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Preface 
 

Prior to the development of quantitative structural theories in the mid-18th century and 

since, builders relied on an intuitive and highly developed sense of structural behaviour. 

The advent of modern mathematical modelling and numerical methods has to a large 

extent replaced this skill with a reliance on computer generated solutions to structural 

problems. Professor Hardy Cross1 aptly expressed his concern regarding this in the 

following quote: 

 

‘There is sometimes cause to fear that the scientific technique, the proud servant of 

the engineering arts, is trying to swallow its master.’ 

 

It is inevitable and unavoidable that designers will utilize continually improving computer 

software for analyses. However, it is essential that the use of such software should only be 

undertaken by those with the appropriate knowledge and understanding of the 

mathematical modelling, assumptions and limitations inherent in the programs they use. 

 

Students adopt a variety of strategies to develop their knowledge and understanding of 

structural behaviour, e.g. the use of: 

 

 computers to carry out sensitivity analyses, 

 physical models to demonstrate physical effects such as buckling, bending, the 

development of tension and compression and deformation characteristics, 

 the study of worked examples and carrying out analyses using ‘hand’ methods. 

 

This textbook focuses on the provision of numerous fully detailed and comprehensive 

worked examples for a wide variety of structural problems. In each chapter a résumé of the 

concepts and principles involved in the method being considered is given and illustrated 

by several examples. A selection of problems is then presented which students should 

undertake on their own prior to studying the given solutions. 

 

Students are strongly encouraged to attempt to visualise/sketch the deflected shape of a 

loaded structure and predict the type of force in the members prior to carrying out the 

analysis; i.e. 

 

(i) in the case of pin-jointed frames identify the location of the tension and 

compression members, 

 

(ii) in the case of beams/rigid-jointed frames, sketch the shape of the bending moment 

diagram and locate points of contraflexure indicating areas of tension and 

compression. 

 

A knowledge of the location of tension zones is vital when placing reinforcement in 

reinforced concrete design and similarly with compression zones when assessing the 

effective buckling lengths of steel members. 
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When developing their understanding and confirming their own answers by studying the 

solutions provided, students should also analyse the structures using a computer analysis, 

and identify any differences and the reasons for them. 

 

The methods of analysis adopted in this text represent the most commonly used ‘hand’ 

techniques with the exception of the direct stiffness method in Chapter 7. This matrix 

based method is included to develop an understanding of the concepts and procedures 

adopted in most computer software analysis programs. A method for inverting matrices is 

given in Appendix 3 and used in the solutions for this chapter  it is not necessary for 

students to undertake this procedure. It is included to demonstrate the process involved 

when solving the simultaneous equations as generated in the direct stiffness method. 

 

Whichever analysis method is adopted during design, it must always be controlled by the 

designer, i.e. not a computer! This can only be the case if a designer has a highly 

developed knowledge and understanding of the concepts and principles involved in 

structural behaviour. The use of worked examples is one of a number of strategies adopted 

by students to achieve this. 

 

In this 2nd Edition the opportunity has been taken to modify the x-y-z co-ordinate system/ 

symbols and Chapter 6 on buckling instability, to reflect the conventions adopted in the 

structural Eurocode EN 1993-1-1 for steel structures, i.e. 

 

 x-x  along the member, 

y-y  the major principal axis of the cross-section (e.g. parallel to the flange in a steel 

beam) and 

 z-z  the minor principal axes of the cross-section (e.g. perpendicular to the flange in a 

steel beam). 

 

Local and flexural buckling equations as given in the EN 1993-1-1 are also considered. 

 

Chapter 4 for the analysis of beams has been expanded to include moment redistribution 

and moment envelopes. Chapter 5 has been expanded to include the analysis of singly-

redundant, rigid-jointed frames using the unit load method. 

 

In addition, two new chapters have been added: Chapter 9 relating to the construction and 

use of influence lines for beams and Chapter 10, the use of approximate methods of 

analysis for pin-jointed frames, multi-span beams and rigid-jointed frames. 

 

  

1 Cross, H. Engineers and Ivory Towers. New York: McGraw Hill, 1952 
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1. Structural Analysis and Design  

1.1 Introduction 
The design of structures, of which analysis is an integral part, is frequently undertaken 

using computer software. This can only be done safely and effectively if those undertaking 

the design fully understand the concepts, principles and assumptions on which the 

computer software is based. It is vitally important therefore that design engineers develop 

this knowledge and understanding by studying and using hand-methods of analysis based 

on the same concepts and principles, e.g. equilibrium, energy theorems, elastic, 

elasto-plastic and plastic behaviour and mathematical modelling.  

In addition to providing a mechanism for developing knowledge and understanding, 

hand-methods also provide a useful tool for readily obtaining approximate solutions during 

preliminary design and an independent check on the answers obtained from computer 

analyses. 

The methods explained and illustrated in this text, whilst not exhaustive, include those 

most widely used in typical design offices, e.g. method-of-sections/joint resolution/unit 

load/McCaulay’s method/moment distribution/plastic analysis etc. 

In Chapter 7 a résumé is given of the direct stiffness method; the technique used in 

developing most computer software analysis packages. The examples and problems in this 

case have been restricted and used to illustrate the processes undertaken when using 

matrix analysis; this is not regarded as a hand-method of analysis. 

1.2 Equilibrium 
All structural analyses are based on satisfying one of the fundamental laws of physics, i.e. 

 

 F = ma Equation (1) 

where 

F is the force system acting on a body 

m is the mass of the body 

a is the acceleration of the body 

 

Structural analyses carried out on the basis of a force system inducing a dynamic 

response, for example structural vibration induced by wind loading, earthquake loading, 

moving machinery, vehicular traffic etc., have a non-zero value for ‘a’ the acceleration. In 

the case of analyses carried out on the basis of a static response, for example 

stresses/deflections induced by the self-weights of materials, imposed loads which do not 

induce vibration etc., the acceleration ‘a’ is equal to zero. 

Static analysis can be regarded as a special case of the more general dynamic analysis in 

which: 

 

 F = ma = 0 Equation (2) 

 

F can represent the applied force system in any direction; for convenience this is normally 

considered in either two or three mutually perpendicular directions as shown in Figure 1.1.  

 



2 Examples in Structural Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 

 

The application of Equation (2) to the force system indicated in Figure 1.1 is: 

Sum of the forces in the direction of the X-axis ΣFx = 0 Equation (3) 

Sum of the forces in the direction of the Y-axis ΣFy = 0 Equation (4) 

Sum of the forces in the direction of the Z-axis ΣFz = 0 Equation (5) 

 

Since the structure is neither moving in a linear direction, nor in a rotational direction a 

further three equations can be written down to satisfy Equation (2): 

Sum of the moments of the forces about the X-axis ΣMx = 0 Equation (6) 

Sum of the moments of the forces about the Y-axis ΣMy = 0 Equation (7) 

Sum of the moments of the forces about the Z-axis ΣMz = 0 Equation (8) 

 

Equations (3) to (8) represent the static equilibrium of a body (structure) subject to a three-

dimensional force system. Many analyses are carried out for design purposes assuming 

two-dimensional force systems and hence only two linear equations (e.g. equation (3) and 

equation (5) representing the x and z axes) and one rotational equation (e.g. equation (7) 

representing the y-axis) are required. The x, y and z axes must be mutually perpendicular 

and can be in any orientation, however for convenience two of the axes are usually 

regarded as horizontal and vertical, (e.g. gravity loads are vertical and wind loads 

frequently regarded as horizontal). It is usual practice, when considering equilibrium, to 

assume that clockwise rotation is positive and anti-clockwise rotation is negative. The 

following conventions have been adopted in this text: 

 

x-direction: horizontal direction   - positive is left-to right    +ve 

 

z- direction: vertical direction   - positive is upwards     +ve 

 

y- direction:  rotation about the y-axis - positive is clockwise     +ve 

 

 

 

 

 

                 Figure 1.2 
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Structures in which all the member forces and external support reactions can be 

determined using only the equations of equilibrium are ‘statically determinate’ otherwise 

they are ‘indeterminate structures’. The degree-of-indeterminacy is equal to the number of 

unknown variables (i.e. member forces/external reactions) which are in excess of the 

equations of equilibrium available to solve for them, see Section 1.5 

The availability of current computer software enables full three-dimensional analyses of 

structures to be carried out for a wide variety of applied loads. An alternative, more 

traditional, and frequently used method of analysis when designing is to consider the 

stability and forces on a structure separately in two mutually perpendicular planes, i.e. a 

series of plane frames and ensure lateral and rotational stability and equilibrium in each 

plane. Consider a typical industrial frame comprising a series of parallel portal frames as 

shown in Figure 1.3. The frame can be designed considering the X-Z and the Y-Z planes as 

shown. 
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In the Y-Z plane bracing is 
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transfer the longitudinal wind 

forces. 

 

 

 

 

 

 

 

 

 

Figure 1.3 
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1.3 Mathematical Modelling  
The purpose of mathematical modelling is to predict structural behaviour in terms of loads, 

stresses and deformations under any specified, externally applied force system. Since 

actual structures are physical, three-dimensional entities it is necessary to create an 

idealized model which is representative of the materials used, the geometry of the structure 

and the physical constraints e.g. the support conditions and the externally applied force 

system.  

The precise idealisation adopted in a particular case is dependent on the complexity of the 

structure and the level of the required accuracy of the final results. The idealization can 

range from simple two-dimensional ‘beam-type’ and ‘plate’ elements for pin-jointed or 

rigid jointed plane frames and space frames to more sophisticated three-dimensional 

elements such as those used in grillages or finite element analyses adopted when analysing 

for example bridge decks, floor-plates or shell roofs. 

 

It is essential to recognise that irrespective of how advanced the analysis method is, it 

is always an approximate solution to the real behaviour of a structure.  

 

In some cases the approximation reflects very closely the actual behaviour in terms of both 

stresses and deformations whilst in others, only one of these parameters may be accurately 

modelled or indeed the model may be inadequate in both respects resulting in the need for 

the physical testing of scaled models. 

1.3.1 Line Diagrams 
When modelling it is necessary to represent the form of an actual structure in terms of 

idealized structural members, e.g. in the case of plane frames as beam elements, in which 

the beams, columns, slabs etc. are indicated by line diagrams. The lines normally coincide 

with the centre-lines of the members. A number of such line diagrams for a variety of 

typical plane structures is shown in Figures 1.4 to 1.9. In some cases it is sufficient to 

consider a section of the structure and carry out an approximate analysis on a sub-frame as 

indicated in Figure 1.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Figure 1.4 
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Figure 1.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7 
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Figure 1.8 
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Figure 1.9 

1.3.2 Load Path 
The support reactions for structures relate to the restraint conditions against linear and 

rotational movement. Every structural element and structure must be supported in order to 

transfer the applied loading to the foundations where it is dissipated through the ground. 

For example beams and floor slabs may be supported by other beams, columns or walls  

which are supported on foundations which subsequently transfer the loads to the ground. It 

is important to trace the load path of any applied loading on a structure to ensure that 

there is no interruption in the flow as shown in Figure 1.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10 
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The loads are transferred between structural members at the joints using either simple or 

rigid connections (i.e. moment connections). In the case of simple connections axial and/or 

shear forces are transmitted whilst in the case of rigid connections in addition to axial and 

shear effects, moments are also transferred. 

The type of connections used will influence the degree-of-indeterminacy and the method 

of analysis required (e.g. determinate, indeterminate, pin-jointed frame, rigid-jointed 

frame). Connection design, reflecting the assumptions made in the analysis, is an essential 

element in achieving an effective load path. 

1.3.3 Foundations 
The primary function of all structural members/frames is to transfer the applied dead and 

imposed loading, from whichever source, to the foundations and subsequently to the 

ground.  The type of foundation required in any particular circumstance is dependent on a 

number of factors such as the magnitude and type of applied loading, the pressure which 

the ground can safely support, the acceptable levels of settlement and the location and 

proximity of adjacent structures.  

In addition to purpose made pinned and roller supports the most common types of 

foundation currently used are indicated Figure 1.11. The support reactions in a structure 

depend on the types of foundation provided and the resistance to lateral and rotational 

movement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11 
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1.4 Structural Loading 
All structures are subjected to loading from various sources. The main categories of 

loading are: permanent (e.g. self-weight) and variable loads (e.g. imposed and wind loads). 

In some circumstances there may be other loading types which should be considered, such 

as settlement, fatigue, temperature effects, dynamic loading, or impact effects (e.g. when 

designing bridge decks, crane-gantry girders or maritime structures). In the majority of 

cases design considering combinations of permanent, imposed and wind loads is the most 

appropriate. 

