 kNm

4.4.2 Example 4.7: Superposition— Beam 2

Maximum bending moment

12.0 kN
occurs at point of zero shear
6 kN/m
A B [IIJ:I?IIIIIIIIIIII]C D A B C D A B C D
12.0 kN 12.0 kN 24.0 kNm 24.0 kNm
20m| 40m [20m 12.0kN 36.0 kKNm
N N
8.0 m .
Figure 4.31
Using superposition this beam can be represented as the sum of:
12.0 kN
6 kN/m
A B g€ D A B C_D A_B C
? 12.0 KNm
210 12,0 kN 12.0 kN Z¢T© 12.0 kN
+ 12.0 kN
12.0 kN 12.0 kN
A B cCD A B C_ D A B C
12.0 kN 12.0 kN 12.0 kN

24,0 kNm  24.0 kNm

Figure 4.32
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Vi =(zero+ 12.0) = 12.0 kN; Vp = (zero + 12.0) = 12.0 kN;
Shear Force at B 1ef_pand sice = (zero + 12.0) =+ 12.0 kN

Shear Force at B yight—hand siee = (+ 12.0 + zero) =+ 12.0 kN

Shear Force at mid—span = zero

Shear Force at C jeft_nand sice = (— 12.0 + zero) = — 12.0 kN

Shear Force at C yight-hand sice = (zero — 12.0) = —12.0 kN

Bending Moment at B = (zero + 24.0) = + 24.0 kNm

Bending Moment at mid—span = (+ 12.0 + 24.0) =+ 36.0 kNm
Bending Moment at C = (zero + 24.0) = + 24.0 kNm

4.4.3 Example 4.8: Superposition— Beam 3

Maximum bending moment

20 kN 10 kN 38.5kN occurs at point of zero shear 20.0 kNm
12 kN/m
e TR N
E A B E D E
9.5kN
38.5kN ‘ JZ 3ngkN 29.5kN
40m 20mR2O0mP.0m 39.0 kNm
ST Figure 4.33
=0 58.0 kNm

Using superposition this beam can be represented as the sum of:

24.0 kN
; 12 kN/m B c D E A B C D E
A B C D! E A o
24.0 kN N -
40kN =0 240kN 24.0 kKNm
uokNy T 12.0 kN o
c l C D E A B C D E
P=A B C D$ E A B
12.0 kN 12.0 kN |
120kN 24.0 kNm
+
20 kN o 48.0 kNm
: C D E A B C D E
A B C D= E A B W
5.0 kN 15.0 kN 15.0 kKN 20.0 KNm
30.0 kNm
+
10 kN 10.0 kN 15.0 kNm 20.0 kNm
' 10.0 kKNm |71
. B S O s B Bl
"‘%A B cb ? Foasm 25kN E A B € D E
25kN 125 kN
Figure 4.34

Va=(24.0+12.0+5.0-2.5)=38.5kN;
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Vp=(zero+12.0 + 15.0 + 12.5) =39.5 kN;
Shear Force at B 1ef_nand sige = (—24.0 + 12.0 + 5.0 — 2.5) == 9.5 kN
Shear Force at B yight—hand siee = (z€ro — 12.0 — 15.0 — 2.5) = - 29.5 kN
Shear Force at C jep_pang sige = (zero — 12.0 — 15.0 — 2.5) = - 29.5 kN
Shear Force at C yight—hand side = (z€r0 — 12.0 = 15.0 = 2.5) == 29.5 kN
Shear Force at D jenand side = (zero — 12.0 — 15.0 — 2.5) = - 29.5 kN
Shear Force at D yignt-nand siee = + 10.0 kKN

Shear Force at E =+ 10.0 kN

Bending Moment at B = (zero + 48.0 + 20.0 — 10.0) =+ 58.0 kNm
Bending Moment at C = (zero + 24.0 + 30.0 — 15.0) =+ 39.0 kNm
Bending Moment at D = — 20.0 kNm

4.4.4 Example 4.9: Superposition— Beam 4

62.0 kN

) 154.0 KNm
IS4KNm ¢ \n/m | 30 kN 3808 I;kN

A B C A B C
4.0 kNm
62.0 kN
3.0m \LI.O m A B C
4.0m Figure 4.35
Using superposition this beam can be represented as the sum of:
32.0 kKN 64.0 kNm
64 kKNm 8 kKN/m
8.0 kN 4.0 kNm
A B C A B C A B C
32.0kN | |
+ 90.0 kNm
90 kKNm 30 kN 30.0 kN 30.0 kN m
§ ;A B C A B C A B C
30.0 kN | |
Figure 4.36

Vx = (32.0 +30.0) = 62.0 kN

My =(—64.0—-90.0)=154.0 kN

Shear Force at B 1ef_nand sige = (—8.0 — 30.0) = — 38.0 kN
Shear Force at B righi—hand sice = — 8.0 kKN

Bending Moment at B=—4.0 kNm




4.4.5 Example 4.10: Superposition — Beam 5

15 kN
4 kN/m l

160 kN 13.0 kN
20m | 20m [ 2.0m 1.0+
N T N

6 kN

=

7.0 m
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Using superposition this beam can be represented as the sum of:

; 4 kN/m

A x B C 1).@ E
10.0 kKN 2.0kN

+

115 kN

A x B C D¥ E
7.5kN 7.5kN

Vg=(+10.0+75-15)=16.0kN;
Vp=(-20+75+75)=13.0kN;
Shear Force at B jefpand sice = — 8.0 kN
Shear Force at B righi-hand siee = (+ 2.0 + 7.5 = 1.5) =+ 8.0 kN
Shear Force at C jo_nand side = (+ 2.0 + 7.5 — 1.5) =+ 8.0 kKN
Shear Force at C righi—hand sice = (+ 2.0 = 7.5 = 1.5) == 7.0 kN
Shear Force at D jeppandsige = (+2.0 = 7.5 = 1.5) == 7.0 kN
Shear Force at D yighi-hand siee = + 6.0 kKN

Shear Force at E =+ 6.0 kN

Bending Moment at B =— 8.0 kNm
Bending Moment at C = (— 4.0 + 15.0 — 3.0) =+ 8.0 kNm
Bending Moment at D = — 6.0 kNm

8.0 kN 0k
O kN 8.0 kNm
T 6.0 KNm
C D
A B E C
A B D F
8.0kN 7.0 kN
Figure 4.37 3.0 kKNm
8.0 kNm
4.0 kNm
2.0kN 2.0kN
A B C D E A B C D E
8.0 kN
7.5 kN
C D E A B C D E
A B
75kN
15.0 kNm
6.0 KNm
6.0 kN 3.0 kKNm
A B c D[] el
1.5 kN 15kN © A B c D E
Figure 4.38
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4.5  Unit Load Method for Deflection of Beams

In Chapter 3, Section 3.5 the deflection of pin-jointed frames was calculated using the
concept of strain energy and Castigliano’s 1** Theorem. This approach can also be applied
to structures such as beams and rigid—jointed frames in which the members are primarily
subject to bending effects.

In the case of pin-jointed frames the applied loads induce axial load effects and
subsequent changes in the lengths of the members. In the case of beams and rigid-jointed
frames, the corresponding applied loads induce bending moments and subsequent changes
in the slope of the member.

Pin—jointed frames comprise discrete members with individual axial loads which are
constant along the length of the member. In beams the bending moment generally varies
along the length and consequently the summation of the bending effect for the entire beam
is the integral of a function involving the bending moment.

4.5.1 Strain Energy (Bending Load Effects)

A simply-supported beam subjected to a single point load is shown in Figure 4.39. An
incremental length of beam dx, over which the bending moment can be considered to be
constant, is indicated a distance ‘x’ from the left-hand support.

e

L E T \
Figure 4.39
M E M 1
From ‘simple bending theory’ — =— _ S—==
I R y EI R
where R is the radius of curvature and 1/R is the curvature of the beam, i.e. the rate of
1 M
change of slope. o= = a0 _ M
R dx EI

Assuming the moment is applied to the beam gradually, the relationship between the
moment and the change in slope is as shown in Figure 4.40.

M(A)in ent The external work-done on the member
by the bending moment ‘M’ is equal to
the strain energy stored and is given by
the expression:

dU = [%de&)

M

» change in slope

0
Figure 4.40
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Differentiating the expression for strain energy with respect to x gives:
dx 2 dx

substituting for a9 So—
dx dx

dU:(l M):M_Z

2 EI 2EI
M 2
Transposing dx in this equation dU= I dx
L g2
The total strain energy in the beam U= J dx
o 2E1

Using Castigliano’s 1% Theorem relating to strain energy and structural deformation:

4= 9Y
ow
where:
U is the total strain energy of the structure due to the applied load system,
W is the force or moment acting at the point where the displacement or rotation is
required,
A s the linear displacement or rotation in the direction of the line of action of W.

Consider the simply-supported beam ABCD shown in Figure 4.41 in which it is required
to determine the mid-span deflection at C due to an applied load P at position B.

: =
mid-span position $ Figure 4.41

Step 1:
The applied load bending moment diagram is determined as shown in Figure 4.42

M applied load diagram Figure 4.42

Step 2:

The applied load system is removed from the structure and an imaginary Unit load is
applied at the position and in the direction of the required deflection, i.e. a vertical load
equal to 1.0 at point C. The resulting bending moment diagram due to the unit load is
indicated in Figure 4.43

M unit load diagram Figure 4.43
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If both the Step 1 and the Step 2 load systems are considered to act simultaneously, then
by superposition the bending moment in the beam is given by:

0 =M+ fim)

where:

M is the bending moment due to the applied load system

m is the bending moment due to the applied imaginary Unit load applied at C

B is a multiplying factor to reflect the value of the load applied at C, (since the unit load
is an imaginary force the value of # = zero and is used here as a mathematical
convenience.)

The strain energy in the structure is equal to the total energy stored along the full length of
the beam:

L 2
U= Q—dx
o 2E1
Using Castigliano’s 1* Theorem the deflection of point C is given by:
_ U
ow
oo U U 00
o JdQ JIf
L
00 0 EI op

Since # = zero the vertical deflection at C (4) is given by:

L
Mm
Ag= | —dx
o= El
0
i.e.the deflection at any point in a beam can be determined from:
£ Mm
5 - [Mm g,
0 EI

where:

0 is the displacement of the point of application of any load, along the line of action of
that load,

M is the bending in the member due to the externally applied load system,

m is the bending moment in member due to a unit load acting at the position of, and in
the direction of the desired displacement,

1 is the second—-moment of area of the member,

E is the modulus of elasticity of the material for the member.
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4.5.2 Example 4.11: Deflection and Slope of a Uniform Cantilever
A uniform cantilever beam is shown in Figure 4.44 in which a 20 kN is applied at B as
indicated. Determine the magnitude and direction of the deflection and slope at B.
My 20 kN l
A §‘>

VA 4.0 m

E and [ are constant from A to B.
B

i Figure 4.44

The bending moment diagrams for the applied load, a unit point load at B and a unit
moment at B are shown in Figure 4.45.

80 kKNm ;:)engoid of the af)g!ied load
20 kKN ending moment diagram
80 kNm
AH | B 3
P e
M for applied loads X
20 kN 3

4.0 m |

4.0 m 1'01 ’\y_l
A ‘\t\\') B

1 Oﬁ M for unit vertical load at B x '

1.0 , 1.0

1.0
A ) B ‘ ‘
ZGI’O\ j 1.0 M o1 unit moment at B }47 X #
Figure 4.45
Solution:
L Mm
k= |—dx
~([ El

The bending moment at position ‘x’ due to the applied vertical load M =-20.0x

The bending moment at position ‘x” due to the applied unit vertical load m=-x
4
3
20x } _, 42667 |

Mm=+20x> . &= .[ 20x° dx =
" 3ET El

The bending moment at position ‘x” due to the applied unit momentat B m =-1.0

4
2
Mm=+20x . 6= J‘20x x{zzo;} - 19 - rad. N\
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L
The product integral .[Mm dx can be also be calculated as:

0
(Area of the applied load bending moment diagram X the ordinate on the unit load
bending moment diagram corresponding to the position of the centroid of the applied
load bending moment diagram), e.g. to determine the vertical deflection:

Area of the applied load bending moment diagram 4 = (0.5 x 4.0 x 80.0) = 160 kNm*

Ordinate at the position of the centroid y1=2.67Tm
L L
Mm 426.67
Mm dx = (160 x 2.67) =426.67 SR = | —dx =+ m
[t - 0201 e [l 50T, |

To determine the slope:
Area of the applied load bending moment diagram A = (0.5 x 4.0 x 80.0) = 160 kNm?

Ordinate at the position of the centroid =10
L L
Mm 160
Mm dx = (160 x 1.0) = 160 S 0= |——dx =+ ——rad.
-([ ( ) % £ EI El \

4.5.3 Example 4.12: Deflection and Slope of a Non—Uniform Cantilever

Consider the same problem as in Example 4.11 in which the cross-section of the cantilever
has a variable £/ value as indicated in Figure 4.46.

Figure 4.46

The bending moment diagrams for the applied load, a unit point load at C and a unit

moment at C are shown in Figure 4.47.

80 kNm
T 1.SEl —~—E]

- 20 kNl A5 || ST e 40 KNm
C

pal [

B
A 2
: L.5ET ET
20 kN M g applied loads “7 X ——o

4.0 m

1.0 V3
4.0 m T .:)/2 1
B
A C B4 :
’ 1.5E1 EI
1.0 M for unit vertical load at B X

B . H
A C S :
: EI
Zero\ 1.5E1 1.0 M £5; upit moment at B ‘47 X —+

Figure 4.47

1O y3 » » 1.0
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Solution:

In this case since (Mm/EI) is not a continuous function the product integral must be
evaluated between each of the discontinuities, 1.e.CtoB and Bto A.

L
e [l e A

Consider the section from CtoB: 0<x<2.0 m
M=-20x m=—x o Mm =+ 20x°

B vim 2 20x> 20 T 53.33
I—dx = J- dx = =+ " m
1 EI El 3EI |, El

0

Consider the section fromBto A: 2.0 £ x £ 4.0m
M=-20x m=-—x o Mm =+ 20x"
A 4
Mm :izox2 o= | 2067 || 20x47 20x2°| | 24889
% El ) 1.5E1 45E] 5 4.5EI  4.5E] El

53.33 248.89  302.22
+ = m l
El EI EI

o=+

Similarly to determine the slope:

L B A
O = J.de = j@dx +I Mm dx
0 EI - EI BI.SEI

Consider the section from CtoB: 0 £ x £ 2.0m
M=-20x m=-1.0 o Mm=20x

M 20x ,_[200° 2400
I I = =+ rad.
VBl 26 | EI

Consider the section fromBto A: 2.0 £ x £ 4.0m
M=-20x m=-1.0 o Mm=20x
A 4 2 7 2 2
Mm x:J-ZOx = 20x _ 1 20x47  20x27 | _ 800rd
% EI ) 1.5E] 3.0EI 5 3.0E] 3.0EI

ET

‘. 9C2+

40.0 . 80.0 4 120'0rad. \
EI EI
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Alternatively, the applied bending moment diagram can be considered as a the sum of the
areas created by the discontinuity. (In most cases this will result in a number of recognised
shapes e.g. triangular, rectangular or parabolic, in which the areas and the position of the
centroid can be easily calculated).

The deflection can then be determined by summing the products, i.e. (area X ordinate), for
each of the shapes.

= (0.5 x 2.0 X 40.0) kKNm?, y1=1.333m, o Ay =53.32 kNm®
A> = (2.0 x 40.0) kNm’?, >, =3.0m, - Ay, = 240.0 KNm®
= (0.5 x 2.0 X 40.0) kKNm?, y3=3.333 m, - Asys = 133.32 kNm’

j dx = (53.32/EI) + (240.0/1.5EI) + (133.32/1.5EI) = + (302.22/El) m l

The slope can then be determined by summing the products, i.e. (area X ordinate), for each
of the shapes.

= (0.5 x 2.0 x 40.0) kNm?, i =1.0, . Ay =40.0 kNm®
A> = (2.0 x 40.0) KNm?, =10, Azyz 80.0 kNm’
A3 =(0.5x2.0 x 40.0) kNm®, y; = 1.0, Asy3 =40.0 kNm’

L
&= J' % v = (40.0/ED) + (80.0/1.5EI) + (40/1.5EI) = + (120.0/EI) rad. \
0

4.5.4 Example 4.13: Deflection and Slope of a Linearly Varying Cantilever

Consider the same problem as in Example 4.11 in which the cross-section of the cantilever
has an / which varies linearly from [/ at the free end to 2/ at the fixed support at A as
indicated in Figure 4.48. Determine the vertical displacement and the slope at point B for
the loading indicated.

" 20 kN
AN v
A B
Ny
Va 12081 4.0m Figure 4.48
Fi X —e

The value of / at position ‘x” along the beam is given by: I+ I(x/L) =1(L +x) /L.

In this case since the / term is dependent on x it cannot be considered outside the integral
as a constant. The displacement must be determined using integration and cannot be
calculated using the sum of the (area X ordinate) as in Example 5.11 and Example 5.12.



Beams 215

80.0 kNm

20kN | 2.0EI M ¢, applied loads ‘H x ‘+

4.0 m
M for unit vertical load at B “; X %
1.0 1.0
1.0 1.0 ‘ ‘
A ) B
EI R ‘
ZEero 2.0E1 for unit moment at B < X
Figure 4.49
Solution:
The bending moment at position ‘x” due to the applied vertical load M=-20.0x
The bending moment at position ‘x” due to the applied unit vertical load m=-x
2 x=4 2
Mm=+208 - &= j 20w L x=20Lj Y
El(L+x) EI sz(L+x)
Letv=(L +x) ..x—(v—L) dx =dv and ¥ =(v-L)

when x=0 v=L=40 and when x=4 v=(L+4.0)=8.0

x=4 2 v=8 2 v=8 (1,2 _
—4.0 v" =8.0v+16.0
58:20LI x dx=80'0j(v ) dv=80'0j( )dv
El xz0(L+x) EI 7, v EI 7, v
V= v=8.0
800 g0 1000 - 8001V g 60y
EI v EI | 2
v=4 v=4.0
2 2
_ 80.0) /80 —(8x8)+16.0/n8 |- 4.0 —(8x4)+16.0in4 |t =+ 247'20ml
EI 2 2 El
The bending moment at position ‘x” due to the applied unit moment at B m=-1.0
x=4
Mm =+ 20x G = I 20xL dx = 20L J. al dx
EI(L+x) El 0(L+x)
x:
x=4 = v=8
-4.0
g, = 20L j x dngo.oj(v )dv:SO'Oj A0
EI (L+x) EI A EI A
x=0 y= v=4
- @[v 4.0iv]' =50 = 80. 0{[8 0-4.0/n8]—-[4.0-4.0ln4]} =+ 98E'119rad.\
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4.5.5 Example 4.14: Deflection of a Non-Uniform, Simply-Supported Beam

A non-uniform, single-span beam ABCD is simply-supported at A and D and carries
loading as indicated in Figure 4.50. Determine the vertical displacement at point B.

15 kN 6 kN/m
A By C D

2EI —
3 El A

h%

Va 20m 4.0m ‘ 2.0m Vb

8.0m
Figure 4.50

The bending moment diagrams for the applied load, a unit point load at B are shown in
Figure 4.51.

The beam loading can be considered as the superposition of a number of load cases each
of which produces a bending moment diagram with a standard shape. Since there are
discontinuities in the bending moment diagrams the product integrals should be carried out
for the three regions A to B, D to C and C to B.

6 kN/m
A B C D
Z€ero 12.0 kN 12.0 kN Zero 12.0 kNm ‘47 X A+
12.0 kN 12.0 kN M for applicd loads
C D
24.0 kNm 24.0 kNm
F X 4" Mfor applied loads ‘47 x
15 kN
A B l C D A B C D

. 2E1 El W
1125 kN 3.75kN
22.5kNm
X —p ‘4— X
% ‘ Mfor applied loads

1.0

A B 1 C D A B C D
El 2ET o : :

0.75 0.25 1.0m"

P
=
%
o

1.5m

Figure 4.51 M for unit vertical load at B
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Solution:
It is convenient in this problem to change the position of the origin from which ‘x’ is

measured for the different regions A-B, D-C and C-B as shown in Figure 4.51.
Mm Mm
= | —dx dx —dx

%= j -[ El j El 2EI

Consider the section from AtoB: 0<x<2.0 m
M=(12x + 11.25x) =23.25x m=+0.75x .. Mm=+17.44x

B Mim 217 445> 17445 T [17.44%x2° 46.51
—dx=j dx = = =+ m
dEr El 3E] 3E] El

0

Consider the section fromDto C: 0<x<2.0 m
M= (12x +3.75x) = 15.75x m=+025x . Mm=+3.94x"

C 2 2 372 3

ij 3.94x 3.94x 3.94%x2 10.51
—dx = I dx = =|l——| =t —m

5 El El 3E] 0 3ET El

0
Consider the section from Cto B: 2.0 £ x £ 6.0 m
M=[12(x = 2) — 6(x — 2)*/2] + [12x — 12(x — 2)] + 3.75x = (27.75x — 3x* — 12)
m=+025x o Mm = (6.94x" — 0.75x° — 3x)
694x -0.75x° —3x) 6.94x>  0.75x% 3x2 6
dx =|— —— -
6FI 8EI  4EI |,

- !

2

6.94%6° 075><64 3><62 ~ 6.94><23_0.75><24_3><22
6EI 8EI 4EI 6EI SEI 4EI

96.59
m

EI

G- (4651_F10514_9659j _ 15361 l

=+

EI EI EI EI
Alternatively: considering X (areas X ordinates)

— € > TP
A 120kNm Vi% |ﬁ|3| 1 W
24.0 KNm 24.0 kNm

M for applied loads
M for applied loads

A B A B C D
% | $U|I|I|I|I|IIUJW T R —
As IS oNm = P
Nm A7 TSNS Y137
22.5kNm 15m ¢ 3,
Ag )

M for applied loads Figure 5.52 M for unit vertical load at B
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A1 =(0.667 x 4.0 x 12.0)kNm?, y;=1.0m, o Ay =32.0 kNm®
A, =(0.5x2.0 x 24.0) kNm?, y,=1.0m, o Ay, =24.0 kNm®
A3 = (4.0 x 24.0) kNm’?, y3=1.0m, . A3ys = 96.0 kNm’
Ay =(0.5x2.0 x 24.0) kKNm?, ¥4=0.333m, . Agys = 8.0 kKNm’

As=(0.5x2.0 x 22.5) kNm?, ys=1.0m, . Asys =22.5 kNm’
As=(0.5x4.0 x 15.0) kNm®, Yo =1.167 m, - Agye =35.0 kNm®
A7=(4.0 x 7.5) kNm?, y7=1.0m, - A7y, =30.0 kNm®
As=(0.5x2.0 x 7.5) kNm?, ys=0.333m, o Agys =2.5 kNm®

L
&= J' %dx = (32.0/2E1) + (24.0/ET) + (96.0/2EI) + (8.0/EI) + (22.5/EI) + (35.0/2EI)
0

+ (30.0/2E0) + (2.5/EI) s &=(1535/EDm |

4.5.6 Example 4.15: Deflection of a Frame and Beam Structure

A uniform beam BCD is tied at B, supported on a roller at C and carries a vertical load at
D as indicated in Figure 4.53. Using the data given determine the vertical displacement at
point D.

1.5m ‘ 20m ‘
B c D
g F
VC v
5.0 kN
Member Properties:
H E veam = 10.5 KN/mm’
. _ 6 4
— «— Tie member 1 beam =450 X 10° mm
E 4o = 80 kKN/mm?*
A e =300 mm’
¥
V; Figure 4.53
Solution:
Consider the rotational equilibrium of the beam:
+Ve)ZMA=O —(Vex1.5)+(5.0x3.5)=0 s Ve=11.67kN T
Consider the vertical equilibrium of the structure:
tve} TF,=0  Vat+Vc-5.0=0 £ Va=—66TKN |

Since the structure comprises both an axially loaded member and a flexural member the
deflection at D is given by:

L
op= (ﬂu J + J-—dx
AE Member AB El

0 Member BCD
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D Member BCD Properties:

‘ E peam = 10.5 kKN/mm’

11.67 kN

—10.0 kNm

I oeam = 450 % 10® mm*

5.0kN

Member AB Properties:
E . = 80 kN/mm?

MWWWWWWWWWFW "

A B C D
t .
6.67 kN
B C D Applied Load Effects: P and M
e ? ‘
! by
2.33 1.0
—-2.0m
+1.33 1'333V|\"333 m
A B C D
AR o
1.33 Figure 4.54 Unit Load Effects: u and m
(Euj = [MXI.BJ =+ 0.55 mm
AE )\Member AB 300%x 80
L C C
M; Mi M,
I—mdx = J.—mdx J—mdx
EI EI El
0 Member BCD B
Consider the section fromBtoC: 0<x<1.5m
M=-667x m=-133x .. Mm=+887x"
CMm  'T887x 887 |7 [ 29.94x10°
—dx=j O =S - | == —+2.11 mm
% EI 0 EI 3XEI 0 3%10.5%x450
Consider the section fromDtoC: 0< x £ 2.0 m
M=-50x m=—10x W Mm=+50x
C 2 2 3 2 3
Mi . . )
_[ mdx:J-SOx dy = 5.0x _ 40.0x10 — 28 mm
5 EI 0 EI 3EI 0 3%x10.5x450

L
M
) | [Am g,
AE Member AB 0 EI

Member BCD

= (0.55+2.11+2.82) = +5.48 mm]
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In the previous examples the product integrals were also determined using:

(the area of the applied bending moment diagram X ordinate on the unit load
bending moment diagram).

In Table 4.1 coefficients are given to enable the rapid evaluation of product integrals for
standard cases along lengths of beam where the E7 value is constant.

L
M
Product Integral -[E_’In dx =[Coefficient X a X b X L]/EI
0

L L L L
m
M b b ‘ b b

L

a 1.0 0.5 0.5 0.5
L

" ’W 0.5 0.333 0.167 0.25
L

wﬂmﬂﬂ . 0.5 0.167 0.333 0.25
W 0.5 0.25 0.25 0.333

“W W 0.667 0.333 0.333 0.417
“ mm:m 0.333 0.25 0.083 0.146

‘ﬂmﬂ]ﬂﬂ]l a 0.333 0.083 0.25 0.146

Table 4.1

Consider the contribution from the beam BCD to the vertical deflection at D in
Example 4.15.

L
Product Integral J.% dx =X [Coefficient X a X b X L)/EI
0

From (B to C) + (D to C) = [(0.333 x 10.0 X 2.0 x 1.5) + (0.333 x 10.0 X 2.0 x 2.0))/EI

=+ 23.31/EI i.e. same as [(2.11 + 2.82] calculated above.
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4.5.7 Example 4.16: Deflection of a Uniform Cantilever using Coefficients

A uniform cantilever beam is shown in Figure 4.55 in which a uniformly distributed load
and a vertical load is applied as indicated. Using the coefficients in Table 4.1 determine
the magnitude and direction of the deflection at D.

M, 40KkN/m 12 kN
C D E and I are constant.
vl 20m | 20m | 20m | .
J 6.0m ‘ Figure 4.55

The bending moment diagrams for the applied loads and a unit point load at B are shown
in Figure 4.56. 48 KNm

M for point load *
0.75L

’ L
A .\i ; B C D
M for UDL X

8.0 kN
6.0m 1.0 l 60m  om
g 20m
! ‘ a
A %1 J B C D
M £o1 unit vertical load at D «— X
1.0
Figure 4.56
Solution:

Consider the unit load bending moment diagrams for both applied loads as the sum of
rectangular and a triangular area as shown.

48.0 KNm Point Load Bending Uniformly Distributed Load
Moment Diagram Bending Moment Diagram
8.0 kNm mI

2.
6.0 m 4.0m 6.0m 0 m

S, point oad = [(0.5 X 48.0 X 2.0 X 4.0) + (0.333 x 48.0 X 4.0 x 4.0)|/EI = 447.74/EI
Soouot = [(0.333 X 8.0 X 4.0 X 2.0) + (0.25 x 8.0 X 2.0 X 2.0)/EI = 29.31/EI
Sorom = (447.74+29.31) /EI =+ 477.05/EI §

2.0m
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4.5.8 Problems: Unit Load Method for Deflection of Beams / Frames

A series of statically-determinate beams/frames are indicated in Problems 4.16 to
4.23. Using the applied loading given in each case determine the deflections indicated.
The relative values of Young’s Modulus of Elasticity (E), Second Moment of Area ()
and Cross-sectional area (4) are given in each case.

% 24 kN/m

Q |
A B C 0 D
& El =

A 3.0m ‘ 3.0m ‘ 15m F,

7.5m

Determine the value of the vertical deflection at B given that £/ = 50.0 x 10° kNm”

Problem 4.16

20 kN 8 kN/m
IR AT e
A
1Om [14Ex El B 2E1 T
% AEco 2.0m
Ve 4.0 m 4.0 m D
8.0m = )
Determine the value of the vertical deflection at B given:
Eream = 9.0 kKN/mm? Toeam = 14.6 x 10° mm*
E agandcp = 170 kN/mm> Axg = 80 mm?’ Acp = 120 mm?
Problem 4.17
20 kN 20kNl
A B C D E
v 2E] Mg Q
4 El 1.5EI L5EI  EI | \
VA‘ 2.0m 3.0m J 2.0m 40m Vi
| 7.0m |

The EI value of the beam ABCD varies linearly from EI at the supports A and D to 1.5E7
at B and C respectively and is constant between B and C.

Determine the value of the vertical deflection at B given that £/ =15.0 x 10’ kNm®

Problem 4.18
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—— 10 kN/m 20 kNl 8kN1
A ¥B C EIl D E% F G
- VB VE
1.0 m 1.0 m 3.0m J 20m 0.5m|[0.5m
y y
N N
8.0m

Determine the value of the vertical deflection at G given that E/ = 5.0 x 10° kNm?®

Problem 4.19 Vo

15 kN/m

8.0m

Determine the value of the vertical deflection at A given:

Ebeam = 205 kKN/mm? Tveam= 60.0 X 10° mm*
Ecp =205 kN/mm?> Acp =50 mm?
Problem 4.20
——4 kN/m 15 kN
Ha I A EI B EI C
Vs !
g Determine the value of the vertical deflection at C
= given:
o AEpp Eveam = 205 KN/mm*  fyea= 90.0 x 10® mm*
Egp =205 kN/mm’>  Agp = 1500 mm>
Hpy § D
T 2.0m 2.0m Problem 4.21

Vb 4.0m
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6 kN/m
Hy
. > a El
3 t A | B e D
Va = |
12 kN
g
S
ﬁ:
pin—jointed frame
VFJ 3.0m J 3.0m 3.0m J
\ 1
9.0 m J
f\ T
Determine the value of the vertical deflection at D given:
Epeam = 205 kKN/mm? Toeam = 500.0 x 10° mm*
EAll frame members — 205 kN/ mm2 AAll frame members 4000 mmZ
Problem 4.22
D _oe— 40 kN —
pin-jointed frame g
o
A E Hg
G WM, D
§| WA B
3 EI EI E
N 120 kN Ve
| 40m | 40m | 40m | 40m |

~

The EI value of the cantilever ABC varies linearly from 2E7 at the fixed support to £/ at B
and is constant from B to C.

Determine the value of the vertical deflection at F and at C given:
Elcantilever ABC — 1080 x 103 kNmza EAAI] frame members — 300 x 103 kN

Problem 4.23
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4.5.9 Solutions: Unit Load Method for Deflection of Beams / Frames

Solution
Topic: Statically Determinate Beams/Frames — Deflection Using Unit Load
Problem Number: 4.16

7.5m

Determine the value of the vertical deflection at B given that £/ = 50.0 x 10° kNm®

Support Reactions
Consider the rotational equilibrium of the beam:
+Ve) SMA=0 +(4.0x3.0)4.5—-px75)=0 s Vp=+43.2 kN T

Consider the vertical equilibrium of the beam:
+V€T XF,=0 +VAa—(24.0%x3.0)+ V=0 o Va=+28.8 kN T

24 kN/m
Applied load

Unit load

s

0.6
x
(Mm/EI) is not a continuous function and the product integral must be evaluated
between each of the discontinuities, i.e. A to B, D to C and C to B.

0= 'L[%dx = T%dx + T%dx + T%dx
0 4 D ¢

Consider the section from AtoB: 0<x<3.0m
M=+288x m=+0.6x o Mm=17.28x%"

3 2 3P
- J-17.28x e o [17.28x } . 152.]52m

EI 3E]
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Solution
Topic: Determinate Beams/Frames — Deflection Using Unit Load
Problem Number: 4.16 Page No. 2

Consider the section fromDtoC: 0<x<1.5m
M=+432x m=+04x .. Mm=17.28%"

Cum 172822 17287 17 19.44
J-—dx =J‘ x =

=+ ——m
EI EI 3EI EI

D

Consider the section from Cto B: 1.5<x<4.5m

M=+432x—24(x — 1.5)/2 =43.2x — 12(x* - 3x + 2.25)
=—12x*+79.2x - 27.0

m=+0.4x

Mm=—4.8x"+31.68x" — 10.8x

4.5

3 2 4 3 2 43
J-—4.8x +31.68x% —10.8x [ 4.8x" 31.68x° 10.8x }
= dx =|— + -

El 4E1 3E] 2FEI

1.5

_(,360.86 _17.42) _  343.44
El  EI EI

m=10.37 mm l

155.52 19.44 343.44 518.4 518.4
o= |+ + + = =

EI EI EI EI  50.0x10°
Alternatively:

dB = Z(Area applied bending moment diagram X Ordlnate unit load bending moment diagram)

24 kN/m
A B C D A B
F&T&Ti-ﬂ_ﬂ z U
) % A 27.0 kNm

Zero 36.0 kN 36.0 kN zero

M for applied loads
36.0 kN 36.0 kN

B

A3

86.4 kNm A4 64.8 kNm

M for applied loads

M for unit vertical load at B
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Solution
Topic: Determinate Beams/Frames — Deflection Using Unit Load
Problem Number: 4.16 Page No. 3

A;=(0.667x3.0x27.0)kNm’, y,=12m, o Ay = 64.83 KNm®

A;=(0.5 % 3.0 x 86.4) kNm’?, y2=12m, Agyz = 155.52 kNm’

A3 = (3.0 x 64.8) kNm’, y3=12m, - Asys =233.28 kNm®
A4—(05><30><216)kNm y4=14m .'.A4y4—4536kNm
As=(0.5x 1.5 x 64.8) KNm?, =0.4m, . Asys = 19.44 KNm®

O = (64.83 + 155.52 + 233.28 + 45. 36 +19.44)/50.0 x 10° = 0.0104 m = 10.37 mm l

Using the coefficients given in Table 4.1:
3.0m

Area A;: WW 0.6 m
1

8m

27 kNm

I—dx = [(0.667 x 27 X 0.6 x 3.0) + (0.333 x 27 x 1.2 x 3.0))/EI = 64.78/EI
3.0m

AreaAz. il 1.8m
86.4 kNm
I—dx =(0.333 x 86.4 x 1.8 x 3.0)/EI = 155.36/EI
3.0m

—w 0.6 m
Area A;:

1.8 m

64.8 kNm

L
I_AZT dx =[(1.0 X 64.8 x 0.6 x 3.0) + (0.5 X 64.8 X 1.2 x 3.0))/EI = 233.28/EI
0

3.0m

Area Ay HHHW 0.6m

21.6 kNm 1.8m

j—dx = [(0.5 x 21.6 X 0.6 x 3.0) + (0.333 x 21.6 x 1.2 x 3.0))/EI = 45.33/EI

1.5m

Area A4s: HHHW 0|76
.O0m
64.8 kNm

L
j %dx = (0.333 x 64.8 X 0.6 X 1.5)/EI = 19.42/EI

&= z CoeﬁczentXaxbe)/E[
O = (64.78 + 155.36 + 233.28 + 45. 334-1942)/500><103 0.0102 m —102mml
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Solution
Topic: Determinate Beams/Frames — Deflection Using Unit Load
Problem Number: 4.17 Page No. 1

20 kN 8 kN/m

I A c
AE g EI

B 2EI

AEcp

VE . 4.0m

8.0m

Determine the value of the vertical deflection at B given:

Epeam = 9.0 kKN/mm” , Toeam = 14.6 x 10° mm*

EAEandcp = 170 kKN/mm? Axg =80 mm?, Acp = 120 mm®

EI=(9.0 x 14.6 x 10°)/10° = 131.4 x 10° kNm?
AEx:=(80.0x170.0)=13.6 x 10° kN ;  AEcp=(120.0 x 170.0) =20.4 x 10° kN

L
ae gy L)

8 kN/m

Consider the beam ABC: A ? A
Support Reactions

Consider the rotational equilibrium of the beam:

+Ve) XMy =0 +(8.0x8.0)(4.0) + (20.0 x4.0) — (Vcx8.0)=0

“ Ve=+42.0 kN T
Consider the vertical equilibrium of the beam:
+V€T YF,=0 +VA—20.0-(8.0x8.0)+ V=0 S VAa=+42.0kN T

Applied loads

Unit load

S

0.5

—
(Mm/EI) is not a continuous function the product integral must be evaluated between
each of the discontinuities ie. A to B and C to B.

L
&=£g j d+I——ﬁ
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Solution
Topic: Determinate Beams/Frames — Deflection Using Unit Load
Problem Number: 4.17 Page No. 2

Consider the section from Ato B: 0<x<4.0m
M=+ 42.0x — 8.0x*/2 = 42.0x — 4.0x* m=+0.5x
Mm = (42.0x — 4.0x7)(0.5x) = 21.0x* — 2.0x

EI 3EI 4E1

j’21.0x2—2.0x3 {21.0)8 2.0x* T
210X mAN o = _ -

0

Consider the section from CtoB: 0<x<4.0 m
M=+ 42.0x — 8.0x°/2 = 42.0x — 4.0x° m=+0.5x
Mm = (42.0x — 4.0x%)(0.5x) = 21.0x* — 2.0x

3 474
- . . 160.
I dx_J'210x 2.04° dx:[Zle  2.0x } _, 160.0

2FEI 6EI 8EI EI

m = 3.65 mm

_ +320.0+160.0 480.0  480.0
EI EI EI  131.4x10°

Consider the columns AE and CD:

Member AE:
Applied axial load Ppg = 42.0 kKN Member CD:

Unit axial load  uap=0.5 Applied axial load Pcp = 42.0 kN
Unit axial load ucp = 0.5

Z(Euj _ (42.0><1000><0.5J .\ (42.0><2000><0.5]
AE AE,CD AE g AECD

3 3
- | 200 T A20XI0 L 5442.06=3.6mm
13.6x10 20.4x10

~3.65+3.6="7.25mm l
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Solution
Topic: Determinate Beams/Frames — Deflection Using Unit Load
Problem Number: 4.17 Page No. 3

Alternatively for the beam ABC:
dS = Z(Area applied bending moment diagram X Ordinate unit load bending moment diagram)

@ A B
EI ] W
) ) Al 60N
16.0 kN 16.0 kN zero KM
R& f 2EI &%

16.0 kN 16.0 kN

M for applied loads

M for applied loads

A3
104.0 kKNm

M for applied loads

B

i \ ; -yz
% 2.0 m Y4

M for unit vertical load at B
A1 =(0.667 x 4.0 x 16.0) kNm?>, y;=1.0m, o Ay =42.69 KNm®
A, =(0.667 x 4.0 x 16.0) kNm?, y,=1.0m, . Ay, = 42.69 KNm®
A;=(0.5x4.0x 104.0) kNm®,  y;=133m, .. Azyy;=276.6 kNm’
Ay =(0.5x4.0x104.0) kKNm®,  y,=133m, .. Ays=276.6 kNm’

x =1[(42.69 +276.6)/EI + (42.69 + 276.6)/2EI] = 478.9/El

Using the coefficients given in Table 4.1:

L
I%dx = Zi(Coeﬁ?cientXaxbe)/E] +ZE(CO€ﬁicient><axbe)/2E]
0

= (0.333 X 16.0 x 2.0 x 4.0)/EI + (0.333 x 104.0 x 2.0 x 4.0)/EI

+(0.333 X 16.0 X 2.0 X 4.0)/2EI + (0.333 x 104.0 x 2.0 X 4.0)/2EI
=479.5/E1
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Solution
Topic: Determinate Beams/Frames — Deflection Using Unit Load
Problem Number: 4.18 Page No. 1

20 kN 20 kN
A B C

%EI\I.SEI
k \

The EI value of the beam ABCD varies linearly from EI at the supports A and D to
1.5E1 at B and C respectively and is constant between B and C.
Determine the value of the vertical deflection at B given that E/ = 15.0 x 10’ kNm®

7.0 m

Consider beam ABCD:
Support Reactions
Consider the rotational equilibrium of the beam:
ve) IMA=0 +(20.0x2.0)+(20.0x5.0) - (Vpx7.0)=0 .. Vp=+20.0 kN T
Consider the vertical equilibrium of the beam:
tvet TF,=0 +Va—-20.0-20.0+ V=0 ~Va=+200kN 1

20 kN 20 kN
B lc

EI  15El \5E  EI %
20.0 kKN

Applied load

C
Unit load 4 ISEL Bl
0.29

5Bj—dx ' § —x

(Mm/EI) is not a continuous function and the product integral must be evaluated
between each of the discontinuities ie. A to B,Dto C and C to B.

L
05 = '([Ag _[ I—dx i%dx

Consider the section from AtoB: 0 < x < 2.0 m

M=+200x m=+07lx .. Mm=142x

Also

The EI value varies linearly between A and B and at distance ‘x” from A is given by:
EI (1 +0.25x)
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Solution
Topic: Determinate Beams/Frames — Deflection Using Unit Load
Problem Number: 4.18 Page No. 2

_ J‘ 14.2x
=|l—ax
) EI(1+0.25x)
Letv=(1+0.25x) ..x=40v—-1), dc=4.0dv and x*=16.0(v—1)
when x=0 v=10 and when x=2 v=(1+0.5)=1.5
m dx =14.2x> =[14.2 X 16.0(v — 1)*] x 4.0dv = 908.8(v — 1)* dv

14.2x> 908.8"F° (v—1)° 908.8"+* (v} =2.0v+1.0)
—dx = dv = I
(1+0 25x) EI v EI

v=1.0 v=1.0
v=L.5
v— 20+E dv —M ——20v+lnv
EI 2

v
v=1.0

dv

v

1.0°

_(2.0x1.5)+ln1.5}_{ ¢

—(2.0x1.0)+ln1.0}}

Consider the section fromDto C: 0<x<2.0 m

M=+200x m=+029x .. Mm=58x

Also

The EI value varies linearly between D and C, and at distance x from A is given by:
EI(1+0.25x)

¢ 2

J-Mm dr :J' 5.8x N
EIl EI(1+0.25x)

D 0

Letv=(1+0.25x) ..x=40v-1), dc=4.0dv and x*=16.0(v— 1)
when x=0 v=1.0 and when x=2 v=(1+0.5)=1.5

Mm dx=5.8x"=[58x 16.0(v — 1)’] x 4.0dv=371.2(v — 1)* dv

1420 _371.2”‘I"5(v—1)2dv 3712”]1'5(\/2—2.0\/4—1.0)

x = dv
1(1+0.25x) EI

\%
v=1.0 v=1.0

v=1.5
[v 20+2jd & ——20v+lnv
EI

A%
v=1.0

(
71.2
EI
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Solution
Topic: Determinate Beams/Frames — Deflection Using Unit Load
Problem Number: 4.18 Page No. 3

2 2
_ 3712 {%_(2,0><1.5)+lnl.S}—[%—(2.0X1.0)+ln1.0}}

Consider the section from Cto B: 2.0<x<5.0 m
M=+20.0x-20.0(x—-2.0)=40.0 m=+0.29 s Mm=11.6x

B u 2116 1.6x2 ] 812
mdx:J' 'xde{ .x}_Jr )

1.5E1 1.5E1 3.0E1
C 2

ET

2
Consider the cantilever beam DE:

20 kKN 80 kNm

4.0m 20.0 kN

M=-20.0x m=-—0.29%

2EI 6E1 EI

4 g2 37
b= [35 g - {5.8x ] _, 6187
0

0

+27.69+11.31+81.2+61.87j _ 182.07 _ 182.07 m=12.14 mm l

EI EI  EI EI EI 15.0x10°

Alternatively:

233

Sections A to B and D to C must be carried out using the product integrals as above
The terms relating to the central section C to B and the cantilever beam D to E can
also be evaluated using the product (area X ordinate) or the Coefficients given in

Table 4.1 since the EI value is constant along these lengths.

The reader should carry out these calculations to confirm the results.
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Solution
Topic: Determinate Beams/Frames — Deflection Using Unit Load
Problem Number: 4.19 Page No. 1

3.0m

8.0m

Determine the value of the vertical deflection at G given that £/ = 5.0 x 10° kNm”
Support Reactions
Consider the rotational equilibrium of the beam:

+ve JEMp=0  +(20.0x4.0)+(8.0x6.5) — (VX 6.0)=0 .. Vg=+22.0kN T

Consider the vertical equilibrium of the beam:

+ve} TF,=0  +¥p—(10.0x2.0)~20.0~ 8.0+ V=0 - Vy=+260kN |

Applied load

&= j—dx

(Mm/EI) is not a continuous function and the product integral must be evaluated
between each of the discontinuities, i.e. Ato B, Bto C, Cto D, D to E, G to F and
FtoE

& Vim
=£E d+j dx+j dx+j d+j d+j—dx
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Solution
Topic: Determinate Beams/Frames — Deflection Using Unit Load
Problem Number: 4.19 Page No. 2

Consider the section from AtoB: 0<x<1.0 m
M=-10.0x*/2 m = zero .. Mm = zero

B
Mi

J-—mdx = zero
EI

A

Consider the section fromBtoC: 1.0<x<2.0m
M=-10.0x*/2 + 26.0(x — 1.0) = (- 5.0x* + 26.0x — 26.0)
m=-—0.167(x — 1.0)
Mm =[(-5.0x* + 26.0x — 26.0)] X [ — 0.167(x— 1.0)]

= (0.84x" — 5.18x” + 8.68x — 4.34)

2.0

j 0.84x> —5.18x +8.68x —4.34
EI

2.0
| 084x" 58" 868y 434x| | 177 ( 1.52)] _
4El  3EI ~ 2EI  EI | EI EI

dx

Consider the section from C to D: 2.0<x<5.0 m
M=—-(10.0x2.0)(x—1.0) +26.0(x—1.0)=+6.0x—1.0) m=-0.167(x - 1.0)
Mm=6.0(x—1.0)(— 0.167x + 0.167) = (— 2 +2.0x — 1.0)

5.0

TMm 0 2 42.0x—1.0 { 22,00 xr

dy = | ———+ - x
L El J El 3EI 2EI EI |,

_ (_21.67 _O.67J _ 2234
EI

Consider the section fromDto E: 5.0 < x £ 7.0 m

M=-(10.0 X 2.0)(x — 1.0) + 26.0( x — 1.0) — 20.0(x — 5.0) = (— 14.0x + 94.0)
m=-0.167(x — 1.0)

Mm = (= 14.0x + 94.0)(— 0.167x + 0.167) = (2.34x* — 18.04x + 15.7)

7.0

702342 Z18.04x+157 . [ 234 18.04x> 15.7x ]
dx = I dx = - +

El 3EI 2FEI EI

5.0

_49.5} _ 15.04
EI EI

235
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Solution
Topic: Determinate Beams/Frames — Deflection Using Unit Load
Problem Number: 4.19 Page No. 3

Consider the section from GtoF: 0<x<0.5m
M = zero m=—-x .. Mm = zero

F
Mi

.[ —mdx = Zero
EI

G

Consider the section fromFtoE: 0.5 < x £ 1.0 m
M=-8.0(x—0.5) m=—x o Mm = (8.0x* —4.0x)

'08.0x2 —4.0x 8.0x° 4.0¢ " 0.67 ( 0.17) 0.84
= I—dx = - = t—| ——— ||=+——
; EI 3EI - 2EI |, EI EI EI

.5

_0.25_22.34_15.04+0.84 _ 3679 _ 36.79
EI EI EI EI EI 5.0x10°

Alternatively:
&} = Z(lArea applied bending moment diagram X Ordlnate unit load bending moment diagram)

& 10 kN/m

A B C

RS

10.83 kN
5.0 kKNm

T R ———

A1 A2

& 10 kN/m

B C

>

5.0kN 5.0 kN

m=-—17.36 mmT

M for applied loads

Az 1.25kNm M o applied loads

I 5.0 kN

A B C EI D Es F G

4.17 kN

As As
4.17 kNm M for applied loads
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Solution
Topic: Determinate Beams/Frames — Deflection Using Unit Load
Problem Number: 4.19 Page No. 4

26.67 kNm
M for applied loads

M for applied loads

0.167 kN 1.167 kN

1.0 m
.yg

2

Vs6

M for unit vertical load at B

A, = not required since  y; =zero

A, =—(0.5%6.0x5.0)=—15.0 KNm?, y»»=-033m <. Ayyr =+ 5.0 KNm®
A3 =(0.667 x 1.0 x 1.25) = 0.83 kNm’ y3=—0.08 m o Ayys =—0.07 kNm’
Ay=(0.5x1.0x4.17) =2.35 kNm?, y4=—0.11m oo Agys =—0.26 kNm’
As=(0.5x5.0x4.17) = 10.43 kNm’, ys=—0.45m o Asys =—4.69 kNm’
As=(0.5x4.0 x26.67)=53.34kNm’>,  y¢=—045m o Agye = —24.0 kNm®
A7=(0.5%2.0 x26.67) =26.67 kNm?, y7=—0.78 m oo Ay;=—20.8 kNm®
Ag=—(0.5%6.0x4.0)=—12.0 kNm’, ys=—0.67m <. Agyg =+ 8.0 KNm®
Ao=—(0.5%0.5x4.0)=— 1.0 kNm’?, Yo=—0.83m . Agyo =+ 0.83 kNm’
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Solution
Topic: Determinate Beams/Frames — Deflection Using Unit Load
Problem Number: 4.19 Page No. 5

r Mm
&= £ o = (Ay)El

= (+5.0-0.07—0.26 — 4.69 — 24.0 — 20.8 + 8.0 + 0.83)/E]
& =— 35.99/EI = — (35.99/5.0 x 10°) m = — 7.20 mm T

Using the coefficients given in Table 4.1: & = Zé (Coefficientxaxbx L)/ El

L
Area Ay: I%dx =+ (0.167 x 5.0 x 1.0 x 6.0)/EI = + 5.0/EI
0

Area A43: x =—(0.333 x1.25x0.167 x 1.0)/EI = - 0.07/EI
Area Ay: x =—(0.333x4.17x0.167 x 1.0)/El =— 0.23/EI

L
Area As: = —[(0.5 % 4.17 X 0.167 X 5.0) + (0.167 x 4.17 x 0.83 x 5.0)/EI

=—4.63/EI

x =—1(0.333 x26.67 x 0.67 x 4.0)/EI = —23.80/EI

— (0.5 X 26.67 % 0.67 x 2.0) + (0.167 x 26.67 x 0.33 x 2.0))EI

=—-20.81/E1

=+(0.333 x4.0 x 1.0x 6.0)/El =+ 8.0/El

=+1(0.5x4.0%x0.5x0.5)+(0.333 x4.0x 0.5 x0.5)]/EI

=+ 0.83/E1

&% =(5.0-0.07-0.23 —4.63 —23.80 — 20.81 + 8.0 + 0.83)/El = — 35.71/EI
=—(35.71/5.0 x 10°) m = — 7.14 mm
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Topic: Determinate Beams/Frames — Deflection Using Unit Load

Problem Number: 4.20

Page No. 1

8.0m

Determine the value of the vertical deflection at A given:
Epeam = 205 kKN/mn?’, Team = 60.0 x 10° mm*
ECD =205 kN/mmz, ACD =50 I’I'lf'l’l2

EI = (205 x 60 x 10°/10° = 12.3 x 10 kNm®

AEcp = (50.0 x 205.0) = 10.25 x 10° kN

+ZE%MJCD

Consider the beam ABC:

Support Reactions

Consider the rotational equilibrium of the beam:

+Ve) SMg=0 —(5.0x2.0)+(15.0 x 8.0 x2.0) — (Vc X 6.0)

Consider the vertical equilibrium of the beam:
+vet TF,=0 +Vp—5.0-(15.0%8.0)+ Ve =0

15 kN/m

=0
oo Ve=+38.33 kN

< Vs=+8667kN |
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Solution
Topic: Determinate Beams/Frames — Deflection Using Unit Load
Problem Number: 4.20 Page No. 2

(Mm/EI) is not a continuous function and the product integral must be evaluated
between each of the discontinuities, i.e. A to B and C to B.
L B B
Mi M;
J.—mdx = x + I M
EI 1.5EI
0 A C

Consider the section from AtoB: 0<x<2.0m
M=—-5.0x—-15.0x/2=—5.0x — 7.5x* m=—x
Mm = (= 5.0x — 7.5x%)(x) = 5.0x* + 7.5x°

2 2 3 3 472
5.0x" +7.5x 5.0x° 7.5x 43.33
J' 2 gy = + =+ —"m
3EI 4E]

EI

0

Consider the section from CtoB: 0<x<6.0 m
M=+3833x—15.0x"2=+38.33x— 7.5 m=-0.333x
Mm =—(38.33x — 7.5x%)(0.333x) = — 12.77x* + 2.5x°

ET

1.5E1 4.5E1 6EI

B Vim 6 12.77x% +2.5%° 1277%° 25¢ 1 72.96
“ax = | dx = |- + - -
1 EI )

0

4333 72.96 29.63 29.63
o= | 42 2 o =— ~m=-241 mm
12.3x10

EI EI EI

Consider member CD:
Applied axial load  Pcp =+ 58.33 kN (tension)

Unit axial load ucp =—0.333 (compression)
PL 38.33%x1500%0.333 19.146x10°

Z—u =— == | ——————— |m=-187mm
AE  )cp AE 10.25x10

] =-241-1.87=-4.28 mm T
CD
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Solution
Topic: Determinate Beams/Frames — Deflection Using Unit Load
Problem Number: 4.20 Page No. 3

Alternatively:
5A = Z(Area applied bending moment diagram X Ordinate unit load bending moment diagram)

10.0 kNm

B n

1.67 kN

M for applied loads

m . .
1.333 m for unit vertical load at B

Ay =—(0.5x2.0 x 10.0) kNm’?, y=-133m, o Ay =+ 13.33 kNm’
A, =—(0.5%6.0 x 10.0) kNm?, y,=—1.33m, o Ayyr =+ 40.0 KNm’
A;=—-(0.333x2.0x30.0)kNm*>,  y;=—1.5m, . Ayys =+30.0 kNm®
Ay =—(0.5 % 6.0 x 30.0) kNm’, y;=-133m, o Agys =+ 120.0 kNm’
As=+(0.667 X 6.0 x 67.5) kNm%*,  ys=—1.0m, o Agys=—270.0 kNm®

L
I —Ag dx =(13.33 + 30.0)/EI + (40.0 + 120.0 — 270.0)/1.5EI = 30.0/EI
0

Using the coefficients given in Table 4.1:

L
J.%dx - Zi(coeﬁCieanaXbe)/El+ ZE(COeﬁicientXaxbe)/ZEl
0

= (0.333 x 10.0 x 2.0 X 2.0)/EI + (0.25 X 30.0 x 2.0 x 2.0)/EI
+(0.333 x 10.0 x 2.0 X 6.0/1.5EI + (0.333 x 30.0 x 2.0 X 6.0) /1.5EI
—(0.333 X 67.55 x 2.0 X 6.0) /1.5EI = 30.07/EI
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Solution
Topic: Determinate Beams/Frames — Deflection Using Unit Load
Problem Number: 4.21 Page No. 1

Cos@ = (2.0/2N2) = 0.707
Lgp= (2.0 xV2)=2.828 m

2.0m

N
4.0 m

Determine the value of the vertical deflection at C given:
Eapc =205 kKN/mm?, Inge =90.0 x 10°® mm*

Egp = 205 kKN/mm’, Agp = 1500 mm?

Elxgc = (205 x 90 x 10°)/10° = 18.45 x 10° kNm’

AEgp = (1500 x 205.0) = 307.5 x 10’ kN

L
Mm PL
5C: J‘de +Z(EMJBD
0

l% 4 kN/m 15 kNl
|

|
Consider the beam ABC: iA éB c
Support Reactions Va Fip
Consider the rotational equilibrium of the beam: '

ve )My =0 + (4.0 X 2.0x 1.0) + (15.0 X 4.0) — (FapCos#x 2.0) = 0
FBD =+48.09 kKN /

Consider the vertical equilibrium of the beam:
tved TF,=0 4 Vi (40x2.0)~ 150+ FypCosf =0 = Vy=—1LOKN |
15 kN

Applied loads
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Solution
Topic: Determinate Beams/Frames — Deflection Using Unit Load
Problem Number: 4.21 Page No. 2

(Mm/EI) is not a continuous function and the product integral must be evaluated
between each of the discontinuities, i.e. A to B and C to B.
L B B

Mi Mi M;
J.—mdx - J.—mdx + I_mdx
0 EI y EI

EI
C

Consider the section from AtoB: 0<x<2.0m
M=—11.0x—4.0x*/2=—11.0x — 2.0x*
Mm =— (- 11.0x — 2.0x*)(x) = 11.0x* + 2.0x°

2

2
J'11.0x2 +2.00 [11.0x3 . 2.0x4} 37.33

=+—""m
El 3E] 4E1 El

0 0

Consider the section from CtoB: 0<x<2.0m
M=—-150x m=—x o Mm =+ 15.0x°

2

2 377
- IlS.Ox o [15.ox } _, 400

ET 3.0E] EI

0

m=+4.19 mm

_ 37.33+40.0 _ 7133 _, 7133
EI EI EI 18.45x10°

Consider member BD:
Applied axial load  Pgp=-48.09 kN (compression)

Unit axial load ugp =—2.836 (compression)

_ +(48.09x2828x2.83j ., [384.88><103

m=+1.25 mm
AE, 307.5x10° ]

+> LLy) =+419+125=+544mm |
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Solution
Topic: Determinate Beams/Frames — Deflection Using Unit Load
Problem Number: 4.21 Page No. 3

Alternatively:

& = Z(Area applied bending moment diagram X Ordmate unit load bending moment diagram)

4 kN/m

@ 5 f ¢ W
2.0 kNm

4.0 kN 4.0kN

M for applied loads

30.0 kNm

B
M for applied loads
2.0m

/yly.z/I\%\

A B C

M for unit vertical load at B

=+ (0.667 x 2.0 x 2.0) kNm?, yi=—1.0m, oo Ay =—2.67 kNm®
Ay =—(0.5 % 2.0 x 30.0) kNm?, y,=—133m, . Ay, =+ 40.0 kNm®
A3 =—10.5x2.0 x 30.0) kNm?, y3=—1.33m, . A3y =+ 40.0 kNm®

j—dx = (= 2.67 + 40.0 + 40.0)/EIl = 77.33/EI

Using the coefficients given in Table 4.1:

ZO Coefficient xaxbx L)/ EI

J.—dx = [~ (0.333 2.0 X 2.0 x 2.0) + (0.333 x 30.0 x 2.0 x 4.0))/EI = 77.33/EI
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Solution
Topic: Determinate Beams/Frames — Deflection Using Unit Load
Problem Number: 4.22 Page No. 1

pin—jointed frame

3.0m 3.0m
|
9.0m

Determine the value of the vertical deflection at D given:

Epeam = 205 kKN/mm’, Toeam = 500.0 x 10°® mm”*

E All frame members — 205 kN/ mm2 5 A All frame members — 4000 mmZ
Elgcp = (205 x 500 x 10°/10° = 102.5 x 10’ kNm®

AE = (4000 x 205.0) = 820 x 10° kN

L
Mm PL
[ I

jAll frame members

Consider the beam BCD:
Support Reactions
Consider the rotational equilibrium of the beam:
+Ve) Mg=0  +(6.0x6.0x3.0)+(12.0 x6.0)— (Vcx3.0)=0
Ve =+60.0 kN
Consider the vertical equilibrium of the beam:
+V€TZFZ:0 + Vg —(6.0x6.0)—12.0+ V. =0 s Vg ==12.0 kN l

12.0 kN 60.0 kN

s
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Solution
Topic: Determinate Beams/Frames — Deflection Using Unit Load
Problem Number: 4.22 Page No. 2

(Mm/EI) is not a continuous function and the product integral must be evaluated
between each of the discontinuities, i.e. B to C and D to C.

Consider the section from BtoC: 0<x<3.0m
M=-12.0x — 6.0x*/2 = — 12.0x — 3.0x° m=—x
Mm =— (- 12.0x — 3.0x%)(x) = 12.0x* + 3.0x°

3

< Mm 12,04 +3.05° 1206 3.0x* T 168.75
J.—dx = dx =
) El £l

+ =+ m
EI 3EI 4E1

0 0

Consider the section from D to C: 0<x<3.0m
M=—12.0x — 6.0x*/2 = — 12.0x — 3.0x* m=—x

$12.0x% +3.0x° {12.0)(3 3.0x4}3 168.75
I dx =+ m

+
El 3E] 4E1 EI

0

m=+3.29 mm

168.75 168.75 337.5 337.5
x = + =+ =+
El EI EI 102.5%10°

Consider the pin-jointed frame:

The applied load axial effects (P-forces)and the unit load axial effects (u—forces) can
be determined using joint resolution and/or the method of sections as indicated in
Chapter 3.

12.0 kN 60.0 kKN 1.0 2.0

81.0 kN +81.0kN +45.0 kN

- 60.0 kN

BLOKNG F 7/ _450kN E

—p

48.0 kN

P — forces u — forces
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Solution
Topic: Determinate Beams/Frames — Deflection Using Unit Load
Problem Number: 4.22 Page No. 3

Member | Length (mm) | AE (kN) | P-force (kN) | PL/AE (mm) (PLIAE )X u
AB 3000 820.0 x 10° +81.0 +0.30 +0.68
BC 3000 820.0 x 10° +45.0 +0.16 +0.24
BF 5000 820.0 x 10° - 60.0 -0.37 +0.46
BE 4000 820.0 x 10° +60.0 +0.29 +0.58
CE 5000 820.0 x 10° -75.0 —0.46 +1.15

3000 820.0 x 10° —45.0 -0.16 +0.24

>=+3.35

=335 mm

jAll frame members

PL

+ ZE—uj =+329+335=+6.64mm |
AE All frame members

Alternatively:

d) = E(Area applied bending moment diagram X Ordinate unit load bending moment diagram)

& 6 kN/m

EI

Ay 6.75 kNm M gor applied loads

27.0 kNm

M for applied loads

36.0 kNm

C

M for applied loads

B C D

M for unit vertical load at D
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Solution
Topic: Determinate Beams/Frames — Deflection Using Unit Load
Problem Number: 4.22 Page No. 4

A1 =+(0.667x3.0x6.75) kNm*,  y;=—1.5m, oo Ay =-20.26 kNm’
Ay =—(0.5x% 3.0 x 27.0) kNm’?, Yy, ==2.0m, . Ay, =+ 81.0 kNm®

A;=—(0.333 3.0 x27.0) kNm*,  y;=-225m, . A3y =+ 60.69 kNm®
As=—(0.5%3.0 x 36.0) kKNm?, y4=—2.0m, o Agys=+108.0 kNm®
As=—(0.5x 3.0 x 36.0) kNm’, ys=-2.0m, <. Asys =+ 108.0 kNm’

L
J.%dx =(—20.26 + 81.0 + 60.69 +108.0 +108.0)/El = 337.43/EI
0

Using the coefficients given in Table 4.1:

L
E[%dx = 2§(Coeﬁicient><a><b><L)/EI

%dx = [ (0.333 X 6.75 % 3.0 X 3.0) + (0.333 x 27.0 x 3.0 x 3.0)

+(0.25 x27.0 x 3.0 x 3.0) + (0.333 x 36.0 x 3.0 X 6.0) |/EI = 337.22/EI
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Solution
Topic: Determinate Beams/Frames — Deflection Using Unit Load
Problem Number: 4.23 Page No. 1

pin—jointed frame

The EI value of the cantilever ABC varies linearly from 2FE1 at the fixed support to
EI at B and is constant from B to C.

Determine the value of the vertical deflection at F and at C given:

Elcamilever ABC — 1080 x 103 kNIl’l2 ) EAAH frame members — 300 x 103 kN

PL
+ Z[Eu

]All frame members
Consider the pin-jointed frame:

g

<

)
C

E
T 120 kKN :@« H
Ve Ve
. | 4.0 m 4.0 m
Support Reactions N o x
Consider the rotational equilibrium of the frame:

+ve JIMc =0 +(120.0 X 4.0) - (40.0 X 3.0) — (Vg x8.0) =0 . Vg =+45.0 kN 1

Consider the vertical equilibrium of the frame:
tve }TF,=0  +Vc—1200+ V=0 o Ve=+150kN |

Consider the horizontal equilibrium of the frame: —
+ve—>XF,=0 —-40.0+Hg=0 - Hg =+ 40.0 kKN

The applied load axial effects (P-forces) and the unit load axial effects (u—forces)
can be determined using joint resolution and/or the method of sections as indicated
in Chapter 3.
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Solution
Topic: Determinate Beams/Frames — Deflection Using Unit Load
Problem Number: 4.23 Page No. 2

+100.0 kN +100.0 kN

=
45.0 kN

120 kN ) 1.0

P —forces u - forces

Member | Length (mm) | AFE (kN) | P-force (kN) | PL/AE (mm) (PL/AE ) X u
CD 5000 300.0 x 10 -125.0 —2.08 +1.73
CF 4000 300.0 x 10 +100.0 +1.33 +0.89

DF 3000 300.0 x 10° +120.0 +1.20 +1.20

DE 5000 300.0 x 10° —75.0 -125 +1.04
4000 300.0 x 10° +100.0 +1.33 +0.89
>=+5.75

=15.75 mm

jAll frame members

Consider the beam ABC:

M for applied loads

M for unit vertical load at F
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Solution
Topic: Determinate Beams/Frames — Deflection Using Unit Load
Problem Number: 4.23 Page No. 3

(Mm/EI) is not a continuous function and the product integral must be evaluated
between each of the discontinuities, i.e. C to B and B to A.

The value of E7 at position ‘x’ along the beam between B and A is given by:
EI+ EI [(x—4.0)/4] = 0.25EI x

L B A
R T e

Consider the section fromCtoB: 0 £ x £ 4.0 m
M=-175.0x m=—0.5x o Mm=+37.5x

4 2 37
_ J'37.5x e o {37.5x } _, 800

EI 3EI EI

Consider the section fromBto A: 4.0 < x < 8.0 m
M=-"75.0x m=—0.5x o Mm=+37.5%

x
EIB EI O

404 Mm 4.0%37.552 150.0 % {150.0x2 T 3600
i = x = —— | xdx = =+ ——m

2EI EI

_ 800 , 3600 _ 4400 _ 4400
EI EI 1080%10°

+Z[§—L

u )
E All frame members

m=+4.07 mm

=+4.07+5.75=+9.82 mm l

Vertical deflection at C:
In this case when a unit load is applied at point C all of the u—forces for the pin-jointed
frarne are equal to zero.

L
PL Ze1ro M
J' dx +>| n &= [
All frame members 0 El
——75 Ox m=—x o Mm=+75.0x
175 0x* , 40°7750x* 1600 7200 _ 8800

dx
EI) x El El El

8800

= —1080><103 m=+ 8.15 mm l
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4.6 Statically Indeterminate Beams

In many instances multi-span beams are used in design, and consequently it is necessary to
consider the effects of the continuity on the support reactions and member forces. Such
structures are indeterminate (see Chapter 1) and there are more unknown variables than
can be solved using only the three equations of equilibrium. A few examples of such
beams are shown in Figure 4.57 (a) to (d).

20kN  40kN 20kN 30 kN

10 kN

4 Unknown reactions:
1 horizontal
3 vertical

Va Vs Ve Figure 4.57(a)

4 Unknown reactions:
1 horizontal

2 vertical

1 moment

Figure 4.57(b)

12kN 20kN 30kN 50 kN

5 Unknown reactions:
1 horizontal

3 vertical

1 moment

20kN  40kN 20kN 30 kN

4 Unknown reactions:
1 horizontal
3 vertical

Va Vs Ve

Figure 4.57(d)

A number of analysis methods are available for determining the support reactions, and
member forces in indeterminate beams. In the case of singly-redundant beams the
‘unit-load method’ can be conveniently used to analyse the structure. In multi-redundant
structures the method of ‘moment distribution’ is a particularly useful hand-method of
analysis. These methods are considered in Sections 4.6.1 and 4.6.2 respectively.
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4.6.1 Unit Load Method for Singly—Redundant Beams

Using the method of analysis illustrated in Section 4.5 and considering the compatibility of
displacements, member forces in singly-redundant beams can be determined as shown in
Example 4.17 and Example 4.18 and in Problems 4.24 to 4.27.

4.6.2 Example 4.17: Singly—Redundant Beam 1

A propped cantilever ABC is fixed at A, supported on a roller at C and carries a mid-span
point load of 15 kN as shown in Figure 4.58,

(i)  determine the value of the support reactions and
(i)  sketch the shear force and bending moment diagram.

FE and [ are constant.

Figure 4.58

The degree-of-indeterminacy Ih=[Bm+r]-3n=[B3x1)+4]-3x2)=1

Assume that the reaction at C is the redundant reaction and consider the original beam to
be the superposition of two beams as indicated in Figures 4.59(a) and (b). The beam in
Figure 4.59(b) can be represented as shown in Figure 4.60. (Note: Hx = zero)

15 kN
M) M
+
AF B C A 3 % B C T
Vi 4 Ve
(a) ()
Figure 4.59
M M7y
= X Ve
A B C T A S B C T
V VC V’A 1.0
Figure 4.60

To maintain compatibility at the roller support, i.e. no resultant vertical displacement, the
deformation of point C in Figure 4.59(a) must be equal and opposite to that in
Figure 4.59(b) as shown in Figure 4.61.
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MTA l M// X
| B A Fe L ar
sk CON

> L 1.0

Figure 4.61

(0 due to the applied load) + (0" due to the unit load) x V=0

© Mm ©mm
-([deJr{l‘de}ch:O C——f /jdx

The product integrals can be evaluated as before in Section 4.5, e.g. using the coefficients
in Table 4.1.

Solution:
The bending moment diagrams for the applied loads and a unit point load at B are shown

in Figure 4.62.
45 kNm

M’\=-450kNm | 15kN
—ve

A B < L1
) M for point load
Y/ =15.0 kN

M7 =60m
\\ \
A4 B C I 3.0m -
V=10 1.0 6.0m

M for unit vertical load at C

Figure 4.62
Using the coefﬁcients given in Table 4.1:
/C, point load — J ——dx
C. point load = [(0.5 x45.0 3.0 x3.0)+(0.333 x45.0 x3.0x 3.0)|/EI=—337.5/E]
L 2
s m
5 C, unit load — ,[de

“C. unitload = (0.333 X 6.0 X 6.0 X 6.0)/EI =+ 71.93/EI

C——jdx/jdx = — (= 337.5/ED/(71.93/EI) = 4.69 kN
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3.0m J 3.0m s
il " 4.69 kKN
l 6.0 m
f
My=M'x+(M"xX Ve)=—45.0+ (6.0 x 4.69) . My =-16.86 kNm ‘>
My =M'g+(M"5% Ve) = zero + (3.0 x 4.69) - My =+14.07kNm ()
Va=V'a+(V'axVe)=+15.0- (1.0 x 4.69) -~ Va =+10.31 kN T
10.31 kN 10.31 kN
C
A B | Shear Force Diagram
4.69 kKN 4.69 kKN
16.86 kN m
B C

A WHWW Bending Moment Diagram

14.07 kNm

Figure 4.63

4.6.3 Example 4.18: Singly—Redundant Beam 2

A non-uniform, two-span beam ABCD is simply-supported at A, B and D as shown in
Figure 4.64. The beam carries a uniformly distributed load on span AB and a point at the

mid-span point of BCD. Using the data given:

(i)  determine the value of the support reactions,
(i)  sketch the shear force and bending moment diagrams.

8 kN/m 20 kNl
C

| |
&@«4 EI % B 1.5E1 %
VA VB VD
| 3.0m J 2.5m J 2.5m |
J 8.0 m [
) I

Figure 4.64
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Solution:
Assume that the reaction at B is the redundant reaction. The bending moment diagrams for
the applied loads and a unit point load at B are shown in Figure 4.65.

8 kN/m

C A B C D
A EI B 1.5E1 D
- ’ $\ W M for applied loads
12.0 kN 12.0 kN zero ' 9.0kNm

] 30m / 25m | 25m |
N K N 1

12 kN M applied loads
l C A B C D
A ¢ — )
Ay
TSN 45 kN A s v
20 kN M i applied loads

lC A B C D
A ¢ == D TTTTT
‘4\“‘ B % Wﬂﬂuﬁﬂm + As W

A3 1l
6.25 kN 13.75kN 18.75 kNm KL y
7
As 3438 kNm
1.88
Y23 Vs yae

C il Yy
A D E: H ;
@ I B % A B C D
0.625 1.0 0.375 M for unit vertical load at B

Figure 4.65
L B B
Mm Mm Mm
Mim g M gy [ M
0 EI EI Dl.SE[

A =+(0.667x3.0x9.0)=+18.0kNm*, y;=—094m, .. Ay =-1692kNm’
Ay =+(05%3.0x22.5)=+33.75kNm’, y,=—125m, .. Ayy,=—41.29kNm’
A;=+(0.5x3.0x 18.75)=+28.13 kKNm?, y;=—125m, .. Asy;=—35.16kNm’
Ay=+(0.5x5.0x225)=+5225kNm’, y,=—125m, .. Ay,=—6531kNm’
As=+(2.5x 18.75) = + 46.88 kNm’, ys=—141m, .. Asys=—66.10 kNm’
As=+(0.5%x2.5%x15.63)=+19.54 KNm?, ys=—125m, .. Aeys=—24.43 kNm’
A7=+(0.5%x2.5%x3438)=+42.98 kNm?, y;=—0.63m, ..A;y;=-27.08kNm’

=—[(16.92 +41.29 +35.16)/El + (65.31 + 66.10 + 24.43 + 27.08)/1.5EI]
=—-216.13/EI
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1.88 m

Fr 7 CowdllHm.
0.625 1.0 0.375 A B C D
1.88 m
Vi Y2

2 : :

o =[x + J- dx: ’\
EI EI 1.5EI A B C D

0 A D

A, =-(0.5%3.0x1.88)=—2.82 m’, y=—125m, . Ay =+353m’
A;=—(05%x50%x1.88)=—470kNm’, 1,=—125m, .. Ay,=+588m’

L m2 n=2 (Anyn)
—dx =) =+ (3.53/EI) + (5.88/1.5EI) | = + 7.45/EI
n=l

o ET EI

L L 2
Mm m
Vo=— |—dx | [2—dx = — (- 216.13/ED/(7.45/EI) = +29.01 kKN
g OEIX/QEIX ( 1/(7.45/E1) t

Il% 8 kKN/m 20 kN
C
1 \
VO - L5l =»
Vb

Va 29.01 kN
3.0m | 25m | 25m
8.0m
Va=+12.0+7.5+6.25—-(0.625%x29.01) 2. Va=+7.62 KNm T
Vp = zero + 4.5+ 13.75 — (0.375 x 29.01) - Vp=+17.37kNm T
My =+22.5+18.75 - (1.88 X 29.01) WMy =—1329kN ()
Mc=+11.25+34.38 —(0.94 X 29.01) o Mc=-18.36 kN
12.63 kN
7.62 kN
C D
A B
7.37kN 737kN  Shear Force Diagram
16.38 kN
13.29 kNm
A C D
e B
3.64 kNm Bending Moment Diagram
18.36 kNm

Figure 4.66
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4.6.4 Problems: Unit Load Method for Singly-Redundant Beams

A series of singly-redundant beams are indicated in Problems 4.24 to 4.27. Using the
applied loading given in each case:

i) determine the support reactions,
ii) sketch the shear force diagram  and
iii) sketch the bending moment diagram.

4.0 m

Problem 4.25

— 15 kN/m

Problem 4.26
10 kN 8 kN 6 kKN
12 kN/m
\ 4
o) S ) O\
&4 B EI % C D EI E Fae
Va 3.0m ‘ 40m V¢ 3.0m 5.0m J 3.0m Ve
" 70m 11.0m |

Support C settles by 4.0 mm and EI =100.0 x 10° kNm®
Problem 4.27
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4.6.5 Solutions: Unit Load Method for Singly-Redundant Beams

Solution
Topic: Unit Load - Singly-Redundant Beams
Problem Number: 4.24

Determine the value of the support reactions and sketch the shear force and bending
moment diagrams.
Assume that the reaction at B is the redundant reaction.

6 kKN/m
A B

WM for applied loads

1 18.75 kNm

A B C

M for applied loads W

28.13 kNm

M for applied loads
A

18.75 kN 18.75 kN JF

4,

93.75 kNm

2.5 m

B I B
1.0 X M for unit vertical load at B
L B
Mm Mm
——dx = | ——dx
0 EI . 1.5EI
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Solution

Topic: Unit Load - Singly-Redundant Beams
Problem Number: 4.24 Page No. 2

Using the coefficients given in Table 4.1:
z (Coeﬁ'czentXaxbe)/El

J'—d = [~ (0.333 x 18.75 x 2.5 X 5.0) — (0.333 X 93.75 x 2.5 x 5.0))/1.5EI

0
[-(0.333 x28.13 x2.5x5.0) - (0.333 X 93.75 x 2.5 x 5.0) }/2.0E]

— — 565.85/El
L 2
jm—dx =+ (0333 X 2.5 X 2.5 x 5.0)/1.5EI + (0.333 X 2.5 X 2.5 x 5.0)/2.0E]

=+12.14/E1

VB=— dx/jdx——( 565.85/ED/(12.14/EI) = + 46.61 kN T

Va=+15.0+18.75 — (0.5 x 46.61) L Va=+1045kN 1
Ve=+22.5+18.75— (0.5 x 46.61) o Ve=+1794 kN t
My =+93.75 — (2.5 x 46.61) o Myg=-2278kNm ()

27.06 kN
10.45 kN

— ;

19.55 kN

h F Di
17.94 kKN Shear Force Diagram

22.78 kNm

Bending Moment Diagram

17.85 kNm
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Solution
Topic: Unit Load - Singly-Redundant Beams
Problem Number: 4.25 Page No. 1

T\
Determine the value of the support reactions and sketch the shear force and bending
moment diagrams.
Assume that the reaction at C is the redundant reaction.

8 kN/m
C C

AR 208 WMMW
= ' ' Mfor applied loads

16.0 kN 16.0 kN 16.0 kNm

90.0 kNm

I

B A3C

M for applied loads

4.0 m
M for unit vertical load at C
L
Mm

OEX 2OEI I20E1x I o

EI
D . .
zero since m is equal to zero

Using the coefficients given in Table 4.1:

= Z:(Coeﬁicientxaxbxl;)/El

= [+ (0.333 x 16.0 x 4.0 x 4.0) — (0.333 x 90.0 x 4.0 x 4.0)]/2.0E]

+ [~ (0.5 x 30.0x 4.0 x 4.0) — (0.333 X 60.0 X 4.0 x 4.0) }/1.5E]
=— 570.26/E1
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Solution

Topic: Unit Load - Singly-Redundant Beams

Problem Number: 4.25

Page No. 2

L 3
j %dx =+ (0.333 x 4.0 X 4.0 x 4.0)/2.0EI + (0.333 x 4.0 x 4.0 x 4.0)/1.5EI
0

=+ 24.87/EI

Va=+16.0—22.5 + (1.0 X 22.93)
Vs =+16.0 +37.5 — (2.0 X 22.93)
Mg =—90.0 + (4.0 x 22.93)
Me=-30.0

16.43 kN

o Ve=+T.64 KN t
. Mg=+1.72 kNm
W Mc=-300kNm ()

15.0 kN 15.0 kN

B
7.93 kN

15.57 kN

A

Shear Force Diagram

30.0 kNm

Bending Moment Diagram

L]

16.9 kNm
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Solution
Topic: Unit Load - Singly-Redundant Beams
Problem Number: 4.26 Page No. 1

The EI value of the beam BC varies linearly from £/ at support B to 2.0E7 at C.

Determine the value of the support reactions and sketch the shear force and bending
moment diagrams.

Assume that the reaction at B is the redundant reaction.

4.0 kN

15.0 kN/m 512.0 kNm

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIﬁ“IQ B
C EI
EI B F&\ |
124 kN

2EI x =3) _
som ( EI + EI(x - 3)/5

The value of EI at a distance of x m
M for appiied toads from A is given by: E7 (0.4 + 0.2x)

2EI

M for unit vertical load at B

(Mm/EI) is not a continuous function the product integral must be evaluated between
each of the discontinuities, i.e. A to B and B to C.

The value of / at position ‘x’ along the beam between B and C is given by:
EI(0.4+0.2x)

Mm

L B
Mm g — (M1 '[—dx
EI Y EI - E1(0.4+0.2x)

0
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Solution
Topic: Unit Load - Singly-Redundant Beams
Problem Number: 4.26 Page No. 2

Consider the section from AtoB: 0<x<3.0 m
m = Zero .. Mm = zero

.[Mm _
——dx = Z€ero
El

Consider the section from B to A: 3.0<x<8.0m
M=—-4.0x-15.0x/2 =— 4.0x — 7.5x>

m=+1.0(x —3)

Mm = (x — 3)(— 4.0x — 7.5x*) = 12.0x + 18.5x* — 7.5x°
m* =+ (x - 3)

dx

_ 8‘flz.ox+18.5x2 ~7.5%°

EI(0.4+0.2x) EI(0.4+0.2x)

B 3.0

Letv =(0.4+ 0.2x) Lx=(05v-2) and dx=>5dv
x* = (25" = 20v + 4.0)
¥ =(125v’ = 1501 + 60v — 8.0)

when x=30 v=1.0 and when x=80 v=20

Mm = 12.0x + 18.5x% — 7.5x°
=12.0(5v - 2) + 18.5(25V* — 20v + 4.0) — 7.5(125V* — 150v* + 60v — 8.0)
= (- 760v + 110 + 1587.5v* — 937.5V*)

Mm (120041855 - 750
EI(0.4+0.2x) ' EI(0.4+0.2x)

¢ —760v+110+1587.5v* —937.5°
Elv

5.0dv

760+£+1587 S5v—937.5v Ja’v
%

{ —760v+110/nv+

2.0
1587.5v*  937.5/°
2.0 3.0,

2450.0
m

—[(~768.8)—(-278.8) | =+ —
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Solution
Topic: Unit Load - Singly-Redundant Beams
Problem Number: 4.26 Page No. 2

m’=+(x =3 =x"—6x+9.0 =25 —50v+25.0
m’ X2 -6.0x+9.0 2J‘f’zs.ov—so.0v+25.0

——dx = J‘— X 5.0dv
EI(O 4+0.2x) 2, E1(0.4+0.2x) Elv

1.0

20 2.0

2
S0 500=50.04 22 gy = 29 20 50 00+25.00nv
T E 4 v EI| 2.0

_ 50[ 24.15

1.0

( -32.67)—(-37.5)|=+

Ve =— / j M dx = — (= 2450/ED)/(24.15/ET) = + 101.45 kN

4 kN —— 15kN/m

C
A‘{IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIH‘I'FI\\\:::C

El . B%E\g\

01.45 kN 5 2EI V¢

.Om
K

8.0m

Ve=+124.0 — (1.0 x 101.45) 5 Va=+22.55kN T
Mc=—512.0+ (5.0 x 101.45) .. Mc =—4.75 kNm
Mg =— (4.0 x 3.0) — (15.0 x 3.0)(1.5) o~ My=-795kNm ()

52.45 kN

‘\ 1503 m

B - ——|C
22.55 kN

Shear Force Diagram

79.5 kNm

4.75 kNm
4 C

] Bending Moment Diagram
12.2 kNm
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Solution
Topic: Unit Load - Singly-Redundant Beams
Problem Number: 4.27 Page No. 1

10 kN

| Iﬂ; 12 kN/m

000
B EI x“?C

4.0 m Ve 3.0m 5.0m

N
7.0m 11.0 m

Support C settles by 4.0 mm and EI = 100.0 X 10° kKNm*
Determine the value of the support reactions and sketch the shear force and bending

moment diagrams.

Assume that the reaction at C is the redundant reaction.-
12 KN/m Note: B.M. diagrams not to scale

A A B C D E v
B C D

A,

42.0 kN 42.0 kN 73.50 kKNm M applied loads

142.0 kN s c

=F

A C
&%B C D %

25.67 kN 16.33 kN

24.92 kNm

Ay 35.6kNm

D A13E

LTI W
" A

15

A4 150 kNm

:1:0 BT Yis

B yéj’sc Yob V13 E

M for unit vertical load at B
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Solution
Topic: Unit Load - Singly-Redundant Beams
Problem Number: 4.27 Page No. 2

o El

(Note: The reader should check this using the coefficients given in Table 4.1).
A1 =+ (0.67 x 7.0 X 73.5) = + 344.72 kNm*
y1 (3.5m from A)=-2.14m oo Ay =—737.70 kNm®
Ay =+ (0.5%7.0x179.69) =+ 628.92 kNm*
12 (4.67 m from A)=—2.85m oo Ajyr =—1792.42 kNm®
As =+ (0.5x11.0 x 179.69) = + 988.30 kNm®
y3(7.33 m from F)=—2.85m s A3y =—2816.66 kNm’®
Ay =+(0.5%3.0 x 25.0) =+ 37.50 kNm*
¥4 (2.0m from A)=—1.22m oo Agys =—45.75 kNm®
As=+ (4.0 x 18.33) =+ 73.32 kNm’
¥s (5.0 m from A)=—3.05m o Asys =—1223.63 kNm®
Ag=+(0.5%4.0 x 6.67) =+ 13.34 kNm’
V6 (4.33 m from A) =—2.64 m o Agye=—35.22 kKNm’
A7=+(0.5x11.0 x 18.33) =+ 100.82 kNm’
¥7(7.33 m from F) =—2.85m o Ay, =—287.34 kNm®
As=+(0.5%7.0 x 24.92) =+ 87.22 kNm’
ys (4.67 m from A)=—2.85m . Agys = —248.58 kNm®
Ao =+ (3.0 X 24.92) =+ 74.76 kNm’
19 (9.50 m from F) =—3.71 m . Agyo=—277.36 kNm’
Ao =+ (0.5x%3.0x10.68) =+ 16.02 kNm’
Y10 (9.0 m from F) =—3.51 m o Ao = — 56.23 kNm®
Ay =+(0.5%x8.0x35.6)=+ 142.4 kNm’
y11 (5.33 m from F) =—2.08 m oAy =—296.19 kNm®
A, =+(0.5%7.0 x 7.0) =+ 24.50 kNm*
yi12 (4.67 m from A)=-2.85m oAy =—69.83 kNm®
A=+ (8.0 X 7.0) =+ 56.0 kNm’
y13 (7.0 m from F) =—2.73 m o Ay =— 152.88 kKNm’
Ay =+(0.5% 8.0 x 8.0) =+ 32.0 kNm®
Y14 (5.67 m from F) =—2.21m oo Ayrs =—70.72 kNm’
Ais=+(0.5%3.0 x 15.0) =+ 22.5 kNm*
¥15 (2.0 m from F) = —0.78 m o Aysyrs =—17.55 kNm®

n=15

L

4
Mm - _ ZM — _7128.06/E m
T El

n=l
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Solution
Topic: Unit Load - Singly-Redundant Beams
Problem Number: 4.27 Page No. 3

L)
—dx = m—dx
o EI
=+ (0.5 x 7.0 x 4.28) = — 14.98 kNm’
y1 (4.67 m from A)=—-2.85m oo Ay =+42.69 kNm’
Ay =+(0.5%11.0 x 4.28) = —23.57 kNm’
¥, (7.33 m from A)=—-2.85m o Ay, =+ 67.09 kNm®

L 3
m

< (Anyn)
5 x = z = [+ (42.69/EI) + (67.09/EI)] = + 109.78/EI

Ve = (0 004+I ]/Idx = — (0.004 — 7128.06/EI)/ 109.78/EI

=+61.03 kN

10 kN

I Iﬂ; 12 kN/m

11.0m

Viy=+42.0+25.67+833+3.56+1.0—(0.61 x61.03) .. Vs=+43.33 kN

Ve=+16.33 + 1.67 + 4.44 + 5.0 — (0.39 x 61.03) o Ve =+3.64 KN

Me =+ 179.69 + 18.33 + 24.92 + 7.0 — (4.28 x 61.03) <. Mc=+31.27 kNm
4333 kN

10.36 kN
T 2.36kN

C D E 364kN

50.67 kN Shear Force Diagram

B {058 2 F

W
[l 1092 ki

75.99

Bending Moment Diagram
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4.7 Moment Distribution Method for Multi-Redundant Beams

This section deals with continuous beams and propped cantilevers. An American engineer,
Professor Hardy Cross, developed a very simple, elegant and practical method of analysis
for such structures called Moment Distribution. This technique is one of developing
successive approximations and is based on several basic concepts of structural behaviour
which are illustrated in Sections 4.7.1 to 4.7.10.

4.7.1 Bending (Rotational) Stiffness

A fundamental relationship which exists in the elastic behaviour of structures and
structural elements is that between an applied force system and the displacements which
are induced by that system, i.e.

Force = Stiffness X Displacement i.e. P=ko

where:

P is the applied force,
k 1is the stiffness,

0 is the displacement.

A definition of stiffness can be derived from this equation by rearranging it such that:
k=P/o

when J= 1.0 (i.e. unit displacement) the stiffness is: ‘the force necessary to maintain a
UNIT displacement, all other displacements being equal to zero.’

The displacement can be a shear displacement, an axial displacement, a bending
(rotational) displacement or a torsional displacement, each in turn producing the shear,
axial, bending or torsional stiffness.

When considering beam elements in continuous structures using the moment distribution
method of analysis, the bending stiffness is the principal characteristic which influences
behaviour.

Consider the beam element AB shown in Figure 4.67 which is subject to a UNIT rotation
at end A and is fixed at end B as indicated.

Unit rotation My
B
My St Fixed-End
Figure 4.67 (zero rotation)

The force (M,) necessary to maintain this displacement can be shown to be equal to
(4ED)/L (see Chapter 7, Section 7.2.2). From the definition of stiffness given previously,
the bending stiffness of the beam is equal to (Force/1.0), therefore k = (4EI)/L. This is
known as the absolute bending stiffness of the element. Since most elements in continuous
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structures are made from the same material, the value of Young’s Modulus (F) is constant
throughout and 4F in the stiffness term is also a constant. This constant is normally
ignored, to give k = I/L which is known as the relative bending stiffness of the element. It
is this value of stiffness which is normally used in the method of Moment Distribution.

It is evident from Figure 4.67 that when the beam element deforms due to the applied
rotation at end A, an additional moment (Mg) is also transferred by the element to the
remote end if it has zero slope (i.e. is fixed) The moment Mg is known as the carry-over
moment.

4.7.2 Carry-Over Moment

Using the same analysis as that to determine M,, it can be shown that Mg = (2EI)/L,
i.e. (Y2 X My). It can therefore be stated that ‘if a moment is applied to one end of a beam
then a moment of the same sense and equal to half of its value will be transferred to the
remote end provided that it is fixed.’

If the remote end is ‘pinned’, then the beam is less stiff, there is no carry-over moment
and the value of M, is smaller then when it is fixed as shown in Figure 4.69.

4.7.3 Pinned End

Consider the beam shown in Figure 4.68 in which a unit rotation is imposed at end A as
before but the remote end B is pinned.

Unit rotation Zero

Pinned End

Figure 4.68

The force (M,) necessary to maintain this displacement can be shown (e.g. using
McCaulay’s Method) to be equal to (3EI)/L, which represents the reduced absolute
stiffness of a pin-ended beam. It can therefore be stated that ‘the stiffness of a pin-ended
beam is equal to % X the stiffness of a fixed-end beam.’ In addition it can be shown that
there is no carry-over moment to the remote end. These two cases are summarised in
Figure 4.69.