Most floor systems are capable of lateral distribution of loading. In situations where lateral 

distribution is not possible, the effects of the concentrated loads should be considered with 

the load applied at locations which will induce the most adverse effect, e.g. maximum 

bending moment, shear and deflection. In addition, local effects such as crushing and 

punching should be considered where appropriate. 

In multi-storey structures it is very unlikely that all floors will be required to carry the full 

imposed load at the same time. Statistically it is acceptable to reduce the total floor loads 

carried by a supporting member by varying amounts depending on the number of floors or 

floor area carried. Dynamic loading is often represented by a system of equivalent static 

forces which can be used in the analysis and design of a structure.  

The primary objective of structural analysis is to determine the distribution of internal 

moments and forces throughout a structure such that they are in equilibrium with the 

applied design loads. 

Mathematical models which can be used to idealise structural behaviour include: two- and 

three-dimensional elastic behaviour, elastic behaviour considering a redistribution of 

moments, elasto-plastic/plastic behaviour and non-linear behaviour. The following 

chapters illustrate most of the hand-based techniques commonly used to predict structural 

member forces and behaviour. 

In braced structures (i.e. those in which structural elements have been provided 

specifically to transfer lateral loading) where floor slabs and beams are considered to be 

simply supported, vertical loads give rise to different types of beam loading. Floor slabs 

can be designed as either one-way spanning or two-way spanning as shown in            

Figures 1.12(a) and (b).  

 

 

 

 

 

 

 

 

 

  (a)              (b)  

Figure 1.12 

 

In the case of one-way spanning slabs the entire load is distributed to the two main beams. 

Two-way spanning slabs distribute load to main beams along all edges. These differences 

give rise to a number of typical beam loadings in floor slabs as shown in Figures 1.13.  
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Figure 1.13 

Distribution of loads 

from slabs to 

supporting beams 
Stair-well and Lift-shaft B6

B3

B4

45° 45° 

B5 

B1 

B2

uniformly distributed load triangular load point loads 

V2       V2Beam B2

V1 V1 V1

V1       V1 Beam B1 V3       V3 Beam B3

V4       V4 

trapezoidal load 

Beam B4 V5       V5 

combined loads

Beam B5 V6        V7 

combined loads 

Beam B6

V2

One-way 

spanning slabs 

Stair-well and Lift-shaft 

B2

B5 

B6

B3

B4

Two-way 

spanning slabs 

B1 



 Structural Analysis and Design 11 

1.5 Statical Indeterminacy  
Any plane-frame structure which is in a state of equilibrium under the action of an 

externally applied force system must satisfy the following three conditions: 

 

• the sum of the horizontal components of all applied forces must equal zero, 

• the sum of the vertical components of all applied forces must equal zero, 

• the sum of the moments (about any point in the plane of the frame) of all applied 

forces must equal zero. 

 

This is represented by the following ‘three equations of static equilibrium’ 

 

Sum of the horizontal forces equals zero             +ve ΣFx = 0  

 

Sum of the vertical forces equals zero              +ve ΣFz = 0 

 

Sum of the moments about a point in the plane of the forces equals zero  +ve ΣM = 0 

 

In statically determinate structures, all internal member forces and external reactant forces 

can be evaluated using the three equations of static equilibrium. When there are more 

unknown member forces and external reactant forces than there are available equations of 

equilibrium a structure is statically indeterminate and it is necessary to consider the 

compatibility of structural deformations to fully analyse the structure. 

A structure may be indeterminate due to redundant components of reaction and/or 

redundant members. i.e. a redundant reaction or member is one which is not essential to 

satisfy the minimum requirements of stability and static equilibrium, (Note: it is not 

necessarily a member with zero force). 

The degree-of-indeterminacy (referred to as ID in this text) is equal to the number of 

unknown variables (i.e. member forces/external reactions) which are in excess of the 

equations of equilibrium available to solve for them.  

1.5.1 Indeterminacy of Two-Dimensional Pin-Jointed Frames 
The external components of reaction (r) in pin-jointed frames are normally one of two 

types:  

 

i) a roller support providing one degree-of-restraint, i.e. perpendicular to the roller, 

ii) a pinned support providing two degrees-of-restraint, e.g. in the horizontal and 

vertical directions. 

 

as shown in Figure 1.14 

 

 

 

 

 

 

Figure 1.14 

roller supports: providing one 

restraint perpendicular to the roller. 
pinned supports: providing two 

mutually perpendicular restraints 
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It is necessary to provide three non-parallel, non-concentric, components of reaction to 

satisfy the three equations of static equilibrium. Consider the frames indicated in      

Figures 1.15  and 1.16 

 

 

 

 

 

 

 

 

 

 

            Figure 1.15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 1.16 

 

    

 

In Figures 1.15 and 1.16 the applied forces and the external components of reaction 

represent co-planar force systems which are in static equilibrium. In Figure 1.15 there are 

three unknowns, (HA, VA and VC), and three equations of equilibrium which can be used to 

determine their values: there are no redundant components of reaction. 

In Figure 1.16 there are five unknowns components of reaction, (HA,VA, VF, HE and VE), 

and only three equations of equilibrium; there are two redundant reactions in this case. 

The internal members of pin-jointed frames transfer either tensile or compressive axial 

loads through the nodes to the supports and hence reactions.  A simple pin-jointed frame is 

one in which the minimum number of members is present to ensure stability and static 

equilibrium. 

Consider the basic three member pinned-frame indicated in Figure 1.15. There are three 

nodes and three members. A triangle is the basis for the development of all pin-jointed 

frames since it is an inherently stable system, i.e. only one configuration is possible for 

any given three lengths of the members.  
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Consider the development of the frame shown in Figure 1.17: 

  

 

 

 

 

 

 

 

 

 

 

ni – node number  mi – member number 

Figure 1.17 

 

Initially there are three nodes and three members. If the number of members in the frame 

is to be increased then for each node added, two members are required to maintain the 

triangulation. The minimum number of members required to create a simple frame can be 

determined as follows: 

 

m = the initial three members + (2 × number of additional joints) 

    = 3 + 2(n − 3)                    m = (2n − 3) 

e.g.  in this case n = 8  and  therefore the minimum number of members = [(2 × 8) − 3)] 

                     ∴ m = 13 

Any members which are added to the frame in addition to this number are redundant 

members and make the frame statically indeterminate; e.g. 

 

 

 

 

                    one redundant member           two redundant members  

Figure 1.18 

 

It is also essential to consider the configuration of the members in a frame to ensure 

that it is triangulated. The simple frames indicated in Figure 1.19 are unstable. 

 

 

 

 

 

 

 

Figure 1.19 

 

As indicated previously, the minimum number of reactant forces to maintain static 

equilibrium is three and consequently when considering a simple, pin-jointed plane-frame 
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and its support reactions the combined total of members and components of reaction is 

equal to:  

 

Σ (number of members + support reactions) = (m + r) = (2n − 3) + 3 = 2n 

 

Consider the frames shown in Figure 1.20 with pinned and roller supports as indicated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.20 

 

The degree of indeterminacy ID = (m + r) − 2n 
 

number of joints      n = 3 

number of members     m = 3 

           (2n − 3) = 3 

number of support reactions    r = 3 

                      (m + r) = 6 = 2n 

The frame is statically determinate 

        ID = 0 
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number of support reactions    r = 3 

                    (m + r) = 14 = 2n 
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        ID = 1 
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Compound trusses which are fabricated from two or more simple trusses by a structural 

system involving no more than three, non-parallel, non-concurrent, unknown forces can 

also be stable and determinate. Consider the truss shown in Figure 1.21(a) which is a 

simple truss and satisfies the relationships m = (2n − 3) and ID = 0. 

 

 

 

 

 

 

               

     (a)            (b) 

Figure 1.21 

 

This truss can be connected to a similar one by a pin and an additional member as shown 

in Figure 1.21(b) to create a compound truss comprising two statically determinate trusses.  

Since only an additional three unknown forces have been generated the three equations of 

equilibrium can be used to solve these by considering a section A-A as shown (see    

Chapter 3 − Section 3.2. - Method of Sections for Pin-Jointed Frames: Problem 3.4). 

1.5.2 Indeterminacy of Two-Dimensional Rigid-Jointed Frames 
The external components of reaction (r) in rigid-jointed frames are normally one of three 

types:  

i) a roller support providing one degree-of-restraint, i.e. perpendicular to the roller, 

ii) a pinned support providing two degrees-of-restraint, e.g. in the horizontal and 

vertical directions, 

iii) a fixed (encastre) support providing three degrees-of-restraint, i.e. in the 

horizontal and vertical directions and a moment restraint 

as shown in Figure 1.22 

 

 

 

 

 

 

 

Figure 1.22 

 

In rigid-jointed frames, the applied load system is transferred to the supports by inducing 

axial loads, shear forces and bending moments in the members. Since three components of 

reaction are required for static equilibrium the total number of unknowns is equal to:       

[(3 × m) + r]. At each node there are three equations of equilibrium, i.e.  

Σ the vertical forces    Fz = 0; 

Σ the horizontal forces   Fx = 0; 

Σ the moments     M  = 0,  providing (3 × n) equations. 

The degree of indeterminacy ID = [(3m) + r] − 3n 
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Consider the frames shown in Figure 1.23 

 

 

  

 

 

 

 

 

 

    (a)             (b) 

 

 

 

 

 

 

 

      (c)             (d) 

 

Figure 1.23 

 

The existence of an internal pin in a member in a rigid-frame results in only shear and 

axial loads being transferred through the frame at its location. This reduces the number of 

unknowns and hence redundancies since an additional equation is available for solution 

due to the sum of the moments about the pin being equal to zero,  i.e. Σ Mpin = 0 

Consider the effect of introducing pins in the frames shown in Figure 1.24 
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Figure 1.24 
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The existence of an internal pin at a node with two members in a rigid-frame results in the 

release of the moment capacity and hence one additional equation as shown in             

Figure 1.25(a). When there are three members meeting at the node then there are 

effectively two values of moment, i.e.  M1 and M2 and in the third member M3 = (M1 + M2) 

 The introduction of a pin in one of the members produces a single release and in two 

members (effectively all three members) produces two releases as shown in                

Figure 1.25(b).  

In general terms the introduction of ‘p’ pins at a joint introduces ‘p’ additional equations. 

When pins are introduced to all members at the joint the number of additional equations 

produced equals (number of members at the joint − 1). 

 

 

 

 

 

 

 

 

 

 

      

       (a)              (b) 

Figure 1.25 

 

Consider the frame shown in Figure 1.26. 

 

 

 

 

 

 

               Figure 1.26 

 

The inclusion of an internal roller within a member results in the release of the moment 

capacity and in addition the force parallel to the roller and hence provides two additional 

equations. Consider the continuous beam ABC shown in Figure 1.27. in which a roller has 

been inserted in member AB  

 

 

 

 

 

Figure 1.27 
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Consider the same beam AB with a pin added in addition to the roller. 

 

 

 

 

 

Figure 1.28 

 

ID = {[(3m) + r] − 3n} − 3 due to the release of the moment capacity at the position of the 

pin and the release of the moment and axial load capacity at the roller  

 

ID = {[(3 × 2) + 6] − (3 × 3) − 3 = 0   The structure is statically determinate. 

 

 A similar approach can be taken for three-dimensional structures; this is not considered 

in this text. 

1.6 Structural Degrees-of-Freedom 
The degrees-of-freedom in a structure can be regarded as the possible components of 

displacements of the nodes including those at which some support conditions are provided. 

In pin-jointed, plane-frames each node unless restrained, can displace a small amount δ  

which can be resolved in to horizontal and vertical components δH and δV as shown in 

Figure 1.29. 

 

Each component of displacement can be 

regarded as a separate degree-of-freedom 

and in this frame there is a total of three 

degrees-of-freedom i.e. the vertical and 

horizontal displacement of node B and the 

horizontal displacement of node C as 

indicated. 

 

In a pin-jointed frame there are effectively two possible components of displacement for 

each node which does not constitute a support. At each roller support there is an additional 

degree-of-freedom due to the release of one restraint. In a simple, i.e. statically 

determinate frame, the number of degrees-of-freedom is equal to the number of members.  

Consider the two frames indicated in Figures 1.20(a) and (b): 

 

In Figure 1.20 (a):  the number of members           m = 3 

      possible components of displacements at node B     = 2 

      possible components of displacements at node support C   = 1 

      Total number of degrees-of-freedom     (= m) = 3 

 

In Figure 1.20 (b):  the number of members           m = 11 

      possible components of displacements at nodes     = 10 

      possible components of displacements at support E    = 1 

      Total number of degrees-of-freedom     (= m) = 11 
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In the case of indeterminate frames, the number of degrees-of-freedom is equal to the 

(number of members − ID); consider the two frames indicated in Figures 1.20 (c) and (d): 

 

In Figure 1.20 (c):  the number of members          m = 14 

      possible components of displacements at nodes     = 12 

      possible components of displacements at support G    = 1 

      degree-of-indeterminacy          ID  = 1 

      Total number of degrees-of-freedom      (m − ID) = 13 

 

In Figure 1.20 (d):  the number of members          m = 15 

      possible components of displacements at nodes     = 10 

      degree-of-indeterminacy          ID = 5 

      Total number of degrees-of-freedom      (m − ID) = 10 

 

In rigid-jointed frames there are effectively three possible components of displacement for 

each node which does not constitute a support; they are rotation and two components of 

translation e.g. θ, δH and δV. At each pinned support there is an additional degree-of-

freedom due to the release of the rotational restraint and in the case of a roller, two 

additional degrees-of-freedom due to the release of the rotational restraint and a 

translational restraint. Consider the frames shown in Figure 1.23. 

 

In Figure 1.23 (a):  the number of nodes (excluding supports)    = 2 

      possible components of displacements at nodes   = 6 

      possible components of displacements at support D  = 1 

      Total number of degrees-of-freedom        = 7 

 

In Figure 1.23 (b):  the number of nodes (excluding supports)    = 4 

      possible components of displacements at nodes   = 12 

      possible components of displacements at support G  = 1 

      possible components of displacements at support F  = 1 

      Total number of degrees-of-freedom        = 14 

 

In Figure 1.23 (c):  the number of nodes (excluding supports)    = 3 

      possible components of displacements at nodes   = 9 

      possible components of displacements at support A  = 1 

      Total number of degrees-of-freedom        = 10 

 

In Figure 1.23 (d):  the number of nodes (excluding supports)    = 1 

      possible components of displacements at nodes   = 3 

      possible components of displacements at support C  = 2 

      possible components of displacements at support D  = 1 

      Total number of degrees-of-freedom        = 6 

 

The introduction of a pin in a member at a node produces an additional degree-of-freedom. 

Consider the typical node with four members as shown in Figure 1.30.  In (a) the node is a 

rigid connection with no pins in any of the members and has the three degrees-of-freedom 
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indicated. In (b) a pin is present in one member, this produces an additional degrees-of-

freedom since the rotation of this member can be different from the remaining three, 

similarly with the other members as shown in (c) and (d). 

 

 

 

 

 

    (a)      (b)      (c)       (d) 

Figure 1.30 

Degrees-of-freedom: 

(a)  total = 3  one of rotation  - θ 1     two of translation - δ H, δ V     

(b)  total = 4  two of rotation  - θ 1, θ 2     two of translation - δ H, δ V     

(c)  total = 5  three of rotation  - θ 1, θ 2, θ 3    two of translation - δ H, δ V     

(d)  total = 6  four of rotation  - θ 1,θ 2, θ 3, θ 4   two of translation - δ H, δ V     

 

In many cases the effects due to axial deformations is significantly smaller than those due 

to the bending effect and consequently an analysis assuming axial rigidity of members is 

acceptable. Assuming axial rigidity reduces the degrees-of-freedom which are considered; 

consider the frame shown in Figure 1.31. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.31 

No axial rigidity 

Degrees-of-freedom: 

three at nodes B, C, D and E 

one at node F 

two at node G 
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Assume all columns to be axial rigid 

Degrees-of-freedom: 

two at nodes B, C, D and E 

one at node F 

two at node G 

Total = [(2 × 4) + 1 + 2] = 11 

Assume all beams and columns to 

be axial rigid 

Degrees-of-freedom: 

one rotation at B, C, D, and E 

one translation at levels BC and DE 

one at node F 

two at node G 

Total = [(1 × 4) + 2 + 1 + 2] = 9 
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1.6.1 Problems:  Indeterminacy and Degrees-of-Freedom  
Determine the degree of indeterminacy and the number of degrees-of-freedom for the 

pin-jointed and rigid-jointed frames indicated in Problems 1.1 to 1.3 and Problems 1.4 to 

1.6 respectively. 
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Problem 1.4 

Problem 1.1 

Problem 1.2

Problem 1.3

Problem 1.5

Problem 1.6 
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1.6.2 Solutions:  Indeterminacy and Degrees-of-freedom 
        

 

 

 

 

 

Degree-of-Indeterminacy:  

ID = (m + r) − 2n = (12 + 4) − (2 × 7) = 2 

Total number of degrees-of-freedom: 

 (m − ID) = (12 − 2) = 10 

 

 

 

Degree-of-Indeterminacy: 

ID = (m + r) − 2n = (12 + 5) − (2 × 7) = 3 

Total number of degrees-of-freedom: 

(m − ID) = (12 − 3) = 9 

 

Degree-of-Indeterminacy: 

ID = (m + r) − 2n = (9 + 4) − (2 × 6) = 1 

Total number of degrees-of-freedom: 

(m − ID) = (9 − 1) = 8 

 

Degree-of-Indeterminacy: ID = (3m + r) − 3n − 1  (Note: one internal pin)      

Internal pins = 1 

 ID = [(3 × 8) + 7 − (3 × 9)] − 1 = 3 

The number of nodes (excluding supports) = 6 

Displacements at nodes = (3 × 6) + 1 = 19 

Displacements at supports = 2 

Total number of degrees-of-freedom: = 21 

 

Degree-of-Indeterminacy: ID = (3m + r) − 3n 

 ID = [(3 × 7) + 6 − (3 × 7)] = 6 

The number of nodes (excluding supports) = 5 

Displacements at nodes = (3 × 5) = 15 

Displacements at supports = 0 

Total number of degrees-of-freedom: = 15 

 

Degree-of-Indeterminacy: ID = (3m + r) − 3n 

ID = [(3 × 8) + 8 − (3 × 9)] = 5 

The number of nodes (excluding supports) = 5 

Displacements at nodes = (3 × 5) = 15 

Displacements at supports = 4 

Total number of degrees-of-freedom: = 19 

Solution 
Topic:  Indeterminacy and Degrees-of-freedom 

Problem Numbers: 1.1 to 1.6           Page No. 1 

pin 

n =  7 

m =  12  

r =  4 

n =  6 

m =  9 

r =  4 

n =  9 

m =  8 

r =  7 

n =  7 

m =  12 

r =  5 

n =  7 

m =  7 

r =  6 

n =  9 

m =  8 

r =  8 



 

2. Material and Section Properties  

2.1 Introduction 
Structural behaviour is dependent upon material characteristics such as elastic constants 

which describe the stress/strain relationships and the geometry of the cross-section of 

individual members. This section describes the principal characteristics and properties 

which must be considered and evaluated to enable mathematical modelling to be 

undertaken. 

2.1.1 Simple Stress and Strain 
The application of loads to structural members induces deformations and internal resisting 

forces within the materials. The intensity of these forces is known as the stress in the 

material and is measured as the force per unit area of the cross-sections which is normally 

given the symbol σ  when it acts perpendicular to the surface of a cross-section and τ 

when it acts parallel to the surface. Different types of force cause different types and 

distributions of stress for example: axial stress, bending stress, shear stress, torsional stress 

and combined stress. 

Consider the case of simple stress due to an axial load P which is supported by a column 

of cross-sectional area A and original length L as shown in Figure 2.1. The applied force 

induces an internal stress σ  such that: 

 

 P = (σ × A)  and hence σ  = P/A    (i.e. load/unit area) 

 

 

 

 

 

 

 

 

 

          Figure 2.1 

 

 

The deformation induced by the stress is quantified by relating the change in length to the 

original length and is known as the strain in the material normally given the symbol ε 

where: 

 

 ε = (change in length/original length) = (δ /L) 

 

Note: the strain is dimensionless since the units of δ and L are the same. 

 

The relationship between stress and strain was first established by Robert Hook in 1676 

who determined that in an elastic material the strain is proportional to the stress. The 

general form of a stress/strain graph is shown in Figure 2.2. 

L
 

A P 

(L
 −

 δ
 )

  
  

 δ
 

AP

σ = P/A
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Figure 2.2 

 

The point at which this graph ceases to obey Hook’s Law and becomes non−linear is the 

‘elastic limit’ or ‘proportional limit’. 

A typical stress-strain curve for concrete is shown in Figure 2.3(a).  This is a non-linear 

curve in which the peak stress is developed at a compressive strain of approximately 0.002 

(depending upon the strength of the concrete) with an ultimate strain of approximately 

0.0035. There is no clearly defined elastic range over which the stress varies linearly with 

the strain. Such stress/strain curves are typical of brittle materials. 

A typical stress-strain curve for hot-rolled mild steel is shown in Figure 2.3(b). When a 

test specimen of mild steel reinforcing bar is subjected to an axial tension in a testing 

machine, the stress/strain relationship is linearly elastic until the value of stress reaches a 

yield value, e.g. 250 N/mm2 (MPa).  

At this point an appreciable increase in the stretching of the sample occurs at constant 

load, this is known as yielding. During the process of yielding a molecular change takes 

place in the material which has the effect of hardening the steel. After approximately 5% 

strain has occurred sufficient strain-hardening will have developed to enable the steel to 

carry a further increase in load until a maximum load is reached.  

The stress-strain curve falls after this point due to a local reduction in the diameter of the 

sample (known as necking) with a consequent smaller cross-sectional area and load 

carrying capacity. Eventually the sample fractures at approximately 35% strain. 

 

 

 

 

 

 

 

 

 

 

 

 

   (a)             (b) 

Figure 2.3 
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The characteristics of the stress/strain curves are fundamental to the development and use 

of structural analysis techniques. A number of frequently used material properties relating 

to these characteristics are defined in Sections 2.1.2 to 2.1.6. 

2.1.2 Young’s Modulus (Modulus of Elasticity) − E 
From Hooke’s Law (in the elastic region):  stress ∝ strain ∴ stress = (constant × strain). 

The value of the constant is known as ‘Young’s Modulus’ and given the symbol ‘E’. Since 

strain is dimensionless the units of E are the same as those for stress. It represents a 

measure of material resistance to axial deformation. For some materials the value of 

Young’s Modulus is different in tension than it is in compression. The numerical value of 

E is equal to the slope of the stress/strain curve in the elastic region, i.e. tanθ in Figure 2.2. 

2.1.3 Secant Modulus − Es 
The ‘secant modulus’ is equal to the slope of a line drawn from the origin of the 

stress−strain graph to a point of interest beyond the elastic limit as shown in Figure 2.4. 

 

 

 

 

 

 

 

 

 

                       Figure 2.4 

 

The secant modulus is used to describe the material resistance to deformation in the 

inelastic region of a stress/strain curve and is often expressed as a percentage of Young’s 

Modulus, e.g. 75% − 0.75E. 

2.1.4 Tangent Modulus − Et 
The ‘tangent modulus’ is equal to the slope of a tangent line to the stress−strain graph at a 

point of interest beyond the elastic limit as shown in Figure 2.5. 

 

 

 

 

 

 

 

 

 

                       Figure 2.5 

 

The tangent modulus can be used in inelastic buckling analysis of columns as shown in 

Section 6.3.6 of Chapter 6. 

secant modulus = tan β

Stress (σ) 

Strain (ε )
β 
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tangent modulus = tan α 
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α 

point of interest
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2.1.5 Shear Rigidity (Modulus of Rigidity) − G  
The shear rigidity is used to describe the material resistance against shear deformation. 

similar to Young’s Modulus for axial or normal stress/strain. The numerical value of G is 

equal to the slope of the shear stress/strain curve in the elastic region, where the shear 

strain is the change angle induced between two perpendicular surfaces subject to a shear 

stress. 

2.1.6 Yield Strength 
The yield strength corresponds with the point on the stress/strain graph where permanent 

deformation begins in the material. In some cases, e.g. in Figure 2.3(a) there is no distinct 

yield point whilst in others, such as in Figure 2.3(b) there is a well−defined yield region. In 

the former case a percentage offset is often used to obtain an approximate yield point, e.g. 

a 0.2% offset point can be determined by drawing a line parallel to the elastic linear line of 

the graph starting at a point 0.2% (0.002) along the strain axes as shown in Figure 2.6. The 

intersection of this line with the stress−strain curve defines the 0.2% yield point. 