Remote End Fixed:

Unit rotation My Mx=4EI/L
A%@i@ B k=(/L)
Mot My = 2EIIL
Remote End Pinned:
I\{nit rotation My My =3EI/L
A - B k=% (IIL)
My  Tm=--—T : My = zero

Figure 4.69
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4.7.4 Free and Fixed Bending Moments

When a beam is free to rotate at both ends as shown in Figures 4.70(a) and (b) such that no
bending moment can develop at the supports, then the bending moment diagram resulting
from the applied loads on the beam is known as the Free Bending Moment Diagram.

w kN/m length

Pinned Ao mm - . _-—--" Pmned ______________ %L Roller

Support
TTTT
Pab

TTT TTETTTT
© tve
2
a b wL
(@) . (b) 3
Figure 4.70 — Free Bending Moment Diagrams

When a beam is fixed at the ends (encastré) such that it cannot rotate, i.e. zero slope at the
supports, as shown in Figure 4.71, then bending moments are induced at the supports and
are called Fixed-End Moments. The bending moment diagram associated only with the
fixed-end moments is called the Fixed Bending Moment Diagram.

M

Mg
My iP My piced it

Support

=
S~ ="

zero slope

Figure 4.71 — Fixed Bending Moment Diagram

Using the principle of superposition, this beam can be considered in two parts in order to
evaluate the support reactions and the Final bending moment diagram:

(1)  The fixed-reactions (moments and forces) at the supports

Deformation inducing VB fixed Figure 4.72

tension on the topside

VA fixed

(1) The free reactions at the supports and the bending moments throughout the
length due to the applied load, assuming the supports to be pinned

Vefiee  Figure 4.73

Deformation inducing
tension on the underside

Combining (i) + (ii) gives the final bending moment diagram as shown in Figure 4.74:
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VA = (VA fixed + VA free); VB = (VB fixed + VB free)

My= My +0); Mg = (Mg +0)

My M " Note: M =— [Mg+ (Mx— Mg)b/L]
[ —ve B
TN

Fixed bending moment diagram

+ =
LA
+ve
Pab
L
Free Bending Moment Diagram Final Bending Moment Diagram

Figure 4.74

The values of M, and Mg for the most commonly applied load cases are given in
Appendix 2. These are standard Fixed-End Moments relating to single-span encastré
beams and are used extensively in structural analysis.

4.7.5 Example 4.19: Single-span Encastré Beam

Determine the support reactions and draw the bending moment diagram for the encastré
beam loaded as shown in Figure 4.75.

B B
Va 20m ] 4.0m Ve

" 6.0m

Figure 4.75
Solution:
Consider the beam in two parts.

(1) Fixed Support Reactions
The values of the fixed-end moments are given in Appendix 2.

2 2
My=- PO 202X 78 kNm
7 6
2 2
Mo=+ Pa’h _ | 2027 x4 — 4 289 KNm

I’ 6>
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17.78 kNm 8.89 kNm

(These moments induce
tension in the top of the

beam).
VA fixed Ve fixed
J 6.0 m 1

Consider the rotational equilibrium of the beam:

-I—Ve) 2MA=0

—(17.78) + (8.89) — (6.0 X V¢ fixea) = 0 Equation (1)

VC fixed — — 1.48 kN l

Consider the vertical equilibrium of the beam:

+ve T 2F,=0

+ VA fixed T Ve fixeda = 0 s Va fixed = — (— 148 kKN) =+ 1.48 kKN T Equation (2)

o
VA free K Ve free

J 6.0 m ‘
N N

Consider the rotational equilibrium of the beam:

+ve ) IMp =0
+(20 % 2.0) = (6.0 X Ve free) =0 o Vere=+667kN 1} Equation (1)

Consider the vertical equilibrium of the beam:

+ve } 2F,=0
T Va free T Ve free —20=10 2o VA free =1+ 13.33 kN T Equation (2)

Bending Moment under the point load = (+ 13.33 X 2.0) =+ 26.67 kNm
(This induces tension in the bottom of the beam)

The final vertical support reactions are given by (i) + (ii):

VA = VA fixed T VA free — (+ 1.48 + 1333) =+ 14.81 kN T
Ve=Ve e+ Vene= (- 148+ 667) =+519kN 1

Check the vertical equilibrium: Total vertical force =+ 14.81 +5.19 =+ 20 kN T
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17.78 kNm M
8.89 kNm

Ve

A i LI C

M= {8.89 +[(17.78 — 8.89) X (4/6)]} = 14.82 kNm

+ Fixed Bending Moment Diagram
B
* UL c
tve
26.67 kKNm
- Free Bending Moment Diagram
17.78 kNm
:L --------------------- 8.89 kNm
| —ve
B C  26.67kNm
{111
+ve l
(26.67 — 14.82) = 11.87 kNm Final Bending Moment Diagram
Figure 4.76

Note the similarity between the shape of the bending moment diagram and the final
deflected shape as shown in Figure 4.77.

tension tension N
N : ! Deflected shape indicating
AR v N tension zones and the
. | Vo ] similarity to the shape of the
pomnt o tension point o . .
contraflexure contraflexure bending moment diagram
Figure 4.77

4.7.6 Propped Cantilevers

The fixed-end moment for propped cantilevers (i.e. one end fixed and the other end
simply-supported) can be derived from the standard values given for encastré beams as
follows. Consider the propped cantilever shown in Figure 4.78, which supports a
uniformly distributed load as indicated.
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Figure 4.78

The structure can be considered to be the superposition of an encastré beam with the
addition of an equal and opposite moment to Mg applied at B to ensure that the final
moment at this support is equal to zero, as indicated in Figure 4.79.

Figure 4.79

carry-over = — (0.5 X Mg)

4.7.7 Example 4.20: Propped Cantilever

Determine the support reactions and draw the bending moment diagram for the propped
cantilever shown in Figure 4.80.

M 10 kN/m

A B
Va i Vs Figure 4.80
Solution

Fixed-End Moment for Propped Cantilever:
Consider the beam fixed at both supports.
The values of the fixed-end moments for encastre beams are given in Appendix 2.

2 2
Mo=— W __10X8° s eNm
12
2 2
My =+ V:]; _ 4 1087 63331 Nm

The moment Mg must be cancelled out by applying an equal and opposite moment at B
which in turn produces a carry-over moment equal to — (0.5 X My ) at support A.
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53.33 kNm 53.33 kNm

A B
3

- Ay
VA fixed 8.0m VB fixed
3 13

Consider the rotational equilibrium of the beam:
+ve ) IM =0

—(80) = (8.0 X VB fixea) = 0 Equation (1)
Ve == 100KN |

Consider the vertical equilibrium of the beam:
+ve t 2F,=0
FVamead T Vo =0 o Vamea=—(~10.0kN)=+100kN 1 Equation (2)

(ii) Free Support Reactions
10 kN/m

Consider the rotational equilibrium of the beam:

-I—Ve) 2MA=0

+ (10 x8.0x4.0) — (8.0 X VB free) =0 2 Vi free = +40.0 KN T Equation (1)
Consider the vertical equilibrium of the beam:

+ve t 2F,=0

+ Vp tree + Vi free — (10 X 8.0) = 0 ‘. Vane=+400kN $  Equation (2)
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The final vertical support reactions are given by (i) + (ii):

Va=Va fixed T Va free = (+ 10.0 + 40.0) = + 50.0 kN T
Ve = Vg fixed T VB free = (— 10.0 +40.0) =+ 30.0 kN T

Check the vertical equilibrium: Total vertical force =+ 50.0 + 30.0 =+ 80 kN T

80.0 kNm
—Ve
A LLHT0Y B . , .
Fixed Bending Moment Diagram
+
A TTTTTT B
tve
w. 2
Mmid—span = . :
8 Free Bending Moment Diagram

/
P

N

=80 kNm B
maximum bending moment

Final Bending Moment Diagram
Figure 4.81

Note the similarity between the shape of the bending moment diagram and the final
deflected shape as shown in Figure 4.82.

N tension Deflected shape indicating
A \% i B tension zones and the

® ! & similarity to the shape of the

point of contraflexure tension bending moment diagram

Figure 4.82

The position of the maximum bending moment can be determined by finding the point of
zero shear force as shown in Figure 4.83.
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80 kKNm 10 kN/m
The position of zero shear:
x= 30 3.0m
0
50 kN
A B Maximum bending moment:
M=[+30x3.0)-(10x3.0x 1.5)]
Shear Force Diagram x 30 kN =+45.0 kNm
) or
Figure 4.83 M = shaded area over length ‘x’

= (0.5 x 30.0 X 3.0) = 45.0 kKNm

4.7.8 Distribution Factors
Consider a uniform two-span continuous beam, as shown in Figure 4.84.

B

A

A C

R 00 .
L $ L L Figure 4.84

If an external moment M is applied to this structure at support B it will produce a rotation
of the beam at the support; part of this moment is absorbed by each of the two spans BA
and BC, as indicated in Figure 4.85.

M applied
Applied moment Rotation of beam at support (Mypplica = M1 + M>)
Figure 4.85

The proportion of each moment induced in each span is directly proportional to the
relative stiffnesses, e.g.

Stiffness of span BA = kga = ({1/L)
Stiffness of span BC = kgc = (1 /L,)

Total stiffness of the beam at the support = ko1 = (kpa + kac ) = [(11/L1) + (12 /L,)]

k
The moment absorbed by beam BA M, = M applicd X [ki]

total

k
The moment absorbed by beam BC M, = M applicd x(kLCj

total
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The ratio ( J is known as the Distribution Factor for the member at the joint where

total

the moment is applied.

As indicated in Section 4.7.2, when a moment (/) is applied to one end of a beam in
which the other end is fixed, a carry-over moment equal to 50% of M is induced at the
remote fixed-end and consequently moments equal to Y2 M; and %2 M, will develop at
supports A and C respectively, as shown in Figure 4.86.

Figure 4.86

4.7.9 Application of the Method

All of the concepts outlined in Sections 4.7.1 to 4.7.8 are used when analysing
indeterminate structures using the method of moment distribution. Consider the two
separate beam spans indicated in Figure 4.87.

no continuity between
the beams at B

Figure 4.87

Since the beams are not connected at the support B they behave independently as simply-
supported beams with separate reactions and bending moment diagrams, as shown in
Figure 4.88.

Deformed shape:
note the different slopes
at point B
wlap
8 Lgp

Figure 4.88

When the beams are continuous over support B as shown in Figure 4.89(a), a continuity
moment develops for the continuous structure as shown in Figures 4.89(b) and (c). Note
the similarity of the bending moment diagram for member AB to the propped cantilever in
Figure 4.81. Both members AB and BD are similar to propped cantilevers in this structure.
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w kN/m

(@)

Deformed shape

(b)

%

T W Bending Moment Diagram (©

WHWconﬁnuity moment

Figure 4.89

Moment distribution enables the evaluation of the continuity moments. The method is
ideally suited to tabular representation and is illustrated in Example 4.21.

4.7.10 Example 4.21: Three-span Continuous Beam

A non-uniform, three span beam ABCDEF is fixed at support A and pinned at support F,
as illustrated in Figure 4.90. Determine the support reactions and sketch the bending
moment diagram for the applied loading indicated.

10 kN/m

Figure 4.90
Solution:
Step 1
The first step is to assume that all supports are fixed against rotation and evaluate the
‘fixed-end moments’.

The values of the fixed-end moments for encastre beams are given in Appendix 2.
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Span AC
2 2
Mo =— P07 1OXZXAT ¢ 9 kNm
L 6.0
2 2
Mea =+ P“2b=+ 10X22X4 — +4.44 KNm
L 6.0
Span CD
2 2
Mep=— 25 = 1087 3 33 1m
12 12
wL? 10x8*
Mpc=+=2- =+ =+ 53.33 kNm
Span DF*
2 2
My—— WL PL __15X5* 25%5 L ceqim
12 8 12
2 2
Mep =+ wh | PL_ | 15%5 +25X5=+46.89kNm
12 8 12

* Since support F is pinned, the fixed-end moments are (Mpg — 0.5MFp) at D and zero at F
(see Figure 4.79): (Mpr — 0.5Mp) = [— 46.89 — (0.5 X 46.89) ] =—70.34 kKNm.

Step 2
The second step is to evaluate the member and total stiffness at each internal joint/support
and determine the distribution factors at each support. Note that the applied force system

is not required to do this.

Support C

Stiffness of CA = kex = (I/6.0) = 0.1671 _ _
Stiffness of CD = kep = (21 / 8.0) = 0257 | fow = (0.167+0.25)/=04171

0.167/ _

Distribution factor (DF) for CA = kea _ 0.4

ki 04171

X DF’s=1.0
N kep 0251

Distribution factor (DF) for CD = = =0.6

ki 04171

Support D _

Stiffness of DC = kpc= kpc = 0.251 Note: the remote end F is
Stiffness of DF = kpg =% x (1.5//5.0)=0.225/ | pinned and k=7 (I/L)

Ko = (0.25 + 0.225)] = 0.4751
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Distribution factor (DF) for DC = :DC = 00'42755]1 =0.53
kmta' 0'1411 XDF’s=1.0
Distribution factor (DF) for DF = —2E = '4751 =0.47

total
The structure and the distribution factors can be represented in tabular form, as shown in
Figure 4.91.

AN N V.4
Joints/Support §é = ? T
A C D F
Member AC CA | CD DC DF FD
Distribution 0 0.4 0.6 0.53 | 0.47 1.0
Factors
Figure 4.91

The distribution factor for fixed supports is equal to zero since any moment is resisted by
an equal and opposite moment within the support and no balancing is required. In the case
of pinned supports the distribution factor is equal to 1.0 since 100% of any applied
moment, e.g. by a cantilever overhang, must be balanced and a carry-over of 2 X the
balancing moment transferred to the remote end at the internal support.

Step 3
The fixed-end moments are now entered into the table at the appropriate locations, taking
care to ensure that the signs are correct.

Joints/Support N § @s
A C D F
Member AC CA CD DC DF FD
Distribution 0 0.4 0.6 0.53 | 0.47 1.0
Factors
Fixed-End — + — + —
Moments 8.89 4.44 | 53.33 53.33 | 70.34 Z€ero
Step 4

When the structure is restrained against rotation there is normally a resultant moment at a
typical internal support. For example, consider the moments C:

Mcea=+444kNm € and Mcp=-53.33kNm )

The ‘out-of-balance’ moment is equal to the algebraic difference between the two:
The out-of-balance moment = (+ 4.44 — 53.33) = —48.89 kNm )
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If the imposed fixity at one support (all others remaining fixed), e.g. support C, is released,
the beam will rotate sufficiently to induce a balancing moment such that equilibrium is
achieved and the moments Mc, and Mcp are equal and opposite. The application of the
balancing moment is distributed between CA and CD in proportion to the distribution
factors calculated previously.

Moment applied to CA =+ (48.89 X 0.4) = +19.56 kNm

Moment applied to CD =+ (48.89 x 0.6) =+ 29.33 kNm

W
Joints/Support & &= @ @
A C D F
Member AC CA CD DC DF FD
Distribution 0 04 0.6 0.53 | 0.47 1.0
Factors
Fixed-End - + - + —
Moments 8.89 444 | 5333 53.33 | 70.34 Zero
Balance + +
Moment 19.56 | 29.33

As indicated in Section 4.7.2, when a moment is applied to one end of a beam whilst the
remote end is fixed, a carry-over moment equal to (2 X applied moment) and of the same
sign is induced at the remote end. This is entered into the table as shown.

Joints/Support \K = 1
A C D F
Member AC CA CD DC DF FD
Distribution 0 0.4 0.6 0.53 | 0.47 1.0
Factors
Fixed-End - + - + -
Moments 8.89 4.44 | 5333 53.33 | 70.34 Z€ero
Balance + +
Moment 19.56 | 29.33
Carry-over to + |« ~| 4+
Remote Ends 9.78 14.67
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Step 5
The procedure outline above is then carried out for each restrained support in turn. The
reader should confirm the values given in the table for support D.

Joints/Support N &= i
A C D F
Member AC CA CD DC DF FD
Distribution 0 0.4 0.6 0.53 | 0.47 1.0
Factors
Fixed-End - + - + -
Moments 8.89 444 | 5333 53.33 | 70.34 Zero
Balance + +
Moment 19.56 | 29.33
Carry-over to + [« N
Remote Ends | 9.78 14.67 |
Balance + + Note:
Moment 1.27 | 1.12 | No carry-over |
Carry-over to + |~ to the pinned
Remote Ends 0.64 end

If the total moments at each internal support are now calculated they are:

Mca = (+4.44 +19.56) =+ 24.0 kNm } The difference = 0.64 kNm  i.c.
Mcp=(—53.33+29.33+0.64) =—-23.36 kNm | the value of the carry-over moment

Mpc = (+53.33 + 14.67 + 1.27) =+ 69.27 kNm . _

Mog = (= 70.34 + 1.12) = — 69.27 kNm } The difference =0

It is evident that after one iteration of each support moment the true values are nearer to
23.8 kNm and 69.0 kNm for C and D respectively. The existing out-of-balance moments
which still exist, 0.64 kNm, can be distributed in the same manner as during the first
iteration. This process is carried out until the desired level of accuracy has been achieved,
normally after three or four iterations.

A slight modification to carrying out the distribution process which still results in the same
answers is to carry out the balancing operation for all supports simultaneously and the
carry-over operation likewise. This is quicker and requires less work. The reader should
complete a further three/four iterations to the solution given above and compare the results
with those shown in Figure 4.92.
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Joints/Support N 3 ¥ ﬁv
A C D F
Member AC CA CD DC DF FD
Distribution 0 0.4 0.6 0.53 | 047 1.0
Factors
Fixed-End - + - + -
Moments 8.89 4.44 | 53.33 53.33 | 70.34 Zero
Balance + + + +
Moment 19.56 | 29.33 9.01 | 7.99
Carry-over to + |« + o]+
Remote Ends 9.78 4.50 14.67
Balance — — - -
Moment 1.80 | 2.70 7.78 | 6.89
Carry-over to | —0.91 -« — ] -
Remote Ends 3.89 1.35
Balance + carry- + + + +
Moment 0.78 | Qv | 156 | 2.33 0.72 | 0.63
+ + - + -
Total 0.76 23.76 | 23.76 68.60 | 68.61 zero

*The final carry-over, to the fixed support only, means that this value is one iteration more accurate than the
internal joints.

Figure 4.92

The continuity moments are shown in Figure 4.93.

25 kN
llO kN 23.76 kNm 10 kN/m 68.61 kNm

\ d

Figure 4.93

The support reactions and the bending moment diagrams for each span can be calculated
using superposition as before by considering each span separately.
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(i) Fixed vertical reactions

A 2
[/ f'%c \\D F
§/ \\\ R H ‘ X
6.0 m 8.0m 2.5m 2.5m
I I I K

»

VAC fixed Vea fixed VD fixed VDC fixed  VDF fixed VED fixed
68.61 kNm
I kNﬁWWWW"""m""""""n WWWTWM
A%)ofm kNm C C D D F
Consider span AC:
+ve) IMy=0
+0.76 + 23.76 — (6.0 X Vca fixed) =0 Equation (1)

 Veamea=+409kN 1

Consider the vertical equilibrium of the beam:

+ve } 2F,=0

+ Vac fixed T Vea fixed = 0 Vac fixea = — 4.09 kKN l Equation (2)
Consider span CD:

+ve) SMc=0

~23.76 + 68.61 — (8.0 X Ve fixed) = 0 Equation (1)
o Ve ixeg =+ 5.61 kN T

Consider the vertical equilibrium of the beam:

+ve } 2F,=0

+ Ve e+ Vo txea =0 2. Vepiea == 5.61 kN | Equation (2)
Consider span DF:

+ve ) IMp =0

—68.61 = (5.0 X Vp fixed) = 0 Equation (1)

o Vio mea=— 13.72kN |,
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Consider the vertical equilibrium of the beam:

tve t =F,=0
+ Vor fixed T VED fixed = 0 o VoF fixed =+ 13.72 kN T Equation (2)

The total vertical reaction at each support due to the continuity moments is equal to the
algebraic sum of the contributions from each beam at the support.

VA fixed = VAC fixed = — 4.09 kN

VC fixed — VCA fixed T VCD fixed — (+ 4.09 — 561) =—-1.52 kN
Vb fixed — VDC fixed T Vb fixed — (+ 5.61 + 1372) =+19.33 kN
VF fixed — VFD fixed = — 13.72 kN

10 kN/m

10 kN

2.5m

20m 4.0m 8.0m
N ~ N L ~ 1
VAC free Vea free VD free VDC free  VDF free VED free
A C C D D F
Pab WMW MMMH
t wl? wl’  PL
8 8 4

Free bending moments

Span AC L0 _10X2X4 15 54N

L
2 2
SpanCD L — 10X8° g6 0kNm
8 8
2 2
Span DF wh” [ PL)_|15%57 | 25%5 =78.13 kNm
8 4 8

(ii) Free vertical reactions
Consider span AC:

+ve ) ZMy =0

+(10%2.0) = (6.0 X Vca free) =0 oo Vea free =1 3.33 kN T Equation (1)

Consider the vertical equilibrium:

tve t 5F,=0
+ VCA free + VCA free — 10.0=0 VAC free — + 6.67 kN T Equation (2)
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Consider span CD:
+ve ) IMc =0

+ (10 X 8.0 X 4.0) = (8.0 X Ve fiee) = 0 o Vocme=+400kN T Equation (1)

Consider the vertical equilibrium:
+ve } 2F,=0
+ Ve e + Vo free — (10 X 8.0) = 0 “ Vepme=+400kN 1 Equation (2)

Consider span DF:

+ve) SMp =0
+(25%2.5)+ (15X 5.0 X2.5) = (5.0 X Vi free) = 0

5o VD free = T 50.0 kKN T Equation (1)
Consider the vertical equilibrium:

+ve T 2F,=0
+ VDF free + VFD free — 25.0 - (15 X 50) =0 VDF free — +50.0 kN T Equation (2)

VA free = VaC free = T 6.67 KN

Ve tiee = Vea free T VoD free = (3.33 +40.0) =+ 43.33 kN
VD free — VDC free + VDF free — (+ 40.0 + 500) =+90.0 kN
Ve free — Vip free = T 50.0 kN

The final vertical support reactions are given by (i) + (ii):
Va=Va fixed T VA free = (— 4.09 + 6.67) =+ 2.58 kKN
Ve =Vc fixed T Ve free = (= 1.58 +43.33) =+ 41.81 kN
Vb= Vb fixed T VD free = (+ 19.33 +90.0) =+ 109.33 kN
Ve = Vifixed t VE free = (= 13.72 + 50.0) = + 36.28 kN

Check the vertical equilibrium: Total vertical force =+ 2.58 +41.81 + 109.33 + 36.28
=+ 190 kN (= total applied load)
The final bending moment diagram is shown in Figure 4.94.

68.61 kNm

46.19 kNm___.----=""""
23.76 kNm___..---="77Xk

A e B

0.76 KNm UTH S|
5.89 kNm X
80 kNm

maximum +ve value
at point of zero shear
equals 35.4 KNm

78.13 kNm

maximum +ve value

Bending Moment Diagram at point of zero shear
Figure 4.94 equals 43.84 kNm
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4.7.11 Problems: Moment Distribution — Continuous Beams

A series of continuous beams are indicated in Problems 4.28 to 4.32 in which the
relative E7 values and the applied loading are given. In each case:

i) determine the support reactions,

ii) sketch the shear force diagram  and
iii) sketch the bending moment diagram.

40 kN/m 60 kN/m

40 kN/m 20 kN/m

Pinned Support

Pinned Support

E, 1.5]
2.0m J 20m J 2.0m
N

s

Problem 4.32
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4.7.12 Solutions: Moment Distribution— Continuous Beams

Solution
Topic: Moment Distribution — Continuous Beams
Problem Number: 4.28 Page No. 1

wl? 40% 22
Man =— =_
AP 12 12

=—13.33 kNm

wl? 40%2?
Mign =+ — 4
BA 12 12

=+13.33 kNm

Span BC

2 2
Mpe=— WL = 89X47 260 kNm
12 12

2 2
Moy =+ W= X4 660 kNm
12 12

Distribution Factors : Joint B

kBA = (é] = 05]
kot = 0.751

1
ksc=|— 1| =0.251
e=(4]

In this case, since there is only one internal joint, only one balancing operation and
one carry-over will be required during the distribution of the moments.
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Solution
Topic: Moment Distribution — Continuous Beams
Problem Number: 4.28 Page No. 2

Moment Distribution Table:

Joint A

AB BA

Distribution Factors | 0 0.67

Fixed-end Moments +13.33

Balance - +44.67

Carry-over
Total

Continuity Moments:

40 kN/m

VAB fixed VBA fixed VBC fixed VB fixed

91.0 kNm
58.0 kNm

Fixed Bending Moment Diagrams

(i) Fixed vertical reactions:

Consider span AB: +ve) SMA=0
+9.0+58.0 — (2.0 X Vigs fixed) =0 s Voamea=+33.5kN 4

Consider the vertical equilibrium of the beam: +ve TEF , =0
+ VaB fixed T VBA fixed = 0 5o VaB fixed = — 33.5 kN l
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Solution
Topic: Moment Distribution — Continuous Beams
Problem Number: 4.28 Page No. 3

Consider span BC: +ve ) SMg=0
~58.0+91.0 — (4.0 X Ve fixed) = 0 o Ven mea=+8.25kN }

Consider the vertical equilibrium of the beam: +ve TZFZ =0
+ Ve fixed T Ve fixed = 0 “ VBC fixed = — 8.25 KN

The total vertical reaction at each support due to the continuity moments is equal to
the algebraic sum of the contributions from each beam at the support.

VA fixed = VaB fixea = — 33.5 kKN

VB fixed — VBA fixed T VBC fixed — (+335 - 825) =+2525kN
VC fixed = VCB fixed= T 8.25 kN

Free bending moments:

40 kN/m 60 kN/m

A m B [T ¢
= R = R
2.0m 4.0m
K N ~ ~

VAB free VBA free  VBC free VCB free

A B B C
2

WW W
8 8

2
Span AB 40:2 ~20.0 kNm

2
SpanBC 6024 ~120.0 KNm

(ii) Free Vertical Reactions:
Consider span AB: +ve ) XMA=0
+ (40 X 2.0 X 1.0) = (2.0'X Viga frec) = 0 o Vrre=+400kN 1

Consider the vertical equilibrium of the beam: +ve tFZ =0
+ Vg ree + Via free — (40.0 X 2.0) = 0 ‘- Van e =+ 40.0kN 4
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Solution
Topic: Moment Distribution — Continuous Beams
Problem Number: 4.28 Page No. 4

Consider span BC: +ve ) EMg=0
+(60 X 4.0 X 2.0) — (4.0 X Vg free) = 0 o Ven free= + 120.0 kKN T

Consider the vertical equilibrium of the beam: +ve TZF ,=0
+ Ve tee Ve ree — (60.0 X 4.0) =0 o Vac o=+ 120.0 kN 4

VA free — VAB free = +40.0 kN
VB free — VBA free T VBC free — (+ 40.0 + 1200) =+ 160.0 kN
VC free = VCB free = +120.0 kN

The final vertical support reactions are given by (i) + (ii):
VA = VA fixed + VA free — (— 335+ 400) =+ 6.5 kN

Ve ="V fixed + Vi fice = (+ 25.5 + 160.0) = + 185.25 kN T
Ve=Vec fixed T Ve free = (+ 8.25 + 120.0) =+ 128.25 kN T

Check the vertical equilibrium:
Total vertical force =+ 6.5 + 185.25 + 128.25
=+ 320.0 kN (= total applied load)

60 kN/m

Vp=185.25kN Ve=12825kN

128.25 kN
Shear Force Diagram

91.0 kNm

120.0 kNm

Maximum bending
moment M =46.1 KNm

Bending Moment Diagram
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Solution
Topic: Moment Distribution — Continuous Beams
Problem Number: 4.29

20m| 4.0m

Page No. 1

Pab® _ 18x2x4?
60
Pa’b _  18x2°x4
L 6.0

MAC:_ =—-16.0 kNm

=+ 8.0 kNm

__ 6.0x10°
12

=—50.0 kNm

2
_ 80x107 550 kNm

100500 _ _ 20.0 kim

16.0x10.0
8

=+ 20.0 kNm

Distribution Factors : Joint C

kea = (éj =0.1671

ktotal =0.2671
1
kep=|—|=0.1/
o= (]
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Solution
Topic: Moment Distribution — Continuous Beams
Problem Number: 4.29 Page No. 2

Distribution Factors : Joint D

1
kDC:(EJZO.ll

21
kpp=|—|=0.21
= (%)

Moment Distribution Table:

ktotal = 0-31

%

Total

Joint A
AC
DF’s 0
FEM’s
Balance
Carry-over
Balance
Carry-over | + 1.6

Balance
Carry-over | + 0.4
Total -0.7

A

A

Continuity Moments:

45.9 kNm | 45.9 kNm

38.5 kNm
" s eI
A C

Fixed Bending Moment Diagram

38.5 kKNm 45.9 KNm
< (TGO

Fixed Bending Moment Diagram

I

Ve fixed Vbe fixed
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Solution
Topic: Moment Distribution — Continuous Beams
Problem Number: 4.29 Page No. 3

45.9 kNm

[
D F

Fixed Bending Moment Diagram

R

VDF ﬁxedl | VED fixed

(i) Fixed vertical reactions:

Consider span AC: +Ve) ZMA=0
—0.7+38.5- (60 X Vea ﬁxed) =0 S Veafied =T 6.3 kN

Consider the vertical equilibrium of the beam: +ve T 2F,=0
+ Vac fixed T Vea fixed =0 "o Vac fixed == 6.3 kKN

Consider span CD: +ve ) XMc=0
—38.5+459 - (100 X Vbe ﬁxed) =0 S Vbe fixed =T 0.74 kN

Consider the vertical equilibrium of the beam: +ve T 2F,=0
+ Vb fixed T Vi fixed = 0 < Vep fixea =—0.74 kKN

Consider span DF: +ve ) IMp=0
—45.9+7.0 = (10.0 X Vip fixed) = 0 i Vio e =—389kN |

Consider the vertical equilibrium of the beam: +ve T 2F,=0
+ VDF fixed + VFD fixed — 0 VDF fixed = + 389 kN T

The total vertical reaction at each support due to the continuity moments is equal to
the algebraic sum of the contributions from each beam at the support.

Va fixed = VAC fixed = — 6.3 kN

Ve fixed = Vea fixed T Ve fixea = (6.3 = 0.74) =+ 5.56 kKN
VD fixed — VDC fixed T VDF fixed — (+ 0.74 + 389) =+4.63 kN
VE fixed = VED fixed = — 3.89 kN
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Solution
Topic: Moment Distribution — Continuous Beams
Problem Number: 4.29 Page No. 4

Free bending moments:

18 kN

A iB C LT P E l F
B s BS 3 2
2.0 mj 4.0m 10.0 m 5.0m ‘ 50m
T T T ~ ~ K K K

VAC free Vea free VD free VDC free  VDF free VED free

A CcC C D D E F
Pab WMMMW WM\H\E:H:NJ/MWWV
L L
wi? 4

8

Pab 18.0x2x%x4
Span AC  Muc=+ =+
P AT T 6.0

2 2
Span CD  Mcp=+ Wg :+6.0>;10

Span DF Mg =+ % =+16210 — +40.0 kNm

=+24.0 kNm

=+75.0 kNm

(ii) Free Vertical Reactions:
Consider span AC: +Ve) XMA=0
+ (18.0 X 2.0) — (6.0 X Vca free) =0 oo Vea free = T 6.0 kKN T

Consider the vertical equilibrium of the beam: +ve TZF ,=0
+ VAC free + VCA free = 18.0=0 VAC free — +12.0 kN T

Consider span CD: +V6)ZMC =0
+(6.0x10.0x5.0) = (10.0 X Vpc free) =0 . Vb free =+ 30.0 kKN T

Consider the vertical equilibrium of the beam: +ve TEFZ =0
+ VCD free T VDC free — (60 X 100) =0 VCD free = T 30.0 kN

Consider span DF +Ve) Mp=0
+(16.0 X 5.0) = (10.0 X Vip free) =0 <o VED free = + 8.0 kKN T

Consider the vertical equilibrium of the beam: +ve T XF,=0
+ VDF free + VFD free = 16.0=0 VDF free — + 8.0 kN
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Solution
Topic: Moment Distribution — Continuous Beams
Problem Number: 4.29 Page No. 5

Va free = Vac free =+ 12.0 kN

Ve free = Vea fiee T VD free = (+ 6.0+ 300) =+36.0 kN
VD free = VDC free + VDF free = (+ 30.0 + 80) =+38.0 kN
VE free = VED free = T 8.0 kKN

The final vertical support reactions are given by (i) + (ii):
Va=Va fixed + Va fiee = (- 6.3 + 12.0) =+ 5.7 kN T
Ve=Ve tixed + Ve free = (+5.56 + 36.0) =+ 41.56 kKN T

Vb = Vb fixed T VD free = (+4.63 + 38.0) =+ 42.63 kN

VF = VF fixed T VF free — (— 3.89 + 80) =+4.11 kN

Check the vertical equilibrium:
Total vertical force =+ 5.7 + 41.56 + 42.63 + 4.11
=+ 94.0 kN (= total applied load)

VB =41.56 kN Ve =42.63 kN

29.26 kN
11.89 kN

A,iB D E F

1 kN 4.11 kN

4.1
30.74 kN

12.3 kN ‘ﬂ,‘
Shear Force Diagram
45.9 kNm
2&45 KNm

40.0KNm
D E

Maximum bending <
moment M = 32.85 kNm

Bending Moment Diagram
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Solution
Topic: Moment Distribution — Continuous Beams
Problem Number: 4.30 Page No. 1

40 kN/m 20 kN/m Pinned Support

Support C settles by 5 mm; EI=10x 10° kNm?

Fixed-end Moments due to loads:

40 kN/m 20 kN/m

Fixed-end Moments due to settlement:

B (6E181%)

3.0m \I
N

N
W \
(6EISL?) ¥ (6EISL?)
K

Total Fixed - End Moments:

_ 40x3?
12
40 % 3?
=+

=—30.0 kNm

=+30.0 kNm

6EIS _  6.0x1.5x10%x0.005
r 9

4
6EIS _ 6.0><1.5><190 X0.005 _ <00 inm

=—150.0 kNm
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Solution
Topic: Moment Distribution — Continuous Beams
Problem Number: 4.30 Page No. 2

wl® | GEIS _ 20.0x6”  6.0x2.0x10"x0.005
r 12 36

wL’ | 6EIS _, 20.0x6”  6.0x2.0x10%x0.005

12 r 12 36

* Since support D is pinned, the fixed-end moments are (Mcp — 0.5Mpc) at C and
zero at D
(Mcp — 0.5Mpc) =[-43.33 - (0.5%76.67)] =— 81.67 kNm.

=—43.33 kNm

MDC: + =+ 76.67 kNm

Distribution Factors : Joint B

kBA = (éj =0.333/
kiota1 = 0.8331

e = (ﬂj —0.5]
3
Distribution Factors : Joint C
1.57
k = —_—
I

j — 051
ktotal = 0-75]
j =0.251
6

Moment Distribution Table:

Joint A
AB
DF’s 0
FEM’s
Balance
Carry-over
Balance
Carry-over
Balance
Carry-over
Balance
Carry-over
Balance
Total
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Solution
Topic: Moment Distribution — Continuous Beams
Problem Number: 4.30 Page No. 3

Continuity Moments:

40 kN/m 20 kN/m Pinned Support

35.3 KNm 19.5 KNm
3.0m

35.3 kNm

19.5 kNm
A

B
B
y Fixed Bending Moment Diagram
AB fixed -

35.2 kNm

19.5 kNm
B C

Fixed Bending Moment Diagram

i VB fixed

35.2 kNm

C D

' Fixed Bending Moment Diagram
VeD fixed . VDC fixed

(i) Fixed vertical reactions:

Consider span AB: —I-ve) XMaA=0
~353+19.5 - (3.0 X Vga fixed) = 0 Ve == 52TkN |

Consider the vertical equilibrium of the beam: +ve TZFZ =0
+ VAB fixed + VBA fixed = O VAB fixed = + 527 kN T

Consider span BC: +ve ) IMp=0
2195 +35.2 = (3.0 X Vep ixed) = 0 o Vep mea=+523kN 1

Consider the vertical equilibrium of the beam: +ve TZFZ =0
+ Ve fixed T VB fixed = 0 oo Ve fixed =— 5.23 kKN
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Solution
Topic: Moment Distribution — Continuous Beams
Problem Number: 4.30 Page No. 4

Consider span CD: +ve ) ZMc=0
—35.2 — (6.0 X Vpe fixea) = 0 5o Vbe fixed = — 5.87 kN l

Consider the vertical equilibrium of the beam: +ve TZFZ =0
+ Vep fixed T Ve fixed =0 o Vep fixea =+ 5.87 kKN

The total vertical reaction at each support due to the continuity moments is equal to
the algebraic sum of the contributions from each beam at the support.

VA fixed = VaB fixed = + 5.27 kKN

VB fixed = VBa fixed T VBC fixed = (= 5.27 = 5.23) = - 10.5 kKN
Ve fixed = VOB fixed T VoD fixed = (+5.23 +5.87) =+ 11.1 kN
Vb fixed = VbC fixed = — 5.87

Free bending moments:
40 kN/m

N D
6.0 m %
~

N

3.0m i 3.0m i

VBA free VBC free VCB free VeD free VDC free
C C D

Kl L
2 2 8
Span AB Mg =+ WSL —+ 40'08X3 — +45.0 KNm

Span BC  Mpc=10

2 2
SpanCD M=+ WgL =+ 20<6
(ii) Free Vertical Reactions:
Consider span AB: +ve 4>2MA =0

+ (40X 3.0 X 1.5) = (3.0 X Viga fre0) =0 5 Visa ree = + 60.0 KN T

=+90.0 kNm

Consider the vertical equilibrium of the beam: +ve TEF ,=0
+ VaB free T VBa free — (40 X 3.0) =0 <o VaAB free = T 60.0 KN T

Consider span BC:
VCB free — 0 VBC free — 0
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Solution
Topic: Moment Distribution — Continuous Beams
Problem Number: 4.30 Page No. 5

Consider span CD: +Ve) IMc=0
+(20.0 X 6.0 X 3.0) = (6.0 X Vic free) = 0 s Vocre=+600kN 1

Consider the vertical equilibrium of the beam: +ve TZFZ =0
+ Vb fee + Ve e = (60 X 6.0) =0 o Vep e =+ 60.0kN 4

VA free = VaAB free = T 60.0 kN
VB fice = VBA free T VBC free = (+ 60.0 + 0) =+ 60.0 kKN
Ve tree = VeB free T VoD free = (0 +60.0) =+ 60.0 kN
Vb free = VDC free = T 60.0 kN

The final vertical support reactions are given by (i) + (ii):
Va=Va fixed t Va free = (+ 5.27 + 60.0) =+ 65.27 kN

Ve = VB fixed T VB free = (— 10.5 + 60.0) =+ 49.5 kKN T
Ve=Vc ixed + Ve ree = (+ 11.1 + 60.0) =+ 71.1 kKN T
Vo= Vb tixea + Vb free = (= 5.87 + 60.0) =+ 54.13 kN T

Check the vertical equilibrium:
Total vertical force =+ 65.25 +49.5 + 71.1 + 54.13
=+ 240.0 kN (= total applied load)

40 kN/m

Va=6525kN . Vb= 54.13 kN

65.25 kN 65.85 kN

B C

Fﬂ" 5.25kN 5.25kN

54.75 kKN Shear Force Diagram

A

54.13 kN

353kNm  274kN 35.2 kKNm.

- 19 VkNm

A Z
ST B
45.0 kKNm

Maximum bending
moment M =17.9 kNm

Maximum bending X<
Bending Moment Diagram moment M =73.3 KNm




304 Examples in Structural Analysis

Solution
Topic: Moment Distribution — Continuous Beams
Problem Number: 4.31 Page No. 1

10 kKN/m 20kN  Pinned Support

=—-3.33 kNm

=+3.33 kNm

_20x2x4°  20x4x2°
12 - 62 - 62

=—-26.67 kNm

r 6>
* Since support E is pinned, the fixed-end moments are (Mpc — 0.5Mcp) at BE and
zero at E
(Mg — 0.5Mgg) = [-26.67 — (0.5 X 26.67)] = — 40.0 kNm.

2 2 2
N P,a’b _. 20x2°x4 20><42 x2 4 26.67 KNm

Distribution Factors : Joint B
I
ksa=|—=1|=0.51

" (J

ktotal = (0.83371
3 21

kge = | =x— | = 0.251

=252

In this case, since there is only one internal joint, only one balancing operation and
one carry-over will be required during the distribution of the moments.
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Solution
Topic: Moment Distribution — Continuous Beams
Problem Number: 4.31

Moment Distribution Table:

Joint A

AB BA

Distribution Factors | 0 0.67

Fixed-end Moments +3.33

Balance - +24.57

Carry-over
Total

Continuity Moments:

10 kN/m B

VAB fixed VBA fixed VBE fixed VEB fixed

27.9 kNm

AWMHTWWW B WWWWME

8.96 kNm

Fixed Bending Moment Diagrams

(i) Fixed vertical reactions:
Consider span AB: +V€) IMaA=0
+8.96 +27.9 — (2.0 X Vpa fixed) =0 ~ VBA fixed = T 18.43 kKN T

Consider the vertical equilibrium of the beam: +ve TZFZ =0
+ Vo fxea Vo fxea = 0 b Vs s == 1843 KN |

Consider span BE: +ve ) IMg=0
279 - (60 X VEg ﬁxed) =0 s VEB fixed = — 4.65 kN l

Consider the vertical equilibrium of the beam: +ve TZFZ =0
+ VBE fixed T VEB fixed = 0 <. VBE fixed =+ 4.65 kKN




306 Examples in Structural Analysis

Solution
Topic: Moment Distribution — Continuous Beams
Problem Number: 4.31 Page No. 3

The total vertical reaction at each support due to the continuity moments is equal to
the algebraic sum of the contributions from each beam at the support.

VA fixed = VaB fixea = — 18.43 kN

Vs fixed — Vea fixed T VBE fixed — (+1843 + 465) =+23.08 kN
VE fixed — VEB fixed — — 4.65 kN

20 kN 20 kN
10 kN/m

S - =
2.0m 2.0 m ‘ 2.0m ‘ 2.0m
N ~ N T T ~

VaB free VBA free VBE free VEB free

B C D E

A B
1] (RN
w- (VBE X 2.0)
8

(VEB X 2.0)

I

(ii) Free Vertical Reactions:
Consider span AB: +Ve) XMaA=0
+(10% 2.0 X 1.0) = (2.0 X Vg free) = 0 “Verne=+100kN 1

Consider the vertical equilibrium of the beam: +ve TZF =0
+ Vg free + Va fee — (10.0 X 2.0) = 0 ‘. Vapee=+100kN 1

Consider span BE: +Ve) IMg=0
+(20 x2.0) + (20 X 4.0) — (6.0 X ViB free) =0 .. VB free =+ 20.0 kKN T

Consider the vertical equilibrium of the beam: +ve TZFy =0
+ VBE free + VEB free — (20 + 20) = 0 VBE free — + 200 kN

VA free — VAB free — + 100 kN
VB fiee = VBA free T VBE free = (+10.0 +20.0) =+ 30.0 kN
VE free — VEB free — +20.0 kN
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Solution
Topic: Moment Distribution — Continuous Beams
Problem Number: 4.31 Page No. 4

Free bending moments:

wl  10x2?
=

Span BE  (VBE free X 2.0) = (20 x 2.0) = 40.0 kNm

Span AB = 5.0 kNm

The final vertical support reactions are given by (i) + (ii):
VA = VA fixed T VA free — (— 18.43 + 100) =—-8.43 kN

VB = Vg fixed T VB free = (+ 23.08 + 30.0) =+ 53.08 kN
VE=VE fixed T VE free = (— 4.65 +20.0) =+ 15.35 kN

Check the vertical equilibrium:
Total vertical force =— 8.43 + 53.08 + 15.35
=+ 60.0 kN (= total applied load)

Vi = 53.08 kN Vg = 1535 kN

24.65 kN

307

E

15.35 kN

28.43 kN

Shear Force Diagram

27.9 kNm

18.6 kNm

=% B g
8.96 kNm 447 kKNm 40.0 kKNm

Maximum bending moment

Bending Moment Diagram M =30.7kNm
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Solution
Topic: Moment Distribution — Continuous Beams
Problem Number: 4.32 Page No. 1

2.0 2.0
| m \l m

Fixed-end Moments:

=—17.5kNm

=+ 17.5 kNm

Span CD

wiL? 8.0%6>
Men = — =_
P 12 12

2 2
Moo=+ v;é _, 80x6

=—24.0 kNm

=+24.0 kNm

Span DF

Pab? 20.0x3x1?
Mpr =— ? ==

> > =—-375kNm
L 4.0

Pa’h _, 20.0x3’x1
L 4.0?

Mpp =+ =+ 11.25 kNm

Span FG

2
Mig = — __60x27 s o kNm

2

MGF:O
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Solution
Topic: Moment Distribution — Continuous Beams
Problem Number: 4.32 Page No. 2

Distribution Factors : Joint C

kCA = (%J =0.3751

ktotal = 0-708[
21

kep=|— | =0.3331 =

w=(%] .

Total

Distribution Factors : Joint D
Note: At joint D the stiffness of member DF is (% x I/L) since support F is a simple
support with a cantilever end, i.e. rotation can occur at this point.

kDC = (2—6Ij =0.333/

kot = 0.52171 Kot

3.1
kpr=| —x— | =0.188/
o= (3x4)

Distribution Factors : Joint F
Note: At joint F the cantilever FG has zero stiffness.

kFD = (ij =0.251
4 ktotal = 0.251 kTotal

ke =0 DFrg=10

Moment Distribution Table:

Joint A C

AC CA | CD DC

DF’s 0 0.53 | 047 0.64

FEM’s +17.5 | =24.0 +24.0

Balance L +34 | +31 L -13.0

Carry-over | + 1.7 -65 4 +16

Balance L +34 | +31 ( L -1.27

Carry-over | + 1.7 —06349 % +16

Balance t +0.33 | +0.30 -101|-0.6

Carry-over | + 0.2

Total | —13.9 +24.6 | —24.6 +11.9 | - 11.9 +12.0 | —12.0

Note: The out-of-balance moment at joint F is balanced during the first balancing
operation and (2 X moment) carried-over to joint D. Since (% X stiffness) was used
for kpr, no carry-overs are made from D to F.
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Solution
Topic: Moment Distribution — Continuous Beams
Problem Number: 4.32

Continuity Moments:

[13.9 kNm 24.6 kNm 4 24.6 kNm 11.9 kNm

Page No. 3

11.9 kNm 12.0 kN

20m J 20m
N

13.9 kNm

30m 1.0
T

B
m4 12.0 KNm
20m |
N

K

24.6 kNm

B

VAC fixed . | VeA fixed

24.6 KNm

Fixed Bending Moment Diagram

11.9kNm

D

W

VeD fixed . VDC fixed

11.9 kNm

) Fixed Bending Moment Diagram

12.0 kNm

o

Il

Y

VDF fixed . VED fixed

v,
GFI““" 12.0 kNm

| Fixed Bending Moment Diagram

1
F F”HWHHWWHWG

B

VG fixed I : Fixed Bending Moment Diagram
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Solution
Topic: Moment Distribution — Continuous Beams
Problem Number: 4.32 Page No. 4

(i) Fixed vertical reactions:

Consider span AC: +V€) IMaA=0
“13.9+24.6 — (4.0 X Ve fived) = 0 “ Venmea=+2.68kN 4

Consider the vertical equilibrium of the beam: +ve T XF,=0
+ Vac fixed + Vea fixea = 0 5o Vac fixed = — 2.68 kKN l

Consider span CD: +Ve) ZMc=0
— 24,6+ 11.9 — (6.0 X Ve fixed) = 0 o Voc == 2.12kN Y

Consider the vertical equilibrium of the beam: +ve T 2F,=0
+ Vb fixed T VbC fixed = 0 o Ve fixed =T 2.12 kKN T

Consider span DF: +Ve) 2Mp=0
11,9+ 12.0 — (4.0 X Vi fived) = 0 o Vep e =+ 0.03kN

Consider the vertical equilibrium of the beam: +ve T XF,=0
+ VDF fixed + VFD fixed — 0 VDF fixed — — 003 kN T

Consider span FG: +Ve) SMp=0 _
-12.0- (20 X Vgr ﬁxed) =0 S VGF fixed = — 6.0 kKN V
Consider the vertical equilibrium of the beam: +ve T 2F,=0

+ VG fixed T VGF fixea = 0 " VEG fixed = T 6.0 KN T

The total vertical reaction at each support due to the continuity moments is equal to
the algebraic sum of the contributions from each beam at the support.

VA fixed = Vac fixed = — 2.73 kKN

Vefixed = Vea fixed T Vb fixed = (+2.68 +2.12) =+ 4.8 kKN
Vb fixed = Ve fixed T VDF fixed = (— 2.12 = 0.03) = — 2.15 kN
Ve fixed = VED fixed T VEG fixed = (+0.03 + 6.0) =+ 6.03 kN
VG fixed = VGF fixed = — 6.0 kKN
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Solution
Topic: Moment Distribution — Continuous Beams
Problem Number: 4.32 Page No. 5

Free bending moments:
35KN 8 KN/m 20 kN 6 N/m

VAB free VBA free VBC free VCB free VCD free VDC free VDE free VED free

WW W%MWW

Span AC ~ Myc =+ T =+ 3540(?4 —+35.0 kNm

2 2
Span CD MCD=+W§ =+8'0;<6 =+ 36.0 kNm

Span DF  Mpp=+ sz =+ 20'0:3X1 =+ 15.0 kNm

2 2
Span FG =~ Mg =+ Wé =+ 6'0;2 =+ 3.0 kNm

(ii) Free Vertical Reactions:

Consider span AC: +Ve) XMA=0

+(35.0%x2.0) = (4.0 X Vea free) =0 o Vea free =+ 17.5 kN
Consider the vertical equilibrium of the beam: +ve EF,=0

+ Vac fee t Vea free —35.0=0 o VAc free =T 17.5 kKN
Consider span CD: +V€) Mc-=0

+ (8.0 X 6.0 X 3.0) — (6.0 X Vpc free) =0 S Ve free =+ 24.0 kKN
Consider the vertical equilibrium of the beam: +ve EF,=0

+ Vep free T Ve free — (8.0 X 6.0 =0 Vb free =+ 24.0 kKN
Consider span DF: +Ve) XMp=0

+(20.0 X 3.0) — (4.0 X VEp free) = 0 oo VeD free =+ 15.0 kKN
Consider the vertical equilibrium of the beam: +ve ?ZFZ =0

+ VDF free T VFD free — 20.0 =0 VDF free = T 5.0 kN
Consider span FG: +Ve) SMr=0

+ (6.0 2.0 X 1.0) — (2.0 X VGF free) =0 o VGE free =+ 6.0 kKN
Consider the vertical equilibrium of the beam: +ve ?ZFZ =0

+ VEG free T VGF free — (6.0 2.0)=0 <o VEG free = T 6.0 kKN
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Solution
Topic: Moment Distribution — Continuous Beams
Problem Number: 4.32 Page No. 6

Va free = Vac free =+ 17.5 kKN

Ve free = Vea free T VeD free = (+ 17.5+ 240) =+41.5kN
VD free = VDC free T VDF free = (+ 24.0 + 50) =+29.0 kN
Ve free — Vep free T VFG free — (+ 15.0+ 60) =+21.0 kN
VG fiee = VGF free = + 6.0 kKN

The final vertical support reactions are given by (i) + (ii):
VA = VA fixed T VA free — (— 273+ 175) =+ 14.77 kN

Vc = VC fixed T Vc free — (+ 4.8 + 415) =+46.3 kN

Vo= Vb fea + Vb tree = (- 2.15+ 29.0) =+ 26.85 kN 4

Vi =V fixed T VE free = (+ 6.03 +21.0) =+ 27.03 kN

V6=V fixed T VG free = (= 6.0+ 6.0) =+ 0

Check the vertical equilibrium:
Total vertical force =+ 14.77 + 46.3 + 26.85 + 27.03
=+ 114.95 kN (= total applied load)

Va=14.77T kKN Vg =46.3 kN Ve=26.85 kN Vp =27.03 kN

26.07 kN

14.77 kN 12.0 kKN

[ ——
D E| |F
14.93 kN
3.278 m 21.78 kN

Shear Force Diagram

- 18.25kNm
Ko 12.0 kKNm

36.0 KNm

35.0 kNm

Maximum bending A .
moment M = 17.9 kNm Bending Moment Diagram




314 Examples in Structural Analysis

4.8 Redistribution of Moments

When continuous structures approach their failure load there is a redistribution of load as
successive plastic hinges develop until failure occurs; this is dependent on the ductility of
the material. Advantage can be taken of this behaviour to reduce the maximum moments
whilst at the same time increasing others to maintain static equilibrium as shown in
Example 4.22 below.

4.8.1 Example 4.22: Redistribution of Moments in a Two-span Beam

A two-span beam is required to support an ultimate design load of 150 kN/m as shown in
Figure 4.95. Reduce the support moment by 20% and determine the redistributed bending
moment diagram.
— 150 kN/m

N nnm
* B ’[ C

A

A

Figure 4.95 Jﬁ 4,0 m l 5,0m J‘

Use moment distribution to determine the moments over the supports and in the spans.

Fixed - end moments:
wl? N 150%4,0°

Span AB MAB =0 MBA =+ 3 = 3 =+ 300,0 kNm
I 1 2
Span BC  Mpyc =— Wg = OXS0T L 4e00kNm M =0
Stiffnesses:
KBA = £: 0,25 DFBA = 0125 = 0956
4 ktotal = 0545 0’45
1 0,2
Kgc=—=0,2 DFp.= ——= 0,44
5 0,45
Moment distribution table:
Joint A B C
AB BA | BC CB
Distribution Factors | 1,0 0,56 | 0,44 1,0
FEMs 0 +300,0 | —469,0 0
Balance +94.6 | +74,4
Final Moments +394,6 | —394,6
394,6 kNm 150 kN/m
T e N T T T T T
i N W/ 3
Va Vs Ve
] 4,0m l 5,0m J‘

Figure 4.96
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Consider span AB:
—— 150 kN/m 394.6 KNm
[111 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIﬂI XMoments to the L.H.S. =0
! \ (Vax4,0)+394,6 — (150 x4,0x2,0)= 0
Va 40 B Va=2014kN
L - m J‘ Figure 4.97
Consider span BC:
—— 150 kN/
394,6 kNm m >Moments to the R.H.S. =0
B —(Vex5,0)-394,6 + (150 x 5,0 x2,5) =0
Ve Ve=296,1 kN
| 50m | Figure 4.98
[\ T
201,4 kN 453,9 kN
L XBC ‘
1
XAB
Figure 4.99 389.6 kN 2961 kN

Shear Force Diagram before redistribution
Span AB: x55 = (201,4/150) = 1,34 m
Maximum bending moment = (0,5 X 1,34 X 201,4) = 134,9 kNm

Span BC: xgc = (296,1/150) = 1,97 m
Maximum bending moment = (0,5 X 1,97 X 296,1) =291,7 kNm

Figure 4.100

Bending Moment Diagram before redistribution

Allowing for 20% redistribution the reduced bending moment at support B is given by:

M redueed = 0,8 X 394,6 = 315,7 kNm.
The above calculation must be repeated with the reduced value of the support moment to
determine the revised support reactions the redistributed maximum moments in the spans.
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Consider span AB:
—— 150 kN/m 315.7 kNm

>Moments to the L.H.S. =0
il]]]: (Vax4,0)+315,7-(150x4,0x2,0) =0
Va B Va= 221,1 kN

L 40m _ Figure 4.101

Consider span BC:
315,7 kNm — 150 KN/m >Moments to the R.H.S. =0
» —(Vex5,00—-315,7+(150x5,0x2,5)=0
[T Ve = 311.9 kN
B A / C s
Ve
| 5,0 m l Figure 4.102
K ‘
221,1 kN 438,1 kN
L XBC .
i
A B C
XAB
378,9 kN SILYKN

Redistributed Shear Force Diagram
Figure 4.103

Span AB: xa5 = (221,1/150) = 1,47 m
Maximum bending moment = (0,5 x 1,47 x 221,1) =162,5 kNm

Span BC: xgc = (311,9/150) = 2,08 m
Maximum bending moment = (0,5 X 2,08 X 311,9) = 324,4 kNm

324,4 kNm
Redistributed Bending Moment Diagram

Figure 4.104
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4.9 Shear Force and Bending Moment Envelopes

Shear force and bending moment envelopes are graphs which show the variation in the
minimum and maximum values for the function along the structure due to the application
of all the possible load cases or load combinations.

The diagrams are obtained by superimposing the separate diagrams for a function based on
each load case or combination considered. The resulting diagram that shows the upper and
lower bounds for the function along the structure due to the loading conditions is called
the envelope.

A three-span beam with four separate load combinations and their associated bending
moment diagrams, and the bending moment envelope encompassing all of the
combinations considered indicating the positive and negative bending moments in each
span, is shown in Figure 4.105. Note: the values of the bending moments are given for
illustration only. A similar envelope can be drawn for the shear force diagrams.

57,2 kNm

i 28,4 kNm

Maximum moment over support C

Bending Moment Envelope

Figure 4.105

44,5 kNm



5. Rigid-Jointed Frames

5.1 Rigid-Jointed Frames

Rigid-jointed frames are framed structures in which the members transmit applied loads
by axial, shear and bending effects. There are basically two types of frame to consider;

(i)  statically determinate frames; see Figure 5.1(a) and

(i) statically indeterminate frames; see Figure 5.1(b).

pin

/

rigid—joints

roller

/\ support support

QL0

support support ===

support

s

(a) Statically-Determinate Frames

pinned
support

—— rigid—joints —

\ /

rigid—joints

AN

rigid—joint

fixed fixed

fixed pinned s
S5 support support T support support S5

support

(b) Statically-Indeterminate Frames
Figure 5.1

Rigid—joints (moment connections) are designed to transfer axial and shear forces in
addition to bending moments between the connected members whilst pinned joints (simple
connections) are designed to transfer axial and shear forces only. Typical moment and
simple connections between steel members is illustrated in Figure 5.2.

In the case of statically determinate frames, only the equations of equilibrium are required
to determine the member forces. They are often used where there is a possibility of support
settlement since statically determinate frames can accommodate small changes of
geometry without inducing significant secondary stresses. Analysis of such frames is
illustrated in this Examples 5.1 and 5.2 and Problems 5.1 to 5.4.
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.

5

(a) Typical moment connections between members

\\\;}-\*

\\\\\\

(b)  Typical simple connections between members

Figure 5.2

Statically indeterminate frames require consideration of compatibility when determining
the member forces. The analysis of singly-redundant frames using the Unit Load method is
illustrated in Example 5.3 and Problems 5.5 to 5.8 One of the most convenient and most
versatile methods of analysis for such frames is moment distribution. When using this
method there are two cases to consider; no-sway frames and sway frames. Analysis of the
former is illustrated in Example 5.4 and Problems 5.9 to 5.16 and in the latter in
Example 5.5 and Problems 5.17 to 5.22.

5.1.1 Example 5.1 Statically Determinate Rigid-Jointed Frame 1

An asymmetric portal frame is supported on a roller at A and pinned at support D as
shown in Figure 5.3. For the loading indicated:

i) determine the support reactions and

ii) sketch the axial load, shear force and bending moment diagrams.
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12kN 16 kKN/m 12 kN
__________________ 16 kN ]
B T \\\
6 kN/m E Tension inside the \\ g
* +— frame is considered —» \\\ <
! +ve bending. \\
A D Hp
A 5.0m | 30m = v .
8.0m Figure 5.3
Solution:
Apply the three equations of static equilibrium to the force system
+vel TF,=0  VA—12.0-(16.0%5.0)—12.0+ Vp=0 Equation (1)
+ve = 2XF,=0 (6.0x4.0)+16.0+Hp=0 Equation (2)
+ve ) SMA=0 (6.0x4.0)(2.0)+ (16.0 X 5.0)(2.5) + (12.0 X 5.0) + (16.0 x 4.0)
—(Ipx8.0)=0 Equation (3)
From equation (2): 40.0+ Hp=0 s Hp=—40.0 kKN =
From equation (3): 372.0-8.0/p=0 - Vp=+46.5 kN T
From equation (1): V5, —104.0+46.5=0 s Va=+575kN T

Assuming positive bending moments induce tension inside the frame:
Mg =— (6.0 x4.0)(2.0) =—48.0 kNm
Mc =+ (46.5 x3.0) — (40.0 x 4.0) = — 20.50 kNm

F, 480kNm  16kN/m  20.50 kNm F,
Fy Fe C 20.50 kNm
£ = *5" B _B’E C Fy
48.0 kNm 5 F F,
6kNm o
L35
E Member forces
= I\ a\40.0 kN
0
57.50 kN

Figure 5.4

The values of the end—forces F to F can be determined by considering the equilibrium
of each member and joint in turn.
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Consider member AB:
tve 15F,=0 +5750-F,=0 . Fi=57.50kN |
+ve —=3XF, =0+ (6.0 x4.0)— F,=0 S F,=240kN -

Consider joint B:
+ve TZFZ =0 There is an applied vertical load at joint B =12 kN ¢

—F+F;=—120 o Fy=4550kN 4

+ve —> XF, =0

—F2+F4:0 F4:240kN —>
Consider member BC:

+ve TZFZ=O +45.5-(16.0x5.0)+ F5=0 s Fs=345kN T

+tve—> XFy=0 +240-Fs=0 S Fs=240kN <
Consider member CD:

tve }5F,=0  +465-F,=0 - F;=46.5kN

+ve—> XFy=0 -40.0+F3=0 S Fg=400kN —
Check joint C:

+ve T 3F, There is an applied vertical load at joint C = 12 kN l

+Fs—F;=+345-46.5=-12.0

+ve — XF There is an applied horizontal at joint C=16 kN —>

—Fe+Fg=-240+40.0=+16.0

The axial force and shear force in member CD can be found from:
Axial load = +/— (horizontal force X coser ) +/— (vertical force X sine)
Shear force = +/— (horizontal force X siner ) +/— (vertical force X cosa)
The signs are dependent on the directions of the respective forces.

Member CD:
; o= tan"'(4.0/3.0) = 53.13°
e cos a=0.60; sin o =0.80

Assume axial compression to be positive.

At joint C

Axial force =+ (40.0 X cosar) + (46.50 X sinar) =+ 61.2 kN
Shear force =+ (40.0 X siner) — (46.50 X coser) =+ 4.10 kN

¥ 46.50 kN

40.0kN Similarly at joint D
v R Axial force =+ 61.2 kN
A Shear force = +4.10 kN

“.| 46.50 kN



322 Examples in Structural Analysis

24.0 kN compression

B
61.2 kN
compression
£
g
?E . .
e g Axial Load Diagram
]
A D
45.50 kN
4.10 kN
C
x = (45.50/16.0) = 2.84 m 34.50 kN
Shear Force Diagram
4.10 kN
A D

20.50 kNm

48.0 KNm A
B == e

Maximum bending moment:
M =—48.0 + (0.5 x 2.84)(45.50)
=16.61 kNm

Bending Moment Diagram

Figure 5.5
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5.1.2 Example 5.2 Statically Determinate Rigid-Jointed Frame 2

A pitched-roof portal frame is pinned at supports A and H and members CD and DEF are
pinned at the ridge as shown in Figure 5.6. For the loading indicated:

i) determine the support reactions and

i) sketch the axial load, shear force and bending moment diagrams.

12 kN/mE 25 kN
4 35kN BN

15 kN 20 kN =
i <
5kN o
=
- =
g 2
S 7 SkKN 7 | g
') —x o
g Ne)
0 =
o S
= RS
S
Va
| 40m | 30m | 30m F
K K Vu
i 10.0 m
Figure 5.6

Apply the three equations of static equilibrium to the force system in addition to the
X~ moments at the pin = 0:

+ve T 2F,=0

Va—15.0-(12.0%x4.0) —25.0-35.0-20.0+ V4 =0 Equation (1)
+ve — ZF, =0

Hy+120+80+50+80+Hy=0 Equation (2)
+ve ) 2MA=0

(12.0x2.5) + (8.0 x 5.0) + (12.0 x 4.0)(2.0) + (25.0 x 4.0) + (35.0 X 7.0)
+(20.0 X 10.0) + (5.0 x 5.0) + (8.0 X 2.0) — (Hy x 1.0) = (V5 x 10.0) =0
Equation (3)
+ve ) XMyin =0 (right-hand side)
+(35.0x3.0) +(20.0 X 6.0) — (5.0 X 2.0) = (8.0x 5.0) — (Hux8.0)— (Vyx6.0)=0
Equation (4)

From Equation (3): +752.0 - Hy—10.0V4=0 Equation (3a)
From Equation (4): +175.0 -8.0Hy —6.0/3=0 Equation (3b)
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Solve equations 3(a) and 3(b) simultaneously: Vy=+ 78.93 kN T Hy=-3730kN *—
From Equation (2): Hx+33.0+Hy=0 Hy=+430kN —
From Equation (1):  Vx—143.0+ V=0 Va=+64.07 KN

12 kN/m 25 kN
[[mmﬂnmm]y 35 kN n

15 kN o 20 kN £
mn [}
8 kN . P E SKN o
N c F
g g
E 1% 2k =
29 B 8KN | &
g ¢ 1
O
“ £
o =
= 4.30 kN e
2L 3 H
64.07 kN 40m | 30m | 30m 37.30 kN
Yoom 78.93 kN Figure 5.7

Assuming positive bending moments induce tension inside the frame:
Mg =-(430x%x2.5)=-10.75kNm
Mc=-(430x%x5.0)—(12.0 x2.5)=—-51.50 kNm
Mp = zero (pin)
Mg=-(20.0x3.0)+(5.0x1.0) + (8.0 x4.0) —(37.3 x 7.0) + (78.93 x 3.0)
=—47.31 kNm
M=+ (8.0 x3.0) - (37.30 X 6.0) =—199.80 kNm
Ms=-(3730x3.0)=-111.90 kNm

12 kN/m

199.80 kNm
51.5 kNm
F, &~ F T [ — Fy
4—C> rrrrrrrrrrrrrrrrrrr F
Fs Fyy
F,
\ 4
4 Fo—F
F, «—C N
199.80 kNm
51.5 kNm
8.0 kKN
12.0 kN ‘
Member Forces
430kN 1A 37.30 kN
—>4 H
' y N
64.07 kN Figure 5.8 78.93 kKN
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The values of the end-forces £ to F'j, can be determined by considering the equilibrium
of each member and joint in turn.

Consider member ABC:
+ve 12F,=0  +64.07-F,=0 ~ Fi=6407TkN |
+ve > XF,=0 +430+120-F,=0 S F,=1630kN <—

Consider joint C:
+ve | 2F,=0 There is an applied vertical load at joint C = 15 kN ¢

—F+F;=—15.0 . Fy=4907kN 4

+ve — ZFy =0 There is an applied horizontal load at joint C=8 kN —»

-+ Fy=+80 S Fy=2430kN —
Consider member CD:

tve }EF,=0  +49.07 - (120 x4.0) + F5s =0 . Fs=—107kN |

+ve —= XF, =0 +2430-F¢=0 s Fg=2430kN <—
Consider member FGH:

tvelSF,=0  +78.93-F,=0 o Fiy=78.93 kN

+ve > 2XF, =0 —-3730+8.0+F;=0 o F1p=2930 kN —

Consider joint F:
+ve T 3F,=0 There is an applied vertical load at joint F =20 kN ¢

Fy+Fy ==20.0 . Fy=5893kN 4

+ve —>XF;, =0 There is an applied horizontal load at joint F=5kN —

+F12—F10:+5.0 F10:2430kN4—
Consider member DF:

+ve } TF,=0  +58.93-35.0+F;=0 o F=2393kN |

+ve — XFy=0 —-2430+Fs=0 s Fg=2430kN —»

The calculated values can be checked by considering the equilibrium at joint D.

12 kN/m D 24.30 kN 2430 kN D

49.07 kN

Figure 5.9
+ve — XFy —2430+2430=0

+ve T XF, —1.07-23.93 =-25.0kN (equal to the applied vertical load at D).
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The axial force and shear force in member CD can be found from:

Axial load = +/— (horizontal force X cose ) +/— (vertical force X sine)
Shear force = +/— (horizontal force X sine ) +/— (vertical force X cosa)
The signs are dependent on the directions of the respective forces.

Similarly with € for member DEF.

Member CD:

Lo

Member DEF:

) S

i 58.93 kN

o, = tan"'(2.0/4.0) = 26.565°
cos o= 0.894; sin oo = 0.447

Assume axial compression to be positive.

At joint C

Axial force =+ (24.30 X coser) + (49.07x sinax ) = + 43.66 kN
Shear force = — (24.30 X siner) + (49.07x coser) =+ 33.01 kN

At joint D
Axial force =+ (24.30 X coser) + (1.07x siner) =+ 22.20 kN
Shear force = — (24.30 X sine ) + (49.07x coser) = — 9.91 kN

6= tan"'(2.0/6.0) = 18.435°
cos 8=0.947, sin 8= 0.316

Assume axial compression to be positive.

At joint D

Axial force =+ (24.30 X cos@) + (23.93x sind) =+ 30.57 kN
Shear force =+ (24.30 X sin@) — (23.93 X cos@) =+ 14.98 kN

At joint F
Axial force =+ (24.30 X cos@) + (58.93x sind) =+ 41.63 kN
Shear force = — (24.30 X sin@) + (58.93x cos@) =+ 48.13 kN
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2220 kN 30.57 kN
compression compression
41.63 kN
43.66 KN D compression
compression
E
C F]
=
S
R B Axial Load Diagram
o 2 =
S £ & 2
N 7]
o o E §
S5
2 T3
H
991 kN __ D
33.01 kN F
C 29.30 kN
B
37.30 kN
Shear Force Diagram
A || 4.30 kKN
H| 13730 kN
199.80 kNm
10.75kNm }{ B Bending Moment Diagram
G 111.90 kNm
zero | A
H | zero

Figure 5.10
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5.1.3 Problems: Statically Determinate Rigid-Jointed Frames

A series of statically determinate, rigid-jointed frames are indicated in Problems 5.1
to 5.4. In each case, for the loading given:

i) determine the support reactions and

ii) sketch the axial load, shear force and bending moment diagrams.

12 kN

Va 3.0m ‘ 6.0 m Vi
K
9.0m
Problem 5.1
5 kN

3.5m
‘ 2.0 m‘ 2.0m
/

7.0 m
y
|

3.5m

|
7

1.0m 2.0m

20m| 30m | 30m | 30m [20m
! N N

13.0m

Problem 5.2
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40 kN
8 kN/m
C
§ 20 kN pin 20 kN
o
A 6 kN
= B D
<
N
g
o. ]
O
4 kN/m 2 kN/m
Hy (M E
S 000
V\\ NN
A 8.0 m 8.0 m Vi
N
16.0 m
Problem 5.3
30 kN I5kN 10 kN
10 kKN 25 kN E )
§ N 12 kN/m D
B C in
P g
g =
<
w
HA HF
N A F N
= 3.0m 4.5m 4.5m e
VA N N VF
12.0 m

Problem 5.4



330 Examples in Structural Analysis

5.1.4 Solutions: Statically Determinate Rigid-Jointed Frames

Solution
Topic: Statically Determinate Rigid-Jointed Frames
Problem Number: 5.1

Apply the three equations of static equilibrium to the force system in addition to the
X~ moments at the pin = 0:

vetsE,=0
Va—24.0-(6.0x6.0)+ V=0 Equation (1)

t+tve — 2F, =0
Hy+120+150+Hg=0 Equation (2)

tve ) SMy =0
(12.0 x 5.0) + (24.0 x 3.0) + (6.0 X 6.0)(6.0) + (15.0x 2.5) = (V¥ x9.0)=0
Equation (3)
+ve ) XMy =0 (right-hand side)
—(15.0%x2.5) - (Hrx5.0)=0 Equation (4)

From Equation (4): —37.5-5.0Hr=0 Hy=—75kN =

From Equation (2): H,+27.0-7.5=0 Hy,=-195kN =

From Equation (3): 385.5-9.0V=0 Vr=+42.83 kN T

From Equation (1): V5 —60.0+42.83=0 Va=+17.17 kKN T
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Solution
Topic: Statically Determinate Rigid-Jointed Frames
Problem Number: 5.1 Page No. 2

REs 3
17.17 kN . . 42.83 kN

9.0 m

Assuming positive bending moments induce tension inside the frame:

Mg =+ (19.5x5.0)=+97.50 kNm
Mc=+(17.17x%3.0) + (19.5 x 5.0) =+ 149.0 kNm
Mp = zero (pin)

Mg =—(7.5%x2.5)=-18.75kNm

24 kN 6 kN/m

\ (EERNRRNNRNR RN NN RN RNRNRANn »7.5 KN
<« C D
97.5 kNm

17.17 kN 42.83 kN
17.17 kN 42.83 kN

—¥B 'D
19.5 kN\J o
97.5 kNm

Member Forces

17.17 kN 42.83 kN
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Solution
Topic: Statically Determinate Rigid-Jointed Frames
Problem Number: 5.1 Page No. 3

7.50 KN tension

Axial Force Diagram

compression
42.83 kN
compression

19.50 kN

Shear Force Diagram

1950 kN|_|A

g 97.50kNm

97.50 kNm M ‘

Bending Moment Diagram
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Solution
Topic: Statically Determinate Rigid-Jointed Frames
Problem Number: 5.2 Page No. 1

‘Z.Om ‘ 2.0m

1.0m 2.0m

2.0mJ 30m | 30m | 3.0mi2.0m
\ K K D

13.0m

Apply the three equations of static equilibrium to the force system in addition to the
X~ moments at the pin = 0:

+ve $ TF, =0
Va—16.0—-16.0-8.0+ V=0 Equation (1)

+tve =& 2F, =0
Hy,+50+50+Hy=0 Equation (2)

tve ) SMy=0
(5.0 x3.5) + (5.0 x7.0) + (16.0 X 5.0) + (16.0 x 8.0) + (8.0 x 12.0) — (Vi x 13.0)
+(Hyx1.0)=0 Equation (3)

ve D My =0
+(16.0 X 3.0) + (16.0 X 6.0) + (8.0 x 10.0) — (Vs x 11.0) — (Hy % 6.0) = 0 Equation (4)

From Equation (3): +356.5—-13.0Vy+Hy=0 Equation (3a)
From Equation (4): +224.0-11.0Vy—6.0Hy =0 Equation (3b)

4—
Solve equations 3(a) and 3(b) simultaneously: Vyx =+ 26.55 kN T Hy=-11.34 kN

—>

From Equation (2): Ha+10.0+ Hy=0 H,y,=+134 kN

From Equation (1):  Va + 64.0 + Vi =0 Vi=+1345kN }
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Solution
Topic: Statically Determinate Rigid-Jointed Frames
Problem Number: 5.2 Page No. 2

‘2.0m12.0m

lr

1.0m 2.0m

RS
13.45 kN ‘ 3.0m ‘ 3.0m ‘ 2.0m
K N

N

13.0m

Assuming positive bending moments induce tension inside the frame:
Mp=—-(1.34%3.5)+(13.45 x 1.0) =+ 8.76 kNm
Mc = zero (pin)

My =+ (13.45 % 5.0) — (1.34 X 6.33) — (5.0 x 2.83) + (5.0 X 0.67) = + 47.97 kNm
My =+ (26.55 % 5.0) — (11.34 x 4.67) — (8.0 X 4.0) = + 47.79 kNm

My=— (8.0 1.0) — (11.34 X 4.0) + (26.55 x 2.0) = — 0.26 kKNm

Mg =—(11.34 % 2.0) + (26.55 x 1.0) =+ 3.87 kNm

1134 kN 16kN

13.45 kN 0.26 kNm
~—( 11.34 kN

e

13.45 kN
18.55 kN

18.55kN
6.34 kN 8.55

Note: For member ABC. 11.34 kKN
Axial load = +/— (horizontal force X cose)

+/— (vertical force X sinex)
Shear force = +/— (horizontal force X siner)

+/— (vertical force X cos)

The signs are dependent on the directions of the

a respective forces. 1134 kN
AL—> 134kN  Similarly with @and /3 for member CDEF and FGH. i

13.45 kN
Member Forces 26.55 kN
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Solution
Topic: Statically Determinate Rigid-Jointed Frames
Problem Number: 5.2 Page No 3

8.15 kN
compression 11.62 kN
compression 15.10 kN
compression

14.67 kN

compression
21.65 kN

compression

28.81 kN

13.29 kN Axial Force Diagram compression

compression

15.59 kN

Shear Force Diagram

47.79 kNm
8.76 kNm

Bending Moment Diagram
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Solution
Topic: Statically Determinate Rigid-Jointed Frames
Problem Number: 5.3 Page No. 1

16.0 m

Apply the three equations of static equilibrium to the force system in addition to the
Z moments at the pin = 0:

+ve T 2F,=0
Va—20.0-(8.0x16.0)—40.0-20.0+ V=0 Equation (1)

+ve — XF, =0
Hp+(4.0%x6.0)+6.0+(2.0x6.00=0 Equation (2)

+ve ) EMy =0
My + (4.0 X 6.0)(3.0) + (6.0 X 6.0) + (8.0 X 16.0)(8.0) + (40.0 X 8.0) + (20.0 X 16.0)
+ (2.0 6.0)(3.0) — (V& X 16.0) = 0 Equation (3)

+ve ) EMyn=0
+ (8.0 X 8.0)(4.0) + (20.0 X 8.0) — (2.0 X 6.0)(6.0) — (V& X 8.0) = 0 Equation (4)

From Equation (2): H,+42.0=0 Hy,=—420kN =
From Equation (4): +344.0-8.0Vg=0 Vg =+ 43.0 kN T

From Equation (3): M, + 1808.0 — (43.0x 16.0)=0 My =-1120.0 kN

From Equation (1): V4 —208.0+43.0=0 Vi=+165.0 KN T
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Solution
Topic: Statically Determinate Rigid-Jointed Frames
Problem Number: 5.3 Page No. 2

N
16.0 m

Assuming positive bending moments induce tension inside the frame:
Mp=-1120.0 kNm

Mg =-1120.0 — (4.0 X 6.0)(3.0) + (42.0 X 6.0) = — 940.0 kNm
Mc = zero (pin)
Mp =+ (2.0 x6.0)(3.0) =+ 36.0 kNm

8 kN/m 120kN  12.0kN

940.0 kKNm 36.0 kKNm
12.0 kN
—>

145.0 kN 23.0 kN

165.0 kN Note: For members BC and CD. 43.0 kN
Axial load = +/— (horizontal force X cosé) 12.0 kN
+/— (vertical force X sin@)
Shear force = +/— (horizontal force X sin&) 36.0 kKNm
+/— (vertical force X cos@)

18.0 kN

A

'B
L/

940.0 kNm

2 kN/m

The signs are dependent on the directions of the
respective forces.

1120.0 kNm
N
42.0 kN Member Forces

165.0 kN

&

QUINNVRENNENENARNNNNRRRNNNRRERED
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Solution
Topic: Statically Determinate Rigid-Jointed Frames
Problem Number: 5.3 Page No. 3

17.2 kN 25.62 kN
compression tension

C
39.66 kN

i 3.16 kN
compression

tension

B~ [T

Axial Load Diagram

165.0 kKN
compression
compression

80.03 kN
34.16 kN

139.93 kN

Shear Force Diagram

940.0 KNm____..—17TT[].

940.0 kNm |

Bending Moment Diagram

1120.0 kNm|
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Solution
Topic: Statically Determinate Rigid-Jointed Frames
Problem Number: 5.4 Page No. 1

25 kN
12 kN/m

zZ . 4.5m z
Va Ve
12.0 m

Apply the three equations of static equilibrium to the force system in addition to the
Y~ moments at the pin = 0:

+ve } 2F, =0
Va—10.0 - (12.0 X 3.0) = 25.0 = 30.0 ~15.0 + V5 = 0 Equation (1)

+ve —> XF,=0
Hyx+8.0+10.0+Hg=0 Equation (2)

+ve ) 2MA=0
(8.0 x5.0)+ (12.0 x 3.0)(1.5) + (25.0 x 3.0) + (30.0 x 7.5) + (15.0 x 12.0)
+(10.0x7.0)— (VFx 12.0)=0 Equation (3)

+ve ) EMpin =0
+ (Va % 3.0) = (Hx % 5.0) = (10.0 x 3.0) — (12.0 X 3.0)(1.5) = 0 Equation (4)

From Equation (3): 2710.0-12.0Vz=0 Vr=+53.67 kKN T
From Equation (1): V4 —116.0+53.67=0 Va=+6233 kN T
From Equation (4): +(62.33 x3.0)—5.0H,—84.0=0 H,=+20.60 KN —

From Equation (2): +20.60 +18.0 + Hr=0 Hy=-38.60 kKN ~—
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Solution
Topic: Statically Determinate Rigid-Jointed Frames
Problem Number: 5.4 Page No. 2

10 kN 25 kN

12 kN/m
8 kN

20.60 kN ~ 38.60 kN

= 4.5m
62.33 KN 53.67 kN

12.0 m

Assuming positive bending moments induce tension inside the frame:
Mp =—-(20.60 x 5.0) =—103.0 kNm

Mc = zero (pin)
Mp=—(15.0x4.5)—(10.0 x 1.0) = (38.60 x 6.0) + (53.67 x 4.5) = - 67.59 kNm
Mg =—-(38.60x7.0)=—270.2 kNm

28.60 kN

103.0kNm  12kN/m
28.60 kN  28.60 kN

28.60kN [B C

52.33 kN 16.33 kN 8.67 kN 53.67 kN

38.60 kN
62.33 kN —WE

Note: For member CDE.
20.60kN 4 Axial load = +/— (horizontal force x cos8)
<«——B . .
103.0 kNmh +/— (vertical force X sinf)
’ Shear force = +/— (horizontal force X sin8)
+/— (vertical force X cos@)

The signs are dependent on the directions of the
respective forces.

20.60 kN
—» A Member Forces 38.60 kN ¢—

62.33 kN 53.67 kN
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Solution
Topic: Statically Determinate Rigid-Jointed Frames
Problem Number: 5.4 Page No. 3

19.52 kN
26.03 kN compression

28.60 kN compression
compression

53.67 kN
compression

Axial Load Diagram

compression

38.60 kN

52.30 kN
16.30 kN 43.95 kN

2060 kKN C 1467 kN

Shear Force Diagram

20.60 kN

Bending Moment Diagram
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5.2 Unit Load Method for Singly-Redundant, Rigid-Jointed Frames
The method of analysis illustrated in Chapter 4: Section 4.6.1 for singly redundant beams
can be adopted for the analysis of singly-redundant, rigid-jointed frames. Consider the

frame shown in Figure 5.11.

h

Figure 5.11

The frame is statically indeterminate where the number of degrees-of-indeterminacy is

givenby Ip=[Bm+r)—3n]=[3%x3)+4-(3x4)]=1

The frame shown in Figure 5.11 can be represented as the superposition of two separate
structures, i.e.

Figure 5.12(a) in which a redundant reaction e.g. the horizontal component of reaction at
support A is removed and all of the external loading is applied in addition to the
components of reaction necessary to maintain equilibrium; they are V', ¥V 'p and H 'p and
Figure 5.12(b) in which only the redundant reaction is applied in addition to the
components of reaction necessary to maintain equilibrium as indicated in terms of a unit

load,i.e V'"s, V "pand H 'p.

C | B c |
horizontal ! ' horizontal !
displacement at A = & | | displacementat A= ¢, | !

| 1.0 !

' ;ﬁ/ |

|+ HyX i ;

! " A= hz/ L :

H' Dl

D P H'"p=1.0
> R
V' "p=hy/L
Force system (I) Force system (1)
(a) (b)

Figure 5.12

Assuming that there is no horizontal movement at support A, the following equation is
valid: 0y = (0 + Ha%) =0 where &, and & are as indicated in Figures 12(a) and (b).
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Considering force system (I) and using the Unit Load method considering bending effects
only, the value of the displacement &, can be determined as follows:

L B C D
o= ijdx=IMmdx+IMmdx+J- Mm dx
El AE[ BEI CI.SEI

where:

M is the bending moment due to the applied load system,

m is the bending moment due to a horizontal unit load applied at support A as shown in
Figure 5.12. (see Chapter 4: Section 4.5).

L
The product integral J-% dx can be be calculated as:
0

2 (the area of the applied load bending moment diagram X the ordinate on the unit
load bending moment diagram corresponding to the position of the centroid of the
applied load bending moment diagram)/E/ for each member.

Considering force system (II) and using the Unit Load method considering bending effects
only, the value of the displacement & can be determined as follows:

L 2 B 2 ¢ 2 b2
0= j—dx= —dx+ —dx+j dx
EI EI El 1.5E1
0 A B C
L2
The product integral J.% dx can be be calculated as:

0
2 (the area of the unit load bending moment diagram X the ordinate on the unit load
bending moment diagram corresponding to the position of the centroid of the applied
load bending moment diagram)/E/ for each member.

Considering the horizontal displacent at support A:

L L 2

Mm m
On=(0+HrB) =0 gives J-—dx+ HAXJ_ dx|=0
OEI 0EI

and hence Hy = —

In the case of a horizontal movement ¢ at support A then the above equation can be
modified accordingly, i.e. dx = (& + Ha) = 6.
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The magnitude and sense of the components of the support reactions and bending
moments can be determined by superposition of the values determined from the two force
systems as follows, (see Figure 5.12):

Final value = force system (I) value + Ha X force system (II) value i.e.

Support reactions:

Ha = zero + Ha % (1.0)

Va=V'A+Hyax (V")

Hp=H'p+ Hy X (H"p)
Vp=V'p+ Hx X (V"D)

Bending moments at A, B, C and D:

My = zero

MB:M’B+HAX(M"B) i.e.=M'B+HA><(—1.0><h1)
Mc=M'c+Hxx(M"c) 1e.=H'p(h+hy)+Hx X[-H"p (h+ hy)]
Vp = zero

5.2.1 Example 5.3 Singly-Redundant, Rigid-Jointed Frame

A non-uniform, asymmetric pitched-roof portal frame ABCDE is pinned at supports A and
E and subjected to the loading indicated in Figure 5.13.

i) determine the support reactions, and

ii) determine the change in the bending moment at B due to an outwards horizontal
movement of support A equal to 15 mm <—

. = 3 2
Note: £/=20.0 x 10° kNm 10.0 kKN/m

3.0m

15 kN

40m

Hy

20m |

Figure 5.13
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The reactions in force system (I) and force system (II) are as indicated in Figure 5.14.

H', V'E 144 'A |24 'E

(a) Force system (I) (b) Force system (II)
Figure 5.14
Apply the three equations of static equilibrium to force system (I) in Figure 5.14(a)
tve }5F,=0  V'A—(10.0x8.0)+ F':=0 Equation (1)
+ve > 2Fy=0 —-150+H%=0 Equation (2)
+ve ) SMA=0 (10.0x8.0)(4.0)—(15.0x4.0)—(V'x8.0)=0 Equation (3)
From equation (2): —-15.0+ H's=0 S H'g=+15.0kN —
From equation (3):  260.0 — 8.0V =0 s VE=+32.50 kN T
From equation (1): V', —80.0+32.5=0 s ViA=+47.50 kN T
Apply the three equations of static equilibrium to force system (II) in Figure 5.14(b)
+ve T 2F,=0 " +V"s=0 Equation (4)
+ve = ZF;=0 1.0+H'":=0 Equation (5)
tve ) My =0 —(V"sx8.0)=0 Equation (6)
From equation (5): 1.0+ H'"s=0 L H'"'g=—1.0kN =—
From equation (6): —8.0V"g=0 s V'"g=1zero
From equation (4): " +V"5=0 . V' =1zero

Consider the frame shown in Figure 5.14.

Determine the values of M’ and m at each of the node points for Figure 5.14(a) and
Figure 5.14(Db).

Node A: M',=0 m=0

Node B: M'g=0 m=—(1.0x4,0)=-4.0

Node C: M'c=+(47.5x%2.0)—(10.0x2.0 x 1.0) =+ 75.0 kNm
m=—(1.0x7.0)=-17.0

Node D: M'p =+ (15.0 x4.0) =+ 60.0 kNm m=-(1.0x4.0)=-4.0
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Node E: M'g=0
m=0

The bending moment diagram for the frame in
Figure 5.14(a) is given in Figure 5.15 and can be
considered to be the sum of the fixed and free
bending moment diagrams for each member as
indicated in Figure 5.16.

Applied load bending moment diagram

Figure 5.15
C
75.0 KNm
60.0 KNm
B + +  60.0 kNm
30.0 kKN 30.0 kKN
10.0 kN | 6.0m ]
S

wl?>  10.0x6.0°
8 8
=45.0 kNm

wl*  10.0x2.0°

8 8
=5.0 kNm

Fixed and free bending moment diagrams (M)
Figure 5.16

The unit load bending moment diagram for the frame shown in Figure 5.14(b) is indicated

in Figure 5.17.

7.0 7.0

Length of BC=3.61 m

Length of CD=6.71 m
4.0

- 2.67

A E

Figure 5.17 Unit load bending moment diagram



Rigid-Jointed Frames 347

Mm Mm
Using the unit load method 2 o = dx+ d.
8 i 51-([ J‘EI J‘ J.15E1x-“E1x
L
The product integral IMm dx can be be calculated as:
0

Y (Area of the applied load bending moment diagram X the ordinate on the unit load
bending moment diagram corresponding to the position of the centroid of the applied
1oad bending moment diagram) for each member.

J—dx 0since M =0

J~ J (0.5%3.61x75.0%6.0)+(0.67x3.61x5.0x5.5) 878.76
—dx =— = —

EI - EI
D pim _(0.5%6.71x15.0x6.0)+(6.71x60x5.5) +(0.67%6.71x45.0%5.5)
1.5E1 1.5EI
C
_2419.29
EI

med (0.5x4.0x60.0x2.67)  320.40

—adx =— - —
) EI EI EI

j—dx— —(0+878.76 +2419.29 + 320.40)/El = — 3618.45/E1

Consider the frame shown in Figure 5.14(b) in which only the redundant reaction is
applied in addition to the components of reaction necessary to maintain equilibrium.
E 2

m

—dx

EI

o= j—dx —dx+j—dx leElx

Figure 5.18 Unit load bending moment diagrams (i)
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TmZd (0.5x4.0x4.0x2.67)  21.36
—dx = =
EI EI EI

A
]szd (0.5%3.61x3.0%6.0)+(3.61x4.0x5.5)  111.91
—dax = =

El EI EI
B
Lf 2 . (0.5%6.71x3.0x6.0)+(6.71x4.0%5.5) _138.67
s LSEI 1.5E1 ET
fm_z fm_ _(05%4.0x4.0x2.67) _21.36

EI El EI El
D A

2
&= J'de (21.36 + 111.91 + 138.67 + 21.36)/EI = 293.54/E]
0

and
L -
Hy 8= Hy X j M dx =293.54H,/EI
EI

In case (i)
Considering the horizontal displacent at support A:
L
Mm
——dx
L L 2 J- EI
8= (8 + Had) =0 gives j—M’" de + | Hax [ de | =0 o Hy=-4——
EI El L 2
0 0 m—dx
El

Where

J' MM x=—13618.45/E] and j —dx 293.54/E]

Hy=-0 = (—3618.45/293.54)=+ 1233 kN —»

i.e. in the same direction as the assumed unit load and, using superposition with force
systems (I) and (II):

Hy = zero + Ha x (1,0) = 0+ (12.33 x 1.0) =+ 12.33 kN —
Va=V's+ Hy X (zero) = + 47.5 + (12.33 x 0) =+ 47.5 kN i
My = zero
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Hg=H'g+ HyxX(-1,00=+150+ (1233 x-1.0)=+2.67kN —*
Ve=V'g+ Ha X (zero) =+ 32.5+(12.33 x0) =+ 32.5kN
Mg = zero

Bending moments at B, C and D:

Mg=M'"s+ Hx X (—4.0)=0-(12.33 x4.0) =—49.32 kNm
Mc=M'c+ HxX(—=7.0)=+75.0-(12.33 x7.0)=—11.31 kNm
Mp=M"y+ Hyx(—4.0)=+60.0 —(12.33 X 4.0) =+ 10.68 kNm

11.31 kNm
/tk

,&l

(Readers should complete
the axial load and shear
force diagrams indicating
all the salient values.)