 

 

 

 

 

 

 

 

 

 

 

 

                      Figure 2.6   

2.1.7 Ultimate Tensile Strength 
The ‘ultimate strength’ is the maximum stress which a material is capable of sustaining 

and corresponds to the highest point on the stress/strain curve; see Figure 2.3(b). In 

engineering terms this is normally the value adopted, however if a specimen undergoes 

considerable necking prior to fracture the true value will differ from this. 

2.1.8 Modulus of Rupture in Bending 
The ‘modulus of rupture’ represents the ultimate strength in bending obtained during a  

bending test. It is determined by calculating the maximum bending stress in the extreme 

fibres in a member at failure.  

2.1.9 Modulus of Rupture in Torsion 
The ‘modulus of rupture’ represents the ultimate strength in torsion obtained during 

torsion test. It is determined by calculating the maximum shear stress in the extreme fibres 

of a circular member at failure. 
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2.1.10  Poisson’s Ratio − υ 
The ‘Poisson’s Ratio’ for a material is a dimensionless constant representing the ratio of 

the lateral strain to the axial strain as shown in Figure 2.7. 
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Figure 2.7 

2.1.11  Coefficient of Thermal Expansion  − α 
The linear coefficient of thermal expansion describes by how much a material will expand 

for each degree of temperature increase/decrease, e.g. the change in the length of a bar 

made from a particular material is given by: 

 

 δL = αLΔT  

where 

α   is the coefficient of thermal expansion for the material, 

L   is the original length, 

ΔT  is the change in temperature – a reduction being considered negative and an increase 

being positive. 

The unit for coefficient of thermal expansion is typically °C−1. 

2.1.12  Elastic Assumptions 
The laws of structural mechanics are well established in recognised elastic theory using 

the following assumptions: 

 

• the material is homogeneous which implies its constituent parts have the same 

physical properties throughout its entire volume,  

• the material is isotropic which implies that the elastic properties are the same in 

all directions,  

• the material obeys Hooke’s Law, i.e. when subjected to an external force system 

the deformations induced will be directly proportional to the magnitude of the 

applied force (i.e. P ∝ δ), 

• the material is elastic, which implies that it will recover completely from any 

deformation after the removal of load,  

• the modulus of elasticity is the same in tension and compression, 

• plane sections remain plane during deformation. During bending this assumption 

is violated and is reflected in a non-linear bending stress diagram throughout 

cross-sections subject to a moment; in most cases this can be neglected. 

h − Δh 

l 

l + Δl 

b − Δb 
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h 

F
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Original geometry 
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2.2 Elastic Cross-Section Properties 
An evaluation of the elastic section properties of a cross-section is fundamental to all 

structural analyses. These encompass a wide range of parameters such as the cross-

sectional area, position of the centroid and the elastic neutral axes, the second moment of 

area about the centroidal axes and any parallel axes and the elastic section modulus (Note: 

not the Elastic Modulus of Elasticity which is discussed in Section 2.1). Each of these 

parameters is discussed separately in Sections 2.2.1 to 2.2.8. 

Most structural elements have a cross-section for which standard properties are known, 

e.g. square, rectangle, triangle, trapezium, circle etc., or comprise a combination of one or 

more such shapes. If the properties of each shape which makes up a complete cross-

section are known, this information can be used to determine the corresponding properties 

of the composite shape. A number of examples are given to illustrate this in the following 

sections. 

In structural steelwork a variety of hot-rolled standard sections are available, the cross-

sectional properties of which are given in published tables. A selection of the most 

commonly used ones are shown in Figure 2.8. 

 

 

 

 

 
 Equal angle (UKA)           Unequal angle (UKA)           T-section  (TUB  or TUC) 

 

 

 

 

 

 

 
 Universal Beam (UKB)    Universal Column (UKC)            Channel (UKPFC) 

 

 

 

 

 
Rectangular hollow section (RHS)  Square hollow section (SHS)         Circular hollow section (CHS) 

 

Figure 2.8 

2.2.1 Cross-sectional Area 
The cross-sectional area of a composite shape can be expressed as: 

 Atotal = ∑
=

parts of number

1i

Ai  

where:  

Atotal is the total area of the composite cross-section 

Ai  is the cross-sectional area of each component part 
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Consider the composite shapes indicated in (i) to (ix) and determine the value of Atotal 

 

(i) 

 

 

 

 

 

 

 

 

 

 Atotal = ∑
=

parts of number

1i

Ai = [(90 × 10) + (90 × 8)] = 1620 mm2   Figure 2.9 

 (ii) 

 

 

 

 

 

 

 

 

 

 

 

 

 Atotal = ∑
=

parts of number

1i

Ai = [(150 × 8) + (82 × 8)] = 1856 mm2    Figure 2.10 

(iii) 

 

 

 

 

 

 

 

 

 

 

 

                    Figure 2.11 

 Atotal = ∑
=

parts of number

1i

Ai = [(100 × 10) + (150 × 8) + (100 × 10)] = 3200 mm2  
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(iv) 

 

 

 

 

 

 

 

 

 

 

                      Figure 2.12 

 Atotal = ∑
=

parts of number

1i

Ai = [(130 × 8) + (30 × 10) + (30 × 10)] = 1640 mm2 

(v) 

 

 

 

 

 

 

 

 

 

 

                      

 

 

 

                      Figure 2.13 

 Atotal = ∑
=

parts of number

1i

Ai = (3200  + 1640) = 4840 mm2 

(vi) 

 

 

 

 

 

 

 

 

                     Figure 2.14 

 Atotal = ∑
=

parts of number

1i

Ai = [(0.5 × 30 × 50) + (70 × 50) + (0.5 × 50 × 50)] = 5500 mm2  
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Note: For a trapezium in general; 

 

 

 

 

 

 

 

                     Figure 2.15 

 Atotal = ∑
=

parts of number

1i

Ai = [(0.5 × x1 × h) + (b × h) + (0.5 × x2 × h)] 

            = (0.5x1 + b + 0.5x2)h = 0.5(x1 + 2b + x2)h 

 

Atotal = [0.5 × (the sum of the lengths of the parallel sides) × (perpendicular height)] 

 

Check the area of the trapezium in (vi):   Atotal = [0.5 × (70 + 150) × 50] = 5500 mm2 

In a similar manner to adding the individual areas of component parts to obtain the total 

area, section properties can be evaluated by subtracting areas which do not exist, e.g. in 

hollow sections. Consider examples (vii) to (ix). 

 

(vii) 

 

 

 

 

 

 

 

 

 

 Atotal = ∑
=

parts of number

1i

Ai = [(220 × 120) − (200 × 100)] = 6400 mm2   Figure 2.16 

 

(viii) 

 

 

 

 

 

 

 

 

 Atotal = ∑
=

parts of number

1i

Ai = [(220 × 120) − (100 × 50)] = 21,400 mm2   Figure 2.17 
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(ix) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

                       Figure 2.18   

 Atotal = ∑
=

parts of number

1i

Ai   

       = [0.5 × (1200 + 2270) × (600)] − 2[(0.5 × 375 × 405) ] − 4 [π × 62.52] 

       = 840,038 mm2  

2.2.2 Centre of Gravity and Centroid 
The centre of gravity of an object is the point through which the force due to gravity on the 

total mass of the object is considered to act. The corresponding position on a plane surface 

(i.e. relating to the cross-sectional area) is known as the centroid; both are indicated in 

Figure 2.19 

 

 

 

 

 

 

 

 

     Figure 2.19 
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Consider the cross-section A shown in Figures 2.20(a) and (b) which can be considered to 

be an infinite number of elemental areas each equal to δA. The 1st moment of area         

(i.e. area × perpendicular lever arm) of the total area about any axis is equal to the sum of 

the 1st moments of area of each individual area about the same axis, i.e. 

 

 A × y  = ( )A yδ ×∑    ∴ y  = ( )A y Aδ ×∑  

 A × z  = ( )A zδ ×∑    ∴ z  = ( )A z Aδ ×∑  

where: 

A is the total area of the cross section 

y  is the distance in the y direction to the centroid for the total area 

z  is the distance in the z direction to the centroid for the total area 

y is the distance in the y direction to the centroid of the elemental area 

z is the distance in the z direction to the centroid of the elemental area 

 

 

 

 

 

 

 

 

 

       (a)            (b) 

            Figure 2.20    

       

In precise terms, ΣδAy/A and ΣδAz/A are the integrals for the shape being considered, 

however in most practical cases the cross-sectional area comprises a number of standard 

shapes (instead of the elemental area) i.e. rectangles, triangles, circles etc. in which the 

position of the centroid is known as shown in Figure 2.21 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

Figure 2.21 
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Consider the composite shapes (i) to (ix) indicated previously to determine the                

co-ordinates of their centroids. 

(i) 

 

 

 

 

 

 

 

 

 

Figure 2.22 

y  = [(90 × 10)(45) + (90 × 8)(45)] / 1620 = 45 mm  (Vertical axis of symmetry) 

z  = [(90 × 10)(95) + (90 × 8)(45)] / 1620 = 72.78 mm    

(ii) 

 

 

 

 

 

 

 

 

 

 

 

 

y  = [(150 × 8)(4) + (82 × 8)(49)] / 1856 = 19.91 mm    Figure 2.23 

z  = [(150 × 8)(75) + (82 × 8)(146)] / 1856 = 100.1 mm      

(iii) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.24 

y  = [(100 × 10)(50) + (150 × 8)(50) + (100 × 10)(50)] / 3200 = 50.0 mm 

z  = [(100 × 10)(165) + (150 × 8)(85) + (100 × 10)(5)] / 3200 = 85.0 mm 
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Note: If there are axes of symmetry then the centroid lies at the intersection point of the 

axes. 

(iv) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.25 

 

y  = [(30 × 10)(15) + (130 × 8)(4) + (30 × 10)(15)] / 1640 = 8.02 mm  

z  = 75.0 mm  (Horizontal axis of symmetry) 

                     

 (v) 

The values of y  and z  for the sections in (iii) and (iv) are used in this calculation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.26 

 

y  = 75.0 mm  (Vertical axis of symmetry) 

z  = [(3200)(85) + (1640)(169.98)] / (3200 + 1640) = 113.80 mm 
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(vi) 

 

 

 

 

 

 

 

 

 

         Figure 2.27 

 

y  = [(0.5 × 30 × 50)(20) + (70 × 50)(65) + (0.5 × 50 × 50)(116.67)] / 5500= 70.61 mm 

z  = [(0.5 × 30 × 50)(16.67) + (70 × 50)(25) + (0.5 × 50 × 50)(16.67)] / 5500 = 21.97 mm 

 

(vii) 

 

 

 

 

 

 

 

 

 

 

Figure 2.28 

 

y  = 60.0 mm  (Vertical axis of symmetry) 

z  = 110.0 mm  (Horizontal axis of symmetry)        

 

(viii) 

 

 

 

 

 

 

 

 

 

 

Figure 2.29 

 

y  = [(220 × 120)(60) − (100 × 50)(85)] / 21400 = 54.16 mm 

z  = [(220 × 120)(110) − (100 × 50)(160)] / 21400 = 98.32 mm    
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(ix) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

                      Figure 2.30 

y  = (2270) / 2= 1135 mm  (Vertical axis of symmetry) 

z  = {[(0.5 × 535 × 600)(400) + (1200 × 600)(300) + (0.5 × 535 × 600)(400)]  

   − [(0.5 × 375 × 405)(390) + (4 × π × 62.52 )(120) + (0.5 × 375 × 405)(390)]}/840,038  

    = 332.46 mm  
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2.2.3 Problems: Cross-sectional Area and Position of Centroid 
Determine the cross-sectional area and the values of y and z  to locate the position of the 

centroid for the sections shown in Problems 2.1 to 2.6. Assume the origin of the              

co-ordinate system to be at the bottom left-hand corner for each section.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Section Properties for UKB sections: 

457 × 152 × 52 UKB 

Overall depth     h  = 449.8 mm 

Area        A = 66.6 cm2  

2nd Moment of area     Iyy = 21400 cm4 

2nd Moment of area     Izz = 645 cm4 

 

533 × 210 × 82 UKB 

Overall depth     h  =  528.3 mm 

Flange width     b  =  208.8 mm 

Area        A = 105.0 cm2 

Web thickness     tw = 9.6 mm 

2nd Moment of area     Iyy = 47500 cm4 

2nd Moment of area     Izz = 2010 cm4 
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240 mm 

3
6
0
 m

m
  

  
  

  
1
5
 m

m
 

10 mm 

z  

y  

Problem 2.2 

8 mm 

240 mm 

1
5

 m
m

  
  

  
  

  
 4

0
0

 m
m

  
  

  
  

 1
5

 m
m

 

180 mm 

z

y

Problem 2.3 

200 mm 

1
2

 m
m

  
  

  
  

  
  

3
0
0

 m
m

  
  

  
1

2
 m

m
  

1
0
 m

m
 350 mm 

8 mm 

200 mm 

z  

y

Problem 2.5 
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2.2.4 Solutions: Cross-sectional Area and Position of Centroid 
        

 

 

 

 

 

Problem 2.1: 

  A = [(240 × 15) + (360 × 10)] = 7200 mm2 

 y  lies on the vertical axis of symmetry 

 y  = (240/2) = 120 mm 

 z  = [(240 × 15)(367.5) + (360 × 10)(180)]/7200 = 273.75 mm 

 

Problem 2.2: 

 A = [(240 × 15) + (400 × 8) + (180 × 15)] = 9500 mm2 

y  lies on the vertical axis of symmetry 

y  = (240/2) = 120 mm 

z  = [(240 × 15)(422.5) + (400 × 8)(215) + (180 × 15)(7.5)]/9500 = 234.66 mm 

 

Problem 2.3: 

 A = [(350 × 10) + (200 × 12) + (300 × 8) + (200 × 12)] = 10700 mm2 

y  lies on the vertical axis of symmetry 

y  = (350/2) = 175 mm 

z  = [(350 × 10)(329) + (200 × 12)(318) + (300 × 8)(162) + (200 × 12)(6)]/10700  

     = 216.63 mm 

Problem 2.4: 

 A = [(220 × 8) + 2 (82 × 15) + 6660] = 10880 mm2 

y  lies on the vertical axis of symmetry 

y  = (220/2) = 110 mm 

z  = [(220 × 8)(449.8 + 4) + 2(82 × 15)(449.8 − 41) + (6660)(449.8/2)]/10880  

     = 303.51 mm 

Problem 2.5: 

 A = [(1420 × 20) + 2 (500 × 10) + (1220 × 12)] = 53040 mm2 

y  lies on the vertical axis of symmetry 

y  = (1420/2) = 710 mm 

z  = [(1420 × 20)(522) + 2(500 × 10)(262) + (1220 × 12)(6)]/53040 = 330.56 mm 

 

Problem 2.6: 

 A = [6660 + 10500] = 17160 mm2 

y  = [(10500)(208.8/2) + (6660)(208.8/2 + 9.6/2 + 449.8/2)]/17160 = 193.55 mm 

z  = (528.3/2) = 264.15 mm 

z lies on the horizontal axis of symmetry 

 

 

Solution 
Topic:  Cross-sectional Area and Position of Centroid   

Problem Numbers: 2.1 to 2.6          Page No. 1 
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2.2.5 Elastic Neutral Axes 
Consider a beam of rectangular cross-section which is simply supported at the ends and 

carries a distributed load, as shown in Figure 2.31. 

 

 

 

 

 

 

Figure 2.31 

 

The beam will deflect due to the bending moments and shear forces induced by the applied 

loading, resulting in a curved shape as indicated in Figure 2.32. 

 

 

 

 

 

 

 

 

 Original length of the beam before deformation = L 

 Final length of the top edge after deformation = (L − 2δtop)   i.e. shortening 

 Final length of the bottom edge after deformation = (L + 2δbottom) i.e. lengthening 

 

Figure 2.32 

 

Clearly if the ends of the beam are assumed to remain perpendicular to the longitudinal 

axis, then the material above this axis must be in compression, whilst that below it must be 

in tension. At a point between the top and the bottom of the beam a layer of fibres exist 

which remain at their original length and consequently do not have any bending stress in 

them. This layer of fibres forms the ‘neutral surface’ and on a cross−section is indicated 

by the ‘neutral axis’ as shown in Figure 2.33. 

 

 

 

 

 

 

 

 

 

 

The neutral axis coincides with the centroidal axis discussed in Section 2.2.2 

 

Figure 2.33 
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2.2.6 Second Moment of Area − I  and Radius of Gyration − i 
Two of the most important properties of a cross−section are the ‘second moment of area’ 

and the ‘radius of gyration’. Consider the area shown in Figure 2.20(b). If the elemental 

area δA has its centroid at a perpendicular distance ‘i’ from a given axis, the second 

moment of area of the element about the given axis is the product of the area of the 

element and the square of the distance of the centroid from the axis, i.e. 

 

 Second moment of area I = (δA × i2) 

 

The second moment of area of the total area A is equal to Σ(δAi2) over the whole area. 

It is convenient to consider two mutually perpendicular axes which intersect at the 

centroid of a cross−section and hence: 

 

 Iyy = 2
yyAi   and   Izz = 2

zzAi  

 

Alternatively: 

 iyy = 
yyI

A
  and  izz = zzI

A
  

 

where iyy and izz are known as the ‘radii of gyration’ about the y−y and z−z axes 

respectively. 

Consider the rectangular cross−section shown in Figure 2.34. 

 

 

 

 

 

 

 

 

 

Figure 2.34 

 

 Iyy  for element = δAz2 = (bδz × z2)     Izz  for element = δAy2 = (hδy × y2) 

 Iyy  total area = 

/2
2

/2

h

h

bz dz

+

−
∫           Izz  total area =
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by dy
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3 2
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⎝ ⎠⎢ ⎥⎣ ⎦
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⎡ ⎤
⎢ ⎥
⎣ ⎦
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h b⎡ ⎤⎛ ⎞×⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦
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3

12
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2.2.6.1 The Parallel Axis Theorem  

It can also be shown that the second moment of area of a cross−sectional area A about an 

axis parallel to any other axis is equal to the second moment of area of A about that other 

h 

z 

z 

y                          y 
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δ z 

z 
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z 
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y                          y 

b 

δ y
y 
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axis plus the area multiplied by the square of the perpendicular distance between the axes. 

Consider the rectangular areas shown in Figure 2.35: 

 

 

 

 

 

 

 

 

 

 

 

 IPP  = (Iyy + Az2
) = 

3

12

bh
 + (bh × z2

)    IQQ  = (Izz + Ay2
) = 

3

12

hb
 + (bh × y2

) 

Figure 2.35 

 

These relationships are used extensively to determine the values of the second moment of 

area and radius of gyration of compound sections comprising defined areas such as 

rectangles, triangles circles etc. 

Consider the cross−sectional area shown in Figures 2.24 and determine the values of the 

second moment of area and radius of gyration about the centroidal axes. Data from     

Figure 2.24 is indicated in Figure 2.36: 

Area = 3200 mm2 (see Figure 2.11) 

IPP = (Iyy + Az2) for each rectangle in which P−P is 

the y−y axis for the whole section. 

Iyy = 
3

2

12

bh
bhz

⎛ ⎞
+⎜ ⎟

⎝ ⎠
∑ for each flange and the web 

      = 
3

2100 10
2 100 10 80

12

⎛ ⎞× + × ×⎜ ⎟
⎝ ⎠

 + 
38 150

12

×
 

(Note: the second term is zero for the web since the 

P−P axis coincides with its’ centroidal axis.  

 

 Iyy = 15.07 × 10
6
 mm

4
 

   Figure 2.36 

 

IQQ  = (Izz + Ay2) for each rectangle in which Q−Q is the z−z axis for the whole section. In 

this case the second term for each rectangle is equal to zero since the Q−Q axis coincides 

with their centroidal axes. 
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2.2.7 Elastic Section Modulus −  Wel 
The bending moments induced in a beam by an applied load system generate bending 

stresses in the material fibres which vary from a maximum in the extreme fibres to zero at 

the level of the neutral axis as shown in Figure 2.33 and Figure 2.37. 

 

The magnitude of the bending stresses at any vertical 

cross-section can be determined using the simple theory 

of bending from which the following equation is 

derived: 

 

 
M E

I R z

σ= =  ∴  σ  = 
Mz

I
   

 

               Figure 2.37 

where: 

M is the applied bending moment at the section being considered, 

E is the value of Young’s modulus of elasticity, 

R is the radius of curvature of the beam, 

σ is the bending stress, 

z is the distance measured from the elastic neutral axis to the level on the cross-section 

at which the stress is being evaluated, 

I is the second moment of area of the full cross-section about the elastic neutral axis. 

 

It is evident from the equation given above that for any specified cross-section in a beam 

subject to a known value of bending moment (i.e. M and I constant), the bending stress is 

directly proportional to the distance from the neutral axis; i.e. 

 

 σ = constant × z   ∴  σ  α  z 

 

This is shown in Figure 2.37, in which the maximum bending stress occurs at the extreme 

fibres. 

 

In design it is usually the extreme fibre stresses relating to the zmaximum values at the top and 

bottom which are critical. These can be determined using: 

 

 σtop = 
el,y,top

M

W
  and  σbottom = 

el,y,bottom

M

W
 

 

where σ  and M are as before, 

Wel,y,top  is the elastic section modulus relating to the top fibres and defined as 
yy

top

I

z
 

Wel,y,bottom is the elastic section modulus relating to the bottom fibres and defined as 

yy

bottom

I

z
 

z 
σz 

σbottom 

σtop 

y        y 

Bending Stress Diagram
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If a cross-section is symmetrical about the y−y axis then Wel,y,top = Wel,y,bottom. In 

asymmetric sections the maximum stress occurs in the fibres corresponding to the smallest 

Wel value. For a rectangular cross-section of breadth b and depth h subject to a bending 

moment M about the major y−y axis, the appropriate values of I, z and Wel are: 

 Iyy = 
3

12

bh
  zmaximum = 

2

h
  Wel,y,minimum = 

2

6

bh
 

In the case of bending about the minor z−z axis: 

 Izz = 
3

12

hb
  ymaximum = 

2

b
  Wel,z,minimum = 

2

6

hb
 

 

Consider the cross−sectional area shown in Figures 2.29/2.38 and determine the values of 

the maximum and minimum elastic section modulii about the centroidal axes. 

 

 

 

 

 

 

 

 

 

 

 

 

y  = 54.16 mm and z  = 98.32 mm   Area = 21,400 mm2 

Figure 2.38 
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2.2.8 Problems: Second Moments of Area and Elastic Section Modulii 
Determine the following values for the sections indicated in Problems 2.1 to 2.6. 

(i) the second moment of areas Iyy and Izz and  

(ii) the elastic section modulii Wel,yy and Wel,zz. 

2.2.9 Solutions: Second Moments of Area and Elastic Section Modulii 
        

 

 

 

 

Section dimensions for Problem 2.1: 

 

 

 z1 = [(360 + 7.5) − 273.75] 

     = 93.75 mm 

 z2 = [273.75 − 180] 

     = 93.75 mm 

 

Note: cg,yyI  = 2nd moment of area 

about the centroidal axis for 

an element of the cross-

section. 

 

IYY = ( )2
cg,yyI Az+∑    

   = ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
××+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ × 2
3

75.9315240
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15240
 + ( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
××+⎟⎟

⎠

⎞
⎜⎜
⎝
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                    = 102.23 × 106 mm6  
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⎤
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⎣

⎡ ×+×
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10360

12

24015 33

 = 17.31 × 106 mm6 

 

 Wel,YY,bottom = YY
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I

z
= 

75273

1023102 6

.

. ×
 = 373.44 × 103 mm3  

 Wel,YY,top = YY
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I

z
 = ( )75273375

1023102 6

.

.