Figure 5.19

Bending Moment Diagram
In case (ii)
Considering the 15.0 mm horizontal displacement at support A:

L
- 0.015- Md
El
OA= (0 + Hr$)=—-0.015 and hence H) = 7 0
m?
I—dx
EI
0
- 0.015+&'453
_ 20.0x103 _
Hy ﬁ +11.30 kN —
20.0x10°

1.e. in the same direction as the assumed unit load
The bending moment at B, Mg = (Ha X 4.0) = (11.30 X 4.0) = 45.20 kNm

The change in the bending moment at B due to the horizontal displacement at A is
given by (49.32 —45.20) i.e. areduction of 4.12 kNm
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5.2.2 Problems: Unit Load Method for Singly-Redundant, Rigid-Jointed Frames

A series of statically indeterminate, rigid-jointed frames are indicated in
Problems 5.5 to 5.8. In each case, for the loading given:

i) determine the support reactions and

ii) determine the magnitude and sense of the bending moments at the joints and
under the point loads. (Assume tension inside the frame is positive bending).

(Note: readers should complete the axial load, shear force and bending moment
diagrams for each frame)

12 kN

Vy 3.0m | 6.0 m Iy

K

9.0 m

Problem 5.5

Support C settles by 0.5 mm
for each 1.0 kN of support
reaction at D.

EI=20.0 x 10° KNm’
X m E1

4.0 m

L 2.5m L 2.5m

Problem 5.6



7.0 m

8 kN

Rigid-Jointed Frames

Problem 5.7

30 kN

4.5m J

4.5m 2.0m

2.0mJ
I

I
13.0 m

Problem 5.8

351

} 2.0 rn‘ 2.0m

1.0m 2.0m
E
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5.2.3 Solutions: Unit Load Method for Singly-Redundant, Rigid-Jointed Frames

Solution
Topic: Unit Load Method for Singly-Redundant, Rigid-Jointed Frames
Problem Number: 5.5 Page No. 1

9.0 m

Assume the horizontal force at support A to be the redundant reaction.

V
Force system (I) Force system (II)

The support reactions in force system (I):

Apply the three equations of static equilibrium to force system (I)

tve $IF, =0  VA-24.0+V%=0 Equation (1)

+ve = XF,=0 +12.0+150+H%=0 Equation (2)

+ve) IMA=0 +(12.0x5.0)+(24.0x3.0) +(15.0x2.5) - (V'e%x9.0)=0
Equation (3)

From equation (2): +27.0+ Hk =0 S HE==270KkKN =

From equation (3):  260.0 - 8.0V =0 - V'g=+18.83 kN

From equation (1): V', —24.0+18.83=0 S V'A=+517KkN
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Solution
Topic: Unit Load Method for Singly-Redundant, Rigid-Jointed Frames
Problem Number: 5.5 Page No. 2

The support reactions in force system (II):

Apply the three equations of static equilibrium to force system (II).

+ve TEFZ =0 "\ +V'"e=0 Equation (4)
+ve = 2ZF,=0 1.0+H'"s=0 Equation (5)
tve ) IMy=0 —(V":x9.0)=0 Equation (6)

From equation (5): 1.0+ H's=0 S H'"s=—10kN =—
From equation (6): —9.0V"r=0 - V' =zero
From equation (4): "+ V"%=0 s V' =1zero

Determine the values of M' and m at each of the node and load points:
Node A: M'=0 m=0
Node B: M'=0 m=-(1.0x5,0)=-5.0
Node D: M'=+(15.0x2.5) - (27.0 x5.0) =—97,50 kNm

m=-(1.0x5.0)=-5.0
Node F: M'=0 m=0

Point C: M'=+(5.17 x3.0) =+ 15.51 kNm m=—(1.0x5.0)=-5.0
Point E: M™=—-(27.0 x2.5)=-67,50 kNm m=—(1.0x25)=-2.5

B {551 kNm

Applied load bending moment diagram

97.50 kNm
| 97.50 kNm D DE | PL_150x50
4 4
=18.75 kNm

18.75 kNm

Pab  24.0x3.0x6.0
480kNm +—=—"—"—"
L 9.0

=48.0 kNm F P

Fixed and free bending moment diagrams (/)
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Solution
Topic: Unit Load Method for Singly-Redundant, Rigid-Jointed Frames
Problem Number: 5.5 Page No. 3

A F

Unit load bending moment diagram (m)
Using the unit load method o) = _[—d —J‘ _[ —dx

—Idx 0 since M =0

~ +(0.5%9.0%97.5%5.0) - (0.5%9.0x48.0x5.0) _ 111375
- El -~ E

_ +(0.5%5.0%97.5%3.33)+(0.5%5.0x18.75%2.5) | 92888
- El - El

5= J' de— (+ 1113.75 + 928.88)/El = + 2042.63/EI
0

B 9 D - F 9

Using the unit load method & = j—dx j%dx + J.%dx + an1—1dx

[\

+(0.5><5.0><5.0><3.33) _, 4163
EI - El

=
I

SE

[\

+(5.0x9.0x5.0)  225.0
-
EI EI

N

+(0.5%5.0x5.0x3.33) _, 4163
El - E

O T T hn*—
SRR

S

1l
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Solution
Topic: Unit Load Method for Singly-Redundant, Rigid-Jointed Frames
Problem Number: 5.5 Page No. 4

L »
&= j %dx= (41.63 + 225.0 + 41.63)/EI = 308.26/EI

0
and

2
Hy 8= Hy X j %dx =308.26H,/El

Considering the horizontal displacent at support A:

L L 2
O0n= (0 + Hr%) =0 gives J-% dx + {HA XJ.% dx} =0 ..
0 0

Where:

j M = +2042.63/EI  and j—dx +308.26/EI

T (2042.63/308.26) = — 6.63 kN

i.e. in the opposite direction to the assumed unit load
and using superposition with force systems (I) and (II):

Hy=zero+ Hy X (+1,00)=0+ (6.63 x 1.0) =— 6.63 kN

Va=V'sa+ HpyX(zero)=+517+(6.63 x0)=+5.17kN
M, = zero

Hp=H'r+ Hyx(—1,00=—27.0+(6.63 x—1.0)=-20.37 kN
VE=V'g+ Hy X (zero) =+ 18.83 + (6.63 x 0) =+ 18.83 kN
My = zero

Bending moments at B, C, D, and E :

Mg =zero + Ha X (—5.0) =0+ (6.63 X 5.0) =+ 33.15 kNm
Mc=M'c+ HyxX(—5.0)=+15.50+ (6.63 X 5.0) =+ 48.65 kNm
Mp=M'"p+ HaX(—5.0)=—97.50 + (6.63 X 5.0) = — 64.35 kKNm
Mg=M'g+ Hpy X (—2.5)=—-67.50 + (6.63 X 2.5) =—50.93 kKNm

355
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Solution
Topic: Unit Load Method for Singly-Redundant, Rigid-Jointed Frames
Problem Number: 5.6 Page No. 1

Support C settles by 0.5 mm
for each 1.0 kN of support
reaction at D.

EI=20.0 x 10° kNm’

Assume the vertical force at support D to be the redundant reaction.

8kN/m 40kN

"
H"y

Force system (I) Force system (II)

The support reactions in force system (I):

Apply the three equations of static equilibrium to force system (I)

+ve T 2F,=0 V'x—(8.0%x5.0)-40.0=0 Equation (1)
tve > 2F,=0 +H',\=0 Equation (2)
+ve ) SMA=0 +(8.0x5.0x4.5)+(40.0x4.5)+M'x=0 Equation (3)

From equation (2): ~. H'y =1zero
From equation (3):  360.0 -M's=0 s M'a=-360.0 KNm ‘>
From equation (1):  V'» —40.0-40.0=0 s VA =+80.0 kKN T
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Solution
Topic: Unit Load Method for Singly-Redundant, Rigid-Jointed Frames
Problem Number: 5.6 Page No. 2

The support reactions in force system (II):

Apply the three equations of static equilibrium to force system (II).

+ve T 2F,=0 "\1+1.0=0 Equation (4)
+tve = XF,=0 +H'",=0 Equation (5)
+ve ) XMA=0 "\—(1.0x7.0)=0 Equation (6)

From equation (5): H'"'»=0 - H'"g=1zero
From equation (6): V'"'x=-1.0 SV ==1.0 ¢
From equation (4): "\—7.0=0 M =+17.0

Determine the values of M and m at each of the node and load points:

Node A: M =-360.0 kNm m=+7.0

Node B: M=-360.0+(80.0 x2.0)=—200.0 kNm m=-(1.0x2,0)+7.0=+5.0
Node D: M = zero m = Zero

Point C: M=—(8.0X 2.5 x 1.25)=—25.0 kNm m=+(1.0x2.5)=+2.5

Applied load bending moment diagram

200 kNm

PL _ 40.0x5.0

4 4.0
=50.0 kNm

360.0 KNm . wI? _ 8.0x5.0
8 8

25.0 kNm =25.0 kNm

Fixed and free bending moment diagrams (/)
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Solution
Topic: Unit Load Method for Singly-Redundant, Rigid-Jointed Frames
Problem Number: 5.6 Page No. 3

Unit load bending moment diagram (m)
7.0

Using the unit load method o) = J‘—d = j —dx+ _[—dx

—(O.5><4.472><160.0><6.34) —(200.0x4.472x6.0) _ 7634.60
EI - EI

—(0.5%5.0%200.0%3.33)+(0.5%5.0x50.0%2.5) +(0.67x5.0x25.0%x2.5)
EI

114313
EI

I—d = —(7634.60 + 1143.13)/El = - 8777.73/EI
Using the unit load method &, = J-—dx J-—dx + —dx

m’ +(4.472><5.0><6.0)+(O.5><4.472><2.0><6.34) 16251
LU _
El El El

+(0.5%5.0x5.0%3.33) _ 4163
EI - EI

5= j%de (162.51 + 41.63)/El = 204.14/EI
0
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Solution
Topic: Unit Load Method for Singly-Redundant, Rigid-Jointed Frames
Problem Number: 5.6 Page No. 4

and

L -
Vo & = Vp X I%dx = 204.14Vy/El
0

Considering the vertical displacent at support D:

& = (6 + Vp&) =— (Vb % 0.0005)
TMm

—dx
EI

yi L -
J.m—dx+0.()()()5
) El

L 2
{VijEﬂ de =—0.0005Vp . Vp=——20
0

=+ 8777.73/[204.14 + (0.0005 x 20 x 10°)] =+ 41.0 kN

L -
jm—dx +0.0005
El

0
i.e. in the direction of the assumed unit load

and using superposition with force systems (I) and (II):

Hy = zero + Vp X (zero) = 0 + (41.0 X 0) = zero
Va=V'a+Vpx(-1.0)=+80.0—-(41.0x 1.0) =+ 39.0 kN T
My=M'"s+ VpX(+7.0)=-360.0 + (41.0 X 7.0) =— 73.0 kNm ‘)
Hp=H'p+ Vpx(zero) =0+ (41.0 x 0) = zero

Vo=V'n+Vpx (+1.0)=0+(41.0 x 1.0) =+ 41.0 kN i
Mp = zero

Bending moments at B and C:
Mg=M'g+ Vpx(+5.0)=—-200.0 + (41.0 X 5.0) =+ 5.0 kNm
Mc=M'c+ Vp X (+2.5)=(-100.0 + 50.0 + 25.0) + (41.0 X 2.5) =+ 77.5 kKNm
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Solution
Topic: Unit Load Method for Singly-Redundant, Rigid-Jointed Frames
Problem Number: 5.7 Page No. 1

Assume the horizontal force at support A to be the redundant reaction.

40 kN

Force system (I) i Force system (1)

The support reactions in force system (I):

Apply the three equations of static equilibrium to force system (I)

tve }5F,=0  V'A—40.0+ V=0 Equation (1)

+ve = 2F,=0 10.0+H'k=0 Equation (2)

+ve ) SMA=0 +(40.0%x2.0)—(10.0x3.0)—(Hex7.0)—(V'gx7.0)=0
Equation (3)

From equation (2): S HE==100 kN =
From equation (3):  50.0 + (7.0 x 10.0) — 7.0V =0 S VE=+17.14 kN T
From equation (1):  V'A—40.0+17.14=0 oo VIAa=+22.86 kKN
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Solution
Topic: Unit Load Method for Singly-Redundant, Rigid-Jointed Frames
Problem Number: 5.7 Page No. 2

The support reactions in force system (II):

Apply the three equations of static equilibrium to force system (II).

tve IR, =0  VA+ V=0 Equation (4)
+ve == 2ZF,=0 1.0+H'"g=0 Equation (5)
+ve ) SMpA=0 —-(H"gx7.0)-V"ex7.0=0 Equation (6)

From equation (5): "e=-1.0 S H'E=—1.0 <—
From equation (6): +(1.0x7.0)—(V"ex7.0)= 0 S V"eE=+1.0 ?
From equation (4): V"', +1.0=0 SV ==-1.0 i

Determine the values of M and m at each of the node and load points:

Node A: M = zero m = Zero

Node C: M=+ (22.86 x4.0) — (40.0 x 2.0) =+ 11.44 kNm
m=—(1.0x4,0)=-4.0

Node D: M=-(10.0 x4.0) =—40.0 kNm m=-4.0

Node E: M = zero m = Zero

Point B: M=+ (22.86 x 2.0) = + 45.72 kNm m=—(1.0x2,0)=—2.0

45.72 KNm
Lep=(3.0+3.0)"=4243m
x=4.243 x (11.44/51.44) = 0.944 m

Applied load bending moment diagram

40.0 kKNm
D

ST

C
40.0 kNm 11.44 kKNm \
PL _ 40.0x4.0

4 4.0
=40.0 kNm

Fixed and free bending moment diagrams (M)
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Solution
Topic: Unit Load Method for Singly-Redundant, Rigid-Jointed Frames
Problem Number: 5.7 Page No. 3

Unit load bending moment diagram (m)

Using the unit load method o) = _[—d = J —dx+ J- J—dx

J —(0.5><4.0><11.4><2.67)—(O.5x4.0><40.0><2.0) 220.88
X = =
EI EI

—(a5x0944x1L4x40)+(o5x3299x400x40)_+24z4o
EI ~ E

_+(05x40x400x267)_+21360
EI El

&
|

C
J
A
D
M
iEde_
E
]
D

%dx = (—220.88 +242.40 + 213.60)/El =+ 235.12/E1

A%
I
S — I~

C - D - E 9

Using the unit load method & = j—dx J.}Z—Idx + %dx + I%dx
C

N

(05x40x40x267)_+2136_
EI - El

&
I

Sk

[\

(4.243 ><4.0><4.0) . 67.89
EI El

N

(05x40x40x267)_+2136
El ~ EI

&
I

O O+ h "= 0O
=
Il
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Solution
Topic: Unit Load Method for Singly-Redundant, Rigid-Jointed Frames
Problem Number: 5.7 Page No. 4

L »
&= I%de (21.36 + 67.89 + 21.36)/EI = 110.61/EI

0
and

L -
Hy 8= Hy X j%dx =+ 110.61 H\/EI
0

Considering the horizontal displacent at support A:
Oa= (8 +Hp8)=0

LM L o
j—mdx=+235.12/E1 and jm—dx=+110.61/E1
El ) El

Hy = _oL_: —235.12/110.61 == 2.13 kN <—

I e
EI
0
i.e. opposite to the direction of the assumed unit load.

and using superposition with force systems (I) and (II):

Hy=zero+ Hyx X (+ 1,0)0=0—-(2.13x 1.0)=—2.13 kN -—
Va=V'a+ Hyx(—1.0)=+22.86 +(2.13 X 1.0) =+ 24.99 kN T

My = zero

Hg=H's+ Hyx(—1.0)=-10.0+(2.13 x 0) =—7.87 kN -
VE=V'E+Hax(+1.0)=+17.14-(2.13x1.0)=+15.01 kN T

Mg = zero

Bending moments at B, C and D:

Mp=M'"g+ Hx X (—2.0)=+45.72 + (2.13 x 2.0) =+ 49.98 kNm
Mc=M'c+Hyx(—4.0)=+11.44 +(2.13 x4.0) =+ 19.96 kNm
Mp=M'p+ Hy X (—4.0)=—40.0 +(2.13 +4.0) =+ 31.48 kNm

363
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Solution

Topic: Unit Load Method for Singly-Redundant, Rigid-Jointed Frames
Problem Number: 5.8 Page No. 1

‘2.0m‘2.0m

s

1.0m2.0m

2.0 m 45m | 45m J2.0m
[ N

N

13.0m

Assume the moment at support E to be the redundant reaction.
The support reactions in force system (I):

Force system (I) Force system (II)

Apply the three equations of static equilibrium to force system (I)
+tve ) EMp=0 —(Hex4.0)—(Vgx2.0)=0 Equation (1)
+ve ) ZMA=0 +(8.0x7.0)+(30.0x6.5)+(4.0x5.0)+ (H'ex 1.0)— (V' x 13.0)
=0
+271.0+HE—-13.0Vg=0 Equation (2)

From Equation (1): H'zr =— 0.5V and from Equation (2): H'r=—-271.0 - 13.0V"g
o Vg=+2007kN fand H%p=-10.04kN <—
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Solution
Topic: Unit Load Method for Singly-Redundant, Rigid-Jointed Frames
Problem Number: 5.8 Page No. 2

+ve T XF,=0 V'A-30.0+20.07=0 V'a=+9.93 kN
+ve > 2XF,=0 H',+8.0+4.0-10.04=0 'A=—196 KN <=—

The support reactions in force system (II):
Apply the three equations of static equilibrium to force system (II).
tve ) EMp=0 +1.0-(H"gx4.0)—(V'"x2.0)=0 Equation (3)
+ve )EMA=0 +1.0+(H"gx1.0)— (V"% 13.0)=0 Equation (4)
From Equation (3): H''g=0.25-0.5V"%
From Equation (4): H'"r=-1.0+13.0V"

S Ve =+0.093 kN —and H''g =+ 0.204 kN T

+ve T XF,=0 V'"y-0.093=0 V'y=-0.093 kN l
+ve — XF,=0 "4 +0.204=0 "\=-0.204 kKN <-—

Determine the values of M and m at each of the node and load points:
Node A: M = zero m = Zero
Node B: M=+ (9.93 x2.0) +(1.96 x 7.0) =+ 33.58 kNm

m=—(0.093 x2.0) +(0.204 x 7.0) =+ 1.24
Node C: M=+ (9.93x6.5)+(1.96 x6.0) + (8.0 x 1.0) =+ 84.31 kNm

m=—(0.093 X 6.5) + (0.204 x 6.0) =+ 0.62
Node D: M = zero m = Zero
Node E: M = zero m=-1.0

B_33.58 kNm
/

Lag = (7.0 +2.09)°°=7.280 m
Lep=(9.0°+2.0)°=9220m
Lo = (4.0°+2.0)"°=4.472 m

E

C D

ERLL111111 1

%: 30.0x9.0 — 675 kKNm

Fixed and free bending moment diagrams (M)
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Solution
Topic: Unit Load Method for Singly-Redundant, Rigid-Jointed Frames
Problem Number: 5.8 Page No. 3

E

Unit load bending moment diagram (m)

Using the unit load method & = J.—d —j dx +J. —dx+ .[—dx

+(0.5><7.28><33.58><0.83) _ 6763
1.5E1  EI

&
I

Mm
EI

+(0.5%9.22x33.58%0.83) +(0.5%9.22x67.5%0.62) _ , 160.71
2.0EI O El

B
J
A
D
M
iEllnx:
E
]
D

L
5= j P = (67.63 + 160.71)/EI =+ 228 34/El

[\

+(0.5><7.28><1.24><0.83) _, 230
1.5E1 - El

Sk
&
Il

[\

+(05x9.22x1.24%0.83) _ | 237
2.0E1 O El

[\

(0.5x4.472x1.0x0.67) . 1.49
EI - EI

&
I

el O A *—W
SENRE

&

1]
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Solution
Topic: Unit Load Method for Singly-Redundant, Rigid-Jointed Frames
Problem Number: 5.8 Page No. 4

L -
8= I%de (2.50 +2.37 + 1.49)/El = 6.36/EI

0
and

L -
My 8= Mg X j%dx =+ 6.36My/El
0

Considering the rotational displacent at support E:

&=(0+Mp5)=0

My= 0 =~ 22834/6.36 =~ 3590 kNm )
m2
j— dx
El
0
i.e. opposite to the direction of the assumed unit moment.

and using superposition with force systems (I) and (II):

Hy=H'pA+ Mg x(—0.204)=—-1.96 + (35.90 x 0.204) =+ 5.36 kN
Va=V'a+Mgx(—0.093)=+9.93 + (35.90 X 0.093) =+ 13.27 kN
My = zero

Hg=H's+ Mg x(+0.204) =—10.04 — (35.90 X 0.204) = - 17.32 kKN

—>
-
Ve=V"g+ Mgx (+0.093) =+ 20.07 — (35.90 x 0.093) =+ 16.73 kN T
Mg =—-35.90 kNm ‘)

Bending moments at B, C, D:

Mg=M'g+ Mg X (+1.24)=+33.58-(35.90 x 1.24) =—10.94 kNm
Mc=M'c+ Mgx(+0.62)=+84.31 — (35.90 X 0.62) =+ 62.05 KNm
Mp = zero
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5.3 Moment Distribution for No-Sway Rigid-Jointed Frames

The principles of moment distribution are explained in Chapter 4 in relation to the analysis
of multi-span beams. In the case of rigid—jointed frames there are many instances where
there more than two members meeting at a joint. This results in the out-of-balance
moment induced by the fixed-end moments being distributed among several members.
Consider the frame shown in Figure 5.20:

HER

g
o
by
X
_ A C 156/ DT
=
!‘”)7; G
Jh 4.0m ‘ : - 6.0m J Figure 5.20
Fixed-End Moments:
2 2 2 2
. . L 12. .
Mpc=—- Wk __ 12.0x8.0 =—64.0 kNm; Mcp=+ LT 0%8.0 =64.0 kNm
12 12 12 12
SR
¥ N LLLLLL L LU UL
N 1561 D&
F G Figure 5.21

R

Distribution Factors:
At joint B there are four members contributing to the overall stiffness of the joint.

kBA = i = L =0.251 D.F BA — kBA = (Mij =0.22
L 4.0 kpy  \1.161

kpc = LYo (2L) 225 D.F.pc = kpe _ (ﬁ =0.22
L 8.0 kg \1.161
kTotal =1.161 i 0.33]

kBE = i = L =0.337/ DFBE = BE = —) =0.28
L 3.0 Ky — \1.161

kBF = i = L =0.33/ D.F.BF = kBF = ﬂj =0.28
L 3.0 kr ~ \1.161

Z Distribution factors = 1.0

The sum of the distribution factors is equal 1.0 since 100% of the out-of-balance moment
must be distributed between the members.
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At joint C there are three members contributing to the overall stiffness of the joint.

I 21
kes=| —| === | =0251
® [Lj (8.0}
x(ij _ [ﬂj _ 0251
L 6.0

3 (1 I
keo= x| = | =] |=0331
Ty (L) (3.0]

keroran = 0.831

D.F.CB: kCB = ﬂ =0.3
k 0.831

D.F.CD = kCD = (wj =0.3
kpyy  \0.831

D.F.CG = kCG = (—033[J =04
ko~ \0.831

The balancing moment at joint B =+ 64.0 kNm ¢\
The balancing moment at joint C = — 64.0 kNm a

At joint B:

Moment on BA =+ (0.22 X 64.0) =+ 14.08 kNm
Moment on BC =+ (0.22 X 64.0) =+ 14.08 kNm
Moment on BE =+ (0.28 x 64.0) =+ 17.92 kNm
Moment on BF =+ (0.28 x 64.0) =+ 17.92 kNm
At joint C:

Moment on CB =— (0.3 X 64.0) =—19.20 kNm,;
Moment on CD =— (0.3 X 64.0) = - 19.20 kNm
Moment on CG = — (0.4 X 64.0) = — 25.60 kNm

RS

B
§|A= +14.08

AR

These balancing moments
are indicated on the frame in
Figure 5.22

Figure 5.22

The carry—over moments equal to 50% of the balancihg moments are applied to joints A,

B,E, Fand C.

s

E ||A+8.96
1

1
+17.92

: stiffness = %4 I/L
b

No carry—over to D:
stiffness = ¥4 I/L

-19.20

OO
D ==

No carry—over to G:

Figure 5.23

h%

As before with beams, the above process is carried out until the required accuracy is
obtained. This is illustrated in Example 5.4 and the solutions to Problems 5.9 to 5.16.
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5.3.1 Example 5.4 No-Sway Rigid-Jointed Frame 1

A rigid-jointed, two-bay rectangular frame is pinned at supports A, D and E and carries
loading as indicated in Figure 5.24. Given that supports D and E settle by 3 mm and 2 mm
respectively and that £ = 102.5 x 10° kNm?;

i) sketch the bending moment diagram and determine the support reactions,
ii) sketch the deflected shape (assuming axially rigid members) and compare with

the shape of the bending moment diagram, (the reader should check the answer
using a computer analysis solution).

16 kN 20 kN

6.0 m

Support D settles by 3 mm; Support E settles by 2 mm
EI=102.5 x 10’ kNm’

Figure 5.24

Fixed-end Moments:
The final fixed-end moments are due to the combined effects of the applied member
loads and the settlement; consider the member loads,

16 kKN 20 kN

4.0m

6.0 m

SN

Support D settles by 3 mm
Support E settles by 2 mm
EI=102.5 x 10° kNm’

| 20m | 20m . =
7 7 7 7 1 v

Figure 5.25
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Member AB *

MAB:_EZ— 16.0x4 =— 8.0 kNm
8 8

MBA:+% =+ 16.0x4 =+ 8.0 kNm

* Since support A is pinned, the fixed-end moments are (Mga — 0.5Mg) at B and zero at
A.
(Mga — Mxp/2) =+ 8.0+ (0.5 x8.0)] =+ 12.0 KNm.

Member BC
2 2
MBc=—PZf - {_(20.0><4220><2.0 H %o kNm
2 2
M= T {+(20.0x4.§) xz.oj} 7.8 N
L 6
Member CE *
2 2
Mep = -5 = 80X60 150 1nm
12 12
2 2
MEC=+M;]; 4 S0X6T 180 kNm

* Since support E is pinned, the fixed-end moments are (Mcg — 0.5Mgc) at C and zero at
E.
(Mcg — 0.5Mgc) =[-18.0—-(0.5x%18.0) ]=-27.0 kNm.

Consider the settlement of supports D and E: dyg = 3.0 mm and &c = 1.0 mm

B E
AL 20m | 20m 4.0 m | 20m ':IZ.Omm

A i i
§ Figure 5.26
=

3(EIS 3(102.5%10° x0.003
Mgp =— (L2 AB):— ( 10 )2—57.6kNm
‘AB .
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Note: the relative displacement between B and C i.e. dgc = (3.0 — 2.0) = 1.0 mm
* 3
6(E1.515,.) :+6(1.5><102.5><10 x0.001)

L 6.0°
MCB =+25.6 kNm

Mgc=+ =+25.6 kNm
Final Fixed-end Moments:

Member AB: Myz=0
Member BC:  Mpc=-8.9+25.6 =+ 16.7 kNm

Mppa=+12.0-57.6=—45.6 kNm
Mcg=+17.8+25.6=+43.4kNm

Member CE~ Mcg=-27.0 kNm Mpc=0
Distribution Factors : Joint B
3 7 k 0.19
kga=| —x——|=0.191 DFgp= —BA = —— =0.3
4 4.0 K toral 0.63
1.51 k 0.25
ksc=| ——|=025] Kiota = 0.631 DFpc= —2% = "= =04
6.0 Kol 0.63
I k 1
ksp = zx— =0.19/ DFpp = —22- :Q =0.3
4 4.0 K toral 0.63
Distribution Factors : Joint C
. k 2
kCB=(16iOI]—0251 DFCB=k&=%=057
‘ keota = 0.441 k“"al '
3 1.51 0.1
kep = | =x——| =0.197 DFcp= —E _ 0 =0.43
4 6 ktotal 0.44
Moment Distribution Table:
Joint A D B C E
AB | DB BA BD BC CB CE EC
D‘SF““’““"“ 1.0 | 1.0 0.3 0.3 0.4 0.57 0.43 1.0
actors
Fixed-end - 45.60 +16.7 +434 | -270
Moments
Balance + 8.67 + 8.67 +11.56 J —-9.35 —17.05
Carry-over —467 T 1 +578
Balance +1.40 +1.40 +187 | | -3.29 —2.49
Carry-over —1.65 ¥ +093
Balance +0.49 +0.49 +0.66 { 4 —0.53 -0.4
Carry-over —027 777 +033
Balance 0.08 +0.08 +0.11 -0.19 -0.14
Total 0 0 -34.96 +10.65 +24.31 +37.08 —37.08 0
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Continuity Moments:
Zero  3496kNm _ B 24.31 kNm 37.08 kNm
N
37.08 kKNm
10.65 kNm

g

(=]

ﬂ"
g
2
O

zero
et
7 7 7 7 1
37.08 kNm
37.08 kKNm
A B B
WWMJMHHHJ 10.65 kNm W
B 2431KkNm
34.96 kNm
D

E

Fixed Bending Moment Diagrams

Free bending moments:

| 16 kN 20kN
2.0m ‘ 2.0m ? 40m 2.0m$

1 N )

8.0 kN 6.67 kN 13.33 kN

8.0 kN

PL Pab
+ = +
4 L
Member AB: Member BC
Moo= PE_16X% 0 0kNm My = L0 20X4X2 o o7 kNm

4 4 L
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Member CE:
18.0 kN 7
2 2
6.0m Miee = % - % ~27.0 kNm

10.65 kNm . 16.62 KNm l
, T /37.08 KNm
A 2431kNm M=—16.62+26.67
34.96 kNm M=+10.05 kNm
Maximum bending moment
M=+ (0.5x%x34.96) + 16.0
M =+ 33.48 KNm
Maximum bending moment * ;
D M =11.64 kNm e
£

Bending Moment Diagram

The maximum value along the length of member CE can be found by identifying the

point of zero shear as follows:

C 24.18 kN

7 37.08 kNm
+ve) SMc =0
. ; +(6.0 X 6.0 X 3.0) — 37.08 — (Hg X 6) =0
S = 0.0kN/m Hg=+11.82 kN —
= X x=(11.82/6.0)=1.97 m
i, M paimum = (0.5 X 1.97 x 11.82) = 11.64 kNm

11.82 kN

Shear Force Diagram
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4.0m

Consider Member BD
+ve ) IMp=0
+10.65—(Hp*x4.0)=0 oo Hp=+2.66 KN —

Consider a section at B
+ve ) 2Mg=0
+24.31+(20.0 x4.0) - (11.82x 6.0) + (6.0 x 6.0 x 3.0) — (Vg X 6.0)=0
o Ve=+2357TkN |

Consider Member AB:
16kN 34.96 kNm
" +ve ) My =0
»]|B: —34.96 — (16.0 x 2.0) + (VA x 4.0)=0
V; 20m | 20m ] s Va=+16.74 KN
f T
For the complete frame:
+ve t =F,=0
+16.74 - 16.0 = 20.0 + 23.57 + V=0 o Vp=—431kN |
+ve — XF,=0
Hy+11.82+2.66—(6.0%6.0)=0 s Hy=+21.52kKN —
A B tension topside. C A B C
= tension tension underside 1 &\ il B ==
underside ! ) \ 1
:\ pointsof |
ension tension contraflexure

1

1

1

o

tension 1

D |
|

1

I

: Deflected Shape %4

pabroaey
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5.3.2 Problems: Moment Distribution — No-Sway Rigid-Jointed Frames
A series of rigid-jointed frames are indicated in Problems 5.9 to 5.16 in which the
relative E7 values and the applied loading are given. In each case:

i) sketch the bending moment diagram and determine the support reactions,

ii) sketch the deflected shape (assuming axially rigid members) and compare
with the shape of the bending moment diagram, (check the answer using a

computer analysis solution).

25 kN

50m

Problem 5.9

Hy

Problem 5.11

12 kN/m

6.0 m

Problem 5.12
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Problem 5.13

Vb
. H
Horizontal E, 1 g
Prop \ 20 kN/m <
HB C —
Problem 5.14 g
=
<
E

Problem 5.15

Problem 5.16
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5.3.3 Solutions: Moment Distribution — No-Sway Rigid-Jointed Frames

Solution

Topic: Moment Distribution — No-Sway Rigid-Jointed Frames

Problem Number: 5.9

% S 258X8 ~ +25.0 kNm

Distribution Factors : Joint B
I
kga=|—=1=0.21

" (5j

ke = (%) =0.257

Fkota = 0.451

Page No. 1
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Solution
Topic: Moment Distribution — No-Sway Rigid-Jointed Frames
Problem Number: 5.9 Page No. 2

Moment Distribution Table:

Joint

Distribution Factors
Fixed-end Moments
Balance
Carry-over +5.5“
Total +5.5

Continuity Moments:
11.0 kNm

11.0 kNm B
B

32.0 kNm

B

Fixed Bending Moment Diagrams

Free bending moment:

l 25 kN
B C
12.5 kN l 4.0m 4.0 m %12.5 kN

~ T

Member BC:
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Solution
Topic: Moment Distribution — No-Sway Rigid-Jointed Frames
Problem Number: 5.9 Page No. 3

32.0 kNm

11.0 kNm

Maximum bending moment:
M =-10.5x(11.0+32.0)] +50.0
M =+28.5 KNm

Bending Moment Diagram

A 5.5 kNm
Consider Member AB:

AN —

+Ve)ZMB=O

+55+11.0 = (Ha % 5.0)=0 W H,=+33kN —

For the complete frame:
+tve — XF, =0
33+Hc=0 S Hc=-33kN =
+ve ) 2MA=0
+55+(250%x4.0)-(3.3x%x5.0)+32.0-(Vcx8.0)=0

o Ve=+15.13 kN }

+ve 1 3F,=0
Va—25.0+15.13=0 o Va=+98TkN 1

tension outside tension outside zero slope
o~

NI -
-~ .'—
T

\ /

points of contraflexure

L

tension outside

tension
inside _ zero slope
=S

>

Deflected Shape
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Solution
Topic: Moment Distribution — No-Sway Rigid-Jointed Frames
Problem Number: 5.10 Page No. 1

Fixed-end Moments:

Length of member AB = /(2.0 +4.0°) =4.472 m

Member BC*
wl> _ 40.0x5 8.0x5
8 12
_ ., 40.0x5 8.0x5?
8

=—41.67 kNm

=+41.67 kNm

* Since support C is pinned, the fixed-end moments are (Mpc — 0.5Mcp) at B and
zero at C.

(Mgc — 0.5Mcg) = [- 41.67 — (0.5 x 41.67)] = — 62.51 kNm.
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Solution
Topic: Moment Distribution — No-Sway Rigid-Jointed Frames
Problem Number: 5.10 Page No. 2

Distribution Factors : Joint B

I
Jon= | —— | =0.221
o (4.472}

—) =0.151
5

ktotal = 0-37[

Moment Distribution Table:

Joint

Distribution Factors
Fixed-end Moments
Balance
Carry-over
Total

Continuity Moments:
36.88 kNm 36.88 kKNm

A 18.44 kNm

; 2.0m | 2.5m , 2.5m
18.44 kNm 7 \

Fixed Bending Moment Diagrams

Free bending moment:
40 kN

| E 8 kN/m
B C Member BC:
R 2
% 2.5 2.5 ? PL  wL
40 kN T~ m L m T 40 kN Mfree =—+

4 8

W 2 _40x5 _ 8.0x5.0°
FL v 4 8

4 8 =75.0 KNm
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Solution
Topic: Moment Distribution — No-Sway Rigid-Jointed Frames
Problem Number: 5.10 Page No. 3

Maximum bending moment:
M =-(0.5x%36.88)+75.0
M =+56.56 kNm

Bending Moment Diagram

A 18.44 kNm

Consider Member BC: 40 kN
36.88 kNm 8.0 kN/m

+ve J)EMp=0
~36.88 +(40.0 X 2.5) + (8.0 X 5.0 x 2.5) = (Ve x 5.0)=0 . Ve=+32.62kN }

For the complete frame:
+ve ) 2MA=0
+18.44 + (40.0 x 4.5) + (8.0 x 5.0 x 4.5) — (32.62 x 7.0) + (Hc * 4.0)=0
s Hc=—3753 KN <

+ve T XF,=0
Va—40.0-(8.0x5.0)+32.62=0 oo Va=+47.38 kN T

+ve — XF, =0
Hy,—-3753=0 s Hy=+3753 kKN —

tension outside

A/~ slope
Deflected Shape
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Solution
Topic: Moment Distribution — No-Sway Rigid-Jointed Frames
Problem Number: 5.11 Page No. 1

Fixed-end Moments:

Member AB*
30'2X6 —_22.5kNm

_ 4 300x6 _ 55 5 1Nm

* Since support A is pinned, the fixed-end moments are zero at A and (Mga — 0.5Mp)
at B.
(Mga — 0.5Mxp) = [22.5 + (0.5 X 22.5)] =+ 33.75 kKNm.




Solution

Rigid-Jointed Frames

Topic: Moment Distribution — No-Sway Rigid-Jointed Frames

Problem Number: 5.11

Member BC

45.0%4 ) 5 kNm

_ e BO0XE o s kNm

Member BD

2 2
M=y WL, 100x35
12 12

2 2
Moy = — wLl” _ 10.0x3.57 10.21 kKNm
12 12

=+10.21 kNm

Distribution Factors : Joint B

> ktotal =0.731

I
kap=| — | =0.291
5P (3.5)

Moment Distribution Table:

Page No. 2

Total

385

Joint A B

AB BA BD

BC

Distribution Factors 1.0 0.26 0.40

0.34

Fixed-end Moments +33.75 | +10.21

-225

!
Balance —558 | —8.58

=73

Carry-over

Total +28.17 | +1.63

—-29.8

Note: the sum of the
moments at joint B = zero
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Solution
Topic: Moment Distribution — No-Sway Rigid-Jointed Frames
Problem Number: 5.11 Page No. 3

Continuity Moments:

zero 2817kNm _ B 29.8kNm |53 kNm

14.5 kNm

28.17 kNm

B C

Fixed Bending Moment Diagrams

14.5 kNm

Free bending moments:

‘ 30 kN & — ‘45 kN
A B B C
B
2.0m 2.0m
f N
S kN

22 22.5kN

4

Free Bending Moment Diagrams
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Solution
Topic: Moment Distribution — No-Sway Rigid-Jointed Frames
Problem Number: 5.11 Page No. 4

Member AB:

= 300%6 _ 450 kNm

Member BD:
wL’ _10.0x3.5°

8 8
Member BC:
PL _ 45.0x4

4

Mpee =+ =15.31 kNm

Mpee =+ =45.0 kNm

28.17 kNm _,
14.09 KkNm___.----="""""

W 1.63 kNm|

y Maximum bending moment:
Maximum bending moment: M =-105x(29.8+18.8)] +45.0
M =-(0.5%x28.17)+45.0 M =+20.7 kNm

M =+30.92 kNm . NI

én

14.5 kNm

A

Maximum bending moment: *
M =793 kNm

Bending Moment Diagram

The maximum value along the length of member DB can be found by
identifying the point of zero shear as follows:

B 13.82 kN

1.63 kNm
10.0 kN/m +Ve) Mg =0

+1.63 = (10 x3.5x 1.75) — 14.5 + (Hp x 3.5) = 0
o Hy=+2118 kN <

14.5 KNm "l x=(21.18/10.0)=2.118 m
Miuasimam = (0.5 X 2.118 x 21.18) — 14.5 = 7.93 kNm

21.18 kN

Shear Force Diagram




388 Examples in Structural Analysis

Solution
Topic: Moment Distribution — No-Sway Rigid-Jointed Frames
Problem Number: 5.11 Page No. 4
Consider Member AB:

28.17 kNm

+ve ) EMp=0
+28.17 — (30.0 x 3.0) + (V4 X 6.0)= 0 v Va=+1031 kN

Consider Member BC:
45 kN
29.8 KNm

+ve ) EMp=0

—29.8+(45.0 x 2.0) + 18.8 — (Vcx 4.0)=0 5 Ve=+19.75 kN

For the complete frame:
+ve } 5F, =0
1031 -30.0 - 45.0 + 19.75 + V=0 o Vp=+4494kN 1}

There is insufficient information from the moment distribution analysis to
determine the values of H, and H¢ separately; i.e.

+ve — XF, =0
(10.0x3.5)+ Hy+Hp+ Hc=0 o Hy+ Hc=(35.0 —21.18) = 13.82 kKN

tension

tension tension
underside underside points of

tension i . point of contraflexure I contraflexure

_— point of

Zero I contraflexure
slope I

D
Deflected Shape
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Solution
Topic: Moment Distribution — No-Sway Rigid-Jointed Frames

Problem Number: 5.12

12 kN/m

Page No. 1

Member BC*

Pab* wi?
Mpc =— - =

~ 24.0x3x1? ~ 12.0x 4>

=—20.5 kNm

I? 12 42

wi? 24.0x3%x1  12.0x42
+ =+ +

12

12 4?

=+29.5 kNm

* Since support C is a roller, the fixed-end moments are (Mpc — 0.5Mcp) at B and

zero at C.

(Mgc — 0.5Mcp) = [ 20.5 — (0.5 X 29.5)] = — 35.25 kNm.
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Solution
Topic: Moment Distribution — No-Sway Rigid-Jointed Frames
Problem Number: 5.12 Page No. 2

Length of member AB = (6.02 + 2.52) =6.5m

Distribution Factors : Joint B

> ktotal =0.711

Moment Distribution Table:

Joint A
AB BD BC
Distribution Factors 1.0 0.41 0.27
Fixed-end Moments —35.25

!
Balance +11.28 | +1445| +9.52
Carry-over
Total +11.28 | +14.45 | —25.73

Note: the sum of the moments
at joint B = zero
Continuity Moments:

zero

11.28 KNm
25.73 kNm Zero

14.45 kNm
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Solution
Topic: Moment Distribution — No-Sway Rigid-Jointed Frames
Problem Number: 5.12 Page No. 3

25.73 kNm
11.28 kNm

B 14.45 kKNm

Fixed Bending Moment Diagrams

Free bending moments:

12 kN/m : 24kN ‘
B IO T T AT ¢

Note:
In this problem, the point of

30.0 kN L 3.0m ‘ 1.0m 7\42.OkN zero shear in member BC

‘ occurs under the point load.

WMMHHHMM““ Free Bending Moment Diagram
36.0 kNm

Member BC:  Mfpee =+ [(42.0 X 1.0) — (12.0 X 1.0 X 0.5)] =+ 36.0 kNm

A 25.73 kNm

Maximum bending moment:
D =—(0.25x25.73) +36.0
723 KNm M =+29.57 kNm

Bending Moment Diagram
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Solution
Topic: Moment Distribution — No-Sway Rigid-Jointed Frames
Problem Number: 5.12 Page No. 4

Consider Member BC:

+ve ) EMp=0 |
~25.73+(12.0 x 4.0 x 2.0) + (24.0 x 3.0) = (Ve x 4.0)=0 .. Vc=+3557kN }

Consider Member BD:

+1445+723 - (Hpx3.5)=0 s Hp=+619kKN —=

For the complete frame:

+ve — X, =0

+Hys+Hp=0 S Hy=—6.19 KN <—

+ve ) 2MA=0

+7.23 +(12.0 x 4.0 x 8.0) + (24.0 x 9.0) — (35.57 % 10.0) — (6.19 x 6.0) — (Vb X 6.0)
=0

o Vp=+3573kN 1}

+ve T 2F,=0

35.73 - (12.0 x 4.0) —24.0 +35.57+ V,=0 S Va=+0.7kN ?

tension ¥% \N -

underside point of

~ contraflexure
Zero

T slope
D

Deflected Shape
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Solution
Topic: Moment Distribution — No-Sway Rigid-Jointed Frames
Problem Number: 5.13 Page No. 1

Fixed-end Moments:

Member AB

wiL? 12.0x4?
M = — = —
AB 12 12

=—-16.0 kNm

2 2
My =+ m;é 4 12.0x4

=+16.0 kNm
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Solution
Topic: Moment Distribution — No-Sway Rigid-Jointed Frames
Problem Number: 5.13 Page No. 2

Member CD*
36.0x4

8

MDC=+%=+ 36'(;(4 =+ 18.0 kNm

=—18.0 kNm

* Since support D is pinned, the fixed-end moments are (Mcp — 0.5Mpc) at C and
zero at D.
(Mcp — 0.5Mpc) = [-18.0 — (0.5 x 18.0)] = —27.0 kNm.

Distribution Factors : Joint B

I
fga=| — | =0.251
o (4.0)

1

ktotal = 0.511
kBC = (4—()) = 0251

Distribution Factors : Joint C

ke = (ﬁ) =0.251
' ktotal = (0.441

3 (1
kep= x| —— | =0.191
Py (4.0)

Moment Distribution Table:

Joint A
AB
Distribution Factors 0
Fixed-end Moments
Balance
Carry-over
Balance
Carry-over
Balance
Carry-over
Balance
Carry-over
Total




Rigid-Jointed Frames

Solution

Topic: Moment Distribution — No-Sway Rigid-Jointed Frames

Problem Number: 5.13

Continuity Moments:
22.35 kNm

Page No. 3

3.31 kNm
B

12.72 kNm

22.35 kNm

3.31 kNm
B

C

3.31 kNm

12.72 kNm

12.72 kNm

395

Fixed Bending Moment Diagrams

Free bending moments:

12.0 kN/m E
B

|36kN

A
24.0 kN l 4.0m l 240kN  18.0 kN 2.0m 2.0m ?18 0 kN

K

L1 1

wi?
+ PR
8

Free Bending Moment Diagrams

Member AB:  Mi. = (12.0 x 4°)/8 = 24.0 kNm
Member CD: M. = (36.0 X 4)/4 = 36.0 kNm
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Solution
Topic: Moment Distribution — No-Sway Rigid-Jointed Frames
Problem Number: 5.13 Page No. 4

22.35 kNm

______________ 12.83 kNm
L
A B |

B

24.0 kNm

Maximum bending moment:*
M =12.16 KkNm

12.72 kNm
C D

12.72 kNm
Maximum bending moment:

Bending Moment Diagram M =-(0.5x12.72) +36.0
M =+29.64 kNm

e The maximum value along the length of member AB can be found by
identifying the point of zero shear as follows:

2235kNm  12.0kN/m  3.31 kNm
A B
5
Va

28.76 kN

Shear Force Diagram

N

—22.35—(12.0x4.0x2.0) + 3.31 + (V4 x4.0)=0 o Vi=+28.76kN |

-I—Ve)ZMB=O

x = (28.76/12.0)=2.4m

M naximum = (0.5 X 2.4 X 28.76) — 22.35=12.16 kNm
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Solution
Topic: Moment Distribution — No-Sway Rigid-Jointed Frames
Problem Number: 5.13 Page No. 4

Consider Member CD:

—12.72+(36.0 X 2.0) — (Vp x 4.0) = 0 o Vp=+1482KkN 1}

For the complete frame:
+ve T 2F,=0
28.76 — (12.0 x 4.0) = 36.0+ 14.82+ V=0 ~ Ve=+40.42 kN T

+ve ) M, =0
—22.35+(12.0 x 4.0 x 2.0) + (36.0 x 6.0) — (40.42 x 4.0) — (14.82 x 8.0) — (Hp x 4.0)
=0

S Hpy=+235kKN —
+tve — 2XF, =0

+H\+Hp=0 o Hy=-235kN

tension tension Zero
topside topside slope

\ A B
. . RS i
tension underside A

point of contraflexure

-

tension

N e o - -

C & - - C 4 - D
%% tension underside s \‘ S - =

point of contraflexure

Deflected Shape
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Solution
Topic: Moment Distribution — No-Sway Rigid-Jointed Frames
Problem Number: 5.14 Page No. 1

Horizontal Prop 20 kN/m

Fixed-end Moments:

20 kN/m

1T il
Qll_lIIIIIIIIIIIIIIIIIIIIIIIIII!ﬁFk\Q

Member BC

12 20.0x 6>
Mpc=— = -
12 12

2 2
Moy =+ WL | 2006
12 12

=—60.0 kNm

=+ 60.0 kNm
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Solution
Topic: Moment Distribution — No-Sway Rigid-Jointed Frames
Problem Number: 5.14 Page No. 2

Length of member AB = (4.02 + 4.02) =5.657m

Distribution Factors : Joint B
2.0/
kga=|——|=0.357
o (5.657)

ktota] = 0-61

Distribution Factors : Joint C
1.57 3
keg=|—— 1| =0.251
® ( 6.0 ]

_3 (1)
kCD = ZX(RJ =0.19/ > ktotal =0.697

1
kCE = (4—0J = 0251

J

Moment Distribution Table:

Joint A
AB
Distribution Factors 0
Fixed-end Moments
Balance
Carry-over
Balance
Carry-over
Balance
Carry-over
Balance
Carry-over
Total
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Solution
Topic: Moment Distribution — No-Sway Rigid-Jointed Frames
Problem Number: 5.14 Page No. 3

Continuity Moments:

B 426kNm 482 KkNm

42.6 kNm

48.2 kNm

C

21.1 kNm
27.1 kNm
C

Fixed Bending Moment Diagrams é
13.6 kNm

21.3 kNm E

Free bending moments: 20.0 kN/m E
B C
60.0 kN l 6.0 m l 60.0 kN

Member BC: M. = (20.0 x 6°)/8 = 90.0 kNm

Free Bending Moment Diagram
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Solution
Topic: Moment Distribution — No-Sway Rigid-Jointed Frames
Problem Number: 5.14 Page No. 4

454 kN

________________________ "
42.6 kNm A\ h

CE= 271 kNm
21.1 kNm

Maximum bending moment: *
M =44.9 kNm

13.6 KNm é

21.3 kKNm
Bending Moment Diagram

* The maximum value along the length of member BC can be found by
identifying the point of zero shear as follows:

42.6 kNm 20.0 kN/m 48.2 kNm

B C
4

Vs

Shear Force Diagram

x|
+ve ) SMc =0
~42.6— (20.0 X 6.0 X 3.0) + 48.2 + (Vy X 6.0) = 0 © Ve=+59.1kN |

x =(59.1/20.0) = 2.96 m

M paximum = (0.5 X2.96 X 59.1) —42.6 = 44.9 KNm
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Solution
Topic: Moment Distribution — No-Sway Rigid-Jointed Frames
Problem Number: 5.14 Page No. 4

Consider Member CE:
+Ve)ZMC =0
—27.1-13.6 —(Hgx4.0)=0
oo Hg=-1018 KN <+

Consider Member CD:
+ve JEMc =0
—-21.1+(Hpx4.0)=0
s Hp=+528 kN —

Consider Member AB:
21.3 kNm +ve ) 2SMp=0

Hy 4 +42.6+21.3 - (Hx*x4.0)+ (VA x4.0)=0
. s HA=V,A+1598
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Solution
Topic: Moment Distribution — No-Sway Rigid-Jointed Frames
Problem Number: 5.14 Page No. 5

20 kN/m

Consider a section at C:

+ve ) ZMc=0

+48.2 —(20.0 x 6.0 x3.0) +21.3 — (HA*x 4.0) + (VA x 10.0)=0
s Hy=2.5V,A—172.63

. Va+15.98=2.5V,—172.63 o Vyi=59.1kN 1}

S~ Hy,=751kN —
For the complete frame:
+ve — XF=0
+75.1+528-10.18+ Hg=0 S Hg=+70.2 kN <—

There is insufficient information from the moment distribution analysis to
determine the values of V' and Vg separately; i.e.

tvet2F,=0

—(20.0x6.0)+59.1+Vp+ V=0 S Vp+ VE=+(120.0 —59.1) =+ 60.9 kN

7 .
tension

Deflected Shape




404 Examples in Structural Analysis

Solution
Topic: Moment Distribution — No-Sway Rigid-Jointed Frames
Problem Number: 5.15 Page No. 1

50m

7

Fixed-end Moments:

50.0x4
=+

=+25.0 kNm

* Since support C is pinned, the fixed-end moments are (Mpc — 0.5Mcp) at B and
zero at C.
(Mpc — 0.5Mcp) = [-25.0 — (0.5 X 25.0)] =— 37.5 kNm.
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Solution
Topic: Moment Distribution — No-Sway Rigid-Jointed Frames
Problem Number: 5.15 Page No. 2

Distribution Factors : Joint B

(2 =0 |
5.0

} Koo = 1.121

Moment Distribution Table:

Joint A
AB

Distribution Factors | 1.0
Fixed-end Moments
Balance
Carry-over
Total

Continuity Moments:
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Solution
Topic: Moment Distribution — No-Sway Rigid-Jointed Frames
Problem Number: 5.15 Page No. 3

25.1 kNm

% 3.8 kNm

Fixed Bending Moment Diagrams

Free bending moments:

|50kN
B

C

25.0 kN 2.0m J 20m ?25.0 kN

< T T

\

Free Bending Moment Diagram

Member BC:  Mfe. = (50.0 X 4)/4 = 50.0 kNm
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Solution
Topic: Moment Distribution — No-Sway Rigid-Jointed Frames
Problem Number: 5.15 Page No. 4

e 12,55 KNm

B N M

9.7 kNm

Maximum bending moment:
M =-(0.5%x251)+50.0

M =+37.45 KNm
é 3.8 KNm

Bending Moment Diagram

Consider Member AB:
+ve )M = 0
+7.9+ (VA% 5.0)=0
S Va=+158kN |}

Consider Member BC:

+ve )EMy =0

—25.1+(50.0%2.0)— (Vcx4.0)=0
o Ve=+18.73 kN

7

Consider Member BE:
+ve ) 2Mg=0
+75+3.8—-(Hgx4.5)=0
s Hg=+251kN —
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Solution
Topic: Moment Distribution — No-Sway Rigid-Jointed Frames
Problem Number: 5.15 Page No. 4

Consider Member BD:
+ve ) Mg =0
+9.7+49+ (Hp x3.5)=0
S Hp=—417kN =

There is insufficient information from the moment distribution analysis to
determine the values of H,, Hc, Vp and Vi separately; i.e.

+ve — XFy=0
HA+HC—4.17+2.51:0 HA+HC =+ 1.66 kN

+vel =F,=0
~50.0+ 1.58 + 18.73 + Vp+ V=0 v Vo + Vi =+29.69 kN

D

o~y
. I
tension 1
1

tension
i i ]
tension topside A D

C
B tons: ZS y
ension 7610~

tension underside slope

™\ point of
I contraflexure

tension

222
E
point of

point of contraflexure

contraflexure
Zero
= slope
E

Deflected Shape
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Solution
Topic: Moment Distribution — No-Sway Rigid-Jointed Frames
Problem Number: 5.16 Page No. 1

)

Member AB

2 2
M= 804 667 kNm
12 12

2 2
M=+ wL . 8.0x4
12 12

=+10.67 kNm
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Solution
Topic: Moment Distribution — No-Sway Rigid-Jointed Frames
Problem Number: 5.16 Page No. 2

Member BC
wL? _ P.ab’ B P,ab’
12 L r
2 2 2
_ l:(25.(1);<6 ]_{16.0x2¥)x4.0 ]J{zo.owgzoxz.o ﬂ 081 KNm

wi? Pa’b P.a’b
Mceg =+ + - + 2
@ 12 2 I

2 2 2
. {(25.(1);6 J+[16.Ox26.§) x4.oj+[2o.0xz.20 xz.oj} 4999 kKNm

Mpc=—

Member CD *
2 2
MCD=+WL =+ 6.0x6 =+18.0 kNm
12 12
_ 6.0x6°
12
* Since support D is pinned, the fixed-end moments are (Mcp — 0.5Mpc) at C and
zero at D.
(Mcp - 0.5Mpc) =[+18.0 + (0.5 x 18.0) ]=+27.0 kNm.

=—18.0 kNm

Distribution Factors : Joint B

I
kg = | — | =0.251
BA (4.0)

kot = 0.421

I
koo = | —— | =0.171
5 (6.0)

Distribution Factors : Joint C

I
kew=|—— | =0.171
< [6.0)

ktotal =0.31

3 (1
kep= x| ——| =0.131
Py (6.0)
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Solution
Topic: Moment Distribution — No-Sway Rigid-Jointed Frames
Problem Number: 5.16 Page No. 3

Moment Distribution Table:

Joint A C

AB CB CD

Distribution Factors 0 . . 0.57

Fixed-end Moments +99.9

Balance L —72.3

Carry-over e 17.49

Balance —-9.97

Carry-over N+ 7.24

Balance . —-4.13

Carry-over +1.5 1 > +1.0

Balance +1.2 -0.57

Carry-over +0.6 1

Total +28.52 +89.1 + 38.66

Continuity Moments: 89.1 kNm 38.66 kNm

89.1 kNm

38.66 kKNm
B C

NN

28.52 kNm

Fixed Bending Moment Diagrams
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Solution
Topic: Moment Distribution — No-Sway Rigid-Jointed Frames
Problem Number: 5.16 Page No. 4

Free bending moments:
16.0 kN 20 kN
25.0 kN/m

8.0 kN/m
6.0 kKN/m

Mfrcc maximum — 148.4 kKNm *

Free Bending Moment Diagrams

Member AB: Mo = (8.0 X 4%)/8 = 16.0 kNm

* Member BC: 16.0kN  20.0kN

25.0 kN/m
I s
A

Y L
2.0m J 2.0m ‘

T ~

2.0m

423 kN
26.3 kN

|

+ve ) SMc =0
~(16.0x4.0) = (20.0 X 2.0) — (25.0 X 6.0 X 3.0+ (V5 x 6.0)=0  Vp=+92.3kN

Position of zero shear x = [2.0 + (26.3/25.0)]=3.05m

M aximum free bending moment = [0.5 X (92.3 +42.3) x 2.0] + (0.5 x 1.05 x 26.3)
= 148.4 kNm

Member DC: M. = (6.0 X 6°)/8 =27.0 kNm
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Solution
Topic: Moment Distribution — No-Sway Rigid-Jointed Frames
Problem Number: 5.16 Page No. 5

89.1 kNm
e 38.66 kNm

89.1 kNm g ; ' 38.66 kNm

Maximum bending moment:*

M =+86.67 kNm
-—

Maximum bending moment:*
M =49.74 kNm

A
28.52 kNm

Bending Moment Diagram

D

* The maximum value along the length of members BC and DC can be found
by identifying the point of zero shear as follows:

Member BC:
160kN 20kN 2>-0KN/m +ve ) ZMc =0
89.1 kNm 38.66 kKNm —89.1 —(16.0x4.0) — (20.0 X 2.0)
B C —(25.0 x 6.0 x 3.0) + 38.66 + (Vg X 6.0) =0
1 Vs =+ 100.8 kN
6.0 m
S08KN x=2.0+(34.8725.0)=3.39 m

P08 KN 77— 34,8 kN Miasimam = [0.5 % (100.8 + 50.8) x 2.0]

\\\‘853kN + (0.5 x 1.39 x 34.8) — 89.1
353 kN ' Mmaximum = 86°67 kNm

Shear Force Diagram

Vs

| x
N LY

Member CD:

38.66 kN
" +ve ) EMc =0
—~38.66 — (6.0 X 6.0 x 3.0) + (Hp X 6.0) = 0
Hp=+2444 kN <—

=
<
o°

x =(24.4/6.0)=4.07 m

pE | 244N Mipasimum = (0.5 X 4.07 X 24.44) = 49,74 kNm

Hp Shear Force Diagram
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Solution
Topic: Moment Distribution — No-Sway Rigid-Jointed Frames
Problem Number: 5.16 Page No. 6

Consider Member AB:
B \.
89.1 KNm

§ Consider Member AB:
¥ +Ve)ZMB =0
28.52 KNm +89.1 +28.52 — (8.0 x 4.0 x 2.0) — (HA % 4.0)=0
oo Hy =+13.41 KN —

For the complete frame:
+ve — XF, =0
13.41 + (8.0 x4.0) + (6.0 x 6.0) —24.44 - H:-=0 S He=+5697kN <—

+Ve)ZMA=O

12852 + (8.0 x 4.0 x 2.0) + (25.0 X 6.0 x 3.0) + (16.0 x 2.0) + (20.0 x 4.0)
(5697 x 4.0) + (6.0 x 6.0 x 1.0) + (24.44 x 2.0)— (Vi X 6.0) =0

o Vp=+8525kN |
+ve t 5F, =0
Vo —(25.0 % 6.0) = 16.0 — 20.0 + 85.25 = 0  Vy=+10075kN 4

tension tension
t_o;zs1_de topside_ . B
B . . s 7
tension underside I \'t - z/'l
~ —— -

I
I
. 1
tension : point of contraflexure
1
1

|

pointof 1
contraflexure |
_ zero slope

tension K
A

Deflected Shape
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5.4 Moment Distribution for Rigid-Jointed Frames with Sway

The frames in Section 5.3 are prevented from any lateral movement by the support
conditions. In frames where restraint against lateral movement is not provided at each
level, unless the frame, the supports and the loading are symmetrical it will sway and
consequently induce additional forces in the frame members.

Consider the frame indicated in Figure 5.27(a) in which the frame, supports and applied
load are symmetrical.

16 kN
B El C The reader should analyse this
g EI EI frarpe to. copﬁrm the results
e indicated in Figure 5.27(b).
_1A DIl
RN 4.0m 4.0m ey
8.0 m (@)
16 kN
B C The frame loads and reactions
satisfy the equations of
6.74 kNm 6.74 kKNm equilibrium, i.e.
ZI?x =0, ZFZ =0, ZI?moments =0,
A D :
6.74 KN S S 6.74 KN
8.0 kN 8.0 kN (b)
Figure 5.27

Consider the same frame in which the load has been moved such that it is now asymmetric
as indicated in Figure 5.28(a)

The reader should analyse this
frame to confirm the results
indicated in Figure 5.28(b).

(@)

The frame loads and reactions
DO NOT satisfy the equations
of equilibrium, i.e.

7.53 KNm 5.12 KNm YF, #0, XFnoments # 0,

A D
7.53 KN ks & 512 kN
10.6 kN 5.4 kKN (b)

Figure 5.28

B C
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It is evident from Figure 5.28(b) that the solution to this problem is incomplete. Inspection
of the deflected shapes of each of the frames in Figure 5.27(a) and 5.28(a) indicates the
reason for the inconsistency in the asymmetric frame.

Consider the deflected shapes shown in Figures 5.29 (a) and (b):

0 o)
l16kN A l16kN 4
1 B‘~\\ -~C|h ,13\\\\ ,—"C’ 1
| e N :
\ Rl | |
\ 1 1
I
A D A D}
R (@) s AR (b) R
Figure 5.29

In case (a) the deflected shape indicates the equal rotations of the joints at B and C due to
the balancing of the fixed-end moments induced by the load; note that there is no lateral
movement at B and C.

In case (b) in addition to rotation due to the applied load there is also rotation of the joints
due to the lateral movement ‘9’ of B and C. The sway of the frame also induces forces in
the members and this effect was not included in the results given in Figure 5.28(b). It is
ignoring the ‘sway’ of the frame which has resulted in the inconsistency. In effect, the
frame which has been analysed is the one shown in Figure 5.30, i.e. including a prop force
preventing sway. The value of the prop force ‘P’ is equal to the resultant horizontal force

in Figure 5.28.

l 16 kN
Prop Force
B EI C
EI EI
A Figure 5.30

D

AN No-Sway Frame W
The complete analysis should include the effects of the sway and consequently an
additional distribution must be carried out for sway-only and the effects added to the
no-sway results, i.e. to cancel out the non-existent ‘prop force’ assumed in the no-sway
frame.

Sway Force
B EI C
EI El Final Forces = ‘No-Sway Forces’ +
‘Sway-Only Forces’
A D

R Sway-Only Frame W Figure 5.31

The technique for completing this calculation including the sway effects is illustrated in
Example 5.5 and the solutions to Problems 5.17 to 5.22.
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5.4.1 Example 5.5 Rigid-Jointed Frame with Sway— Frame 1

A rigid-jointed frame is fixed at support A, pinned at support H and supported on a roller
at F as shown in Figure 5.32. For the relative £/ values and loading given:

i) sketch the bending moment diagram,
i1) determine the support reactions and
iii) sketch the deflected shape (assuming axially rigid members) and compare with

the shape of the bending moment diagram, (the reader should check the answer
using a computer analysis solution). El=10x 10° kNm®

12 kN 12 kN

| 3.0m | 3.0m | 3.0m Ll.OmL 30m

Figure 5.32
Consider the frame analysis as the superposition of two effects:

Final Forces = ‘No-Sway Forces’ + ‘Sway Forces’

P
Prop Force

=l /0\
Va T, No-Sway Frame

Figure 5.33
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Sway Force

Sway Frame

Consider the No-Sway Frame:
Fixed-end Moments Member BCD

12 kN OFI o
MBC

[\ 3.0m L 3.0m |,
| 7
2 2 6x2(10x10%)x0.003
MBC=—£—£—6—€I5=—12X6—8X6 - ( 2) — —43.0 kNm
8 12 I 8 12 6.0
3
2 2 6x2{10x10°]x0.003
Mg =+ PLo WL OEL o 12X6 | 8X67 ( ) = +23.0 kNm
8 12 12 8 12 6.02

Fixed-end Moments Member DEF

12 kN
Mpr Mrp

Since F is a roller support, the fixed-end moments are (Mpr— 0.5Mgp) at D and zero at F.

2 2 3

Moy = — Pazb s 6L;I§ _ 12><1.0>2<3.0 . 6><10><102><0.003 45N
L L 4.0 4.0
2 2 3

M=+ Pazb . 61:;15 . 12><1.02><3.0 . 6><10><102><0.003 135 Nm
L L 4.0 4.0

(Mpr — 0.5Mpp) = [+ 4.5 — (0.5 x 13.5)] = — 2.25 kNm.
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Fixed-end Moments Member DGH
Since support H pinned, the fixed-end moments are (Mpy— 0.5Myp) at D and zero at H.

Moy = + 2L = 8240 5 5 kNm
Mip = —% __ x40 5o kNm

(Mpr — 0.5Mpp) = [+ 3.0 + (0.5 x 3.0)] = + 4.5 kKNm.

Distribution Factors : Joint B

I k 0.2
kBA = [gj =0.21 DFBA = _BA = E =0.38
ktotal = 0.531 Total ’
21 k 0.33
kBD = (—) =0.331 DFBD =_BD = "= = 0.62
6 Total 0.53
Distribution Factors : Joint D
21 k 0.33
kDB = (—) = 033[ DFDB =_DB =_""° = 0.46
6 Total 0.71
3 (1 k 0.19
kDH = —=X| == 019[ ktotal = 0.711 DFD].[ =_DH — 7"~ = 0.27
4 (4 Total 0.71
3 (1 k 0.19
kDF:—X — 1 =0.197 DFDF:l:— =0.27
4 \ 4 kerotal 0.71
No-Sway Moment Distribution Table:
Joint A B D F H
AB BA BD DB DH DF FD | HD
Distribution Factors 0 0.38 0.62 0.46 0.27 0.27 1.0 1.0
Fixed-end Moments —43.0 +23.0 | +45 | =225 0 0
Balance +16.34 | +26.66 —11.62 | —6.82 | —6.82
Carry-over +8.17 1 —5.81 4 ™13.33
Balance +2.21 +3.60 -6.13 | —3.60 | —3.60
Carry-over +1.10 4 —-3.07 ¢“ ™~+1.80
Balance +1.17 +1.90 —-083 | —049 | —0.48
Carry-over +0.58 # —04] 4% +0.94
Balance +0.15 +0.26 —-044 | -025| —-0.25
Carry-over +0.08 4
Total +9.93 +19.87 | —19.87 +20.06 | —6.66 | —13.40 0 0
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Determine the value of the reactions and prop force P:

12 kN

8 kN/m

Consider member DEF:

13.40 kNm l 12 kN tve ) SMp=0

./ D ./

. +ve ) EMp=0

Consider member BA and a section to the left of D:

10 kN ’ 10 kN

19.87 kNm

9.93 kNm

+ve)zMB:0

Prop Force

~13.40 + (12.0 X 1.0) — (V¢ x 4.0) = 0

Ve =—035kN |

—6.66 — (6.0 X 2.0) — (Hy x 4.0)=0

HH =—4.67 kN <

+9.93+ (VaAx3.0)— (Hyx4.0)+19.87=0 .. Va=-9.93+133H,  Equation (1)

tve ) EMp =0

+9.93 + (V4 X 9.0) — (Hx x 4.0) — (8.0 X 6.0)(3.0) — (12.0 X 3.0) + 20.06 = 0
<. Va=+16.67+0.44H, Equation (2)
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Solve equations (1) and (2) simultaneously:

—9.93 +1.33H,=+16.67 + 0.44H, S HA=+29.89 kN —
Va=+16.67 + (0.44 x 29.89) o Va=+29.82kN T
Consider the equilibrium of the complete frame:

tve 13F,=0

Va—(8.0x6.0)-12.0+ Vy—12.0+ V=0

+29.89-48.0-12.0+ Vy—12.0-035=0 o Va=+4246 kKN T

tve— 2XF, =0
Hy+100+6.0+Hy—P=0
+29.89+16.0-4.67—P=0 S P=+4122KN <—

Since the direction of the prop force is right-to-left the sway of the frame is from left-to-
right as shown.

Sway Force

Apply an arbitrary sway force P’ to determine the ratios of the fixed-end moments.
Opn o)

ﬁ/>AB 6EISgn | |

D F

00
e

2
Lbn

Vi V'

Fixed-end Moments due to Sway

The fixed-end moments in each member are related to the end-displacements (0) in each
case. The relationship between g, dsp and dpy can be determined by considering the
displacement triangle at joint B and the geometry of the frame.



422 Examples in Structural Analysis

Displacement triangle:

B/

D Length of Lag = v/3.0% +4.0°

=50m

I Sa cos@=3.0/5.0=0.6
5 m sinf=4.0/5.0 = 0.8
L b = (Orp c0s8) = 0.6,

#6[)]_[ ﬁLB' d)H = (5AB Sin@ = 0'8§AB

Ratio of Fixed-end Moments: Mag : Mga : Mpp : Mpg : Mpu

_olE1,) | 6(EIBy)  6(EIdy) | 6(EIdy)  3(EISy)
L Lis Lyp Ly Ly
_ 6(EIS,y) 6(EIS,s) N 6( EI % 6,,Cos0) . 6(EIxS,5Cos60)  3(EIX5,,Sin0)
Lo L B I Loy
_ 6(EIS,g) 6(Eld,g) N 6(2.0E16,5 %0.6) N 6(2.0E16,5%0.6)  3(ElJ,5)x0.8
500 500 6.0° ' 6.0° ' 4.0°
={-024:-024:+020:+0.20: —0.15} x (El))as
Assume arbitrary fixed-end moments equal to:
{=24.0:-24.0:+20.0:+20.0: —15.0} x (EId)Ap/100
Sway-Only Moment Distribution Table:
Joint A B D F H
AB BA BD DB DH DF FD | HD
Distribution Factors 0 0.38 0.62 0.46 0.27 0.27 1.0 | 1.0
Fixed-end Moments | —24.0 —-240 | +20.0 +20.00 | —15.0 0 0
Balance L+152 | +248 L | —230 | —135 | —1.35
Carry-over +0.76 —1.15 T [T+1.24
Balance L +044 | +071_L-—-0.57 | —033 | —0.33
Carry-over +0.22 1 —02990 T +036
Balance +0.11 +0.18 | —0.16 —-0.10 | —0.10
Carry-over +0.05 1 —0.08 * ™+0.09
Balance +0.03 | +0.05 -0.05 | —0.02 | —0.02
Carry-over +0.02 1
Total —22.95 —21.90 | +21.90 +18.60 | —16.80 | —1.80 0 0
Determine the value of the arbitrary sway force P”:
S
: Arbitrary Sway Force

22.95 kNm
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Consider member DEF:

180 kNm +Ve) SMp=0
—1.80— (V5 x4.0)=0
L=—045kN }

+ve EMD =0
—16.80 — (H}x4.0)=0
1 =—420kN=-—

18.60 kNm

22.95 kNm

2
+ve ) EMp =0
—2295+ (V3 x3.0)—(Hx%x4.0)-21.90=0 .. V,=+1495+1.33H’ Equation (3)
+ve ) EMp =0
—22.95+ (V'A% 9.0)— (H3x4.0)+18.60=0 .. V4=+0.48 +0.44H’ Equation (4)
Solve equations (3) and (4) simultaneously:
+14.95+133H% =+ 0.48 +0.44H", S Hy=—1626kN <—
Vi=+0.48—-(0.44 x 16.26) S VA=—6.67TkN
Consider the equilibrium of the complete frame:
+ve t 2F,=0
Va+Va+tVe=0
—6.67+ Vi—045=0 o Vi=+712kN 1

+ve—> X, =0
Hiy+Huy+'P=0
-1626-420+P’=0 s P’=+2046 KN —>



424  Examples in Structural Analysis

12kN 12KN- 41 90 1

Settlement = 3.0 mm

9.93 kNm
No Sway Frame

29.82 kN 42.46 kN

( 20.46 kKN )

{ 22.95KkNm ¥ x (EI0)A5/100

16.26 kN
Sway Only Frame

\ 6.67 kN 7.12 kN )

For the complete frame:
Final Forces = ‘No-Sway Forces’ + ‘Sway Forces’

P+P’=0
—41.22 +[20.46 x (EI)A5/100] = 0 oo (EIO)Ap/100 =+ 2.02

The multiplying factor for the sway moments = + 2.02

Final Moments Distribution Table:

Joint A B D F H

AB BA BD DB DH DF FD | HD
No-Sway Moments +9.93 +19.87 | —19.87 +20.06 | —6.66 | —13.40 0 0
Sway Moments x 2.02 | —46.36 — 4424 | +44.24 +37.57 | —33.93 | —3.64 0 0
Final Moments (kKNm) | — 36.43 —24.37 | +24.37 +57.63 | —40.59 | —17.04 0 0

2.02x100 2.02x100
Oap = - .
EI 10x10

The horizontal deflection at the rafter level = dpy = 0.8 935 = (0.8 X 20) = 16 mm

j =0.02 m =20 mm

Final values of support reactions:

Mp=4+993 —(22.95 x2.02) =—-36.43 kNm ‘>
Hy=+29.89—-(16.26 x2.02)=-296 kN <—
Va=429.82—(6.67 x2.02) =+ 16.35 kN
Hy=-4.67-(4.20x2.02)=-13.15kN -
Vu=+42.46+(7.12 x 2.02) =+ 56.84 kN
Ve=—035—(0.45 x 2.02) =— 1.26 kN |
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Continuity Moments:

57.63 kNm
17.04 KNm
B D F
W C E
24.37 kNm B b
2437 KNm 40.59 kNm
G
34.63 kNm
A H

Free bending moment member BCD:

[TTTETTRTTETT
54.0 kNm

PL wﬁj (12x6 8x6.0
+ = -

4 8

J= 54.0 kNm

Free bending moment member DEF:

I 12 kN
D E F T T e
= 9.0 kNm
1.0 m 3.0m
K 1

9.0 kN 3.0kN Miee = (szj= (12X1£X3'0j =9.0 kNm

Free bending moment member DGH:
D

I 3.0kN

6 kN 6.0 KNm

Moo= | LE] = [£249) 6 0 konm
4 4
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57.63 kNm

17.04 kNm
~C DT

24.37 kKNm g S ,

Maximum bending moment*
M=+41.03 kNm G

= 26.30 kKNm

36.43 kNm

Bending Moment Diagram

* The maximum value along the length of members BCD can be found by identifying
the point of zero shear as follows:

12kN 8 kN/m e ) IMp =0
3 STOKNM 94737~ (12.0 % 3.0) — (8.0 x 6.0)(3.0)
s C b +57.63 + (Vg x 6.0)=0
Vs 6.0m Vo=+1633kN 4
1 1
X
16.33 kNw
767 KN x = (16.33/8.0)=2.04 m
M, =24.37 +[(0.5 x 2.04) x 16.33]
1967 kN Mmaximum =+ 41.03 kNm
Shear Force Diagram 43.67 kN

tension outside

D|, E F&
1
1
1
G :tension
joutside
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5.4.2 Problems: Moment Distribution — Rigid-Jointed Frames with Sway

A series of rigid-jointed frames are indicated in Problems 5.17 to 5.22 in which the
relative E7 values and the applied loading are given. In each case:

i) sketch the bending moment diagram and

ii) sketch the deflected shape (assuming axially rigid members) and compare
the shape of the bending moment diagram with a computer analysis solution

of the deflected shape.

25 kN

5.0m

Hy

Problem 5.17

Problem 5.18

Problem 5.19
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Problem 5.20

Problem 5.21

16 kKN 20 kN

=
(=)
N £
<
O
Support D settles by 3 mm
Support E settles by 2 mm
EI=102.5 x 10’ kNm® =

AL 2.0m AL 2.0m 4\ 40m 4\ 2.0m x

Problem 5.22
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5.4.3 Solutions: Moment Distribution — Rigid-Jointed Frames with Sway

Solution
Topic: Moment Distribution — Rigid-Jointed Frames with Sway
Problem Number: 5.17 Page No. 1

Consider the frame analysis as the superposition of two effects:
Final Forces = ‘No-Sway Forces’ + ‘Sway Forces’

25 kN .
Prop Force P P' Arbitrary Sway Force

No-Sway Frame Sway Frame

25 kN

Consider the No-Sway Frame:

Fixed-end Moments:

Member BC*

* Since support C is pinned, the fixed-end moments are (Mpc — Mcp/2) at B and zero
at C.
(Mgc — Mcp/2) =[—-25.0 — (0.5 x 25.0)] =— 37.5 kNm.
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Solution
Topic: Moment Distribution — Rigid-Jointed Frames with Sway
Problem Number: 5.17 Page No. 2

Distribution Factors : Joint B

kBA = (éj =0.21
kot = 0.391

3 (21

ch :ZX(?J =0.19/

Total
In this case, since there is only one internal joint, only one balancing operation and
one carry-over will be required during the distribution of the moments.

No-Sway Moment Distribution Table:

Joint A
AB
Distribution Factors 0
Fixed-end Moments
Balance
Carry-over +9.56“]
Total +9.56

Determine the value of the prop force P:

25 kN
19.12 kNm l

B

19.12 kNm

9.56 kKNm 9.56 kNm

A

+19.12+9.56 — (HA % 5.0)=0 s Hy=+574kN —>

For the complete frame:
+ve — XF, =0
+574-P=0
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Solution
Topic: Moment Distribution — Rigid-Jointed Frames with Sway
Problem Number: 5.17 Page No. 3

Since the direction of the prop force is right-to-left the sway of the frame is from

left-to-right as shown. SAB

P' Arbitrary Sway Force

= A
’ xT\
H A V’A
Apply arbitrary sway force P’ Fixed-end Moments due to Sway

Ratio of Fixed-end Moments:
El 6(EIO 6(EIO
i s OEIs) __olE1sy) | 6lEISy)
Lip 25 25

={-024:-024} x (EId)as

Assume arbitrary fixed-end moments equal to {—24.0 : —24.0} x (EI0)Ag/100

Sway-Only Moment Distribution Table:
Joint A

AB BA

Distribution Factors 0 0.51
Fixed-end Moments —-24.0 —-24.0
Balance -+ 12.24
Carry-over +6.12%]
Total —17.88 —11.76

Determine the value of the arbitrary sway force P':

zero

11.76 kNm
11.76 kNm

17.88 kNm 17.88 kNm

&
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Solution
Topic: Moment Distribution — Rigid-Jointed Frames with Sway
Problem Number: 5.17 Page No. 4

tve ) SMp=0
— 1176 — 17.88 — (H' X 5.0) = 0 o H'y=—593kN +—

For the complete frame:
+ve — XF=0
-593+P’=0 S P'=+593 kN —>

25kN 5.74 kN s 5.93 kN

PR

No Sway Frame Sway Only Frame X (EI0)5/100

P+P’ =0
—5.74 4 [5.93 x (EId)A/100] = 0 s (EI&)as/100 =0.968

The multiplying factor for the sway moments = 0.968

Final Moments Distribution Table:
Joint A
AB BA BC
No-Sway Moments +9.56 +19.12 - 19.12
Sway Moments x 0.968 | —17.31 —11.38 +11.38
Final Moments (kNm) | —7.75 +7.74% —7.74

0.968x100
El

For horizontal equilibrium at prop level: — 5.74 + (5.93 x 0.968) =0
Final value of Hy =+ 5.74 — (5.93 x 0.968) =0

j =96.8/E]

The horizontal deflection at the rafter level = dap =(

* Since the horizontal reaction at A is equal to zero, the moment at the top of
column AB is equal to M, i.e. approximately 7.75 kNm.
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Solution
Topic: Moment Distribution — Rigid-Jointed Frames with Sway
Problem Number: 5.17 Page No. 5

7.75 kNm

For the complete frame:

+ve ) EMy =0

—7.75+(25.0 x 4.0) — (Ve x 8.0) = 0 o Ve=+1153 kN T
+ve T 2F,=0

+11.53-25.0+V,=0 oo Va=+13.47 kN T

Continuity Moments:

775 KNm 7.75 kKNm

B Wmﬂﬂmmﬂﬂﬂmﬂmm

B

A
7.75 kNm

Free bending moments:

Member BC:
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Solution
Topic: Moment Distribution — Rigid-Jointed Frames with Sway
Problem Number: 5.17 Page No. 6

\

Maximum bending moment:
M =—-[(0.5x7.75)+50.0
M =+46.13 kNm

Bending Moment Diagram
7.75 KNm

(O =
11.53 kN

Support Reactions

} -
~
tension inside By T'\ R R N§C

point of contraflexure

1

I
]
]

tension outside

Deflected Shape

| zero slope

E=S
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Solution
Topic: Moment Distribution — Rigid-Jointed Frames with Sway
Problem Number: 5.18 Page No. 1

L 20m | 20m 3

i

Consider the frame analysis as the superposition of two effects:

Final Forces = ‘No-Sway Forces’ + ‘Sway Forces’

P' Arbitrary Sway Force

8 kN/m

2

No-Sway Frame (see Problem 5.16) Sway Frame

No-Sway Moments are given in the Table below; (see Problem 5.16)
Joint A B C

AB BA BC CB CD

No-Sway Moments | +28.52 + 89.1 + 38.66
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Solution
Topic: Moment Distribution — Rigid-Jointed Frames with Sway
Problem Number: 5.18 Page No. 2

Determine the value of the prop force P:

25 kKN/m
Prop force P

8 kN/m

28.52 kNm

100.75 kN

Prop force P= 56.97 kN <«— (see Problem 5.16)

Since the direction of the prop force is right-to-left the sway of the frame is from
left-to-right as shown below.

P' Arbitrary Sway Force

Apply arbitrary sway force P’

Ratio of Fixed-end Moments:
6(EI5)AB _ 6(EI5)AB _
Ly
6(EI),,  3(EI9)
16 ' 36
={-0.375:-0.375:-0.083 } x (EI9)
Assume arbitrary fixed-end moments equal to {—37.5: —37.5:—8.3} x (EI6)/100

Mag : Mga : Mcp =
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Solution
Topic: Moment Distribution — Rigid-Jointed Frames with Sway
Problem Number: 5.18 Page No. 3

Sway-Only Moment Distribution Table:
Joint A B
AB BA BC
Distribution Factors 0 0.6 0.4
Fixed-end Moments | —37.5 -375 0
Balance L +22.5 +15.0 J
Carry-over 1125 1 237 17
Balance L —1.42 | -0.95 :L\
Carry-over -0.71 7 -2.14
Balance +1.28 +0.86
Carry-over +0.64 1 +0.14 1
Balance —0.08 —0.06
Carry-over —0.04 1
Total —26.36 —15.22 | +15.22

Determine the value of the arbitrary sway force P':

15.22 kNm

26.36 kNm 26.36 kNm

Consider column AB:

+ve ) 2Mg=0

—15.22-26.36 —(H'»x4.0)=0 S HA=—104KkKN *+—
Consider column CD:

+ve ) 2Mc=0

-792-(Hpx6.0)=0 S Hp=—-132kN *+—
For the complete frame:

t+ve — XF, =0

-104-132+P'=0 S P'=11.72KN —»
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Solution
Topic: Moment Distribution — Rigid-Jointed Frames with Sway
Problem Number: 5.18 Page No. 4

11.72 kN

8 kN/m

28.52 kNm

13.41 kN FE 6 kKN/m

100.75 kN
00.75 24.44 kN

85.25 kN
No Sway Frame Sway Frame x (E19)/100

P+P’ =0
—-56.97+ [11.72 x (EI8)/100]=0 . (E16)/100 = 4.861

The multiplying factor for the sway moments = 4.861

Final Moments Distribution Table:
Joint A B

AB BA BC

No-Sway Moments +28.52 +89.1

Sway Moments x 4.861 | — 128.14 —73.98

Final Moments —-99.62 +15.12

The horizontal deflection at B = 0= 486.1/EI

Final value of Hy =+ 13.41 — (10.4 x 4.861) =—-37.14 KN <—
Final value of Hp = —24.44 — (1.32 x 4.861) = —30.86 kN = <—
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Solution

Topic: Moment Distribution — Rigid-Jointed Frames with Sway
Page No. 5

Problem Number: 5.18

For addition of Continuity Moments and Free Bending Moments see

Problem 5.16.
77.16 KNm

15.12 kNm

Maximum bending moment:* «—

M =+104.0 kNm
Maximum bending moment:*

M =79.31 kNm

99.62 kNm

Bending Moment Diagram
D

* The maximum value along the length of members BC and CD can be found

by identifying the point of zero shear as follows:

Member BC:
16.0 kN 20 kN 25.0 kN/m +V6) 2M-=0
—15.12 - (16.0 x4.0) — (20.0 x 2.0)

15.12 kNm 77.16 kKNm
C —(25.0 X 6.0 X 3.0) + 77.16 + (V5 X 6.0) =0
VB =+ 82.0 kN

o x=2.0+(16.0/25.0) = 2.64 m
820N =2 0 kv M, =[0.5 x (82.0 + 32.0) x 2.0]

34W\J +(0.5x0.64 X 16.0) — 15.12
M S40KN |04 0 kN M paximum = 104.0 KNm

Member CD: Shear Force Diagram

C
77.16 KNm
x =(30.86/6.0)=5.14m

M, =(0.5x%x5.14 X 30.86)
Mmaximum =179.31 KNm

g
<
o

“|  Shear Force Diagram

6.0 kKN/m

30.86 kN

D 30.86 kN
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Solution
Topic: Moment Distribution — Rigid-Jointed Frames with Sway
Problem Number: 5.18 Page No. 6

Consider the complete frame:
+ve )EMy=0
—99.62 + (8.0 x4.0 x 2.0) + (25.0 X 6.0 x 3.0) + (16.0 X 2.0) + (20.0 x 4.0)

+(6.0 X 6.0 x 1.0) + (30.86 x 1.0) — (V  6.0) = 0
~ Vp=+1040kN }

+ve TZFZ =0
+Va—(25.0%x6.0)—16.0-20.0+104.0=0 S Va=+82.0 kN T

6 kKN/m
30.86 kN Support Reactions

104.0 kN

p tension topside tension topside  C

tension underside

I
I .
| pointof point of

tension
1 contraflexure contraflexure

I point of
T contraflexure

tension

 zero
§”-, slope

2
A

e
>

I

I

|

I

I

]
I
I
I
D

Deflected Shape
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Solution
Topic: Moment Distribution — Rigid-Jointed Frames with Sway
Problem Number: 5.19 Page No. 1

Consider the frame analysis as the superposition of two effects:
Final Forces = ‘No-Sway Forces’ + ‘Sway Forces’

Arbitrary
Sway
Force

No-Sway Frame

(see Problem 5.10) Sway Frame

No-Sway Moments are given in the Table below; (see Problem 5.10)

T

1

C

Joint A

AB

No-Sway Moments + 18.44

Determine the value of the prop force P:

37.53 kN
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Solution
Topic: Moment Distribution — Rigid-Jointed Frames with Sway
Problem Number: 5.19 Page No. 2

Prop force P=37.53 kN «<— (see Problem 5.10)

Since the direction of the prop force is right-to-left the sway of the frame is from
left-to-right as shown below.

P' Arbitrary Sway Force

Apply arbitrary sway force P' Fixed-end Moments due to Sway

Displacement triangle:

Length of Lyg =+/2.0> +4.0°

=4472m

cos@=2.0/4.47 =0.447
sin@ =4.0/4.472 = 0.894
Osc = (Oag cOs6)

Ratio of Fixed-end Moments:

6(E15AB) . 6(EI5AB) -t

Ly L
__6(E18,) . 6(EIS,) | . 3(EIS ,; x0.447)
4.472%  4472° 5.0

Mag : Mg : Mpc =—

= {=0.30:-0.30: +0.05 } x (EISxs)

Assume arbitrary fixed-end moments equal to {—30.0 : —30.0 : + 5.0} x (EIdap)/100
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Solution
Topic: Moment Distribution — Rigid-Jointed Frames with Sway
Problem Number: 5.19 Page No. 3

Sway- Only Moment Distribution Table:
Joint A

AB BA

Distribution Factors 0 0.59
Fixed-end Moments -30.0 —30.0
Balance +14.75
Carry-over +7.38
Total —22.62 —15.25

Determine the value of the arbitrary sway force P":

B C
P!
- 2 15.25 kNm :

~

| : |

C

15.25 kNm

C

Consider beam BC:

+ve ) TMg=0

+1525-(V'ecx5.0)=0 s V'ie=+3.05kN T
For the complete frame:

+ve ) EMy =0

-22.62-3.05x7.0)+ (P *x4.0)=0 S P'=+1099 kN —»

8 kN/m
10.99 kN

32.62 kN

18.44 kNm 22.62 kNm

A @ 37.53 kN ép 10.99 kN
- A\
47.38 kN

\ 3.05 kN

No Sway Frame Sway Frame X (E[0)ap/100
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Solution
Topic: Moment Distribution — Rigid-Jointed Frames with Sway
Problem Number: 5.19 Page No. 4

P+P’=0
—37.53 + [10.99 x (EI)»5/100] =0 o (EIO)Ap/100 = 3.415
The multiplying factor for the sway moments = 3.415

Final Moments Distribution Table:
Joint A B
AB BA BC
No-Sway Moments +18.44 +36.88 | —36.88
Sway Moments x 3.415 | —77.25 —-52.08 | +52.08
Final Moments —58.81 —15.20 | +15.20

The horizontal deflection at B = (dp siné) = (341.5/E1) x 0.894 = 305.3/EI
The vertical deflection at B = (Jxp cosé) = (341.5/El) x 0.447 = 152.7/EI

Final value of Hy =+ 37.53 — (10.99 x 3.415)=0
Final value of V¢ =+ 32.62 + (3.05 x 3.415) =+ 43.0 kN T
Final value of V, =+ 47.38 — (3.05 x 3.415) =+ 37.0 kN T

¥
Maximum bending moment:
M =[(0.5 x15.2) + (40 x 5.0)/4.0 + (8.0 x 5.0%)/8.0]
=82.6 kNm

58.81 kNm

Support Reactions

/
2

point of contraflexure

Deflected Shape
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Solution
Topic: Moment Distribution — Rigid-Jointed Frames with Sway
Problem Number: 5.20 Page No. 1

Consider the frame analysis as the superposition of two effects:
Final Forces = ‘No-Sway Forces’ + ‘Sway Forces’

A Ma

Prop Force P =3 1

Arbitrary Sway Force P'

No-Sway Frame (see Problem 5.13) Sway Frame

No-Sway Moments are given in the Table below; (see Problem 5.13)
Joint A B C

AB BA BC CB CD
No-Sway Moments +3.31 +12.72
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Solution

Topic: Moment Distribution — Rigid-Jointed Frames with Sway
Problem Number: 5.20 Page No. 2

Determine the value of the prop force P:
12 kN/m

28.76 kN

Prop Force P
14.82 kN

Prop force P =40.42 kN T (see Problem 5.13)

Since the direction of the prop force is upwards the sway of the frame is
downwards as shown below.