−
×

 = 1009.68 × 103 mm3  

 Wel,ZZ,LHS = ZZ
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I

y
 = 

120

1031.17 6×
 = 144.25 × 103 mm3  

 Wel,ZZ,RHS = ZZ

RHS

I

y
 = ZZ
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I

y
 (vertical axis of symmetry) = 144.25 × 103 mm3  

Solution 
Topic:  Second Moments of Area and Elastic Section Modulii   

Problem Number: 2.7            Page No. 1 
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Section dimensions for Problem 2.2: 

 

 

  

  

 z1 = [(15 + 400 + 7.5) − 234.66]  

     = 187.84 mm 

 z2 = [234.66 − (15 + 200)] 

     = 19.66 mm 

 z3 = [234.66 − 7.5] 

     = 227.16 mm 

 

 

 

 

 

 

IYY = ( )2
cg,yyI Az+∑  
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⎥
⎥
⎦
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⎥
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⎞
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z
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−
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I

y
 = 
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I

y
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I

y
 (vertical axis of symmetry) = 204.92 × 103 mm3 

Solution 
Topic:  Second Moments of Area and Elastic Section Modulii     

Problem Number: 2.8            Page No. 2 
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Section dimensions for Problem 2.3: 

 

 

  

  z1 = [(12 + 300 + 12 + 5) − 216.63]  

     = 112.37 mm 

 z2 = [(12 + 300 +6) −216.63] 

     = 101.37 mm 

 z3 = [216.63 − (12 + 150)] 

     = 54.63 mm 

 z4 = [216.63 − 6] 

     = 210.63 mm 

 

 

 

 

IYY = ( )2
cg,yyI Az+∑  
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 IZZ = ( )2
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2

12 12 12
 

⎡ ⎤⎛ ⎞× × ×+ +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 = 51.74 × 106 mm6 

  

Wel,YY,bottom = YY

bottom

I

z
= 

6200.58 10

216.63

×
 = 925.91 × 103 mm3 

 Wel,YY,top = YY

top

I

z
 = [ ]

6200.58 10

334.0 216.63

×
−

= 1708.96 × 103 mm3 

 Wel,ZZ,LHS = ZZ

LHS

I

y
 = 

175

1074.51 6×
 = 295.66× 103 mm3 

 Wel,ZZ,RHS = ZZ

RHS

I

y
 = ZZ

LHS

I

y
 (vertical axis of symmetry) = 295.66 × 103 mm3 

Solution 
Topic:  Second Moments of Area and Elastic Section Modulii     
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Section dimensions for Problem 2.4: 

 y1 = [110 − 7.5] = 102.5 mm 

 y2 = [110 − 7.5] = 102.5 mm 

 

 z1 = [(449.8 + 4) − 303.51] 

     = 150.29 mm 

 z2 = [(449.8 − 41) − 303.51] 

     = 105.29 mm 

 z3 = [303.51 − (449.8/2)] 

     = 78.61 mm 

 

For 457 × 152 × 52 UKB: 

 h = 449.8 mm 

 A = 66.6 cm2  

Iyy = 21400 cm4 

Izz = 645 cm4 

 

IYY = ( )2
cg,yyI Az+∑  

   = ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
××+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ × 2
3

29.1508220
12

8220
 + 2 ( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
××+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ × 2
3

291058215
12

8215
.  

  

   + ( ) ( )4 221400 10 6660 78.61⎡ ⎤× + ×⎣ ⎦  = 323.57 × 106 mm6  

  

IZZ = ( )2
cg,zzI Ay+∑ = ( ) ( )42

33

106455.1021582
12

1582
2

12

2208 ×+⎥
⎦

⎤
⎢
⎣

⎡
××+×+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ×
   

                    = 39.44 × 106 mm6 

  

Wel,YY,bottom = YY

bottom

I

z
= 

6323.57 10

303.51

×
 = 1066.09 × 103 mm3  

 Wel,YY,top = YY

top

I

z
 = [ ]

6323.57 10

449.8 8.0 303.51

×
+ −

 = 2097.16 × 103 mm3  

 Wel,ZZ,LHS = ZZ

LHS

I

y
 = 

110

1044.39 6×
 = 358.55× 103 mm3  

 Wel,ZZ,RHS = ZZ

RHS

I

y
 = ZZ

LHS

I

y
  (vertical axis of symmetry) = 358.55 × 103 mm3  

Solution 
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Section dimensions for Problem 2.5: 

 

 y1 = [(1200/2) + 5] = 605 mm 

 y2 = [(1200/2) + 5] = 605 mm 

 

 z1 = [(12 + 500 +10) − 330.56] 

     = 191.44 mm 

 z2 = [330.56 − (12 + 250)] 

     = 68.56 mm 

 z3 = [330.56 − 6] 

     = 324.56 mm 

 

 

 

IYY = ( )2
cg,yyI Az+∑  

   = ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
××+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ × 2
3

44.191201420
12

201420
 + 2 ( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
××+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ × 2
3

56.6850010
12

50010
 

        + ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
××+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ × 2
3

56.324121220
12

121220
 = 2839.47 × 106 mm6  

  

IZZ = ( )2
cg,zzI Ay+∑  

       = ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×+⎥
⎦

⎤
⎢
⎣

⎡
××+×+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ×
12

122012
60550010

12

10500
2

12

142020 3
2

33

   

                   = 10248.30 × 106 mm6 

  

Wel,YY,bottom = YY

bottom

I

z
= 

56.330

1047.2839 6×
 = 8589.88 × 103 mm3 

 Wel,YY,top = YY

top

I

z
 = [ ]

62839.47 10

532.0 330.56

×
−

 = 14095.86 × 103 mm3 

 Wel,ZZ,LHS = ZZ

LHS

I

y
 = 

710

103.10248 6×
 = 14434.23 ×  103 mm3 

Wel,ZZ,RHS = ZZ

RHS

I

y
 = ZZ

LHS

I

y
= YY

LHS

I

y
 (vertical axis of symmetry) = 14434.23 × 103 mm3 
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Section dimensions for Problem 2.6: 

 

 y1 = [193.55 − (208.8/2] = 89.15 mm 

 y2 = [(208.8/2) + (9.6/2) + (449.8/2) − 193.55] = 140.55 mm 

  

 

 

For 457 × 152 × 52 UKB: 

h = 449.8 mm   A = 66.6 cm2
 

Iyy = 21400 cm4  Izz = 645 cm4
 

  

For 533 × 210 × 82 UKB: 

 b = 208.8 mm   h = 528.3 mm 

 A = 105.0 cm2  tw = 9.6 mm 

Iyy = 47500 cm4  Izz = 2010 cm4 

 

 

 

IYY = ( )2
cg,yyI Az+ 533 × 210 × 82 UB + ( )2

cg,zzI Az+ 457 × 152 × 52 UB 

   

       = ( ) ( )[ ]44 106451047500 ×+× = 481.45 × 106 mm4 

  

IZZ = ( )2
cg,zz 1I Ay+ 533 × 210 × 82 UB + ( )2

cg,zz 2I Ay+ 457 × 152 × 52 UB 

       = ( ) ( )4 2 22010 10 10500 89.15 21400 6660 140.55⎡ ⎤ ⎡ ⎤× + × + + ×⎣ ⎦ ⎣ ⎦ = 235.14 × 106 mm6 

  

Wel,YY,bottom = YY

bottom

I

z
= 

15.264

1045.481 6×
 = 1822.64 × 103 mm3 

 Wel,YY,top = YY

top

I

z
 = YY

bottom

I

z
 (horizontal axis of symmetry) = 1822.64 × 103 mm3 

Wel,ZZ,LHS = ZZ

LHS

I

y
 = 

6235.14 10

193.55

×
 = 1214.88 × 103 mm3 

 Wel,ZZ,RHS = ZZ

RHS

I

y
 = 

( )
6235.14 10

208.8 / 2 4.8 449.8 193.55

×
⎡ ⎤+ + −⎣ ⎦

 = 643.43 × 103 mm3 

Solution 
Topic:  Second Moments of Area and Elastic Section Modulii     
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2.3 Plastic Cross-Section Properties 
When using elastic theory in design, the acceptance criterion can be based on 

“permissible” or “working” stresses.  These are obtained by dividing the “yield stress” fy 

of the material by a suitable factor of safety. The loads adopted to evaluate an actual 

working stress are “working loads”. 

In a structure fabricated from linearly elastic material, the factor of safety (F. of S.) can 

also be expressed in terms of the load required to produce yield stress and the working 

load. This is known as the Load Factor (λ). 

 

load Working

load Collapse
  =  λ  

2.3.1 Stress/Strain Relationship  
The plastic analysis and design of structures is based on collapse loads. A typical stress-

strain curve for a ductile material having the characteristic of providing a large increase in 

strain beyond the yield point without any increase in stress, (e.g. steel) is given in        

Figure 2.39.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.39 

 

When adopting this curve for the theory of plasticity (see Chapter 8) it is idealised as 

indicated in Figure 2.40 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.40 
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If a beam manufactured from material with a characteristic stress/strain curve as shown in     

Figure 2.39 has a rectangular cross section and is subjected to an increasing bending 

moment only, then the progression from elastic stress/strain distributions to plastic 

stress/strain distributions are as indicated in Figure 2.41. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

      (a)                  (b)     (c)      (d) 

Figure 2.41 

 

Initially at low values of applied moment (a) the maximum stress and strain values are less 

than the permissible working values as indicated in Figure 2.41 (i.e. between points A and 

B in Figure 2.40). 

As the applied moment increases, then the stress and strain values increase until at stage 

(b), both attain the yield values εy and fy. This corresponds to point C in Figure 2.40. 

A further increase in the applied moment induces yield in some of the inner fibres of the 

material. Whilst the extreme fibre strains must now exceed εy, the stress must obviously 

remain at fy. This corresponds to point D in Figure 2.40 and (c) in Figure 2.41. 

As the applied moment increases still further, so the whole section eventually reaches the 

yield stress. (As indicated in (d) there is a very small region around the neutral axis which 

has not reached yield, but this can be ignored without any appreciable error). When the 

whole section has attained yield stress then the section cannot provide any further moment 

resistance and a plastic hinge is formed allowing the beam to rotate at the location of the 

beam. The value of the applied moment at which this occurs is known as the Plastic 

Moment of Resistance  (Mpl). 

2.3.2 Plastic Neutral Axis  
At all stages of loading, the compression force (FC) induced by the applied moment must 

equal the tension force (FT). This being so, then at the formation of the plastic hinge 

ε y

C 

T 

h/2 

h/2 

b 
< ε y 

εy

> ε y >> ε y 

εy 

elastic 

moment

limiting elastic 

moment 

elasto-plastic 

moment 

plastic 

moment 

C 

T 

h/2 

h/2 

b < fy 

< fy

FT 

FC 

fy

fy

FT1

FT2

FC1

FC2

fy 

lever arm 

fy 

FT 

FC  

fy 

fy 

F T 

FC
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where all the material is subjected to the same stress i.e. fy, the plastic neutral axis must 

be that axis which equally divides the area into two separate parts, i.e. 

 

 The  compression force FT  = (AC × fy)   The  tension force FT = (AT × fy) 

 

where 

AC = Area in compression,  AT = Area in tension 

fy = yield stress 

 

 Force in compression = Force in tension 

 FC = FT 

 (AC × fy) = (AT × fy) 

 ∴ AC = AT   i.e.  

The area of the cross-section in compression = The area of the cross-section in tension 

 

In plastic analysis the neutral axis is the equal area axis. 

2.3.3 Evaluation of Plastic Moment of Resistance and Plastic Section Modulus  
In elastic analysis the limiting elastic moment can be expressed in terms of the yield stress 

and the elastic section modulus, at the limit of elasticity; 

 

 Mel = (fy × Wel) where Wel is the elastic section modulus 

 

Similarly in plastic analysis, the plastic moment of resistance can be expressed in terms of 

the yield stress and the plastic section modulus. 

 

 Mpl = (fy × Wpl) where Wpl is the plastic section modulus 

 

Consider the section shown in Figure 2.42. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.42 

 

If the rectangular section is subjected to a moment equal to the plastic moment of 

resistance Mpl of the section then we can determine a value for the plastic section modulus. 

C 

T 

b 

h/2 

h/2 

y y 

fy 

fy 

FT

FC 

lever arm = h/2 

Cross-section Bending Stress Diagram 
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e.g. Mpl,yy = fy × Wpl,yy 

  Mpl,yy = (FC  ×  lever arm) or [(FT  ×  lever arm)] 

 ∴ Mpl,yy = (stress × area × lever arm) 

              = [fy × (b × h/2) × (h/2)] = fy bh2/4 

Hence for a rectangular section the Plastic Section Modulus  Wpl,yy = 
2

4

bh
 

The Plastic Section Modulus  Wpl = 1
st
 moment of area about the equal area axis 

2.3.4 Shape Factor 
The ratio of the plastic modulus to the elastic modulus (or plastic moment to limiting 

elastic moment) is known as the shape factor  given by the symbolν . 