Arbitrary Sway Force P*
3EIS¢p Vo
Op=0ap=0 12
CD

Apply arbitrary sway force P' Fixed-end Moments due to Sway

Ratio of Fixed-end Moments:
6(E18,)  6(EIS)  3(EI6)

Ly Ly Ly

_O(EISyg) . 6(EISyg) . 3(EISyg)
4.0? 4.0* 4.0*

={-0.375:-0.375:+0.188 } x (EIJ)

Mg : Mga : Mcp = —

Assume arbitrary fixed-end moments equal to {—37.5:—37.5:+ 18.8} x (EI6)/100
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Solution
Topic: Moment Distribution — Rigid-Jointed Frames with Sway
Problem Number: 5.20 Page No. 3

Sway-Only Moment Distribution Table:
Joint A B
AB BA BC
Distribution Factors 1.0 0.5 0.5
Fixed-end Moments | —37.5 =375
Balance | +18.75 | +18.75
Carry-over +94 -5.36 4
Balance +2.68 +2.68
Carry-over +1.34 —2.68“
Balance | +1.34 +1.34
Carry-over +0.29 -0.384
Balance +0.19 +0.19
Carry-over +0.2
Total —26.27 —14.54 | +14.54

Determine the value of the arbitrary sway force P’

26.27 kNm 26.27 kNm 14.54 kNm
A

Consider beam AB:
+ve ) EMp=0
—2627-1454+ (V3 x4.0)=0 s Va=+10.2 kN

Consider beam CD:
+ve ) TMc=0
+582—-(Vpx4.0)=0 SV =+1.46 kKN

For the complete frame:
+ve TZFZ =0
+102+1.46-P"=0 s P’=+11.66 KN
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Solution
Topic: Moment Distribution — Rigid-Jointed Frames with Sway
Problem Number: 5.20 Page No. 4

[ 26.27kNm
A

11.66 kN

No Sway Frame Sway Frame x (E[0)/100

P+P’ =0
+40.42 — [11.66 x (E18)/100] =0 . (EI9)/100 = 3.47

The multiplying factor for the sway moments = 3.47

Final Moments Distribution Table

Joint A B

AB BA BC

No-Sway Moments —-22.35 +3.31

Sway Moments x 3.47 -91.16 —50.45

Final Moments —113.51 —-47.14

The vertical deflection at C = d= (347/EI)

Final value of V,=+28.76 + (3.47 x 10.2) oo Va=+64.15 kN T
Final value of Vp=+ 14.82 + (3.47 x 1.46) S Vp=+19.89 kN

Consider the complete frame:
+ve ) EMy=0
—113.51 + (12.0 x 4.0 x 2.0) + (36.0 x 6.0) — (19.89 x 8) — (Hp x4.0)=0
S Hp=+984KkN —>
+ve —2F, =0
+Hy—Hp =0 S Hy=—984 kN *—




Rigid-Jointed Frames 449

Solution
Topic: Moment Distribution — Rigid-Jointed Frames with Sway
Problem Number: 5.20 Page No. 4

113.51 kNm

Maximum bending moment:
M =+ (0.5x7.47)+(36.0 x 4.0)/4
M =+39.74 kNm

D

Bending Moment Diagram

64.15 kN

9.84 kN Support Reactions
X

19.89 kN

tension Zero
topside slope
p S p

A tension underside

point of contraflexure

tension

C D

—ig
-

-
—__—

-— s

Deflected Shape

— =
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Solution
Topic: Moment Distribution — Rigid-Jointed Frames with Sway
Problem Number: 5.21 Page No. 1

Consider the frame analysis as the superposition of two effects:
Final Forces = ‘No-Sway Forces’ + ‘Sway Forces’

No-Sway Frame (see Problem 5.14) Sway Frame

No-Sway Moments are given in the Table below; (see Problem 5.14)

Joint A B C
AB BA BC CD

No-Sway Moments
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Solution
Topic: Moment Distribution — Rigid-Jointed Frames with Sway
Problem Number: 5.21 Page No. 2

Determine the value of the prop force P:

Prop Force P

21.3 kNm 13.6 kNm

75.1 kN—-\?{ 1018 kN‘%
A
59.1 kN

Ve
Prop force P=70.2 kN <+— (see Problem 5.14)

Since the direction of the prop force is right-to-left the sway of the frame is left-to-
right as shown below.

Arbitrary Sway Force P'

6E(21)0 o

Lin
S 6E(21)0 5

Lip
Fixed-end Moments due to Sway

dcp = oOcg = the horizontal displacement of joint B since BC is assumed to be axially
rigid.
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Solution
Topic: Moment Distribution — Rigid-Jointed Frames with Sway
Problem Number: 5.21 Page No. 3

Displacement triangle:

B Length of Las =v4.0> +4.0°

- =5.657Tm

Tf cos@=4.0/5.657=0.707

Xﬁ sin@=4.0/5.657=10.707

B' Osc = (OaB cosb)
JLéCE = 5CD §CE = &jD = (§AB sin6')

Note:  Mag = Mpa Mpc=Mcs Mcg = Mgc

Ratio of Fixed-end Moments:

6(E216

6(E1516pc) . 6(EIScE)

Lt : 4 3AELcp)
Lig Lic LEk Lgp
6(E213,g) N 6(E1.516,5%0.707) . 6(EISpx0.707) N 3(EIS o5 x0.707)
56577 6.0 ' 4.0 ' 4.0
={-0375 : +0.177 : —0.265 : +0.133} x (EloxB)

Assume arbitrary fixed-end moments

{MAB: Mgy @ Mpc @ Mceg : Mcg : Mg : MCD} X (EI§AB)/100
equal to:

{(=37.5: =375: +17.7: +17.7: =26.5: —26.5: +13.3 } x (Eloxg)/100

Moment Distribution Table:

A
AB
Distribution Factors 0
Fixed-end Moments
Balance
Carry-over
Balance
Carry-over
Balance
Carry-over
Balance
Carry-over
Total




Rigid-Jointed Frames 453

Solution
Topic: Moment Distribution — Rigid-Jointed Frames with Sway
Problem Number: 5.21 Page No. 4

Determine the value of the arbitrary sway force P'

Consider Member CE:
tve ) EMc=0 —29.73-28.12 — (H':x 4.0)=0 o H'g=—14.46 kKN <—

Consider Member CD:
+ve 4)ZMC=O +10.78 + (Hp*x 4.0)=0 S Hp=—270 KN <=

Consider Member AB:
+ve ) IMg=0 —25.09-313-(H'A*x4.0)+(V'xx4.0)=0
S HA =1tV —-14.1

18.95 kNm

Consider a section at C:

tve ) SMc=0

+18.95 =313 - (H'xx4.0)+ (V'Ax10.0)=0
S HA=25V",-3.09

'"—14.1=2.5V'y,—3.09 o V'A=-11.46 kN L

“ H'y=—2556 kN <—

For the complete frame:

+tve — 2XF, =0

—14.46-2.70-2556+ P'=0 L P'=+4272kKN —
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Solution
Topic: Moment Distribution — Rigid-Jointed Frames with Sway
Problem Number: 5.21 Page No. 5

20 kN/m

13.6 kNm 31.3 kNm 28.12 kNm

10.18 kN = A =% 25.56 kN 14.46 kKN <3

Ve 11.46 kN Ve

No Sway Frame Sway Frame X (E[0)ap/100

P+P’'=0
—70.2 + [42.72 x (EId)ap/100] =0 = (EIO)A/100 = 1.643
The multiplying factor for the sway moments = 1.643

Final Moments Distribution Table:
Joint A B C E
AB BA BC CB CD CE EC
No-Sway Moments | +21.3 +42.6 | -42.6 +48.2 | -21.1 —27.1 -13.6
Sway yoments | si43 | | 4122 | +4122 | | 43113 | +17.71 | 4885 | | ~46.20
Final Moments —30.13 +1.38 | -1.38 +79.33 | -3.39 | -75.95 —59.8

The horizontal deflection at B = (dp siné) = (164.3/EI) x 0.707 = 116.2/EI
The vertical deflection at B = (Jxg cosé) = (164.3E1) x 0.707 = 116.2/EI

Final value of Vy =+ 59.1 — (11.46 x 1.643) oo Va=+40.27 kN

Final value of Hy =+ 75.1 — (25.56 x 1.643) S HA=+3310kN —
Final value of Hg =—10.18 — (14.46 x 1.643) oo Hg=-3393 kN =—
Final value of Hp =+ 5.28 — (2.71 x 1.643) s Hp=+083kN —

There is insufficient information to determine the values of Vp and Vg.
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Solution
Topic: Moment Distribution — Rigid-Jointed Frames with Sway
Problem Number: 5.21 Page No. 6

40 36 kNm

1.38 KNm ___

W9 kNm
Maximum bending moment: *
M =53.89 KkNm
30.13 kNm VA 59.80 kNm

Bending Moment Diagram
* The maximum value along the length of member BC can be found by

identifying the point of zero shear as follows:

1.38 kNm 20.0 kN/m 79.15 kNm
B C

Shear Force Diagram

+ve JSMc =0
L 138-(20.0X6.0%3.0)+79.15+ (Vg x 6.0)=0  Vy=+47.04kN

x = (47.04/20.0)=2.35 m
Mipaimam = (0.5 X 2.35 x 47.04) — 1.38
=53.89 kNm
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Solution
Topic: Moment Distribution — Rigid-Jointed Frames with Sway
Problem Number: 5.21 Page No. 7

20 kN/m

30.13 kNm 59.80 kNm

33.10 kN ¢ 33.93 kN 4 ) Support Reactions
A i40.27kN E HVE

?‘ D
tension

tension tension
B topside

= I.C
1
1

: tension
g
1

1

tension
e

s

1
1
|
=AC
XS-—= I

point of contraflexure I

==

~—

™\ point of contraflexure

zero slope « | E

w

Deflected Shape
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Solution
Topic: Moment Distribution — Rigid-Jointed Frames with Sway
Problem Number: 5.22

N

Support D settles by 3 mm
Support E settles by 2 mm
EI=102.5 x 10° kNm’

L 2.0m L 2.0 m ‘

7 7 Vi

Consider the frame analysis as the superposition of two effects:
Final Forces = ‘No-Sway Forces’ + ‘Sway Forces’

Prop 20 kN
Force P

Arbitrary Sway Force P'

No-Sway Frame (see Example 5.4) Sway Frame

No-Sway Moments are given in the Table below; (see Example 5.4)

Joint A E B
AB | EB BD
No-Sway Moments 0 0
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Solution
Topic: Moment Distribution — Rigid-Jointed Frames with Sway
Problem Number: 5.22 Page No. 2

Determine the value of the prop force P:

Prop Force P

Prop force P=21.52 kN —> (see Example 5.4)

Since the direction of the prop force is left-to-right the sway of the frame is right-to-
left as shown below.

Arbitrary Sway Force P’

dm=5c1)=5

Fixed-end Moments due to Sway
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Solution
Topic: Moment Distribution — Rigid-Jointed Frames with Sway
Problem Number: 5.22 Page No. 3

Ratio of Fixed-end Moments:
3(EIS, 3(EIS 3(E1.510
Mgp : Mcp =+ ( 2BD):+ = + ( 2):+ ( . )
Lyp 4.0 6.0

= {+0.188 : + 0.125} x (EIJ)

Assume arbitrary fixed-end moments
{Mgp : Mcg} % (EIS)/100 = {+ 188 : + 125} x (EI6)/1000

Moment Distribution Table:

A E B
AB EB BA BD
Distribution | | o 0.3 0.3

Factors

Fixed-end

Moments 1880
Balance —-56.4 —56.4 —-75.2
Carry-over —35.63
Balance +10.69 +10.69 +14.25 |
Carry-over +10.72
Balance —-3.21 —-3.21 —-4.29
Carry-over —2.03
Balance +0.61 +0.61 +0.81
—48.32 | +139.68 | —91.36

Determine the value of the arbitrary sway force P'
p'  4832kNm . B _91.36 kNm C

139.68 kNm
139.68 kNm

Consider Member BD: Hy
+ve ) Mg=0 +139.68—-(Hp*x4.0)=0 .. Hp=+3492kN —
Consider Member CE:

+ve ) EMc=0 +8528—(H:x6.0)=0 .. H'g=+1421kN —
For the complete frame:

+ve — XF, =0

+34.92+1421-P'=0 L P'=4913 kKN <—
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Solution
Topic: Moment Distribution — Rigid-Jointed Frames with Sway
Problem Number: 5.22 Page No. 4

16 kN
21.52 kN

23.57kN

No Sway Frame Sway Frame x (E16) /1000

P+P’'=0
+21.52 — [49.13 x (EI5)/1000] = 0 . (E18)/1000 = 0.438

The multiplying factor for the sway moments = 0.438

Final Moments Distribution Table:

Joint A E B
AB | EB BA BD BC
No-Sway Moments | 0 0 —34.96 | +10.65 +24.31

Sway Moments
x (0.438

Final Moments 0 0 —56.12 +71.83 —15.71

0 0 —21.16 +61.18 —40.02

The horizontal deflection of A, B and C = 0= (438/EI)

Final value of Hp =+ 2.66 + (34.92 x 0.438) S Hp=+1795kN —
Final value of Hg =+ 11.82 + (14.21 % 0.438) oo Hg=+18.04 KN —

Consider Member AB:

+ve ) EMp=0
~56.12 = (16.0 x 2.0) + (Vo x 4.0)=0  Va=+22.03kN }
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Solution
Topic: Moment Distribution — Rigid-Jointed Frames with Sway
Problem Number: 5.22 Page No. 5

B _ 15.71 kNm 20.0kN C

J—!

Consider a section at B ) 40m 20m

+ve ) IMp=0 | J
— 1571 +(20.0 x 4.0) = (18.04 % 6.0) + (6.0 x 6.0 x3.0) = (V£ X 6.0)=0 ¥
o Ve=+10.68 kN }

For the complete frame:
+ve $2F,=0 6.0 kN/m |
+22.03-16.0-20.0+10.68+ Vp=0

. VD =+ 3.29 kN T 18.04 KN —»& —

I Ve
15.71 kNm

71.83 KNm [1yimce---coo 0.27 kKNm
B _w

M =[(* 0.5 x 56.12) + 16.0)]
=44.06 kNm

56.12 kN
™ M =(-5.05+26.67)

=21.62 kNm

Maximum bending moment: *
M= [(0.5 x 0.27) + (6.0 x 6.0%)/8]
=27.13 kNm

*The exact value occurs slightly off
mid-height but the error in this case
is negligible.

3.29kN Bending Moment Diagram

Support reactions

tension
A

point of contraflexure
tension

tension

Deflected Shape




6. Buckling Instability

6.1 Introduction

Structural elements which are subjected to tensile forces are inherently stable and will
generally fail when the stress in the cross-section exceeds the ultimate strength of the
material. In the case of elements subjected to compressive forces, secondary bending
effects, (e.g. example caused by imperfections within materials and/or fabrication
processes, inaccurate positioning of loads or asymmetry of the cross-section), can induce
premature failure either in a part of the cross-section (local buckling), such as the
web/outstand flange of an I section, or of the member as a whole (flexural buckling).
There are numerous modes of buckling which can occur e.g.

local buckling,

distorsional buckling,
flexural buckling,

lateral torsional buckling,
torsional buckling,
torsional-flexural buckling,
web buckling and

shear buckling of plates,

as shown in Figure 6.2.

The design of most compressive members is governed by their flexural buckling
resistance, i.e. the maximum compressive load which can be carried before failure occurs
by excessive deflection in the plane of greatest slenderness.

Typically this occurs in columns in building frames and in trussed frameworks as shown in
Figure 6.1.

Buckling of the compression boom
and uprights in a lattice girder

. Buckling of a
i column in a frame

— —

|1E

Figure 6.1
Only local and flexural buckling are considered in this text.

6.1.1 Local Buckling
Local buckling is characterised by localized deformation of slender cross-section
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elements, involving only rotation (no translation) at the nodes of a cross-section, e.g.
flanges, webs etc. It is dependent on various parameters such as the size, shape,
slenderness, type of stress and material properties.

After ! f—

—

] (b) Distorsional buckling —
(a) Local buckling — ) )
translation and rotation

at the nodes

N
2J< (¢) Flexural buckling
SNIN

rotation only at the nodes

TR
TR

Riguas
NN

ST

A\

VLT TS
“\\\\\“\\

A\ \

diagonal
buckle buckle

| diagonal

NMikyggett

\\
AL

T
T
\ \
N

A \

\

“\\\\\lll
A\

.

(h) Shear buckling
(g) Web buckling/bearing

Figure 6.2

The effect of local buckling on global behaviour at the ultimate limit state is such that the
yield stress cannot develop in all of the fibres of the cross-section. A consequence of this
is that the limiting elastic moment of resistance cannot develop. The reduction in strength
is due to premature buckling of the slender elements of the cross-section which are in
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compression. A direct consequence of this is a reduction of stiffness in these elements and

a redistribution of the stresses to the stiffer edges as shown in Figure 6.3.

Assuming axial compression of the cross-section,
the strain and stress diagrams indicated on the top

flange applies to both flanges and both webs.

compression stress on
the cross-section o

N
<\@/

Figure 6.3

Where local buckling must be taken into consideration, the formation of ‘non-effective
zones’ in the compression parts of elements should be determined. The extent and
position of the non-effective zones is calculated in accordance with EN 1993-1-1-5:
Table 4.1/Table 4.2 to determine the effective width ‘b.s’ and location of any slender part
of the cross-section. The reduced effective plate widths and the effective area of a Class 4

element are given by the Winter formula i.e.

bei=(pxXb) and A= (p xA;) where A, is the gross cross-sectional area.

When any of the compression elements of a cross-section do not satisfy the requirements
for a Class 3 section, local buckling must be taken into account, e.g. by using effective

cross-sectional properties.
In EN 1993-1-1: Clause 5.5.2(1)/Table 5.2, four classes of cross-section in relation to local
buckling are specified for internal and external elements as shown in Figure 6.5.

6.1.1.1 Class 1 Sections
The failure of a structure such that plastic collapse occurs is dependent on a sufficient

number of plastic hinges developing within the cross-sections of the members to produce a
mechanism, (i.e. the value of the internal bending moment reaching M, at sufficient
locations). For full collapse this requires one more than the number of redundancies in the

structure, as illustrated in the rigid-jointed rectangular portal frame in Figure 6.4.

w w
P > l P l M< Mp ‘III-
] - o---""" r, E
: | =
I ! =
Pinned bases i Collapse Collapse Bending [
Mechanism & Moment Diagram 52

Figure 6.4
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Table 5.2 (sheet 1 of 3): Maximum width-to-thickness ratios for compression
parts
Internal compression parts
o = —
c c c ¢ Avis of
L] o L tll bending
— . = . U =1
i}
[} i L] f 1
= —h
— 't =t [ k| Aiser
bending
b l—<
Clas: ’H;::;’f;[ w0 Part subject to Pare subject o bending and compression
T, T T
Stress =
inparts o = =
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Figure 6.5 — Extract from EN 1993-1-1:2005

The required number of hinges will only develop if there is sufficient rotational capacity in
the cross-section to permit the necessary redistribution of the moments within the
structure. When this occurs, the stress diagram at the location of the hinge is as shown in
Chapter 2: Figure 2.45(c) and the slenderness of the elements of the cross-section are low
enough to prevent local buckling from occurring. Such cross-sections are defined as
plastic sections and classified as Class 1. Full plastic analysis and design can only be
carried out using Class 1 sections. (See Chapter 8 for plastic analysis of beams and
frames.)

6.1.1.2 Class 2 Sections

When cross-sections can still develop the full plastic moment as in Figure 2.45(c) but are
prevented by the possibility of local buckling from undergoing enough rotation to permit
redistribution of the moments, the section is classified as a Class 2 section. These sections
can be used without restricting their capacity, except at plastic hinge positions.



466 Examples in Structural Analysis

6.1.1.3 Class 3 Sections

Class 3 sections may be prevented from reaching their full plastic moment capacity by
local buckling of one or more of the elements of the cross-section. The slenderness of the
elements of the cross-section may be such that only the extreme fibre stress can attain the
design strength before local buckling occurs. Such sections are classified as Class 3 and

their capacity is therefore based on the limiting elastic moment as indicated in
Figure 2.45(b).

6.1.1.4 Class 4 Sections

When the slenderness of the element(s) of a cross-section is relatively high, then local
buckling may prevent a part of the cross-section from reaching the design strength as
indicated in Figure 2.45(a). Such sections are classified as Class 4 sections; their reduced
capacity is based on effective cross-section properties as specified in EN 1993-1-5:
Clause 4.3.

6.1.1.5 Section Classification

The section classification is dependent on the aspect ratio for each of the compression
plate elements in the cross-section. These elements include all component plates which are
either totally or partially in compression due to the applied action effects, e.g. axial forces,
bending moments etc. The plate elements are either:

¢ internal compression parts; considered to be simply supported along two edges
parallel to the direction of the compression stress or

¢ outstand parts; considered to be simply supported along one edge and free on the
other edge, parallel to the direction of the compression stress.

In EN 1993-1-1: Table 5.2 the limiting values are given for the aspect ratios of
compression elements based on the web or flange plate slenderness for different loading
conditions, i.e. bending, compression, and combined bending and compression.

These values ensure that in non-slender elements, yielding occurs before the plate critical
stress ‘o, is reached and buckling can occur.

The value of c, the flat portion of the web/flange plate, defined in EN 1993-1-1:Table 5.2
excludes the root radii for rolled sections and the weld leg length for welded sections. This
enables one set of tables to be used for both rolled and welded cross-sections. For hollow
sections where the internal corner radius is not known, the value of the flat portion can be
taken as: c=(b—3f)or ¢ = (h— 3f). In addition, a base stress of f; = 235 MPa has been
adopted in the code for the limiting values given. In order to cover for all grades of steel a
reduction factor is also given, i.e.

8=1/235/fy EN 1993-1-1: Table 5.2

The classification of a cross-section is based on the highest class of its component parts or
alternatively may be defined by quoting both the flange and the web classifications as
indicated in EN 1993-1-1: Clause 5.5.2.

Local buckling and effective section properties are not considered further in this text.
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6.1.2 Flexural Buckling

Flexural buckling is characterised by out-of-plane movement of the cross-section at the
critical load and is the predominant buckling mode in typical building structures using hot-
rolled sections. In 1757 the Swiss engineer/mathematician Leonhard Euler developed a
theoretical analysis of premature failure due to buckling.
The theory is based on the differential equation of the elastic bending of a pin-ended
column which relates the applied bending moment to the curvature along the length of the
column. The resulting equation for the fundamental critical load for a pin-ended column is
known as the Euler equation, i.e.
7’El

2

Euler critical buckling load N =

where:

L., is the critical buckling length,

1 is the second moment of area about the axis of buckling,
E is Young’s Modulus of elasticity.

Compression elements for this mode of buckling can be considered to be sub-divided into
three groups: short elements, slender elements and intermediate elements. Each group is
described separately, in Sections 6.1.2.1, 6.1.2.2 and 6.1.2.3 respectively.

6.1.2.1 Short Elements

Provided that the slenderness of an element is low, e.g. the length is not greater than
(10 x the least cross-section dimension), the element will fail by crushing of the material
induced

by predominantly axial compressive stresses as indicated in Figure 6.6(a). Failure occurs
when the stress over the cross-section reaches a yield or crushing value for the material.
The failure of such a column can be represented on a stress/slenderness curve as shown in
Figure 6.6(b).

T yield stress/crushing strength
N Nerushing/yield P4
H B
wa
w
l :
=
7 \ *(7;
\‘ 1 50
=
<
(]
8
N Nerushing/yield £
>
increasing slenderness —
(a) (b)

Figure 6.6
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6.1.2.2 Slender Elements

When the slenderness of an element is high, the element fails by excessive lateral
deflection (i.e. flexural buckling) at a value of stress considerably less than the yield or
crushing values as shown in Figures 6.7(a) and (b).

Wi A
A\
M deformed column T
Y
X / *
\ 172}
1 wn
11 g
11 w2
11 an
1 =)
1 7 ) )
I S stress << yield/crushing value
11 P
N} Q
7 £ ¥ .
11
M
| | increasing slenderness —
N ﬂ N ﬂ
(a) (b)
Figure 6.7

6.1.2.3 Intermediate Elements

The failure of an element which is neither short nor slender occurs by a combination of
buckling and yielding/crushing as shown in Figures 6.8(a) and (b).

N N

L A

—_—

*
stress < yield/crushing value

increasing stress

increasing slenderness —»

(a) N (b)
Figure 6.8
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6.2 Secondary Stresses

As mentioned in Section 6.1, buckling is due to small imperfections within materials,
application of load etc. which induce secondary bending stresses which may or may not be
significant depending on the type of compression element. Consider a typical column as
shown in Figure 6.9 in which there is an actual centre-line, reflecting the variations within
the element, and an assumed centre-line along which acts an applied compressive load,
assumed to be concentric.

AN
h 4 -
: actual load position
, ................... actual centre-line
3
I assumed centre-line
X -1- Mol X and load position
HI
' ------ actual load position
1
assumed centre-line and : X —. HIL _X
line-of-action of the load — | |
1
actual centre-line —*-: . ot .
".A relative positions of centre-lines and
AN load at section X—X.

Figure 6.9

At any given cross-section the point of application of the load N will be eccentric to the
actual centre-line of the cross-section at that point, as shown in Figure 6.10.

actual centre-line |V actual load position
X = Tt X
e!

L
eccentricity e' of the applied load
N N from the actual centre-line

Figure 6.10

The resultant eccentric load produces a secondary bending moment in the cross-section.
The cross-section is therefore subject to a combination of an axial stress due to N and a
bending stress due to (Ne) where e is the eccentricity from the assumed centre-line as
indicated in Figure 6.11
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N N
’
4 Ne

b
Figure 6.11

The combined axial and bending stress is given by: 0 = (— +—

where:

o is the combined stress,

N is the applied load,

e 1is the eccentricity from the assumed centre-line,

A s the cross-sectional area of the section, and

W 1is the elastic section modulus about the axis of bending.

This equation, which includes the effect of secondary bending, can be considered in terms
of each of the types of element.

6.2.1 Effect on Short Elements
In short elements the value of the bending stress in the equation is insignificant when

. . N Ne
compared to the axial stress i.e. (q) >> (Wj and consequently the lateral movement

and buckling effects can be ignored.

6.2.2 Effect on Slender Elements
In slender elements the value of the axial stress in the equation is insignificant when

N N
compared to the bending stress i.e. (J) << (We) particularly since the eccentricity

during buckling is increased considerably due to the lateral deflection; consequently the
lateral movement and bending effects determine the structural behaviour.

6.2.3 Effect on Intermediate Elements

Most practical columns are considered to be in the intermediate group and consequently
both the axial and bending effects are significant in the column behaviour, i.e. both terms

: . N | Ne _
in the equation 0 =| — £ — |are important.
4 W

6.3  Critical Stress (0O.)

In each case described in Sections 6.2.1 to 6.2.3 the critical load N, (i.e. critical stress X
cross-sectional area) must be estimated for design purposes. Since the critical stress
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depends on the slenderness it is convenient to quantify slenderness in mathematical terms
as:

slenderness 1= —&
i

where:
Lg is the effective buckling length,

i 1is the radius of gyration = \E and

I and A are the second moment of area about the axis of bending and the cross-sectional
area of the section as before.

6.3.1 Critical Stress for Short Columns

Short columns fail by yielding/crushing of the material and o, = f;, the yield stress of the
material. If, as stated before, columns can be assumed short when the length is not greater
than (10 X the least cross-section dimension) then for a typical rectangular column of
cross-section (b X k) and length L = 10b, a limit of slenderness can be determined as
follows:

radius of gyration i= \/Z - hb’® _ b
* A 12x(bxh) 23
L

slenderness A=—= 106
l b/ 243
From this we can consider that short columns correspond with a value of slenderness less
than or equal to approximately 30 to 35.

=30~35

6.3.2 Critical Stress for Slender Columns

Slender columns fail by buckling and the applied compressive stress oy << f;.
The critical load in this case is governed by the bending effects induced by the lateral
deformation.

6.3.3 Euler Equation

The Euler theory of premature failure due to flexural buckling is based on the differential
equation of the elastic bending of a pin-ended column which relates the applied bending
moment to the curvature along the length of the column, i.e.

2
Bending Moment M =-—E[ (%)
x

2

z .

where (F] approximates to the curvature of the deformed column.
x

Since this expression for bending moment only applies to linearly elastic materials, it is
only valid for stress levels equal to and below the elastic limit of proportionality. This
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therefore defines an upper limit of stress for which the Euler analysis is applicable.
Consider the deformed shape of the assumed centre-line of a column in equilibrium under
the action of its critical load NV, as shown in Figure 6.12.

Ncr Ncr
pinned end ( > 7 > 7
P 1
/A R II
] X P )
" . ~ 1 X
! 3 1
,: i ~ P Z
; L
S r . !
MR 2 P
S I Lo
Lo o
Lo 1 —assumed centre-line
[N ‘\ i
i |
. \
deformed shape i -
V! L
v! ‘\i
AVl  J

Figure 6.12 Ncrf

pinned end
vl

The bending moment (M) at position x along the column is equal to (N, X z) = N, z

d’z d*z
and hence M=— EI| —| = Nyz .. EI| — |+ N,4z=0

dx’ dx?
d2
This is a 2™ order differential equation of the form: a y f +bz=0
X
, TEl

The solution of this equation can be shown to be: N, =n I
where:

n is0,1,2,3 ... etc.

E, I 'and L are as before.

This expression for N, defines the Euler critical load for a pin-ended column in flexural

buckling. The value of n = 0 is meaningless since it corresponds to a value of N, = 0. All

other values of n correspond to the 1%, 2™ 3™ . .etc. harmonics (i.e. buckling mode

shapes) for the sinusoidal curve represented by the differential equation. The first three

harmonics are indicated in Figure 6.13.

The higher level harmonics are only possible if columns are restrained at the appropriate

levels, e.g. mid-height point in the case of the 2™ harmonic and the third-height points in

the case of the 3™ harmonic.

The fundamental critical load (i.e. n = 1) for a pin-ended column is therefore given by:
n*El

Euler Critical Load Ng= e
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NE Ncr Ncr
i QK / B "'; 1
n= 1 ’,I n= 2 \, S n= 3 : l\
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NE Ncr Ncr
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Figure 6.13 — Buckling mode-shapes for pin-ended columns

The fundamental case can be modified to determine the critical load for a column with
different end-support conditions by defining an effective buckling length equivalent to
that of a pin-ended column by identifying points of contraflexure in the column.

6.3.4 Effective Buckling Length (Lg)

The Euler critical load for the fundamental buckling mode is dependent on the buckling
length between pins and/or points of contraflexure as indicated in Figure 6.13. In the case
of columns which are not pin-ended, a modification to the boundary conditions when
solving the differential equation of bending given previously yields different mode shapes
and critical loads as shown in Figure 6.14.

pinned fixed pinned free
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/ ~ ’ \
/ / ~ / \
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2 2 2 2
n°EI T El T El T El
Ne= "~ N =4~ Ne=2— Ne =025~
L L L L
Pinned/Pinned Fixed/Fixed Fixed/Pinned Fixed/Free

Figure 6.14 — Effective buckling lengths for different end conditions
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The Euler critical stress (og) corresponding to the Euler buckling load for a pin-ended
column is given by:
N 2 T’E
Og= E =z ZEI and = A S.Op=
Area(A4d) L°4

where (L /i) is the slenderness A as before.

Note: In practical design it is very difficult to achieve full fixity as assumed for the end
conditions. This is allowed for by modifying the effective length coefficients e.g.
increasing the value of 0.5L to 0.7L and 0.7L to 0.85L.

A lower limit to the slenderness for which the Euler Equation is applicable can be found
by substituting the stress at the proportional limit o for o, as shown in the following
example with a steel column.

Assume that 6, =200 MPa (N/mm?) and that £ = 210 kN/mm?

2 3 2 3
g0 TXAOAO 21010
(L/i) 200

In this case the Euler load is only applicable for values of slenderness = = 100 and can be
represented on a stress/slenderness curve in addition to that determined in Section 6.3.1 for
short columns as shown in Figure 6.15.

\
A \
\
AN

\ This section is not applicable
. \
< yield stress . /

>

Increasing Stress () ——
S

!
Short Ii Intermediate
|
30 = 100
Increasing Slenderness A= (L/i) —_—

Figure 6.15

The Euler buckling load has very limited direct application in terms of practical design
because of the following assumptions and limiting conditions:
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the column is subjected to a perfectly concentric axial load only,

the column is pin-jointed at each end and restrained against lateral loading,

the material is perfectly elastic,

the maximum stress does not exceed the elastic limit of the material,

there is no initial curvature and the column is of uniform cross-section along its
length,

lateral deflections of the column are small when compared to the overall length,
there are no residual stresses in the column,

there is no strain hardening of the material in the case of steel columns,

the material is assumed to be homogeneous.

Practical columns do not satisfy these criteria, and in addition in most cases are considered
to be intermediate in terms of slenderness.

\
6.3.5 Critical Stress for Intermediate Columns A Y curve to represent
Since the Euler curve is unsuitable for values of | intermediate elements
stress greater than the elastic limit it is necessary v ‘/3_
to develop an analysis which overcomes the 3 IR
limitations outlined above and which can be ? E |
applied between the previously established  Short 1 Intermediate ; Slender
slenderness limits (see Figure 6.15) as shown in | | -
Figure 6.16. slenderness —

Figure 6.16

6.3.6 Tangent Modulus Theorem

Early attempts to develop a relationship for intermediate columns included the Tangent
Modulus Theorem. Using this method a modified version of the Euler equation is adopted
to determine the stress/slenderness relationship in which the value of the modulus of
elasticity at any given level of stress is obtained from the stress/strain curve for the
material and used to evaluate the corresponding slenderness. Consider a column
manufactured from a material which has a stress/strain curve as shown in Figure 6.17(a).

A - A \
{0 (E = tan6) \
/7 \
Oyl|----------- A ! \\ ..
y - Oy position x
B gl B ol i N
bt 7 - °
8 O-e -7, % O'e -------
= . o
@ Limit for slender columns b7

strain (&) slenderness (4)

(a) (b)
Figure 6.17
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The slope of the tangent to the stress/strain curve at a value of stress equal to o is equal to
the value of the tangent modulus of elasticity £, (Note: this is different from the value of
E at the elastic limit). The value of E; can be used in the Fuler Equation to obtain a

modified slenderness corresponding to the value of stress ¢ as shown at position ‘x’ in
Figure 6.17 (b):

7’E,
(L/i)

2
T°E,

O':

Slenderness A at position x = (L/i) =

If successive values of A for values of stress between o . and o are calculated and plotted
as shown, then a curve representing the intermediate elements can be developed. This
solution still has many of the deficiencies of the original Euler equation.

6.4  Perry-Robertson Formula

The Perry-Robertson Formula was developed to take into account the deficiencies of the
Euler equation and other techniques such as the Tangent Modulus Method. This formula
evolved from the assumption that all practical imperfections could be represented by a
hypothetical initial curvature of the column.

As with the Euler analysis a 2™ order differential equation is established and solved using
known boundary conditions, and the extreme fibre stress in the cross-section at mid-height
(the assumed critical location) is evaluated. The extreme fibre stress, which includes both
axial and bending effects, is then equated to the yield value. Clearly the final result is
dependent on the initial hypothetical curvature.

Consider the deformed shape of the assumed centre-line of a column in equilibrium under
the action of its critical load N, and an assumed initial curvature as shown in Figure 6.18.

z, = assumed hypothetical initial
curvature to represent all
practical imperfections,

z = additional curvature due to
buckling.

a = amplitude of the assumed
initial sinusoidal curve.

Figure 6.18
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The bending moment at position x along the column is equal to = N, (z + z,)

d2
and hence the bending moment M= —EI (d_j] = Nu(z +2,)
x

d’z (Mq (MJ
L=t z=—|—|z
dx’ EI EI) "’

... . . . . X .
If the initial curvature is assumed to be sinusoidal, then z, = asin (T] where a is the

amplitude of the initial displacement and the equation becomes:

d*z (MJ (Mj o
+ z =— a sin—
dx’ EI EI L

The solution to this differential equation is:
N, N, “
z=Acos| —<x | +Bsin| —=<x |+ ZEI sin (Ej
EI EI (n N, J L

The constants 4 and B are determined by considering the boundary values at the pinned
ends, i.e. whenx=0 z=0 and when x=L z=0.

Substitution of the boundary conditions in the equation gives:
x=0 z=0 .. A4=0

N, N,
x=L z=0 o Bsin| == =0 For <L | not equal to zero, then B =0
EI EI

N
z= Lj sin (%j If the equation is divided throughout by ( E}r ) then

. X . X
() )
The Euler load Ny = i = —e—

Z:T =
Z 10
N,L

T Sz N
(5—1.0]
Ncr

The value of the stress at mid-height is the critical value since the maximum eccentricity
of the load (and hence maximum bending moment) occurs at this position:
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. X
) o)
when x=L/ 2, sin (Tj =1.0 and Zmid-height — =

M ro] [ Heoio
NCr Ncr

(Note: z, at mid-height is equal to the amplitude a of the assumed initial curvature).

1

N
—E_1.0
NCI‘

The maximum combined stress at this point is given by:

- _ ( axial load N bending momentxc ) (N, N M xc
maximum A ] A Aiz
where c¢ is the distance from the neutral axis of the cross-section to the extreme fibres.
The maximum stress is equal to the yield value, i.e. Gmaximum = Oy

The maximum bending moment M = N, (@ + Zmid-height) = Ner a| 1+

1 c
X

[NE_I.OJ Af°
Ncr

The average stress over the cross-section is the load divided by the area, i.e. (N, /4)

o, = o + 0 Ve x L -g 1+ Ny x &
y — Qaverage average | . . .5~ Vaverage - 7
NE_Ncr 12 NE_Ncr 12

Oaverage — (Ncr /A) and Og— (NE /A)

O-E ac
O-y:O-average 1+ - XT

(Ncr M xc
) O-y: + 2
A Ai

] N,
= —% + N,a|l+
A

O-E - O-avera ge l

The (ac/i®) term is dependent upon the assumed initial curvature and is normally given the
symbol 7.

no
O-y = O-average 1+ —r
o.-0

average

This equation can be rewritten as a quadratic equation in terms of the average stress:
O-y (O-E - O-average) = O.average [(1 + 77)0-15 - O.average]

O-Zaverage — Oaverage [o-y + (1 + 77)0-E] t oy0g= 0

The solution of this equation in terms of Guyerage 1S:

_ [Uy +(1+’7)0E]_\/[0y +(l+77)01~:]2 _40y°'E

average ~
2.0
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This equation represents the average value of stress in the cross-section which will induce
the yield stress at mid-height of the column for any given value of 7. Experimental
evidence obtained by Perry and Robertson indicated that the hypothetical initial curvature
of the column could be represented by;

n=10.3(Lg/100:%)

which was combined with a load factor of 1.7 and used for many years in design codes to
determine the critical value of average compressive stress below which overall buckling
would not occur. The curve of stress/slenderness for this equation is indicated in
Figure 6.19 for comparison with the Euler and Tangent Modulus solutions.

A \
\
\
\
\
\
1 \
yield stress \ Tangent Modulus Theorem
\\
e E— T ™ - \
Oy —r \'.5."'!(
= | TS Perry-Robertson Equati
b ! s erry-Robertson Equation
~ O [WT T T
% 1
o elastic limit
N ' Euler Equation

Short Intermediate

|
=30 =100
Slenderness (1) — Figure 6.19

6.5 European Column Curves

Whilst the Perry-Robertson formula does take into account many of the deficiencies of the
Euler and Tangent Modulus approaches, it does not consider all of the factors which
influence the failure of columns subjected to compressive stress. In the case of steel
columns for example, the effects of residual stresses induced during fabrication, the type
of section being considered (i.e. the cross-section shape), the material thickness, the axis
of buckling, the method of fabrication (i.e. rolled or welded), etc. are not allowed for.

A more realistic formula of the critical load capacity of columns has been established
following extensive full-scale testing both in the UK and in other European countries. The
Perry-Robertson formula has in effect been modified and adopted by the Eurocodes.

The Euler critical buckling stress and the ‘slenderness’ can be written as:

N, ~mEAi* | n’Ei* mE 7n'E
O. = = X—= = =

R A R A s
where A is the slenderness and L, is the critical buckling length ().
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This can be re-written such that the slenderness A=z |— . A graph of critical stress

cr

versus slenderness, i.e. the Euler curve is shown in Figure 6.20.

The critical stress on the Euler curve is limited by the yield stress f; of the material. The
slenderness corresponding with this value is known as the Euler slenderness (4;).

Stress ¢ Medium Large
slenderness slenderness
f;’ --------------- :
Failure by |
yielding . Euler curve

‘Failure by {
 bucklin
! g » Slenderness 4

Euler slenderness A,

Figure 6.20

6.9.9 Non-dimensional Slenderness

EN 1993-1-1: Clause 6.3.1.2 defines a non-dimensional slenderness A including material
properties (£, f,) which affect the theoretical buckling load, (Note: 4= L/i).

The use of a non-dimensional slenderness allows a more direct comparison of
susceptibility to flexural buckling for columns with different material strengths and
requires only one set of curves. A typical non-dimensional buckling curve is shown in
Figure 6.21. In the EN 1993-1-1, non-dimensional slenderness is defined in terms of forces

~ |4
rather than stresses as above, e.g. for flexural buckling 4 = N—fy and y is a reduction

cr

factor.

x=olf
A ' Plateau indicating the limiting non-dimensional slenderness below

which flexural buckling need not be considered; i.e. A<0.2

‘\
. N Failure predicted by Euler

Actual test results

1,0

Safe lower-bound
design curve in EC3

0,2 1,0
Non-dimensional slenderness 4 Figure 6.21

Not to scale
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The buckling curves given in EN 1993-1-1 are the result of more than 1000 tests on
various types of cross-sections with values of slenderness ranging from 55 to 160. The
curves include the effects of imperfections such as initial out-of-straightness, residual
stresses, eccentricity of applied axial load and strain-hardening.

In total five curves, (a), (b), (c), (d) and (a), are given, the first four relating to the
following steel grades: S 235, S 275, S 355 and S 420. The latter curve (a), relates to the
higher grade steel S 460.

¢

.

*

¢

Curve (a): represents quasi-p erfect shapes e.g. some hot-rolled I-sections with

Curve (b):

Curve (¢):

Curve (d):

buckling perpendicular to the major axis and hot-rolled hollow
sections.

represents shapes with medium imperfections e.g. some hot-rolled I-
sections with medium flange thickness, welded I-sections with
buckling perpendicular to the minor axis, most welded box-sections
and angle sections.

represents shapes with many imperfections e.g. some hot-rolled I-
sections, welded I-sections with buckling perpendicular to the minor
axis, thick welded box-sections, U, T and solid sections.

represents shapes with maximum imperfections e.g. hot-rolled I-
sections with very thick flanges and thick welded I-section buckling
about the minor axis.

The selection of a particular curve is given in EN 1993-1-1: 2005: Table 6.2 for various
cross-sections as indicated in Figure 6.22.

Figure 6.22 k

Table 6.2: Selection of buckling curve for a cross-section

uckling curve

Cross section Limits

=
- 4540 mm oy 2
:*,——| z-z b
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“
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Welded
I-sections
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The non-dimensional slenderness for flexural buckling is presented in two forms in
EN 1993-1-1: Clause 6.3.1.3 of the code:

7= Y _ L

cr

N, ik,

N N
e d=\—S5—=F5=77
n El n°Ei

235
A=

EN1993-1-1: Equation (6.50)

L

cr

i,

\f\/f

2
The Euler slenderness 4, = ¢, }% =93,9¢

There is very little guidance given in EN 1993-1-1 in relation to L., the critical buckling
length, other than in Annex BB for some triangulated and lattice structures. Engineers can
use the recommendations given in BS 5950: Part 1 as indicated in Figure 6.14 for no-sway
columns and in Figure 6.23 for columns in which sway can occur.

e, .., Freein @ _____ Free in f}.t\..:}.] Partial

/Free S E‘““*“ position E\}*,\-\“-' position @ f, ,  restraint in

1 l I direction
R 1 = 1 S ! =
S| N ! -1 7/ 20/
I I ! [ 4 |
o s 5|/ 51
=T N ~ ’l =

. , . . .
By Fixed m Pinned E== Fixed E==g Fixed
Sway
Figure 6.23

The buckling curves give values of the reduction factor ‘)’ to be applied to the
compressive resistance of an element cross-section as a function of the non-dimensional
slenderness and is defined by EN 1993-1-1: Equation (6.49) as follows:

1

Toror-1*

but y<1,0 EN 1993-1-1: Equation (6.49)

where
® =05 1+a(Z-0.2)+7"]
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o is an imperfection factor which is dependent on the shape of the element cross-section,
the axis of buckling and the fabrication process, (hot-rolled, welded or cold-formed)
and increases with increasing degree of imperfection as indicated in Table 6.1 below.

Imperfection factors for buckling curves
Buckling curve ay a b c d
Imperfection factor oo | 0.31 | 0.21 | 0.34 | 0.49 | 0.76

Table 6.1
The formulation of EN 1993-1-1: Equation (6.49) is as follows:

A pin-ended column including an assumed initial deformation of magnitude z, is shown in
Figure 6.24.

Assuming this to have a sinusoidal > Z
wave form, it can be written as: X
. TTX L2
z, = asin—
L 0
—x L

where a is the amplitude of the
sine wave. The differential
equation representing the final
deformation is:

\ v

Assumed initial  (b)
deformation

d*z N(z+z,)
+
d*x EI

Figure 6.24

Substituting for the initial imperfection z, and applying the boundary conditions, (the
member is pinned at the ends), the solution of this 2™ order differential equation is:

a . X
Z=>——"—"7SIN——

(N, /N-1) L

The maximum total deflection ‘e’ of the column occurs when x = L/2 and is given by:
a

(NC,./N—l)SmE (1-N/N,)

€mid-height = Zo T Zmid-height +" miq-height — @ T
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The eccentricity of the applied axial load due to the deformation induces a secondary
bending moment equal to (N X e). The maximum stress at the mid-height position (fy) is
then given by:

f_E+N><e_E+ EXAXe_ O_ﬁ
Y4 w4 \4 b h
a
Substituting for e=e¢e_.., .. =———— and N/N,= 0y/Ou
g mid-height (1 _ Nb/Ncr) Ob
Oya A . . _ 2
fy =0, +—————-X— where o is the Euler critical stress = PEIX
1- (O-b/o-cr )

= (O-cr _O-b)<fy _O-b> = O-bo-cra§

This equation can be further modified to include other effects such as accidental
eccentricity of the applied load, and residual stresses. The classical form of this equation,
which is known as the Ayrton-Perry formula is:

(O-cr _O-b)(fy _O-b) =1]0,0;

where 77 is a factor to allow for the imperfections and ¢ is the buckling stress. An
alternative representation of this equation is given by dividing by ( fy)2

%y G|y G| _,00
oo N L) L

The reduction factor ‘y’ = ov/f, and A = Sy SAr= Iy
GCT

Q

T

Multiplying the equation above by f,/ o, gives the following quadratic equation in x:
(1—;( Zz)(l—;() =ny - Ay - (/Tz+77+1),y +1=0

Assuming 171 =« (/T - 2_0) , the smallest solution for this quadratic equation is:

1+a(Z—ZO)+/Tz—\/{[1+a(1—/70)+/72]2—427}
217

z:

Let 4,=0,2 and ® = 0,5[1+a(1—0,2)+12]

Multiplying by the conjugate, the equation for % can be re-written as:
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21 _
[ 20| —41 2d)+[ 2@ g y) 4% + 47>

2q>+\/{[2<1>] —4/1} 2/12><2[<1>+ (q>2—22)}

1

:[q>+ (c1>2—)7)}

This equation is given in EN 1993-1-1: Clause 6.3.1.2 with the value of /70 =0.2 (i.e. the

end of the horizontal plateau) and factor o for both geometrical and mechanical
imperfections as given in EN1993-1-1: Table 6.1, i.e.

xX= S S but ¥ <1.0 EN 1993-1-1: Equation (6.49)

O+VD*-1?

where & = 0.5[1+0{(I—0.2)+22]
Af,

—=  for Classl, 2 and 3 cross-sections and

cr

eff f

A= for Class 4 cross-sections

The value of the reduction factor y can be determined using EN 1993-1-1:
Equation (6.49), in EN 1993-1-1: Figure 6.4 (see Figure 6.25 in this text), or alternatively
from Table 6.2 given below. (Note: this table is not given in EN 1993-1-1.)

<10

2

)
Fa 448
//// L

NN

£ o, NN
NN

) 03 \\\‘\-\‘:\\\\

%%%

o1 %
oo

02 D= 06 08 1.0 12 14 1.6 18 20 22 24 268 2B 30

Men-dimensional slendemess 7,

Figure 6.4: Buckling curves

Figure 6.25 — Extract from EN 1993-1-1:2005
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Reduction Factor Reduction Factor
Curve Curve Curve Curve Curve Curve Curve Curve

(@ (b) (© (d) (@ (b) (©) (d)
0,1 1,00 1,00 1,00 1,00 1,6 0,33 0,30 0,28 0,25
0,2 1,00 1,00 1,00 1,00 1,7 0,30 0,27 0,25 0,22
0,3 0,97 0,96 0,95 0,92 1,8 0,27 0,25 0,23 0,21
0,4 0,95 0,92 0,89 0,85 1,9 0,24 0,23 0,21 0,19
0,5 0,92 0,88 0,84 0,78 2,0 0,22 0,21 0,19 0,17
0,6 0,89 0,83 0,78 0,71 2,1 0,20 0,19 0,18 0,16
0,7 0,84 0,78 0,72 0,64 2,2 0,18 0,17 0,16 0,15
0,8 0,79 0,72 0,66 0,58 2,3 0,17 0,16 0,15 0,14
0,9 0,73 0,66 0,60 0,52 2.4 0,15 0,15 0,14 0,13
1,0 0,66 0,59 0,54 0,46 2,5 0,14 0,14 0,13 0,12
1,1 0,59 0,53 0,48 0,41 2,6 0,13 0,13 0,12 0,11
1,2 0,53 0,47 0,43 0,37 2,7 0,12 0,12 0,11 0,10
1,3 0,47 0,42 0,38 0,33 2,8 0,11 0,11 0,10 0,10
1,4 0,41 0,38 0,35 0,30 2,9 0,11 0,10 0,10 0,09
1,5 0,37 0,34 0,31 0,27 3,0 0,10 0,10 0,09 0,08

Table 6.2

The design of the majority of concrete and timber column members is usually based on
square, rectangular or circular cross-sections, similarly with masonry columns square or
rectangular sections are normally used. In the case of structural steelwork there is a wide
variety of cross-sections which are adopted, the most common of which are shown in
Figure 6.26.

UKB/UKC Hollow
sections

sections

/>
PR = <,// =

|

——

o

/

Compound Laced Battened Welded Box
sections sections sections sections

Figure 6.26
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In all cases, irrespective of the material or member cross-section, an assessment of end and
intermediate restraint conditions must be made in order to estimate critical buckling
lengths (L) and hence the non-dimensional slenderness A .

It is important to recognise that the critical buckling length is not necessarily the same

about all axes. Typically, it is required to determine two L. and A values (e.g. Lery, /1y

and L., A, ), and subsequently determine the critical compressive stress relating to each

one; the lower value being used to calculate the compressive resistance of a member. In
the case of angle sections other axes are also considered. The application of the Ayrton-
Perry formula to various steel columns is illustrated in Examples 6.1 to 6.4 and
Problems 6.1 to 6.5.

6.6 Example 6.1 Slenderness

The hollow square column section shown in Figure 6.27 is pinned about both the y-y, and
z-z axes at the top and fixed about both axes at the bottom. An additional restraint is to be
provided to both axes at a height of L, above the base. Determine the required value of L,
to optimize the compression resistance of the section.
P For optimum compression resistance the maximum non-
inned support
(%/ dimensional slenderness for lengths AB and BC must be

the same. i.e. A= Age
o - Af. L. . L
V4 ~ Note: 4 = [—¥ = =< je. 1 a == and hence:
L = N, 4 i
/ Y S . .
lateral ° Lcr,AB/lyy - Lcr,BC/lzz
restraint
~ Since the section is square iy, = i,, and
A Lcr,AB = Lcr,BC

Fixed support Figure 6.27

Consider the critical lengths of AB and BC
Lcr,AB = 085L1 and Lcr,BC = 10L2 085L1 = 10L2

The total height of the column (L, + L;) = 6.0 m

S L +085L,=6.0and hence L;=3.24m
L2 =2.76 m
The required value of L; =3.24 m

6.7 Example 6.2 Rolled Universal Column Section

A column which is subjected to a concentric axial load ‘N’ is shown in Figure 6.28.
Restraint against lateral movement but not rotation, is provided about both axes at the top
and the bottom of the column. Additional lateral restraint is also provided about the z-z
axis at mid-height as shown.

Considering flexural buckling only and using the data provided, determine the
compression resistance of the column using the EN 1993-1-1 flexural buckling formulae.
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Data:

Yield Stress £, =355 MPa (N/mm®) E =210 kN/mm’

Assume pinned § N

Solution:
EN 10025-2:2004
Table 7

EN 1993-1-1:2005

Table 5.2(1)

Table 5.2(2)

Clause 6.3.1.3(1)

Equation (6.50)

Table 6.2

. Section at the top \
Property 203 x 203 x 60 UKC

Universal Column g
Cross-sectional area (4) 76.40 cm’ y e
Radius of gyration (i,,) 5.20 cm ol
Radius of gyration (iyy) 8.96 cm 7 Bl oz f
Depth of the section (h) 209.60 mm o T
Width of the section (b) 205.80 mm ‘ e
Flange thickness (¢) 14.20 mm y o
Web thickness (zy) 9.40 mm ¢ _ B
Root radius (7) 10.20 mm Figure 6.28 . - \pinned base

For S355 steel thickness #=14.2 mm (< 16 mm)

fy =355 MPa

(Note: for thicknesses of steel < 16 mm, f, = steel grade)

Section classification for a 203 x 203 x 60 UKB S355 (compression)

£ =.[235/f, =/235/355 =0,81

Web:

c=[h-2(t:+r)]=1209.6 -2 x(14.2 + 10,2)] = 160.8 mm

c/t=1(160.8/9.4)=17.1

336=(33x0,81)=26.73 (See Figure 6.5 in this text)

c/t<33¢ ... The web is Class 1

Flange:

c=[b—(ty +2r))/2=1205.8-(9.4+2x10,2)]/2 = 88.0 mm

c/t =(88.0/14.2) = 6.20

9e=(9x%0,81)="7.29 (See Figure 6.5 in this text)

c/t<9e .. The flanges are Class 1
Section is Class 1

Flexural buckling resistance

- |4
A= /N—fy =L—_“><% where 4, =93.96=93.9x0.81=76.06

1

Consider the y-y axis: assume Ly = (1.0 X 4.50) = 4.50 m
,Ty =£Xi :ﬂx; =0.66
i, A4 89.6 76.06

y

h/b=1209.60/205.80 = 1.02<1,2 and # < 100 mm
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For buckling about the y-y axis use curve b
(Figure 6.22 in this text)

Equation (6.49) ¥= 1 but y<1.0

TN E
where & = 0.5[1+0{(Z—0.2)+12]

Table 6.1 Imperfection factor for curve b: o0 = 0.34
(see Figure 6.24 in this text)

® =0.5[1+0.34(0.66-0.2) +0.66" | =0.796
- 1
0.796 ++/0.796” - 0.66>

=0.81 but y<1,0

Alternatively use the curves given in EN 1993-1-1: Figure 6.4
(see Figure 6.26 in this text)

Consider the z-z axis: assume L., =(1.0x2.25)=2.25m

Equation (6.50) A, “Le 1250 1 459
i, A 520 76.06
Table 6.2 h/b =209.60/205.80 = 1.02 < 1,2 and ;< 100 mm

For buckling about the z-z axis use curve ¢
(Figure 6.22 in this text)

Table 6.1 Imperfection factor for curve b: oo = 0.49
(see Figure 6.24 in this text)

Equation (6.49) @ =0.5[1+0.49(0.57-0.2)+0.57" | =0.753
- 1
0.753++/0.753 —0.57

=0.80 but y<1,0

Alternatively use the curves given in EN 1993-1-1: Figure 6.4
(see Figure 6.26 in this text)

Critical value y, = 0,80

XAf, 0,80x7640%355
Y LOx10°

The maximum design axial load with respect to flexural buckling = 2169.8 kN

=2169.8 kN

Equation (6.47) Nozrd=

Note: EN 1993-1-1: Clause 6.3.1.4(1) ‘For members with open cross-sections account
should be taken of the possibility that the resistance of the member to either torsional or
torsional-flexural buckling could be less than its resistance to flexural buckling.’
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6.8 Example 6.3 Compound Column Section

A column ABCE is shown in Figure 6.29. The column is 15.0 m long and supports a roof
beam DEF at E. The beam carries a load of w kN/m length along its full length DEF. The
column is fabricated from a 152 x 152 x 23 UKC with plates welded continuously to the
flanges as shown. Using the data given and considering only flexural buckling, determine:

(i)  the compression resistance of the column, and
(i)  the maximum value of w which can be supported.

Data:
Section Section Section classification: Class 1
Probert 152 x 152 x 23 UKC )

Ope y Universal Column Yleld Stressf}‘; = 275 MPa
Cross-sectional area (4) 29.2 cm’ , 5
Radius of gyration (i) 370 cm Young’s Modulus £ =210 kN/mm
Radius of gyration (i) 6.54 cm . ‘

Depth of the section (/) 152.40 mm Buckling curve: .
Width of the section (5) 15220 mm Assume a welded box section where
Flange thickness (7) 6 8'0 mm all the longitudinal welds are near
Webgthickness (t )f 5'8 0 mm the corners of the cross-section.
Root radius (» 7.60 mm .
2 Moment (ot)“ area ] 1250.0 o’ For both the y—y axis and the z-z
Yy - axis use curve b.
2" Moment of area 1,, 400.0 cm*
50m 15.0m
w kN/m Fixed
i T N\
[ X N 3
D E Pinned Connection Pinned E
Support
g
S A g .
> i <
Lateral restraints 10 1524 10 Lateral restraint o a
cb / § Wﬂj \ —
N N g_ o 7§
E [ I —‘ o C E
3 = S
. B P @ B H B ©
o =
AN A T //////J = Al
Fixed m A \ - &\Pinned
Support Support
2/200 x 10 mm plates 152 x 152 x 23 UKC
Restraint about ) Restraint about
the A—A axis Cross-section of the column the B—B axis

Figure 6.29
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Solution:
(@)
=[2920 + 2 x (10 x 200)] = 6.92 x 10° mm?

3
Iaa= {2x[%+(10><200><81.22)]+400x104} =30.41 x 10° mm"*

3
Iz g = 1250x10* +(2x%] =25.83 x 10®* mm*

6 6
= oY 620 mm; = [ 61 10 mm
6.92x10 6.92x10

Flexural buckling resistance

Table 5.2 e =(235/275)""=0.92
= |Afy L, 1
Clause 6.3.1.3(1) A= ~ =4><Z where 4, =93.9£ =93.9x0.92 = 86.39
cr l

Consider the A-A axis:
Lya2(0.85%x2.0)=1.7m
>(1.0x4.0)=4.0m
>(1.0x9.0)=9.0m
The critical buckling length L4 =9.0 m
- L 1 9000 1

Equation (6.50 Ay =—EX—=—"Xx——=1.57
a (6:50) ) 6629 86.39

Consider the B-B axis:

Lyp>(1.0%x6.0)=6.0m
>(0.85x9.0)=7.65m

The critical buckling length L., 5 = 7.65 m

Equation (6.50) %:&xi @ 1 =1.45
iy A4 61.10 86.39

491

Since the same buckling curve is used for both axes the largest value

of A is used to determine the reduction factor, i.e. A =1.57

1
Equation (6.49) Jy=——"——=—= but ¥<1.0
O +~d* -7
where @ = O.5[1+0{(Z_—0.2) +Zz]
Table 6.1 Imperfection factor for curve b: o = 0.34

(see Figure 6.24 in this text)
® =0.5[140.34(1.57-0.2) +1.57" | =1.97
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1

x =

1.97+1.97> 157
Alternatively use the curves given in EN 1993-1-1: Figure 6.4
(see Figure 6.26 or Table 6.1 in this text)

=032 but y<1,0

Critical value %, = 0,32

XAf,  0,32x6920%275
Yt 1,0x10°
The maximum design axial load with respect to flexural buckling = 608.96 kN

Equation (6.47) Nozrd= =608.96 kN

(“) 5.0m 15.0 m
w KkKN/m
NN

d
D

¥ FR Figure 6.30
Ve

The maximum value of the vertical reaction at £ = 608.96 kN
+ve) IMp=0  (15.0x Vg) — (wx20%2)=0
e Winaximum = (15.0 X 608.96) / 200 = 45.67 kN/m

6.9  Built-up Compression Members

The advantage of using built-up columns from various different elements e.g. as shown in
Figure 6.31, is that they produce relatively light members with relatively high radii of
gyration. The buckling of each individual element must be verified in addition to the
overall column section. Built-up columns are more flexible than solid columns with the
same 2" moment of area and in addition, the shear stiffness is much smaller.

shear bending moment

1
il 2| x 1

~NINUVINS
o

Sl )
UL K
Laced Battened S /
column column
(2) N (b)

Figure 6.31
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Consider the effect of shear deformation on the elastic critical buckling load of a column.

The moment at a point along the column M = Nz

The shear at a point along the beam V' = a =N =
dx dx

The deflection at mid-height is given by: z = z; + z, where z; is due to the bending

moment and z, is due to the shear force.

2
The curvature due to bending is given by d 221 _1L
dx~ R EI EI

. d
The slope due to the shear force V is given by: e p—
dx GA

where
s a shape factor related to the cross-section (= 1,2 for a rectangle),
A is the cross-sectional area and G is the shear modulus.

The curvature due to the shear force V is given by:

2 2 2
dzjzﬂdeﬂNdf Note: ¥ =N%Z. d—Vsz—f
dx GA dx GA dx dx  dx dx

The total curvature due to the bending moment and the shear force is given by:
d’z _d’z; d’z, Nz ﬁNd_zz

dx*  dx* dx? El  GA dx*

This 2™ order differential equation can be re-written as:
d’z N
> = z=0
dx* (1-BN/GA)EI

This can be solved to give the critical value for N:
N 7’

(1-BN/GA)EI  I*

Solving for the 2™ order differential above equation results in an expression for the elastic
critical load including both bending and shear deformations, i.e.

1 1
Ncr,M,V - 1 1 - Ncr N
—t— I+—=
Ncr SV SV
where:
2
N, is the Euler critical buckling load = ”LZEI

Sy 1s the shear stiffness of the column = @
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Clearly Nyemv < N For solid rolled cross-sections, Sy is much greater than N, and can
be neglected in design. In the case of built-up columns, Sy is much smaller than N, and
can be very significant.

6.9.1 Shear Stiffuess for Laced Columns N

Consider a built-up column with N-shaped
lacing as shown in Figure 6.32. The shear
stiffness is determined by considering the
elongation of one diagonal and one
horizontal member as follows:

1_,_9
S}/a

v

where the flexibility of the system is
represented by 1/S,.

The wvalue of the horizontal
displacement ¢ caused by an applied unit
load can be determined using the theory N
of virtual work.

N-shaped lacing

Figure 6.32
2
uL
0= dnorizontal member T é‘diagonal member — E
2 2 2 2 dih Y d 3
5=zuL:NVLV+Nde s L0k, (d/h)d _ h, 2d
AE  AE AE AE AE AE hjAE

where:
N,=1,0;, L,=hy; Ng=dlh,, Lq=d; A, and A, are the shear areas of the laces.

Flexibility Sizyz S . The shear stiffness S, = %

v a

3 3
O can be re-written as: 0 = 2d Ad—h‘; +1
W AE\ Ad

a _ ah’>AE
g d’ Ay +1
Ad’

and the shear stiffness as: S, = for each plane of lacings.

This is indicated in EN 1993-1-1: Clause 6.4.2.1/Figure 6.9. Similar values are also given
for alternative lacing systems.
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Determination of the design load in a built-

up column is based on the assumption that it N
can be represented by a simple elastic B

. . . N 7
column with an equivalent initial -
imperfection and shear flexibility as shown
in Figure 6.33. L2 2(x)
The initial curvature is assumed to be
sinusoidal, i.e. z (%)

20— eysin(m/l) “oy Deflected
0l X equilibrium shape

where e, is the bow imperfection equal to
1/500 as indicated in EN 1993-1-1:
Clause 6.4.1(1). -~

// Original shape including
initial curvature

N Figure 6.33

The initial geometric imperfections are amplified by the application of a design axial load
N such that:

2(x) = 2, (x)———= - 2o —sin(7x/1)

Ncr,M,V NCF,M,V

At the mid-span point of the column, the axial load is /V and the bending moment is given
by:
j— eON

o) =

M:(Nxz -

N cr,M,V
The maximum axial load in the most loaded chord member is given by:

N:E+£:N l+i where N v =N, L
2 N cr,M, cr N
1- 1+ —<
Ncr,M,V SV
N[1+N“J
TR S PO S S O ) NN
N, cr,M,V N 1 N, cr N cr Sv
cr N
I+—<
SV
N. .M 1 e,/h
N="4B N 4%
2 0 |2 _N_N
Ncr Sv

This is similar to the formulation given in EN 1993-1-1: Equation (6.69).
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In the case of laced columns the effective length is taken as equal to the system length
between the lacing connections; in battened columns (disregarding any possible end
restraint) the effective length of the chords is taken as equal to the distance between the
centre lines of the battens.

The forces in the lacing members and in the chords adjacent to the ends are derived
from the shearing force J and the axial load M.

The shear force at the ends of a built-up column is given by:

V=N[ﬂ) “Ne Tx— L Ty
dx x=0 l 1_]V/]Vcr,M.V /

This is similar to the formulation given in EN 1993-1-1: Equation (6.70).
The axial force in the diagonal lacings of a built-up column is given by:

1Z

N=—
nh,

In the case of battened columns the chords, battens and their connections to the chords, are

designed to resist the bending moments, shear forces and axial loads indicated in

Figure 6.34

N ho ‘
K ~
(2 N/2
— /2 lL—» V2

Val ho Val2 al?
Val4
Va/2

‘ Va4 —T a
Va/ho al?

Figure 6.34 Vi2 ‘7r V2 ‘Wr

N/2 — Valh, N2 +Valh,

6.10 Example 6.4 Laced Built-up Column

The laced built-up column shown in Figure 6.35 is required to support a design axial load
0of' 4000 kN. The ends of the column are assumed to be pinned and the laces occur on both
faces. Using the design data given:

(i) determine the section classification for chord members,

(i) verify the suitability, or otherwise, of the compression resistance of the chord
members,
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(iii) verify the suitability, or otherwise, of the 457 x 191 x 74 UKB S275 for the
flexural buckling resistance chord section,

(iv) verify the suitability, or otherwise, of the 50 mm x 10 mm thick S275 flat plates
for the flexural buckling resistance of the laces.

Design data:

Chords 457 x 191 x 74 UKB section
Lacings 60 mm wide x 12 mm thick flat plates welded to flanges at 850 mm centres
Centre-to-centre distance of UKB sections (/,) 550 mm

Section properties of each 457 x 191 x 74 UKB S275 chord member:
h=457T0mm b=190.4 mm tw=90mm f=14.5mm Ay, =94.60 cm’
i,=18.80cm  i,=4.20cm r=102mm [,=33300cm* I,=1670 cm®

L 1NEd = 4000 kN
1 457 x 191 x 74 UKB chord sections —

; 60 mm X 12 mm thick laces Lacing at 850 mm
: £ centres
; E z V4 (>
i o ! 1 !
! 2 . L Lo
1.8 S S z
i : ! o)
! N s v = —f— - = — - o0
: \ y ; y -
/ e L pilrisinipiel dinini E ]:
550 mm | ! | %

v/ z

Figure 6.35 T Ngq = 4000 kKN

Solution:
Length of the lacings d = (550% + 425%)"°= 695.07 mm

EN 10025-2:2004
Table 7 For S275 steel thickness #= 14.5 mm
fy=275MPa and f, =410 MPa

EN 1993-1-1:2005

Clause 6.1(1) o= 1,0
Clause 3.2.6 E=210000 MPa, G =81000 MPa
(1) Section classification for a 457 x 191 x 74 UKB S275 (compression)

£ =[235/f, =/235/275 =0.92
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Table 5.2(1) Web:
c=[h-2(t+7r)]=[457.0-2 % (14.5 + 10.2)] = 407.6 mm
c/t=(407.6/9,0) = 45.29
42e=(42%x0.92) =38.64
clt>42¢e .. The web is Class 4

Table 5.2(2) Flange:
c=[b—(tyw +2r))/2=1190.4 - (9.0 +2 x 10.2)]/2 = 80.50 mm
c/t =(80.50/14.5) = 5.55
96=(9x0.92)=8.28
c/t<9e .. The flanges are Class 1
Section is Class 4

Determine the effective area of the web in accordance with EN 1993-1-5: Clause 4.4.

EN 1993-1-5:2006

Clause 4.4(1) ‘The effective area, 4., 1S determined assuming that the cross-section
is subject only to stresses due to uniform axial compression.’
Ac,eff = pAc
Consider a single chord member:

. - b/t
The plate slenderness is given by: 4 = ————
P s . 28.4&./k,
Table 4.1 For internal compression elements with uniform compression
45.29

TP 28.4%0.92x+/4.0
Clause 4.4(2) Reduction factor for plate widths (p)

p=10 for 2, <0.5+./0.085-0.055y =0.673
A,—0,055(3+ -
b _2( V) <10 for Z, > 0.5+1/0.085-0.055y/

w=0/o01=10 and k;=4.0 =0.867

p =
p
For the web:

- 0.867—-0.055(3+1.0
A,=0.867 and p= 2( )
0.867

berr = (0.861 X 407.60) = 350.94 mm
Length of the non-effective zone = 56.66 mm

=0.861<1.0

Reduction in the area = (407.60 — 350.94) x 9.0 = 509.94 mm”
Aceti, = (A — 5.10) = (94.60 — 5.10) = 89.50 cm’

Reduction in second moment of area I

3
= 20x3066 15 642x10* mm?

Lty = (33300 — 13.642) x10* = 33286.36 x 10* mm*
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Reduction in second moment of area 7,
_56.66%9.0°
2

L, = (1670.0 — 0.344) x10* = 1669.66 x 10* mm*

=0.344x%10* mm*

(i1) Verification for compression resistance of the chord members
EN 1993-1-1:2005
Equation (6.11) Nora = % for Class 4 cross-sections
Cross-sectih;(;lal area 4 = (2 x 8950) = 17.90 x 10’ mm’
Verification: N, = % =4922.5 kN > 4000 kN

The chord section is satisfactory with respect to the compression resistance

(iii) Verification for flexural buckling resistance of the chord members
EN 1993-1-1:2005
Second moment of area of built-up section:

Clause 6.4.2.1(4) Iz =0.5124, =0.5x 5507 x 8950 = 1353.68 x 10° mm"*

0 “Ich

Shear stiffness of lacings:

2
Figure 6.9 sz% where  Ag = (50 x10) = 500 mm” and 7 =2
2
szzleoxsooxgsgxsso 803985 KN/
2%695.07

Chord design force at mid-height:

Clause 6.4.1(6) Ngypa =0.5Ngy + Mgghy Ay
eff

1 2
Equation (6.69) where My, = Nl ¥ My g N, = izleff
1— NEd _ NEd L
NCr SV
M.,=0 and MhoAn - Meg (e I =0.5h%4,
2Ieff hO

Clause 6.4.1(1) Bow imperfection ey = L/500 = 8500/500 = 17 mm
7’ El _ m*x210x1353.68x10°

N, == - = 38832.6 kN
L 8500
_ Npe,+My, _ 4000x17.0+0
ME“_I_NEd_NEd 000 4000 =80260.5 KNmm
N, S 38832.6  80398.5

cr v
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M hyA M
Nega = [0 SNg4 +%} = (O.SNEd + hEdJ

eff 0

80260.5

=2145.93 kN

= (0.5><4000) +
Design axial load Ny, zq = 2145.93 kN

effy
Clause 6.3.1.3(1) / Aarty _ A 2 where 4 =93.96=93.9x /23 =86.80

Consider the y-y axis: assume Ly = 8.50 m
Use the radius of gyration based on the gross cross-section

iy=18.80 cm
Equation (6.50) A, = L @ L 2
Y , 4 188.0 8638
Table 6.2 h/b=457.0/190.4=2.402>1.2 and <40 mm

For buckling about the y-y axis use curve a

Figure 6.4 Xy =0.92

Consider the z-z axis: assume L, = 850 mm
Use the radius of gyration based on the gross cross-section
i,=4.20 cm

1 850 1

Equation (6.50) A L L8003

i, A 420 868

z

Table 6.2 h/b=457.0/190.4=2.402=1.2 and # <40 mm

For buckling about the z-z axis use curve b

Figure 6.4 .~ 0.98

Equation (6.47) Nyprd=

Equation (6.46) Verification:

Critical value %, = 0.92

XyAerr Sy 0.92x8950%275
i  1.0x10°

Ny, 214593

Nypa 226435

=2264.35kN

=0.95<1,0

The chord section is satisfactory with respect to the flexural buckling resistance

(Note: the torsional and torsional-flexural buckling resistance should also be checked,

e.g. when using channel sections.)
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Verification for flexural buckling resistance of the laces

EN 1993-1-1:2005

Equation (6.70)

Equation (6.50)

Table 6.2
Figure 6.4

Clause 6.3.1.1(3)

Equation (6.46)

The axial force in the laces Ngq is given by:

V..d
=2
0
My, _ 802605
L 8500
. = 29:66x695.07
ToH 2x550

(see Figure 6.33)

Vig =7 =29.66 kN

=18.74 kN

Consider the z-z axis: assume L., = d =695.07 mm

I
iy=iy, = / ;,Z = hy /12 =12.0//12=3.46 mm
d

7olay 169507 1,y
2T T4 346 868

For solid sections use buckling curve c for any axis

501

Xdz ~ 0.14

X Af,  0.14x60x12x275
Nazprd= = 3
Y 1.0x10

Ny, 1874

Verification: =
Nyra 2772

=27.72 kN

=0.67<1,0

The lacing section is satisfactory with respect to the flexural buckling resistance

6.11 Problems: Buckling Instability

A selection of column cross-sections is indicated in Problems 6.1 to 6.4 in addition to the
position of the restraints about the y—y and z—z axes.
(a) Considering flexural buckling only and using the data provided, determine the
compression resistance of the columns using the EN 1993-1-1 flexural buckling
formulae.

(b) Verify the suitability of the chords for the laced column shown in Problem 6.5.

Data:

Problem fy E Buckling curve
No. (N/mm?) | (KN/mm’) | y-yaxis | z-zaxis
6.1 275 210 (b) ()
6.2 255 210 (b) (b)
6.3 275 210 (b) (b)
6.4 275 210 (©) (©)
6.5 355% 210 (a) (a)

* Hot rolled hollow sections are not available in S275 steel

Table 6.3: Material Property and Buckling Curve Data
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Sect; Section
ection 200 x90 x 30 150 x 100 x 10
Property 533 >%2K1](; x82 | 457 >%1K5]23 x 52 UKPFC RHS
(Channel) (Hollow Section)
Cross-sectional area (4) 105.0 cm® 66.6 cm’ 37.9 cm® 44.9 cm®
Radius of gyration (,,) 4.38 cm 3.11 cm 2.88 cm 3.85cm
Radius of gyration (i) 21.30 cm 17.90 cm 8.16 cm 534 cm
Depth of the section (4) 528.30 mm 449.8 mm 200.0 mm 150.0 mm
Width of the section (b) 208.80 mm 152.4 mm 90.0 mm 100.0 mm
Flange thickness () 13.20 mm 10.90 mm 14.0 mm 10.0 mm
Web thickness (¢,) 9.6 mm 7.60 mm 7.0 mm 10.0 mm
Root radius (r) 12.70 mm 10.20 mm 12.0 mm -
2" Moment of area I, 47500.0 cm” 21400.0 cm” 2520.0 cm” 1280.0 cm*
2" Moment of area I,, 2010.0 cm? 645.0 cm® 314.0 cm® 665.0 cm”

Table 6.4- Section Property Data

Aq denotes a pinned support

denotes a fixed support

e B
g
(e
I
e | e
b 3
N g
e e S
E [e2e]
S
—] 2
(e}
g <
S
Restraint Restraint
about the about the
Z—Z axis y-y axis
A A
g
—
g E o«
> e — ha)
g
on
— " —
g g
= <
Restraint Restraint
about the about the
A-A axis B-B axis

b——o denotes a lateral restraint

Problem 6.1

z

250 mm X 10 mm thick plate

et

533 x210x 82 UKB

250 mm X 10 mm thick plate

480 mm wide X 10 mm thick plate
top and bottom

z

A z

| S,
| S

A

7

/ffffffffw

I

B

¥~

533 x210x 82 UKB

=N o
| P S S A |

Problem 6.2

125 mm

125 mm

A z
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2
£ =
< e
< 3
wv
¢ g
. - B |
e — i
N ; --B
— : ]
v i
g N 1
o wv
i 457x 152x 52 UKB
U 7
Restraint Restraint
about the about the
A—A axis B-B axis 533 x210 x 82 UKB
Problem 6.3
§ . B A
g z z
\n ,
Nt = i ;
< ; !
— =7 g ; _» He 312mm
% S m—f— S % |
g gl - 5 J S S S : S B
S % ' i
o (o] : '
—] T % a |
g E : s
" 0 i ‘
I I i ; .
§ — § 5 - 2/200 x 90x 30 channel sections
! E welded at the toes
Restraint Restraint A
about the about the
A-A axis B-B axis
Problem 6.4

Neg = 1000 kN l

6.0 m

N

—k
800 mm

—

Nig = 1000 kN 1

40 mm x 8 mm thick ‘&;{_::T :::‘@m

lacings at 600 mm centres

z z

laces at 600 mm centres.! 150 mm ;150 mm !
N

Rectangular Hollow Sections
Class 1 section

. ! :
P :::.“::::W
2/150x100x 10 !

Problem 6.5
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6.12 Solutions: Buckling Instability

Solution
Topic: Buckling Instability
Problem Number: 6.1

269.15 mm

&

Restraint Restraint
about the about the
Z—7 axis y-y axis

zi 250 mm X 10 mm thick plate

Data:
Section Section Section classification: Class 1
Property 533 x 210 x 82 UKB | Yield Stress f, =275 MPa

Cross-sectional area (4) 105.0 cm’ Young’s Modulus E = 210 kN/mm®
Radius of gyration (i,,) 438 cm
Radius of gyration (i) 21.30 cm Buckling curve:

Depth of the section (%) 528.30 mm Assume a welded box section where all
Width of the section (b) 208.80 mm the longitudinal welds are near the
Flange thickness (7 13.20 mm corners of the cross-section.

Web thickness (t,,) 9.6 mm
Root radius (r) 12.70 mm For the y—y axis use curve (b)
an Moment of area /, 47500.0 crri For the z—z axis use curve (c).
2" Moment of area I, 2010.0 cm

A =[10500+ 2 x (10 x 250)] = 15.5 x 10’ mm”

3
Iy = {47500><104 +2>{%+ (10><250x269.152)}} — 837.28 x 10° mm*

3
L,= {2x[%]+2010x104} =46.14 x 10° mm*

6 6
iy = 2220 s amm = [R5y 56
15.5x10 15.5x10
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Solution
Topic: Buckling Instability
Problem Number: 6.1 Page No. 2

Flexural buckling resistance
EN 1993-1-1:2005
Table 5.2 £ =(235/275)"=0.92
Ay Lo
N, i

cr

><L where 4, =93.9£ =93.9x0.92 =86.39

Clause 6.3.1.3(1) A=

Consider the y-y axis:
Lyy2(0.85x4.0)=34m
2(1.0x4.0)=4.0m  The critical buckling length L., = 4.0 m
Equation (6.50) 4, = Lo 1 _ 390 1 _yy
i, A 2324 86.39

y
Figure 6.4 Since /Ty <0.2 the reduction factor y=1.0

(see Figure 6.26/Table 6.1 in this text)

Consider the z-z axis:
Ly,2(0.85%x2.0)=1.7m
>(1.0x2.0)=2.0m  The critical buckling length L, =2.0 m
Equation (6.50) A, = Ly 1 _2000 1 _
i, A 5456 86.39

1
TN

where  ® =0.5| 1+@(21-02)+2" |

Equation (6.49) but y<1.0

Table 6.1 Imperfection factor for curve c: o0 = 0.49
(see Figure 6.24 in this text)

® =0.5[140.49(0.42-0.2)+0.42" | =0.64
1

0.64++/0.64> —0.42
Alternatively use the curves given in EN 1993-1-1: Figure 6.4
(see Figure 6.26 or Table 6.1 in this text)

=0.89 but y<1,0

Critical value %, = 0,89

XAf, _0,89x15.5%10° X275
Yui 1,0x10°
The maximum design axial load with respect to flexural buckling = 3793.6 kN

Equation (6.47)  Np,ra= =3793.6 kN
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Solution
Topic: Buckling Instability
Problem Number: 6.2 Page No. 1

480 mm wide X 10 mm thick plate
top and bottom

o |

\?m

] B
g N
5

& & i\

Restraint Restraint
about the about the 125 mm
A-A axis B-B axis ‘

533 x210 x 82 UKB

o |

z

Data:

Section Section Section classification: Class 1
Property 533 x210 x 82 UKB | Yield Stress fy =275 MPa
Cross-sectional area (4) 105.0 cm? Young’s Modulus E = 210 kN/mm®
Radius of gyration (i,,) 4.38 cm
Radius of gyration (i) 21.30 cm Buckling curve:
Depth of the section (/) 528.30 mm Assume a welded box section where all
Width of the section (b) 208.80 mm the longitudinal welds are near the

Flange thickness () 13.20 mm corners of the cross-section.
Web thickness (t,,) 9.6 mm

Root radius (r) 12.70 mm
2" Moment of area /,, 47500.0 cm*
2™ Moment of area I,, 2010.0 cm*

For the y—y axis use curve (b)
For the z—z axis use curve (b).

A=2x[10500 + (10 x 480)] = 30.6 x 10> mm*

3
[M+(1OX480><269.152)}}= 1645.52 x 10° mm*

Isg=2 ><{47500><104 +

3
Iya=2x H%J+2010x104 + (10500><1252)} = 552.65 x 10° mm*

6 6
inn= o220 o3y gomm gy = 220X 434 30 mm,
30610 30610
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Solution
Topic: Buckling Instability
Problem Number: 6.2 Page No. 2

Flexural buckling resistance
EN 1993-1-1:2005
Table 5.2 £ =(235/275)"=0.92

— |4
Clause 6.3.1.3(1) A= Ni = ﬁx% where 4, =93.9£ =93.9x0.92 =86.39
i

cr

Consider the B-B axis:
Lyp2(0.85x11.0)=9.35m
>(1.0x4.0)=4.0m The critical buckling length L, 5 =9.35 m
Equation (6.50) A, = &xi S 30 1 _oa
iy A4 231.89 86.39

Consider the A-A axis:
Lyn2(0.85%5.0)=4.25m
2(1.0x3.0)=3.0m
> (1.0 x4.0) =4.0 m The critical buckling length L, » =4.25 m
L, 1 4250 1

Equation (6.50) A, = —%x—= X——=0.37
iy A 13439 86.39

Since the same curve is used for both axes the critical value of 4, = A, = 0.47

1
;{_®+\/(I)2—Zz

where @ = O.5[1+0{(Z—0.2)+Zz]

Equation (6.49) but y<1.0

Table 6.1 Imperfection factor for curve b: o0 = 0.34
(see Figure 6.24 in this text)

® =0.5[140.34(0.47-0.2)+0.47" | = 0.66
1

Z =
0.66++/0.66> —0.47°

Alternatively use the curves given in EN 1993-1-1: Figure 6.4
(see Figure 6.26 or Table 6.1 in this text)

=0.89 but y<1,0

Critical value = 0,89

A 3
Equation (647)  No,ra= x4l _ O,89><30.6><1(3) X275 _ 2480 4 kN
Yami 1,0x10

The maximum design axial load with respect to flexural buckling = 7489.4 kN
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Solution
Topic: Buckling Instability

Problem Number: 6.3 Page No. 1

& Z
S
Restraint

about the
A-A axis

Restraint
about the
B-B axis

533 x210x 82 UKB

Data:

Section
Property
Cross-sectional area (4)

Section

533 x 210 x 82 UKB
105.0 cm’

457 x 152 x 52 UKB
66.6 cm”

Radius of gyration (i,,)

438 cm

3.11 cm

Radius of gyration (iy,)

21.30 cm

17.90 cm

Depth of the section (/)

528.30 mm

449.8 mm

Width of the section (b)

208.80 mm

152.4 mm

Flange thickness (%)

13.20 mm

10.90 mm

Web thickness (t,,)

9.6 mm

7.60 mm

Root radius (r)

12.70 mm

10.20 mm

2" Moment of area /,,

47500.0 cm*

21400.0 cm*

2" Moment of area ,,

2010.0 cm?

645.0 cm*

Section classification: Class 1
Yield Stress f, = 275 MPa

Young’s Modulus £ = 210 kN/mm”

For the B-B axis use curve (b)
For the A—A axis use curve (b).
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Solution
Topic: Buckling Instability
Problem Number: 6.3 Page No. 2

A= (10500 + 6660) = 17.16 x 10° mm’
—_ [6660><(4.8+2324.9)] %015 mm
17.16x10
I s = [[47500%10* )+ (645%10* )| = 481.45 x 10° mm*

Ina= [2010x10* +(10500%89.152 )|+ [21400x 10 + (6660x140.55° )
=449.11 x 10° mm*

6 6
inn= S 6 stmm s e MY 61 78 mm,
17.16x10 17.16x10
Flexural buckling resistance
EN 1993-1-1:2005
Table 5.2 £ =(235/275)"° =0.92
Ay _ L

—r><i where 4, =93.9£ =93.9x0.92 =86.39
N i A

cr

Clause 6.3.1.3(1) 1=

Consider the B-B axis:
L =(0.85%5.25)=4.463 m
The critical buckling length L. g = 4.463 m

Equation (6.50) 4, = frxt = 4463 1 _43
i, A 16751 8639

Consider the A-A axis:
Lya2(1.0x3.0)=3.0m
2(1.0x3.5)=35m
2(1.0x4.0)=4.0m The critical buckling length L, » =4.0 m
L, 1 4000 1

Equation (6.50) A, =—<x—= x——=0.28
iy A 161.78 86.39

Since the same curve is used for both axes the critical value of 4, = 4, =0.31

1
A oo 1

where @ = 0.5[1+a(2—0.2)+22}

Equation (6.49) but y<1.0

Table 6.1 Imperfection factor for curve b: o0 =0.34
(see Figure 6.24 in this text)
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Solution
Topic: Buckling Instability
Problem Number: 6.3 Page No. 3

® =0.5[1+0.34(0.31-0.2) +0.31’ | = 0.57
1

Z =

0.57++/0.57> —0.31°
Alternatively use the curves given in EN 1993-1-1: Figure 6.4
(see Figure 6.26 or Table 6.1 in this text)

=0.95 but y<1,0

Critical value = 0,95

XAfy, 0,95x17.6x10° x275
Ywmi 1,0x10°
The maximum design axial load with respect to flexural buckling = 4598.0 kN

=4598.0 kN

Equation (6.47)  Np,ra=




Topic: Buckling Instability
Problem Number: 6.4

-

Restraint
about the
A-A axis

Data:

Restraint
about the
B-B axis

Section
Property

Section

200 x 90 x 30
UKPFC

Cross-sectional area (4)

37.9 cm?

Radius of gyration (i,,)

2.88 cm

Radius of gyration (iy,)

8.16 cm

Depth of the section (/)

200.0 mm

Width of the section (b)

90.0 mm

Flange thickness (#)

14.0 mm

Web thickness (#)

7.0 mm

Root radius (7)

12.0 mm

2" Moment of area I,

2520.0 cm*

2" Moment of area I,,

314.0 cm*

A=(2x3790)=17.58 x 10° mm*

Buckling Instability 511

Solution

Page No. 1

2 /200 x 90x 30 channel sections
welded at the toes

Section classification: Class 1
Yield Stress f, = 275 MPa

Young’s Modulus £ = 210 kN/mm”

Buckling curve:

In this case assume:

For the B-B axis use curve (c)

For the A—A axis use curve (c).

(Note: welded box sections generally relate to
fabricated sections where all the longitudinal
welds are near the comers of the cross-
section.)

Is 5= (2 %2520 % 10*) = 50.40 x 10° mm*

Ina=2x [314x10* +(3790x58.8% )] = 32.49 x 10° mm*

6
inp = JM — 81.54 mm
7.58x10

6
inn= X0 65 47 mm;
7.58x10
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Solution
Topic: Buckling Instability
Problem Number: 6.4 Page No. 2

Flexural buckling resistance
EN 1993-1-1:2005
Table 5.2 £ =(235/275)"=0.92

— |4
Clause 6.3.1.3(1) A= Ni = ﬁx% where 4, =93.9£ =93.9x0.92 =86.39
i

cr

Consider the B-B axis:
Lyp2(0.85%5.0)=4.25m
>(1.0x2.5)=2.5m The critical buckling length L., 5 =4.25 m
Equation (6.50) A, = &xi 4250 1 _o60
iy A4 8154 86.39

Consider the A-A axis:
Lya=2(1.0x25)=25m
2(1.0x2.0)=2.0m
> (1.0 x3.5) =3.5m The critical buckling length L, o =3.5 m
L, 1 3500 1

Equation (6.50) A, =—%x—="—"x——=0.62
iy A 6547 86.39

Since the same curve is used for both axes the critical value of 4, = 4, =0.62

1
;{_®+\/(I)2—Zz

where @ = O.5[1+0{(Z—0.2)+/Tz]

Equation (6.49) but y<1.0

Table 6.1 Imperfection factor for curve c: o0 = 0.49
(see Figure 6.24 in this text)

® =0.5[140.49(0.62—-0.2)+0.62” | = 0.80
1

Z =
0.80++/0.80> —0.622

Alternatively use the curves given in EN 1993-1-1: Figure 6.4
(see Figure 6.26 or Table 6.1 in this text)

=0.77 but y<1,0

Critical value = 0,77

A 3
Equation (647)  No,ra= x4l _ 0,77><7.58><1(3 X275 1 c0s 1 kN
i 1,0x10

The maximum design axial load with respect to flexural buckling = 1605.1 kN
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Solution
Topic: Buckling Instability
Problem Number: 6.5 Page No. 1

Neg = 1000 kN l

k— z
i laces at 600 mm centres | 150 mm

40 mm x 8 mm thick
&1 lacings at 600 mm centres

'3
2/150x100x 10 1
Rectangular Hollow Sections :
Class 1 section z

N

—

Ngq= 1000 kN T
Data:

Section Section classification: Class 1

150 x 100 x10 RHS

Hollow Section Yield Stress f, = 355 MPa
Cross-sectional area (4) 449 cm’
Radius of gyration (i,,) 3.85 cm Young’s Modulus £ = 210 kN/mm”
Radius of gyration (iy,) 5.34 cm
Depth of the section (h) 150.0 mm The section is built-up, laced
Width of the section (b) 100.0 mm compression member, see Section 6.9
Flange thickness (#) 10.0 mm of this text.
Web thickness () 10.0 mm
Root radius (r) -
2" Moment of area I, 1280.0 cm*
2" Moment of area 1, 665.0 cm*

Section
Property

Buckling curve:
For the y—y axis use curve (a)
For the z—z axis use curve (a).