 For a rectangle ν  = 
pl

el

W

W
 = 

2

2

4

6

bh

bh
 = 1.5;    For most I sections ν  ≈ 1.15 

 

2.3.5 Section Classification  
In design codes the compression elements of structural members are classified into four 

categories depending upon their resistance to local buckling effects which may influence 

their load carrying capacity. The compression may be due to direct axial forces, bending 

moments, or a combination of both. There are two distinct types of element in a cross-

section identified in the code: 

 

1. Outstand elements − elements which are attached to an adjacent element at one 

edge only, the other edge being free, e.g. the flange of an I-section. 

 

2. Internal elements  − elements which are attached to other elements on both 

longitudinal edges, including: 

− webs comprising the internal elements perpendicular to the axis of 

bending 

− flanges comprising the internal elements parallel to the axis of bending 

e.g. the webs and flanges of a rectangular hollow section. 

 

The classifications specified in the Eurocode for structural steelwork (EN 1993-1-1) are: 

 

• Class  1  (Mpl = fy × Wpl), 

• Class  2 (Mpl = fy × Wpl),  

• Class  3 (Mel = fy × Wel), 

• Class  4 (Meff = fy × Weffective). 

 

Further explanation of local buckling and section classification is given in Chapter 6.  

2.3.5.1 Aspect Ratio 

The aspect ratio for various types of element can be determined using the variables 

indicated in the code for a wide range of cross-sections. A typical example is the 

hot−rolled I-section indicated in Figure 2.43. 
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        Figure 2.43 

 

The limiting aspect ratios given must be modified to allow for the design strength fy. This 

is done by multiplying each limiting ratio by ε which is defined as:  

ε = 

2

y

235

f

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

in EN 1993-1-1. In the case of the web of a hybrid section ε  should be based 

on the design strength fy of the flanges. In addition to ε, some limiting values also include 

parameters relating to stress ratios, these are not considered further here. 

2.3.5.2 Type of Section 

The type of section e.g. universal beam, universal column, circular hollow sections, 

welded tubes, hot finished rectangular hollow sections, cold formed rectangular hollow 

sections etc. also influences the classification. 

The classifications given in codes indicate the moment/rotation characteristics of a section, 

as shown in Figure 2.44. 

 

 

 

 

 

       .  

 

 

 

 

                        

                    Figure 2.44 

where: 

Mpl = the plastic moment of resistance, 

Mel  = the limiting elastic moment of resistance, (i.e the maximum stress = fy). 

Meff = the elastic moment of resistance based on effective cross-section properties. 

 

These characteristics determine whether or not a fully plastic moment can develop within 

a section and whether or not the section possesses sufficient rotational capacity to permit 

the section to be used in plastic design. 
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Consider a section subject to an increasing bending moment; the bending stress diagram 

changes from a linearly elastic condition with extreme fibre stresses less than the design 

strength (fy), to one in which all of the fibres can be considered to have reached the design 

strength, as shown in Figure 2.45. 

 

   Compression     σ < fy              σ = fy        σ = fy 

 

 

 

 

 

      Tension      σ <  fy          σ  = fy         σ = fy 

       Meff,Rd,y = (σ × Weff,yy)    Mel,Rd,y = (fy × Wel,yy)     Mpl,Rd,y = (fy × Wpl,yy) 

             Class 4       Class 3         Classes 2 and 1 

             (a)            (b)        (c) 

where: 

Weff,yy = effective section modulus;      Wel,yy = elastic section modulus;    

Wpl,yy = plastic section modulus;     σ = bending stress;     fy = design strength (yield stress) 

Figure 2.45 

2.4 Example 2.1: Plastic Cross−section Properties − Section 1 
Determine the position of the plastic neutral axis plasticz , the plastic section modulus Wpl.yy 

and the shape factor υ for the welded section indicated in Figure 2.46.   

 

                    Wel,yy = 34.9 × 103 mm3 

                    Atotal = (AC1 + AC2 + AT) 

                    Fcompression = Ftension 

                    FC1 + FC2 = FT 

                    (AC1 × fy)  + (AC2 × fy) = (AT × fy) 

                    (AC1 + AC2) = AT 

                  

               Figure 2.46 

 

(i)   Position of plastic neutral axis ( )plasticz   

 A = [(90 × 10) + (90 × 15)] = 2250 mm2      A/2 = (2250/2) = 1125 mm2 

 

For equal area axis: 

    plasticz  = 1125/15 = 75 mm 

 

(ii)  Plastic section modulus: (1st moment of area about the plastic neutral axis) 

Wpl,yy = [(90 × 10) × 20] + [(15 × 15) × 7.5)] + [(75 × 15) × 37.5)] = 61.875 × 103 mm3 

  

(iii)  Shape factor υ = 
pl,yy

el,yy

W

W
= 

3

3

61.875 10

34.9 10

⎡ ⎤×
⎢ ⎥×⎣ ⎦

 = 1.77 

90 mm 

9
0
 m

m
  
  
  
  

1
0
 m

m
 

15 mm

fy 

fy 

FC1

FC2

FT AT 

AC1 

plasticz

AC2 
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2.5 Problems: Plastic Cross-section Properties 
Determine the following values for the welded sections indicated in Problems 2.13 to 2.16, 

 

(i) position of the plastic neutral axis plasticz , 

(ii) the plastic section modulus Wpl,yy   and  

(iii) the shape factor υ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problem 2.13 Problem 2.14 

Problem 2.16 
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2.6 Solutions: Plastic Cross-section Properties 
        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(i)   Position of plastic neutral axis plasticz   

 A = [2(240 × 10) + 2(360 − 20) × 8)] = 10240 mm2 

A/2 = (10240/2) = 5120 mm2 

For equal area axis: 

plasticz  = 10 + [5120 − (240 × 10)]/(2 × 8) = 180 mm 

(i.e. concentric with the elastic neutral axis at mid-height for a symmetrical section) 

 

(ii)  Plastic section modulus Wpl,yy  

Wpl,yy = 1st moment of area about the equal area axis 

      = 2 × [(240 × 10 × 175) + 2(170 × 8 × 85)] 

      = 1302.4 × 103 mm3  

 

 

(iii)  Shape factor (υ) 

υ = 
pl,yy

el,yy

W

W
; where  Wel,yy = 

yy

Distance to extreme fibres

I
 

 

Iyy = ⎥
⎦

⎤
⎢
⎣

⎡ ×−×
12

340224

12

360240 33

 = 199.45 × 106 mm4 

Wel,yy = ⎥
⎦

⎤
⎢
⎣

⎡ ×
)2/360(

1045.199 6

 = 1108.06 × 103 mm3 

 

υ = 
pl,yy

el,yy

W

W
 = ⎥

⎦

⎤
⎢
⎣

⎡

×
×

3

3

101108.06

104.1302
 = 1.18 
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(i)   Position of plastic neutral axis plasticz   

 A = [2(100 × 10) + (250 × 8)] = 4000 mm2 

A/2 = (4000/2) = 2000 mm2 

For equal area axis: 

plasticz = 10 + [2000 − (100 × 10)]/8 = 135 mm 

(i.e. concentric with the elastic neutral axis at mid-height for a symmetrical section) 

 

 

(ii)  Plastic section modulus Wpl,yy  

Wpl,yy= 2 × [(100 × 10 × 130) + (125 × 8 × 62.5)] 

      = 385 × 103 mm3 

 

 

(iii)  Shape factor (υ) 

υ = 
pl,yy

el,yy

W

W
; where  Wel,yy = 

yy

Distance to extreme fibres

I
 

 

Iyy = 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ××−×
12

25046
2

12

270100 33

 = 44.23 × 106 mm4  

Wel,yy = ⎥
⎦

⎤
⎢
⎣

⎡ ×
)2/270(

1023.44 6

 = 327.63 × 103 mm3 

 

υ = 
pl,yy

el,yy

W

W
 = ⎥

⎦

⎤
⎢
⎣

⎡

×
×

3

3

1063.273

10385
 = 1.18 
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(i)   Position of plastic neutral axis plasticz   

 A = [(240 × 15) + (400 × 8) + (180 × 15)] = 9500 mm2 

A/2 = (9500/2) = 4750 mm2 

For equal area axis: 

plasticz  = 15 + [4750 − (180 × 15)]/8 = 271.25 mm 

 

 

(ii)  Plastic section modulus Wpl,yy 

Wpl,yy = [240 × 15 × (422.5 − 271.25)] + [(415 − 271.25) × 8 × 0.5(415 − 271.25)] 

          + [256.25 × 8 × (0.5 × 256.25)] + [180 × 15 × (271.25 − 7.5)] 

      = 1601.94 × 103 mm3 

 

 

(iii)  Shape factor (υ) 

υ = 
pl,yy

el,yy

W

W
; where  Wel,yy = 

yy

Distance to extreme fibres

I
 

 

Wel,yy = 1322.64 × 103 mm3   (see Problem No. 2.8) 

 

υ = 
pl,yy

el,yy

W

W
 = 

3

3

1601.94 10

1322.64 10

⎡ ⎤×
⎢ ⎥×⎣ ⎦

 = 1.21 

 

 

 

 

Solution 
Topic:  Plastic Cross-section Properties   

Problem Number: 2.15            Page No. 1 
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(i)   Position of plastic neutral axis plasticz   

 A = [(235 × 10) + 2(90 × 12)] = 4510 mm2 

A/2 = (4510/2) = 2255 mm2 

For equal area axis: 

plasticz  = [2255 − (90 × 12)]/10 = 117.5 mm 

(i.e. concentric with the elastic neutral axis at mid-height for a symmetrical section) 

 

 

(ii)  Plastic section modulus Wpl,yy 

Wpl,yy = 1st moment of area about the equal area axis 

      = 2 {[117.5 × 10 × (117.5/2)] + [90 × 12 × (117.5 − 6)]} 

      = 378.9 × 103 mm3 

 

 

(iii)  Shape factor (υ) 

υ = 
pl,yy

el,yy

W

W
  where  Wel,yy = 

yy

Distance to extreme fibres

I
 

 

Iyy = 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×−×
12

21190

12

235100 33

= 37.69 × 106 mm4 

Wel,yy = ⎥
⎦

⎤
⎢
⎣

⎡ ×
)2/235(

1069.37 6

 = 320.80 × 103 mm3 

υ = 
pl,yy

el,yy

W

W
 = ⎥

⎦

⎤
⎢
⎣

⎡

×
×

3

3

108.320

109.378
= 1.18 

Solution 
Topic:  Plastic Cross-section Properties   

Problem Number: 2.16            Page No. 1 
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3.  Pin-Jointed Frames 

3.1 Introduction 
The use of beams/plate-girders does not always provide the most economic or suitable 

structural solution when spanning large openings. In buildings which have lightly loaded, 

long span roofs, when large voids are required within the depth of roof structures for 

services, when plated structures are impractical, or for aesthetic/architectural reasons, the 

use of roof trusses, lattice girders or space-frames may be more appropriate. 

Such trusses/girders/frames, generally, transfer their loads by inducing axial tension or 

compressive forces in the individual members. The magnitude and sense of these forces 

can be determined using standard methods of analysis such as ‘the method of sections’, 

‘the method of joint-resolution’, ‘the method of tension coefficients’ or the use of 

‘computer software’. The first three methods indicated are summarized and illustrated in 

this Chapter. 

3.2 Method of Sections  
The method of sections involves the application of the three equations of static equilibrium 

to two-dimensional plane frames. The sign convention adopted to indicate ties (i.e. tension 

members) and struts (i.e. compression members) in frames is as shown in Figure 3.1. 

 

 

 

 

 

 

 

 

 

Figure 3.1 

 

The method involves considering an imaginary section line which cuts the frame under 

consideration into two parts A and B as shown in Figure 3.4. 

Since only three independent equations of equilibrium are available any section taken 

through a frame must not include more than three members for which the internal force is 

unknown. 

Consideration of the equilibrium of the resulting force system enables the magnitude and 

sense (i.e. compression or tension) of the forces in the cut members to be determined. 

3.2.1 Example 3.1:  Pin-Jointed Truss 
A pin-jointed truss supported by a pinned support at A and a roller support at G carries 

three loads at joints C, D and E as shown in Figure 3.2. Determine the magnitude and 

sense of the forces induced in members X, Y and Z as indicated. 

 

 

 

Joint           Strut – compression member       Joint 

Tie – tension member 
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Figure 3.2 

 

Step 1: Evaluate the support reactions. It is not necessary to know any information 

regarding the frame members at this stage other than dimensions as shown in Figure 3.3, 

since only externally applied loads and reactions are involved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 

 

Apply the three equations of static equilibrium to the force system: 

 

 +ve ΣFz = 0  VA − (10 + 10 + 10) + VG = 0    VA + VG = 30 kN 

+ve  ΣFx = 0                 ∴ HA = 0 

+ve  ΣMA = 0  (10 × 2.0) + (10 × 4.0) + (10 × 6.0) − (VG × 8.0) = 0 

                      ∴ VG = 15 kN 

                    Hence     VA = 15 kN 

 

Step 2: Select a section through which the frame can be considered to be cut and using 

the same three equations of equilibrium determine the magnitude and sense of the 

unknown forces (i.e. the internal forces in the cut members). 