Solution:
Length of the lacings d = (300* + 300%)"° = 424.26 mm

Verification for compression resistance of the chord members
EN 1993-1-1:2005

Equation (6.11)  N_z4 = i for Class 1 cross-sections
’ VMo

Cross-sectional area 4 = (2 x 4490) = 8.98 x 10° mm’

3
Verification: N, g, = oo 0 X333 _ 3187 9 kN > 1000 kN

1.0x10°
The chord section is satisfactory with respect to the compression resistance
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Solution
Topic: Buckling Instability
Problem Number: 6.5 Page No. 2

Verification for flexural buckling resistance of the chord members

EN 1993-1-1:2005
Second moment of area of built-up section:

Clause 6.4.2.1(4) I =0.512A4, =0.5x 300 x 4490 = 202.05 x 10° mm*

Shear stiffness of lacings:
nEAyahy
2d*

_ 2x210%320x600x300°

- 2% 424.26°

Figure 6.9 S, = where  Ag=(40x 8)=320mm” and n=2

S

v

=47518.94 kN/mm

Chord design force at mid-height:

Mg hA
Clause 6.4.1(6) N g =0.5Ng, + £a/to Aen

eff

NEdeo+M113d
1_NEd_NEd “ I
N S

cr \4

7Ly

Equation (6.69)  where M, = and N, =

Medhod _ AZ £ when I, = 0.5h%4,,

eff 0

Mg, =0 and

Clause 6.4.1(1)  Bow imperfection ¢, = L/500 = 6000/500 = 12 mm
T°El, 7 %x210x202.05x10°
el —

Ncr = 2
L 6000

=11632.56 kN

_ Npge, + My _ 1000x12.0+0 B
MEd_l_NEd_NEd 1000 To00— = 13438.0 kNmm

N. S 11632.56 47518.94

cr v

Moy A M
N = {O.SNEd +%} = (O.SNEd 4= J

eff 0

= (0.5x1000) + 13:35'0 = 544.79 kN

Design axial load Ny gq = 544.79 kN
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Solution

Topic: Buckling Instability
Problem Number: 6.5 Page No. 3

/Afy
_ A 4
Clause 6.3.1.3(1) A= i :£><—A where
NCF ly 21

Equation (6.50)

Table 6.2
Figure 6.4

Equation (6.50)

Table 6.2
Figure 6.4

Equation (6.47)

Equation (6.46)

A, =939 =93.9x%, /E =76.40
355

Consider the y-y axis: assume L., = 6.0 m
Use the radius of gyration based on the gross cross-section
iy=>53.4cm

~ L. 1 6000 1
ﬂ, =—X—=—X— =
YU A 5347 764

y
For buckling about the y-y axis use curve a

1.47

2~ 0.38

Consider the z-z axis: assume L, = 600 mm
Use the radius of gyration based on the gross cross-section
i,=3.85cm

A, = Lo (1 _600 1 20
i, A 385 764
For buckling about the z-z axis use curve a
X.~1.0

Critical value g, = 0.38

X,Af,  0.38x4490x355
il 1.0x10°
Ny, _ 544.79

Verification: = =0.90<1,0
Nyra  605.7

Nypra= =605.7 kN

The chord section is satisfactory with respect to the flexural buckling resistance




7. Direct Stiffness Method

7.1  Direct Stiffness Method of Analysis

The ‘stiffness’ method of analysis is a matrix technique on which most structural computer
analysis programs are based. There are two approaches; the indirect and the direct
methods. The direct method as illustrated in this chapter requires the visual recognition of
the relationship between structural forces/displacements and the consequent element
forces/displacements induced by the applied load system. The indirect method is primarily
for use in the development of computer programs to enable the automatic correlation
between these displacements.

Neither method is regarded as a hand-analysis. The direct method is included here to
enable the reader to understand the concepts involved and the procedure which is
undertaken during a computer analysis. The examples and problems used to illustrate these
concepts have been restricted to rigid—jointed structures assuming axially-rigid elements.
In addition, the structures have been limited to having no more than three
degrees—of-freedom and do not have any sloping members. In both methods it is necessary
to develop element stiffness matrices, related to a local (element) co-ordinate system and a
structural stiffness matrix related to a global co-ordinate system. The development of
these matrices and co-ordinate systems is explained in Sections 7.2 and 7.3.

7.2  Element Stiffness Matrix [k]

One of the fundamental characteristics governing the behaviour of elastic structures is the
relationship between the applied loads and the displacements which these induce. This can
be expressed as:

where:

[F] is a vector representing the forces acting on an element at its nodes i.e. the
(element end forces vector),

[£] is the element stiffness matrix relating to the degrees-of-freedom at the nodes
relative to the local co-ordinate system,

[0] is a vector representing the displacements (both translational and rotational) of the
element at its nodes relative to the local axes co-ordinate system (element
displacement vector).

Considering an element with only one degree—of—freedom, the matrix and vectors can be

. F . . .
re-written as k = R leading to a definition of stiffness as:

“The force necessary to maintain a ‘unit’ displacement.”

The ‘axial’ stiffness of a column as shown in Figure 7.1, can be derived from the standard
relationship between the elastic modulus, stress and strain as follows:
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cross-sectional area 4 F
Elastic Modulus EF= ——= -~~~ = — \\\\\l\\\\:t s

This equation can be re-arranged to give:

Figure 7.1 L

F=t45

Pr

hence when 6=1.0 (i.e. unit displacement) then the axial stiffness &k (=F)= %

7.2.1 Beam Elements with Two Degrees—of—-Freedom

Consider a ‘beam element’ of length L, Young’s Modulus E and cross-sectional area A
which is subject to axial forces F; and F; at the end nodes A and B as shown in Figure 7.2.

F] F2 Z

— O—>
node A L, EA node B
l—> X

Figure 7.2

Assume that node A is displaced a distance of ¢ in the direction of the longitudinal axis
(i.e. the x-direction) and similarly node B is displaced a distance of & as shown in
Figure 7.3.

node A node B
Fy— 7777 Q T O— 2
01 ‘ L,EA E) 2‘
-
Figure 7.3
The force/displacement relationships for this element are:
F= EAL—EX change in length Lj s F = -i-AL—E><(51 —0,) (assuming §,> &)
Considering equilibrium in the x direction:
AE

F,=-F, FZ:_TX(51_52)

These two equations can be expanded and written in the form:

AE AE
Fi=+—0, ——90 Equation (1
1 I 1 17 2 q (H
AE AE

Fr=——¢, + —90 Equation (2
2 I I q ()
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£ AE  AE] |9
_— . YT L
in matrix form this gives: F, = LAEAE X 5,
L L
Le. [Fl=[k]x[0]

where [£] is the element stiffness matrix.

This element stiffness matrix [£] representing two-degrees-of-freedom is adequate for pin-
jointed structures in which it is assumed that elements are subject to purely axial loading.

7.2.2 Beam Elements with Four Degrees—of-Freedom

In the case of rigid-jointed, plane-frame structures the loading generally consists of axial,
shear and bending forces, the effects of which must be determined by the axial, shear and
bending effects on the elements. Consider a beam element with the following properties:

Length =L
Second Moment of area about the axis of bending = /
Modulus of Elasticity (Young’s Modulus) =F

which is assumed to be axially rigid, (i.e. neglect axial deformations), and has four-
degrees-of-freedom as indicated in Figure 7.4.

F, 0
AQ \l (/'( B
< L. EI \f
F>, 6 Fi, & Fy, O

Figure 7.4

When this element is displaced within a structure each node will displace in a vertical
direction and rotate as indicated in Figure 7.5, where & to o, are the nodal displacements.

———_—_ﬁ\
-

Position after Deformation

o)

Original Position

Axially-Rigid Beam Element with four degrees-of-freedom

Figure 7.5
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The forces induced in this element by the loaded structure, and which maintain its’
displaced form can be represented by the element end forces F) to F, as shown in
Figure 7.6.

Axially-Rigid Beam Element with four element end-forces

Figure 7.6

The element end-forces can be related to the element end-displacements as in the previous
case giving;

[F1=[k]x[d]

F kiy ki ks kg 0y
£, _ kyy kyny kyyo kg % 9,
F; kyy ks, ki ki, J;
Fy kyy kap kyy o kyy J,

where ki1, k2, k13 etc. are the stiffness coefficients for the element.

The displacement configuration in Figure 7.5 can be considered as consisting of the
superposition of four independent displacements each having only one degree-of-freedom
as shown in Figure 7.8.

Similarly the element end-forces can be represented as the superposition of four sets of
forces, each of which is required to maintain a displaced form as indicated in Figure 7.9
The values of ki1, k21, k31 and k4 (Which represent the forces necessary to maintain a
unit displacement) can be evaluated using an elastic method of analysis such as
McCaulay’s Method, (see Chapter 4, Section 4.2).

Consider the case in which a unit displacement is applied in direction o1, (i.e. the slope at
A =-1.0) as shown in Figure 7.7.

unit
displacement ks,1
N
N :
kz,l k1,1 k4,l

z

.,;,‘
l_> x L LEI

Figure 7.7

Y
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Position after Deformation

s _-" L

L Original Position QL

Consider §; =1.0 0,=03=064=0

Original Position

-~ -
e e e ————

Position after Deformation — | only

+

Consider §,=1.0 01=03=064=0

-~

Te~a X52

.
b B
o
—
_—
—

Original Position

T; T T e = — _ Position after Deformation — &, only
1.0

+
Consider §3;=1.0 01=0,=064=0

Position after Deformation — 3 only

e

Original Position

+

Consider §,=1.0 0,1=0,=06:=0

-

Position after Deformation — §,only _ - = =="7"7" ﬁé
1.0

X54

-

———
—
—
—
-
- =
—

Original Position

Figure 7.8
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- R F3

Position after Deformation 7=

Consider §; =1.0 0,=03;=06,=0

Original Position »B
X0 1

\?;k
k2,1 k \~~~-_______——

1,1

Position after Deformation — & only

+
Consider §,=1.0 0,=0:=0,=0

-~

~~
k12 “~__ k3,2
~~~~
== B X0

Original Position
ks,

f T T == ~ _Position after Deformation — &, only
ks

A

Consider §;=1.0 01=0,=06,=0

+
Position after Deformation — J; only k
—_——__ __--ﬁ\ 33
— ~
- ) 3
A== &R
k Original Position T
2,3 kl,3 g k43

Consider §,=1.0 0,=0,=06:=0

k34
+ i
Position after Deformation — d,only _ = = = = -~ T
- kia X Oy
A == — — B
Original Position
k. kg
Figure 7.9

e.g. Fi={(k1101)+ (k12 82) + (ki3 03) + (k14 04)}
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The bending moment at any position ‘x’ along the element can be expressed as:

2
Bending moment: M= EI d_zz =k thx Equation (1)
dx
k, x?
Slope: 0= % = EIé =k x+ 217 44 Equation (2)
dx dx 2
. N . kl,l 2 k2,1 3 .
Deflection: (0=2)= EIz= TX + ?x +Ax+B Equation (3)

Boundary Conditions: ~ when x=0;  deflection J6=0 and slope & =-1.0
x=1L; 0=0 =0

Substitute for x and 8 in equation (2): (x=0, 6 =-1.0)

dz dz kz ]x2 .
Slope: O=— |=El— =k, x+ = + A4 Equation (2a)
dx dx 2
El(-1.0)=4 s A=-El
Substitute for x and ¢ in equation (3): (x=0, 0 =0)
k k
Deflection: (0=z)=Elz= %xz + %)f + Ax+ B Equation (3a)
EI(0)=B S~ B=0
Re-write equations (2a) and (3a):
dz dz k2 |x2 .
Slope: O=— | =El— =k, x+ — —El Equation (4)
dx dx 2
P = _ ko ks .
Deflection: (0=z)=Elz= TX + Tx —FElx Equation (5)

Substitute for x and @ in equation (4): (x =L, 8=0)
2

dz k2,1L .
Slope: 0= = =0=k, L+ S EI Equation (6)
b'e

Substitute for x and ¢ in equation (5): (x=L, J =0)

. kl 1 72 k2 1 43 .
Deflection: (0=2)=0= T’L + ?’L — EIL Equation (7)

Solving equations (6) and (7) simultaneously and evaluating X M =0, XF,=0 gives:

kl,l =+ ﬂ k2,1 = — 6—121 k3’1 =+ E and k471 =+ 6—EZY
L L L L

A similar analysis considering the other three unit displacement diagrams produces the
following values for the element stiffness matrix coefficients:
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[ 4EI —6EI  2EI  6EI |

L I? L I’

kiy kp ks kg —6EI 12EI —6EI —12EI

[k] = k2,1 kz,z kys k2,4 _ I’ r I’ r
kyy ki, kyy o ks 2EI —6EI  4EI  6EI

k4,1 k4,2 ky s k4,4 L r L r

6EI —12EI 6EI  12EI

I L I* r

where:

E is Young’s Modulus,
I is the Second Moment of area of the cross-section and
L is the length of the member.

This is the ‘element stiffness matrix’ for a beam element with four degrees-of-freedom as
indicated in Figure 7.10

Fs, O
ACD) (OB
4{9 5 L, EI \f
F, 0 b Figure 7.10 Fy, 6,

7.2.3 Local Co-ordinate System

The co-ordinate system defining the positive directions for the element end displacements
and the corresponding end forces is known as the ‘local co-ordinate system.’ A typical
local co-ordinate system for axially rigid elements in a frame is shown in Figure 7.11.

o, Fy &, Fs

node A T) (? node B

523 F2 . 54, F4 .
Local Co—ordinate System Figure 7.11

7.2.4 Beam Elements with Six Degrees—of—Freedom

A typical computer analysis program for plain frame elements in rigid—jointed frames uses
beam elements with six degrees—of-freedom as shown in Figure 7.12.

— o —

61 < - é . A
ﬂ ‘ ) Position after Deformation ! ‘I

1
=90 R - 1 &S
% 17 ! - - Original Position :
e
52’ F2 55 F5 d‘
node A ’ node B
51,F1—>?<> (—> o, Fy
Figure 7.12
&, Fs Local Co—ordinate System G, F
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The resulting stiffness matrix for such elements is:

ki ky ks kg ks kg
ki kyy kyy kyy kys o kg
[k] = kyy hay ks kg kys o kg
kg kay iy ks kys o kg
ksy hsy sy ksy kss o ksg
_k6 1 ke key ks kes kg )

The values of the stiffness coefficients are as determined in Sections 7.2.1 and 7.2.2,
combining the effects of both the two and four degree-of-freedom cases. The order in
which the values appear in the matrix is dependent on the numerical order defined in the
local co-ordinate system, see Figure 7.12.

51 61 55 54 65 5()

+AE o -2 0 | —»
L L
o JAEL _6EL . 2EL  6El| 3 |
L 2 L I?
0 _61:;] +12135] 0 _611;1 _1251 T -
k] L L L L
[ =
AE AE
e 0 0 — 0 0 F.
L L —
0 +2EI _6E] 0 +4EI +6EI ) F,
L I? L I?
EI  12EI EI  12EI
0 +6L_2 R 6L_2 i [

It is evident from the stiffness matrices developed in each case that they are symmetrical
about the main diagonal, (this is a consequence of Maxwell’s Reciprocal Theorem). The
elements in matrices represent the force systems necessary to maintain unit displacements
as indicated in Figure 7.12.

The element stiffness matrices must be modified to accommodate the orientation of any
elements which are not parallel to the ‘global co-ordinate system’, see Section 7.3. This is
achieved by applying ‘transformation matrices’ such that:

[k] = [T1[41(T]

where [7] is the transformation matrix relating the rotation of the element to the global
axis system. This is not considered further in this text.
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7.3  Structural Stiffness Matrix [ K]

The stiffness matrix for an entire structure is dependent on the number of structural
degrees-of-freedom which corresponds with the nodal (i.e. joint) displacements, e.g.
consider the structures indicated in Figure 7.13, (Note: assuming axial rigidity).

\— Each node is fixed with respect to
= . .

translation and rotation and hence there
node 1 node 2
are NO degrees-of-freedom.
Node 1 at the base of the cantilever is
restrained in both translation and
rotation.
Node 2 at the top of the cantilever is
free to move in a horizontal direction
and rotate.
There are TWO degrees-of-freedom in
this structure.

Node 1 is restrained in both translation
and rotation.

Since the element is assumed to Node 2 is free to move in a horizontal
be axially—rigid, the horizontal direction and to rotate.

movement at node 3 is the same Node 3 is free to rotate.

as that at node 2. There are THREE degrees-of-freedom
in this structure.

node 4 node 8 (Note: since the elements are assumed
to be axially rigid, the horizontal
movement at node 4 is the same as that
at node 8 and hence does not constitute
node 9 an  additional  degree-of-freedom,
similarly for nodes 3, 5 and 9 and
nodes 2, 6, 10 and 12).

Figure 7.13

Each level of the frame can sway independently of the others and consequently there are
three degrees-of-freedom due to sway (i.e. translation). In addition all of the internal joints
can rotate producing nine degrees-of-freedom due to rotation.

Three of the supports can rotate whilst one i.e. the roller can also move horizontally. The
total number of degrees-of-freedom when the frame is assumed to be axially rigid is equal
to SIXTEEN.
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When the axial deformations of the members is also included the number of degrees-of-
freedom increases to THIRTY ONE.

In order to generate a structural stiffness matrix and complete the subsequent analysis it is
necessary to establish a global co-ordinate system which defines the positions of the nodes
and their displacements. The global co-ordinate system is also used to define the positive
directions of the applied load system.

Consider a portal frame having three degrees-of-freedom as indicated in Figure 7.14.

Structural nodal displacements

R

® identifies a node on the structure

identifies a structural element

V4

X
Y
Global Co-ordinate System

Figure 7.14

The nodal displacements in the structure can be related to the applied structural loads in
the same way as those for the elements, i.e.

[P]=1K]x[4]

where:

[P] is a vector representing the equivalent nodal loads applied to the structure (see
Section 7.3) relative to the global axes - (structural load vector),

[K] is the structural stiffness matrix relating to the degrees-of-freedom at the nodes
relative to the global axes,

[4] is a vector representing the displacements (both translational and rotational) of the
structure at its nodes relative to the global axes, - (structural displacement vector).

The coefficients for the structural stiffness matrix (i.e. K1, Kip, K3 etc.) can be
determined by evaluating the forces necessary to maintain unit displacements for each of
the degrees—of-freedom in turn; in a similar manner to the element stiffness matrices.
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Consider the uniform rectangular portal frame shown in Figure 7.15 which supports a
number of loads as indicated.

10 kNm l 24 kN 7
(N > 8kN
B C
X
=
(e}
- Y
1.5 kN/m )
Global Co-ordinate System
A A D
NE
J‘ 30m | 30m All members have the same EJ value
Figure 7.15

The structural displacements are as indicated in Figure 7.16 (assuming axially rigid
members).

A A
/-A 1 2 ~ 4,
B cld

A D Ay Figure 7.16
=)
® [\
Consider A4; =1.0 Ah=A=4,=0
lb\)k _________ = K . L JaB L lgc
K K
\\ 1 z 21 Ky =+ 2EI
' L L g
1 g» [ 6ET |
A ! - Ky =- -
A Global Axes D } K41 L L Jas
\éﬁ K4 = zero
Consider 4, =1.0 A =4=4,=0
. K=+ 2FEI
2. _ae=- L BC
e -
B & 4E] 4ET
2 Kp=+|—| + |—
L L Jsc L Jep
6EI
‘%» x K;; =— >
A L L" dep
Global Axes r B
B2 K=+ 2EI
L L Jop
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Consider 4;=1.0 A=4=4,=0

[6EI
B Ki;=- 2 }
K'l'._ﬂ L L AB
K 6EI
o -
'l L L CD
y g - [12E1 12EI
A ) S } +[L3 }
B Global Axes - SEI AB €D
Kiy=- —2}
L L° dep
Consider 4, =1.0 Ai=A=4=0
(_‘ Ky Ko =\ Ku K= ZGI'_O ~
p \ L L Jop
1
; [6EI ]
% \ Ku=— |~
A * ’7'* L L o
A Kuy r N
7 Global Axes D é Ki=+ 4FE]T
: L L dep

>
=
>

ke
ke
Kelie
ke

Structural Stiffness Matrix [K] =

s
x>
s
x>

In each case the size of the structural stiffness matrix is the same as the number of
degree-of-freedom.

7.4  Structural Load Vector [P ]

In most cases the loading applied to a structure occurs within, or along the length of the
elements. Since only nodal loads are used in this analysis, the applied loading must be
represented as ‘equivalent nodal loads’ corresponding to the degrees—of-freedom of the
structure. This is easily carried out by replacing the actual load system by a set of forces
equal in magnitude and opposite in direction to the ‘fixed-end forces.’

The ’fixed-end forces” due to the applied loads are calculated for each applied load case
and only those which correspond to structural degrees—of-freedom are subsequently used
to develop the structural load vector as shown in Figures 7.17. to 7.19.
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B PL/8 = (24.0 x 6.0)/3.0 = 18.0 kNm

2
A
|4 PL3 l PLE 71 P2=2402.0=120KN
< wL*12 = (1.5 x 3.0%)/12=1.13 kNm
wL/2 = (1.5%3.0)/2.0 =2.25kN

24 kN P2

wL*/12
wL/2

Y 1 Since these values do not

<«-- correspond  with  any
degrees-of-freedom, they
are not required.

wL*/12 ¥

wL/2 A
1
1

Figure 7.17

The structural displacements and equivalent nodal load system are as indicated in
Figure 7.18, (assuming axially rigid members).

. Al AZ/-\ . Pl P2
(¢ ; (s
B cl¥ B

A 3 P 3
Structural displacements
(assuming axial rigidity Equivalent nodal force system
of the elements)
V4
D Ay A D P,
A N
s b
X
Figure 7.18
Y
The equivalent nodal loads can be determined as follows:
18.0 KNm 18.0 kKNm 10.0 kNm
2.25kN \ ~ 8.0 kN
" }1 A\ >
N 1.13 kNm
+

Equivalent nodal loads due to

dal loads due t lied
applied loads on elements Nodal loads due to applie

AB and BC. Zero loads at nodes B and C.
EE BE
Figure 7.19
Pi=(~1.13+ 18.0 + 10.0) = + 26.87 kNm A +26.87kNm
P2=—18.0 kN [P]= P2 = —18.0kN
P3=(+2.25+8.0)=+10.25 kN P +10.25kN
P, = zero P, 0
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7.5 Structural Displacement Vector [A]

The structural displacement vector can be determined from the product of the inverse of
the structural stiffness matrix and the structural load vector, i.e.

[A] =K' X [P]

4 K, K, Kz K, A
4 _ Ky, K, K3 K, P
4 Ky K, Kz Ky B
4, Ky Kyn Ky Ky P,

7.6  Element Displacement Vector [0]

An element displacement vector is required for each element and is dependent on the
relationship between the structural displacements and the element nodal displacements in
each case. The structural displacements in terms of the global co-ordinate system and the
individual element displacements in terms of their local co-ordinate systems are shown in
Figure 7.20.

) 04
Y| A4
( \B 1 2 C’\‘ > I) (I
A4
3 B & & c
z 4 @ &
_t VW 2] &
Structural Displacements \ 5 &
Global Co—ordinate System 4—) & o
A D

Element Displacements

Figure 7.20 Local Co—ordinate Systems
Consider element AB: Consider element BC: Consider element CD:
2 0 6 +4, 6 +4,
o, 0 0, 0 0, +A4,
[O]as= = [O]sc= = [0]lcp = =
J +4, J +4, J +4,
o, A, o, 0 o, 0

In the direct stiffness method the correlation between the structural displacements and the
element displacements is carried out visually by inspection as indicated above.
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7.7 Element Force Vector [F|r,um

The element end-forces due to the structural displacements can be related to the element
end-displacements as indicated in Section 7.2.2.

[F]=[k]x[J]

K kiy kipo o kyyo kg 9
F, _ kyy kyy kyy o kay % 9,
F; kyy ksy ks ks 05
Fy ko ki kyyo kg 4

The total nodal forces developed at the nodes are given by:

[Fltotar = [F' ] + [Fixed—End Forces]

A ki ko ks k| |6 FEF,
B |k ki ks k| 6| |FER,
Fy ks, ks> kys ka| |8y | | FEE
£y Total k4J k4,2 k4,3 ky4 0, FEF,

7.8 Example 7.1: Two-span Beam

Consider a uniform two-span beam ABC which is fully-fixed at supports A and C and
simply supported at B as indicated in Figure 7.21. A uniformly distributed load of
24 kN/m is applied to span AB and a central point load of 24 kN is applied to span BC as

shown.

Using the data given, the degrees-of-freedom indicated and assuming both members to be
axially rigid,

(i)
(ii)
(ii1)
(iv)
)

generate the structural stiffness matrix [K] and the applied load vector [P],
determine the structural displacements,

determine the member end forces and the support reactions,

sketch the shear force and bending moment diagrams,

sketch the deflected shape.

24.0 kN 7

i,

Global Axes

24.0 kN/m

Figure 7.21
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Solution:

To develop the structural stiffness matrix each degree-of-freedom is given a unit
displacement in turn and the forces (corresponding to all degrees—of-freedom) necessary
to maintain the displaced shape are determined. In this case there is only one
degree-of-freedom and hence the stiffness matrix comprises one element.

Structural Stiffness Matrix [K]: z
A 1= 1.0 -——
- S %» X
A S e S e C
¥~ unit rotation Global Axes
{4E[ } 4ET :l The values of these forces
i L i L i —are not required since they
v . __-- A_B((.‘\ $ N\ Be B do not correspond to any
A §4 - N B?‘;)) - *% C degrees—of—freedom.

kn_{“ﬂ} {ﬂ} _ ﬂ} {ﬂ} v ky =134 EI
L s L Jgc 6.0 Jap 6.0 Jpc

The stiffness matrix  [K] = [ky,] = [1.34E]]
1

The inverse of the stiffness matrix = [K]™" =
1.34E1

Structural Load Vector [P]:

The structural load vector comprises coefficients equal in magnitude and opposite in
direction to the fixed-end forces which correspond to the structural degrees—of-freedom.
In this case, only the moment at joint B is required.

24.0 kN

24.0 kN/m

Fixed—End Forces

. w kN/m wL?/12
Fixed-end forces for member AB i

FEF, = — (24.0 x 6.0%)/12.0 Al B
=—72.0 kNm I |
FEF; =+ 72.0 kNm wL/2 WwL/2

FEF2 =+ (240 X 60)/20 =+ 72.0 kN 72.0 KN 72.0 KN
FEF,=+72.0 kN : :

A h=%§ B
Equivalent nodal loads for AB :

W
72.0 kNm 72.0 kNm
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Fixed-end forces for member BC

FEF; = - (24.0 X 6.0)/8.0
=—18.0 kNm

FEF; =+ 18.0 kNm

FEF, =+ (24.0/2.0) =+ 12.0kN

FEF, =+ 12.0 kN 12.0 kN 12.0 kN
Equivalent nodal loads for BC B \@="§ C
18.0 kNm 18.0 KNm
node 1 node 2 node 3

:72.0 kN 72.0 kKN : : 12.0 kKN  12.0 k.\l:

Equivalent Nodal Loads

72.0 kNm  72.0 kKNm' B 18.0 kNm 18.0 kNm

Applied load in direction of A4 ; at joint B =[-72.0 + 18.0] = — 54.0 kNm
Structural Load Vector [P] = [ 54.0]

Structural Displacements [A4]

—erlipr~ L . 4030 .
(4 =[K]" [P] = [34E]1 [ —54.0] nAy=— Zr radians 5
e
A B

Structural Deflections

Element Stiffness Matrices [k]:

[ 4EI 6EI 2EI 6EI

+ -— * +—

F, F, L L L L
6EI  12EI  6EI  12EI

EILL \ [k] =

Fy F; 2EI  6EI AE] 6EI
+ -— * +—

L L L L
6EI  12EI  6EI  12EI

T g o
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Element End Forces [F]:

[ 41 6EI  2EI  6EI |[s] | FER
+ - + + 1
F L I’ L L
1 6EI  12EI  6EI  12EI || FEF,
Y T I - - A | R
1= F, = [k[4 + [FEF| = L2EL _OEI AEL  6EI ||
F L L L L } FEF;
N 6EI  12EI  6EI  12EI
T T T T3 o
L L L L L JL%1 | FER,
Consider element AB:
EL_AEL o copy SEL_OEL
L 6.0 L 6.0
2EI _ 2Bl _ (30 12EI _12EI _ ooy
L 6.0 L 6.0°
+0.67 —0.17 +0.34 +0.17
-0.17 +0.06 —0.17 —0.06
[klag = EI
+0.34 —0.17 +0.67 +0.17
+0.17 —-0.06 +0.17 +0.06
Displacement Vector [J]: Fixed-End Forces Vector [FEF]:
6, ] 0] [ FEE, | [—=72.0]]
5
6, 0 % \ FEF, +72.0
= AT\ ,TB =
5, ~40.30/ EI £ N FEF, +72.0
51 53
Gl L 0] | FEF, |, [+72.0]
Element End Forces [F]ag:
5 7 F, FEF,
t t Flroa=| 2| + |07 | = K118 + [FEF)
B :} ( C Total F,3 FEF3
F, F F, FEF,
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+0.67 -0.17 +0.34 +0.17 0 =72.0

-0.17 +0.06 -0.17 -0.06 0 +72.0
k][4 + [FEF] = EI +

+0.34 -0.17 +0.67 +0.17||-40.30/EI +72.0

+0.17 -0.06 +0.17 +0.06 0 +72.0

F;=—-(0.34 x40.30) — [72.0] = - 85.70 kNm p™\
Fy=+(0.17x40.30) + [72.0] =+ 78.85 kN 4
Fy=—(0.67 x 40.30) + [72.0] = + 45.0 KNm /¢
Fy=—(0.17 x 40.30) + [72.0] = + 65.15 kN

Consider element BC:

SEL_AEL o op SEL_GEL
L 6.0 L 6.0
2EI _ 2EI — 0.34E] 12EI _ 12E1 — 0.06E]
L 6.0 r 6.0°
+0.67 —-0.17 +0.34 +0.17
-0.17 +0.06 -0.17 -0.06
[klgc = EI
+0.34 -0.17 +0.67 +0.17
+0.17 —-0.06 +0.17 +0.06
Displacement Vector [J]: Fixed-End Forces Vector [FEF]:
5] [-40.30/EI] (FEE | [-18.0]
0, d,
0, 0 T T FEF, +12.0
= A hd =
B i = C
0, 0 5 8, FEF, +18.0
Gl L 0] FEF, |, |+12.0]
Element End Forces [F]gc:
F, £ K FEF,
T T [Flto = Bl FER ) [K][4] + [FEF]
B ) ( C Total F,3 FEF3
F F; F, FEF,



536 Examples in Structural Analysis

+0.67 -0.17 +0.34 +0.17||-40.30/El -18.0

-0.17 +0.06 -0.17 -0.06 0 +12.0
k][4 + [FEF] = EI +

+034 -0.17 +0.67 +0.17 0 +18.0

+0.17 -0.06 +0.17 +0.06 0 +12.0

F;=—(0.67 % 40.30) — [18.0] = — 45.0 kNm ¥\
F>=+(0.17 x 40.30) + [12.0] = + 18.85 kN

Fy = — (0.34 x 40.30) + [18.0] = + 4.30 kNm /%
Fy=—(0.17 x 40.30) + [12.0] =+ 5.15 kN

Reactions:

Support A:
Va=(F)a=+7885kN 4
MA = (FI)AB =—85.70 kNm

Support B:
Vo= (Fiap+ (F2)ac =+ 65.15+ 18.85 =84.0kN 4
Mp = (F3)as = (F1)sc = 45.0 kKNm C 5

Support C:
Ve=(Fypc=+515kN 4
MC = (F3)BC =+4.30 kNm

78.85 kN
18.85 kN 18.85 kN
A | C
B 5.15kN 515kN
(78.85/24.0)=3.29 m : :
65.15 kN

85 70kNm Shear Force Diagram

. 430kNm

B W
W T 11.35 kNm

44.0 kNm

/ S~ __-- - Deflected Shape
Points of contraflexure



Direct Stiffness Method 537

7.9 Example 7.2: Rigid-Jointed Frame

A non-uniform, rigid—jointed frame ABCD is fully-fixed at supports A and D as indicated
in Figure 7.23. A uniformly distributed load of 3 kN/m is applied to element BC a central
point load of 5 kN is applied to element AB and a point load at node C as shown.

Using the data given, the degrees-of-freedom indicated and assuming all members to be
axially rigid,

(i)  generate the structural stiffness matrix [K] and the applied load vector [P],
(i)  determine the structural displacements,

(iii) determine the member end forces and the support reactions,

(iv) sketch the shear force and bending moment diagrams,

(vi) sketch the deflected shape.

NN

Z
NN
g %—» X
b8
g Global Axes
o -~
e

4.0m

L} N

Figure 7.23

Solution:
Each degree-of-freedom is given a unit displacement in turn and the forces necessary

to maintain the displacements is calculated in each case.

A1=1.0 A2:A3:0
4EI} [4E1}
=|— +|—
L AB L BC

4(2.0E1

( ) + 4ET =+3.67EI
3.0 4.0

28] 28] v osomr
L Jse [ 40

6(2.0E1
@} = (—2) =+1.33E1
AB 3.0
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A2=1.0 A1:A3:0

[ 2EIl'] [ 2EI]

Klz =|— =|—\| =+ O.SOEI
L L g |40 ]

K22 = 4£ —‘,— ﬂ
L L ABC L L JCD

= {4”}{4(35‘.00”)} =+ 3.40E1

6(3.0E1
K32 = |:@:| = (—2) =+ 0.72E1
L ep 5.0

[ 6EI | 6(2.0E1

K= 6€I = —( 5 ) =+ 1.33E1I
L L s [ 3.0
[6EI] [ 6(3.0E1)]

K = OFT = g =+0.72E1

L dep L 5.0°

Ky = 12E[} N [IZEI}
AB CD

r r
12(2.0E[) 12(3.0E1)
= 3 + 3 =+ 1.18EI
3.0 5.0
3.67 0.50 1.33
Structural stiffness matrix = [K] = EI| 0.50 3.40 0.72
1.33 0.72 1.18

There are several methods for inverting matrices, the technique used here is given in
Appendix 3.

[x]

The invert of a matrix is given by [K]™' =

IS
where: + - +
[K“] is the co-factor matrix for [K] 3'_67 0.20 1.3 _3
|K|]  is the determinant of [K]  and EI10.50 3.40 0.72

[K]" is the transpose of the co-factor matrix 1.+3 3 072 1. 1+8
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Co-factor Matrix: [K°]
(Note: the transpose of a symmetric matrix is the same as the original matrix)

kS =+ {(3.40 x 1.18) — (0.72 X 0.72)} EI > = + 3.49EI 2

kS, = ks, =—{(0.50 x 1.18) — (1.33 x 0.72)} EI * =+ 0.37EI *

ke, = kS, =+ {(0.50 x 0.72) — (1.33 x 3.40)}EI > = — 4.16EI *

kS, =+ {(3.67 x 1.18) — (1.33 x 1.33} EI > = + 2.56EI *

kSy = kS, =— {(3.67x 0.72) — (1.33 X 0.50)}EI > = — 1.98EI *
kS, =+ {(3.67 x 3.40) — (0.50 X 0.50)} EI > = + 12.23EI *

Determinant of [K]:
Det [K]=EI’ {+ (3.67 X 3.49) + (0.5 x 0.37) — (1.33 X 4.16 } =+ 7.46EI°

| +0.468 +0.050 -0.558
Inverted stiffness matrix = [K]™' = —| +0.050 +0.343 —0.265
-0.558 -0.265 +1.639

Structural Load Vector: [P]:

w

Fixed-end forces for member AB PL/S = P2 . .,"' 2; kN
FEF, =+ (5.0 X 3.0)/8.0 188 kNm
=+ 1.88 kNm
FEF; =—1.88 kNm P—>
FEF, = (5.0/2.0) = 2.5 kN
FEF,=2.5kN 1.88 kNm
PL/8
- P/2 2.5 kN

B

539

Equivalent nodal loads for AB

wL*12 w kN/m wL’/12

Fixed-end forces for member BC

FEF, = — (3.0 x 4.0%)/12.0
=—4.0 kNm

FEF; =+ 4.0 kNm

FEF, = (3.0 X 4.0)/2.0) = 6.0 kKN

FEF,= 6.0 kN

b
4.0 kNm 4.0 kNm

Equivalent nodal loads for BC
Applied nodal load at C=2.0 kN —>»



540 Examples in Structural Analysis

The equivalent nodal loads required are those which correspond with the nodal

degree—of-freedom as follows:

Py =(+1.88 +4.0) =+ 5.88 kNm
P,=-4.0=-4.0kNm
P;=(+25+2.0)=+45kNm

Global Axes
5.88 kNm [fnode 2 g
: A
B C
Equivalent Nodal Loads
+5.88
Structural Load Vector [P] =| —4.0
+4.5
Structural Displacements [A]:
4 | +0.468 +0.050 —0.558 || +5.88
[4] = K] [P] 4, :E +0.050 +0.343 -0.265|| 4.0
A4 —0.558 -0.265 +1.639||+4.50

1 0.03
A= E[(0.467x5.88)—(0.05><4.O)—(0.558><4.5)] =+~ radians D

1 227
4= E[+(0.05><5.88)—(0.343><4.0)—(0.265><4.5)] =~ radians 5

1 5.15
Ay = —| —(0.558x5.88 0.265%x4.0 1.639%x4.5)|=+——m —>»
5 EI[ ( X )+( x4.0)+( X )] + o




Element Stiffness Matrices [k]:
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Structural Deflections

4E] 6E] 2EI 6E]
+ -— + +—
FZ F4 L L L L
T T 6FEI 12E1 6FE] 12E1
) ’ 2 T T TP
¥ EILL \ [k] =
F, F; 2EI  6EI 4E] 6E]
L I* L I’
6E] 12E1 6E] 12E1
T T3 T 3
L L L L L]
Element End Forces [F]rota:
F1 [FER
Pl = | 2 |+ | 2%~ 1918 + [FEF]
Total F,3 FEF3
F, FEF,
Consider element AB:
4% (2.0EI 6x(2.0E1
4L _ ( )=2.67EI OET _ ( 5 ) =1.33E]
L I’ 3.0
2%x(2.0EI 12%(2.0EI
2B = ( )=1.33EI 1215] = ( 3 )20.89EI
L 3.0 L 3.0
+2.67 -1.33 +1.33 +1.33
-1.33 +0.89 -1.33 -0.89
[k]AB = EI
+1.33 -1.33 +2.67 +1.33
+1.33 -0.89 +1.33 +0.89
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Displacement Vector [d]: Fixed-End Forces Vector [FEF]:
N A [FEF, | [+1.88]
5 51 —> 52 1 +1.
! | 3%
5, 0 FEF, -2.5
J; +0.03/ EI FEF, ~1.88
5 J3 /TN
L74daB | +5.15/ EI | ]3_>54 _FEF4_AB | 2.5

Element End Forces [F]ag:

A K FEF
Fr F FEE
ad =21+ | 2| =[k|[d + [FEF
[F]Total F,3 FEF3 [ ][d [ ]
F, FEF,
+2.67 —-133 +1.33 +1.33 0 +1.88
Fs ~1.33 +0.89 -1.33 -0.89 0 25
—p [, = FEI +
B +1.33 —-133 +42.67 +1.33||+0.03/EI ~1.88
+1.33 -0.89 +1.33 +0.89 || +5.15/EI 25

F=[+(1.33%0.03) + (1.33x 5.15)] +[1.88] =+ 8.77kNm /4

F,=[-(1.33%0.03)— (0.89 X 5.15)] - [2.5] =— 7.12 kN -«
F3=[+(2.67%0.03) +(1.33%5.15)] - [1.88] = + 5.05 KNm /X
F 4=+ (1.33x0.03) + (0.89 x 5.15)] - [2.5] = + 2.12 kN —

Consider element BC:

4El _ 4xEl _ L OEI 611;1 _ 6><]:;1  038E]
L 4.0 L 4.0

2EI _ 2xEI 05E] 12E1 _ 12><3EI —0.19E]
L 4.0 r 4.0

+1.0 -0.38 +0.50 +0.38

-0.38 +0.19 -0.38 -0.19
[klgc = EI

+0.50 -0.38 +1.0 +0.38

+0.38 -0.19 +0.38 +0.19
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Displacement Vector [d]: Fixed-End Forces Vector [FEF]:
[0, ] [+0.03/EI'] [FEF, | [—4.0]
5, 54
S, 0 T T FEF, +6.0
= N 4 =
B i = C

J, —2.27/EI 5, 5, FEF, +4.0

[Oifpe L O] (FEE, | . [+6.0,

Element End Forces [F]gc:

F, Fy F FEF,
F. FEF
T\ )'T a1 = | 2|+ > | = [K][8 + [FEF
2N Do =] 7| +] | = K14+ FER
F Fs F,| |FEF,
+1.0 -0.38 +0.50 +0.387[+0.03/EI| [-4.0
_ 1038 +0.19 -038 -0.19 0 , | +6.0
+0.50 —038 +1.0 +038||-227/EI| |+4.0
+0.38 —0.19 +0.38 +0.19 0 +6.0

Fi=[+(1.0x0.03) = (0.5x2.27)] - [4.0] == 5.11 kNm ¥\
Fy=[=(0.38 0.03) + (0.38 X 2.27)] + [6.0] =+ 6.85 kN 1
Fy=[+(0.50 % 0.03) — (1.0 x 2.27)] + [4.0] =+ 1.75 kKNm /%
Fa=[+ (038 0.03)— (0.38 X 2.27)] + [6.0] =+ 5.15 kN 1

Consider element DC:

4EL _ 4x3.0EL _, 00 6EL _ 6x3.0E1 _ o0
L 5.0 I 5.0

2EL _ 2x3.0El _ | . 121 _ 12x3.0EL _ o
L 5.0 L 5.03

+2.40 -0.72 +1.20 +0.72
£ -0.72 +0.29 -0.72 -0.29
+1.20 -0.72 +2.40 +0.72

+0.72 -0.29 +0.72 +0.29

[Klpc
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Displacement Vector [d]: Fixed-End Forces Vector [FEF]:
sl [ o ] D s [FEE| [0]
N
0, 0 FEF, 0
0, -2.27/EI FEF, 0

TRV R | 5
_54_CD | +5.15/ EI | C_’ 4 | FEE, |, 0]

Element End Forces [Flpc:

D
—> K FEF,
e F,| | FEE
[Flrota = F + FEF, = [£][4] + [FEF]
F,| |FEF,
+2.40 -0.72 +1.20 +0.72 0 0
AN, r, _ | 7072 029 072 -029 0 L0
C +1.20 —0.72 +2.40 +0.72||-2.27/EI| |0
+0.72 -0.29 +0.72 +0.29||+5.15/EI| |0

Fi=[-(120%x227)+ (0.72 x 5.15)] + [0] =+ 0.98 kNm ¢
Fy=[+(0.72%2.27) = (0.29 x 5.15)] + [0] =+ 0.14 kN -
F3=[-(2.40x2.27)+(0.72 % 5.15)] + [0] =— 1.74kNm ¥\
Fy=[-(0.72x2.27)+ (0.29 x 5.15)] + [0] =— 0.14 kN -
Reactions:

Support A:

Va=(F)sc=6.85 kN 4 Hy=(F)ap=T7.12 kN <

MA = (FI)AB =+8.77kNm 7 X

Support D:
VD:(F4)BC:5-15 kN ? HD:(Fz)DC:O.14 kKN —»
MD = (FI)DC =+ 0.98 kNm YR |
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7D7
A
E . Axial Force Diagram
S
E g wn =
v % D
G & 0.13 kN
B 2.12 kN — tension C
1
A
7.13 kN
Shear Force Diagram 2.12 kN
6.85 kKN
B C ]|0.14 kN
]
o 228m 5.15kN
D
0.98 KNm
8.77 kNm
S Bending Moment Diagram
* (the value given at the nodes is the
average from the two elements).
D
S.O8KNm* k= . . A
BE.. e —~c-H1.75* kNm :
5.08 kNm*W 1.75* kNm A 1
2.73 kNm \
1
| \
1
\ \
A \
\ . \
Deflected Shape \ Points of \
\ contraflexure \
' 1
\ \ \
. 1
Figure 7.24 B | - €l
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7.10 Problems: Direct Stiffness Method

A series of indeterminate structures are indicated in Problems 7.1 to 7.6 in which the
assumed degrees-of-freedom at the nodes and the relative EI values for the members
are given. In each case for the data indicated:

(i) generate the structural stiffness matrix [K] and the applied load vector [P],

(ii) determine the structural displacements [4],

(iii) determine the member end forces [F],

(iv) determine the support reactions,

(v) sketch the axial load, shear force, and bending moment diagrams and the
deflected shape for each structure.

2 4 Local
Assume all members to be axially rigid. Co—ordinate
yrig I\l EL L 3 )'I System
A N
10.0 kN/m 40.0 kN 7

X

Global Axes

Problem 7.1

Global Axes

Problem 7.2

node 1 node 2 node 3

Global Axes

6.0m 4.0m Problem 7.3
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8.0 m Global Axes

Problem 7.4

8.0 kN/m Global Axes node 3

6.0m Problem 7.5

Global Axes

Problem 7.6
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7.11 Solutions: Direct Stiffness Method

Solution
Topic: Direct Stiffness Method
Problem Number: 7.1

10.0 kN/m

Global Axes

Assume axially rigid members

A1=1.0 A2=0

i {4151}
+ | —
JAB L BC

IRE.
. (2.0ET1)
6.0
[2(2.0E1) |

}=+2.33 EI

=+0.67 EI

Global Axes -BC
Az =1.0 A[ =0

=+0.67 EI

=+1.33 EI

2.33 0.67
0.67 1.33

]

IS .
where: 2.33 0.67
[K] is the co-factor matrix for [K] EI { 0.67 1+3 3}
|K] is the determinant of [K]  and ' '
[K°]" is the transpose of the co-factor matrix

Structural stiffness matrix = [K] = EI {

The invert of a matrix is given by [K]™' =
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Solution

Topic: Direct Stiffness Method
Problem Number: 7.1

Co-factor Matrix: [KC]

Page No. 2

(Note: the transpose of a symmetric matrix is the same as the original matrix)

kS =+ 1.33E1
kS, = kS, =—0.67EI
kS, =+ 2.33E]

Determinant of [K]:

Det [K] = EI* {+ (2.33 x 1.33) — (0.67 x 0.67)} =+ 2.65 EI *

Inverted stiffness matrix = [K]™' = I

Structural Load Vector: [P]:

Fixed—end forces for member AB
FEF, = — (10.0 x 4.0°/12.0
=—13.33 kNm

FEF; = + 13.33 kNm
FEF, =+ (10.0 X 4.0)/2.0 = + 20.0 kN
FEF, =+ 20.0 kN

Equivalent nodal loads for AB

Fixed—end forces for member BC

FEF, = - (40.0 x 6.0)/8.0
=—30.0 kNm

FEF; =+ 30.0 kNm

FEF, = + (40.0/2.0) =+ 20.0 kN
FEF, =+ 20.0 kN

Equivalent nodal loads for BC

L

0.502 -0.253
-0.253 0.879

20.0 kN

Ab@@B
B

13.33 kNm 13.33 kNm

20.0 kN

PL/8 PL/8
=

I
P2

20.0 kN

BMC
B

30.0 kNm 30.0 kNm

20.0 kN
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Solution
Topic: Direct Stiffness Method
Problem Number: 7.1 Page No. 3

i

Global Axes

Nodal load at B=(-13.33 + 30.0) =+ 16.67 kNm
Nodal load at C =—30.0 kNm

Equivalent Nodal Loads

Structural Load Vector [P] =
-30.0

+16.67}

Structural Displacements [A]:

=k p = L[ 0502 —0253][+16.67
EI|-0253 0.879 || -30.0

1 15.96
A4;,= —1(0.502x16.67 0.253x30.0) | =
1= [( X )+ ( X )] -

1
—| —(0.253%16.67)—(0.879%x30.0) | = —
[ -(0253x16.67)~(0.879x30.0)]

radians C

30.59 radians>

Structural Deflections

Element Stiffness Matrices [k]:

F,
4
C

3

[k] =
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Solution
Topic: Direct Stiffness Method
Problem Number: 7.1 Page No. 4

Element End Forces [F|rota:

FEF,
_ FEF, |
[Flrota = FEF, = [K][4] + [FEF]

FEF,

6121 4 2EI + 6E2'1 FEE
L L L
N 12E7 6EI  12E]

I I
6EI  4EI  6EI
2 T T FER
12EI  6EI  12EI

FEF,

Consider element AB:
4E] _ 4x El 10T 6El _ 6X EI

4.0 I’ 4.0°
_ 2XEI 05051 12E _ 12><1321
4.0 L 4.0

=0.38E1

=0.19E7

+1.00 -0.38
-0.38 +0.19
+0.50 -0.38
+0.38 —0.19

[k]ag = EI

Displacement Vector [d]: Fixed-End Forces Vector [FEF]:
N T [ FEF, | [-13.33]

FEF, +20.0

+15.96/ EI FEF; +13.33

|FEF, |, | +20.0 |
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Solution
Topic: Direct Stiffness Method
Problem Number: 7.1

Element End Forces [F]4g:

AT) (TB [Flrota =

61 53

+1.00 -0.38 +0.50 +0.38

-0.38 +0.19 -0.38 -0.19

+0.50 —-0.38 +1.00 +0.38 || +15.96/EI
+0.38 -0.19 +0.38 +0.19 0

=(0.5x 15.96)] - [13.33] = — 5.35 kNm
F2 =—(0.38 x 15.96) + [20.00] = + 13.94 kN T
=(1.0 x 15.96) + [13.33] =+ 29.29 kNm /¥
Fy=(0.38 X 15.96) + [20.0] = + 26.06 kN 1)

Consider element BC:
4E] _ 4x2.0EI 1 33E] 6EI _ 6><2.(2EI
L 6.0 L 6.0

2EI _ 2X2.0E] _ 12E1 _ 12X2.0E1

0.67E1

Page No. 5

= [k1[4] + [FEF]

—-13.33
+20.0

+13.33
+20.0

=0.33E]

=0.11E1

L 6.0 L 6.0°
+1.33 —0.33 +0.67 +0.33

-0.33 +0.11 -0.33 -0.11
+0.67 -0.33 +1.33 +0.33
+0.33 -0.11 +0.33 +0.11

[klgc = EI

Displacement Vector [d]:
e [+15.96/ EI |

Fixed-End Forces Vector [FEF]:
FEFl [—30.0]

FEF, +20.0

-30.59/ EI

FEF, +30.0

 FEF, | +20.0
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Solution
Topic: Direct Stiffness Method
Problem Number: 7.1 Page No. 6

Element End Forces [F]gc:
FEF,
FEEF,
FEF,
3 FEF,
+1.33 -0.33 +0.67 +0.33||+15.96/EI [=30.0
-0.33 +0.11 -0.33 -0.11 0 N +20.0
+0.67 —-0.33 +1.33 +0.33||-30.59/EI +30.0
+0.33 -0.11 +0.33 +0.11 0 | +20.0

Fy = [+ (1.33 x 15.96) — (0.67 x 30.59)] — [30.0] =— 29.27 kNm ¥\
F, = [~ (0.33 x 15.96) + (0.33 x 30.59)] + [20.0] =+ 24.83 kN

Fy = [+ (0.67 x 15.96) — (1.33 x 30.59)] + [30.0] = zero

Fy=[+(0.33 x 15.96) — (0.33 x 30.59)] + [20.0] =+ 15.17 kN

= [k114] + [FEF]

Fy

)'T [Flrota =
& e Total
F.

Reactions:

Support A:
Va=(F)ap=13.94kN 4

MA = (FI)AB =—535kNm ¥\

Support B:

Support C:
Ve=(Fisc=15.17kN 4

24.83 kN

13.94 kN

A ,\
1.39m
26.06 kN 15.17 kN

Shear Force Diagram

535kNm -

A C  Bending Moment Diagram
4.34 KNm * (the value given at the node is the
average from the two elements).

45.36 kNm

Deflected Shape




554  Examples in Structural Analysis

Solution
Topic: Direct Stiffness Method
Problem Number: 7.2 Page No. 1

8.0m Global Axes

Assume axially rigid members
A1=1.0 A2:A3:0

= =+ 1.33EI
Cd» 3.0}

2ET\ _ + 0.67E1
30

{E} =+ 0.67EI
30

JAB

i [4EI}
_l’_
JAB L BC

‘{4(2.05:1)

8.0

} =+2.33E1

[2(2.0E1)
8.0

=+ 0.5E1

[ 2Er] 2(2.0EI)
L L Jse | 80
CD

L L

~ {4(2.0E1)]{4(1.5E1)}=+3'0EI

8.0 3.0




Direct Stiffness Method

Solution
Topic: Direct Stiffness Method
Problem Number: 7.2 Page No. 2

1.33 067 0
Structural stiffness matrix = [K] = EI| 0.67 2.33 0.50
0 050 3.0
(k]
The invert of a matrix is given by [K]’1 = |K|

where:

+ -+
[K°] is the co-factor matrix for [K] 133 067 0

|K] 1is the determinant of [K] and El 0467 2'_33 045
[K°]" is the transpose of the co-factor matrix 0 0.5 3.0

Co-factor Matrix: [K°]
(Note: the transpose of a symmetric matrix is the same as the original matrix)

kf =+ {(2.33 x3.0) — (0.5 x 0.5)}EI * = + 6.74EI *

kS, = kS, =— {(0.67 x 3.0) — (0 x 0.5)} EI * = — 2.0EI >

kS, = kS, =+ {(0.67 x0.5) — (0 x 2.33)} EI > =+ 0.34EI *
kS, =+ {(1.33x3.0)— 0}EI*=+4.0EI*

kS, = kS =— {(1.33 x 0.5) = (0 x 0.67)}EI* =~ 0.67EI >
kS, =+ {(1.33 x2.33) - (0.67 x 0.67)} EI > =+ 2.65EI

Determinant of [K]:
Det [K] = EI® {+(1.33x6.74) - (0.67 x2.0) + 0} =+ 7.62 EI’
| 0.885 —0.264 0.044

Z -0.264 0.524 -0.087
0.044 -0.087 0.348

Inverted stiffness matrix = [K]™' =

Structural Load Vector: [P]: PL/R
Fixed-end forces for member BC B
FEF, =—(50.0 x 8.0)/8.0 s

=—50.0 kNm I
FEF; =+ 50.0 kNm

FEF, =+ (50.0/2.0) = + 25.0 kN
FEF,=+25.0 kN 25.0 kN 25.0 kN

Equivalent nodal loads for BC B @=@E C

50.0 kNm 50.0 kNm

555
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Solution
Topic: Direct Stiffness Method
Problem Number: 7.2 Page No. 3

50.0 KNm

Global Axes
Equivalent Nodal Loads

0
Structural Load Vector [P] = | +50.0
-50.0

Structural Displacements [A4]:

4 0.885 -0.264 0.044 0

[4] = [K]™' [P] 4, =% -0.264 0.524 —-0.087 || +50.0
4, 0.044 -0.087 0.348 ||-50.0

15.40

1 .
A= E[(O.SSSXO)—(0.264><50.0)—(0.044><50.0)] - radians 5

1 30.55

A2=E[—(o.264><0)+(0.524><50.o)+(0.087><50.0)] = +=_— radians )

1 21.75

M= E[(0.044><0)—(0.087><50.0)—(0.348><50.0)] =~~~ radians 5

node 4

Structural Deflections
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Solution
Topic: Direct Stiffness Method
Problem Number: 7.2 Page No. 4

Element Stiffness Matrices [k]:

F,
N
7

Fy

Element End Forces [Flrota:

FEF,
FEFE
[Fltota = mé=mmumm

FEF,

2FEI [ i
+ + FER

FEF,

FEF,

 FEF,

Consider element AB:

AEL _ AXEL _ sapy
L 3.0 I’
2EI _ 2xEI 0.6TE] 12EI _ 12X El
L 3.0 L 3.0°

o _ —6;:;[ = 0.67E1

=0.44E]

+1.33 -0.67 +0.67
-0.67 +0.44 -0.67
+0.67 -0.67 +1.33
+0.67 -0.44 +0.67
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Solution
Topic: Direct Stiffness Method
Problem Number: 7.2 Page No. 5

Displacement Vector [J]: Fixed-End Forces Vector [FEF]:

[—15.40/EI'] «— [ FEF, | 0

FEF,

+30.55/ EI FEF,

FEF, |

Element End Forces [F]4g:

B
F 4 4+—
L F, FEF,

[Flrota = FEF, = [kl[4] + [FEF]

FEF,
+133 —0.67 +0.67 ~15.40/ EI
~0.67 +0.44 —0.67 0
+0.67 —0.67 +1.33 +30.55/ EI
+0.67 —0.44 +0.67 0

Fy = [- (1.33 x 15.40) + (0.67 x 30.55)] + [0] = zero

F, = [+ (0.67 x 15.40) — (0.67 x 30.55)] + [0] = — 10.16 kN
Fy= [~ (0.67 x 15.40) + (1.33 x 30.55)] + [0] = + 30.31
Fy=[- (0.67 X 15.40) + (0.67 x 30.55)] + [0] =+ 10.16 kN

Consider element BC:

AEI _ 4x2.0EI _ L0E] 6El _ 6x2.01
L 8.0 1? 8.0°
2EI  2x2.0EI P 12EI _ 12X2.0EI
L 8.0 L 8.0°

+1.0 -0.19 +0.50 +0.19
-0.19 +0.05 -0.19 -0.05
+0.50 -0.19 +1.0 +0.19
+0.19 -0.05 +0.19 +0.05

=0.19E7

=0.05E1

[k]BC = E]
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Solution
Topic: Direct Stiffness Method
Problem Number: 7.2 Page No. 6

Displacement Vector [J]: Fixed-End Forces Vector [FEF]:

[+30.55/EI | [ FEF, | [=50.0

FEF, +25.0

—21.75/EI FEF, +50.0

FEF, | = [+25.0]

Element End Forces [F|pc:
FEF,

FEF,
FEF,
) FEF,

~0.19 +0.50 +0.197[+30.55/EI [-50.0

—0.19 +0.05 —0.19 —0.05 0 L |+250
+0.50 —0.19 +1.0 +0.19||-21.75/EI | |+50.0
+0.19 =0.05 +0.19 +0.05 0 |+25.0

= [k][4] + [FEF]

Fy
(T C [F] Total —
F

Fy = [+ (1.0 X 30.55) — (0.5 x 21.75)] — [50.0] = — 30.33 kNm

F; =[-(0.19 % 30.55) + (0.19 x 21.75)] + [25.0] = + 23.33 kN
Fy = [+(0.50 X 30.55) — (1.0 x 21.75)] + [50.0] = + 43.53 kNm
Fy=[+(0.19 x 30.55) — (0.19 x 21.75)] + [25.0] = + 26.67 kN

Consider element CD:

4EI _ 4X1.5E1 — 5 0E] 6El _ 6X1.5El

3.0 I? 3.0°

_ 2x15E _ LO0E] 121351 _ 12x1.5E1
L 3.0°

+2.0 -1.0 +1.0 +1.0
-1.0 +0.67 -1.0 -0.67
+1.0 -1.0 +2.0 +1.0
+1.0 -0.67 +1.0 +0.67

=1.0E1

=0.67E]




560 Examples in Structural Analysis

Solution
Topic: Direct Stiffness Method
Problem Number: 7.2 Page No. 7

Displacement Vector [J]: Fixed-End Forces Vector [FEF]:

[—21.75/ETI | [FEF, |

FEF,

FEF,

FEF,

Element End Forces [F|cp:

C—> 1
T FEF,
[Flrota = FEE, | (K11 + [FEF]
FEF,
+2.0 -1.0 +1.0 +1.0 ||-21.75/EI
-1.0 +0.67 -1.0 -0.67 0
+1.0 -1.0 +2.0 +1.0 0

+1.0 -0.67 +1.0 +0.67

Fi=[-(2.0x21.75)]+[0]=—43.5kNm ¥\
F,=[+(1.0x21.75)]+[0]=+21.75kN —»
F;=[-(1.0x21.75)]+[0]=-21.75kNm ¥
F,=[-(1.0x21.75)]+[0]==21.75kN <+

Reactions:
Support A:
Va=(F2)sc =23.33 kN T Hy=(F)ap=10.16 KN >

Support B:

Support D:
Vo = (Foee=2667kN Y Hy=(Fpeo =21.75kN +
MD:(F3)CD:_21-75 kNm [ 2
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Solution
Topic: Direct Stiffness Method
Problem Number: 7.2 Page No. 8

21.75 kKN — compression

7

Axial Force Diagram

23.33 kN
compression
26.67 kN
compression

26.67 kN

Shear Force Diagram

10.16 kN | ] 2175kN

30.32 kNm* 43.52* kNm

S—C [TTTTTTTACTTTTTeT

63.09 kNm

Bending Moment Diagram
* (the value given at the nodes is the
average from the two elements).

s

Deflected Shape




562 Examples in Structural Analysis

Solution
Topic: Direct Stiffness Method
Problem Number: 7.3 Page No. 1

Assume axially rigid members
A1=1.0 A2:A3:0

EO } =+ 0.67E1

E} = +0.33E1
6.0

= {E} =+ 0.33E1
AB 6.0

1 [4E1} [451}
+|— +|—
JAB L BC L BD

] _{4(1.5E1)}_{4(2.0E1)}

4.0 6.0

2(1.5E1)
4.0

=+ 0.75E1

2(1.5E1)
40
4(1.5E1)

=+ 0.75E1

=+ 1.50E1




Direct Stiffness Method

Solution
Topic: Direct Stiffness Method
Problem Number: 7.3 Page No. 2

0.67 033 0
Structural stiffness matrix = [K] = EI| 0.33 3.50 0.75
0 075 150

k]
The invert of a matrix is given by [K]™' = [ |K|]

+

here: y -
v 0.67 033 0

[KS] is the co-factor matrix for [K]
|K] 1is the determinant of [K] and El 043 33 E- 0 0475
[K°]" is the transpose of the co-factor matrix 0 075 150

Co-factor Matrix: [K°]
(Note: the transpose of a symmetric matrix is the same as the original matrix)

kf =+ {(3.50 x 1.50) — (0.75 x 0.75)} EI > =+ 4.69EI *

kS, = kS, =— {(0.33 x 1.50) — (0 x 0.75)} EI * = — 0.50EI

kS, = kS, =+ {(0.33 X 0.75) — (0 X 3.50)} EI > = + 0.25EI >

kS, =+ {(0.67 x 1.50) — 0}EI* =+ 1.0EI*

kS, = kS, =— {(0.67 x 0.75)— (0 x 0.33)}EI > = — 0.50EI >
kS, =+ {(0.67 x 3.50) — (0.33 x 0.33)} EI > =+ 2.24EI *

Determinant of [K]:
Det [K] = EI* {+ (0.67 x 4.69) — (0.33 % 0.5) + 0} =+2.98 EI ®
1.573 -0.168 0.084
Inverted stiffness matrix = [K]™' = -0.168 0.336 —0.168
0.084 —0.168 0.752
Structural Load Vector: [P]:
Fixed-end forces for member AB ( PL/8 +wI*/12) (PL/8 + wI*/12)

T ENNNRNNNNRRNNNNRNED. ANNNNRNNNRRNNNNRNEN ANI

¥ r
(P2 + wL/l2) (P2 +wL/2)

FEF, = — (40.0 x 6.0)/8.0 — (10.0 x 6.0%)/12 = — 60.0 kNm
FEF; = + 60.0 kNm

FEF, = + (40.0/2.0) + (10.0 X 6.0)/2.0 = + 50.0 kN
FEF, =+ 50.0 kN

563
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Solution
Topic: Direct Stiffness Method
Problem Number: 7.3 Page No. 3

50.0 kN

Equivalent nodal loads for AB A $=%§ B

60.0 kNm 60.0 kNm

Fixed-end forces for member BC

FEF, = — (10.0 x 4.0%)/12 = — 13.33 kNm
FEF; = + 13.33 kNm

FEF, =+ (10.0 x 4.0)/2.0 =+ 20.0 kN
FEF, =+ 20.0 kN

Equivalent nodal loads for BC 20.0 kN 20.0 kN

FEF, =+ (16.0 X 6.0)/8 = + 12.0 kNm
FEF; = — 12.0 kNm

FEF, = + (16.0)/2.0 = + 8.0 kN
FEF, = + 8.0 kN

12.0 KNm

Equivalent nodal loads for BD




Direct Stiffness Method 565

Solution
Topic: Direct Stiffness Method
Problem Number: 7.3 Page No. 4

Py=+60kNm, P,=(-60.0+1333-12.0)=-58.67, P;=-13.33kNm
P, 60.0 KNm 58.67 kNm  13.33 kNm

Global Axes

Equivalent Nodal Loads

+60.0
Structural Load Vector [P] = | —58.67
—13.33

Structural Displacements [A]:
4 1.573 -0.168 0.084 +60.0

[4] = [K]™" [P] 4, =i1—0.168 0.336 —0.168 || —58.67
4 0.084 —0.168 0.752 ||-13.33

103.12

4= é[(1.573x60.0)+(0.168><58.67)—(0.084><13.33)} = +

radians D

1 27.55

7 [~(0.168x60.0)(0.336x58.67) +(0.168x13.33) | = == radians h)

M= %[(0.084x60.0)+(0.168><58.67)—(O.752><13.33)] = +% radians ;)

103.12 27.55 4.87
d d
El

rad

Structural Deflections
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Solution
Topic: Direct Stiffness Method
Problem Number: 7.3

Element Stiffness Matrices [k]:

Page No. 5

F, F,
D 4
7 C

F, p [k] =

Element End Forces [Flrota:
FEF,

[Flrotar = FER (k][4 + [FEF]
FEF,

FEF,

2EI [ i
+ + FER

FEF,

FEF,

 FEF,

Consider element AB:

AEL _ AXEL_ ) copy
L 6.0 I’
2EI _ 2xEI  033E] 12EI _ 12X El
L 6.0 L 6.0°

OLT _ OB _ ¢ 1751
6.0

=0.06E7

+0.67 -0.17 +0.33
-0.17 +0.06 -0.17
+0.33 -0.17 +0.67
+0.17 -0.06 +0.17
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Solution
Topic: Direct Stiffness Method
Problem Number: 7.3 Page No. 6

Displacement Vector [d]: Fixed-End Forces Vector [FEF]:
(6]  [+103.12/EI] [FEE |  [-60.0]

FEF, +50.0

—27.55/El FEF, +60.0

FEF, | [+50.0]

Element End Forces [F]ap:

= [k][4] + [FEF]

Fy
(T B [F] Total —
F.

3

8
F,
5
F,

+0.67 -0.17 +0.33 +0.17||+103.12/EI
-0.17 +0.06 -0.17 -0.06 0
+0.33 -0.17 +0.67 +0.17|| -27.55/EI
+0.17 -0.06 +0.17 +0.06 0

Fy =[+(0.67 x 103.12) — (0.33 x 27.55)] — [60.0] = zero

Fy=[=(0.17 X 103.12) + (0.17 x 27.55)] + [50.0] =+ 37.15 kN }
Fy=[+(0.33 x 103.12) — (0.67 x 27.55)] + [60.0] = + 75.57 kNm /4
Fy=[+(0.17 x 103.12) — (0.17 X 27.55)] + [50.0] = + 62.85 kN

Consider element BC:
4EI _ 4x1.5EI _ LSE] 6EI _ 6><1.251
4.0 1? 4.0
_ 2x1.5EI 07SE] 12EI _ 12><1.§E]
4.0 L 4.0

+1.50 —-0.56 +0.75 +0.56
-0.56 +0.28 -0.56 —0.28
+0.75 -0.56 +1.50 +0.56
+0.56 —-0.28 +0.56 +0.28

=0.56E1

=0.28E]
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Solution
Topic: Direct Stiffness Method
Problem Number: 7.3 Page No. 7

Displacement Vector [d]: Fixed-End Forces Vector [FEF]:
(6]  [-27.55/EI] [FEE |  [-13.33]

FEF, +20.0

—4.87/EI FEE, +13.33

FEF, | | +20.0 |

Element End Forces [F|pc:

FEF,
FEF,
FEF,

3 | FEF,
+1.50 —0.56 +0.75 +0.56|[-27.55/EI | —-13.33
-0.56 +0.28 -0.56 -0.28 0 N +20.0
+0.75 —0.56 +1.50 +0.56 || +4.87/EI +13.33

+0.56 —-0.28 +0.56 +0.28 0 | +20.0

= [k][4] + [FEF]

Fy
(T C [Flrota =
F.

Fi=[-(1.5%27.55)+(0.75 x 4.87)] - [13.33] == 51.0 kNm ¥\
F; = [+ (0.56 X 27.55) — (0.56 x 4.87)] + [20.0] = + 32.70 kN
Fy=[-(0.75 x 27.55) + (1.5 x 4.87)] + [13.33] = zero

Fy=[= (0.56 x 27.55) + (0.56 x 4.87)] + [20.0] =+ 730 kN }

Consider element BD:
4EI _ 4x2.0El _ | 33E] 6EI _ 6><2.(2EI
L 6.0 I? 6.0
2EI  2X2.0EI 0.67E] 12EI _ 12><2.§)EI
L 6.0 L 6.0

+1.33 -0.33 +0.67 +0.33
-0.33 +0.11 -0.33 -0.11
+0.67 -0.33 +1.33 +0.33
+0.33 -0.11 +0.33 +0.11

=0.33E]

=0.11E7
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Solution
Topic: Direct Stiffness Method
Problem Number: 7.3 Page No. 8

Displacement Vector [J]: Fixed-End Forces Vector [FEF]:

[—27.55/EI'] [ FEF, | [+12.0]

FEF,

FEF,

FEF,

Element End Forces [F]gp:

B LR FEF,

Fiwly [Flrota = FEF,

FEF,
+1.33 -0.33 +0.67 ) —27.55/EI
-0.33 +0.11 -0.33 ) 0

+0.67 -0.33 +1.33 ) 0
+0.33 —-0.11 +0.33 ) 0

= [k][4] + [FEF]

Fy = [~ (1.33 x 27.55)] + [12.0] = — 24.64 KNm
F, = [+(0.33 x 27.55)] - [8.0] = + 1.09 kN

Fy = [- (0.67 x 27.55)] - [12.0] = — 30.46 kNm
Fy=[-(0.33 x27.55)] - [8.0] = — 17.09 kN

Reactions:
Support A:
Va=(F)ap=37.15kN 4

Support C:
Vc = (F4)BC =+ 730 kN T

Support D:

VD = (F4)AB + (FZ)BC = (6285 + 3270) =95.55 kN T
Ho=(Fyep=17.09 kN <

MD = (F3)BD =—30.46 kNm N\
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Solution

Topic: Direct Stiffness Method
Problem Number: 7.3 Page No. 9

axial load A to C — minimal

Axial Force Diagram

95.55 kN compression

37.15kN 32.70 kKN

’\7.15 kN
A

32.85kN

1.09 kN

Shear Force Diagram
17.09 kN

75.57 kNm
—---=4]51.0 KNm

17.09 kN

24.64 KNm D

Bending Moment Diagram

Deflected Shape




Direct Stiffness Method 571

Solution
Topic: Direct Stiffness Method
Problem Number: 7.4 Page No. 1

8.0m Global Axes

Assume axially rigid members
A1=1.0 A2:A3:0
| [4El}
_ + |
JAB L BC

1 [4(2.0E1)
J{ 8.0

} =+2.33E1

8.0

ST
Global Axes AB 3.0

] ={2(2'0E] )} =+ 0.50E1
BC

2(2.0E1)
_4EI}
L CD
4(1.5EI)
=+ 3.0EI

(1 SEI }
+1.0E1

A2=1.0 A|:A3:0 :| =+ 0.50E1

Global Axes
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Solution
Topic: Direct Stiffness Method
Problem Number: 7.4 Page No. 2

A3=1.0 A1:A2:0

_ {IZEI} N {12E[}
L3 AB L3 CD

_ [12E1}{12(1.5E1)

3.0° 3.0°

} =+1.11 El

Global Axes

233 0.50 —0.67
Structural stiffness matrix = [K] = EI| 0.50 3.0 1.0

-0.67 1.0 1.11

(k]
The invert of a matrix is given by [K]' = W
where: + - +
[K] is the co-factor matrix for [K] 233 050 -0.67

|K] is the determinant of [K] and EIl 0.50 3.0 1.0
[K°]" is the transpose of the co-factor matrix —6.67 1.0 fl 1

Co-factor Matrix: [K°|
(Note: the transpose of a symmetric matrix is the same as the original matrix)
kS =+ {(3.0x 1.11) = (1.0 x 1.0)}EI > =+ 2.33EI*

kS, = kS, == {(0.5x1.11) = (= 0.67 x 1.0)}EI > = — 1.23EI *
kf, = k§, =+ {(0.5% 1.0) — (- 0.67 X 3.0)} EI > = + 2.5EI *
kS, =+ {(2.33 x 1.11) = (= 0.67 x — 0.67)}EI * = + 2.14EI *
kS, = kS, =—{(2.33x 1.0) — (= 0.67 X 0.5)} EI > =—2.67EI*
kS, =+ {(2.33x3.0)— (0.5 x 0.5)}EI > =+ 6.74EI *

Determinant of [K]:
Det [K] = EI’° {+(2.33 x2.33) — (0.5 x — 1.23) + (-0.67 x 2.5)} =+ 3.14 EI°
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Solution
Topic: Direct Stiffness Method
Problem Number: 7.4 Page No. 3

) 0.742 -0.392 0.796
I -0.392 0.682 —-0.850
0.796 -0.850 2.146

Inverted stiffness matrix = [K] ™' =

Structural Load Vector: [P]: wkN/m  wL%/12
Fixed-end forces for member BC ;
FEF, = — (12.0 X 8.0%)/12.0 = — 64.0 kNm
FEF; =+ 64.0 kNm

FEF, =+ (12.0 x 8.0)/2.0 = + 48.0 kN
FEF, =+ 48.0 kN

48.0 kN

Equivalent nodal loads for BC B M c

\64.0 kNm 64.0 kNm
Applied nodal load at B =50.0 kN —>

Global Axes

Structural Load Vector [P] =

Structural Displacements [A]:
-0.392 0.796 ||+64.0

[4] = [K]™" [P] 4, : 0.682 —0.850 || —64.0
—0.850 2.146 ||+50.0
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Solution
Topic: Direct Stiffness Method
Problem Number: 7.4 Page No. 4

L
EI

é[—(0.392x64.0)—(0.682><64.0)—(0.850><50.0)] =_

112.38

4 [(0.742%64.0)+(0.392x64.0) +(0.796x50.0) | = + radians )

111.24 radians 5

212.64

A= é[(0.796x64.0)+(0.850><64.0)+(2.146><50.0)} =+

node 3
Global Axes

Structural Deflections

Element End Forces [F]rota:

FEF,
FEFE
[Fltota = FEFz = [k][8] + [FEF]

FEF,




Solution
Topic: Direct Stiffness Method
Problem Number: 7.4

6EI  2EI
+
I? L
12EI  6EI
+

r I?

[k1[9] + [FEF] = 6E] N 4EI

Nz L
12EI  6EI
-~ +

L3

Consider element AB:

4E

L
E

L

Displacement Vector [d]:

4x El

=1.33E]

3.0
2XEI

=0.67E]

3.0

+1.33
-0.67
+0.67
+0.67

—0.67
+0.44
—0.67
—0.44

OEL _ OxET _ ¢ 67pr
3.0

L2

12E1 _ 12X E]

L 3.0°

[ FEF |

+112.38/ EI

| 21264/ EI |

| FEFy |

Direct Stiffness Method 575

Page No. 5

=0.44E]

Fixed-End Forces Vector [FEF]:

FEF,

FEF,
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Solution
Topic: Direct Stiffness Method
Problem Number: 7.4 Page No. 6

Element End Forces [F]4g:

Fie® FEF,
k./ F 3 FEF2

[FlTota = FEF, = [k][4] + [FEF]
FEF,
+133 —0.67 +0.67 +0.67 0
~0.67 +0.44 —0.67 —0.44 0 N
+0.67 —0.67 +1.33 +0.67 || +112.38/EI

+0.67 —-0.44 +0.67 +0.44||-212.64/EI

Fy=[+(0.67x 112.38) — (0.67 X 212.64)] + [0] =— 67.17 kNm ¥\
F,=[-(0.67 x 112.38) + (0.44 x 212.64)] + [0] =+ 1827 kN <
Fy=[+(1.33 x 112.38) — (0.67 x 212.64)] + [0] =+ 7.0 KNm /¢
Fy=[+(0.67x 112.38) — (0.44 x 212.64)] + [0] =— I827kN  —»

Consider element BC:
AEI _ 4X20EL _, o 6EI _ 6x2.0/
8.0 L 8.0°
_ 2x2.0EI 12EI  12x2.0EI
s r 80
+1.0 —0.19 +0.50 +0.19
_ . |-0.19 +0.05 -0.19 -0.05
~E 050 —0.19 +1.0 +0.19

+0.19 -0.05 +0.19 +0.05

=0.19E1

=0.5E1 =0.05E1

Displacement Vector [d]: Fixed-End Forces Vector [FEF]:

[+112.38/EI ' [ FEF, | [—64.0]

FEF, +48.0

—111.24/EI FEE, +64.0

FEF, | . |+48.0]
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Solution
Topic: Direct Stiffness Method
Problem Number: 7.4 Page No. 7

Element End Forces [F]gc:
FEF,

FEF,
FEF,
3 FEF,

~0.19 +0.50 +0.197][+112.38/EI [-64.0

—0.19 +0.05 —-0.19 —0.05 0 L | 480
+0.50 —0.19 +1.0 +0.19||—-111.24/EI | |+64.0
+0.19 —0.05 +0.19 +0.05 0 +48.0

= [k114] + [FEF]

Fy
(TC [ﬂ Total =
F

Fy=[+ (1.0 x 112.38) — (0.5 x 111.24)] — [64.0] = — 7.24 kKNm
Fy=[-(0.19 x 112.38) + (0.19 x 111.24)]+ [48.0] = + 47.78 kN
Fy=[+(0.50 x 112.38) — (1.0 x 111.24)] + [64.0] = + 8.95 kNm
Fy=[+(0.19x 112.38) — (0.19 x 111.24)]+ [48.0] = + 48.22 kN

Consider element CD:

4EL _ 4xVSEL _ .. 6El _ 6x1.5EI

3.0 I’ 3.0°

_ 2x1.5EI L 0EI 1251 _ 12x1.5E1
L 3.0°

+2.0 -1.0 +1.0 +1.0
-1.0 +0.67 -1.0 —0.67
+1.0 -1.0 +2.0 +1.0
+1.0 -0.67 +1.0 +0.67

=1.0E1

=0.67E]

Displacement Vector [d]: Fixed-End Forces Vector [FEF]:

[—111.24/EI' [ FEF, | 0
—212.64/ EI FEE,

FEF,
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Solution
Topic: Direct Stiffness Method
Problem Number: 7.4 Page No. 8

Element End Forces [F]cp:

FEF,
FEFE
[Fltota = FEFj = [k][] + [FEF]

FEF,

/) F;

+2.0 -1.0 +1.0 +1.0 ||-111.24/EI
-1.0 +0.67 -1.0 -0.67||-212.64/EI
+1.0 -1.0 +2.0 +1.0 0
+1.0 -0.67 +1.0 +0.67 0

Fi=[-(2.0x11124)+ (1.0 212.64)] +[0] =—9.84 KNm ¥\
Fy=[+(1.0x 111.24) - (0.67 X 212.64)] + [0] = - 31.23 kN —»
F3=[-(1.0x 111.24) + (1.0 x 212.64)] + [0] =+ 101.4 kNm /4

<

Fy=[- (1.0 x 111.24) + (0.67 x 212.64)] + [0] = + 31.23kN

Reactions:

Support A:

Va=(F>)pc =47.48 kN T Hy=(F>)ap=18.27TkN <
My = (FI)AB =67.17 kNm N\

Support D:
Vo = (Fa)se =48.22kN 1 Hy=(Fo)ep=31.23 kN <+
MD = (FS)CD =101.4 kNm X




Solution

Topic: Direct Stiffness Method
Problem Number: 7.4

31.23 kN — compression

Direct Stiffness Method 579

Page No. 9

48.22 kN

47.48 kN
compression

7.12 kNm*

Axial Force Diagram

47.78 kN

[ ]31.23 kN

31.23 kN

1827kN | [B 398 m C

48.22 kN

Shear Force Diagram

18.27 kN 101.4 kNm

D

9.40 kNm*

67.17 kNm

87.96 kNm

Bending Moment Diagram
* (the value given at the nodes is the
average from the two elements).

Deflected Shape
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Solution
Topic: Direct Stiffness Method
Problem Number: 7.5 Page No. 1

Global Axes

Assume axially rigid members

61 _[4R0D] gy
L | 6.0

} {2(2.0151)}
= =+0.67EI
AB 6.0

Global Axes

A2=1.0 A1:A3:0

i 2(2.0E1
2E1 } _|2Q20ED) | Lo 67k
L 6.0

L L AB L BC
_4(2.0E1)}{4E1
6.0 4.0

} =+2.33E1

Global Axes = } = [ 6E§ } =—0.38EI
BC 4.0




Direct Stiffness Method

Solution
Topic: Direct Stiffness Method
Problem Number: 7.5 Page No. 2

A3=1.0 A1:A2:0

.33  0.67 0
Structural stiffness matrix = [K] = EI| 0.67 2.33 —0.38
0 -038 0.19

(]

&

The invert of a matrix is given by [K]' =

+ - +
where: 1.33 097 0
[KC] is the co-factor matrix for [K] El0.67 233 -0.38
K] . is the determinant of [K] and . 6 038 0. 16
[K“]" is the transpose of the co-factor matrix

Co-factor Matrix: [K°]
(Note: the transpose of a symmetric matrix is the same as the original matrix)

kS =+ {(2.33 x0.19) — (0.38 x 0.38)} EI = + 0.30EI >

kS, = kS, =— {(0.67x0.19) — (~0.38 x 0)}EI > = — 0.13EI 2
kS, = kS, =+ {(0.67 x —0.38) — (0 x 2.33)} EI > = — 0.25E] >
kS =+ {(1.33 x0.19) — (0)} EI > = + 0.25E1 >

kS, = kS =—{(1.33 x=0.38) — (0 X 0.67)} EI > = + 0.50E1 >
kS, =+ {(1.33x2.33) = (0.67 X 0.67)} EI > =+ 2.65EI *

Determinant of [K]:
Det [K]=EI’ {+(1.33x0.3) — (0.67 x 0.13) + 0)} =+ 0.31 EI °

581
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Solution
Topic: Direct Stiffness Method
Problem Number: 7.5 Page No. 3

0.968 -0.419 -0.806
Inverted stiffness matrix = [K]™" = -0.419 0.806 1.613
-0.806 1.613  8.548

Structural Load Vector: [P]:

Fixed-end forces for member AB

FEF, = — (24.0 X 2.0 x 4.0%)/6.0°
=—21.33 kNm

FEF; = + (24.0 x 2.0° x 4.0)/6.0°
=+10.67 kNm

FEF, = [~ (24.0 x 4.0) — 21.33 + 10.67)/6.0 = + 17.78 kN
FEF, = (24.0 — 17.78) = + 6.22 kN

17.78 kN 6.22 kN

AMB
s

21.33 kNm 10.67 kNm

Equivalent nodal loads for AB

Fixed-end forces for member BC

L (wL/2
(WL¥12) X (wL72)

10.67 kNm
FEF, =+ (8.0 x 4.0%)/12 =+ 10.67 kNm

FEF;=—- (8.0 x4.0)/2.0=—-16.0 kN

FEF, = — (8.0 x 4.0%)/12 = — 10.67 kNm
FEF, = — (8.0 x 4.0)/2.0 = — 16.0 kN

.A10.67 KNm
(WL*/12) 16.0 kN

Equivalent nodal loads for BC

Total equivalent nodal (P,) load at B = (—10.67 — 10.67) = —21.34 kNm
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Solution
Topic: Direct Stiffness Method
Problem Number: 7.5 Page No. 4

21.34 kNm

Global A
obal Axes node 3

Equivalent Nodal Loads

Structural Load Vector [P] =

Structural Displacements [A]:

A 0.968 —0.419 —0.806][+21.33
[4] = [K]™" [P] = % 0419 0.806 1.613 ||-21.34
A —0.806 1.613 8.548 || +16.0

1 16.69 .
A.=E[(O.968x21.33)+(o.419><21.34)—(0.806><16.0)]=+ - radians }

4= %[—(O.419x21.33)—(O.806><21.34)+(1.613><16.0)] = —% radians 5

1 85.15
A3 = —| —(0.806%x21.33)—(1.613x21.34 8.548%x16.0) | = +———
5 E[[ ( X )—( X )+( X )] + o m —»

16.69 0.33

Structural Deflections
Global Axes
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Solution
Topic: Direct Stiffness Method
Problem Number: 7.5 Page No. 5

Element Stiffness Matrices [k]:

F,
N
¥

F,

Element End Forces [Flrota:
FEF,

[wW=F mg:mmumﬂ
FEF,

FEF,

AE] 6EI 2EI 6FEI |
+ -— + +—
L L L

+12E[ 6El  12EI

r I? r
k][ + [FEF] =
K119 + [FEF] 6EI +4EI +6EI

12 L 12

12ET 6EI 12ET
- JE + 2 + JE

Consider element AB:

AEl _ 4X(2.0EI) _ 13357 6EI _ 6%(2.0EI)
6.0 r 6.0°

2x(2.0E1 12x(2.0E1

X( ) =0.67E1 1261 _ 12x( )

6.0 )5 6.0°
+1.33 —0.33 +0.67 +0.33

-0.33 +0.11 -0.33 -0.11
+0.67 -0.33 +1.33 +0.33
+0.33 -0.11 +0.33 +0.11

=0.33E7

=0.11E7
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Solution
Topic: Direct Stiffness Method
Problem Number: 7.5 Page No. 6

Displacement Vector [d]: Fixed-End Forces Vector [FEF]:
(6] [+16.69/EI [FEF, | [-21.33]

84
T FEF, +17.78
B

d
N
~0.33/EI s FEF, +10.67

3

5, 0 FEF, | | +6.22 |

L JAB L . L _
Element End Forces [F]4g:

FEF,
[Fltota = PR ia + (FER)

FEF,

FEF,

+1.33 -0.33 +0.67 +0.33||+16.69/EI -21.33
-0.33 +0.11 -0.33 -0.11 0 N +17.78
+0.67 -0.33 +1.33 +0.33 —0.33/EI +10.67

+0.33 -0.11 +0.33 +0.11 0 +6.22

Fy=[+(1.33 X 16.69) — (0.67 x 0.33)] - [21.33] = zero
F,=[~(0.33 X 16.69) + (0.33 x 0.33)] + [17.78] = + 12.38 kN 4
Fy=[+(0.67 X 16.69) — (1.33 x 0.33)] + [10.67] =+ 21.41 kNm
Fy=[+(0.33 % 16.69) — (0.33 x 0.33)] + [6.22] = + 11.62 kN 4

Consider element BC:
_ AXEL _ opr SEL

4.0 L
2EI _ 2XEI —05E] 12E1 _ 12x EI
L 4.0 L 4.0°

OBT _ OB _ 38
4.0

=0.19E7

+1.0 -0.38 +0.50
-0.38 +0.19 —0.38
+0.50 -0.38 +1.0
+0.38 —0.19 +0.38

[klgc = EI
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Solution
Topic: Direct Stiffness Method
Problem Number: 7.5 Page No. 7

Displacement Vector [J]: Fixed-End Forces Vector [FEF]:

[ -0.33/EI'] | [ FEF, [+10.67 |

+85.15/ EI FEF, -16.0

FEF, -10.67

FEF, | = | -16.0 |

Element End Forces [F|pc:
FEF,
FEE
Fio [F)total = FE; = [K][8) + [FEF]
3

FEF,

+1.0 -0.38 +0.50 +0.38 || —-0.33/EIl +10.67
7 -0.38 +0.19 —-0.38 —-0.19||+85.15/EI N -16.0
+0.50 -0.38 +1.0 +0.38 0 -10.67
+0.38 -0.19 +0.38 +0.19 0 -16.0

Fi=[- (1.0 X 0.33) — (0.38 x 85.15)] + [10.67] = — 22.01 kNm ¥\
F;=[+(0.38 X 0.33) + (0.19 x 85.15)] - [16.0] = zero

Fy=[-(0.5x0.33) — (0.38 x 85.15)] — [10.67] = — 43.19 kNm ¥~
Fy=[-(0.38%x0.33)—(0.19x 85.15)] - [16.0] == 32.0kN <

Reactions:
Support A:
Va=F)as=1238kN 4 Hy=(F)sc = zero

Support C:
Ve=(Fas=11.62kN ¥ He=(Fue=32.0kN <«
MC:(FB)BC:43-19 kKNm p\
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Solution
Topic: Direct Stiffness Method
Problem Number: 7.5 Page No. 8

Axial Force Diagram

compression

12.38 kN

\
11.62 kN

12.38 kN

A

Shear Force Diagram

A== B

24.76 kNm

Bending Moment Diagram
* (the value given at the nodes is the

average from the two elements).

43.19 kNm

I |

Deflected Shape

=== _
-
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Solution
Topic: Direct Stiffness Method
Problem Number: 7.6

12.0 kN/m
C

\
8.0m J 3.0m J

N T

Assume axially rigid members

A1=1.0 A2:A3:0

Global Axes

A2=1.0 A1:A3:0

Global Axes

Page No. 1

node 3

Global Axes

[ AEI }
_|_
JAB L BC

‘{4(2.0151)

=+2.0E]
8.0

] {2(2.0151)}
= =+ 0.5EI
B 8.0
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Solution
Topic: Direct Stiffness Method
Problem Number: 7.6 Page No. 2

A3=1.0 A1:A2:0

3.0

| - {_4“-5”)} — 42081
o 3.0

} =+ 1.0E1

Global Axes

20 050 0
Structural stiffness matrix = [K] = EI| 0.50 3.0 1.0

0 1.0 2.0

k)
The invert of a matrix is given by [K]™' = [ |K|]

+ - +
Where:' . 2.0 0450 0
[K] is the co-factor matrix for [K] EI10.50 3.0 1.0
K] . is the determinant of [K] and . +O 1.0 2T0
[K“]" is the transpose of the co-factor matrix

Co-factor Matrix: [KC]
(Note: the transpose of a symmetric matrix is the same as the original matrix)

kS =+ {(3.0x2.0)— (1.0 X 1.0)}EI > =+ 5.0EI >

kS, = kS, =— {(0.5x2.0)— (0 x1.0)}EI > = — 1.0EI
kS, = kS, =+ {(0.5x 1.0) — (0 X 3.0)} EI > =+ 0.50EI *
kS, =+ {(2.0 x2.0) — (0)}EI * = + 4.0EI *

kS, = kS, =— {(2.0x 1.0) — (0 x 0.5)}EI > =~ 2.0EI *
kS, =+ {(2.0 x3.0) - (0.5 0.5)}EI * =+ 5.75EI *

Determinant of [K]:
Det [K]=EI* {+ (2.0 x5.0)— (0.5x 1.0)+ 0)} =+ 9.5 EI ®
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Solution
Topic: Direct Stiffness Method
Problem Number: 7.6 Page No. 3

0.526 —0.105 0.053
Inverted stiffness matrix = [K]™" = -0.105 0421 -0.211
0.053 -0.211 0.605

Structural Load Vector: [P]:

Fixed-end forces for member AB

FEF, = — (25.0 X 3.0 x 5.0%)/8.0°
=—29.30 kNm

FEF; = + (25.0 x 3.0° x 5.0)/8.0°
=+ 17.58 kKNm

FEF, = [ (25.0 x 5.0) — 29.30 + 17.58]/8.0 = + 17.09 kN
FEF, = (25.0 — 17.09) = + 7.91 kN

17.09 kN 7.91 kN

Equivalent nodal loads for AB A @=%§ B
®

29.30 kNm 17.58 kNm

Fixed-end forces for member CD

FEF, = — (12.0 x 3.0%)/12.0
=-9.0 kNm

FEF; =+ (12.0 x 3.0%)/12.0
=+9.0 kNm

FEF, =+ (12.0 x 3.0)/2.0 =+ 18.0 kKN
FEF, =+ (12.0 x3.0)/2.0 =+ 18.0 kN

Equivalent nodal loads for CD

Note: Total equivalent nodal (P,) load at C = (—17.58 + 9.0) = — 8.58 kNm
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Solution
Topic: Direct Stiffness Method
Problem Number: 7.6 Page No. 4

29.30 kNm

Global Axes

Equivalent Nodal Loads

+29.30
Structural Load Vector [P] = | —8.58
-9.0

Structural Displacements [A]:
4 0.526 —0.105 0.053 ||+29.30

[4] = [K]™" [P] 4, =i—0.105 0.421 -0.211|| -8.58
4 0.053 —-0.211 0.605 -9.0

1 15.84
A.=E[(o.526x29.30)+(o.105><8.58)—(0.053><9.0)]=+ -~ radians )

1 4.79

—[=(0.105%29.30) - (0.421x8.58) +(0.211x9.0) | = - radians 5
El El

é[+(0.053x29.30)+(0.211><8.58)—(0.605><9.0)J = —21‘;8 radians )

Y
EI

Structural Deflections
Global Axes
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Solution
Topic: Direct Stiffness Method
Problem Number: 7.6 Page No. 5

Element Stiffness Matrices [k]:

F,
N
¥

F,

Element End Forces [Flrota:

FEF
| FEE, = [k][4) + [FEF
[F]Total - FEF3 - [ ][ [ ]

FEF,

4E] 6E] 2EI
- -— 4+
L L
12E1 6EI
+

2
6EI  4EI
+
I* L
12EI  6EI

[K][4] + [FEF] =

Consider element AB:

4% (EI

4EL _ 4x(EI) .. GEL
L 4.0 I?

2EI _ 2XEI 05051 12EI _ 12XEI 01957
L 4.0 L 4.0°

OBI _ OB _ o 38k1
4.0

+1.0 -0.38 +0.50
-0.38 +0.19 -0.38
+0.50 -0.38 +1.0
+0.38 -0.19 +0.38

[klag = EI
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Solution
Topic: Direct Stiffness Method
Problem Number: 7.6 Page No. 6

Displacement Vector [d]: Fixed-End Forces Vector [FEF]:
6] [ o0 ] [FEE | [0]

FEF,

+15.84/ EI FEF,

FEF,

Element End Forces [F]ap:

B FEF,
Fy 4— FEE

3 [Fltota = + FEFj = [K][d] + [FEF]

FEEF,
+1.0 -0.38 +0.50 +0.38 0
. -0.38 +0.19 -0.38 -0.19 0
XFI +0.50 -0.38 +1.0 +0.38||+15.84/EI
A +0.38 —0.19 +0.38 +0.19 0

Fi=+(0.5x15.84)—[0]=+7.92kNm /X
Fy=— (038 x15.84) +[0]=—6.02kN  —»
Fy=+ (1.0 15.84) +[0] =+ 15.84 KNm
Fi=+(038x15.84) +[0] =+ 6.02kN <

Consider element BC:

AEI _ 4x(2.0EI) L0EL 6El _ 6x(2.0E) 019
8.0 I’ 8.0°

2x(2.0EI) 0sE 12E1 _ 12x(2.0E1)  0.05E]
8.0 L 8.0°

+1.0 —0.19 +0.50 +0.19

-0.19 +0.05 -0.19 —0.05

+0.50 —-0.19 +1.0 +0.19

+0.19 -0.05 +0.19 +0.05

[klgc = EI
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Solution
Topic: Direct Stiffness Method
Problem Number: 7.6 Page No. 7

Displacement Vector [J]: Fixed-End Forces Vector [FEF]:

[+15.84/EI | [ FEF, | [—29.30 |

FEF, +17.09

~4.79/ EI FEF, +17.58

FEF, | . | +7.91 ]

Element End Forces [F|pc:
F, F4

(T c [Fltota = = [k][4] + [FEF]

Fj

-0.19 +0.50 +0.19 || +15.84/EI -29.30
-0.19 +0.05 -0.19 -0.05 0 N +17.09
+0.50 -0.19 +1.0 +0.19|| —4.79/EI +17.58
+0.19 -0.05 +0.19 +0.05 0 +7.91

Fi=[+(1.0x15.84) - (0.5x4.79)] —[29.30] = — 15.86 kNm ¥\
F,=[-(0.19x15.84) + (0.19x 4.79)] + [17.09] =+ 15.0 kN ?
F;=[+(0.5%15.84) — (1.0 x4.79)] + [17.58] =+ 20.71 kNm N
Fy=[+(0.19x15.84) - (0.19 x4.79)] + [7.91] =+ 10.0 kN T

Consider element CD:
4EI  4x(1.5EI)

6EI  6x(1.5EI)
3.0 12 3.0

=2.0E1 =1.0E1

2x(LSED) _ | o 12EL _ 12x(1.5EI)

3.0 L 3.0°
+2.0 -1.0 +1.0 +1.0

-1.0 +0.67 -1.0 -0.67
+1.0 -1.0 +2.0 +1.0
+1.0 -0.67 +1.0 +0.67

=0.67E]

[klcp = ET
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Solution
Topic: Direct Stiffness Method
Problem Number: 7.6 Page No. 8

Displacement Vector [J]: Fixed-End Forces Vector [FEF]:

[-4.79/EI' [FEF, |

FEF,

~2.08/ EI « FEF,

FEF,

Element End Forces [F|cp:
Fy

FEF,

Fy

_ FEF, |
(TD [Flrota = FEF, = [k][d] + [FEF]
Fi

FEF,
+2.0 -1.0 +1.0 +1.0 ||-4.79/EI -9.0
-1.0 +0.67 -1.0 -0.67 0 N +18.0
+1.0 -1.0 +2.0 +1.0 ||-2.08/El +9.0
+1.0 -0.67 +1.0 +0.67 0 +18.0

Reactions:

Support A:

Vo= (Fasc=15.0kN } Hy = (Fa)as = 6.02 kN —»
MA = (Fl)AB =7.92 kNm YR |

Support C:
Ve=(Fy)pc + (Fs)cp = (10.0 + 24.87) = 34.87 kN f

Support D:
Vb= (Fa)cp=11.13 kN T Hp = (F4)ag =6.02kN <
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Solution
Topic: Direct Stiffness Method

Problem Number: 7.6 Page No. 9

6.02 kN compression

compression

Axial Force Diagram

24.87 kN

C

11.13 kN

Shear Force Diagram

20.69 kNm*
15.85* kNm

P

24.76 kNm

Bending Moment Diagram
* (the value given at the nodes is the
average from the two elements).

- ——— -~

Deflected Shape

>




8. Plastic Analysis

8.1 Introduction

The Plastic Moment of Resistance (M) of individual member sections can be derived as
indicated in Section 2.3 of Chapter 2. The value of M, is the maximum value of moment
which can be applied to a cross-section before a plastic hinge develops. Consider
structural collapse in which either individual members may fail or the entire structure may
fail as a whole due to the development of plastic hinges.

According to the theory of plasticity, a structure is deemed to have reached the limit of its
load carrying capacity when it forms sufficient hinges to convert it into a mechanism with
consequent collapse. This is normally one hinge more than the number of
degrees—of-indeterminacy (/p) in the structure as indicated in Figure 8.1.

Ignoring horizontal forces:

Number of degrees-of-indeterminacy
Ib=[2m+r)-2n]=0

Minimum number of hinges required
(b+t1)=1

Ignoring horizontal forces:

Number of degrees-of-indeterminacy
hb=[Cm+r)—-2n]=1

Minimum number of hinges required
(bt1)=2

Ignoring horizontal forces:

Number of degrees-of-indeterminacy
Ib=[2m+r)-2n]=2

Minimum number of hinges required
(b+1)=3

Number of degrees-of-indeterminacy
Ib=[Bm+r)-3n]=2

Minimum number of hinges required
(b+1)=3

Figure 8.1
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8.1.1 Partial Collapse

It is possible for part of a structure to collapse whilst the rest remains stable. In this
instance full collapse does not occur and the number of hinges required to cause partial
collapse is less than the (/p + 1.0). This is illustrated in the multi-span beam shown in
Figure 8.2. Ignoring horizontal forces Ip =[2m +7r)—2n]=[(2x4)+5-(2x5)] =3

l '

Figure 8.2

For any given design load applied to a redundant structure, more than one collapse
mechanism may be possible. The correct mechanism is the one which requires the least
amount of ‘work done’ for its’ inception.

8.1.2 Conditions for Full Collapse

There are three conditions which must be satisfied to ensure full collapse of a structure and
the identification of the true collapse load, they are:

@) the mechanism condition in which there must be sufficient plastic hinges to
develop a mechanism, (i.e. the number of plastic hinges > [Ip + 1]),

(i1) the equilibrium condition in which the bending moments for any collapse
mechanism must be in equilibrium with the applied collapse loads,

(iii)  the yield condition in which the magnitude of the bending moment anywhere
on the structure cannot exceed the plastic moment of resistance of the member
in which it occurs.

Provided that these three conditions can be satisfied then the true collapse load can be
identified.
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If only the mechanism and equilibrium conditions are satisfied then an upper-bound
(unsafe) solution is obtained in which the collapse load determined is either greater than
or equal to the true value.

If only the yield and equilibrium conditions are satisfied then a lower-bound (safe)
solution is obtained in which the collapse load determined is either less than or equal to
the true value.

Since the bending moment cannot exceed the M; value for a given cross—section it is
evident that when hinges develop they will occur at the positions of maximum bending
moment, i.e. at fixed supports, rigid—joints, under point loads and within the regions of
distributed loads.

The analysis of beams and frames involves determining:

(i)  the collapse loads,

(i1))  the number of hinges required to induce collapse,

(iii) the possible hinge positions,

(iv)  the independent collapse mechanisms and their associated My, values,

(v)  the possible combinations of independent mechanisms to obtain the highest
required My, value,

(vi) checking the validity of the calculated value with respect to mechanism,
equilibrium and yield conditions.

There are two methods of analysis which are frequently used to determine the values of
plastic moment of resistance for sections required for a structure to collapse at specified
factored loads; they are the Static Method and the Kinematic Method. These are illustrated
with respect to continuous beams in Sections 8.2 to 8.4. and with respect to frames in
Sections 8.5 to 8.12.

8.2  Static Method for Continuous Beams

In the static method of analysis the ‘Free Bending Moment’ diagrams for the structure are
drawn and the ‘Fixed Bending Moment’ diagrams are then added algebraically. The
magnitude and ‘sense’ +ve or —ve of the moments must be such that sufficient plastic
hinges occur to cause the collapse of the whole or a part of the structure.

In addition, for collapse to occur, adjacent plastic hinges must be alternatively ‘opening’
and ‘closing’. For uniform beams the plastic moment of resistance of each hinge will be
the same i.e. M.

8.2.1 Example 8.1: Encastré Beam

An encastré beam is 8.0 m long and supports an unfactored load of 40 kN/m as shown in
Figure 8.3. Assuming that the yield stress f; = 460 N/mm? and a load factor 4 = 1.7,
determine the required plastic moment of resistance and plastic section modulus.

Figure 8.3
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Solution:

The collapse load = (40.0 x1.7) = 68.0 kN/m

The number of hinges required to induce collapse = (Ip + 1) =3 (see Figure 8.1)

The possible hinge positions are at the supports A and B and within the region of the
distributed load since these are the positions where the maximum bending moments occur.
Superimpose the fixed and free bending moment diagrams as shown in Figure 8.4:

P B
M:

M hinge position

M _ve 3

I A

B
2ot | ORI  JO™
8

Fixed Bending Moment Diagram Free Bending Moment Diagram
M M3 w2
A B wL
8
y

Final Bending Moment Diagram
Figure 8.4

The beam has two redundancies (ignoring horizontal components of reaction) therefore a
minimum of three hinges must develop to create a mechanism. Since the beam is uniform,
at failure all values of the bending moment at the hinge positions must be equal to the
plastic moment of resistance and cannot be exceeded anywhere:

A wl?

M= M> = M3 = M, and (M + M) = (M3 + M) = 2Mp, =

AwL’ _ 68.0x8’
16 16
The plastic section modulus Wyy = Mp/fy = (272.0 x 10°)/460 = 591.3 x 10° mm?

=272.0 kNm

The required plastic moment of resistance My =

It is evident from the above that all three conditions in Section 8.1.2 are satisfied and
consequently the M, value calculated for the required collapse load is true to achieve a
load factor of 1.7

8.2.2 Example 8.2: Propped Cantilever 1
A propped cantilever is 6.0 m long and supports a collapse load of 24 kN as shown in
Figure 8.5. Determine the required plastic moment of resistance M.

Mo 24.0 kN lB

A C
| 40m | 20m %Vc Figure 8.5
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Solution:

The collapse load = 24.0 kN

The number of hinges required to induce collapse = (Ip + 1) =2 (see Figure 8.1)

The possible hinge positions are at the support A and under the point load since these are
the positions where the maximum bending moments occur.

The support reactions for the free bending diagram are: Va = 8.0 kN and Vc =16.0 kN
The maximum free bending moment at Mfree,c = (8.0 x 4.0) =32.0 kNm

The bending moment at B due to the fixed moment = —[Mx(2.0 x 6.0)] =— 0.333M; kNm

24 kN

“\ B
b hinge position ? 7
o 8.0 kN hinge position 16.0 kKN

[“m 0.333M)
A

, C A B C
B
32.0 kle""""“mm]]]]]H]]]]ﬂW

Fixed Bending Moment Diagram Free Bending Moment Diagram

My g
_____________________________ 0.333M1

B

32.0 kNm

Final Bending Moment Diagram
Figure 8.6

The beam has one redundancy (ignoring horizontal components of reaction) therefore a
minimum of two hinges must develop to create a mechanism. Since the beam is uniform,
at failure all values of the bending moment at the hinge positions must be equal to the
plastic moment of resistance and cannot be exceeded anywhere:

M= M> = My and (M>+0.333M1) = (M1 + 0.333Mp) = 1.333M,=32.0
The required plastic moment of resistance Mp = (32.0/1.333) = 24.0 kNm

As in Example 8.1 all three conditions in Section 8.1.2 are satisfied and consequently the
true value of M), has been calculated for the given collapse load.

8.2.3 Example 8.3: Propped Cantilever 2

A propped cantilever is L m long and supports a collapse load of w kN/m as shown in
Figure 8.7. Determine the position of the plastic hinges and the required plastic moment of
resistance M.

Ma w kN/m
A B

Vi . TVB Figure 8.7

L LY
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Solution:
The collapse load = w kN/m
The number of hinges required to induce collapse = (Ip + 1) =2 (see Figure 8.1)

The possible hinge positions are at the support A and within the region of the distributed
load since these are the positions where the maximum bending moments occur. In this
case the maximum moment under the distributed load does not occur at mid-span since the
bending moment diagram is not symmetrical. Consider the final bending moment diagram:

Mpl

Figure 8.8
The maximum bending moment (i.e. M,i) occurs at a distance ‘x’ from the roller support

and can be determined as follows;
Since the moment is a maximum at position ‘x’ the shear force at ‘x’ is equal to zero.

My w kN/m ' w kN/m

A HB
Va (L-x) M E ‘ My X Vs
) N ' K X
tve,) SMx =0 L e ) My =0
— My +w(L—x)"2-My=0 L Mp—-wx/2=0
0.5wL? — wLx + 0.5wx? — 2M, = 0 P Mpi=0.5wx?

My = 0.25wL? — 0.5wLx + 0.25wx?

Equate the M}, values to determine x:
0.5wx? = 0.25wL* — 0.5wLx + 0.25wx? 50 0.25x% +0.5Lx — 0.25L2 =0

b dae | ~0SLE(0SL) +(4x025x0250°)

x = =+0.414L m
2a (2x0.25)

My =0.5wx*=1[0.5 x wx (0.4142L)* “. My = 0.0858wL?
p P

This is a standard value, i.e. for a propped cantilever the plastic hinge in the span occurs at
a distance x = 0.414L from the simply supported end and the value of the plastic moment
My =0.0858wL>

8.3  Kinematic Method for Continuous Beams

In this method, a displacement is imposed upon each possible collapse mechanism and an
equation between external work done and internal work absorbed in forming the hinges is
developed. The collapse mechanism involving the greatest plastic moment, M, is the
critical one.
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Consider the previous Example 8.1 of an encastré beam with a uniformly distributed load.
The hinge positions were identified as occurring at A, B and the mid-span point (since the
beam and loading are symmetrical). Assuming rigid links between the hinges, the collapse
mechanism of the beam when the hinges develop can be drawn as shown in Figure 8.9(c).
The deformed shape is drawn grossly magnified to enable the relationship between the
rotations at the hinges and the displacements of the loads to be easily identified.

A virtual work equation can be developed by equating the external work done by the
applied loads to the internal work done by the formation of the hinges where:

Internal work done during the formation of a hinge = (moment x rotation)

External work done by a load during displacement = (load x displacement)

(In the case of distributed loads the average displacement is used).

The sign convention adopted is:

Tension on the Bottom of the beam induces a ‘positive’ rotation  (i.e. +ve bending)

Tension on the Top of the beam induces a ‘negative’ rotation (i.e. —ve bending)

Note: the development of both —ve and +ve hinges involves +ve internal work

(Aw) = 68.0 kN/m

A B (a)
Va 8.0m VB
1 K
A B
(b)
VA VB
L/2 L2

A@szg------------f-~-—--------- B (c)

= o
+Mpl --‘}' +( +ﬂ)

Figure 8.9

From the deformed shape in Figure 8.9:
For small values of @ and f o= %9 = %ﬁ s p=0

The load deflects zero at the supports and o at the centre

5:

Nl o

0

Average displacement of the load = %
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The Internal Work Done in developing the hinges is found from the product of the
moment induced (i.e. Myi) and the amount of rotation (e.g. ) for each hinge.

Internal Work Done = Moment x Rotation for each hinge position

The External Work Done by the applied load system is found from the product of the load
and the displacement for each load.

External Work Done = (load x ave. displacement) = [(68.0>< 8.0) x%oe} =1088.0 4

Internal Work Done = External Work Done
4M,6=1088.00
Mp=272.0 kNm (as before)

Consider the previous Example 8.2 of propped cantilever with a single point load.

The hinge positions were identified as occurring at support A, and under the point load
at B. Assuming rigid links between the hinges, the collapse mechanism of the beam when
the hinges develop can be drawn as shown in Figure 8.10(c).

(Aw) =24.0 kN
j B
A

C (a)
Va 4.0 m J 2.0m I ‘ Ve
! N

X0 (b)

Va T Ve

4.0 m 2.0 m

©

Note: no internal work is
done at support C since
there is no plastic hinge
Figure 8.10 required, i.e. the beam is
free to rotate.

From the deformed shape in Figure 8.10:
For small values of @ and f 6=4.00=2.08 - p=2.00
Displacement of the load = 6 = 4.00

Internal Work Done = External Work Done
Mp6+ Mu(6+ p)=(24.0 x 9)
4Mp=96.00

Mp=24.0 kNm (as before)
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Consider the previous Example 8.3 of a propped cantilever with a uniformly distributed
load. The hinge positions were identified as occurring at support A, and at a point load
0.4142L from the simple support. Assuming rigid links between the hinges, the deformed
shape of the beam when the hinges develop can be drawn as shown in Figure 8.11(c).

A B (a)
Va L | VB
T N
A B
00 (b)
Va TVB
0.586L m 0.414L m ‘
—Mpl
A@sco-------mmmmmmm oo oo B ©
~ 5 .
_____ i Note: no internal work is
My } done at support B since

there is no plastic hinge
required, i.e. the beam is
Figure 8.11 free to rotate.

From the deformed shape in Figure 8.11:

For small values of @ and f  6=0.586L6=0.414Lp s p=141560
The load deflects zero at the supports and ¢ at a distance 0.414L from support B.
Average displacement of the load = %5 _ 0.586L 6 =0.293L6

Internal Work Done = External Work Done
Mp6+ Mu(6+ )= (wx L) x 0.293L0
3.415Myu60=0.293wL O

M, =0.0858wL? (as before)

8.3.1 Example 8.4: Continuous Beam

A non-uniform, three-span beam is fixed at support A, simply supported on rollers at D, F
and G and carries unfactored loads as shown in Figure 8.12. Determine the minimum M,
value required to ensure a minimum load factor equal to 1.7 for any span.

S50kN  25kN 40 kN

2M,

Vb
20m | 20m JI.OI 3.0m

~ T T LY T N

Figure 8.12
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There are a number of possible elementary beam mechanisms and it is necessary to ensure
all possibilities have been considered. It is convenient in multi-span beams to consider
each span separately and identify the collapse mechanism involving the greatest plastic
moment M,y; this is the critical one and results in partial collapse.

The number of elementary independent mechanisms can be determined from evaluating
(the number of possible hinge positions — the degree—of-indeterminacy).

Ignoring horizontal forces:
Number of degrees-of-indeterminacy: Ip=[(2m + r) — 2n]
[2x3)+5-(2x4)]=3

7 (atA,B,C,D,E,F and between F and G)

Number of possible hinge positions

Number of independent mechanisms = (7 — 3) =4

(Note: In framed structures combinations of independent mechanisms must also be

considered see Section 8.5).

A=1.7

Factored loads: (1.7 x 50) = 85.0 kN (1.7x25)=425kN (1.7 x 40) =68.0 kN
(1.7x 12) =20.4 kN

Consider span ABCD:

In this span there are four possible hinge positions, however only three are required to
induce collapse in the beam. There are two independent collapse mechanisms to consider,
they are:

(i) hinges developing at A (moment = 2M,;), B (moment = 2M,,)) and D (moment = M)
(i1) hinges developing at A (moment = 2M,;), C (moment = 2Mp,) and D (moment = M)

Static Method:
The free bending moment at B =119.0 kNm
The free bending moment at C = 68.0 kNm.

The hinge at D develops

in the weaker member,
85kN 425kN i.e. the moment = Mpi 85kN  42.5kN

2Mpl

20m | 20m [10m

N K T

2.0Mp1 B

2.0Mpl

Case (i) 2.0My+ 1.6My = 119.0 Case(ii)  2.0Mp + 1.2M, = 68.0
My =33.06 kNm : My =21.25 kNm
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In this span the critical value of My = 33.06 kNm with hinges developing at A, B and D.
Kinematic Method:
85kN  42.5kN
—2Mp1 1 !
By L€ Mo g For small values of & and
I s ) 51=2.00=308 - B=0670
-p 5,=1.08=0.676

A

2M & T (0+ )

| 20m | 2.0m Jl.OmJ‘

N N \

Internal Work Done = External Work Done
2.0Mp0 + 2.0Mu(0+ ) + My = (85.0 x &) + (42.5 x &)
2.0Mpn0 + 3.34M10 + 0.67Mp160=(85.0 x 2.00) + (42.5 x 0.676)

6.0M,10=198.360 . Mp=33.06 kNm (as before)
85kN  42.5kN
_oMy g cl p-mp!
Albe-—o- YT -
+\ ' For small values of @ and 8

01=2.00

— +(0+))
R 5:=400=108 .. f=400

| 20m 20m  [10m)

Internal Work Done = External Work Done
2.0Mp0+ 2.0Mu(6+ B) + MpfS = (85.0 x &)+ (42.5 x &)
2.0Mp16+ 10.0M,10+ 4.0M,160= (85.0 x 2.00) + (42.5 x 4.00)
16.0My160 = 340.00 - Mp=21.25 kNm (as before)
The critical value for this span is M = 33.06 as before.

Consider span DEF:
In this span only three hinges are required to induce collapse in the beam.
Hinges develop at D (moment = M), E (moment = M,;) and F (moment = M)

Static Method: . Kinematic Method:
68.0 kN
Mbp I
=M -
\ P F —Mpl
D =8 D--@e--—jpmmm———— Z=hy
Mpl .‘
Vp
3.0m Mo ~‘}+\(9+ﬁ')
J 3.0m J 1.0m ‘
Mpl Mpl Mpl N N ‘

| ! For small values of & and /8
“'Ill||||VA SLOKNm & 5,=300=1.08 .. f=3.00
G | i
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Static method: ! Kinematic Method:
Mp+ Mu=51.0 Internal Work Done = External Work Done
My =25.5kNm | M6+ Mu(0+ ) + My = (68.0 x &)
| 8.0M,10=20460
Mp =255 kNm
Consider span FG:

In this span only two hinges are required to induce collapse in the beam.
Hinges develop at F (moment = M), and between F and G (moment = 1.5M,)

) 20.4 kKN/m
: F
%G
.‘ pl
| N VFT TVG
6.0 m

N

Span FG is effectively a propped cantilever and consequently the position of the hinge
under the uniformly distributed load must be calculated. (Note: it is different from
Example 8.3 since the plastic moment at each hinge position is not the same).

; FMpl 20.4 kN/m; 1.5M, 1.5M, ; 20.4 kN/m
\
1

G
Vi I (6.0~ x) L s T
N X
+ve ) EMe =0 +ve) Mg =0
My +20.4(6.0 — x)/2 - 1.5My = 0 1.5Mp — 20.4x%2 =0
367.2 — 122.4x + 10.2x% — 2.5My = 0 My = 6.8

M =146.88 — 48.96x + 4.08x*

Equate the My, values to determine x:
6.8x> = 146.88 — 48.96x + 4.08x* 50 2.72x% +48.96x — 146.88 =0

N —48.96J_r\/(48.96)2 +(4x2.72x146.88)
X= = =+2.619m
2a (2x2.72)

My =6.8x* = (6.8 x 2.619%) = 46.64 KNm .. Span FG is the critical span

The reader should confirm the value of M, using the Kinematic Method.

Span: ABCD DEF FG
Minimum required value of M, }33.06 kNm 25.5 kNm 46.64 KNm
for a load factor of 1.7

Actual load factor if an M, (1.7 x 46.64)/33.06 (1.7 x 46.64)/25.5

value of 46.64 kNm is used 2.4 3.1 1.7

Actual M, provided 93.28 kNm 46.64 kKNm 69.96 kKNm
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8.4  Problems: Plastic Analysis — Continuous Beams

A series of continuous beams are indicated in which the relative My, values and the applied
collapse loadings are given in Problems 8.1 to 8.5. Determine the required value of M, to
ensure a minimum load factor 1 = 1.7.

202 kN 152 kN
§ A B i C l D

=

My =% My Problem 8.1
20m | 20m 20m | 20m
N [
4.0 m 4.0 m
2041 kN 154 kN
A B l C lD E
— —
X My el My jses) Problem 8.2
20m | 20m 20m | 20m
N [
4.0m 4.0m
104 kN/m 304 kN 154 kN 204 kN

l.SMpl

20m | 20m 2.0m 20m | 20m
~ N K
6.0 m 6.0 m 4.0m
Problem 8.3

204 kN 15AkN

204 kN/m

l.sMp] C oo D 2.0Mpl E RN F Mpl G oo
20m | 4.0 m 20m | 20m | 20m
) N )
6.0 m 6.0 m 4.0m
N
Problem 8.4
2041 kN 30A kN l30/1 kN 154 kN l
e ——
2Myi D 1.5Mp E&= 15M, F
6.0 m | 20m 20m | 40m
K K
8.0m 6.0 m 20m
N

Problem 8.5
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8.5 Solutions: Plastic Analysis — Continuous Beams

Solution
Topic: Plastic Analysis — Continuous Beams
Problem Number: 8.1 — Kinematic Method

=0

2.0m

[
4.0 m 4.0m

A=1.7
Factored loads: Beam ABC = (1.7 x 20) =34 kN, Beam CDE = (1.7 x 15) =25.5 kN

Kinematic Method:
Span ABC
34.0 kN
1
A B l /

C
| o -
\

Internal Work = External Work
My(0) + Mp(6+5) + Mp(B) = (34 x 26)
4Mp1 e = 68 9

Span CDE
25.5kN

! |
\ N

C
~. 30
1

Internal Work = External Work
Mp(6) + Mp(6+p) + Mp(S) = (25.5 x 26)
4Mu0=51.00
S Mp=12.75 KNm
Critical value of M, =17.0 kNm
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Solution
Topic: Plastic Analysis — Continuous Beams

Problem Number: 8.1 — Static Method

Static Method:

Span ABC
34 kN

34.0 kNm
]

Combined Bending Moment Diagram

(Mpl + Mpl) = 2Mpl =34.0 kNm

Span CDE

Page No. 2

(17.0 x 2.0) = 34.0 KkNm

Free Bending Moment Diagram

Fixed Bending Moment Diagram

12.75 kN
(12.75 x 2.0) = 25.5 kNm

Free Bending Moment Diagram

S QT

Combined Bending Moment Diagram

(Mp] + Mpl) = 2Mp|

=255kNm

Fixed Bending Moment Diagram

My =12.75 kNm

As before the critical value of My =17.0 kNm
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Solution
Topic: Plastic Analysis — Continuous Beams
Problem Number: 8.2 — Kinematic Method Page No. 1

204 kN 154AkN
A B i C i D E
Mpl ooy Mpl @

20m | 20m 20m | 20m
K K
40m 40m

A=1.7
Factored loads: Beam ABC = (1.7 x 20) =34 kN, Beam CDE = (1.7 x 15) =25.5 kN

Kinematic Method:
Span ABC
34 kN

M (04 )

20m 20m |

X

o0=2=20 .. p=0
Internal Work = External Work
My(0 +0) + Mu(f) = (34 x26)
3Mp0=680
oo My =22.67 kNm

25.5kN

Internal Work = External Work
Mp(6) + Mp(0+5) =(25.5x26)
3Mp6=51.00
co Mp=17.0 kNm
Critical value of Mp = 22.67 kNm
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Solution
Topic: Plastic Analysis — Continuous Beams

Problem Number: 8.2 — Static Method

Static Method:

Span ABC
34 kN

Combined Bending Moment Diagram

(Mp + 0.5Mp1) = 1.5Mp1 = 34.0 kNm

Span CDE

Combined Bending Moment Diagram

(M + 0.5My) = 1.5Mp =25.5

Page No. 2

17.0 kN
(17.0 x 2.0) = 34.0 kNm

Free Bending Moment Diagram

Fixed Bending Moment Diagram

<. My =22.67 kNm

(12.75 x2.0) =25.5 kNm

Free Bending Moment Diagram

Mpl

Fixed Bending Moment Diagram

. My=17.0 kNm

As before the critical value of M}, = 22.67 kNm
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Solution
Topic: Plastic Analysis — Continuous Beams
Problem Number: 8.3 — Kinematic Method Page No. 1

104 kN/m 304 kN 1SAKN

 ——

— 1.5My
20m | 2.0m 2.0m
~ K

6.0 m

A=1.7
Factored loads = (1.7 x 10) = 17.0 kN/m (1.7 x 15) =25.5kN
=(1.7 x20)=34.0 kN (1.7%x30)=51.0 kN

Kinematic Method:

Span AB

Note: Span AB is effectively a propped cantilever and the bending moment diagram
is asymmetric. The hinge between A and B does not develop at the mid-span point
and should be evaluated in a manner similar to that indicated in Section 8.2.3. The
reader should carry out this calculation to show that the hinge develops at a position
equal to 2.582 m from the free support at A as shown below, (see page 3 of this
solution).

1.5Mp at B
w kN/m

A B ,.'
LK T

1
2.582 m 2.0Mp
6.0 m

17.0 kN/m . No internal 17.0 kN/m
. work done
' here.

2.582m ‘ 3.418 m

6.0m F2OM 0+ )

| 2582m | 3418m
5=3.4184=2.5820 .. f=0.7550 i k

Internal Work = External Work
[2.0M} (8+ B) + (1.5Muf)] = [(17 x 6.0) x (0.5x )] = (102 x 0.5 x 2.5826)
4.643M,6 = 131.6826

My =28.36 KNm
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Solution
Topic: Plastic Analysis — Continuous Beams
Problem Number: 8.3 — Kinematic Method Page No. 2

Span BCDE

51.0kN  255kN 51.0kN  255kN

; C l lD

B
v 000
/

E
jevel

2,0mj 20m ‘ 20m

K !

6.0 m

20m | 20m | 20m |

K 1 ~

S =48=20 .. p=050 &=28=0

Internal Work
1.5My1 (6) + 1.5Mpy (6+f) + My (f) = 4.25M 10

External Work
(51.0x )+ (25.5x %) =(51.0x20) + (25.5x2p) =127.560
425Mn0=127.560
"o Mp=30.0 KkNm

51.OKN  25.5kN 5I.OKN  25.5kN

il C l lD

B
v Q0
/

E
000

2.0m‘ 2.0m ‘ 2.0 m

6.0 m

l 2.0th 20m | 20m l

§=20 &6=28=460 - B=20

Internal Work
1.5Myi (6) + 1.5M (6+0) + M (B) = 8.0M,16

External Work
(51.0x 8)+(25.5x &)=(51.0x20) + (25.5x46)=204.00
8.0M,60=2040
oo My =25.5 kNm
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Solution
Topic: Plastic Analysis — Continuous Beams
Problem Number: 8.3 — Static Method Page No. 3

Span EFG No internal

work done
\
\
h .

20m | 20m

o=2p=260 .. p=86
Internal Work = External Work
My(6) + Mu(6+5) = (34 x 20)
3M, 0= 686 oo My =22.67 kNm
The critical value of My =30.0 kNm
Static Method:
Span AB

17.0 kN/m

xm ‘ (6.0 —x) m

6.0 m

17.0 kKN/m 17.0 kN/m

A
2Mp]
Va X m

2Mpl
‘ (6.0 - x)

+VC)ZMA:0 +V€)ZMB=0
(17.083)/2 — 2My =0 DMy + 1.5My — 17.0(6.0 — x)2/2 = 0
85X —2My=0 - My=4252 My =2.429(6.0 - x) = 0

Equate the M, values to determine x:
4.25x*=2.429(36.0 — 12x +x%) .. 1.821x* +29.148x — 87.44=0

—b+b? —4ac —29.1481\/29.1482 +(4x1.821x87.44)
2a (2x1.821)
My =4.25x" = (4.25 x 2.582%)

=+2.582m

X

. My =28.33kNm
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Solution
Topic: Plastic Analysis — Continuous Beams
Problem Number: 8.3 — Static Method Page No. 4

Span BCDE

51.0kN  255kN

Lol ol

/ (42.5 x 2.0) = 85.0 kNm
2.0m 2.0m 2.0m

Free Bending Moment Diagram

1.33Mp1

Fixed Bending Moment Diagram

l.SMpl

Combined Bending Moment Diagram

(1.5Mp + 1.33M,1) = 85.0 kNm
2.83My = 85.0 KNm
<. My =30.0 KNm
51.0kN  25.5kN

\
i1 B Cl D E
/ L0

2.0m ‘ 2.0m Jh 20m (34.0 x 2.0) = 68.0 kNm

Free Bending Moment Diagram

1.17Mpl

1.5Mp1 Fixed Bending Moment Diagram

Combined Bending Moment Diagram

(1.5My + 1.17M,) = 68.0 kKNm
2.67My = 68.0 kNm
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Solution
Topic: Plastic Analysis — Continuous Beams
Problem Number: 8.3 — Static Method Page No. 5

34.0kN
F l 17.0 kN% Mll[u] | 17.0 kN

(17.0 x 2.0) = 34.0 KNm

Span EFG

Free Bending Moment Diagram

0.5Mpi

Fixed Bending Moment Diagram

Combined Bending Moment Diagram

(My + 0.5M) = 25.5 . My =22.67kNm

As before the critical value of My = 30.0 kNm




Plastic Analysis 619

Solution
Topic: Plastic Analysis — Continuous Beams
Problem Number: 8.4 — Kinematic Method Page No. 1

A=1.7
Factored loads: (1.7 x 10) =17.0 kN (1.7 x 20) = 34.0 kN
(1.7 x 15) =25.5kN (1.7%x30)=51.0 kN

Kinematic Method:
Span ABC

Note: The bending moment diagram on span ABC is asymmetric and in this case the
hinge between A and C does not necessarily develop under the point load.

The position should be evaluated in a manner similar to that indicated in
Section 8.2.3. The reader should carry out this calculation to show that the hinge
develops at a position equal to 2.333 m from the support at A as shown below, (see
page 3 of this solution).

34.0 kN 1-5Mpiat C
1.5Mp1at A 17.0 kN/m
A

L [
rm 1 .SMpl

6.0 m

34.0kN
A

17.0 kN/m

2.333 m j 3.667 m ”
6.0m FLS My +(6+p)

| 2333m | 3667m |

5 =3.66783=2.3330 .. f=0.6350 & =2.00

Internal Work =[1.5Mp1 (0) + 1.5Mp (6+ B) + (1.5Mp )] = 4.91 M0
External Work =[(34 x %)] +[(17 x 6.0) x (0.5%x 1)]
=[(34 x 26)] +[(102.0) x (0.5% 2.3330)] = 186.980
4.91M,0=186.980
My =38.08 KNm
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Solution
Topic: Plastic Analysis — Continuous Beams
Problem Number: 8.4 — Kinematic Method Page No. 2

Span CDEF

51.0kN  255kN 51.0kN  255kN

.', Dl El

C
v 000
/

2,0mj 20m ‘ 20m

) T 9 P
6.0 m Hop)

| 20m| 20m | 20m |

T N I Iy

on=4p=20 . =050 o&=2p=460

Internal Work
1.5Mp1 (6) + 2.0Mp (6+) + My () = [1.5Mp (6) + 2.0Mp (1.56) + My, (0.56)]

=5.0M,0
External Work
(51.0x &) +(25.5x &) =[(51.0 x 26) + (25.5 x 28] = [(1026) + (25.56)]

=127.560
5.0Mp0=127.560

. My=25.5kNm

51.0kN  255kN 51.0kN  255kN

f e ol wl &

C
v Q00 000

/

2.0m‘ 2.0m ‘ 2.0 m

‘ ‘ O+ B)
6.0m +2.0Mpl

20m | 20m | 20m |

~ f

§=20 &=28=40 . =20

Internal Work
1.5Mpl (9) + 2.0Mpl (0+ﬂ) + Mpl W) = [lsMpl (g) + 2.0Mpl (300) + Mpl (200)]

=9.5M,0
External Work

(51.0 x 8) + (25.5 x &) = [(51.0 x 26) + (25.5 x 46)] = [(1026) + (1026)]

=204.00
9.5My0=204.00

-. My =21.47 kNm
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Solution
Topic: Plastic Analysis — Continuous Beams
Problem Number: 8.4 — Kinematic Method Page No. 3

Span FG

Note: Span FG is effectively a propped cantilever and the bending moment diagram
is asymmetric. The hinge between F and G develops at a position 0.4142L from the
simply supported end as indicated in Section 8.2.3.

w kN/m

‘_\ F G
<. 00 /

J 0.4142L

L

T
1 34.0 kN/m \
. F G .
I \
\. JO.0/0) : .
’

0
2343m j 1.657 m .
~ 27 Mpl
40m +(0+B)
| 2343m | 1.657m |

0=1.657=23430 .. [=14140
Internal Work = External Work
[Mp (6) + My (6+ B)] =[(34.0 x 4.0) x (0.5% )]
[Mp (0) + Mp (2.4140)] = (136 x 0.5 x 2.34360)
3.414M,0 = 159.3260
My =46.67 KNm

Static Method:
Span ABC
34.0 kN

17.0kN/m_
A B | c
= /

\

xm j (6.0-x)m
6.0 m

34.0kN

1.5Mp1 | E 17.0 kKN/m 17.0 kN/m
1.5Mp
A ] 20m ’ ’
Va k :

xXm
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Solution
Topic: Plastic Analysis — Continuous Beams
Problem Number: 8.4 — Static Method Page No. 4

+Ve)2MA =0
— 1.5My + (34 x 2.0) + (17.0x*)/2— 1.5My = 0
68.0 + 8.5x* — 3.0M, =0 o My =22.667 + 2.833x2

+ve) SMc=0
1.5My = 17.0(6.0 —x)%/2 + 1.5My =0 5 My =2.833(6.0 — x)2

Equate the M}, values to determine x:
22.667 +2.833x% = 2.833(36.0 — 12x + x?) 5. 33.996x - 79.321 =0
x=2333m

My = 2.833(6.0 — x)2 = 2.833(6.0 — 2.333)>
<. My =38.09 kNm

Span CDEF

51.0kN  255kN

Di El %ﬁ—‘\

(42.5 x 2.0) = 85.0 kNm

Free Bending Moment Diagram

1.33Mji

Fixed Bending Moment Diagram

Combined Bending Moment Diagram

(2.0My + 1.33M,) = 85.0 kNm
3.33M, = 85.0 kNm
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Solution
Topic: Plastic Analysis — Continuous Beams
Problem Number: 8.4 — Static Method Page No. 5

(34.0 x 2.0) = 68.0 kNm

Free Bending Moment Diagram

1.17Mp1

2.0Mp1 — Fixed Bending Moment Diagram

Combined Bending Moment Diagram

(2.0My + 1.17Mj) = 68.0 kNm

3.17M, = 68.0 KNm
<. My =21.47 kNm

Span FG

1 34.0 kN/m
i ¥ G My
\‘ 00

! xm (4.0 - x)

4.0m

‘e

+ve JEM; =0

(34.0x)/2 — My — My = 0 My — 34.0(4.0 —x) 12 =0
17.00° = 2.0 My = 0 My = 17.0(4.0 — x)°

My =8.52
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Solution
Topic: Plastic Analysis — Continuous Beams
Problem Number: 8.4 — Static Method Page No. 6

Equate the M}, values to determine x:
8.5x=17.0(16.0 — 8x + x?) 5o 8.5xF—136x+272=0

_ —b+\b? —dac _ 136%/136> —(4x8.5x272)
2a (2x8.5)
My = 8.5 = (8.5 x 2.343)”

=+2.343 m

X

M1 =46.67 kNm
As before the critical value of M}, = 46.67 kNm
Note: Span FG is the same as the standard propped cantilever in Example 8.3 in
which the hinge develops at a point 0.414L from the simply supported end
and the M, value equals 0.0858wL?, i.e.

Distance of hinge from support F = [4.0 — 0.414L] = [4.0 — (0.414 x 4.0)] = 2.344 m
o My =(0.0858 x 34.0 x 4.0%) = 46.67 kNm
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Solution
Topic: Plastic Analysis — Continuous Beams
Problem Number: 8.5 — Kinematic Method Page No. 1

A=1.7
Factored loads: (1.7 x 15) =25.5 kN (1.7 x 20) = 34.0 kN
(1.7%x 30)=51.0 kN

Kinematic Method:

Span ABC

Note: The bending moment diagram on span ABC is asymmetric and in this case the
hinge between A and C does not necessarily develop under the point load and its
position should be evaluated in a manner similar to that indicated in Section 8.2.3.
The reader should carry out this calculation to show that the hinge develops at a
position equal to 3.725 m from the support at A as shown below, (see page 2 of this

solution). 51.0kN  1.5MpatC
34.0 kN/m ,
A B C / .
/
= 7

3725m | 2.0Mp J ‘

34.0 kN/m
A B

3.725m ~ 4.275m -
8.0 m FLOM (04 )

| 3725m | 4275m |

X

S =42758=3.7250 .. f=08710; &=2.08

Internal Work =1[2.0Mp (0+ B) + (1.5Mp3)] = 5.05M, 6
External Work = [(51 x &)] +[(34 x 8.0) x (0.5 x &)]
=[(51 x 1.7420)] + [(34.0 x 8.0) x (0.5 x 3.7250)] = 595.44 60
5.05M,10 = 595.4460
My =117.91 KNm
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Solution
Topic: Plastic Analysis — Continuous Beams
Problem Number: 8.5 — Kinematic Method Page No. 2

Span CDE

1
I

C
v 000
/

S =48=20 . B=050

Internal Work = External Work
1.5Mpy (6) + 1.5Mp (6+5) + 1.5Mp (B) =(51.0 x 61) = (51.0 x 26)
4.5M,0=10260
S Mpi=22.67 kNm
Span EF
255 kN

Internal Work = External Work
1.5Mp (6)=(25.5 x 1) =(25.5 x26)=51.00
2. My =34.0 kNm
The critical value of My =117.91 kNm
Static Method:
Span ABC

34.0 kN/m
A

xm j (6.0-x)m
8.0 m

20m e ©

(8.0—-x) Ve

34.0 kN/m 34.0 kN/m a | 1.5My !
1
- o | e
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Solution
Topic: Plastic Analysis — Continuous Beams
Problem Number: 8.5 — Static Method Page No. 3

+ve JEMa =0 L ve ) EMc=0

(402 -2Mp=0 | 2My—34.0(8.0 —x)%2 — (51.0 X 2.0) + 1.5My =0
17.08% = 2My = 0 L Myu=4.857(8.0 - x)*+29.143

My =8.5x* :

Equate the M}, values to determine x:
8.5x* = 4.857(64.0 — 16x +x?) +29.143 5 3.643x% +77.712x — 339.991 =0

CbiB —dac | ~T1712%\[77.712% +(4x3.643x 339.991)
x = =
2a (2x3.643)
My =8.5x= (8.5 x 3.725%)

=+3725m

. My=117.94 kNm

Span CDE

17.0 kN

(34.0 x 2.0) = 68.0 kNm

Free Bending Moment Diagram

1 .5Mp1 ! 1 .SMpl

Fixed Bending Moment Diagram
Combined Bending Moment Diagram

(1.5My + 1.5M,) = 68.0 kNm
. My=22.67 kNm

Span EF
255 kN

F

1.5Mp = PL=(25.5x2.0)=51.0 kNm
. Mp=34.0 KNm
Critical value of Mp =117.94 kNm
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8.6 Rigid-Jointed Frames

In the case of beams, identification of the critical spans (i.e. in terms of My or A) can
usually be solved quite readily by using either the static or the kinematic method and
considering simple beam mechanisms. In the case of frames other types of mechanisms,
such as sway, joint and gable mechanisms are also considered. Whilst both techniques can
be used, the static method often proves laborious when applied to rigid frames, particularly
for complex load conditions. It can be easier than the kinematic method in the case of
determinate or singly redundant frames. Both methods are illustrated in this section and in
the solutions to the given problems.

As mentioned previously the kinematic solution gives a lower bound to the true solution
whilst the static solution gives an upper bound.

i.e. Mpl kinematic < Mpl true < Mpl static
Mpl kinematic — Mpl static fOI’ the true SOluthIl.

Two basic types of independent mechanism are shown in Figure 8.13:

(i) beam mechanisms

beam
mechanism

sway

(i) sway mechanism mechanism

Figure 8.13

Each of these collapse mechanisms can occur independently of each other. It is also
possible for a critical collapse mechanism to develop which is a combination of the
independent ones such as indicated in Figure 8.14.

. .- B , 1T~ - .
e ' , ~e- ]
- + , K .
beam 1 > 1 combined |/
mechanism mechanism mechanism

Figure 8.14

It is necessary to consider all possible combinations to identify the critical collapse mode.
The M, value is determined for each independent mechanism and then combined
mechanisms are evaluated to establish a maximum value of Mj (i.e. minimum A). The
purpose of combining mechanisms is to eliminate sufficient hinges which exist in the
independent mechanisms, leaving only the minimum number required in the resulting
combination to induce collapse.

It is necessary when carrying out a kinematic solution, to draw the bending moment
diagram to ensure that at no point the My value determined, is exceeded.

8.6.1 Example 8.5: Frame 1

An asymmetric uniform frame is pinned at supports A and G and is subjected to a system
of factored loads as shown in Figure 8.15. Assuming the Aericaliosda = 1.7 and
Ahorizontal loads = 1.4 determine the required plastic moment of resistance M, of the section.
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g
<
on
150 kKN
g Indicates positive bending
g i.e. where tension occurs
inside the frame

Figure 8.15

/1 vertical loads — 17, /1 horizontal loads — 14

Factored loads: (1.4 x 15) =21.0 kN (1.7 x 20) = 34.0 kN

Number of degrees-of-indeterminacy /Ip=[(3m+r)—-3n]=[3x3)+4)-(3x4)]=1
Number of possible hinge positions p=5 (B, C, D, E and F)

Number of independent mechanisms =p-Ib)=056-1)=4

(i.e. 3 beam mechanisms and 1 sway mechanism)

Kinematic Method:
Consider each independent mechanism separately.
Mechanism (i): Beam ABC
Note:
Internal work is done at all hinge positions.
No internal work is done at support A.
The signs of the rotations indicate tension inside or
21 kN outside the frame.
o0=1.56
Internal Work Done = External Work Done
My 20+ 6)=(21.0 x 1.56)
A 3M,0=31.56
My=10.5 kKNm

__________________

I

Mechanism (ii): Beam CDE

0=4.00

521 kN  Internal Work Done = External Work Done
R T Mu(0+260+ 6)=(34.0 x 40)

; 4Mu6=136.00

! M =34.0 kNm
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Mechanism (iii) Beam EFG

0=3.00
Note: no internal work is done at support G.

Internal Work Done = External Work Done
My (0+260)=(21.0x30)

3M,60=63.00

My =21.0 kNm

0=3.00=6.08 .. =050
o=150 ad &=3.08=150
E [-p Note: no internal work is done at supports A and G.

21 kN  Internal Work Done = External Work Done
My (0+0.56)=21.0x1.56)+(21.0x 1.56)
92 1.5Mu0=63.00
Mp=42.0 kNm

Combinations:
Consider the independent mechanisms, their associated work equations and M, values as
shown in Figure 8.16:

@ (i) (iii)

Internal Work Done = External Work Done :

() 3Mu0=3150 . My=105kNm 2"l :

(i) 4MpO=136.00 .. My=34.0kNm | | .

(ifi) 3Mu0=63.00 .. My=21.0 kNm R4 Fi—

(iv) 1.5My;60=63.00 .. My =42.0 kNm =
Figure 8.16 G_A_

It is evident from inspection of the collapse mechanisms that the hinges located at C and E
can be eliminated since in some cases the rotation is negative whilst in others it is positive.
The minimum number of hinges to induce total collapse is one more than the number of
redundancies, i.e. (/[p + 1) = 2 and therefore the independent mechanisms should be
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combined to try and achieve this and at the same time maximize the associated My value.
It is unlikely that mechanism (i) will be included in the failure mechanism since its
associated M value is relatively small compared to the others. It is necessary to
investigate several possibilities and confirm the resulting solution by checking that the
bending moments do not exceed the plastic moment of resistance at any section.

Combination 1: Mechanism (v) = [(ii) + (iv)]

When combining these mechanisms the hinge at C will be eliminated and the resulting M,
value can be determined by adding the work equations. It is necessary to allow for the
removal of the hinge at C in the internal work done since in each equation an (M;6) term
has been included, but the hinge no longer exists. A total of 2M must therefore be
subtracted from the resulting internal work, 1i.e.

Internal Work Done = External Work Done

Mechanism (ii) 4My60=136.06
Mechanism (iv) 1.5M,0 =63.06
less 2.0M,,; for eliminated hinge  — 2.0M,10
C g E 35Mp6=199.00 My =56.86 kNm

_____________________

It is possible that this is the true collapse mechanism,

however this should be confirmed as indicated above by

F satisfying conditions (ii) and (iii) in Section 8.1.2.

An alternative solution is also possible where the hinges

Mechanism (v) at C and E are eliminated, this can be a achieved if
G mechanism (v) is combined with mechanism (iii).

In mechanism (v) f=0.56 (see the sway calculation above) and hence the total rotation at
joint E=— (8+ ) =— 1.56. If this hinge is to be eliminated then the combinations of
mechanisms (iii) and (v) must be in the proportions of 1.5:1.0. (Note: when developing
mechanism (v) the proportions were 1:1).

The total value of the internal work for the eliminated hinge = (2 x 1.5M}1) = 3.0M,, i.¢.

Internal Work Done = External Work Done

Mechanism 1.5 x (iii) 4.5M,60=94.50
Mechanism (v) 3.5Mpn0=199.00
less 3.0M,,; for eliminated hinge  — 3.0M,10
5.0Mp60=293.560 M1 =58.70 kNm

The +ve rotation indicates tension inside the frame
at point D and the —ve rotation indicates tension
outside the frame at point F.

This is marginally higher than the previous value
Mechanism (vi) and since there does not appear to be any other
obvious collapse mechanism, this result should be
checked as follows:

Collapse Mechanism G
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Consider the equilibrium of the frame between F and G:

tve JEMe=0  —58.7—(Hgx3.0)=0 Hc=—-19.57 kN <

Consider the equilibrium of the frame on the right-hand side at D:

+ve) EMp=0  +58.7-(21.0x3.0)+(19.57 x 6.0) — (V5 x 4.0)=0
Vo=+2828kN }

Consider the complete structure:

tve }IF,=0  Va-340+2828=0 Va=+572kN |

+ve—>3IFy=0 Ha+21.0+21.0-19.57=0 Hy=—-2243 kN <+

Bending moment at B Mp =+ (22.43 x 1.5) =+ 33.65 kNm < My,
Bending moment at C ~ Mc =+ (22.43 x 3.0) — (21.0 x 1.5) =+ 35.79 kNm < M,
Bending moment at E Mg =—(19.57 x 6.0) + (21.0 x 3.0) = — 54.42 kNm < M,

54.42 kKNm
C 3579 kNm E
54.42 kKNm
35.79 kNm
B 33.65 kN 587 kNm
. m
= Mpl)
A 58.7 KNm

(= Myp)

Collapse Bending Moment Diagram

Figure 8.18 G

The three conditions indicated in Section 8.1.2 have been satisfied: i.e.

Mechanism condition: ~ minimum number of hinges required = (/p + 1) = 2 hinges,
Equilibrium condition:  the internal moments are in equilibrium with the collapse loads,
Yield condition: the bending moment does not exceed M, anywhere in the frame.

Mpl kinematic — Mpl static = {Vpl true
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It is often convenient to carry-out the calculation of combinations using a table as shown
in Table 8.1; eliminated hinges are indicated by EH in the Table.

Independent and Combined Mechanisms for Example 8.5

Hinge Position 1) (ii) (iii) @iv) (v) = (@i)+31v) | (vi) = (v)+1.5(iii)
B (M,) +2.00 - - - - -
C (My) .y .y - +60 | EHQ.0My6) | EH (2.0M0)
D (M,) - +2.00 - - +2.00 +2.00
E (My) - -0 +0 -0.56 -1.50 EH (3.0M,,6)
F (M) - - -2.00 - - -3.00
External Work | 31.560 | 136.00 | 63.00 | 63.00 199.00 293.560
Internal Work | 3.0M,0 | 4.0M,0 | 3.0M,0 | 1.5Mu0 | 5.5M,0 10.0M,6
Eliminated hinges - - - - 2.0Mp 6 5.0M16
Combined M6 - - - - 3.5Mp0 5.0M, 60
M (kNm) 10.5 34.0 21.0 42.0 56.86 58.70
Table 8.1
Static Method:

This frame can also be analysed readily using the static method since it only has one
degree-of-indeterminacy. When using this method the frame can be considered as the
superposition of two frames; one statically determinate and one involving only the
assumed redundant reaction as shown in Figure 8.19. Applying the three equations of
equilibrium to the two force systems results in the support reactions indicated.

34 kN

1.5m 1.5m

13.06 kN

4.0m ‘

Frame (i) 20.94 kN Frame (ii) 0.375Hs

Figure 8.19

The final value of the reactions and bending moments = [Frame (i) + Frame (ii)]; e.g.
Hy=-42.0+ Hg Va=13.06 - 0.375Hg Ve =120.94+0.375Hs
Hg= 0+ Hg Mz = [MB frame (i) T MB frame ()] €tc.
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Equations can be developed for each of the five possible hinge positions in terms of the
two frames as follows:

Mp=+(42.0 x 1.5) - (1.5Hg) =+ 63.0 — 1.5Hg Equation (1)
Mc=+(42.0x3.0)—(21.0 x 1.5) — (3.0Hg) =+ 94.5 — 3.0H; Equation (2)
Mp =+ (42.0 x 3.0) + (13.06 x 4.0) — (21.0 x 1.5) — (3.0 x Hg) — (4.0 x 0.375Hc)
=+146.74 - 4.5Hg Equation (3)
Mg =+ (21.0 x 3.0) — (6.0Hg) =+ 63.0 — 6.0HG Equation (4)
Mr=-3.0Hg Equation (5)

As indicated previously, only two hinges are required to induce total collapse. A collapse
mechanism involving two hinge positions can be assumed and the associated equations
will each have two unknown values, i.e. Hg and M, and can be solved simultaneously.

The value of the bending moment at all other hinge positions can then be checked to
ensure that they do not exceed the calculated My, value. If any one does exceed the value
then the assumed mechanism was incorrect and others can be checked until the true one is
identified.

Assume a mechanism inducing hinges at D and E as in (v) above.

————————————————————— _Mpl

+146.74 — 4.5Hg =+ My Equation (6)

_l’_
M +63.0 — 6.0H = — My Equation (7)

A tension inside +ve
tension outside —ve

Add equations (6) and (7):
G +209.74 - 10.5Hc =0 oo Hg=19.98 kN

and My =56.83 kNm
Check the value of the moments at all other possible hinge positions.

Mp=+63.0-15Hs=+63.0—-(1.5x19.98) =+ 33.03 kNm < M),
Mc=+94.5-3.0Hg=+94.5 - (3.0 x 19.98) = + 34.56 kNm < M,
Mr=-3.0Hc=- (3.0 x 19.98) =—59.94 kNm > M,

Since the bending moment at F is greater than My this mechanism does not satisfy the
‘yield condition’ and produces an unsafe solution.

The reader should repeat the above calculation assuming hinges develop at positions D
and F and confirm that the true solution is when My = 58.7 kNm as determined previously
using the kinematic method.
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8.7  Problems: Plastic Analysis — Rigid-Jointed Frames 1

A series of rigid-jointed frames are indicated in Problems 8.6 to 8.9 in which the relative
M, values and the applied collapse loads are given. In each case determine the required
My value, the value of the support reactions and sketch the bending moment diagram.

Problem 8.6

2.0m 25m | 25m
1 A A Ul
10 kKN 40 kN|
B M, D
Problem 8.7 =
2 |

A

40m | 4.0m )

Problem 8.8

Problem 8.9
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8.8 Solutions: Plastic Analysis — Rigid-Jointed Frames 1

Solution
Topic: Plastic Analysis — Rigid Jointed Frames 1
Problem Number: 8.6 — Kinematic Method

Number of degrees-of-indeterminacy /Ip=[(3m +r)—3n]=1
Number of possible hinge positions  p =2

Number of independent mechanisms =p-b)=2-1)=1
(i.e. 1 beam mechanism)

At internal joint B
Under the point load at C

g tension on this side indicates
possible hinge positions +ve bending moments

Mechanism I: Beam BCD

60 kKN
5=2.50=258 .. 0=

Internal Work Done = External Work Done
[Mp1 () + My (6+ B)] = (60 x J)
My(6+26)= (60 x2.56)
3IMp6= 1500
Mpl =50.0 kNm

(Note: no internal work is required at support D since it is pinned and the beam is
free to rotate at this point.)
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 1
Problem Number: 8.6 — Kinematic Method Page No. 2

The value of M, obtained (50.0 kNm) should be checked by ensuring that the
bending moment in the frame does not exceed this value at any location.
50.0 kNm l60 kN
The rotation at B induces tension on the
outside of the frame and hence a —ve
bending moment.

Under the point load at C there is tension
inside the frame and consequently the
bending moment is +ve at this point.

Consider the equilibrium of the right-hand side of the frame at a section under the
point load at C.

. +ve) EMc=0  50.0 (2.5 % Vp)=0

| b " Vo=+200kN 1}
’ Consider the complete structure:

B tve }2F,=0  VaA-60+200=0

. Va=+40.0 kN T
L 25m

7

Consider the equilibrium of the left-hand side of the frame at B.
50.0 kNm

+ve JEMp=0 50.0 + (2.0 x 40.0) — (4.0 x Hy) =0
. Ho=+325KN__

Consider the complete structure:
+ve—>F,=0 +325+Hp=0 -—
. Hp=-325KkN

t (PLI4) = (60 x 54
=75kNm

Collapse Bending Moment Diagram
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 1
Problem Number: 8.6 — Static Method Page No. 3

Assume the horizontal component of reaction at support D to be the redundant
reaction.

*60 kN

" 20m, 25m | 25m |
VA] ) A 7

(D Statically determinate force system  (II) Force system due to redundant reaction

Consider system (I)

Apply the three equations of static equilibrium to the force system:

+vel =F, =0 A= 60+ V=0 "+ V=60 kN

+ve—>2F=0 L H'A=0

+Ve) EMA=0 (60x4.5)—(Vpx7.0)=0 - V'p=+38.57TkN
hence S V'A=+21.43 kN

Consider system (II)

Apply the three equations of static equilibrium to the force system:

+ve ? 2F,=0 "\+V'"p=0 "\=—-V""p

+ve— XF=0 "\t Hp=10 H'"s=-Hp

+Ve) EMAx=0 (Hpbx4.0)—(V'px7.0)=0 S V'"p=+0.571 Hp
hence S V"s=—-0.571 Hp

2143kN{20m) 25m | 25m |

My = (21.43 x 2.0) + (Hp x 4.0) — (0.571Hp x 2.0) = 42.86 + 2.86Hp
Mec = (21.43 x 4.5) + (Hp x 4.0) — (0.571Hp x 4.5) = 96.44 + 1.43Hp

Assume the collapse mechanism as indicated previously, i.e. plastic hinges
developing at B (— Mp) and under the point load at C (+ Mp).
Mg: — Myu=42.86+2.86Hp Equation (1)
Mc: + My =96.44 + 1.43Hp Equation (2)
Adding equations (1) and (2) gives:
0=139.3+4.29Hp S Hp=-3247KN and My =50.0 kNm as before
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 1
Problem Number: 8.7 — Kinematic Method Page No. 1

Number of degrees-of-indeterminacy /Ip=[(3m +r)—3n]=1
Number of possible hinge positions  p =3

Number of independent mechanisms =p-Ib)=3-1)=2
(i.e. 1 beam mechanism and 1 sway mechanism)

At internal joint B
Under the point load at C
At fixed support A

] ) » tension on this side indicates
possible hinge positions +ve bending moments

Mechanism I: Beam BCD

40 kN
5=40=45 . 0=p

Internal Work Done = External Work Done
(M1 () + My (6+ B)] = (40 x 0)
Mu(6+26) = (40 x 46)
3M6=16060
.~ My =53.33 kNm

(Note: no internal work is required at support D since it is a roller and the beam is
free to rotate at this point. No external work is done by the 10 kN force since there is
no horizontal displacement of joint B)
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 1
Problem Number: 8.7 — Kinematic Method Page No. 2

Mechanism II: Sway

5 40 kN 5=50

10ﬂ:_f l
C

Internal Work Done = External Work Done
[Mp1 (6) + My (6)] = (10 % 0)
Mpu(20)=(10x50)

2My6=500

My = 25.0 KNm

(Note: no external work is done by the 40 kN force since there is no vertical
displacement at C).

Mechanism III: Combined Beam & Sway

In this mechanism the two independent mechanisms I and II occur simultaneously to
produce a collapse mechanism in which plastic hinges develop at A, and at C under
the point load on beam BCD. The hinge at B is eliminated; note the —ve rotation in
Mechanism I and the +ve rotation in Mechanism II at B which cancel each other out.

ol 40 kN 5 =56
S=40-48 . 0=4

Internal Work Done = External Work Done
(M1 () + My (6+ B)] = [(10 x &) + (40 x &)]
Mpu(36) =[(10 x 56) + (40 x 40)]
3IMy6=21060

Mp1=70.0 KNm

The same result could have been achieved by adding, directly, the work equations
for mechanisms I and II and subtracting for the internal work which no longer occurs
at joint B; i.e. M0 in each equation.

Adding equations for Mechanisms (I + II)
3M0=1600
2Mp19 =500

—2M 6
3IM6=2100

(allowing for the hinge eliminated at joint B)

. My ="70.0 KNm
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 1
Problem Number: 8.7 — Kinematic Method Page No. 3

Mechanism I: Beam BCD My =53.33 kNm
Mechanism II: Sway My =25.0 kNm
Mechanism III: 1 & II Combined Mp=70.0 kNm

641

The maximum value of Mj, obtained (70.0 kNm) should be checked by ensuring that

the bending moment in the frame does not exceed this value at any location.

40 kN
¢ The rotation at A induces tension on the
YD

C\Il ¢
bending moment.

bending moment is +ve at this point.

Consider the right-hand side of the frame at a section under the point load at C.

tve JIMc=0  70.0 - (4.0 x V) =0

40 kN

\ l - Vp=175kN
\

v CI/

Consider the complete structure:
+ve} TF,=0  Va-40+17.5=0

- Va=225kN
+ve —>XFy=0 —-Ha+10.0=0

outside of the frame and hence a —ve

Under the point load at C there is tension
inside the frame and consequently the

f

f

S HA=10.0 KN =

Bending momentat B Mp=— 70+ (5.0 x 10.0) = - 20.0 kNm < M,

20.0 kNm ]
(PL/4) = (40 x 8)/4
=80 kNm

v

Collapse Bending Moment Diagram
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 1
Problem Number: 8.7 — Static Method Page No. 4

Assume the vertical component of reaction at support D to be the redundant reaction.

10 kN

40 kN‘

C

M'a
Ha [fT

F 40m | 4.0 m

|

VaTA

(D Statically determinate force system

Consider system (I)

7

H's | /]

°F
Vo

V'

(IT) Force system due to redundant reaction

Apply the three equations of static equilibrium to the force system:

+ve } LF, =0 V'a—40=0
tve —=XF=0H2+10=0

+Ve)zMA =0 —M's+(10 x 5.0) + (40 x 4.0) =0

Consider system (II)

'a=+40 kN
'A:—IOkN
’A:+210kN

Apply the three equations of static equilibrium to the force system:

+ve { £F, =0
+ve —> ZF, = 0
+ve JIMA=0 -

"\t Vp=0

10kN 40kNY

C

210 kNm

10kN | ]

N

4.0m | 4.0m |

40 kN

A

7

" — (Vb x 8.0)=0

V”A — _ VD
HA f— 0
"»=8Vp

Ma=-210+8Vp=—-210+8Vp

Mp=(10x5.0)—210+8Vp=—- 160 + 8Vp

Mc=0+Vpx4.0)=+41p

Assume the collapse mechanism as indicated previously, i.e. plastic hinges
developing at A (— Mp) and under the point load at C (+ M).

Ma: — Mp=-210+8Vp Equation (1)

Mc: + My =+4Vp Equation (2)

Adding equations (1) and (2) gives:

0=-210+12lp S Vp=+175KkN and Mp =70.0 kNm as before
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 1
Problem Number: 8.8 — Kinematic Method Page No. 1

12 kN/m

L 4.0 m
71

E
A
)

Number of degrees-of-indeterminacy /Ip=[(3m +r)—3n]=2
Number of possible hinge positions p =15

Number of independent mechanisms =(p-b)=(5-2)=3
(i.e. 2 beam mechanisms and 1 sway mechanism)

A
At fixed support A
Under the distributed load
At internal joint C
Under the point load at D

possible hinge positions . N
tension on this side indicates

+ve bending moments

Mechanism I: Beam AB

0=20=2p L 0=p
[Note: the total UDL undergoes an
average displacement equal to (0.5 x J)]

Internal Work Done = External Work Done

[My (6) + My (0+ ) + Ma(B)] = [(12 % 4) x (0.5 x )]
My(6+20+ 6) = (48 x )

4Mp0=486
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 1
Problem Number: 8.8 — Kinematic Method Page No. 2

Mechanism II: Beam CDE

Internal Work Done = External Work Done
(M1 () + My (6+ B)] = (36 % 0)
Mu(60+26)=(72 % 6

3Mn0="120

Mechanism III: Sway
12 kN/m

X
+p

Internal Work Done = External Work Done

[Mp1 () + M1 (6) + Mp(B)] = [(12 x 4) x (0.5 x 61)] + (36 X &)
M0+ 0+ 6) =966+ 720)

3My0= 1686

2. Mpi =56 kNm
Mechanism IV: Combined Beam CD and Sway

Mechanisms II and III can be combined
to eliminate a hinge at C.

This results in a collapse mechanism with
hinges at joints A and B and under the
point load at D on member CDE as
shown.




Plastic Analysis 645

Solution
Topic: Plastic Analysis — Rigid Jointed Frames 1
Problem Number: 8.8 — Kinematic Method Page No. 3

Adding work equations for Mechanisms (II + III)

3Mu0="726
3My60=1680

2M;,10

4My0= 2400

Mechanism I:
Mechanism II:
Mechanism III:
Mechanism IV:

(allowing for the hinge eliminated at joint C)

Beam AB

Beam CDE

Sway

II & IIT Combined

Mpl = 60.0 kNm

My =12.0 kNm
My =24.0 kNm
My =56.0 kNm

My =60.0 KNm

The maximum value of M, obtained (60.0 kNm) should be checked by ensuring that
the bending moment in the frame does not exceed this value at any location.

60 kNm

4.0 m

12 kN/m

36 kN

Drl\

L, 20m | 20m |
7 il

\Il

60 kNm

7

The rotation at A induces tension on
the outside of the frame and hence a
—ve bending moment.

The rotation at B induces tension on
the inside of the frame and hence a
+ve bending moment.

Under the point load there is tension
on the underside of beam CDE and
consequently the bending moment is
+ve at this point.

Consider the right-hand side of the frame at a section under the point load at D.

. 36kN
" \

E
7\

He

N, Dl/
\

60.0 KNm

VE

+ve) EMp=0  60.0 - (2.0 x V&) =0
~ Ve=30.0kN }

Consider the complete structure:

+ve ?ZFZ=0

Va—(12x4)—36+30.0=0
- Va=540kN |

Bending moment at C ~ Mc =[—- (36 x 2.0) + (30 x 4.0)] =+ 48.0 kNm < My,
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 1
Problem Number: 8.8 — Kinematic Method Page No. 4

Consider the right-hand side of the frame at a section at joint B.

N +ve )=Mp =0
+60.0 + (36 x 2.0) — (30.0 x 4.0) — (4.0 x Hg) =0
. Hg=+3.0kN —

Consider the complete structure:
tve—2XFx=0
Ha+3.0=0 S Ha=-3.0kN <+

Check bending moment at A:
Ma=[-(12%4.0x2.0)—- (36 x 6.0) + (30 x 8.0) + (3.0 x 4.0)] =— 60.0 kNm
= My as indicated in the collapse mechanism.

Collapse Bending Moment Diagram
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 1
Problem Number: 8.9 — Kinematic Method Page No. 1

Number of degrees-of-indeterminacy:
h=[Bm+r)-3n]=1

Number of possible hinge positions:
p=4

Number of independent mechanisms:

=(p-Ip)=(@4-1)=3

(i.e. 2 beams and 1 sway mechanism)

At internal joint B
Under the point load at C
At internal joint D

Under the point load at E tension on this side indicates

+ve bending moments
possible hinge positions

Mechanism I: Beam BCD

0=20=2p L O=p

[Note: the plastic hinges develop in the weakest member
at a joint, i.e. at B the moment equals M, and at D the
moment equals 1.5 My]

Internal Work Done = External Work Done
[Mp () + 1.5My (6+ ) + 1.5Myu (£)] = (10 x 6)
Mu(60+360+1.560)=(10x26)
5.5Mnu6=206
oo Mp =3.64 kNm
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 1
Problem Number: 8.9 — Kinematic Method Page No. 2

Mechanism II: Beam DEF

5=20=28 . 0=p

Internal Work Done = External Work Done
[1.5M (6) + 2Mp (6+ )] = (20 x 9)
Mu(1.56+460)=20x%26)
5.5M,0=4060
2 My =7.27 kNm

Si=40=4p
&=2p5=20

Internal Work Done = External Work Done
[Mp1 (0) + 1.5Mu(B)] = (20 x &)
M (6+1.50)=20x26)
2.5M,0=400
s Mp=16.0 kNm

Mechanism IV: Combined Beam DEF and Sway
Mechanisms II and III can be combined to eliminate
a hinge at D.
This results in a collapse mechanism with hinges at
joint B and at E on member DEF as shown.

S5i=40=28 . B=20
& =6 =46

Internal Work Done = External Work Done
[M(6) + 2.0Mu(B)] = (20 x &)
My(6+46) = (20 x 40)
SMy60=2800
2. My =16.0 kKNm
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 1
Problem Number: 8.9 — Kinematic Method Page No. 3

Adding work equations for Mechanisms (II + I1I)
5.5M,0=400
2.5M,0=400
—3My0 [allowing for the hinge eliminated at joint D i.e. (2 X 1.5M})]
SMp60=8060
oo Mp=16.0 KNm

Mechanism I: Beam BCD My =3.64 kKNm
Mechanism II: Beam DEF Mp=7.27 kNm
Mechanism III: ~ Sway My =16.0 kNm
Mechanism IV: 11 & IIl Combined My = 16.0 kNm

The maximum value of M, obtained (16.0 kNm) and should be checked by ensuring
that the bending moment in the frame does not exceed this value at any location.
Assume the combined mechanism is the failure mode.

143

F-t» Hr

A The rotation at B induces tension on the
3 — left-hand side of column AB and on the top of
ad beam BCD and hence a +ve bending moment.

3 ¥ o
4 At E there is tension on the left-hand side of
the frame and hence a +ve bending moment.

L A
Ha
Va

Consider the left-hand side of the frame at a section at joint B.

16 kKNm
+ve )EMp=0 +16.0 — (4.0 x Hx) =0

S Hy=40KkKN —

Consider the complete structure:
+tve—XFy=0 Hr—-20+4.0=0
.. Hr=16.0 kKN —
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 1
Problem Number: 8.9 — Kinematic Method Page No. 4

Consider the complete structure:
+Ve) EMA=0  +(10x2.0)—(20%x6.0)+ (16 x 8.0)— (4.0 x V) =0

S Ve=+7.0 kN
+ve b TF,=0  Va-100+7.0=0 L Va=+3.0kN 4

Consider the right-hand side of the frame at a section at joint D.
7.0 kN . _ —
Bending moment at D Mp =+ (Hr x 4.0) — (20 x2.0)=0
Mp =1[(16.0 x 4.0) — 40.0]
=+24.0 kNm = 1.5M},

[Note: the bending moment at D is compared to the
minimum M, value at the joint, i.e. 1.5M,. In this case since
Mp = 1.5My, there is also a plastic hinge at joint D.]

Consider ‘;he left-hand side of the frame at a section under the point load at C on
member BCD.

Bending moment at C:

Mc=[+ (4.0 x4.0) - (3.0 x 2.0)]
=+16.0-6.0
=+ 10.0 kNm < 1.5M),

Collapse Bending Moment Diagram
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 1
Problem Number: 8.9 — Static Method Page No. 5

Assume the horizontal component of reaction at support F to be the redundant
reaction.

] 2.0m| 2.0 m

A

(D) Statically determinate force system (II) Force system due to redundant reaction

Consider system (I)
Apply the three equations of static equilibrium to the force system:

+ve $ 2F,=0 A= 10+ V=0
V'a+Ve=+10kN
+ve—3F =0 Hx-20=0
'A=+20kN

tve JEMA=0  + (10 x 2.0) — (20 x 6.0) — (V"' ¥ 4.0) = 0

F=-—25kN
'a=+35kN
Consider system (II)
Apply the three equations of static equilibrium to the force system:

+VCTZFZZO "+ V'E=0
Vi =— V"
+ve —=+2F,=0 "+ Hr =0
A=~ Hy
+ve JIMaA=0 — (40X V") + (8.0 x Hp) =0
V”F =+ 2HF
S VA =—2HF
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 1
Problem Number: 8.9 — Static Method Page No. 6

35kN

Mz =+ (20 x 4.0) — (4.0 x Hy) =+ 80 — 4Hr

Mc =+ (20 x 4.0) — (35 x 2.0) — (Hr x 4.0) + 2Hr x 2.0)=+ 10
Mp =~ (20 % 2.0) + (Hr x 4.0) = — 40 + 4H;

ME=0+(H1: ><2.0)=+2HF

Assume the collapse mechanism as indicated previously, i.e. plastic hinges
developing at B (+ M) and under the 20 kN point load at E (+ 2M,).

Ms: + Myu=+80—-4Hr Equation (1)
Mg:  +2Mp =+ 2HF Equation (2)

Subtracting equation (2) from [2 X equation (1)] gives:
0=+160-10Hr .. Hp=+16.0 kN and Mp=16.0 kNm as before

Check bending moment at C:
Mc=+10< M, as before.

Check bending moment at D:
Mp=—-40+4Hr=[-40+ (4.0 x 16.0)] =+ 24.0 kNm = 1.5M,,;  as before.

* Note: the plastic hinge which develops under the 20 kN point load at E on member
DEF corresponds with a value of 2M,, for that member.
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8.9 Example 8.6: Joint Mechanism

In framed structures where there are more than two members meeting at a joint there is the
possibility of a joint mechanism developing within a collapse mechanism. Consider the
frame shown in Figure 8.20 with the collapse loads indicated. At joint C individual hinges
can develop in members CBA, CDE and CFG giving three possible hinge positions at the
joint in addition to positions B, D, F and G.

30 kN 20 kN

20m | 20m | 1.0m[1.0m| Figure 8.20
I N f

3 N

Factored loads: as given

Number of degrees-of-indeterminacy In=[(CBm+r)—-3n]=[3x3)+5) -3 x4)]=2
Number of possible hinge positions p=7T (B,Ci,CaC3D,Fand G)

Number of independent mechanisms =p-I)=(7-2)=5

(i.e. 3 beam mechanisms, 1 sway mechanism and 1 joint mechanism).

Kinematic Method:
Consider each independent mechanism separately.

Mechanism (i): Beam ABC

0=2.00
Note: no internal work is done at support A

Internal Work Done = External Work Done
< My (26+ 6)=(30.0 x 2.06)

3M,60=60.06

My1=20.0 kNm

The hinge at joint C is assumed to develop in member ABC at C;.
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Mechanism (ii): Beam CDE

30 kN 20 kN
l 12_¢ l -0 0=1.00
@ C 3~ E
i 20p O Note: no internal work is done at support E
! 15 kN Internal Work Done = External Work Done
54— My 260+ 6)=(20.0 x 1.00)
| 3Mu0=20.00
E My =6.67 KNm
1 The hinge at joint C is assumed to develop in
member CDE at C,.
Mechanism (iii): Beam CFG
30 kN
fovo Juinininleialt l‘ """""""""" fosiy o=1.560

Internal Work Done = External Work Done
My (0+260+ 0)=(15.0x 1.56)

+260 <+
™~ AMu0=122.50
My =5.63 kKNm
The hinge at joint C is assumed to develop in
member CFG at Cs.
Mechanism (iv): Sway
30 kN

Internal Work Done = External Work Done
My (0+ 60)=(15.0 x 1.560)

2Mu0=22.560

My =11.25 kNm

The hinge at joint C is assumed to develop in
member CFG at Cs.

Mechanism (v): Joint
The joint at C can rotate either in a clockwise direction or an anti-clockwise direction.

(a) (b)

Internal Work Done = My, (6+ 6+ 6) =3M,10 External Work Done = zero
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The independent mechanisms can be entered into a table as before and the possible
combinations investigated.
In this example /p = 2 and consequently a minimum of three hinges is required to induce

total collapse.

Since mechanisms (i) and (iv) have a significantly higher associated M, value these have
been selected to combine with the joint mechanism to produce a possible combination:

Mechanism (vi): the addition of mechanisms (i) + (iv) + (v)(a)

Independent and Combined Mechanisms for Example 8.6

Hinge Position (i) (ii) (iii) (iv) V) (vi) = ()+H(iv)+H(v)(a)

B (M,) +2.00 - - - (@ | (b) +2.00

Ci (Mp) -0 - - - +0|-60| EHQ.0Mu0)

Cr (M) -0 - -0|+0 -0

Cs (My) - -0 +0 |-60|+6| EHQ.0M.0)

D (Mp) - +2.00 - - - -

F (Mpl) - - +209 - - -

G (Mp) - - -0 -0 - -0
External Work 60.060 | 20.00 | 22.560 | 22.560 - 82.560
Internal Work | 3.0M,0 | 3.0M,10 | 4.0Mp60 | 2.0Mpu6 | 3.0My60 8.0M 16

Eliminated hinges - - - - - 4.0My 60
Combined M0 - - - - - 4.0M, 6
Mp (KNm) 20.0 6.67 5.63 11.25 - 20.63
Table 8.2
30 kN 20 kN
B,l\ C1f24D l E
| S I rd 3 7 == |
' 20.63 kNm T
. 20.63 kNm =
1 Ve 2
1
: F |[¢— 15kN —¥
1
Mechanism (vi) : ﬁ
! 20.63 kNm —
Collapse Mechanism ~0 46 Hs ¢ o~ L
W]
20m | 20m  [10m [10m |

1y )

Figure 8.21

K K K
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Consider the equilibrium of the frame on the left-hand side at B:

+Ve) XMp=0 —20.63+ (Vax2.0)=0 . Va=+10.32 kN ?
Consider the equilibrium of the frame on the right-hand side at C,:

+Ve) XM =0 —20.63+(20.0x 1.0)— (F&x2.0)=0 - Ve=—0.32KkN ¢
Consider the complete structure:

+ve TZFZ=O +10.32-30.0-20.0-0.32+ V=0 .. Ve =+40.0 kN T
+ve — ZFx=0 Hc—-15.0=0 .. Hg=+15.0 kN —™

Bending moment at C;  Mc; =+ (10.32 x 4.0) — (30.0 x 2.0) = — 18.72 kNm < M,
Bending moment at C;  Mc3 =+ (15.0 X 3.0) — (15.0 x 1.5) — 20.63 =+ 1.87 kNm < M,
Bending momentat D Mp =-(0.32 x 1.0) = - 0.32 kNm < My,

Bending moment at F Mr=+(15.0 x1.5) - 20.63 =+ 1.87 kNm < M,

20.63 kKNm

0.32 kNm

Collapse Bending Moment Diagram

20.63 kKNm
Figure 8.22

The three conditions indicated in Section 8.1.2 have been satisfied: i.e.

Mechanism condition: ~ minimum number of hinges required = (/p + 1) = 3 hinges,
Equilibrium condition:  the internal moments are in equilibrium with the collapse loads,
Yield condition: the bending moment does not exceed M, anywhere in the frame.

Mpl kinematic = Mpl static = Mpl true
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8.10 Problems: Plastic Analysis — Rigid-Jointed Frames 2

A series of rigid-jointed frames are indicated in Problems 8.10 to 8.15 in which the
relative My values and the applied collapse loads are given. In each case determine the
required M, value, the value of the support reactions and sketch the bending moment
diagram.

g
2 M
— 15 kN —= C

g

S 20 kN

(@\|

Problem 8.10 LA 2 ||B E F
4.0m | 20m | 20m |

N T Iy N

—p 35 kN

4.0m

Problem 8.11

3.0m

Problem 8.12

1.0 m|,
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120 kN 85 kN

70 kN 50 kN
30 kN

6.0 m

4.0m | 40m [ 2.0m | 4.0m ]

Problem 8.14

10.0 m

1 12.0m !

] 10.0 m d 10.0 m
Problem 8.15
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8.11 Solutions: Plastic Analysis — Rigid-Jointed Frames 2

Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 8.10 — Kinematic Method

Number of degrees-of-indeterminacy Ip=[(3m +r)—3n]=3
Number of possible hinge positions p =6
Number of independent mechanisms =(p-Ib)=(6-3)=3

(i.e. 2 beam mechanisms and 1 joint mechanism)

L
D

At internal joint B.
Under the point loads at C and E.
-1 C
Note: three possible At fixed support F.
hinge positions at
joint B.
A 2||B E F
1 3

possible hinge positions tension on this side indicates
+ve bending moments

Mechanism I: Column BCD

5=2.00=208 .. p=0

Internal Work Done = External Work Done
[My () + M (0+ B)] = (15 X 0)
My(6+26)=(15%2.00)

3M6=306

. My =10.0 KNm
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 8.10 — Kinematic Method Page No. 2

Mechanism II: Beam BEF

5=2.00=2.08 .. =0

+HO+8)
Internal Work Done = External Work Done
[Mp1 () + My (6+ ) + My (B)] = (20 x )
Mu(0+260+6)=(20 x2.00)
4Mu0=4060
.~ My =10.0 kNm

Mechanism III: Joint rotation at B

Internal Work Done = My, (6+ 6+ 6) =3M,10
External Work Done = zero

Combined Mechanism:

The independent mechanisms are combined to determine the maximum M, value
required to induce collapse with the minimum number of hinges, (i.e. Ip + 1).

In this case the following combination has been evaluated

Mechanism IV = Mechanism [ + Mechanism II + Mechanism Ill(a) eliminating
hinges at B, and B3, (see Table for the combinations).

Adding equations for Mechanisms [I + II + I1I(a)]

3M,0=3060

AM60=4060

3Mu6=0

- 2M,6 (allowing for the hinge eliminated at joint B,)

—2M, 0 (allowing for the hinge eliminated at joint B3)

6M,0="700 o Mp=11.67 kNm
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 8.10 — Kinematic Method Page No. 3

Hinge Position Independent Mechanisms | Combined Mechanism
I 11 111 v
(@ | (b)
B1, (Mp) -0 +0 -0
Ba, (Mp) -0 +0 EH (2M;16)
B3, (Mp) +0| -0 EH (2M;16)
C, (Mp) -20
E, (Mp) +26
F, (Mp) -0 -0
H, (Mp)
External work done 30.00 | 40.00 70.06
Internal work done 3Mp0 | AMp10 10Mpi0
Eliminated hinges 4Mp10
Combined internal work done 6Mpi0
Mp (KNm) 10.0 10.0 11.67

Check collapse mechanism IV with hinges at By, C, E and F, (i.e. 4 hinges)

The value of M, obtained (11.67 kNm) should be checked by ensuring that the
bending moment in the frame does not exceed the relevant M, value at any location.

Collapse Mechanism
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 8.10 — Kinematic Method Page No. 4

Vp
Hp
D

C N
15 KN —femmm 11,67 kKNm
P

20 kN
11.67 kNm

A 11,67kNm,2 B f‘\E F,
= 13 \Il |\ Hr

Vi t 11.67 kNm Ve

4.0m | 20m | 20m |
§ T ~ K

Consider the equilibrium of the column BCD and at C.
I Vo
Hp
D

AN 11,67 kKNm
15 KN —t—mr

e

+ve ) TMc =0
+11.67+ (2.0 x Hp) =0
. Hp=—584kN <

Consider the equilibrium of the beam AB at a section at B;.

 tve ) M =0
Biy L+ 11.67+@.0%xVa)=0
1167 kNm | o Va=—-292KkN
4.0m J
s

Consider the equilibrium of the beam BEF at E.

20 kN

11.67 kNm
+ve) SMi =0

- +11.67+11.67— (2.0 x V§) =0

" o Ve=+11.67 kN
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Solution

Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 8.10 — Kinematic Method Page No. 5

Consider the vertical and horizontal equilibrium of the complete structure.

tve} SF,=0  Va+Vo+Ve—-20=0
~2.92+ Vp+ 11.67-20=0 o Vo=+1125kN

+ve —»XF,=0 Hpo+Hr+15=0
—584+Hr+15=0 . Hp=-9.16 KN

11.25 kN
5.84 kﬁ
D

11.67 kNm

F
€ 9.16 kN

A
2.92 kN T 4.0m . 20m 11.67 kN
r

Check the value of the bending moment at all other possible hinge positions.
Mgy =+ (15x2.0) — (5.84 x 4.0) =+ 6.64 kKNm < M,
Mgz =—(20 x 2.0) - 11.67 + (11.67 x 4.0) = — 5.0 kNm < M,

D

G 11.67 KNm

11.67 KN

11.67 kNm

Collapse Bending Moment Diagram
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 8.11 — Kinematic Method Page No. 1

A E
2.0m L 20m BE 20m | 20m

7 AN /

Number of degrees-of-indeterminacy /Ip=[(3m +r)—3n]=6
Number of possible hinge positions  p =10

Number of independent mechanisms =(p-Ib)=(10-6)=4
(i.e. 2 beam mechanisms, 1 sway mechanism and 1 joint mechanism)

B C 3 F G
Note: three At internal joints B, D
possible hinge and G.
positions at joint D. Under the point loads

A E |[JatCandF. H

At fixed supports A, E . ey e .
and H. tension on this side indicates

. . .. +ve bending moments
possible hinge positions

Mechanism I: Beam BCD

 5=200=208 .. B=6

+HO+p)
Internal Work Done = External Work Done
(M1 () + My (6+ B) + Mu(B)] = (40 < 0)
Myu(6+260+6)=(40 x 2.00)
4Mp10: 809
co My =20.0 KNm
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 8.11 — Kinematic Method Page No. 2

Mechanism II: Beam DFG

5=2.00=208 . p=0

HO+p)
Internal Work Done = External Work Done

(M1 () + My (6+ B) + My (B)] = (50 x 6)
Mu(0+260+6)=(50 x 2.00)

4Mu0=1000 oo Mp=25.0 kNm
Mechanism III: Sway

o

i

0=4.00=4.0=40y .. p=y=86
Internal Work Done = External Work Done
[Mp (O0+ 0+ + B+ y+t]=(35x9)
Mp(66) = (35 x 4.00)

6M,0=14060 o My =233 kNm

Mechanism IV: Joint rotation at D

Internal Work Done = My, (6+ 6+ 6) = 3M,160
External Work Done = zero

665
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 8.11 — Kinematic Method Page No. 3

Combined Mechanisms:

The independent mechanisms are combined to determine the maximum M, value
required to induce collapse with the minimum number of hinges, (i.e. Ip+ 1).

In this case the following combinations have been evaluated:

Mechanism V = Mechanism II + Mechanism [V(a)
Mechanism VI = Mechanism V + Mechanism 111
Mechanism VII = Mechanism VI + Mechanism 1

Hinge Independent Mechanisms Combined Mechanisms

Position II I v VI VIl

A, (Mp1) -0 -0 -0

B, (M) +0 +0 EH M, 0)

Ca (Mpl) +26

D1, (Mp) ) -0 -20

D2, (Mp) EH (2M,0) EH (2Mx0) EH (2M,0)

D3, (Mpr) -0 EH M, 0 EH (2M,,6)

E, (Mpl) -0 -0

F, (My) +20 +20 +20

G, (Mp) -0 -20 -20

H, (Mp1) +60 +6

External 1000 2400
work done

Internal

work done TMp0 13Mp6

Eliminated

hinges 2Mple 4Mp19 6Mp10

Combined
internal S5Mp16 M0 11Mp 6
work done

My (kNm) | 20.0 25.0 233 20.0 26.7 29.1

Check collapse mechanism VII with hinges at A, C, D1, E, F, Gand H (i.e. 7 hinges)
The value of M; obtained (29.1 kNm) should be checked by ensuring that the
bending moment in the frame does not exceed the relevant M, value at any location.

D1 G

Collapse Mechanism
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 8.11 — Kinematic Method Page No. 4

29.1 kNm
29.1 kNm

1] 2
rl\
—
2 €
c| |3 4 35kN

29.1 kNm
A

—

Ha =

Va , . 2.0m Vi

Consider the equilibrium of the left-hand side of the frame at C and at joint D;.

40 kKN 40KN 991 kNm
cel ! cy | D
ST L\
29.1 kKNm-

\

g
<
<

N 29.1 kKNm N

] HA“:' 20m |} 20m |
Va Va

+ve )IMc=0 —29.1-29.1 - (4.0 x Hp) + (2% V) =0 Va=2Hx+29.1

+ve DEMp=0 +29.1 = 29.1 = (40 x 2.0) = (4.0 x Hy) + (4% V) =0
P VA:HA+20.O

S 2HA+29.1=Ha+20.0 Hy=—91KkN and V,y=+10.9 kN

Consider the equilibrium of the right-hand side of the frame at section under the
point load at F.

, 50 kN
- F G
; +ve ) =My =0
"29.1 KNm +29.1-29.1 - (4.0 x Hy) — (2 x Vi) =0
VH = — ZHH

29.1 kNm
Ve

2.0m q
Vu
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 8.11 — Kinematic Method Page No. 5

Consider the equilibrium of the right-hand side of the frame at section at joint G.

4

G-
— 35kN +ve ) EMc=0
29.1 kNm ‘)

~29.1-29.1 — (4.0 x Hy) =0
- Hy=—-1455kN <+

29.1 kKNm ¢
1 Vu=-2Hxu S Va=+29.1 kN ?

Consider the vertical and horizontal equilibrium of the complete structure.
tve $SF, =0 Va+ Ve+ Vu—40-50=0
10.9+ Vg +29.1 - 90 =0 o Ve=+50.0 kN

+ve —=+»2XF,=0 Hsa+Hg+Hy+35=0
—-91+Hg—1455+35=0 S Hg=—1135KkN <«

40 kN S50 kN

|

F

g
=)
<

29.1 kNm . 29.1

9.1 kN #D A 1135 kN D E 14.55 kN 4—6,\

S

2.0m N 2.0 m 2.0 m | 2.0 m
10.9 kN 50.0 kN 29.1 kN

Check the value of the bending moment at all other possible hinge positions.
Mp=-29.1+(9.1 x4.0)=+7.3 kNm < My

Mp3=—-29.1+(11.35x4.0) =+ 16.4 kNm < M,

Mpy=—(50%x2.0)+29.1 +(29.1 x 4.0) — (14.55 x 4.0) = - 12.7 kKNm < M),

Collapse Bending Moment Diagram
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 8.12 — Kinematic Method Page No. 1

L2,0m , 20m [10m| 30m

T 7 T

Number of degrees-of-indeterminacy In=[(3m+r)—3n]=5
Number of possible hinge positions  p =11

Number of independent mechanisms =(p-b)=(11-5)=6
(i.e. 4 beam mechanisms, 1 sway mechanism and 1 joint mechanism)

C D H

Note: three / At internal joints C,
B possible hinge E and H.
positions at joint E-l {jnder the point loads
at B, D, Gand J.
F At fixed supports
A and K. K

ossible hinge positions . e
p gep tension on this side indicates

+ve bending moments

Mechanism I: Beam ABC

5=1.50=158 . B=0

Internal Work Done = External Work Done
[Mp1 (0) + My (6+ ) + Mp(B)] = (10 x 6)
+HO+8) Mu(6+260+6)=(10%x1.56)
4Mp1(9: 15(9
oo Mp=3.75 kNm
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 8.12 — Kinematic Method Page No. 2

Mechanism II: Beam CDE

S 5=200=208 - =0

+HO+p) Internal Work Done = External Work Done
[Mp1 (6) + My (6+ B) + My (B)] = (20 % J)
Myu(6+260+6)=(20 x 2.00)
4M,0=406
. My =10.0 KNm

Mechanism III: Beam EGH

5=1.00=3.08 .. p=0330

Internal Work Done = External Work Done
[My (6) + My (0+ B) + M (B)] = (25 % )
Mpu(6+1.336+0.336)=(25 x 1.06)
2.67Mn0=256

Mp] =9.37 kNm

Mechanism IV: Beam HJK

5=100=3.08 .. p=0330

Internal Work Done = External Work Done
[2My1 (6) + 2My (6+ ) + My (B)] = (10 x &)
Mu(26+2.6760+ 0.336)=(10 x 1.06)
5.0 M6=106

o My =2.0 kNm
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 8.12 — Kinematic Method Page No. 3

Mechanism V: Sway

0 =3.00=3.06=4.0y L p=0 and
=150 &=1.0y=0.750

Internal Work Done = External Work Done

[My (0+ 0+ B+ 1) +2My(»)] = [(10 x 52) + (10 x 51) + (10 x 53)]
Mu(20+ 0+ 0.750+ 1.56) =[10 x (1.50+3.00 + 0.750)]
5.25Mu6=752.50

Mechanism VI: Joint rotation at E

Internal Work Done = My, (6+ 6+ 0) =3M,10
External Work Done = zero

Combined Mechanisms:

The independent mechanisms are combined to determine the maximum M, value
required to induce collapse with the minimum number of hinges, (i.e. Ip + 1).

In this case the following combinations have been evaluated:

Mechanism VII = Mechanism II + Mechanism V + Mechanism VI(a)

Mechanism VIII = Mechanism VII + Mechanism III
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 8.12 — Kinematic Method Page No. 4

. Combined
Hinge Independent Mechanisms Mechanisms

Positions

I 11 v vil

A, (Mp) -0
B, (Mpl)
C. (M) EH(2M,0) | EHQM,0)
D, (Mp) +260 +260
E1, (Mp) -260 -260
Ea, (Mp1) +0 EH(2M,,6)
Es, (Mp1) +6 EH (2M,0) EH(2M,,6)
G, (My) +1.330
H, (Mp) -0.756 -0.756 ~1.080
J, CMp)
K, 2My) +0.756 +0.7560 +0.756
External
work done
Internal work
done
Eliminated
hinges
Combined
internal work 8.25M,,0 8.92M,,60
done
Mp (KNm) 3.75 10.0 9.37 2.0 10.0 11.21

256 52.50 92.50 117.56

2.67M,0 5.25M,,0 12.25M,,,0 14.92M,,0

4Mu0 6My0

Check collapse mechanism VIII with hinges at A, D, Ei, G, H and K (i.e. 6 hinges)
The value of M, obtained (13.17 kNm) should be checked by ensuring that the
bending moment in the frame does not exceed the relevant M, value at any location.

Collapse Mechanism
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 8.12 — Kinematic Method Page No. 5

20 kN 25 kN

l 13.17 kNm l
1 2
Dr v~ E » YNNG

\Iz TS \Il

13.17 kNm 13.17 kNm

B

Note: the value
13.17 kKNm of the moment
,.\_A F here equals 2},

QHA ; HF \ J
s : 2634 KNm ¢
F —

Hx
20m |, 20m  |[1om| 30m Vk
1

Consider the equilibrium of the left-hand side of the frame at D and at joint E;.

20 kN 20kN 13 17 kNm

D¢ ' Dy L E
T\

-\ ‘\
—p B —» B

y | 13.17 kNm
13.17 kNm{\A A A

— - 2.0 2.0
Ha w Ha m_| m |
Va Va

+V€)ZMD= 0-13.17-13.17-(10%x 1.5) = (3.0 x HA) + (2 x Va) =0
Va=1.5HA +20.67
+V€)2ME: 0 +13.17-13.17-(20x2.0)—(10x 1.5) = (3.0x Hy) t (4 x V4)=0
-— Va=0.75HA + 13.75
o 15HA+20.67=0.75HA +13.75 Hyr=-923 kN and V,=+6.83 kN T

Consider the equilibrium of the right-hand 25kN

side of the frame at G.

+ve) SMg=0
+13.17=26.34 — (10 x 3.0) — (4.0 x Hx) — (3.0 x Vx) =0 26.34kNm |

3.0m q
S Vk=-=133Hk — 14.39 Vi
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2

Problem Number: 8.12 — Kinematic Method Page No. 6

Consider the equilibrium of the right-hand side of the frame at section at joint H.

H .
XA 13.17 kNm +ve) SMy=0

4

g
S —13.17 - 26.34 — (10 x 3.0) — (4.0 x H¢) =0

3| 10kN
—> S Hx=-1738 kN ~—

26.34 kNm
DK Vk=—-133Hx - 1439 =[- (- 1.33 x 17.38) — 14.39]

g
2 % Hx S Vk=+8.73 kN T

Consider the vertical and horizontal equilibrium of the complete structure.

tve }SF, =0 Va+ Vet Pk—20-25=0
6.83+ V& +8.73 1 45=0 . Ve=+29.44 kN }

+ve = 2XF,=0 Ha+Hr+Hg+10+10+10=0
—-923+Hp—-17.38+30=0 S Hp=—339KkN <—

20 kNl l 25kN
2

1
C D E|3 G

‘ JPPI0kN =
9.23 kN 3.39kN 2634 kNm /N S

6.83 kN 29.44 kN = K
17.38 kN 1
20m | 20m  [1.0m, 3.0m 8.73 kN
i T

Check the value of the bending moment at all other possible hinge positions.

Mp =—-13.17+(9.23 x 1.5) =+ 0.68 kNm < M,

Mc =-13.17—-(10 x 1.5) +(9.23 x 3.0) = — 0.48 kNm < M,

Mgz =+ (3.39 x3.0) =+ 10.17 kNm < M,

Mgy =—(25 % 1.0) +26.34 — (17.38 x 4.0) + (8.73 x 4.0) + (10 x 3.0)
=—3.26 kNm < My,

My=+26.34—(17.38 x 1.0) =+ 8.96 kNm < 2M,

L

13.17 kNm

Collapse Bending Moment Diagram

26.34 KkNm 4
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 8.13 — Kinematic Method Page No. 1

| 30m i . |

A 7 7

Number of degrees-of-indeterminacy /Ip=[(3m +r)—3n]=2
Number of possible hinge positions p =6

Number of independent mechanisms =(p-Ib)=(6-2)=4
(i.e. 2 beam mechanisms, 1 sway mechanism and 1 joint mechanism)

B

Note: three possible At internal joints B and D.

hinge positions at Under the point loads at

joint D Cand F.
A E

. . .. tension on this side indicates
possible hinge positions +ve bending moments

Mechanism I: Beam BCD

T 5=300=308 . =0

Internal Work Done = External Work Done
(M1 (0) + My (6+ B) + My (6)] = (120 x 0)
Mp(60+260+ 6)=(120 x3.00)
4My60=3606

675

. My =90.0 KNm
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 8.13 — Kinematic Method Page No. 2

Mechanism II: Beam DFG
0=3.00=3.06 ..p=46

Internal Work Done = External Work Done
[Mp1 (6) + My (6+ ) ]1=(85 % 9)
Mu(0+26)=(85x36)
3My60=25560

- Mp=85.0 KNm

Mechanism III: Sway
o

1

30 kN —p- -
B, !

5=4.00=408 . =0

Internal Work Done = External Work Done
(M1 () + My(B)] = (30 x 5)
Mu(6+ 6)= (30 x 4.06)
2Mp0=12060
- Mp =60 kKNm

Mechanism IV: Joint rotation at D

Internal Work Done = [Mp (6) + My (6) + My ()] = 3Mp16
External Work Done = zero
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2

Problem Number: 8.13 — Kinematic Method Page No. 3

Combined Mechanism:
The independent mechanisms are combined to determine the maximum M, value

required to induce collapse with the minimum number of hinges, (i.e. Ip + 1).

In this case the following combination has been evaluated:
Mechanism V = Mechanism I + Mechanism II + Mechanism III + Mechanism [V (a)

. Combined
Independent Mechanisms Mechanism

Hinge Positions

I 11 v \%

+6 EH (2M,9)
+26
-20

EH (2M,0)

EH (2M;0)
+26

B, (Mp)
C, (Myp)
D1, (Mp)
Dy, (Mp1)
D3, (My1)
F, (Mp)
External work done 73560
12M10
6Mp10

Internal work done
Eliminated hinges
Combined internal 6M;,0

work done
Mpl (kNm) 90.0 85.0 60.0 122.50

Check collapse mechanism V with hinges at C, D; and F (i.e. 3 hinges)
The value of M, obtained (122.5 kNm) should be checked by ensuring that the
bending moment in the frame does not exceed the relevant M, value at any location.

Collapse Mechanism
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 8.13 — Kinematic Method Page No. 4

120 kN 5kN

122.5 KNm
rl\ rl\
F‘l

C\Il r4

122.5 kNm 122.5 kNm

/ /

Note: the value Note: the value
of the moment of the moment

here equals M1 here equals M1

Consider the equilibrium of the left-hand side of the frame at C and at joint D;.

120 kKN
1\20 kN 122.5 kNm

\

30 kN —p»
122.5 kKNm

y A ) A
HA:* 3.0m H—q 30m | 30m |
v, v,

A A

+ve)2MC =0 —1225- (4.0 x H)+ (3 x Va)=0

Va=133Hx+40.83
+ve )IMp=0 +122.5 - (120 x 3.0) — (4.0 x Ha) + (6 X V) =0

Va=0.67Ha + 39.58

-

o 1.33HA +40.83 =0.67Ha + 39.58 Hy=-1.89 kN and V, =+ 38.32 kN T

Consider the equilibrium of the right-hand 85 kN
side of the frame at F. 1
! l N

' F |A/

;
+ve) IMr=0 " 122.5kNm
+122.5 = (3.0 x V) =0 |
. Va=+4083kN 1}
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2

Problem Number: 8.13 — Kinematic Method Page No. 5

Consider the vertical and horizontal equilibrium of the complete structure.
tve $TF,=0  Va+Ve+Vo—120-85=0
38.32+ Vg +40.83 11205=0
tve—=2XF=0 Ha+Hg+30=0
-189+Hg+30=0

 Ve=+12585kN 1}

. Hg=—28.11 kN =

120 kN 85 kN

} |2 |

C 3 F G
40.83 kN

oA E
28.11 q
M, 3832 kN 125.85 kN

3.0m . L 3.0m
7

Check the value of the bending moment at all other possible hinge positions.
Mg =+ (1.89 x4.0) =+ 7.56 kNm < M,

Mpz =+ (28.11 x 4.0) =+ 112.44 kNm < M,

Mpy =— (85 % 3.0) + (40.83 x 6.0) = — 10.02 kNm < 4M,

4 122.5 KNm

112.44 kNm

Collapse Bending Moment Diagram
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 8.14 — Kinematic Method Page No. 1

Number of degrees-of-indeterminacy Ip=[(3m +r)—3n]=4
Number of possible hinge positions  p =8

Number of independent mechanisms =(p-b)=8-4)=4
(i.e. 2 beam mechanisms, 1 sway mechanism and 1 joint mechanism)

3_F

At internal joints B, Note: three
D and G possible hinge
. positions at joint D

Under the point H

loads at C and F.
A At fixed support A

tension on this side indicates

ossible hinge positions .
P gep +ve bending moments

Mechanism I: Beam BCD

5=400=408 .. B=0

+HO+p) " Internal Work Done = External Work Done
(M1 (6) + 2Myi (6 + B) + 2My1 (B)] = (70 % 0)
Mu(0+ 40 +26) = (70 x 4.00)
TMy 6= 2806

. My =40.0 KNm




Plastic Analysis 681

Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 8.14 — Kinematic Method Page No. 2

Mechanism II: Beam DFG

5=2.00=408 .. p=050

Internal Work Done = External Work Done
[Mp (6) + My (6+ B) + My (B)] = (50 % 0)
Mu(0+1.50+0.56)= (50 % 2.00)
3.0Mpu0=1000

- My =33.33 kNm

Mechanism III: Sway

-

0=6.00=4.06=4.0y S pB=1.560
Internal Work Done = External Work Done
[Mpi(6) + Mp(0) + My(B) + My (9] = (30 x 0)

My(0+ 0+ 150+ 1.56) = (30 x 6.00)
5.0M60=180.00

Mechanism IV: Joint rotation at D

(b)

Internal Work Done = 2My, (6) + My (0+ 0) = 4M;,10
External Work Done = zero
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 8.14 — Kinematic Method Page No. 3

Combined Mechanisms:
The independent mechanisms are combined to determine the maximum M, value

required to induce collapse with the minimum number of hinges, (i.e. Ip + 1).
In this case the following combinations have been evaluated:

Mechanism V = Mechanism I + Mechanism III + Mechanism IV(b)
Mechanism VI = Mechanism V + Mechanism 11

. Independent Mechanisms Combined Mechanisms
Hinge

Positions i I v v VI

A, (Mp1) -0 -0 -0

B, (Mp) + 0 EH (2M,,0) EH (2M,0)
C, M) +20 +26
D1, 2Mp) EH (4M,,6) EH (4M,,6)

Do, (Mp) -0 -260
D3, (Mp1) +2.560 +2.560
F, (Mp) +150
G, (Myp1) -1.50 -20
External 4606 56060
work done
Internal
work done 16M;16 19M;,16
El;lrpmated 610 6My6
inges
Combined
internal
work done
M (KNm) 40.0 33.33 36.0 46.0 43.08

10Mp10 13Mp19

Check collapse mechanism V with hinges at A, C, D,, D3, and G (i.e. 5 hinges).
The value of M; obtained (46.0 kNm) should be checked by ensuring that the
bending moment in the frame does not exceed the relevant M, value at any location.

Collapse Mechanism
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 8.14 — Kinematic Method Page No. 5

92.0 kNm

"
Ve

46.0 kKNm ¥\ 40m 40m 2.0m
Ha A
Va

Note: the value of
the moment here

equals 2Mp

Consider the equilibrium of the right-hand side of the frame at joint G and at D,

G 46.0kNm 46.0 kNm ,50kN
— 0 D4 F G
T

7

g ’
S .
<

g
Hu Sr
_?_H Hu H
Vi [20m| 40m _1
S L

+ve JEMG=0  —46.0 — (4.0 x Hy)=0 < Hy=—115kN =

+Ve) XMp2=0 —46.0+ (50 x 2.0) — (4.0 x Hy) — (6.0 x V) =0
Vi=(54.0 - 4.0Hun)/6.0 =[54.0 — (— 4.0 x 11.5)]/6.0 - Vu=+16.67 kN T
Consider the equilibrium of the frame at joint Ds.
46.0 kNm
Fil
5 +ve)) M3 = 0
= —46.0— (4.0 x Hg) =0

_W_E . Hg=—115KN <+

VE

Consider the horizontal equilibrium of the complete structure.
+ve = 2XFy=0 Hxa+Hg+Hy+30=0
HAa—-115-11.5+30=0 S Ha=—=T.0KkN =

683
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 8.14 — Kinematic Method Page No. 6

Consider the equilibrium of the left-hand side of the frame at a section under the

point load at C.
70 kN

+ve) EMc=0
—46.0-92.0 - (6.0 X Ha) + (4.0 x V) =0
—138.0 = (= 6.0 X 7.0) + 4VA=0

o Va=+240kN }

Consider the vertical equilibrium of the complete structure.
tve} SF,=0  Va+ Ve+ Vu—70-50=0
240+ Vg+16.67 11 120=0 - Ve=+79.33 kN T

70 kNl l 50 kN

1
C D F

11.5kN 11.5kN

46.0 kN 33 kN 16.67 kN
10N N m 79.33 6.67
A 1= 4.0m L . [20m | . \
7 7 7 7
24.0 kN

Check the value of the bending moment at all other possible hinge positions.
Mp=-46.0+(7.0x6.0)=-4.0 kNm < M,

Mp1 =—-46.0— (70 x 4.0) + (7.0 x 6.0) + (24.0 x 8.0) = — 92.0 kKNm = 2M,,
Mp=—(11.5x4.0) + (16.67 x 4.0) = — 20.68 kKNm < M),

Collapse Bending Moment Diagram
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 8.15 — Kinematic Method Page No. 1

I 10.0 m | 12.0m

A T

Number of degrees-of-indeterminacy Ip=[(3m +r)—-3n]=4
Number of possible hinge positions  p =8

Number of independent mechanisms =(p-bb)=8-4)=4
(i.e. 1 beam mechanism, 2 sway mechanisms and 1 joint mechanism)

At internal joints
B,D,EandF.

Under the point load at C Note: three
At fixed support A. possible hinge H

tension on this side indicates
possible hinge positions +ve bending moments

Mechanism I: Beam BCD

- 5=1000=1008 .. B=06

HO+P) Internal Work Done = External Work Done
[2Mp1 (6) + 3Mp (0+0) + 2Mi (£)] = (80 x O)
[2M,1 (0) + 3My (6+6) + 2M, (6)] = (80 x 10.06)
10M16= 8006

. My =80.0 KNm
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 8.15 — Kinematic Method Page No. 2

Mechanism II: Sway of Top Storey
S 80 kNl

-0 C

.

5=1000=408 .. p=250

Internal Work Done = External Work Done

[2Mp1 (O) + 2Mp1 (O) + 2Mp (B) + 2My1 ()] = (40 < 0)

[2My1 (6) + 2Mpi (6) + 2Mp (2.56) + 2M,, (2.560)] = (40 x 10.00)

14.0M,160= 40060 ~. Mp =28.57 kNm

Mechanism III: Sway of Bottom Storey

5=6.00=4.08 .. p=150

Internal Work Done = External Work Done

[2Mp1 (6) + My () + 2My1 () + 2Mp1 ()] = (30 % 0)

[2My1 (6) + Mpi (0) + 2My (1.560) + 2M, (1.56)] = (30 x 6.00)

9.0M,10=18060 co Mpi=20.0 kNm

Mechanism IV: Joint rotation at E

.-/_0 2 Internal Work Done
2Mi (6) + My (0) + 2My (6) = SMyp1 0

External Work Done = zero
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 8.15 — Kinematic Method Page No. 3

Combined Mechanisms:

The independent mechanisms are combined to determine the maximum M, value
required to induce collapse with the minimum number of hinges, (i.e. Ip + 1).

In this case the following combination has been evaluated:

Mechanism V = Mechanisms [I1 + I + IIT + IV(b)]

Combined

Independent Mechanisms Mechanism

Hinge
Positions

I I v \4

A, 2My) + 0 +6
B, 2Mp) -0 -260
C, 3Mp) +20
D, 2My) @ [® ]| EH(@W0
E1, QMy1) +6| -6 EH (4M,0)
E2, (Mp1) +6| -6 -0
Es, 2Mp) -0 +6 EH (10M,6)
F, (Mp) + 60
External
work done 13809
Internal
work done 38M10
Elgﬁigzzed 24My0
Combined
internal 14M, 60
work done

My (kNm) | 80.0 28.57 20.0 98.57

Check collapse mechanism V with hinges at A, B, C, E; and F (i.e. 5 hinges).
The value of M, obtained (98.57 kNm) should be checked by ensuring that the
bending moment in the frame does not exceed the relevant M, value at any location.

5 - —

Collapse Mechanism
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 8.15 — Kinematic Method Page No. 4

197.14 kNm 1 80 kN

C
C
'Y

P
N

Note: the value of

the moment here 295.71 kNm
\98'57 kNm LF

equals 2Mp > <

Note: the value of the 1l2 98.57 kKNm
moment here equals 3Mp

197.14 kNm
N A G

= — HG
Ha ﬁs\ _X_

Va
10.0 m ! 10.0 m 4 12.0 m Vu
7 1
Consider the equilibrium of the left-hand side of the frame at joint B and at a section
at the point load at C.
\ B 80 kN

B Cc»
—— -~

197.14 KNm XJ)« \l N

295.71 kKNm
197.14 kNm 197.14 kNm
N Vg
Ha === Ha =l

A r A
Va Va

ved SMy= 0+ 197.14+197.14 - (10.0 x Ha) =0 < Hy=+3943 kKN —
tve )IMc= 0-295.71 +197.14 — (10.0 x Ha) + (10.0 x V) =0
Va=(98.57 + 10.0HA)/10.0 = [98.57 + (10.0 x 39.43))/10.0 .. Va=+4929 kN }

Consider the equilibrium of the right-hand side of the frame at joints F and E,.

“'~. F 30kN , 98.57 kNm
—a Ez|4
98.57 kNm R/ " )

/

F 30kN

&
<
O
16.43 kN

H
120 m
Y Va

tve JIMp=0  +98.57 (6.0 x Hu)=0 . Ha=+1643 kN —

tve )IMp=0 —98.57 (1643 x 6.0)— (120 x V) =0 . Vu=—1643 kN }
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Solution

Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 8.15 — Kinematic Method Page No. 5

Consider the horizontal equilibrium of the complete structure.

+v —2F=0 Ha+Hc+Hu—-40.0-30.0=0
3943+ Hg+16.43-70.0=0 .. Hg=+14.14 KN —

Consider the vertical equilibrium of the complete structure.

+ve } BF,=0  Va+Vo+Vu—800=0
49.29 + Vo - 16.43 - 80.0=0 o Ve=+4T14 kN —

180 kN

C

F ‘30kN

197.14 kNm

39.43 kN
— 14,14 KN —a 16.43 kN _Hj i
49.29 kN 100m  47.14KN 120m 16.43 kN
i

Check the value of the bending moment at all other possible hinge positions.

Mp =— (30.0 x 4.0) — (16.43 x 12.0) + (16.43 x 10.0) + (14.14 x 10.0)
= — 11.46 kKNm < 2M,,

=+ 84.84 kNm < 2M,,

Mis =+ (49.29 x 20.0) + 197.14 — (39.43 x 6.0) — (80.0 x 10.0) — (40.0 x 4.0)
— — 13.64 kKNm < 2M,,

Mg =+ (14.14 % 6.0)

197.14 kNm

197.14 kNm
Collapse Bending Moment Diagram
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8.12 Gable Mechanism

Another type of independent mechanism which is characteristic of pitched roof portal
frames is the Gable Mechanism, as shown in Figure 8.23 with simple beam and sway
mechanisms.

Sway mechanism Gable mechanism

Figure 8.23

In the beam and gable mechanisms the rafter of the frame is sloping and it is necessary to
evaluate the displacement in the direction of the load. i.e. not necessarily perpendicular to
the member as in previous examples. Consider the typical sloping member ABC shown in
Figure 8.24 (a) which is subject to a horizontal and a vertical load as indicated.

Figure 8.24

Assume that during the formation of a mechanism the centre—of-rotation of the member is
point A and point C displaces in a perpendicular direction to ABC to point C’. For small
rotations (@) of member ABC, oc=C-C'=Laca

The vertical and horizontal displacements of C are given by O ¢ vertical = Oc €088 = Lapx
and O ¢ horizontal = Oc Sin@ = Lepa as shown in Figure 8.24(b), where 8 is the angle of the
member ABC to the horizontal. The vertical and horizontal displacements at point B can
be determined in a similar manner.

These values can then be used in the calculation of external work for the work equation.
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8.13 Instantaneous Centre of Rotation

In more complex frames it is convenient to use the ‘instantaneous centre of rotation
method’ when developing a collapse mechanism. The technique is explained below in
relation to a simple rectangular portal frame and subsequently in Example 8.7.

Consider the asymmetric rectangular frame shown in Figure 8.25 in which there are two
independent mechanisms, one beam and one sway. The frame requires three hinges to
cause collapse. Both mechanisms can combine to produce a collapse mechanism with
hinges developing at A, C and D. In this mechanism there are three rigid-links, AB'C’,
C'D’ and D'E as shown.

140 kN 40 kN
10 kN I0OkNB __ C D oD
B C  20Ma D | —
1 1
| ! -
' Mpi My § i
! 1 B i
1 ./
1A E ‘A Combine Mechanism
| 20m | 40m |
T ™
Figure 8.25

The centre-of-rotation for link AB'C’ is at A and the remote end C moves in a direction
perpendicular to line AC shown. The centre-of-rotation for link D'E is at E and the remote
end D moves in a direction perpendicular to line ED shown.

In the case of link C'D’, the centre-of-rotation must be determined by considering the
direction of movement of each end. C' moves in a direction perpendicular to AC and
consequently the centre-of-rotation must lie on an extension of this line. Similarly, it must
also lie on a line perpendicular to the movement of D, i.e. on an extension of ED. This
construction is shown in Figure 8.26(a). The position of this centre-of-rotation is known
as the instantaneous centre-of-rotation and occurs at the instant of collapse.

Instantaneous centre—of-rotation O'
for link C'D’ -

6.0 m

(a)

Figure 8.26
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The work equations can be developed and the required M, value determined by
considering the rotation of the hinges and the displacements of the loads. Consider the
geometry shown in Figure 8.26 (b) and equate the displacements in terms of &, fand « as
follows:

The horizontal displacement DD’ ¢6p =3.08=6.06 s p=2.00
The rotation at the hinge at D (6+ p)=3.00

The vertical displacement CC’ oc, vertical = 2.0a=4.00 .. a=2.00

The rotation at the hinge at C (6+ a)=3.00

(Note: equating the horizontal displacement of point C will give the same result,
Le. 5(1, horizontal = 3.0 = 606)

The rotation at the hinge at A= a=2.00

Note: no internal work is done at support E

Internal Work Done = External Work Done

My (o) +2.0Mp (6+ @) + Mp (6+ ) =(10.0 x dp) +(40.0 % O ¢, vertical)

Mp (2.00) +2.0Mp (0+2.00) + Mp (6+ 2.06) = (10.0 x 6.00) + (40.0 x 4.00)
11M,0=220.00 oo My =20.0 KNm

The reader should confirm that this is the critical value by calculating the reactions and
checking that the bending moment on the frame does not exceed the appropriate My value
for any member. (Note: In the case of member BCD this is equal to 2.0M; = 40 kNm).

8.14 Example 8.7: Pitched Roof Frame

A non-uniform, asymmetric frame is pinned at support A, fixed at support F and is
required to carry collapse loads as indicated in Figure 8.27. Determine the minimum
required value of M.

20 kN

S

)

10kN
Hx 0kN )

E
tension on this side indicates +ve

Va bending moments —:=:=:=-= .

<

<t

Mr
F —

30m | 30m | 30m | 30m

) 12.0m | J Ve

Figure 8.27
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Factored loads: as given

Number of degrees-of-indeterminacy Ip=[(3m+r)—-3n]=[3x3)+5) -3 x4)]=2
Number of possible hinge positions p=5 (B,C, D, E and F)

Number of independent mechanisms =(p-Ib)=(5-2)=3

(i.e. 2 beam mechanisms, 1 gable mechanism).

Kinematic Method:
Consider each independent mechanism separately.

Mechanism (i): Beam ABC
20 kN

~. 5B,venical =3.00
‘E@i{N Note: no internal work is done at support A

Internal Work Done = External Work Done
My 260+ 6)=(20.0 x 3.00)
3.0Mp0 =60.00

. Mpl = 20.0 kNm

Mechanism (ii): Beam CDE
20 kN

10 kKN §D,vertica1 =3.00

Internal Work Done = External Work Done
My (60+26+ 6)=(20.0 x 3.00)
4.0M,60=60.00

<. My =15.0 kNm

Mechanism (iii): Gable

20kN- Y The distance OE = 5.0 m

- A S Ehorizonat = 4.08=5.00 . f=1.250
O Cuyertical = 0.0¢=6.00 .. a=46

O B.yertical = 3.0 = 3.00

6D,vertica1 = 309
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Internal Work Done = My, (6+ @) + My (6+ f) + 2.0Mu(f)
=My (2.00) + My (0+ 1.250) + 2.0My (1.256) = 6.75M,1 0

External Work Done = (20.0 x J'Byertical) T (20.0 X 6 ¢ verticat) + (20.0 X O D vertical)
+ (100 X5E,horizontal)
=(20.0 x 3.06) +(20.0 x 6.00) +(20.0 x 3.06) + (10.0 x 5.06)
=2900
Internal Work = External Work .. 6.75M, 6 =2900 S Mpi=42.96 kNm

Combined Mechanism (iv): [2 x mechanism (i)] + mechanism (iii) which eliminates a
hinge at C

20 kN The distance OE = 5.0 m

&y A S Enorizonat = 4.08=5.00 . f=1250
O Byertical = 3.0¢=9.00 .. «=3.00
5C,vertical =6.00
§D,vertical =3.00

Internal Work Done = My, (6+ @) + My (8+ f) + 2.0Mu(f)
=M1 (4.00) + My (6+ 1.256) + 2.0M, (1.256) = 8.75M,10

External Work Done = (200 X 5B,vertica1) + (200 X 5C,venical) + (200 X 5D,vertical)
+ (100 ><é‘E,horizontal)
=(20.0 x9.00) +(20.0 x 6.00) +(20.0 x 3.06) + (10.0 x 5.068)
=4100
Internal Work = External Work ... 8.75M,,0=4100 c. My =46.86 kNm

The reader should confirm that this is the critical value by calculating the reactions and
checking that the bending moment on the frame does not exceed the appropriate My value
for any member. (Note: In the case of support F this is equal to 2.0Mp = 93.70 kNm).

Alternatively, adding the virtual work equations:

Internal Work Done = External Work Done
2 x Mechanism (i) 6.0Mp,0=120.00
Mechanism (iii) 6.75M16=290.00
less 2.0M,, for eliminated hinge  —4.0M,0
8.75Mp60=410.00 oo My =46.86 kNm
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The combined mechanism can be evaluated in a Table as shown:

Independent and Combined Mechanisms for Example 8.7
Hinge Position 1) (i1) (iii) (v) = 2(1)+(iii)
B (Mp) +2.00 - - +4.00
C (My) -0 -0 +2.060 | EH (4.0M,06)
D (My1) - +2.00 - -
E (M) - -0 -2.2560 -2.2560
F 2My) - - - -
External Work 60.06 | 60.00 | 290.060 410.00
Internal Work | 3.0M,0 | 4.0M, 60 | 6.75M;,60 12.75M, 0
Eliminated hinges - - - 4.0M,16
Combined M6 - - - 8.75M,10
Mp (kNm) 20.0 15.0 42.96 46.86

25.15 kN

26.1 kN

m
93.72 KNIM st g 3515 kKN
F

C 33.9 kN

46.86 KNm

Collapse Bending Moment Diagram

93.72 KNm

Figure 8.28
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8.15 Problems: Plastic Analysis — Rigid-Jointed Frames 3

A series of rigid-jointed frames are indicated in Problems 8.16 to 8.21 in which the
relative My values and the applied collapse loads are given. In each case determine the
required M, value, the value of the support reactions and sketch the bending moment
diagram.

Problem 8.16
40 kN
10 kN
_> N
B 2.0M, C D
3 g
? Mpl Mpl o
ﬁ.‘
A
Problem 8.17
E§ —«
30m J 3.0m ‘ 30m ‘
I [~ ™ I

12.0 m

Problem 8.18

‘ 8.0m ‘ 8.0m ‘
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g
O
N
g
<
Problem 8.19 ~
| 30m | 3.0m 1.0 mJl.Omj
Problem 8.20
15 kN
g
[w=)
10 kN I0KN e
g
S
on
Problem 8.21 = I
S
m;,

| 30m; 30m | 3.0m | 30m |
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8.16 Solutions: Plastic Analysis — Rigid-Jointed Frames 3

Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8.16 — Kinematic Method

Number of degrees-of-indeterminacy Ip=[(3m +r)—3n]=3
Number of possible hinge positions p =15

Number of independent mechanisms =p-Ibb)y=(5-3)=2
(i.e. 1 beam mechanism and 1 sway mechanism)

C

Under the point load at B
At internal joints C and D

At fixed supports A and E . e
PP tension on this side indicates +ve
bending moments

possible hinge positions E

Mechanism I: Beam ABC

40 kN 5=2.08=2.00 L B=0

Internal Work Done = External Work Done
1 [Mpi (0) + My (6+ ) + My (B)] = (40 x )
g o My(0+20+ 6)= (40 x 2.00)
HO+B) o 4ML,6=2800
oo My =20.0 KNm
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8.16 — Kinematic Method Page No. 2

Mechanism II: Sway (Use the instantaneous centre of rotation technique)

~

oup=4p=360 .. =0.750
~ Odve=4a=360 .. a=0.750
5\/]322(1:1.5(9

Internal Work Done = External Work Done

[My(a) + Mp(0+ a) + Mu(0+ B) + Mu(B)] = (40 x &3) + (10 x &)

Mp(0.750+ 1.7560+ 1.7560+ 0.7560) = (40 X 2) + (10 X 43)

SMyu6=900 .. My =18.0 kNm

Mechanism III: Combined Beam & Sway
40 kN 50m

0 fO Instantaneous centre of rotation for link BCD

- ¢_/ -

5vc=20{= 50 ..
Sup=48=36

Internal Work Done = External Work Done

[Mp(@) + Mp(6 + @) + Mp(0+ ) + Mp(f)] = (40 x 5vc) + (10 X S1p)
Mpu(2.50+3.50+1.750+0.756) = (40 x 2) + (10 x 43)

8.5M,160=2300 Jo My =27.06 kNm
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8.16 — Kinematic Method Page No. 3

In mechanism I the rotation at joint C =—- f=—- 6

In mechanism II the rotation at joint C =+ (8+ o) =+1.7568

Adding equations for Mechanisms [(1.75 X I) + II]

My 0= 1400

SMnu6=906

—3.5Mp0 [allowing for the hinge eliminated at joint C: (2 x 1.7568)]

8.5Mp0 =2306 .. Mp=27.06 KNm as before

The value of M, obtained (27.06 kNm) should be checked by ensuring that the
bending moment in the frame does not exceed this value at any location.

27.06 kNm 40 kN

- Under the point load at B and at

support E there is tension inside the

frame and consequently the bending
moment is positive at these points.

The rotations at A and D induce
tension on the outside of the frame
and hence negative bending moments.

L 2.OmJ‘ 2.0m | 3.0m

Consider the equilibrium of the right-hand side of the frame at point D and the left —
hand side at B.

A ] 27.06 kNm l“o kN
Ha . c i
J

27.06 kNm*| B
Va 2.0m ]
+ve )EMp=0
—27.06 —27.06 + (2.0 X V) =0
27.06 kNm 2. Va=+27.06 kN T
He Consider the complete structure:
Ve +ve § £F,=0
~40.0+27.06+ V=0 . Ve=+1294kN }

+Ve) XMp=0  —27.06—-27.06 - (4.0 x Hg)=0 o Hg=—-13.53 kN <+
Consider the complete structure:
+ve—>2ZF=0 Ha+10-13.53=0 S HA=+353kKN —
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8.16 — Kinematic Method Page No. 4

Bending moment at C (consider forces to the left-hand side) :

Mc = - 27.06 + (27.06 x 4.0) — (40.0 x 2.0) = + 1.18 kNm < M,

27.06 kNm 40 kN

4 B C
A

27.06 kNm

YN
[ - 13.53 kN
E

12.94 kN

27.06 kNm
. 12.94KkNm

27.06 kNm

Collapse Bending Moment Diagram
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8.17 — Kinematic Method Page No. 1

Number of degrees-of-indeterminacy /Ip=[(3m +r)—3n]=2
Number of possible hinge positions  p =4

Number of independent mechanisms =p-Ib)=(4-2)=2
(i.e. 1 beam mechanism and 1 sway mechanism)

Under the point load at C
At internal joints B and D
At fixed support A

tension on this side indicates +ve

possible hinge positions bending moments

Mechanism I: Beam BCD

5=3.08=3.00

+HO+p)
Internal Work Done = External Work Done
[Mp1 (6) + 2My (0+7) + My (B)] = (40 x 6)
[M(6) + 2Mp (0 +6) + Mu(6)] = (40 x 3.00)
6M,10= 1200
oo Mp=20.0 KkNm
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8.17 — Kinematic Method Page No. 2

Mechanism II: Sway (Use the instantaneous centre of rotation technique)

Instantaneous centre of rotation for link BCD

Sup=4.08=6.00 - p=150
Sus=3.0a=6.00 s a=2.00
Sve=3.00

Internal Work Done

[Mpi (@) + My (6+a) + My (6+ P)]
[Mpi(20) + My (36) + Myi(2.50)]
7.5M0

External Work Done
(10 xduB) + (40 % Svc)
(10 x 66) + (40 x 36)
1806

Internal Work = External Work

7.5My 0= 1800 L
My =24.0 KNm

Mechanism III: Combined Beam & Sway

Instantaneous centre of rotation for link CD

Internal Work Done

[Mpl (0{) + 2Mp1 (0+0{) + Mp1 (9+ ﬂ)]
[Mpi(0.56) + 2M 1 (1.560) + Mpi(1.3756)]
4.875My160

External Work Done s
(10 XS up) + (40 X Svc) g Y ()
(10 x 1.56) + (40 x 36) c

1350 A N 5VCB

dHC c

Internal Work = External Work

4.875M,160=135.00

My =27.69 kNm dup=4.08=1.560 .. f=0.37560
om=3.0a=1560 .. =056 ovc=3.00
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8.17 — Kinematic Method Page No. 3

In mechanism I the rotation at joint B=— 6

In mechanism II the rotation at joint B=+ (a+ 6) =+ 3.06

Adding equations for Mechanisms [(3.0 x I) + II]

18.0M,10= 3600

7.5My0=1800

—6.0M} [allowing for the hinge eliminated at joint B: (2 x 36)]

19.5M,,0 = 5400 S Mp=27.69 KNm as before

The value of M, obtained (27.69 kNm) should be checked by ensuring that the
bending moment in the frame does not exceed this value at any location.

l40 kN 27.69 kNm
d AY C . .
B >4 D LA Under the point load at C there is
g tension inside the frame and
S 27.69 KNm | consequently the bending moment is

334 kNm positive at this point.

A (2Mp)
Ha He ) )
Va The rotations at A and D induce

10 kN

| 30m |30m tension on the outside of the frame
™

! e and hence negative bending moments.

Consider the equilibrium of the right-hand side of the frame at joint D and the right—
hand side at C.

D .- 40 kN
. . r)
A\ 2760 kNm

_E
HEe
Ve

+ve)2MD =0 -27.69-(40xHE)=0 S He=—692 kN <-—
+ve) IMc=0 +554—-(40xHg) [ 3.0xVE)=0
+554—[4.0 X (=6.92)] 1 3.0 % Ve)=0 .. Ve=+27.69kN }

Consider the complete structure:
+ve —==XF,=0 Ha+10-6.92=0 o Ha=-3.08 kN *+—
tve }SF,=0  —40.0+27.69+ Vy=0 o Va=+1231kN}
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8.17 — Kinematic Method Page No. 4

Consider the equilibrium of the left-hand side of the frame at joint B.

140 kN

C

27.69 kNm

A

6.92 kN
12.31 kN Eh

3.0m . . 27.69 kN

Collapse Bending Moment Diagram
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8.18— Kinematic Method Page No. 1

8.0m

|
-

Number of degrees-of-indeterminacy /Ip=[(3m +r)—3n]=2
Number of possible hinge positions p =15

Number of independent mechanisms =(p-Ib)=(5-2)=3
(i.e. 2 beam mechanisms and 1 sway mechanism)

Under the point load at C

Under the distributed load
At internal joints B and D
At fixed support A

possible hinge positions tension on this side indicates +ve
bending moments

Mechanism I: Beam AB

5=408=400 . p=0

Internal Work Done = External Work Done
[Mp1 (6) + My (8+) + My (£)] = [(6.0 x 8.0) x 6/2]
[Mpi(6) + My (6+6) + Mu(6)] = (48 x 4.06)/2
4M,10=9660

oo My =24.0 kNm
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8.18 — Kinematic Method Page No. 2

Mechanism II: Beam BCD

Svc=8.08=8.00

A}

+HO+p)

Internal Work Done = External Work Done
[Mpl (9) +MP1 (6+ﬂ) +Mpl (ﬂ)] = (75 X 5VC)
[Mp(6) + My (0+6) + My()] = (75 x 8.00)
4Mu0= 6000
.. My =150.0 kNm

Mechanism III: Sway

5=12.08=8.00
- f=0.670

Internal Work Done = External Work Done
[Mp (6) + My (6) + My ()] = [(6 x 8.0) x 6/2]
[Mp(0) + My (6) + Mp(0.670)] = (48 x 8.06)/2
2.67TMp0=19260
o My =71.91 kNm
Mechanism III: Combined Beam BCD and Sway
In mechanism II the rotation at joint B = -6
In mechanism III the rotation at joint B =+6
Adding equations for Mechanisms [I + II]
4.0Mp 0= 6000
2.6IMu0=1920
—2.0Mp0 [allowing for the hinge eliminated at joint B: (2 x 6)]
4.67My0 =7920 oo Mp =169.59 kNm
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8.18 — Kinematic Method Page No. 3

Using the instantaneous centre of rotation technique.

Sup=12.03=8.00 .. f=0.670
Sve=28.0a=28.00 L a=60 Instantaneous centre of rotation for link CD

on=4.0a (average displlacement)

8.0m 8.0 m ol

Internal Work Done

[My (@) + My (0+a) + My (6+ B)]
[Mp(6) + My (26) + M(1.676)]
4.67M,0

External Work Done
[(75 % Svc) + (6 X 8) x Su ]
[(75 x 80) + (48 x46)]

7920 6.0 kN/m

Internal Work = External Work
4.67Mpu0="179260
Mp=169.59 kKNm as before

The value of M, obtained (169.59 kNm) should be checked by ensuring that the
bending moment in the frame does not exceed this value at any location.

A

v

169.59 kNm

169.59 kNm He

A E i ———
Va Ve
8.0m
4 . :
Under the point load at C there is tension inside the frame and consequently the
bending moment is positive at this point.

The rotations at A and D induce tension on the outside of the frame and hence
negative bending moments.
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8.18 — Kinematic Method Page No. 4

Consider the equilibrium of the right-hand side of the frame at joint D and the right—
hand side at C.

4

D/'

A 169,59 knm

169..59 kNm

He He

VE : ~ VE

tve JSMp=0 - 169.59 — (12.0 x Hg) =0 o Hg=— 1413 kN <—
Ve YIMc=0 +169.59 = (10.0 x Hy) = (8.0 % V) =0
+169.59 — [10.0 x (= 14.13)] — (8.0 x V) =0

o Ve=+3887kN

Consider the complete structure:

+ve —>IFy=0 Hxy+(6.0x8)—14.13=0 oo Ha=—33.87 kN -

+VC?2FZ=O —750+3887+Va=0 VA=+36.13kNT
75 kN *

C

B 1
6.0 KN/m

g S

<

0 Al 169.59 kNm 14.13 kKN
33.87 kN il A S
38.87 kN

36.13 kN

82.11 KNm_|

/ Collapse Bending Moment Diagram
169.59 kNm
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8.19 — Kinematic Method Page No. 1

1.5m

Number of degrees-of-indeterminacy Ip=[(3m+r)—-3n]-2=2

(Note 1: the degree-of-indeterminacy is reduced by one for each pin in the frame)
Number of possible hinge positions  p =5 (Note 2: no hinge at B since Mg = zero)
Number of independent mechanisms =(p-Ib)=(5-3)=3

(i.e. 2 beam mechanisms and 1 sway mechanism — no gable mechanism is possible
because of the tie.)

Under the point loads at C and E

At internal joints D and F

(see Note 2 above)

At fixed support G tension on this side indicates +ve
bending moments

possible hinge positions

Mechanism I: Beam BCD

Sve=154=150 .. =0

7
~<¢ Internal Work Done = External Work Done
(M (0+5) + My (] = (30 X Svc)
[My (6+6) + Mp(60)] = (30 x1.56)
3Mu6=456

. My =15.0 kNm
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8.19 — Kinematic Method Page No. 2

Mechanism II: Beam DEF

30kN

Se=158=150 - p=0

Internal Work Done = External Work Done
[Mpl (0) +MP1 (0+ﬂ) + Mpl (ﬂ)] = (30 X 5\/5)
[Mp(6) +My (0+6) + My (6)] = (30 x 1.56)
4Mu0=4560

S Mp=11.25 KNm

Mechanism III: Sway

Internal Work Done = External Work Done
(M1 () + 1.5My1 (6)] = (10 x 5]

2.5Mu0= (10 x 4.06)

2.5Mn0=400

Mechanism III: Combined Beam DEF and Sway
In mechanism II the rotation at joint F = — 0
In mechanism III the rotation at joint F =+ 6
Adding equations for Mechanisms [I + II]
4.0M,0=4560
2.5M,0=400
—2.0M,6 [allowing for the hinge eliminated at joint B: (2 x )]
4.5M,0 =850
oo Mp=18.89 kNm
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8.19 — Kinematic Method Page No. 3

Using the instantaneous centre of rotation technique.

ove=1.54=156 .. p=0 Instantaneous centre of rotation for link DE
1.5a=15p La=p C:/
Our = 4.0ﬂ =4.00 oQ

Internal Work Done

[Mpi (@) + My (0+5) + 1.5M1 (B)]
[Mp(6) + My (260) + 1.5Mp(0)]
4.5M,,6

External Work Done - — (ot
[(B0 x SvE) + (10 X O ur] ) zEnd &
[(30x 1.560) + (10 x40)] =t(ata)
859 aareas

Internal Work = External Work
4.5M,0 =856
Mp =18.89 KNm  as before

The value of M, obtained (18.89 kNm) should be checked by ensuring that the
bending moment in the frame does not exceed this value at any location.

30 kN

18.89 kNm

28.34 kNm  (1.5Mp)
Hc AN ‘

G
Ve

Under the point load at E there is tension inside the frame and consequently the
bending moment is positive at this point.

The rotations at G and at joint D induce tension on the outside of the frame and
hence negative bending moments.
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8.19 — Kinematic Method Page No. 4

Consider the complete structure:
+Ve) XMs=0
+28.34 — (10.0 x 4.0) — (30.0 x 1.5) — (30.0 x 3.0) — (30.0 x 4.5) + (6.0 x V5) =0
o Va=+46.94 kN
+ve T XF,=0 +46.94 -30.0-30.0-30.0+Vs=0 .. Vo=+43.06 kN T
+ve —=+=XF,=0 Hs-10.0=0 S Hs=+100kN —
30 kN

18.89 kNm

46.94 kN
10.0 kN Ay 28.34 kNm

N

1.5m ‘ 1.5m ‘ 1.5m‘ 1.5m G
‘ ‘ ‘ 43.06 kN

Mr=-28.34+(10.0 x 4.0) =+ 11.66 kKNm < My,

Consider the equilibrium of the right-hand side of the frame at a section at joint E.

1
: 30 kN
‘/’ E _ N
=
18.89 kNm 10KN o
F[ —

F

100KN AN 2834 kN

J 1.5m J 1.5m G
‘ ‘ 43.06 kN

+ve ) Mg =0
+18.89 + (10 x 1.0) + 28.34 — (10 x 5.0) — (43.06 x 1.5) + (1.0 x F)=0
.. The tension in the tie bar F;=+57.36 kN

—_———
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8.19 — Kinematic Method Page No. 5

Consider the bending moment at C.

46.94 kN

1.5m

Mc=+(46.94 x 1.5) 11 (57.36 x 1.0) = 13.05 kKNm < M,,

Tie force = 57.
ie force = 57.36 kN 11.66 kNm

Collapse Bending Moment Diagram

Note: the gable mechanism is not possible in this frame since it is prevented from
developing by the tie between B and F.
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8.20 — Kinematic Method Page No. 1

T~

J 3.0m J’I\.Omjll.Om!

Number of degrees-of-indeterminacy /Ip=[(3m +r)—3n]=1
Number of possible hinge positions p =15

Number of independent mechanisms =p-Ib)=05-1)=4

(i.e. 2 beam mechanisms, 1 sway mechanism and 1 gable mechanism)

N\

B B F

Under the point loads at C and E ! . his side indi
. L. 1 tension on this side indicates +ve
At internal joints B, D and F

. I
1 bending moments i
A i '

possible hinge positions

A

Mechanism I: Beam BCD

Sve=3.08=300 . B=0

Internal Work Done = External Work Done

715

[1.5Mp1 (6) + 2Myi (0+5) + My ()] = (30 X Svc)
[1.5Mp (6) + 2Mp (26) + M (6)] = (30 x 3.06)

6.5Mp6=900

. My =13.85kNm
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8.20 — Kinematic Method Page No. 2

Mechanism II: Beam DEF
ove=1.08=100 .. =46

Internal Work Done = External Work Done
[My1 () + My (0+) + My (B)] = (12 X 5 vE)
(M (6) + My (6+6) + My (6)] = (12 x 1.06)
4Mp0=126

- My =3.0 kNm

21 kN

b

Mechanism III: Sway

0=4.00

Internal Work Done = External Work Done

[1.5Mp1 () + My (6)] = [(10 x ) + (10 x J)]
2.5My60= (20 x 4.06) = 800 . My =32.0kNm

Instantaneous centre of rotation for link DEF

Mechanism IV: Gable
=R
S)
our=4.08=4.00
s p=6

Svp=6.0a=200 19k
. a=023360

5vc=3.00!: 0

ove=1.00
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8.20 — Kinematic Method Page No. 3

Internal Work Done = [1.5M;1 () + My (8+a) + My (0+)]
=[(0.5Mp6) + (1.33M,10) + [(2.0M,16)] = 3.83M,10
External Work Done = [(30 X Svc) + (21 X dvp) + (12 X ove) + (10 X Snr)]
=[30x O+ (21 x20)+ (12 x )+ (10 x 46)] = 12460

Internal Work Done = External Work Done
3.83M,10=1246 oo Mp=32.38 KNm

Mechanism V: Combined Beam BCD, Gable and Sway

our=4.06=10.6760
- fB=2.670

Sve=3.00=5.00
Soa=1.676

5\/]) = 2.09
ove= 1.00
§HB =40«

= 4.0(1.670)
= 6.680 101N

Internal Work Done
[2Mp (6+a@) + My (6+8)] = [2Mp(2.676) + My (3.676)] = 9.0M,16

External Work Done
[(10 X 61—13) + (30 X 5vc) + (21 X 5VD) + (12 X 5VE) + (10 X 51—11?)]
[(10 x 6.686) + (30 x 5.00) + (21 x2.00) + (12 x 1.06) + (10 x 10.676)] =377.50

Internal Work = External Work
9.0M,6=377.56 oo My =419 kNm
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8.20 — Kinematic Method Page No. 4

In mechanism V the hinges at B and D have been eliminated.

X
+(1.330)

Mechanism IV

Add mechanisms as follows:

[(1.33 x I) + IV] which eliminates the
hinge at D and produces rotations equal
to — (1.676), + (2.666) and — (1.336) at
B, C and F respectively.

The resulting mechanism can be combined with [1.67 x Mechanism III] to eliminate

the hinge at B. This produces total rotations equal to + (2.676) and — (36) at C and F
respectively.

Eliminated hinge:

=(1.336)

Eliminated hinge:

=(1.676)

Adding equations for Mechanisms [(1.33 % I) + IV + (1.67 x 1I)]

8.65M,60=119.76

3.83Mp,10=124.00

4.18M,0=133.660

- 5.0 M0 [allowing for the hinge eliminated at joint B: 2(1.5Mp x 1.676)]
—2.67TMp0 [allowing for the hinge eliminated at joint F: 2(M, % 1.336)]
9.0M,06=377.36 .. Mp = 41.9 kNm as before

The value of M, obtained (41.9 kNm) should be checked by ensuring that the
bending moment in the frame does not exceed this value at any location.
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8.20 — Kinematic Method Page No. 5

A G

Ha
Va i 3.0m . J1.0m [1.Om] Vg

LS

Under the point load at C there is tension inside the frame and consequently the
bending moment is positive at this point.

The rotation at joint F induces tension on the outside of the frame and hence a
negative bending moment.

Consider the equilibrium of the right-hand side of the frame at joint F.

- 10kN
—p» —F

+ve ) SMy =0 F
—41.9-(Hg x4.0)=0 41.9 KNm ]
Hg=-1048kN = S

Consider the complete structure:

+ve )EMa =0
+ 2.0 x (10.0 x 4.0)] + (30.0 x 3.0) + (21.0 X 6.0) + (12.0 x 7.0) — (8.0 x V) =0
. Vo=+475kN }

tve }SF, =0 +47.5-30.0-21.0-12.0+ Va=0
o Va=+155kN }

tve—>2F,=0 20.0-1048+HA=0 S HA=+9.52 kKN -—
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8.20 — Kinematic Method Page No. 6

9.52 kN 10.48 kKN —x

3.0m | 30m J1.0m 1.0m| 47 5 kN

Mz =+ (9.52 x 4.0) = + 38.08 KNm < 1.5M,
Mp=— (12 x 1.0) — (10.48 x 7.0) + (10 x 3.0) + (47.5 x 2.0) = + 39.64 kNm < M,

Mg =+ (10 x 1.5) — (10.48 x 5.5) + (47.5 x 1.0) = + 4.86 kKNm < M,,

Collapse Bending Moment Diagram

This frame can also be readily analysed using the static method of analysis as follows:
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8.20— Static Method Page No. 7

Assume the horizontal component of reaction at support G to be the redundant
reaction. 21 kN

¢ 12 kN

G
JI.O mJl.Om | 3.0m

V(G VNA
(D) Statically determinate force system  (II) Force system due to redundant reaction

Consider system (I)

Apply the three equations of static equilibrium to the force system:

+ve } 2F,=0 " =30-21-12+ V=0 A+ V'o=63.0kN

+ve—>2F,=0 10+10+H's 'A=—20.0 KN -

+VC) SMA=0 +2 % (10.0 x 4.0) + (30.0 x 3.0) + (21.0 x 6.0) + (12.0 x 7.0)
~(8.0%xV'G)=0 < Vig=+475kN }

hence 'aA=+155 kN

Consider system (II)

Apply the three equations of static equilibrium to the force system:

+ve ¥2Fz =0 At V'6=0 A==V

+ve = XF=0 "s —Hc=0 "s=+Hg

+ve)2MA =0 —-(Vsx8.0)=0 V'e=0 hence V'"'a=0

21 kN¢

30 kN 12 kN

A G I%F
3.0m 1 3.0m Jl.O mJl.Om | 3.0m

*

15.5 kN 47.5 kN Zero
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8.20 — Static Method Page No. 8

Mg =+ (20 x 4.0) — (Ho x 4.0) = + 80.0 — 4.0Hg

Mec =+ (20 x 5.5) + (15.5 x 3.0) — (10.0 x 1.5) — (Hg x 5.5) =+ 141.5 — 5.5Hg
Mp=— (12 x 1.0) + (10 x 3.0) + (47.5 x 2.0) — (Hg x 7.0) = + 113.0 — 7.0Hg
Mg =+ (10 x 1.5) + (47.5 x 1.0) — (Hg x 5.5) = + 62.5 — 5.5Hg

Mg=0-— (HG X 4.0) =0-4.0Hg

Assume the collapse mechanism as indicated previously, i.e. plastic hinges
developing under the point load at C (+ 2.0M,) at and joint F (— M,).

Mc: +2.0Mu=+141.5—-5.5Hs Equation (1)
My:  — Myu=0-4.0Hg Equation (2)

Adding equations (1) and [2 x (2)] gives:

0=141.5-13.5Hg S Hg=+1048 kN and My =41.9 kNm as before
Check the value of the bending moment at other possible hinge positions

Mp=+80.0+4.0Hs=+80.0—(4.0 x 10.48) =38.08 kNm < 1.5 My,
Mp=+113.0-7.0Hg =+ 113.0 — (7.0 x 10.48) = 39.64 kNm < M,
Mg=+62.5-55Hc=+62.5—(5.5%10.48) =4.86 kNm < M),
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8.21 — Kinematic Method Page No. 1

JP 3.0m J

I~

Number of degrees-of-indeterminacy Ip=[(3m+r)—-3n]-1=1

(Note: the degree-of-indeterminacy is reduced by one for each pin in the frame)
Number of possible hinge positions p =15

Number of independent mechanisms =p-b)y=5-1)=4
(i.e. 2 beam mechanisms, 1 sway mechanism and 1 gable mechanism)

C

At fixed support G
At internal joints B and D

1 . L
Under the point loads at C and E . tension on this side indicates +ve

bending moments
possible hinge positions

Mechanism I: Beam BCD
15 kN

\,.' 5vc:3.0ﬂ:3.09 ﬂ: 1)

" Internal Work Done = External Work Done
[1.5Mp (6) + 1.5My (6 +0) + My ()] = (15 x Svc)
[1.5Mp () + 1.5M, (26) + My(0)] = (15 x 3.06)
5.5Mp6=456

.. My =8.18 kNm
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8.21 — Kinematic Method Page No. 2

Mechanism II: Beam DEF

Sve=3.08=3.00 .. p=0

Internal Work Done = External Work Done

[Mpi (6) + My (6+)] = (15 % Svc)

[Ma(6) + My (8+6)] = (15 < 3.06)
3.0M,0=456 oo My =15.0 kNm

. 15 kN
Mechanism III: Sway

Internal Work Done = External Work Done

[1.5M; (6) + My (5)] = [(10 < &) + (10 x 9)]
3.5Mp0= (20 x 6.06) = 1200 .. My =3429 kNm

Mechanism IV: Gable
§>/ Instantaneous centre of rotation for link BCD

j5vn
15 kN D’

~.

oug=6.06=6.00
Ovp=6.0a=6.00
5vc = 309

Oove=3.0a=3.00
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8.21 — Kinematic Method Page No. 3

Internal Work Done = [1.5Mp1 (€+f) + My (6 +a)]

[(3.0M0) + (2.0Mn0)] =5.0Mp0

External Work Done = [(15 X Svc) + (15 X dvp) + (15 X ove) + (10 X Sus)]
[(15%x30)+(15%x60)+(15%x360)+ (10 x 66)] =24060

Internal Work Done = External Work Done
5.0Mp0=2400 oo Mp=48.0 kNm

Mechanism V: Combined Beam DEF and Gable.

Instantaneous centre of rotation for link BCDE

Sup = 6.08 = 6.00
Oove=3.0a0=9.00
5vc = 309
Ovp=06.00

Internal Work Done
[1.5My (0+0) + My (0+a)] = [1.5Mp(2.00) + My (4.00)] = 7.0M, 0

External Work Done
[(10 X OuB) + (15 X Ovc) + (15 x Svp) + (15 X OvE)]
[(10 x 6.00) + (15 x 3.00) + (15 x 6.00) + (15 x 9.00)] = 3300

Internal Work = External Work
7.0M16 =3300 S Mp=47.14 KNm
(The reader should confirm this answer by adding the work equations).

This value is less than that obtained for the gable mechanism. Assume the gable
mechanism (i.e. hinges at B and D) to be the critical mechanism and check the
bending moments at other possible hinge positions do not exceed the M, values.
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8.21 — Kinematic Method Page No. 4

15 kN
15 kN lD

72.0 kNm  (1.5Mp)) l

A
K

VAI

The rotation at joint B induces tension outside the frame and consequently the
bending moment is negative at this point.

The rotation at joint D induces tension on the imside of the frame and hence a
positive bending moment.

Consider the equilibrium of the left-hand side of the frame at joint B.

10KN = 34
-«— /B/

+ve ) =My =0
+72.0~ (Hyax 6.0)=0 . H\=+12.0kN —

Consider the complete structure:
+ve—2XF=0 - 20.0+12.0+Hs=0
S Hg=+ 8.0 KN —

+Ve) YXMr=0 (i.e. zero moment at the pin)
-(B0xHg)+Mg=0 .. —(3.0x80)+Ms=0
.. Mg =24.0 KNm — Il
Consider the complete structure: 1
+ve ) Mx=0 Vo
— (10 x 6.0) + (15 x 3.0) + (15 x 6.0) + (15 x 9.0) — (10 x 6.0) + (8 x 3.0) +24.0
- (Ve x12.0)=0

o Ve=+165kN |
tveb SF,=0 —150-15.0-15.0+16.5+ Vs =0 -~ Va=+285kN |




Solution

Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8.21 — Kinematic Method

Ar» 12.0 kN

28.5 kN

30m | 30m

Plastic Analysis 727

Page No. 5

K

Me =+ (28.5 x 3.0) — (12.0 x 7.5) + (10.0 x 1.5) =+ 10.5 kNm < 1.5M,,

Mg =—(10 x 1.5) — 24.0 + (8.0 x 4.5) + (16.5 x 3.0) =+ 46.5 KNm < M,

Mg =-24.0 kNm < My,

24.0 kNm

Collapse Bending Moment Diagram

This frame can also be readily analysed using the static method of analysis as follows:
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8.21 — Static Method Page No. 6

Assume the horizontal component of reaction at support A to be the redundant

reaction.
15 kN

| 30m, 3.0m 30m|

| 3.0m ‘lr 3.0m ‘Ir 3.0m J» . 3.0m l 3.0m l

r
V'a V'a

(D) Statically determinate force system  (II) Force system due to redundant reaction

Consider system (I)

Apply the three equations of static equilibrium to the force system: —
+ve — XF=0 —-10 - 10+ H's=0 H'c=+20.0 kN
+Ve)ZMpm =0 —-(HG6x3.0+Ms=0 S MG =(20.0 x3.0) =+ 60.0 kNm

Ve )IMA=0 =2 (10.0% 6.0) +(15.0 x 3.0) + (15.0 x 6.0) +(15.0 x 9.0)
+(20.0 x 3.0) + 60.0 — (12.0 x V'G) =0 Vig=+225kN 1
+vet =F,=0 W=15-15-15+ V=0 V'x+Vi=450kN
hence 'A=+22.5KkN T

Consider system (II)
Apply the three equations of static equilibrium to the force system:
+ve — XFx=0 Ha—H'c=0 "s=+Ha
+Ve)2Mpin=0 +(H"s*x3.0)+M"5=0 S M"6=—3 Ha
+ve )EMG=0 "6 — (Hax3.0)+ (V"'sx12.0)=0 V'a=+0.5 Ha
+ve t ZF,=0 "N FV"6=0 "a=—V""a

hence V'"c=-0.5Ha

15 kN
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8.21 — Static Method Page No. 7

Mz =— (Ha % 6.0) = — 6.0Hx
Mec=+(22.5 % 3.0) + (10 x 1.5) — (7.5 x Hy) + 3(0.5Hx) = + 82.5 — 6.0Hx

Mp =+ (22.5 x 6.0) + (10 x 3.0) = (15 x 3.0) = 9H, + (6.0 x 0.5H,)
=+120.0 — 6.0HA

My =+ (22.5 % 9.0) + (10 x 1.5) — (15 x 6.0) — (15 x 3.0) = 7.5Hx — (9.0 x 0.5H})
= +82.5 - 3.0Hx

Mg =—60.0 + (Ha  3.0) = — 60.0 + 3.0Hx

Assume the collapse mechanism as indicated previously, i.e. plastic hinges
developing at joint B (— 1.5M,y) at joint D (+ M) and

Mg: — 1.5Mp1=0—6.0HA Equation (1)
Mp: + Mp =120 — 6.0HA Equation (2)

Subtracting equation (1) from equation (2) gives:
—2.5Mpu=-120 o Mp=48.0 kNm as before and Ha=12.0 kN

Check the value of the bending moment at other possible hinge positions

Mc=+82.5—6.0Hy=+82.5— (6.0 x 12.0) =+ 10.5 kNm < 1.5M,
Me=+82.5—-3.0Hx=+82.5— (3.0 x 12.0) = + 46.5 KNm < M,,
Mo =—60.0 +3.0Hx=— 60.0 — (3.0 x 12.0) = — 24.0 kNm < My,




9. Influence Lines for Beams

9.1 Introduction

Many structures are required to support moving loads in addition to static loading, e.g.
highway/railway bridges or an overhead travelling crane as shown in Figure 9.1. Whilst
these moving loads are in reality dynamic in nature and their values and/or positions vary
in time, the variation is slow enough for them to be considered as ‘quasi-static’ loading. In
such cases the behaviour of the structure at any instant in time can be determined
assuming the value of the loads and load effects using the rules and principles which
govern structural behaviour under static loading.

L

Figure 9.1

The design of such structures requires that the most critical positions of the loads are
identified for various functions, e.g. the support reactions, axial loads in trusses, shear
force or bending moment in beams. Consider a vehicle moving along a simply supported
span as shown in Figure 9.2:

6o

Figure 9.2

The position of the vehicle required to determine the maximum value of a function/design
load effect must be identified for design purposes. This can be achieved by the use of
influence lines. An influence line is a graph of the variation of a function e.g. the support
reaction, shear force, bending moment etc. in a beam or the axial load in a pin-jointed
trussed frame, at a given position in a structure as a unit load traverses the structure. It is
important to recognise that, unlike shear and bending moment diagrams, influence lines
indicate the variation of a function at a specific point in a structure.

9.2 Example 9.1: Influence Lines for a Simply Supported Beam

Consider the simply supported beam shown in Figure 9.3 in which a unit load traverses the
structure from A to C. Influence lines (graphs) can be drawn which indicate the variation
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of the support reactions, the shear force and the bending moment at some general point B
on the beam a distance ‘a’ from the support at A. At any instant in time the load is at
position ‘x’ from support A.

Figure 9.3

9.2.1 Influence Lines for the Support Reactions

1.0
A l B C
A
Va X J (L-x) Ve
| L
Figure 9.4

Two equations relating to the two support reactions V4 and V¢ can be determined by
considering the rotational and vertical equilibrium of the beam.
Consider the rotational equilibrium of the beam:

+ve )JXM,=0

(1.0x)=(VexL)=0 s Ve=x/L Equation (1)
Consider the vertical equilibrium of the beam:

+ve TZFZ =0

V,—-1.0+V.=0 sV, =1.0-x/L) Equation (2)

Equation (2) is the equation of the graph which defines the variation in V', as the unit load
traverses the beam, i.e. the equation of the influence line for V. Similarly, Equation (1) is
the equation for the influence line for Vc. The two influence lines can be plotted by
considering values of the functions V4 and V- when: x = 0 and when x = L respectively.

Influence Line for V5: Equation (2) Va=(1.0 —x/L)
when x=0 V,=1.0 and when x=L V,=0

Influence Line for V¢: Equation (1) Ve =x/L
when x=0 V=0 and when x=L V:=1.0
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1.0
/(1.0 —x/L)
+ve
A C
L |
N
Figure 9.5: Influence line for the vertical reaction at A
1.0
x/L
A +ve
A €
| L

Figure 9.6: Influence line for the vertical reaction at C

9.2.2 Influence Line for the Shear Force at Point B

To develop the influence line for the shear force at a point in a beam it is convenient to
consider the position of the unit point load acting in two zones as shown in Figure 9.7:

(i) to the left of the point under consideration and

(i1) to the right of the point under consideration.

- i >
T
1.0
*o—— x—»
A < b C
a (L —a) 0<x<a
Va i L HZ

#—x . B—,ll.o

a (L—-a)

Figure 9.7
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Consider 0< x < a

Shear force at B=(Va —1.0) or alternatively, Shear force at B=— 1

The influence line between 0 < x < a is the same as the ‘inverted’ (i.e. negative)
influence line for V¢ between these limits as shown in Figure 9.8: (Note: V¢ = x/L).

< ‘ P -
L

b i
1.0

*——X —>

A 4 B _
a (L—-a)
VA L VC
A
—ve .
x/L :

Figure 9.8

Consider a< x < L

Shear force at B=V, or alternatively shear force at B =(— V' + 1.0)

The influence line between a < x < L is the same as the influence line for V, between
these limits as shown in Figure 9.9:

- l g
T10
b N '
!
B )\ 4
A
a (L—-a)
VA L /C
T 0-a
e 1.0 - x/L)
: $

Figure 9.9
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The complete influence line for the shear force at B is given by the addition of the two
zones for 0 <x<a and a <x <L as shown in Figure 9.10.

Influence Line: Shear force at Bfor0< x < L

| a | (L —x)
10r--o : :
: ~~~~~~~~~~~~~~ 1.0—a/L :
E , |
I 1
I +ve 0 I
: 0 ] :

A :
—-ve |
————— ]

all T :

____________ 11.0

Figure 9.10: Influence line for the shear force F\ g at position B

9.2.3 Influence Line for the Bending Moment at Point B

The influence line for the bending moment at a point in a beam can be developed similarly
to that for the shear force considering two zones, as shown in Figure 9.11:

(i) to the left of the point under consideration and

(i1) to the right of the point under consideration.

*——X—>

(L—a) 0<x<a

Va

—

1.0
s _ 44
? 7B

a (L—-a)
Va {I L \II\ Ve
Figure 9.11
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Consider 0< x < a

Bending moment at B Mg = + [aVa—1.0(a —x)] or alternatively,
Bending momentat B Mg =+ VX (L —a) (= V¢ X constant)

The influence line for V¢ between 0 < x <ais given by Ve =x/L.

S Mg=VeX(L—a)=x(L—-a)/lL

- l >
|
1.0
*————X—»
v B
A 1C
a (L-a)
VA L /C
+ve
x(L - a)/L\
a(L — a)/L

Figure 9.12

Consider a< x < L

Bending moment at B Mg = + aVs (= VA X constant) or alternatively,
The influence line for V', between a < x < L is given by V5 = (1.0 — x/L).
Bending momentat B M=+ [Vc(L —a) — 1.0(x — a)]

s Mpg=ax (1.0 -x/L)=a(L —x)/L

<« % >
L 1.0
xX—»

T B A4

A ! 3C
a (L—-a) E

Va L 5 Ve
Al B : e

E +ve

' a(L —x)/L

a(L —a)/L

Figure 9.13
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The complete influence line for the bending moment at B is given by the addition of the
two zones for 0 <x<a and a <x <L as shown in Figure 9.14.

Influence Line: Bending moment at Bfor0< x < L

(L-x)

Y _

=

+ve
X(L—Ll)/L a(L—x)/L

a(L — a)/L

Figure 9.14: Influence line for the bending moment Mjp at position B

<<—+—>>
e

A C
a L-a)
VA { : L ¢ VC
N ! I
| | :
1.0, : |
\ |
1
+ve ' !
A ; » € Influence line for Vs
: ‘B :
1 1 h
| ! 1.0
! 1
: M
A EB Y ¢ Influence line for V'
: :
1 .
[Tl 1.0—a/L

C  Influence line for Fyp

|

! ‘I 1.0 = x/L |

! +ve \

‘ 1

[ HUST B :
:

|

1

]

Influence line for My
+ve
x(L—a)/L a(L —x)/L

all - ayL Figure 9.15

Note: Influence lines are NOT the same as shear force and bending moment
diagrams.They provide information relating to a single location on the
structure.
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9.3  Miiller-Breslau Principle for the Influence Lines for Beams

The influence line for any response function in a beam can also be determined by the use
of the Miiller-Breslau principle, i.e.

“The influence line for any function is given by the deflection curve, to some scale, that
results when the restraint corresponding to that function is removed and a unit
displacement is induced in its place”

The principle is applicable to any type of elastic structure, i.e. both statically determinate
and indeterminate structures.

9.4 Example 9.2: Influence Lines for a Statically Determinate Beam

Considering the two-span, statically determinate beam ABCDE shown in Figure 9.16,
determine the influence lines for:

(i) the vertical reactions at supports A, C and E,
(ii) the shear force at point B,

(iii) the bending moment at point B and

(iv) the bending moment over support C.

The values are derived considering the articulation of the beam between the support points
and any pins within the spans, for an imposed unit linear displacement (when considering
support reactions or shear forces) or a unit rotational displacement (when considering a
bending moment). Note: the displaced shape of statically determinate beams will be
linear.

(@)

The vertical reaction at support A: Impose a unit, vertical displacement at A
B C ) S pin

A X ‘ E

3.0m 50m 4.0m 4.0m
VA VE

8.0m 8.0m
1.0,\

| ul D

A B C _ve%E

Op

Figure 9.16: Influence line for V'

A vertical unit displacement is imposed at A and the beam imagined to articulate between
the supports at C and E and the pin at D. The value of ¢, can be determined readily by
considering the geometry of the displaced shape, i.e. considering the triangles between
ABC and CDE giving:

giving 1.0 s,

% s =05
8.0 4.0
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The vertical reaction at support C: Impose a unit vertical displacement at C

A B C p , Pin E
A ] A
Val 3.0m 50m 4.0 m 4.0m Ve
8.0m 80 m
Jp
1.0
+ve
A B ‘C D E

Figure 9.17: Influence line for V¢

Q:+ O S0, =+1.5
8.0 12.0

The vertical reaction at support E: Impose a unit vertical displacement at E
1.0

+ve

Al B C | D E

Figure 9.18: Inﬂuence line for Vg

(i)

The shear force at point B: Impose a unit shear displacement at B

0 —ve |
On Assume a vertical roller at

op

Figure 9.19: Influence line for Fy g

Considering the triangles between AB and BC:

o, 0,
(1 + &2)=1.0 - &, =(1.0-&,) and % =— 3}.38

(10 - 63,2) = 167&3,2 d372 =—-0.375 and dgg] =0.625

" 8y, = —1.6765,,

Considering the triangles between BC and CD:
0.625 0,
—=—-—2 . ,=-05
5.0 4.0
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(iii)
The bending moment at point B: Impose a unit rotation at B
A B C p , Pin E
' A
Val 3.0m 50m 4.0 m 4.0 m Ve
8.0m 8.0 m
8p

Assume a pin at B

A O E
53\\ . .
Figure 9.20: Influence line for My
O=(a+pP=10 ... a=(1.0-p and B=3.00=5.08 .. ¢=1.678
(1.0-p=1.678 .. p=-0.375 and ¢=0.625 .. B=B.0xax)=1.875
Considering the triangles between BC and CD:
1.
185 _ % - 15m
5.0 4.0
(iv)
The bending moment over support C: Impose a unit rotation at C
Op
i //‘ —-ve
A B C o1 D E

Figure 9.21: Influence line for Mc
op=4.00=(4.0x1.0)=4.0m

9.5 Example 9.3: Influence Line for a Statically Indeterminate Beam

Considering the propped cantilever AB shown in Figure 9.22, which is fixed at support A
and supported on a roller at B, determine the influence line for the support reaction at B.

My
N = .
R EI I
V, Vi
A q L q B
N K

Figure 9.22
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Consider a unit load which moves from A to B when at a general position C a distance ‘x’
from B and assume an upward reaction at B as shown in Figure 9.23.

1.0, x .
M, v |
A §\ — j - B
ﬁ-f El e T
Va b """"""""""" Vs
Figure 9.23

Remove the restraint at B and impose a displacement gds at B in the assumed direction of
Vs using a force F' = 1.0. This also induces a vertical deflection of ¢dg at point C as shown
in Figure 9.24.

P I
Nh Suf .. o
= -/ T
| F=1.0
Figure 9.24

The values of gds and ¢ds define the shape of the deflected curve for an applied unit load
0,

at B and consequently the required influence line ordinates for Vz = <2, ie. the
89

deflected shape due to a unit load displacement applied at B. The values can be determined
using standard elastic analysis e.g. MaCaulay’s Method, i.e.

Bending moment at distance x = EI d’z/dx”

El d’z/dx* = 1.0x Equation (1)
EI dzldx =x*/2+ A Equation (2)
Elz =x’/6+ Ax + B Equation (3)
Apply the boundary conditions:
when x =20.0 m dz/dx =0 s A=-200
when x =20.0 z=0 .. B=-20.0°/6 + (200 x 20.0) = 2666.7

The deflected shape is given by: z = (x*/6 — 200x + 2666.7)/EI
Whenx=0 gd=[0— (200 % 0) +2666.7)]/EI = 2666.7/EI
An upward displacement is regarded as a positive ordinate.

The influence line co-ordinates are given by:
(6, (¥/6-200x+2666.7) [EI _ (x’/6-200x +2666.7)

.0, 2666.7/EI 2666.7
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The influence line values are determined by substituting appropriate values for x, i.e.

(0°/6-200x0+2666.7) 2666.7

x=0 influence ordinate z = = =1.
2666.7 2666.7
. . (4.0°/6-200x4.0+2666.7)
x=4.0m influence ordinate z = =0.704
2666.7

Similarly for x = 8.0 m, 12.0 m and 16.0 m as indicated in Figure 9.25.

0.704 1.0
0.432 )

0.056

i f 1 i

Figure 9.25: Influence line for V3

9.6 The use of Influence Lines
The influence line for a function can be used to determine the critical value of that
function for a variety of loading conditions, e.g. concentrated loads, distributed loads,
travelling loads and trains of loads.

9.6.1 Concentrated Loads

The value of a function induced by a given concentrated load at any position on a
structure, can be determined by multiplying the magnitude of the load by the ordinate at
the position of the load on the influence line for that function, i.e.

Magnitude of the function = (applied load X ordinate (z) on the influence line)

The maximum positive value of a function can be determined by multiplying the
magnitude of the load by the maximum positive ordinate ‘z’ on the influence line for that
function; similarly for the maximum negative value.

9.6.2 Distributed Loads

The value of a function for any given distributed load at any position on the beam, can be
determined by multiplying the magnitude of the load/metre length by the area of the
influence line lying under the extent of the distributed load for that function.

Magnitude of the function = (applied load X area under the influence line)
The maximum value of the function due to a moving UDL of length smaller than the span,

can be determined by positioning the moving load such that it maximises the area under
the extent of the load.
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9.6.3 Example 9.4: Evaluation of Functions for a Statically Determinate Beam 1

A 12.0 m span simply supported beam ABCD, supports a distributed load of 12.0 kN/m
and a point load of 20.0 kN as shown in Figure 9.26. Draw the influence lines for:

(i) the vertical reactions at supports, V4 and Vp,
(i1) the shear force Fy pat point B, and
(iii) the bending moment at point C, M¢

and determine the value of each of the functions (i), (ii) and (iii) for the loading indicated.

20 kN 12 kN/m——
3 I T
A B C D
30m 3.0m 6.0 m
Va N Vo
1 12.0 m N
N R
Figure 9.26

(i) The influence line for and value of V5 (see Figure 9.15).

1.0

A ‘B C

D
Figure 9.27: Influence line for V'
V'a = (concentrated load X ordinate) + (distributed load X area)

=(20.0 x0.50) +[12.0 X (0.5 X 6.0 x 0.5)] = 28.0 kKN

(ii) The influence line for and value of V' (see Figure 9.15).
1.0
X
0.5 \\
A B C D

Figure 9.28: Influence line for V'p
V'a = (concentrated load X ordinate) + (distributed load X area)

= (20.0 X 0.50) + 12.0 X [0.5 x (0.5 + 1.0) X 6.0] = 64.0 kN
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(iii) The influence line for and value of F, g (see Figure 9.15).

1.0, ~~"‘~~_

P _075
: 0.5
1
1
' +ve
A +ve [B C D
025 " --__

Figure 9.29: Influence line for Fy g Tl

Fyp = (concentrated load X ordinate) + (distributed load X area)
=(20.0 x0.50) +[12.0 X (0.5 x 6.0 X 0.5)] = 28.0 kKN

(iv) The influence line for and value of M (see Figure 9.15).

Figure 9.30: Influence line for M¢

A B

M¢c = (concentrated load X ordinate) + (distributed load X area)
=(20.0 x3.0) +[12.0 X (0.5 x 6.0 x 3.0)] = 168.0 kKNm

9.6.4 Example 9.5: Evaluation of Functions for a Statically Determinate Beam 2

743

An 8.0 m span simply supported beam ABC supports a distributed load of 2.0 m length
and magnitude 15.0 kN/m and a point load of 25.0 kN, both of which traverse the beam
independently as shown in Figure 9.31. Using the influence lines for the shear force and
the bending moment at point B, determine the maximum values of these functions when

the loads can travel across the beam independently.

«_+_»

25 kNl 15 kN/m — 2.0m length
A 'B C
20m | 6.0 m
Va K Ve
N )

Figure 9.31



744  Examples in Structural Analysis

(i) The influence line for and value of F, 5 (see Figure 9.15).

25 kN
| m 15 kN/m — 2.0m length
A B C
2.0m | 20m | 4.0m
Va N N Ve
N 8.0 m N
N R
1.01-=-___
VT T -._0.75
| 0.5
E +ve
A _ve [B C
025 TT=--l

Figure 9.32: Influence line for Fy g

Fyp = (concentrated load X ordinate) + (distributed load X area)
=(25.0x0.75) +[15.0 x 0.5 x (0.75 + 0.5) x 2.0)] = 37.50 kN

(ii) The influence line for and value of My (see Figure 9.15).
The distributed load must be positioned as shown in Figure 9.33 such that it maximizes the
value of the area under the bending moment influence line.

[T w kN/m length

C1 N| C

N | L

Figure 9.33

The load to the left of point B _ The span to the left of pointB_ ¢, _a
The total load The total span c L

This also leads to the observation that the influence line coefficient ‘z’ at each end of the
load has the same value.
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In this example: a¢=2.0m; L=80m; c¢=2.0m and the load is positioned such that
the value of ¢; = 0.5, i.e. a-2 . = ca_20x2.0
c L L 8.0
w=a(ll—-a)L=2.0x(8.0-2.0)/80=1.5
oL = 1.5%x(1.50/2.0)=1.125 and &g =4.5%(1.50/6.0)=1.125

=0.5m

25 kN
1 2.0m R
T i 15 kN/m — 2.0m length
A B C
20m 20m 40m
V, V
* 8.0m 1€
N N

Figure 9.34: Influence line for My

Mp = (concentrated load x ordinate) + (distributed load X area)
=(25.0x1.5) +15.0 x{(1.125 x 2.0) + [0.5 x 2.0 x (1.50 — 1.125)]} = 76.88 kNm

9.7 Example 9.6: Evaluation of Functions for a Statically Indeterminate Beam

A two span, non-uniform beam ABC is simply supported at A, B and C as shown in
Figure 9.35. Span AB carries a fixed uniformly distributed load of 40 kN/m and a
concentrated load of 20 kN traverses the beam from A to C. Develop the influence line for
the moment My at support B and using it, determine the magnitude and sense of the Mg.

20.0 kN load traverses both spans <<—+—>>

20 kN
~— 40.0 kKN/m 1
y N ' F N
A ‘m gy B T 2EI C
Va 10.0 m Ve 15.0 m Ve
[\
Figure 9.35

Remove the restraint which induces the moment at B by introducing a pin and impose
displacements 65 and G at B using a moment M = 1.0 as shown in Figure 9.36. The unit
moment induces a total displacement at B equal to the sum from both spans,
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i.e. 6 = (6L + Gsr) and general displacements at m and n as indicated.
Positions ‘m’ and ‘n’ represent any general points along the beams AB and BC.

M=10 M=1.0

Figure 9.36

Consider each span separately and use MaCaulay’s method to determine the displaced
shape induced by the unit moment.

Span AB: 0.1
) . 5
A C lB
TO 1 EI \1,0 x  @pL +veslope

i S
Figure 9.37

Bending moment at distance x = EI d’z/dx”

Eld*z/dx* = 0.1x Equation (1)
Eldz/dx =0.1x*/2+ A Equation (2)
Elz =0.1x°/6 + Ax + B Equation (3)
Apply the boundary conditions:
whenx=0 z=0 s B=0
whenx=10.0 z=0 s A=—(0.1x10.0°/(6x10.0)=—1.67

The slope at B is given by dz/dx = 6 = (0.1x*/2+ A)/EI
whenx=10.0 6 =[(0.1 x 10.0%/2) — 1.67)/EI = + 3.33/EI

Span BC: 0.067

z
B C I By
1.0 7/ 2EI 10.067 X Ogr +ve slope
X
‘—+ Figure 9.38

Bending moment at distance x = EI d’z/dx”

2EId*z/dx* = 0.067x Equation (1)

2Eldzldx =0.067x*/2+ A Equation (2)
2EIz =0.067x°/6 + Ax + B Equation (3)

Apply the boundary conditions:

whenx=0 z=0 s B=0

whenx=15.0 z=0 s A=—(0.067 x 15.0°)/(6 x 15.0)=—2.51

The slope at B is given by dz/dx .. g = (0.067x %2+ A)/2EI

Whenx=15.0 6 = [(0.067 x 15.0%/2) — 2.51)/2EI =+ 2.51/EI

o0 = O = (6 + 6kr) = (3.33 +2.51)/EI = + 5.84/EI in the same direction as M
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For span AB the influence line co-ordinates are given by:
s, (00167x°-1.67x) /EI

505 5.84/EI

The influence line values are determined by substituting appropriate values for x.

=0.00286x> — 0.286x m

For span BCD the influence line co-ordinates are given by:
s, (00112’ -2.51x) 2E1

50; 5.84/El

The influence line values are determined by substituting appropriate values for x.

20.0 kN load traverses both spans <<—+—>>

20 kN
——40.0 kN/m 1

‘}IIIIIIIIIIIIIIIIIIIIIIIIII TN

B T CI
A B
TWT 5BC maximum T

Figure 9.39: Influence line for My

=0.00096x> — 0.215x m

My = (concentrated load X ordinate) + (distributed load X area)
The maximum ordinate in each span occurs where the slope is zero, i.e. dz/dx =0

Consider span AB:
El dz/dx =0.1x*/2—1.67=0 5. x=15.779 m from A
Influence line ordinate Oap maximum = (0.00286x3 —0.286x) =—1.101 m

Area under the influence line diagram is given by:

10 10.00286x° — 0.286x)dx = [0.000715x* —0.143x2 ] ** = ~7.15 m?
0 0

Consider span BC:

Eldz/dx =0.067x°/2—2.51=0 .. x=28.656 m from C

Influence line ordinate dsc maximum = (0.00096x3 -0.215x)=-1.232m

The maximum value for the ordinate is in span BC and the 20 kN load should be placed at
this position.

The concentrated load should be on span BC to give the worst effect, i.e.
OBC maximum = — 1.232 s Mg =—(40.0 X 7.15) = (20.0 x 1.232) = 310.64 kNm
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9.8 Train of Loads

Structures such as bridges are frequently subjected to ‘train loads’ i.e. a series of point
loads which traverse the structure as a unit as shown in Figure 9.40:

<<—+—» The train of loads traverse the beam

P, P, . P,

| o | ai] o]
A é B éc i é D i E F
I - I
Va % Vi
RV Line of action of the resultant R of the loads
Figure 9.40

The position of the resultant of the train loads relative to e.g. P; as indicated in Figure 9.40
can be determined by considering rotational equilibrium of the train loads about P;:

R:(Pl +P2+P3 +P4) and X =[P1(a1 +a2)+P2(a2)—P4(a3)]/R

The maximum bending moment in the span will occur under one of the point loads

adjacent to the resultant load. Consider the arrangement indicated in Figure 9.41 in which

point load P; is assumed to be the wheel under which the maximum moment occurs and is
positioned a distance ‘x’ to the right of the mid-span of the beam.

x

BN

|1

Py P, I 1 P3 P,

| Jazi! « |
BE  cb '%p B

A F
T N ‘l‘
Vi @ | mid-span of the beam) Vi
RY,
‘ L2 ; L2 J
f r T
Figure 9.41

Consider the rotational equilibrium of the beam and the bending moment at D:

e )EMp=0  VyxL=R[1/2+(F-x)] - VA=§(L/2+f—x)

My =[Vax(L/2+x)]= R (@ +a;) = B =§(L/2+f—x)(L/2+X)—P1(al+az)—Pzaz
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The value of x necessary to give the maximum value of the bending moment can be
determined by equating dMp/dx =0, i.e.

d]c‘l/;Ichg[(L/2+f—x)(+1) (£/2+x)(-1)]=0
(L2 T=x) () +(1/2+2)(-1) =0
hence (L/2+X—-x)=(L/2+x) .. ¥=2x and x:%

The centre-line of the span must divide the distance between the resultant of all the
loads in the train of loads and the load under which the maximum bending moment
occurs, i.e. the load nearest the resultant.

9.8.1 Example 9.7: Evaluation of Functions for a Train of Loads

An 8.0 m span, simply supported beam AE, supports a train of point loads at B, C, and D
which traverse the beam as shown in Figure 9.42. Assume that the train of loads can leave
the beam. Draw the influence lines for:

(1) the vertical reaction V', at support A,
(i1) the shear force F 13 span at the third span point from A,

(iii) the bending moment M under the point load at C to give the maximum moment

and determine the value of each of the functions (i), (ii) and (iii) for the loading indicated.

<<—+—>> The train of loads traverse the beam

5.0 kN 200 kN 10.0 kN
J 3.0m | 1.5m J
A £B C é g D E
A
Figure 9.42

(i) Vertical reaction at support A: V,

5.0 kN 20.0 kN 10.0 kN aB =1.0
1 30m l Lom l & = (1.0 x 5.0)/8.0 = 0.625
M c . &= (1.0 X 5.5)/8.0 = 0.438
v e 0.625 0.438
A E
Figure 9.43

V= (5.0 x 1.0) + (20.0 x 0.625) + (10.0 x 0.438) = 21.88 kN
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(ii) Shear force at the third span point from A: F, i3 span

The position of the loads for the maximum shear force is dependent on the load system
and in most cases the maximum positive value occurs when the left-hand load is at the
point being considered and the remaining loads to the right. The maximum negative value
usually occurs when the right-hand load is at the point under consideration and the
remaining loads to the left. It is possible e.g. in situations where the end loads are
significantly less than the others, the above will not apply and trial and error will be
necessary.

Case 1: consider the load at point B to be at the third-span point.
s =(1.0x5.333)/8.0 = 0.667
oc =(1.0x2.333)/8.0 =0.292
op = (1.0 x0.833)/8.0 =0.104

5.0kN 20.0 kN 10.0 kKN
1 3.0m | 15m |
R B C D
'
| 0.667| +ve
A 0.292 E
No&s 1 0.104]
‘ 2.667 m T 5333 m
\ - i
Figure 9.44 - ¥

Futsspan = (5.0 X 0.667) + (20.0 X 0.292) + (10.0 X 0.104) = 10.22 kKN

Case 2: consider the load at point C to be at the third-span point.
& = zero (i.e. the load at B is not on the span)
o = 0.667
op = (1.0 x3.833)/8.0=0.479

5.0 kN 20.0 kN 10.0 kN
1 3.0m | 15m |
B Tl C D
: -
]
1 0.667 +ve
i\ 0.479 E
—ve [0.333
2.667 m T 5333 m
\ - !
Figure9.45 TTTtte-- )

Fy 13 span = (20.0 X 0.667) + (10.0 x 0.479) = 18.13 kN
.. The maximum shear at the third-span point = 18.13 kN
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(iii) Maximum bending moment at pont C: M
Assume that the maximum bending moment occurs under the point load at C and
determine the position of the resultant load relative to C.

I
5.0kN - 20.0kN  10.0 kN

|
J 3.0m | J 1.5m

, |
X | C 2o

Figure 9.46 !

=

Ry
R=(5.0+20.0+10.0) = 35.0 kN
X =[Pi(a)) — Px(a2)]/R = [(5.0 x 3.0) — (10.0 x 1.5)]/35.0 = 0.857 m

The load at point C should be positioned such that the mid-span point of the beam bisects
X, ie. (0.857 x 0.5) = 0.429 m to the right of the resultant force R as shown in
Figure 9.47.

5.0 kN 20.0 kN 10.0 kN
J 3.0m | 1.5m |
|
A é B . ct) C £ D E
A 1
V. 4429 m ; J 3571 m Ve

e mid-span of the beam
Figure 9.47

The maximum value of the influence line ordinate for the bending moment at C is
given by a(L — a)/L = 4.429 x (8.0 — 4.429)/8.0 =1.977 m (see Figure 9.15).

s =(1.977 x 1.429)/4.429 = 0.638 m

x=1977m
o =(1.977x2.071)/3.571 = 1.147 m
5.0 kN 20.0 kN 10.0 kN
| 3.0m | 15m |
v v v
A B C D E
0.638
Figure 9.48 1.147
1.977

Mc= (5.0 x 0.638) + (20.0 X 1.977) + (10.0 x 1.147) = 54.20 kNm
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9.9

Problems: Influence Lines for Beams

Problem 9.1 A simply-supported beam ABCDE is supported on a roller at B and is
pinned support at D as shown in Figure 9.49.

(a)

(b)

Draw the influence lines for:

(i) the vertical reaction V3’ at support B,
(ii) the shear force ‘F,c’ at C,

(ii1) the bending moment ‘Mp’ at B.

Using the influence lines determine the maximum and minimum values of V3 and
Mp and the maximum value of Fy,c when a 10.0 kN/m load of length 4.0 m
traverses the beam in addition to a static concentrated load as indicated. (Note: the
10.0 kN/m load may leave the span).

4.0 m length of load traverse the beam

15.0 kN

30m

N N

Figure 9.49 30m 7.0 m 3'0

15.0 m

Problem 9.2 A simply-supported beam AD, is pinned at support A and supported on a
roller at D as shown in Figure 9.50. A train of two 12.0 kN loads traverse the beam as
indicated.

(a)

(b)
(©)
(d)

Determine the position ‘x’ of the loads, required to produce the maximum bending
moment in the beam, assuming that it occurs under wheel C.

Draw the influence line for the support reaction at A.

Draw the influence line for the bending moment at position ‘x’.

Using the influence lines developed above, determine the maximum value of the
support reaction at A and the bending moment at position ‘x’ for the train of

loads.
«—+—»

12.0 kNl 40m

112.0 kN

15.0 m j

Figure 9.50
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Problem 9.3 A cantilever beam ABC, is fixed at support A as shown in Figure 9.51. The
beam carries two fixed uniformly distributed loads and a point load which traverses the
cantilever as indicated.

(a) Draw the influence line for the vertical reaction ‘¥, at support A.

(b) Draw the influence line for the moment reaction ‘M,’ at support A.
(c) Using these influence lines determine the maximum values of ‘¥, and ‘M,’.

The point load traverses the cantilever <-<—+—>—>

30.0 kN
M, ﬁ 20.0 kKN/m 10.0 kKN/m
EA C
Va 3.0m 5.0m
8.0m
Figure 9.51

Problem 9.4 A two span, uniform beam ABCD is fixed at support A and supported on
rollers at B and D as shown in Figure 9.52. Span BCD has a pin at its’ mid-span point C.
A fixed uniformly distributed load of 15 kN/m is supported from A to point C and a
concentrated load of 20 kN traverses the beam from A to D.

(a) Draw the influence line for the moment reaction ‘M,’ at support A.

(b) Using the influence line determine the maximum value and sense of M.
(c) Using the influence line determine the minimum value and sense of M.

20.0 kN load traverses both spans <<—+—»>

20 kN
My 15.0 kN/m . l
& /pln
y 3
N/ B 30m C 3.0m D
F
v, 50m Ve 6.0 m Vo

Figure 9.52
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9.10 Solutions: Influence Lines for Beams

Solution
Topic: Influence Lines for Beams
Problem Number: 9.1

A simply-supported beam ABCDE is supported on a roller at B and is pinned support
at D as shown in Figure 9.49.

(a) Draw the influence lines for:
(i) the vertical reaction V3’ at support B,
(i1) the shear force ‘F, ¢’ at C,
(iii) the bending moment ‘Mp’ at B.

Using the influence lines determine the maximum and minimum values of Vg
and Mp and the maximum value of F, ¢ when a 10.0 kN/m load of length 4.0 m
traverses the beam in addition to a static concentrated load as indicated. (Note:
the 10.0 kN/m load may leave the span).

4.0 m length of load traverse the beam

15.0 kN

— 10.0 kN/m

A B C ¥ Iy D E
VB\ VD

3.0m 30m 7.0m
150 m

10.0 kN/m —
[LTTTTTTTIITITTTTT,

Influence line
fOf VB,maximum

e 1020
A p "k

Vi maximum = + [10.0 X 4.0 X 0.5 x (1.3 + 0.9)] + (15.0 x 0.7) = 54.5 kN

15.0 kN

10.0 kN/m ﬁ

= 0.20

E .
Influence line
for 1, B.minimum

C

Vigminimam = + (15.0 X 0.7) = (10.0 x 0.5 X 2.0 x 0.2) = 8.50 kN
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Solution
Topic: Influence Lines for Beams
Problem Number: 9.1 Page No. 2

15.0 kN

10.0 kN/m
‘ﬂﬂiﬂﬂﬂﬂﬂﬂﬁm Influence line
0.70

+ve . : for F

f T ove 0.30 T —ve 1020
A B C D E

Fomaximm = + [10.0 X 4.0 X 0.5 x (0.7 + 0.3)] + (15.0 x 0.7) = 30.5 kN

0.60

| Influence line
fOI' Mc‘maximum

18m[12m| 28m |
N

~

Me aciman = + 10.0 X [(4.0 X 1.26) + (0.5 x 4.0 x 0.84)] + (15.0 x 2.1) = 98.70 kN

10.0 kN/m ]
[T

0.6

Influence line
for Mc,minimum

2.1
T J&.o rQL 20m |

~

Meminimam = + 10.0 X [= (0.5 X 3.0 x 2.1) + (0.5 x 1.0 X 0.7)] + (15.0 x 2.1) = + 3.50 kNm
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Solution
Topic: Influence Lines for Beams
Problem Number: 9.2 Page No. 1

A simply-supported beam AD, is pinned at support A and supported on a roller at D as
shown in Figure 9.50. A train of two 12.0 kN loads traverse the beam as indicated.

(a) Determine the position ‘x’ of the loads, required to produce the maximum
bending moment in the beam, assuming that it occurs under wheel C.

(b) Draw the influence line for the support reactions at A.

(c) Draw the influence line for the bending moment at position ‘x’.

Using the influence lines developed above, determine the maximum value of the
support reaction at A and the bending moment at position ‘x’ for the train of loads.

o

12.0 kNJ 40m

112.0 kN

12.0kNJ 4'Oim llZ.OkN
Bé : ~ éc

i

R=(12.0 +12.0) = 24.0 kN
X=Pi(a))/R=(12.0x4.0)24.0=2.0m

The load at point C should be positioned such that the mid-span point of the beam
bisects X, i.e. (2.0 X 0.5) = 1.0 m to the right of the resultant force R as shown.

- mid-span of the beam
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Solution
Topic: Influence Lines for Beams
Problem Number: 9.2 Page No. 2

40m l 12.0 kN

y ¢ Influence line

1.0 for VA: maximum
: 0.433

A B C D

V amaximam = + (12.0 % 0.7) + (12.0 x 0.433) = 13.60 kN

()
The maximum value of the influence line ordinate for the bending moment at C is
given by a(L — a)/L = 8.5 X (15.0 — 8.5)/15.0 = 3.68 m (see Figure 9.15).

% = (3.68 x4.5)/8.5=1.95

&=1977Tm
& =(1.977%2.071)/3.571 = 1.147 m

12.0 kN

By

l +ve

1'9\

3.68

M= (12.0 x 1.95) + (12.0 x 3.68) = 67.56 kNm




758 Examples in Structural Analysis

Solution
Topic: Influence Lines for Beams
Problem Number: 9.3 Page No. 1

A cantilever beam ABC, is fixed at support A as shown in Figure 9.51. The beam
carries two fixed uniformly distributed loads and a point load which traverses the
cantilever as indicated.

(a) Draw the influence line for the vertical reaction ‘¥’ at support A.
(b) Draw the influence line for the moment reaction ‘M, at support A.
(c) Using these influence lines determine the maximum values of ‘Vy” and ‘M,’.

The point load traverses the cantilever «—+—>—>

l 30.0 kN

10.0 kN/m

— 20.0 kN/m

l30.0kN
10.0 kN/m
"‘wHHHHHHHHHHH |||||||||||||||||||IIWI|||||||||||||||||||||

Influence line
fOI' VA,maximum

—Ve:

A B C

V g masimam = + 20.0 % (1.0 X 3.0) + 10.0 X (1.0 x 5.0) + (30.0 x 1.0) = 140.0 kN

(b 30.0 kN
20.0 kN/m — 10.0 kKN/m

v
(R
. 8.0 m

Influence line
for M

Mp =—20.0%(0.5%x3.0x3.0)—10.0 x [0.5%x (3.0 + 8.0) x 5.0] — (30.0 x 8.0) = 605.0 kN
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Solution
Topic: Influence Lines for Beams
Problem Number: 9.4 Page No. 1

A two span, uniform beam ABCD is fixed at support A and supported on rollers at B
and D as shown in Figure 9.52. Span BCD has a pin at its’ mid-span point C. A fixed
uniformly distributed load of 15 kN/m is supported from A to point C and a
concentrated load of 20 kN traverses the beam from A to D.

(a) Draw the influence line for the moment reaction ‘M,’ at support A.
(b) Using the influence line determine the maximum value and sense of M.
(c) Using the influence line determine the minimum value and sense of M.

20.0 kN load traverses both spans <<—+—»>

20 kN

— 15.0 kN/m . l
pin

LTI &~
A

B 3.0m C 3.0m
%

50m Vs 6.0 m

(2)

Remove the restraint which induces the moment at A by introducing a pin and impose
displacement 6, at A using a moment M = 1.0 The unit moment induces general
displacements at m and n along the beams AB and BCD as indicated.

M=1.0

m - 5AI .
IméA ”“”””“N“”M« \ n
s

Consider span AB and use MaCaulay’s method to determine the displaced shape
induced by the unit moment.

1.0
A B
A

0.2 4 El 0.2
X

>

Bending moment at distance x = EI d’z/dx”

Eld’zldx* =+ 1.0 — 0.2x Equation (1)

Eldz/dx =+ 1.0x—0.2x*/2+ A4 Equation (2)
Elz=+x%2 - 02x°/6 + Ax + B Equation (3)
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Solution
Topic: Influence Lines for Beams
Problem Number: 9.4 Page No. 2

Apply the boundary conditions:
when x =0 z=0 s B=0
whenx=50 z=0 s A=[-25.0/2+ (0.2 x5.0°/6]/5.0 = - 1.667

whenx =0 The slope at A is given by dz/dx .. Oy = x0= + A/EI=— 1.667/EIl
whenx=50 @s=[+ (1.0 x5.0)— (0.2 x 5.0%)/2 — 1.667)/EI =+ 0.833/EI

Consider the span BCD:

M=1.0

TZCI'O

Since the bending moment between B and D is zero, the deflected shape between B
and D comprises two straight sections.

50<x<8.0 ,0aA=+(x—-5.0)0p=(x—5.0)x0.833/EI= (0.833x—4.165)/EIm
whenx=8.0 0 =1[(0.833x8.0)—4.165]/EI =+ 2.50/EI m

Consider ‘x’ from the right-hand side: Ol 5A‘\'

8.0<x<11.0 2.50/E1 T ‘

C

w0 _250EL o 8330El m

X 3.0

For 0 <x <5.0 the influence line co-ordinates are given by:

)
WA = _f(+x%/2 = 0.2x°/6 — 1.667x)/EI}/(1.667/El) = (= 0.3x* + 0.02x° + 1.0x) m

AYA
For 5.0 <x < 8.0 the influence line co-ordinates are given by:

o
LA = (0.833x — 4.165)/EI}/(1.667/El) = (— 0.5x + 2.50) m
AYA
The influence line values are determined by substituting appropriate values for x
measured from the left-hand side.

For 8.0 <x <11.0 the influence line co-ordinates are given by:

0,
LA = (0.833x/ED)/(1.667/EI) =—0.5x m
A5A
The influence line values are determined by substituting appropriate values for x
measured from the right-hand side.
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Solution
Topic: Influence Lines for Beams
Problem Number: 9.4 Page No. 2

M, = (concentrated load X ordinate) + (distributed load X area)
20.0 kN load traverses both spans

20 kN
40.0 kN/m

Influence line for M,

Consider span AB:

The maximum ordinate occurs where the slope is zero, i.e. dz/dx =0
Eldzldx =+1.0x-0.2x"/2-1.667=0 .. 0.1x’ = 1.0x + 1.667 =0
sox=2.114m from A

Influence line ordinate dxp maximum = (= 0.3x% + 0.02x° + 1.0x)

The maximum influence line ordinate at 2.114 m from A =+ 0.962 m

Area under the influence line diagram is given by:

jos'o(—o.3x2 0,022+ 1.0x)dy = [ ~0.1x° +0.005x" +0.5x2]2= +3.125 m?

Consider span BCD: dscp maximum = (— 0.5x + 2.50) m

The maximum ordinate occurs at point C, dscp maximum = — (0.5 X 8.0) +2.50=—=1.5m
Area under the influence line diagram between B and C is given by:
—(0.5%3.0x1.5=-225m’

(b)

The maximum value for M, occurs when the concentrated load is 2.114 m from
support A, i.e.

M s maximum = +(15.0 X 3.125) — (15.0 % 2.25) + (20.0 X 0.962) = + 32.37 kNm 7

()
The minimum value for M, occurs when the concentrated load is at point C
M p minimum = T(15.0 X 3.125) — (15.0 x 2.25) — (20.0 x 1.5) = — 16.88 kKNm




10. Approximate Methods of Analysis

10.1 Introduction

The use of computer software is invariably employed by engineers when undertaking
mathematical modelling in structural analysis and design. The results from such analyses
are always an approximation to the actual structural behaviour irrespective of the
complexity and sophistication of the software. All software results are dependent on the
assumptions made by the developers of that software and the limitations on use of the final
product.

It is important when using such methods that design engineers can verify the accuracy of
the results from the computer analysis and detect any gross errors due to e.g. incorrect
input data, incorrect modelling being used or inappropriate use being made of the
software. This can be achieved in many cases by the use of approximate manual
calculations.

In addition to confirming the validity of computer output, it is often convenient for an
engineer to obtain approximate values of design effects induced in members by the design
loading when it is neither convenient nor suitable to carry-out a full, more accurate
rigorous analysis, e.g. whilst on site, attending meetings with other related professionals or
conducting preliminary design for initial feasibility and/or costing of a proposed project.
Clearly more detailed analysis/design will be required at a later stage of the project.
Statically determinate structures are relatively straight forward to analyse requiring only
the use of the three equations of static equilibrium for plane-frames to obtain axial loads,
shear forces and bending moments.

Statically indeterminate structures are more complex and require knowledge of the
relative member stiffness properties and the compatibility characteristics of the structure to
determine accurate results. Approximate methods of analysis can be used to estimate the
required member forces in a structure by consideration of the deflected form and in rigid-
jointed frames, the consequent points of contraflexure, i.e. points of zero bending moment
in the members. Where a point of contra-flexure can be identified and its position
estimated with reasonable accuracy then this point may be regarded as a ‘pin’ in the
structure. The existence of a pin provides an additional equation which may be used in
conjunction with the three standard equations of static equilibrium. In the case of pin-
jointed frames, tension only systems are sometimes used in which members are slender
and designed to resist only tension forces; any member with a compression force is
assumed to buckle and hence be ineffective. This arrangement is very common in the
provision of cross- bracing to resist lateral wind forces.

This chapter describes various techniques which may be used to obtain approximate
member forces for indeterminate, pin-jointed and rigid-jointed structures suitable for
preliminary analysis or checking computer output as indicated above.

10.2 Example 10.1 - Statically Indeterminate Pin-jointed Plane Frame 1
The degree of indeterminacy of the pin-jointed frame shown in Figure 10.1 is given by:

Ib=(m+r)—2n=(16+3)—(2x8)= 3 (see Chapter 1: Section 1.5.1)
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45 kN

B C Dy
=
<
on

(a) Ha
A H G F
Va Ve
J 3baysat4.0m=12.0m

(b) —=¢

DA
Va T — tension G
C - compression Figure 10.1 Deflected form

It is evident from the deflected form that diagonals BH, CG and EG increase in length and
hence are tension members whilst diagonals AC, HD and DF decrease in length and are
compression members.

Since the degree of redundancy is equal to three it is necessary to make three assumptions
in order to analyse the frame using the equations of equilibrium alone. There are two
options as follows:

1) assume a tension bracing system in which the compression diagonals are slender
and assumed to be ineffective and do not support any load. The frame is therefore
reduced to a statically determinate frame and the forces determined as indicated in
Chapter 3 with the forces as shown in Figure 10.2.

L 20 kN > 9 < 40 kN
. rd
/
e - 25 kY
15 kN 15 kN
_zero _zero
Zero ,/
ZEero »—20 KN—=
15 kN

Figure 10.2
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il) assume a bracing system in which all of the diagonals are assumed to be non-
slender and have the same cross-sectional area. The shear load in any given panel is
assumed to be shared equally by the two diagonals in the panel, one in tension and
the other in compression. Three additional equations can be obtained by considering
the equilibrium of three sections 1-1, 2-2 and 3-3 indicated in Figure 10.3.

Where the cross-sectional areas of the two diagonals are not the same, distributing
the shear in proportion to their axial stiffness, i.e. EA/L, will give a more accurate

solution.
45 kN
i C i v i E
i ! 4 i
AA H | G T F3X

15 kN 30 kKN

All diagonals can resist tension or compression.

Figure 10.3

sinf=3.0/5.0=0.6 cos#=4.0/5.0=0.8

Section 1-1 tve T SF,=0

+15.0 — Fusin@+ Facsind=0
(Note: Assume Fac =— Fsn)
S Feu=15.0/(2x0.6)=+ 12.5 kN (Tie) ——e

B Fsc Fac=—Fsu=-12.5kN (Strut) >
: +ve ) ZMx=0

Fsu
+ (Fiicos@x 3.0) + (Fuc x 3.0) =0

Fac . Fae=—(12.5 % 0.8 x 3.0)/3.0 = — 10.0 kN (Strut)

g ﬁ P Ve ZF=0
Frc+ (Fu cost) + (FaccosO) + Fau=0 —.
15 kN S Fan=+10.0 - (12.5 x 0.8) + (12.5 x 0.8) =+ 10.0 kN (Tie)

Consider the vertical equilibrium at joint A:

Fas 551N
zero / +ve ? 2XF,=0
—»10.0 kN .
+15.0+ Fagp— Facsind=0

BN . Fap=—-15.0+(12.5x0.6)=—7.50 kKN (Strut) —<—>
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Section 2-2
. c +ve § £F, =0
> Foo 1150 - Fegsind+ Fupsind=0
(Note: Assume Fup = — Fcg)
Fee - Fe6=15.0/(2%0.6) =+ 12.5kN (Tie) ———
Fao o b= Fog=—125kN (Strut) ——
ZCro 6

» Fuc
4—‘* H +Ve) SMuy=0
15 kN

+(15.0 x 4.0) + (Feg cosOx 3.0) + (Fep x 3.0) = 0
v Fep=—(15.0 x 4.0) — (12.5 x 0.8 x 3.0)/3.0 = — 30.0 kN

—~— (Strut)
+ve —2XF=0

Fep + (FCG COSH) + (FHD COSH) + Fug=0
o Fuo=+30.0— (12,5 x 0.8) + (12.5 x 0.8) = + 30.0 kN

—_—— (Tie)
Consider the vertical equilibrium at joint H:

+ve 12F,=0
125kN FHC 1p5kN T
L0 :ﬂ 0.0 kN +(12.5 x sin6) — (12.5 x siné) + Fau=0
H .. Fuc = zero
Section 3-3 tve T 2k, =0

+30.0 — Fggsin@+ Frpsinf=0
(Note: Assume Frp = — FEr)
5. Frs=30.0/(2 x 0.6) =+ 25.0kN (Tie) ———

Feo 778 Fip=— Fig=—25.0 kN (Strut) ———»
Feg +ve ) ZMy=0
Frp
— (Fe cosOx 3.0) — (Fep x 3.0)= 0
Fro < &NF v Fep=—(25.0 x 0.8 x 3.0)/3.0 = — 20.0 KN (Strut)

+ve —=2F=0

— Fep — (Frg cost) — (Frp cosO) — Frg =0 ——
o Frg=+20.0 — (25.0 x 0.8) + (25.0 x 0.8) =+ 20.0 kN (Tie)

30kN

Consider the vertical equilibrium at joints G and F:
Fcp

125K P 250K qve b 3F,=0
30.0 :G&l 200kN +(12.5 x sinB) + (25.0 x sinB) + Fsp= 0

<. Fuc=—(12.5 % 0.6) — (25.0 x 0.6) = — 22.50 kN (Strut)

———

250 kN Fre +ve 2F, =0
. +30.0 — (25.00 x sin6) + Fip=0
oors o Fre=-30.0+(25.0 x 0.6) =— 15.0 kN (Strut) —~—

30 kN
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The approximate member forces and the more accurate results using computer analysis are
shown in Figure 10.4 and Figure 10.5 respectively.

E
10.0 kN P>
12.5 kN . \
7.5 kN 15.0 kN
12.5 kN .
Z€ro
»>—10.0 kKN—¢
A F
15 kN Fi . .
igure 10.4: Approximate member forces 30 kN
C E
9.48 KN—» < 28.35 kN 16.98 k
11.85 kN 10.43 kN 21.22 kN
7.11 kN 1.63 kN 18.99 kN 12.73 kN
13.15kN 14.57 kN 28.78 kN
Z€ro
— 10.52 kN— < 31.65 kN 23.02 kN
A H G F
15 kN .
Figure 10.5: More accurate member forces 30kN

10.3 Example 10.2 - Statically Indeterminate Pin-jointed Plane Frame 2

In some indeterminate trusses the applied load system can be apportioned to two or more
statically determinate component trusses which can be considered to make up the original
truss. The number of component trusses making up the original truss is equal to (/p +1).
The member forces are then determined by superposition of the two force systems.
Consider the truss shown in Figure 10.6 where Ip = (18 +3) — (2 x 10) = 1.

B ClZO kN D l20 kN E to kN ¥

A J 1 H
Va 4baysat4.0m=16.0m Ve

Figure 10.6

This truss can be decomposed into two statically determinate trusses (i.e. Ip + 1) as shown
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in Figure 10.7 and Figure 10.8 with their respective applied loads. The method-of-sections
/joint resolution can be used to determine accurately the member forces as indicated.

20 kN
B C D l E F
}\:\ 10.0 kN )/\:\ 10.0 kN >
10.0 kKN 14.14kN 14.14kN 14.14kN 14.14kN  10.0 kN 3
zero \\/
ZEro > 20.0 kN <t ZEero
A J | H G
10.0 kN 4baysat4.0m=16.0m 10.0 kN
N T
Figure 10.7
20 kKN 40 kKN
B C D E F
T ZEero < 30.0 kN ;/\ZE:I‘G T
zero  35.36 kN 7.07 kKN 7.07 kKN 4950 kKN  zero <

A

<
Zero \/
> 25.0 kN: < > 35.0kN <
25.0 kN A J I H G 35.0 kN
4 bays at4.0 m=16.0m
N

Figure 10.8

The final member forces are found by adding those determined from the individual
component trusses as shown in Figure 10.9, e.g. consider members AB and JD

Total force in member AB =—10.0+0=-10.0 kN compression

Total force in member JI=+20.0 +25.0=+45.0kN  tension

20 kN 40 kN

D
40.0 kN 40.0 kN

14.14kN  14.14 kN

7.07 kN 7.07 kN

45.0 kN 55.0 kN
J I H

4 bays at 4.0 m=16.0 m

Figure 10.9
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10.4 Example 10.3 - Statically Indeterminate Single-span Beam

Consider the statically indeterminate beam shown in Figure 10.10(a) which is fully fixed
at its end supports and carries a uniformly distributed load of w kN/m length. The
deflected shape and the bending moment diagram are indicated in Figure 10.10(b) and
Figure 10.10(c) respectively.

Ma w kN/m Ms
(@) A B
Va L Vs

K N

|tension . . tension |
®) A Er

(c)

wL*8 — M
Figure 10.10

The beam has three degrees-of-indeterminacy. Generally the axial loading can be
considered to be negligible and ignored and hence two assumptions are required to
determine the bending moments and support reactions. It is evident from the symmetry of
the beam and loading that two points of contraflexure exist; these can be regarded as pins,
i.e. point of zero moment.

Since the beam in Figure 10.10 is a standard case. The value of the support moments ‘M’
is known to equal + wL?/12 and each vertical reaction ‘¥ and Vg’ is equal to wL/2.

This information can be used to determine the position of the points of contraflexure for
the beam, i.e.

wL?/12 wL?/12
w kN/m
A ;
Assumed pin Assumed pin
(a) WL/2 h L h WL/2

(b)

Figure 10.11
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Consider the central portion of the beam with span (L — 2/)):
From Figure 10.10:  Mmaximum = (WL*/8 — M) = (WL*/8 — wL?/12) = wL?/24
wxl | wxl} _ wx L
§ 8 24
hence 1, =L/\3=0.58L and [ =(L—0.58L)/2=021L

Similar calculations can be carried out for other standard cases as shown in Figure 10.12.
In reality it is unlikely that a support will be fully fixed. In most cases there will be some
flexibility and rotation at the support points depending on the stiffnesses and loads on each
span. Points of contraflexure can be assumed based on the support and loading conditions
in each individual case and the values given in Figure 10.12.

From Figure 10.11:  Mmaximum =

wL?/12 w kN/m wL?/12 wL?/8 w kN/m

wiL/2 :\ Assumed pins ~ i SwL2/8 i Assumed pin Iw2/
Lo21 L 0.58L 1 021L | 0251 k 0.75L I
|
tension i i tension | tension i
| _"‘h\\fformedshap’e’,f:’J’ | | _~~‘L\\Deformedshape ,,/_%_
T “rension T T TTmeeeoT 7 ]
point of contraflexure  point of contraflexure point of contraflexure tension
wL?/12 wL?/12 wL'/8

~~~~~~~~~~~~~~ wl? / 8

9wL?/128 at 0.625L from fixed support

PL/8 PKN PL/8 3PL/16 PKN
N _C : 3
> A A 7 )
Po :\Assumed pins | PP | 11PL/16 | Assumed pin 5P/16
J 0.25L 0.50L J 0.25L J 0.27L | 0.73L
T K [ N N
1 ! 1
| tension i i tension | tension i
I __‘ﬂrpi:formed Shapf,»f"— I [ "~y ~ _ Deformed shape _ _ - -~ ¥
t;n_si-an T _______ /
point of contraflexure  point of contraflexure point of contraflexure tension
PL/8 PL/S SPLIS
pra N
0.25L 0.27L

PL/8
Figure 10.12 SPLI32
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10.5 Example 10.4 - Multi-span Beam

A uniform, three-span continuous beam ABCD is fixed at support A and supported on
rollers at B, C and D as shown in Figure 10.13(a). The deformed shape and shape of the
bending moment diagram are shown in Figure 10.13(b) and Figure 10.13(c) respectively.
Span BC supports a uniformly distributed at load of 10 kN/m length. Assuming suitable
points of contraflexure, determine the approximate value of the support reactions.
In =3 .. 3 pins required
A B 10 kN/m

C D
N\
7 s 5
6.0 m 5 8.0m 5 6.0m
1 LN ! K \ 3
(a) — three-span beam
h b i h;

| - -~ P, - LT T -

| T JSSoreW R} P3/ & R3CT) jese)
points of contraflexure : et - T

point of contraflexure

(b) — deformed shape of the beam
| Mg

L M

Ma
(c) — shape of the bending moment diagram
Figure 10.13

In span AB there is no loading and Ma = Mg/2 (i.e. the carry-over moment — see
Chapter 4: 4.7.2) and consequently the point-of-contraflexure must be one third of the
span from A, i.e. /; = 6.0/3 = 2.0 m. In span BC it is reasonable to assume the same values
for /; and /5 since both ends have a significant continuity moment and the difference in
rotation at each support will be small. It is typical in such situations to assume a value of
0.15L to allow for the rotation of the joint, i.e. /»=13=(0.15 x 8.0) = 1.2 m. The beam can
be considered in four sections as shown in Figure 10.14.

1

r 10.0 kN/m IOOkN/m 10.0 kN/m
p—z P] é—% x D
%VD

4.0m lelTn JlZ{n 6.0 m J

\ \ ’\ \ \ N

Figure 10.14
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Consider section P; to Ps:
10.0 kN/m tve TZFZ=O
PziF ﬂm —(10.0x5.6)+ Va+V3=0 and Vo=V3
2 sem V3 V= T13=56.02=28.0kN
~ 1

Consider section P; to Py:
v, 28.0 +Ve) XMe=0

10.0 kN/m
P, P, — (V1 x4.0)+(10.0x 1.2%)/2 +(28.0x 1.2) =0
B S V1=10.2 kN
Vs

| 40m 12 +VGTZFZZO
: [12m
‘ N Jg—10.2-(10.0x 1.2) -28.0=0 .. ’)g=50.2 kN T
Mg =—(10.2 x 4.0) = — 40.8 kNm

Consider section A to P;:

10.2 kN +ve } £F, =0
AB—IPI “VA+102 =0 . Va=102KN |
Ma=+(10.2 x 2.0) = + 20.4 kNm
VA |20m
Consider section P; to D:
+ve ) IMc=0
28.0 kKN
10.0 kN/m + (Vb x6.0)—(10.0 x 1.2%)/2 - (28.0 x 1.2) =0
P, = D .'.VD=6.8kNl
P ﬁEVD +ve § BF, =0
12 60m Ve—-280-(10.0x12)-68=0 . Ve=468kN 1
T K

~ Mc=-(6.8 x 6.0) = — 40.8 kNm

Check: Total applied vertical load = (10.0 x 8.0) = 80.0 kN l
Total vertical reaction = (— 10.2 + 50.2 + 46.8 — 6.8) = 80.0 kN T

40.8 kNm (40.25 kNm)

40.8 kNm (34.21 kNm)

(10.0 x 5.6%/8 = 39.2 kNm
(42.80 kNm)

20.4 kNm (20.13 kNm)

Figurel0.15
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The assumed points of contraflexure in continuous beams are given in some design codes,
e.g. in the Eurocode for the design of structural concrete, EN 1992-1-1:2004: Figure 5.2,
the value of 0.15L is adopted as indicated in Figure 10.16. where /, is the distance between
points of zero moment for calculating the effective flange width of T and L beams.

A A &

o= )
« J.0,15(L +h) |, lo= (0,150 + [5)
« L

=
- A

lo= 10,70/

A4
'y

b I3

where the length of the cantilever, /3, should be less than half the adjacent span and the
ratio of adjacent spans should lie between 2/3 and 1.5.

Figurel0.16: Extract from EN 1992:1-1:2004

10.6 Rigid-jointed Frames Subjected to Vertical Loads

In rigid-jointed frames it is unlikely that the joints will be fully rigid. Generally there will
be some flexibility at the support points of the beams to the columns. Since the actual
beam/column joint will be neither free (i.e. zero moment) nor fully fixed it is common
practice to assume that the points of contraflexure occur between the assumed fixed-ends
and the positions indicated in Figure 10.12, e.g. at an average value equal to
(0+0.21)L = 0.1L from the column.

It is also acceptable to ignore the axial load effects in the beams since they are negligible
and have no significant effect on the deformed shape of the beams. Consider the three-
storey, three-bay rigid-jointed frame indicated in Example 10.5.

10.6.1 Example 10.5 — Multi-storey Rigid-jointed Frame 1

A three-bay, three-storey rigid-jointed frame is shown in Figure 10.17. Using the data
given determine the approximate

(i) determine the member forces,

(i) determine the support reactions and

(ii1) draw the approximate bending moment diagram for the frame.

8.0 kN/m 8.0 kN/m 8.0 kN/m

Note: all members have the

[N NN NN AR NN NN RRRANNENNREEN
same EI value. Efﬁ M N ol Pl
i 12.0 kN/m 12.0 kN/m 12.0 kN/m
i " — — L_
e 12.0 kN/m 12.0 kN/m 12.0 kN/m
~— e ——————————
£
< 5 A Ms e Mo JP
. B C
Figure 10.17 f‘ ‘\ Cl N 5“\ ﬁl \\
Ha 6.0m 113 gom ¢ ] 6om P

Va VB Ve Vp



The deformed shape of the frame,
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neglecting axial deformation,

is shown in

Figure 10.18 with the assumed points of contraflexure of the beams as indicated.

M o~_____ ___-- T On O p
N SN T 719N /
1 =0.1 x6.0=0.6m I =0.1x8.0=08m l1 =0.1x6.0=0.6m

I o T e — L
N\ 0 I N  a /
l1 =0.1 x6.0=0.6m 5 =0.1x8.0=08m l1 =0.1x6.0=0.6m

E[O===———=—= - __- =0t RRC Ry o—H
N JE N T 6N /
11 =0.1x6.0=0.6m 11 =0.1x80=08m l[ =0.1x6.0=0.6m

B C D

M T N s
e = i ] =

Figure 10.18

Consider the force systems indicated in Figure 10.19 in which the points of contraflexure

are assumed to be pins.

14 V2
8.0 kKN/m N 8.0 kKN/m
M H H H
0.6 m 6mj0.8 m 6.4 m
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I I 12.0 kN/m I J | 12.0 kN/m
0.6 m i i 6mj0.8 m i 6.4 m
| £) | £
|4 | 41 V2
12.0 kKN/m F 12.0 kN/m
0.6 m i i 6mj0.8 m i 6.4 m i
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Figure 10.19
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Application of the equations of equilibrium as in Example 10.4 yield the member forces
determined as follows:

Consider the first floor level shown in Figure 10.20.

ngl "
12.0 kN/m 12.0 kN/m 12 0 kN/m

s?lmllli) H
Mpye | My i 6.4 i Mcr MGH Mrc

Figure 10.20

Beam EF: V) = (12.0 x 5.4)/2.0 = 32.4 kN
Mg = Mre = (12.0 x 0.6%)/2 + (32.4 x 0.6) = 21.6 kKNm

Beam FG 5= (12.0 x 6.4)/2.0 = 38.4 kN
Mra = Mar = (12.0 x 0.8%)/2 + (38.4 x 0.8) = 34.6 kNm

Beam GH 71 = (12.0 x 5.4)/2.0 = 32.4 kN
Man= Mg = (12.0 x 0.6%)/2 + (32.4 x 0.6) = 21.6 kNm

The out-of-balance moment at joint E = 21.6 kNm is shared by the columns E/ and E4 in
proportion to their flexural stiffnesses kgr and kea, i.e. EI/L values.

ker=1/3.5/(1/3.5 + 1/4.5) = 0.56 and kga = 1/4.5/( /3.5 + [/4.5) = 0.44

Mer=(0.56 x 21.6) = 12.1 kNm and Mea=(0.44 x 21.6) =9.5 kNm

The moments at the bases of the columns are normally assumed to be the same as the
values at their top ends. Assume the support moment Mag = 9.5 kKNm

The out-of-balance moment at joint F = (34.6 — 21.6) = 13.0 kNm is shared by the
columns FJ and FB in proportion to their flexural stiffnesses kgy and &es.

kFJ =0.56 and kFB =0.44
Mrpy=(0.56 x 13.0)=7.3 kNm and Mps=(0.44 x 13.0) =5.7 kNm
Assume the support moment Mgr = 5.7 kKNm

Since the structure and loading are symmetrical joint G is the same as joint F.
MGK: 7.3 kNm and M(]c: 5.7 kNl’l’l
Assume the support moment Mcg = 5.7 KNm

Due to the symmetry joint H is the same as joint E.
MHL: 12.1 kNm and MHD: = 95 kNm
Assume the support moment Mpu = 9.5 kNm
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Consider the second floor level shown in Figure 10.21.

| 41
12.0 kN/m 12.0 kN/m 120kN/m

gl "
L
i i My | My i 6.4 MKJ MKL Mik

Figure 10.21

As for the first floor V1=324kN My=Mnp=21.6 kNm
V2:38.4kN MJK:MKJ:34.6 kNrn
Vl :324kN MKL:MLK:21.6 kNm

The out-of-balance moment at joint I = 21.6 kNm is shared by the columns IM and IE in

proportion to their flexural stiffnesses A and kie.
ko =1/3.5/(1/3.5 + 1/3.5) = 0.50 and ki = 1/3.5/( 1/3.5 + 1/3.5) = 0.50

M= (0.50 x 21.6) = 10.8 kNm and M= (0.50 x 21.6) = 10.8 kNm

The out-of-balance moment at joint J = 13.0 kNm is shared by the columns JN and JF in
proportion to their flexural stiffnesses & and 4jr.

kJN =0.50 and kJF =0.50
Min=(0.50 x 13.0) = 6.5kNm and M= (0.50 x 13.0) = 6.5 kNm

Since the structure and loading are symmetrical joint K is the same as joint J.
MKo= 6.5 kNm and MKG: 6.5 KNm

Due to the symmetry joint L is the same as joint 1.
MLP= 10.8 kNm and MLH: =10.8 kKNm

Consider the roof level shown in Figure 10.22.

| 41 | €1 V> | 41
8 0 kN/m 8 0 kN/m

MON MOP Mpro

Figure 10.22

Beam MN: 7} = (8.0 x 5.4)/2.0 = 21.6 kN
Min = Myt = (8.0 x 0.6%)/2 + (21.6 x 0.6) = 14.4 KNm

Beam NO 75 = (8.0 x 6.4)/2.0 = 25.6 kN
Muo = Mox = (8.0 x 0.82)/2 + (25.6 x 0.8) = 23.0 kNm

Beam OP 7} = (8.0 x 5.4)2.0 =21.6 kN
Mop = Mo = (8.0 x 0.6%)/2 + (21.6 x 0.6) = 14.4 KNm
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The out-of-balance moment at joint M = 14.4 kNm is balanced by the column ML

MM[: 144 kNl’Il

The out-of-balance moment at joint N = (23.0 — 14.4) = 8.6 kNm is balanced by the

column NJ.
MNJ: 8.6 kNrn

Since the structure and loading are symmetrical joint O is the same as joint N.

Mok = 8.6 KNm

Due to the symmetry joint P is the same as joint M.

MHL: 14.4 KNm

The bending moment at the mid-span of beams EF, 1J, GH, and KL is given by:
M=~ (wWP/8=(12.0 x 5.4%)/8 =43.7 kNm

The bending moment at the mid-span of beam MN is given by:
M~ (WP/8=(8.0 x 5.4%)/8 =29.1 kNm

The bending moment at the mid-span of beams FG and JK is given by:

M=~ (wP/8=(12.0 x 6.4%)/8 = 61.4 kNm

The bending moment at the mid-span of beams NO is given by:
M~ (WP/8=(8.0 x 6.4%)/8 = 41.0 kNm

The approximate bending moment diagram is indicated in Figure 10.23.

23.0 kNm 23.0 kKNm
144 kN 14.4 KNm 14.4 KNm 144 KN
8.6 kNm 8.6 kNm
29.1 kKNm 29.1 kNm
34.6 kNm 41.0 kNm 34.6 kNm
21.6 kKNm 21.6kN7 21.6 kKNm //21.6 KNm
10.8 KNm
108 Nmy= e N 6.5 kNm\ 6.5 kNm 6.5kNm|/6.5kNm  10.8 kNm
43.7 kNm 34.6 kKNm 34.6 kKNm, 43.7 kNm
21.6 kNm 21.6 kNm 61.4 kNm / 21.6 kNm /21.6 kNm
5kN
9.5 KNmE o Nm| 5.7 kNm || 7.3 kNm 73 kNm|[5.7 kNm| 121 knm| ] K
43.7 kNm 43.7 kNm
61.4 kKNm
&9.5 kNm XS] kNm 5.7 kNmZ 9.5 kNmZ

Figure 10.23: Approximate Bending Moment Diagram
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The level of accuracy of the results is dependent on the assumed positions of the points of
contraflexure, i.e. the assumed value of /. The limiting values range from very flexible
joints with zero moment (/ = 0) to fully-fixed joints with / equal to the values indicated in
Figure 10.12 (e.g. for a distributed load / = 0.21L where the joint moment is equal to
wL?/12). The assumption of 0.1L in this Example 10.5 will give results which lie between
those limits and which are the correct order of magnitude.

The column axial loads and support reactions are determined readily by summation of the
roof and floor loads and rotational equilibrium of the bottom level of columns as indicated
in Figure 10.24.

Column Axial Loads:

NMI = NPL ~ (80 X 30) = 24.0 kN

N = N = 24.0 + (12.0 x 3.0) = 60.0 kN
Nea = Nup = 60.0 +(12.0 x 3.0) =96.0 kN
NNJ = NOK ~ (80 X 7.0) =56.0 kN

Nir = Nkg = 56.0 + (12.0 x 7.0) = 140.0 kN
Nea = Nmp =~ 140.0 + (12.0 x 7.0) = 224.0 kN

Support Reactions:
VA = VD ~ 96.0 kN; VB = Vc ~224.0 kN
Hx=Hp~(2x95)/45=42kN; Hs=Hc~(2x57)/45=25kN;

3.0m 7.0 m 7.0 m 3.0m

(IR AN A RN NN AR
1
1
1
120 kN/m !

1
1
1
1
12.0 kN/m 12.0 kN/m

I N | %
. 9.5 kKNm F 5.7 kKNm 5.7 kNm\ G 9.5 kNm
wv
~ B kN kN C
A 9.5 kNm 5.7kNm 5.7 kNm 9.5 kNm D
'd 'd V4B |
i —— |
Ha A Hg “ Hc A Hp
Va 14 Ve 155

Figure 10.24

Note: the side-sway induced by gravity loads is normally very small (or zero where both
the frame and loading are symmetrical) and consequently ignored in approximate analyses.
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10.6.2 Approximate Analysis of Multi-storey Rigid-jointed Frames Using Sub-frames

Many reinforced concrete structures are cast in-situ resulting in a loadbearing frame in
which the slabs, beam and columns act as a continuum to resist and transfer applied loads
to the foundations. In braced concrete and steel structures, elements such as the cross-
bracing, shear-walls and or shear-cores are designed to resist the lateral wind loading in
transverse and longitudinal directions whilst the slabs, beams and columns are designed to
resist the vertical gravity loading.

The design of rigid-frames is based on an analysis to determine maximum sagging and
hogging bending moments, maximum shear forces and/or axial loads in the members. The
continuity of the structure requires an analysis to be carried out for multi-span beams
and/or slabs in addition to multi-storey columns.

As an alternative to the method indicated in Section 10.6.1, the structure can be considered
as a series of sub-frames. Consider the multi-storey frame indicated in Figure 10.25 in
which it is assumed that the lateral loading is resisted by separate elements, not indicated,
such as shear-cores. The slabs, beams and columns are assumed to transfer only vertical
loads by rigid-frame action. The sub-frames may be analysed using the method of moment
distribution.

/
!
!

L
-
-

R
Q
%/

%

TTTT

Sub-frame for analysis of beams and columns

Figure 10.25

Figure 10.26

10.6.2.1 Simplification into Sub-frames

Each sub-frame may be taken to consist of the beams at one level together with the
columns above and below. The ends of the columns remote from the beams may generally
be assumed to be fixed unless the assumption of a pinned end is clearly more reasonable
(for example, where a foundation detail is considered unable to develop moment restraint).
This is illustrated in Figure 10.26.
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10.6.2.2 Alternative Simplification for Individual Beams and Associated Columns

The moments and forces in each individual beam may be found by considering a
simplified sub-frame consisting only of that beam, the columns attached to the end of that
beam and the beams on either side, if any.

The column and beam ends remote from the beam under consideration may generally be
assumed to be fixed unless the assumption of a pinned end is clearly more reasonable. The
stiffness of the beams on either side of the beam considered should be taken as half their
actual values if they are taken to be fixed at their outer ends.

The moments in an individual column may also be found from this simplified sub-frame
provided that the sub-frame has as its central beam the longer of the two spans framing
into the column under consideration. This is illustrated in Figure 10.27.

\ T T |

| / l i \ |
use 0,5 x actual use 0,5 x actual
beam stiffness beam stiffness

P e Sub-frame for analysis of middle beam or columns
- >

- gl Figure 10.27

10.6.2.3 ‘Continuous Beam’ Simplification

The moments and forces in the beams at one level may also be obtained by considering the
beams as a continuous beam over supports, providing no restraint to rotation. This is
illustrated in Figure 10.28.

Sub-frame for analysis of beams at any one level

-
-

> Figure 10.28

10.6.2.4 Asymmetrically-loaded columns where a beam has been analysed in accordance
with the ‘Continuous Beam’ Simplification in Section 10.6.2.3 above.

The ultimate moments may be calculated by simple moment distribution procedures, on
the assumption that the column and beam ends remote from the junction under
consideration are fixed and that the beams possess half their actual stiffness. The
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arrangement of the design ultimate imposed load should be such as to cause the maximum
moment in the column. This is illustrated in Figure 10.29.

A number of critical load patterns must be considered in all of the above sub-frames to
determine the design values of shear and bending. In the case of columns it is necessary to
include load patterns which will produce (i) the maximum axial effect combined with its
coincident bending effect and (ii) the maximum bending effect combined with its
coincident axial effect.

| /‘ \ |
use 0,5 x actual _ 1 use0,5 x actual
beam stiffhess beam stiffness

Alternative sub-frame for analysis of column where beams
are analysed using the continuous beam simplification.

-

[ Figure 10.29

10.6.3 Simple Portal Frames with Pinned Bases Subjected to Horizontal Loads

Simple rectangular portal frames with pinned bases as shown in Figure 10.30 are singly
redundant and consequently require one assumption in order to determine the member
forces. The deflected shape indicates a point of contraflexure assumed to be at the mid-
span of the beam. Analysis using this assumption results in the horizontal support
reactions being equal to P/2. This is consistent with frames in which the columns are
identical where the lateral load divides in proportion to the flexural stiffness of the
columns producing equal horizontal reactions at the base.

Point of contraflexure — Q=

______________ C
t +ve ) IMx=0
Point of contraflexure —(VoxL)+(Pxh)=0
=1 - Vo=Ph/L D
+Ve) ZMnid—Span otBc= 0 o
. o

—(VoxL)2+(Hpxh)=0
S Hp=P/2 and Ha=P/2

Figure 10.30

10.6.3.1 Example 10.6: Simple Rectangular Portal Frame — Pinned Bases

A rigid-jointed, simple portal frame with pinned bases is subjected to a horizontal load of
15.0 kN as shown in Figure 10.31. Determine the approximate values of the support
reactions and sketch the approximate bending moment diagram.
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15.0 KN—» —%
B C
=
(=)
ﬂ"
H A DO~ F
Figure 10.31 A é 100 4_ ’
Va 3 ~m Vb

+ve ) ZMy=0

+(15.0x4.0)— (Vo x 10.0)=0 . Vp=6.0kN }
+ve § £F, =0

+Vat V=0 .. Va=—60kN |}

Hy=Hp=15.02=75kN =<

Bending moment at joints B and C:

Ms=+(7.5x4.0)=30.0kNm (tension inside the frame)
Mc=—-(7.5%x4.0)-30.0kNm (tension outside the frame)

(Note: in this case the results are the exact values with the symmetrical frame and
points of contraflexure at the supports.)

30.0 kNm

30.0 kNm

pi
Figure 10.32 Bending moment diagram

10.6.4 Simple Portal Frames with Fixed Bases Subjected to Horizontal Loads

Simple rectangular portal frames with fixed bases as shown in Figure 10.33 have three
degrees-of-indeterminacy and consequently require three assumptions in order to
determine the member forces. The deflected shape indicates points of contraflexure
assumed to be at the mid-span point of the beam and in the columns.

P Pr———————— !
:I T !
Q <+— Points of contraflexure —> ¢
| 1
A Ip=3 A
Figure 10.33 = =4
Y
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The position of the point of contraflexure in the columns is dependent on the relative
flexural stiffness between the columns and the beam. This would occur at the mid-height
position of the column if the beam and the fixed support were infinitely stiff. For a typical
frame there will be some flexibility in both the beam and the support and the point of
contraflexure will be slightly higher than mid-height. It is reasonable to assume a position
equal to 0.6 of the column height from the base.

If the columns are identical then it can be assumed that the horizontal support reactions
and the shear forces in the columns are equal to P/2. This, in combination with the
assumed points of contraflexure at a height of 0.64, will enable the member forces to be
determined. (Note: the point of contraflexure in the beam is not required in this case).

10.6.4.1 Example 10.7: Simple Rectangular Portal Frame — Fixed Bases

A rigid-jointed, simple portal frame with fixed bases is subjected to a horizontal load of
15.0 kN as shown in Figure 10.34. Determine the approximate values of the support
reactions and sketch the approximate bending moment diagram.

15.0 kN > N
B PzT C =
©
P+ Assumed points of contraflexure —>P3 () —¢
=
. Hy == A Dy~ b
Figure 10.34 10.0 *
VA A Um 3 VD

Consider the equilibrium of the frame above a horizontal section through the points of
contraflexure in the columns:

15.0 kKN —>
I
PiO—H Pse—H =

TVz

Figure 10.35 4 | 10.0m

N N

Assume that the column shear forces are equal .. H=15.0/2=7.5kN <*—

+ve ) ZMp=0

+(15.0x 1.6) = (2 x 10.0)=0 .. Va~2.4kN }
+ve § ZF, =0

+Va =0 L Vie-24kN |

Bending moment at joints B and C:
Mp=+(7.5x1.6)=+12.0kNm (tension inside the frame)
Mc=—-(7.5%x4.0)=—-12.0 kNm (tension outside the frame)
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Consider the equilibrium of the frame below a horizontal section through the points of
contraflexure in the columns:

2.4 kKN 2.4 kN
P l—» 7.5 kN 7.5 kN —>C¢> P;3
Ma Mp
\
PRSUEAIN D ﬁﬂ Hp
Figure 10.36 Vi 10.0 m Vo

Assume that the horizontal support reactions are equal:
. Ha=Hp=15.0/2=75kN -

+ve) SMpi= 0
+(7.5%x24)=Mx=0 .. Ma~18.0kNm ¥

+ve } TF,=0
+24-Va=0 . Vam-24kN |

Similarly for column CD 12.0 kNm

12.0 kNm

18.0 KNm =LA 18.0kNmA D]

Approximate bending moment diagram

Figure 10.37

10.7 Multi-storey, Rigid-jointed Frames Subjected to Horizontal Loads

The behaviour of multi-storey, rigid-frames when subjected to lateral loading is different
from that under vertical loading. The deformed shape of the structure indicates a single
point of contraflexure in the beams in addition to the columns as shown in Figure 10.38.
There are generally two methods of approximate analysis which are used, they are:

(1) the portal method which is more suitable for low-rise buildings, e.g. where the
width of the frame is equal to or greater than the height of the frame and

(i) the cantilever method which is more suitable for taller, slender buildings.

10.7.1 Portal Method

In the case of multi-storey, multi-bay frames an assumption in addition to the points of
contraflexure must be made, i.e. the horizontal shear force is divided among all the
columns on the basis that each interior column resists twice as much shear force as the
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exterior columns. The shear force distributed to columns is approximately in proportion to
their flexural stiffness (£1/L). In many cases the interior columns support twice as much
floor area as the exterior columns and consequently tend to be larger. In situations where
this is not the case, e.g. where the exterior columns support masonry infills/cladding rather
than glazing units, the distribution of shear may be modified accordingly.

In general terms for a multi-bay frame where ‘n’ is the number of bays and ‘P’ is the total
shear above the storey being considered, the number of interior columns is equal to
(n — 2) each of which resist P/n whilst the two exterior columns resist P/2n as shown in

Figure 10.38.
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P » -l = = " - - I’ - _"l
Ll I ——— - ’ ——————— ' ————
! ” ! II
1 I 1
P2 <t P 45: P«'; P2 <
—> P —-P —=p —> P
P2 ili Plh Pi“: P/Zi‘\
] F a

Number of bays n =3

Figure 10.38

o Assumed points of contaflexure

The method involves consideration of the equilibrium of a series of horizontal sections
taken through the points of contraflexure at each floor level to determine the shear, axial
force and bending moments in each member as illustrated in Example 10.8.

10.7.1.1 Example 10.8: Multi-storey Rigid-jointed Frame 2

A

three-bay,

three-storey

rigid-jointed frame is shown
in Figure 10.39.

Using the portal method
determine the approximate
values of the member forces
and sketch the bending
moment diagram.

Figure 10.39

N roof level 2.0 kN
N -
g M N 0} P
n
| 27 floor level 10.0kN
!
“ 1t floor level 10.0kN
M -
E F G H
g
A Ma Ms A D
N BN c N
A A7 ground level \ —-—‘—
Ha T 6om o som 1 6om
Va Vs Ve Vb
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Consider the equilibrium of the frame at a series of horizontal sections through the points
of contraflexure in the columns at each floor level assuming axial loading in the columns
and the shear force distributed as indicated in Figure 10.40:

O P-+——5.0kN

Ps P7
Ih —> 2 H P3sO— 2H P4 H
V> V3 Va

Figure 10.40

(H+2H+2H+H)= 6.0H=5.0 . H=5.0/6.0=0.83 kN

Consider the first bay M-N

MwN .
X\ /4
+ X Mps= M anh
Ve) ps= 0 . ) o <
+(3.0xV)-(0.83x1.75)=0
. V1~1.45/3.0=0.48 kN T(compression) P1 > 0.83kN
" Figure 10.41

Bending moments at joint M:
Mwi = (0.83 x 1.75)=1.45 kNm (tension outside the frame) x
MMN = MMI ~ 1.45 KNm )

(Note: The shear is constant along member MN and Mywv = Mmn)
Mynv = 1.45 kKNm  (tension inside the frame) (

Consider the first and second bays M-N-O

(.
N vy iO
Mon
0.83 kN P2 —>166kN
0.48 kN
J‘ 8.0m Jh Figure 10.42

+ve) SMp=0

+(10.07) + (4.07%) — (0.83 x 1.75) — (1 66 1.75) =0
+(10.0 x 0.48) + (4.0 x V2) =436 =0 .. V>~—0.44/4.0=—0.11 KN {(tension)

Bending moment at joint N: 1.45kNm  Mvo

Mym = 1.45 kKNm from above ((tension inside the frame) M_GN9_0
Figure 10.43 3

Considering rotational equilibrium of joint N:

Mo = (— 1.45+2.90) = 1.45 kNm ) (tension outside the frame)

Mon = Mno = 1.45 kNm ( (tension inside the frame)
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Consider the third bay O-P

1.75 m

3.5m

4.5m

1 Mor
+Ve) ZMp7=0 o C—p<—50KkN
_ _ _ 4 P71 Mro .
(3.0x Vg) —(0.83 x 1.75)=0
o Vam—1453.0=-048kN |(tension) Ml eiin
Figure 10.44 '
Bending moments at joint P: Va

Mpr =~ (0.83 x 1.75)=1.45kNm (tension inside the frame) x_
Mpo = MpL = 1.45 kKNm (

(Note: The shear is constant along member OP and Mop = Mpo)
Mop =~ 1.45 kNm (tension outside the frame) )

1.40 kNm 1.45kNm

Considering rotational equilibrium of joint O:

N —Q P
Mox ~ 1.46 KNm 0
Mop ~ 1.45 kKNm Mok
Mok = (1.45 + 1.45) = 2.90 kNm Figure 10.45 K

Considering the vertical equilibrium of the sub-frame shown in Figure 10.40:

MN+"n+Vra+rs=0) . V3=—(048-0.11-0.48)=+0.11 (compression)
0.48 kN 0.11 kN 0.11 kN 0.48 kN

“+P1 T<—0.83 kN <— 1.66 kN P %« 1.66 kN P4T<— 0.83 kN

L-+=——10.0 kN

o

H=+—— 10.0 kN

L

— E

J 6.0 m J 8.0 m J 6.0 m J

Figure 10.46

Mn=(0.83x1.75)=145kNm ~~
Min=(1.663 x 1.75)=2.90 KkNm ~~
Mxo=(1.66x1.75)=2.90 kNm ~~
Mip=(0.83x1.75)=1.45kNm ~~
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Consider the equilibrium of the sub-frame above horizontal sections through the points of
contraflexure in the columns between the 1572 floor and 2™ floor/roof levels:

0.48 kN 0.11 kN 11kN 0.48 kKN

0

o 1 % 1

T 0.83 kN T<— 1.66 kN <— 1.66 kKN T<— 0.83 kN
K

J L-=——10.0 kN

I
I Ps (L Ps P7 |
P1 H P, O— 2H P3;O— 2H P4 H
1 14
|

1.75m 1.75m

Va V3 Va
J 6.0m J 8.0m

N l

Figure 10.47
(H+2H+2H+H)= 6.0H=15.0 .. H=15.0/6.0 =2.50 kN

Consider the first bay I-J

+ve ) ZMps=0
+ (3.0 x V1) — (3.0 x 0.48) — (2.50 x 1.75) — (0.83 x 1.75) =0
© Vi=7.27/3.0=2.42 kN f(compression) 0.48 kKN
0.83 kN
Bending moments at joint I: 1.45 kKNm
My~ 145kNm - (i
Mg ~ (2.50 x 1.75) = 438 kNm o e N Do Pe i
My~ (1.45+4.38)=583kNm )
My = My = 5.83kNm ( P 2.50 kN

Vi

Consider the first and second bays I-J-K Figure 10.48

0.48 kN 0.11 kN 0.11 kN
/
\ Y

o Q083 kN L—1.66 KN «— 1.66 kN
= A\ 2.90 KNm AN90 KNm

1 583 kNm&I—F p MicrE—K—y Mo —
£ Ps W Ps " !
“- Miyr Mxc
i
T P =250 kN P2 (—>5.0 kN P3(—>5.0 kN

2.42kN V2 Vs
6.0 m 8.0 m

Figure 10.49
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+Ve) > Mpe= 0

+10.0 (2.42 — 0.48) + 4.0 (V> +0.11) — 1.75 (0.83 +2.50 + 1.66 + 5.0) = 0
. Var—192/40-0.11=-059kN |tension)

N
Bending moment at joint J:
Mir~ (5.0 x 1.75) = 8.75kNm xo 2OINI L i
Min~290kNm 5.83 kNm—~—J——K
Mi~583kNm ( “114“

F

Considering rotational equilibrium of joint J:

My~ (+2.90 +8.75-5.83)=5.82kNm ) Figure 10.50
MKJ = MJK ~ 5.82 kNm (

Mry= M~ 8.75kNm

Consider the third bay K-L

0.11 kN 0.48 kN
N <+ 1.66 kN < 0.83kN
g
el
gl A 2.90 kNm 1.45 KNy,
S 5.82 KNG K— M ——CO——— ML =—— 1.0 kN
E 1 \/ P7 \J
o) Mxka Muu
o
I P;O—5.0kN Py Q—>2.50 kN
Figure 10.51
V3 Va
Jﬁ 6.0m J‘
+ve) SMp=0

+3.0 % (V4 +0.48) + 1.75 x (0.83 +2.50) = 0
o Vamr—583/3.0-048=—-242kN [tension)

Bending moments at joint L:
Min=(2.50x 1.75)=4.38 kNm «_ (tension inside the frame)

P
Considering rotational equilibrium of joint L: 1.45 kNmfl\
Mk ~(4.38 + 1.45) =583 kNm ( Mk 20N
Myru

My =Mk ~5.83 kNm ) Figure 10.52
Mk = (5.0 x 1.75) =8.75 kNm xv

Considering the vertical equilibrium of the sub-frame shown in Figure 10.47:
V+Va+Vs+¥V4—-048+0.11-0.11+0.48)=0
S V3=-(242-0.59-2.42)=+0.59 tcompression)
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Consider the equilibrium of the frame above horizontal sections through the points of
contraflexure in the columns between the ground/1st floor and 1°/2™ floor levels:

2. 42 kN 0.59 kKN 0.59 kKN 2.42 kN
g T<—2 50 kKN T<—5.0 kN %«— 5.0kN T«— 2.50 kN
wv
O
- F G H=——10.0kN
g Ps P7
Q
« P, O— 2H P;O—> 2H P4 H

V> V3 Va
J 8.0m J 6.0m
N I N

Figure 10.53
(H+2H+2H+H)= 6.0H=25.0 .. H=25.0/6.0=4.17 kN

Consider the first bay E-F

+Ve) >Mps=0
+(3.0xV1)—(3.0x242)—(4.17 x2.25) - (2.50 x 1.75) =0
~21.02/3.0=7.0kN T(cornpression) 242 kKN
<+«—25kN
Bending moments at joint E: 438 KNm

Mg = Mg ~438 kNm i
Mga E% Mer -O—el F

Mea~(4.17 x2.25)=9.38 kNm o P g
Mer = (Mga + Mg1) ~ (9.38 +4.38) = 13.76 kNm )
Mg = Mgr~ 13.76 kNm ( P 4.17 kKN

Consider the first and second bays E-F-G Vi Figure 10.54

242 kN 0.59 kN 0.59 kN
\
N O=e—250kN 5.0 kN <«—5.0kN
=
2 8.75 kNm AN 75 KNm
=5 -13.76 KN F— p e MGF%&G%MGH—;
g Ps Mfrs Ps Mac d '
v
N
g\l
P —= 41T kN P2 O—8.34 kN P3Q)—>8.34 kN
7.0 kN V2 Vs
6.0 m 8.0m
I

Figure 10.55
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+Ve) > Mpe= 0

+10.0 (7.0 — 2.42) + 4.0 (V2 + 0.59) — 1.75 (2.5 + 5.0) + 2.25 (4.17 + 8.34) = 0
. Varn—453/40-0.59=-269kN |tension)

J
Bending moment at joint F: 8.75 KNm
Mrpy =~ 8.75 KNm N . My
Mie~ 13.76 kNm 13.76kNm—~-F3—G
Mrp =~ (8.34 x 2.25)=18.77 kNm o Mrs

Figure 10.56
Considering rotational equilibrium of joint F:
My =~ (+8.75 + 18.77 - 13.76) = 13.76 kNm )
Mar = Mrc =~ 13.76 kNm (

Mac ~ (8.34 x 2.25) = 18.77 kNm v

Consider the third bay G-H

0.59 kN 242 kN
A
e <+—50kN ~— 250 kN
g
e
= : r\8.75 kNm 4.38 an;»\
S -13.76 kN'ee%'MGH_O_MHG H——10.0 kN
i L/ R
g 18.77 kNm P P
wv
4
N
N Ps Q—>834 kN Py p—>417KN
Figure 10.57
V3 Va
6.0 m

+ve ) ZMp=0
+3.0 x (Va+2.42) + (1.75 x 2.50) + (4.17 x 2.25) =0
o Vamr—1376/3.0-2.42=~-70kN {tension)

Bending moments at joint H:
Mup =~ (4.17 x 2.25)=9.38 kNm *~ (tension inside the frame)

Considering rotational equilibrium of joint H: 438 kNmrL
Mhuc = (4.38 + 9.38) = 13.76 kNm ( MHG-eH 10.0 kN
MGH = MHG ~ 13.76 kNm )

Mup

Figure 10.58

Considering the vertical equilibrium of the sub-frame shown in Figure 10.53:
N+ Va+Vi+Vs—242+0.59-0.59+2.42)=0
o V3=—(7.0-2.69-7.0)=+2.69 f(compression)
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Consider the equilibrium of the frame below a horizontal section through the points of
contraflexure in the columns between the ground and the 1* floor level:

2.69 kN 2.69 kN 7.0 kN
. <«—417kN P, 8.34 kN P: 8.34 kN PsQ<—4.17kN
v
2' B Ms C Mc D Mbp
Hg Hc Hp
Vs Ve Vp
6.0 m J 8.0m N 6.0 m \
N I N
Figure 10.59
Vertical reactions:
Va=TOKN b 7a=-269KkN §  Fe=269kN b 1H=-T70KN y

Horizontal reactions:

Hy=417kN —= Hp= 834kN —= Hc=834kN —= Hp=4.17kN —=

Moment reactions: (normally assumed to be the same as the top of the columns)
Ma=938kN 7N Mg=1877kN N Mc=1877kN N Mp=938kN 7\

1.45 kNm 1.45 kNm 1.45 kNm
1.45 kKNm 2.90 kNm || 1.45 kNm 2.90 kNm|[1.45 kNm  1.45 kNm{1.45 kNm
5.83 kNm 5.83 kNm 5.83 kNm
438 kN P 8.75kNm 583 kNm 438 kNm|
1.45 kNm 2.90 kNm 2.90 kNm 5.83 kKNm
5.83 kNm 5 83 KNm
13.76 kNm 13.76 kNm 13.76 kNm
9.38 kKNm 18.77 kKNm 18.77 kN 9.38 kNm. 438 kKNm
4.38 kNm 8.75 kNm 8.75 kNm
13.76 kNm 13.76 kNm 13.763 kNm
9.38 kNm 18.77 kNm 18.77 kNm 9.38 kNm

Figure 10.60: Approximate bending moment diagram

The approximate axial forces and shear forces in the members are indicated in
Figure 10.61 and Figure 10.62.
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0.83 kN CZ===r==—--""2.50kN C 4.15kN C
0.48 kN C 0.11kNT 0.48|kN C 0.11KNT
4 1.67kN C 50kN C 8.34 kN C
A N
2.42KNC 0.59KN T 24PN C 0.59kNT
1.67 kN C S.0KNC N 8.34 kN C
AN
7.0kN C 2.69kNT 7.0 kN C 2.69kNT
=T C - compression 1 T-tension

Figure 10.61: Approximate member axial force diagrams

0.48 kN 0.37 kN 0.48 kN
0.83 kN 1.66 kN 1.66 kN 0.83 kN
1.94 kKN— 1.24 kN 1.94 kKN—
2.5kN 5.0kN 5.0 kN 2.5kN
4.58 kN 2.48 kN 4.58 kN
4.17 kN 8.34 kN 8.34 kN 4.17 kN

Figure 10.62: Approximate member shear force diagrams

10.7.1.2 Approximate Analysis of Vierendeel Trusses using the Portal Method

Vierendeel trusses are rigid-jointed girders in which there are no diagonal members and
hence provide clear open spaces between the verticals and the chords as indicated in
Figure 10.63(a). The chords are normally parallel and transmit shear and bending to the
vertical members which provide the balancing moment for the sum of the chord moments.
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This type of truss is usually used to support floors and/or roofs in buildings where large
openings are required for services. In addition they are sometimes used for enclosed
footbridges where diagonal web members are either obtrusive or undesirable for aesthetic
reasons.

\ 4

I i

*+ sfz +—O——L__O__J___O____\_—-()'"QF
(a) (b)
Figure 10.63

Vierendeel girders are indeterminate structures and for parallel chord girders an
approximate analysis may be carried out assuming points of contraflexure at the mid-span
points of the chords and the vertical of each panel. The vertical shear is assumed to be
shared equally between the top and bottom chords. The chords and vertical members
deform in double curvature as shown in Figure 10.63(b). In a symmetrically loaded truss
with an even number of panels, the mid-span vertical member does not have any moment.
The overall deflections are significantly larger than is the case for members with either
solid web plates or trusses with diagonal members.

10.7.1.3 Example 10.9: Vierendeel Truss

A Vierendeel truss is pinned at support A, supported by a roller at G and carries three
point loads at C, D and E as shown in Figure 10.64. Using the portal method, carry out an
approximate analysis to determine the member forces in the truss.

80.0 kN 80.0 kN 80.0 kN
N \ 4 \ 4 \ 4
B C D E F
g
v
S
L, Al J 1 H &FG
| V
Va ‘ 4 bays at4.0 m=16.0 m J ¢
N K
Figure 10.64
80.0kN  80.0kN  80.0 kN
1 1 1 1 1 1
The structure is symmejcrlcalll and can i l »L i l i@
be analysed considering  the B i C ) i E i F
equilibrium of sub-frames defined by P, ' p, : : :
sections ‘1’ to ‘4’ and assuming A g Lo B i G
points of contraflexure at the mid- Ha™ : : : H $
point positions of each of the Vi 4 Ve
members as indicated in Figure 10.65. © points of contraflexure

Figure 10.65
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Consider the overall equilibrium of the structure:

+ve ) IMx=0
+(80.0 x 4.0) + (80.0 x 8.0) + (80.0 x 12.0) ~ 16.0V5=0 .. Vo=120.0kN 1
el SF=00 ) 400-800-80.0+1200 =0 -~ Va=1200kN 1

+ve —=+>2XFy=0 Hx=0

Msc m!

Hi
Mspa B; iV

g

I v

! =~
=

1200kNn  Figure 10.66

U, sokn 2
i

40.0 kN

60 kN p, 91.43 kN

Mic Iy !
J JI —»Hl

685TINI %

i A i

Figure 10.67

Consider the section 1-1: the shear force = 120.0 kN
+ve } TF,=0
120.0-2V=0 . V=60.0 kN i

Consider the section above P1: Hi=H,=H
+Ve) SMp1=0
—1.75H+2V =0 S H=(2.0x60.0)/1.75=68.57 kN

Bending moments at joint B:
Mpc =Mcg =2V = (2.0 x 60) = 120 kNm
Mpr=Mpa=1.75H= (1.75 X 68.57) =120.0 kNm

Consider the section below P1
May = Mja =~ 120.0 KNm

Consider the section 2-2: the shear force = 40.0 kKN

+ve } TF,=0
40.0-2V=0 .. V=+20.0kN |

Consider the section between 1-1 and 2-2 above P2
Vi=(~60.0+80.0+20.0)=+40.0kN 1}

+ve) SMp =0

1.75 x (68.75 — Hy) + 2.0 x (60.0 + V) =0
Hi ~ (2.0 x 80.0)/1.75 + 68.57 = 160.0 kN
H>=(160.0 — 68.57) = 91.43 kN

Bending moments at joint C:

Mcg = Mpc = 120 kKNm

Mcp = Mpc =2V =(2.0 x 20.0) = 40.0 kNm
Mcy~1.75H> = (1.75 x 91.43) = 160.0 kNm

Consider the section below P2
Mic = Mcy=~ 160.0 KNm
My = (Myc — Mia) = (160.0 —120.0) = 40.0 kNm
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2t sokn 3

Consider the section between 2-2 and 3-3:

200 kN 20,0 kN
160.0 kN % 40.0 kNm $160.0 kN The truss and the loading are symmetrical about the mid-
D _ span and hence:
' \llMDI !
P2 O—»H> Axial load in member DI V= (80.0 —40.0) =40.0 kN
CfVl Shear force in member DI~ H = zero
40.0 kN Bending moment in member DI Mp; = zero.
! ) zero

i ' The final approximate member forces are as shown in

20.0kN §  zero 20.0kN  Figures 10.69 to Figure 10.71.
I —
160.0 kN 1 160.0 kN

; 400kNm Figure 10.68
120.0 kNm 160.0 kNm 20-0 kNm D 40.0kNm 60 0 kNm 120.0 kNm
B C E F
40.0[kNm
120.0 kNm 120.0 kNm
A 40.0 KNm 160.0kNm |1 160.0 kNm 40.0 KNm G
120.0 kKNm J H == o
1200kNm ~ 400KNm 156 54 Nm

Figure 10.69: Approximate member bending moment diagram

l
B 68.75 kKN C==C=—160.0 kN C==D——160.0 kN C=—E=—68.75 kN C F
1 '

60.0 kN 40.0 kN 40.0 kN 40.0 kN 60.0 kN
\ \ \
A 68.75 kN T:-J‘—160.0 kN T—~I]—160.0 kN T—H—68.75 kN T—HG
o \ =)
Figure 10.70: Approximate member axial force diagrams
60.0 kKN 20.0 kN
B C )] E 60.0kN F
68.75 kN 91.43 kN 91.43 kN 68.75 kN
A 60.0kN |y | 200KN | H c
A 20.0 kKN 60.0 kN ‘

Figure 10.71: Approximate member shear force diagrams
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10.7.2 Cantilever Method

The cantilever method, which is best suited to tall and slender buildings, is based on the
same action as a vertical cantilever. The cantilever structure shown in Figure 10.72(a) is a
continuum which bends in single curvature. The bending stresses can be determined using
the simple elastic theory of bending assuming a linear variation over the depth of the

cross-section, 1.€.
Bending stress o= Mz/Iy

where:

M is the applied bending moment,
z is the distance from the centroid to the point where the stress is being determined,

1,y is the second moment of area about the axis of bending for the cross-section.

Rigid-jointed frames have a different structural action in which shear deformation occurs
as shown in Figure 10.72(b). Despite this different mode of deformation an approximate
analysis can be carried out for such frames with fixed bases by assuming that the axial
stresses in the columns have a linear variation from the centroid of the column areas and
points of contraflexure occur at the mid-span of all beams and the mid-points of all

columns. Use of the method is illustrated in Example 10.10.

1
T = - N F =I T S — - 7
I ! ! F / 1 1
! | d g g
,' ! h 1 ? ; ;
1
I ; I F—» ===y ====, lo---!
I ; " F ’ ’ ’
' i ' ke v ’ v
P ; LSS SN S G\ S A R
1 1 N
! h b
,' : 1 hs ¢ @ 35 P
1 . 1 F. —> [ C S — =l -
1 ! : H ! N / ll ﬂr— !
: : | hs Q Q Q
] i ! % Fs—l— — == Omt =1
: ] ]
I i / / /
o hs ; i 7 ’
1 ! Fes—p + = == ,' ]
1
! ! k
E he ) o o
‘ L L i 1
! : 1 I !
! i ! i i
y A 4 cenqlrmd ' 4 »
- - ?_ ....... 3-- 'E:]' ....... _E _____ 0 ..... g ......... EE -
L z Lz ,‘ : : 2 0 23 | i
‘ : L 21 ] 74 R
y il ) >
c 1\compressi0n ml\?\ compression
tension \T o tension \03’\t0'4

(a) — continuum

(b) — discrete elements
Figure 10.72
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10.7.2.1 Example 10.10: Multi-storey Rigid-jointed Frame 3

A four-storey, two-bay asymmetric frame is shown in Figure 10.73 in which a series of
horizontal loads are applied at B, C, D and E as indicated. Using the cantilever method
carry out an approximate analysis to determine the member forces in the frame.

E J o
6.0 kN £
S Data:
D I N N Supports A, F and K are fixed.
120kN . .
£ Relative cross-sectional areas of
C H M 3 the columns:
- AB, BC, CD and DE = 2.04
120kN =|  FG,GH,Hland I = 4
B G L < KL, LM, MN and NO = 4
12.0kN £ Assume points of contraflexure at
2 the mid-span of all beams and the
Ma N Ha Mr He M N Hx —| mid-points of all columns.
A F 1%
| 8.0m | 60m o Assumed points of contraflexure.
Vx

Va Ve
Figure 10.73
Consider a typical horizontal cross-section through the frame and determine the position

‘z” of the centroid of the column group. (Note: in this case the position is the same at each
storey level).

centroid
1
jl{E ......... _?_ .“!2. ‘E':'ﬂ ___________ lT_i;i_A} +ve ) X M centre-line of Al
Ca in : 2=(8.0 x A) + (14.0 x A)/(2.04 + A + A)

< : > - = 5.5 m from the centre-line of 4;

ml\! compression z1=z=55m

. : z2=(8.0-55=25m
ulsmn i o3 =(140-55)=85m
—y zz=(14. : :

Figure 10.74

Determine the approximate second moment of area of the column group about the
centroid. (Neglect the bd*/12 terms for each column).

3
I oia ® Z(column cross-sectional aread x distance from the centroidal axisz)
1

(2.04 x 5.5%) + (4 x 2.5%) + (4 x 8.5%) = 139.04
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Determine the column axial stresses and member forces using the simple elastic theory of
bending and consideration of the equilibrium of a sub-frame defined by a horizontal
section taken through the points of contraflexure for each storey.

Consider the top storey: ¢ (N —ak P2 J P o
<
P P4 = ~
. Nep Nn Non
Figure 10.75 L 2.0m J‘ 6.0m L
Applied moment M = (6.0 x 2.0) = 12.0 kNm
Stress in column ED 01 = Mzi1/lcenwoia = (12.0 x 5.5)/139.04 = 0.475/4
Axial force in column ED  Ngp = (01 x 2.04) =(0.475 x2.0)=095kN T
Stress in column JI 02 = Mzo/leenoia = (12.0 x 2.5)/139.04 = 0.216/4
Axial force in column JI Nep= (02 xA)=(0.216 x 1.0) =022 kN C
Stress in column ON 03 = Mz3/leenwoia = (12.0 x 8.5)/139.04 = 0.733/4
Axial force in column ON  Ngp = (a3 x A) =(0.733 x 1.0)=0.73 kN C
(Note: the beams are assumed to have infinite axial and flexural stiffness).
Consider the equilibrium of sub-frame P;-E-P»
+ve 1 2F,=0
f 6.0 kKN —si D e
~095+ V=0 . V=095kN B
P: v SN

+Ve) 2 Mp; H
+ (6.0 x 2.0) — (H x 2.0) — (4.0 x 0.95) =0 095 KNT  om

H=(12.0-3.8)/2.0=4.10kN
+ve—>3F, =0
+6.0-410—H,=0 .. H=190kN

Figure 10.76

Bending moments at joint E:
Mep = (H1 x 2.0)=(1.90 x 2.0) = 3.80 kNm
Mgy = (V' x 4.0)=(0.95x4.0)=3.80 kNm X

The reader should complete the calculations considering sub-frames P»-J-P3 and P3-O-P4
and all three sub-frames for each storey to determine the approximate axial forces, shear
forces and bending moments for all members in the frame.



Appendix 1

Elastic Section Properties of Geometric Figures

Cross-sectional area

= Distance to centroid

= Elastic section modulus about the y—y axis

Radius of gyration about the y—y axis

Second moment of area about the y—y axis
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Square:
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Rectangle:
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Rectangle:
A=bh z=h/2
Yy 3 yy 3
i = i
Yy \/§
Rectangle:
A=bh s = _bh
Vb + R
b’ b’
ly=——"—3 Wy=—F—
6(b>+4’) 6\b* +h
;o= bh
1) AN eave——
6(b>+4’)
Rectangle:
A=bh . bsina+ hcosor
2
bh (b2 sin® ar+ A’ cos’ a)
Iy =
12
_ bh(b?sin’ a+h’ cos’ )
» 6(bsina+hcosar)
, \/bz sin> a0+ h* cos” o
byy =
12
Hollow Rectangle:
A= (bh— b)) z=h/2
(bh*> —bh}) (bh* =i’
Iy = 12 Wyy = o
;o= bh® —bh}
» 124

A
—+

h
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Trapezoid:
h(b+b,)
2
h*(b” +4bb, +b;)
[yy - 36
(b+b)

_ h(2b+b)
3(b+b,)
(b +4bb +b})

» 12(2b+5,)

L h
¥ 6(b+h)

Hollow Circle:

nla® -a?)
—
nla* -a})

A =

:nR2
2
8
Iy= R Z-=
Y (8 97rj
2
iy= R O —64

\/2(1;2 +4bb, +b7)

==Y
2
nd® nR®
Wy=—7-=
32 4
=r=4
2
4 4
" nld* -a})




Equal Rectangles:
A=b(h—hy)

b(h’ -k
Iy = ( 12 l)

A A
PoN12(h-h)

Unequal Rectangles:
A=bt+ bty
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_0.568 + b1, (h—0.51,)

z

A

bt’ bt
Iy = {(EJF btczj + [%Halzlcf




Appendix 2

Beam Reactions, Bending Moments and Deflections

Simply supported beams
Cantilever beams

Propped cantilevers

Fixed-End Beams
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w = Distributed load (kN/m) and W = Total load (kN)

Simply supported beams:

w kN/E
A B

A B
L2 L2
;
A B
. a | b |

VA =wL/2 VB =wL/2
Maximum bending moment at centre = wL?/8
Maximum deflection = (5wL*/384EI)

Va=P/2 Vg =P/2
Maximum bending moment at centre = PL /4
Maximum deflection = (PL*/48EI)

Va=Pb/L Vg =PalL

Maximum bending moment at centre = Pab /L
Mid-span deflection = PL*[(3a/L) — (4a’/L*)|/48EI
(This value will be within 2.5% of the maximum)

Va=W(0.5b+ c)/L V= W(0.5b + a)/L
Maximum bending moment at x = W(x*— a*)/2b
where  x=[a+ (Va b/W)] from A

Maximum deflection ~ W(8L> — 4Lb* + b*)/384EI
(This is the value at the centre when a = ¢)

VA = W/ 2 VB = W/ 2
Maximum bending moment at centre = WL/6
Maximum deflection = WL*/60E]

VAZZW/3 VB:W/3

Maximum bending moment at x = 0.128 WL
where  x=0.4226L from A

Maximum deflection = 0.01304WL>/384E]
where x=0.4807L from A
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Va=WQEL—-a)3L Vy=Wal3L

l]]]] WkN Maximum bending moment at x:
A B 3
“ a | L-a . :@1_14_ 4a
. I . 3 L \270
/ a
where x = a| 1—,|— | from A
3L
W kN Va=WQBL -2a)3L Vg=2Wa/3L
A Aﬂ]]]]]h]T B Maximum bendir;g moment at x:
a | L-a > 2Wa 2a )2
«— [ = 1-—
3 3L

where x = a‘/I—z—a from A
3L
Cantilever beams:

Anti-clockwise support moments considered negative.

VA =wlL
Maximum (-ve) bending moment M, = — wL?/2
Maximum deflection = wL*/8EI

VA =W

Maximum (—ve) bending moment M = — Wa/2

Maximum deflection at B = Wa® (1 + ;lb] / 8EI
a

VA =W

Maximum (—ve) bending moment M, = —-W(a + b/2)
Maximum deflection at B = (W/24EI) X k

where k=
(8a >+ 18a’b + 12ab” + 3b° + 12d°c + 12abc + 4b’c)

>
A

VA = P
Maximum (—ve) bending moment M, =— Pa

[« 1. Maximum deflection at B = Pa’ (1 + ;b) / 3El
a

>
AR,
=}




«— [,
W kN
A B
a b
«— [

Propped cantilevers:
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VA =W
Maximum (—ve) bending moment M, = — Wa/3

Maximum deflection at B = Wa’ (1 + Sbj /1 S5E]
a

VA =W
Maximum (—ve) bending moment M, = — 2Wa/3

150

Maximum deflection at B = 11 Wa® (1 + “J /6OEI
a

Where the support moment (M,) is included in an expression for reactions, its value

should be assumed positive.

«————— [ ————————»

Va=5wL/8 Ve =3wlL/8

Maximum (-ve) bending moment M, =— wL?*/8
Maximum (+ve) bending moment at x =+ 9wL?/128
where x = 0.625L from A

Maximum deflection at y = wL*/185E]

where y = 0.5785L from A

Va=W(0.5b + ¢)/L + M,/L
Vs = W(0.5b + a)/L — M,/L

Maximum (—ve) bending moment My:

=— Wh(b +2¢) [2(L* = ¢* — bc) — b)) ]/8L*b

VA = (P - VB)
Vs = Pa’[(b + 2L))2L°
Maximum (—ve) bending moment My:
=— Pb[(L* - b)]2L*
Maximum (+ve) bending moment at point load:
Pb(, 3b b’
= |- 43—
2 L
Maximum deflection at point load position:
372
_ Pa’b . (4L _ a)
12EIL
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A
a b
«— | ———»
W kN
A
a b

Fixed-end beams:

VA = (W - VB)
Vs = Wa*[(5L - a)]/20L°
Maximum (—ve) bending moment My:

Wa (342 _15aL+201)

L2

Maximum (+ve) bending moment at x:
= [Vg x — W(x — b)’/ 3d°]

2

where x = b+a— 1—i from B
2L 5L

VA = (W - VB)
Ve = Wa*[(15L — 4a)]/20L°
Maximum (—ve) bending moment My:

2
— W a_2_3_a+£
5L~ 4L 3

VA:WL/2 VB:WL/2
Maximum (—ve) bending moment My:
=—wL*/12

Maximum (+ve) bending moment at mid-span:
=+wL’/24
Maximum deflection at point load:

= wL%/384E1

VA =P/ VB =P/2
Support bending moments:

My =—PL/8 and Mp=+PL/8

Maximum (+ve) bending moment at mid-span:
=+ PL/8
Maximum deflection at mid-span = PL*/192E]

Va=Wi2 Ve=WI2

Support bending moments:

MA:—SWL/48 and MB:+5WL/48
Maximum (+ve) bending moment at mid-span:
=+ WL/16

Maximum deflection at mid-span = 1.4WL*/384E]
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Va=Pb* (1 +2a/L)/L*
Vg = Pa* (1 +2b/L)/L*
Support bending moments:
My=—Pab’/l> and M=+ Pa’b/L’
Maximum (+ve) bending moment at point load:
=+2Pa’b’/L}

2Pa’h’
3EI(3L—2a)

Maximum deflection at point x =

2

where x = — from A
(3L -2a)

Va=0.7W Veg=0.3W

Support bending moments:

Mpy=—-WL/10 and Mg=+ WL/15
Maximum (+ve) bending moment at point x:
=+ WL/23.3

where xis 0.45L from A

Maximum deflection at point y = WL*/382EI
where yis 0.475L from A

KN Va= (W —Vg)
Ve = Wa*[(5L - 2a)]/10L*
A B i :
T | L-a Support b;Vrchdmg moments:
DI My== o (34> +105L) and
2
Mg =+ 7 (5L-3a)
Va= W[(10L*~ 15La*+ 8a)]/10L*
W kN V=W =Va)
Support bending moments:
A B Wa
W a | L-a \N My=— 2 (100> ~15aL + 64> and
DI 15L
Wa®
Mg =+ —(5L - 4a)
10L
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WkN Vi = W(0.5b + ¢)/L + (Ma — Mg )/L
A B Ve = W(0.5b + a)/L — (Mx— Mg )/L
al b | ¢ \] Support bending moments:
‘ My == {1 —a x(2 +30)- (41— 30)}
= — _ _ _
121°b
4 3 3
Mg =+ —\[(L—c) X(L+3c)|-a’(4L -3a
vt Lo (o) aar -3}
Maximum deflection at mid-span when a = ¢
V(0 +202a+4La® —8a°)
384E1
12EI 12EI
VA:— L3 5 VB:+ L3 5
Support bending moments:
MA:+65[§ MB:+6§[§
12E1 12EI
VA =+ Té‘ VB = - L3 5
Support bending moments:
6El 6El
VA:—THA Vp=+ ?HA
Support bending moments:
4EI 2EI
MA:+—L 49A MB:+—L 49A
6EI 6E]
VA:— L2 HA VB:+ L2 HA
Support bending moments:

MA=+%0A MB:"‘%QA




Appendix 3

Matrix Algebra
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Product of a Matrix and a Vector:
Consider three variables a;, @, and a3 which are related to three other variables ¢;, ¢, and
c; by the three equations (1), (2) and (3) as indicated:

a; = byier + bieyt biaes Equation (1)
a; = bzlcl + bzzCz + b23C3 Equation (2)
as = b316‘1 + b326‘2 + b33C3 Equation (3)

these equations can be represented in matrix form as:

ie. [4]1=[B]x[C]
a bl,l b1,2 b1,3 ¢
a, | =|byy byy by |X|cy
a; by, by, by, G

where b1, b1», b13 etc. are the coefficients for the square matrix [B].

Clearly for known values of ¢, ¢, and ¢; the values of a;, a, and a3 can be determined
directly. If however, it is required to determine the ‘c’ values for given ‘a’ values then the
relationship must be re-written as:

[C1=[B]" x[4]
and the INVERT of matrix [B] must be obtained.

The invert of a matrix can be defined as:
adj B
18]
where adj B is the adjoint of matrix [B] and is equal to the transpose of the co-factor
matrix [B°] of matrix [B], i.e.

[B]" =

adj [B] =[BT

The co-factor matrix is given by replacing each element in the matrix by its’ co-factor, i.e.

+ -+
él,l blgz b_1,3
[B]= bz,l bz,z b2,3 >
£ o0 5
by by, by,

bl bY, b bl bl b
[B]=(-1)7|bS b5 b | and [B]' = b7 b5 b
b, b, b, by, b b,

2,3
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where: [B]= by, bs; by, b by, by,

|B] is the determinant of matrix [B],which can be calculated from:
bz,z b2,3 bz,l b2,3 bz,l bz,z

Bl =+ <b,, X —<b,, X +3b, ., X
1 {171 b, b3,3} {172 bs, b3,3} {1’3 bs, bs,z}

|B] =+ b1,i{( b22X b33) — (b32X ba3)} — bia{( Doyt X b33) — (b3 X by3)}
+b13{( D21 X b3p) — (b31X byp)}

Example A.1
Determine the values of ¢, and ¢, given that:

40.0 2.0 3.0
[A1=[BIX(C]  where: [A]:Lso} o [B]:[IO 40}

Solution:

) . . +40 -1.0 or | +40 =30
Determine the co-factor matrix [B°] = [B°] =

-3.0 +2.0 -1.0 +2.0
. bC bC
[C1=18]" x[4] and [p" =298 . jafo Lo Bt ge
|B| € |B| bl,z bz,z a,
The determinant of [B] |B| = {+( bl,l X bz,z) - (bz,l X b1,2)}
— (+(2.0 x 4.0) — (1.0 x 3.0)}
=+5.0

ol 1|0, b Lla | Z L [+40 -3.0][400
¢, |Bl|b, b | |a,| 5.0[-1.0 +2.0][45.0
¢ | [+08 —0.6][40.0
¢,| [-02 +04]|450

1= {+(0.8x40.0) - (0.6 x 45.0)} =+5.0
2= {— (0.2 x40.0) + (0.4 x 45.0)} =+ 10.0
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Example A.2

Determine the values of ¢y, ¢; and ¢; given that:

14.0
[A]= [BIX[C] where: [A]=] 4.0 |and [B]
6.0

Solution:
Determine the co-factor matrix:

kS =+ {(2.0x2.0) - (1.0x 3.0)} =+ 1.0
kS =+ {(1.0x 1.0) — (3.0 x 2.0)} =— 5.0
ky, =+ {(2.0x2.0)-(3.0x 1.0)} =+ 1.0
ki, =+ {(3.0x3.0)-(2.0x 1.0)} =+ 7.0
ky; =+ {(2.0x2.0)-(3.0x 1.0)} =+ 1.0

+ - +
2.0 3+.0 1.0
=(1.0 20 3.0
+ — +
3.0 1.0 2.0

kS, =—{(1.0x2.0) = (3.0 3.0)} =+ 7.0
k5 =={(3.0x2.0)=(1.0x 1.0)} == 5.0
ks, == {(2.0x 1.0) - (3.0 3.0)} =+ 7.0
ks, == {(2.0x3.0) = (1.0x 1.0)} == 5.0

+1.0 +7.0 =50 +1.0 —=50 +7.0
[B]=|-50 +1.0 +7.0 [B]"=1+7.0 +10 -5.0
+70 =50 +1.0 =50 +7.0 +1.0

Determinant of [B]:

|B| =+ b11{( b22X b33) = (b32X ba3)} = bip{( Doy X b33) = (b31X ba3)} + bi3{( br1X b32)

— (b3 X byp)}
|B| = {+ (2.0 x 1.0) = (3.0 x =7.0) + (1.0 X =5.0)} = +18.0
| +1.0 =50 +7.0
Inverted matrix ~ [B]™ = 130 +7.0 +1.0 -5.0
=50 +7.0 +1.0
¢ +1.0 =50 +7.0 14.0
-1 1 ad_]B 1
[C]1=[B] x[A4] and [B] STl ol ey +7.0 +1.0 —50|x|4.0
8 s T 1=5.0 +7.0 +1.0 6.0

1= {+ (1.0 X 14.0) = (5.0 X 4.0) + (7.0 X 6.01/18.0 =+ 2.0
3= {+ (7.0 X 14.0) + (1.0 x 4.0) — (5.0 X 6.01/18.0 = + 4.0
3= {— (5.0 X 14.0) + (7.0 x 4.0) + (1.0 X 6.0}/18.0 = — 2.0

To check the invert determine the product [B][B]™" which should equal the identity matrix

1.0 0 0
[[] where:[[]=| 0 1.0 0
0 0 10
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This second edition of Examples in Structural Analysis uses a step-by-step
approach and provides an extensive collection of fully worked and graded
examples for a wide variety of structural analysis problems. It presents detailed
information on the methods of solutions to problems and the results obtained.
Also given within the text is a summary of each of the principal analysis techniques
inherent in the design process and where appropriate, an explanation of the
mathematical models used.

The text emphasises that software should only be used if designers have the
appropriate knowledge and understanding of the mathematical modelling,
assumptions and limitations inherent in the programs they use. It establishes
the use of hand-methods for obtaining approximate solutions during preliminary
design and an independent check on the answers obtained from computer
analyses.

What’s New in the Second Edition:

New chapters cover the development and use of influence lines for determinate
and indeterminate beams, as well as the use of approximate analyses for
indeterminate pin-jointed and rigid-jointed plane-frames. This edition includes
a rewrite of the chapter on buckling instability, and expands on beams and on
the use of the unit load method applied to singly redundant frames. The x-y-z
co-ordinate system and symbols have been modified to reflect the conventions
adopted in the structural Eurocodes.

William M. C. McKenzie is also the author of six design textbooks relating
to the British Standards and the Eurocodes for structural design and one
structural analysis textbook. As a member of the Institute of Physics, he is
both a chartered engineer and a chartered physicist and has been involved
in consultancy, research and teaching for more than 35 years.
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