   A   J     I        H         G 

B        C         D        E          F 

2
.0

 m
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10 kN              10 kN             10 kN 
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Figure 3.4 

 

It is convenient to assume all unknown forces to be tensile and hence at the cut section 

their direction and lines of action are considered to be pointing away from the joints (refer 

to Figure 3.4). If the answer results in a negative force this means that the assumption of a 

tie was incorrect and the member is actually in compression, i.e. a strut. 

The application of the equations of equilibrium to either part of the cut frame will enable 

the forces X (FDE), Y (FEI) and Z (FHI) to be evaluated.  

Note: the section considered must not cut through more than three members with 

unknown internal forces since only three equations of equilibrium are available. 

 

Consider Part A: 

 

 

 

 

 

 

 

 

 

 

 

               Figure 3.5 

 

Note: sinθ = 
2

2 2
 = 0.707,  cosθ = 

2

2 2
 = 0.707, 

+ve ΣFz= 0 + 15.0 − 10.0 − 10.0 + FEI sinθ = 0 

FEI = + 
5.0

sinθ
 = + 7.07 kN 

                    Member EI is a tie 

Part A             Part B 

           A      J            I 
FHI

FEI 

FDE
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θ 

B           C         D 

10 kN              10 kN  
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Section line 
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 H               G  
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E              F 
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B           C           D  

2.0 m          2.0 m 

FDE

FEI

FHI

Part A 

10 kN             10 kN  

15 kN 



 Pin-Jointed Frames  65

+ve  ΣFx = 0 + FDE + FHI +FEI cosθ  = 0 

 

+ve ΣMI = 0  + (15.0 × 4.0) − (10.0 × 2.0) + (FDE × 2.0) = 0 

                     FDE = − 20.0 kN 

                   Member DE is a strut 

 

 hence  FHI = − FDE − FEI cosθ = − (− 20.0) − (7.07 × cosθ) = + 15.0 kN 

                    Member HI is a tie 

 

These answers can be confirmed by considering Part B of the structure and applying the 

equations as above. 

3.3  Method of Joint Resolution 
Considering the same frame using joint resolution highlights the advantage of the method 

of sections when only a few member forces are required. 

In this technique (which can be considered as a special case of the method of sections), 

sections are taken which isolate each individual joint in turn in the frame, e.g. 

 

 

 

 

 

 

 

 

                     Figure 3.6 

 

 

In Figure 3.6 four sections are shown, each of which isolates a joint in the structure as 

indicated in Figure 3.7. 

 

 

 

 

 

 

 

 

 

Figure 3.7 

 

Since in each case the forces are coincident, the moment equation is of no value, hence 

only two independent equations are available. It is necessary when considering the 

equilibrium of each joint to do so in a sequence which ensures that there are no more than 

two unknown member forces in the joint under consideration. This can be carried out until 

all member forces in the structure have been determined. 

Joint G      Joint F    Joint H            Joint E 

FHI FGH 

FFH FEH 

H 
15.0 kN 

G FGH 
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Consider Joint G: 

         +ve ΣFz = 0  + 15.0 + FFG = 0 

                      FFG = − 15.0 kN 

         +ve    ΣFx = 0        − FGH = 0 

 

                 Member GH is a zero member 

                  Member FG is a strut 

 

 

Consider Joint F: substitute for calculated values, i.e. FFG  (direction of force is into the 

joint) 

 

         +ve ΣFz = 0  + 15.0 – FFH cosθ = 0 

                     FFH = + 15.0 / 0.707 

                     FFH = + 21.21 kN 

         +ve     ΣFx = 0  − FEF − FFH sinθ = 0 

                     FEF = − 21.21 × 0.707 

                     FEF = − 15.0 kN 

Member FH is a tie  

Member EF is a strut 

 

 

Consider Joint H: substitute for calculated values, i.e. FGH and FFH 

 

         +ve ΣFz = 0  + FEH + 21.21 sinθ = 0 

                  FEH = − 21.21 ×  0.707  

                     FEH = − 15.0 kN 

         +ve     ΣFx = 0  − FHI + 21.21 cosθ = 0 

                     FHI = + 21.21 × 0.707  

                     FHI = + 15.0 kN 

                   Member EH is a strut 

 Member HI is a tie 

 

 

Consider Joint E: substitute for calculated values, i.e. FEF and FEH 

 

 

        +ve ΣFz = 0   +15.0 − 10.0 – FEI cosθ = 0 

              FEI = + 5.0 / 0.707  

                     FEI = + 7.07 kN 

        +ve      ΣFx = 0    − FDE −15.0  − FEI sinθ = 0 

                     FDE = − 20.0 kN 

Member EI is a tie  

Member DE is a strut 

15.0 kN 

G FGH 

FFG 

FEF 

FFH 
 θ 

F 

15.0 kN 

FHI 
θ 

0 

21.21 kN 

FEH 

H 

θ 

10 kN 

E 
15 kN 

15 kN 
FEI 

FDE 
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3.3.1 Problems:  Method of Sections and Joint Resolution  
Determine the support reactions and the forces in the members of the pin-jointed frames 

indicated by the ‘*’ in Problems 3.1 to 3.4 using the method of sections. 
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Determine the support reactions and the forces in the members of the pin-jointed frames 

indicated in Problems 3.5 to 3.10 using the method of joint resolution. 
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3.3.2 Solutions:  Method of Sections and Joint Resolution 
        

 

 

 

 

 

 

      

 

 

 

 

 

 

 

  h = (3.0 × tan 60°) = 5.196 m 

  

Determine the Support Reactions 

Consider the rotational equilibrium of the frame: 

        + (30 × 6.0) + (45.0 × 12.0) − (VE × 18.0) = 0 Equation (1) 

                     ∴ VE = + 40.0 kN 

 Consider the horizontal equilibrium of the frame: 

       + HA = 0             Equation (2) 

                     ∴ HA = zero 

 Consider the vertical equilibrium of the frame: 

       + VA − 30.0 − 45.0 + VE = 0       Equation (3) 

       VA = 30.0 + 45.0 − 40.0       ∴ VA = + 35.0 kN 

 

Consider a section x–x through members BC, CG and FG: 

 

 

 

Readers should consider the 

equilibrium of the right-hand-

side of the section x-x and 

confirm the values for the 

unknown forces FBC, FCG and 

FFG. 

 

 

        + (35.0 × 6.0) + (FBC × 5.196) = 0 ∴ FBC = − 40.42 kN (Strut) 

 

        + 35.0 − 30.0 + (FCG sin60°) = 0 ∴ FCG = − 5.77 kN (Strut) 

 

        − 40.42 − 5.77 cos60° + FFG = 0 ∴ FFG = + 43.31 kN (Tie) 

Solution 
Topic:  Pin−Jointed Frames − Method of Sections  

Problem Number: 3.1            Page No. 1 
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Determine the Support Reactions  

Consider the rotational equilibrium of the frame: 

                       Equation (1) 

 + (15.0 × 6.0) + (40.0 × 6.0) + (30.0 × 12.0) + (10.0 × 16.5) − (VG × 12.0) = 0 

                     ∴ VG = + 71.25 kN 

 Consider the horizontal equilibrium of the frame: 

        + HA + 15.0 = 0          Equation (2)  

                     ∴ HA = − 15.0 kN  

 Consider the vertical equilibrium of the frame: 

                      Equation (3) 

 + VA − 20.0 − 40.0 − 30.0 − 10.0 + VG = 0  ∴ VA = + 100.0 − 71.25 

                     ∴ VA = + 28.75 kN 

Consider section x–x through members CD, DH and GH. 

 

Readers should consider the 

equilibrium of the right-hand-

side of the section x–x and 

confirm the values for the 

unknown forces FCD, FDH and 

FGH. 

θ = 45° 

sinθ = 0.707;   cosθ = 0.707 

 

        + (28.75 × 6.0) −  (20.0 × 6.0) + (FCD × 6.0) = 0 

                   ∴ FCD = − 8.75 kN (Strut) 

 

        + 28.75 − 20.0 − 40.0 + (FDH sin45°) = 0  

                   ∴ FDH = + 44.2 kN (Tie) 

 

        − 15.0 − 8.75 + (44.2 × cos45°) + FGH = 0 

                   ∴ FGH = − 7.5 kN (Strut) 

Solution 
Topic:  Pin-Jointed Frames − Method of Sections 

Problem Number: 3.2            Page No. 1 
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Consider section y–y through members CD, DH, DG and FG. 

 

 

 

 

 

 

 

 

 

 

 

 

θ = 45°  sinθ = 0.707;   cosθ = 0.707 

 

        + 28.75 − 20.0 − 40.0 + 71.25 + (44.2 × sin45°) + FDG = 0 

                   ∴ FDG = − 71.25 kN (Strut) 

 

        − 15.0 − 8.75 + (44.2 × cos45°) + FFG = 0 

                   ∴ FFG = − 7.5 kN (Strut) 

 

Readers should consider the equilibrium of the right-hand-side of the sections x–x 

and y−y and confirm the values for the unknown forces FDG and FFG. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution 
Topic:  Pin-Jointed Frames − Method of Sections 

Problem Number: 3.2            Page No. 2 
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Determine the Support Reactions 

Consider the rotational equilibrium of the frame: 

                       Equation (1) 

 + [60.0 × (2.0 + 4.0 + 6.0 + 8.0 + 10.0)] + (30.0 × 12.0) − (VI × 12.0) = 0 

                     ∴ VI = + 180.0 kN  

 Consider the horizontal equilibrium of the frame: 

        + HA = 0            Equation (2)  

                     ∴ HA = zero  

 Consider the vertical equilibrium of the frame: 

                      Equation (3) 

 + VA − 30.0 − (5.0 × 60.0) − 30.0 + VI = 0 ∴ VA = + 360.0 − 180.0 

                     ∴ VA = + 180.0 kN  

 

Consider section x–x through members DE, EQ, LQ and LM. 

Normally a section which cuts through three unknown forces is considered. In this 

case use can be made of the symmetry of the frame and loading. 

 

  

 

 

 

 

 

 

 

                         Joint Q 

 

 The forces in members DE and LM are equal in magnitude and opposite in sense. 

 At joint Q it is evident that the forces in members EQ and LQ must also be equal in 

magnitude and opposite in sense since DQ and MQ have no horizontal components 

of force.  i.e.  FDE = − FLM    and FEQ = − FLQ 

Solution 
Topic:  Pin-Jointed Frames − Method of Sections 

Problem Number: 3.3            Page No. 1 

+ve ΣMA = 0 

+ve    ΣFx = 0 

+ve    ΣFz = 0 

Q 

FDQ

FMQ

FLQ 

FEQ 

B                      C    D 

2.0 m                  2.0 m 

A 

N        M 

O    P    Q 

30 kN        60 kN     60 kN 

1
.5

 m
  
 1

.5
 m

 

zero 

FDE

FEQ

FLQ

FLM

x

x
180 kN 

HA 

*

2.0 m         2.0 m        2.0 m  2.0 m      2.0 m    2.0 m 

A                   I 

N      M              L             K              J  

O      P    Q                      R          S    T 

B             C     D              E              F              G                     H  

*

*

*

30 kN      60 kN   60 kN       60 kN      60 kN      60 kN      30 kN 

1
.5

 m
  

 1
.5

 m
 

*

VA VI 

z 

x 



 Pin-Jointed Frames  73

 

 

 

 

 

 

LEQ = 22 5102 .. + = 2.5 m 

        LLQ = 2.5 m 

 sinθ = (1.5/2.5) = 0.6 

  cosθ = (2.0/2.5) = 0.8 

 
FDE = − FLM  

 FEQ = − FLQ  

 

 

         

 + (180.0 × 4.0) − (30.0 × 4.0) − (60.0 × 2.0) + (FDE × 1.5) − (FLM × 1.5) = 0 

 + 480.0 + (−1.5FLM) − 1.5FLM = 0        ∴ FLM = + 160.0 kN (Tie) 

 

                   ∴ FDE = − 160.0 kN (Strut) 

 

 + 180.0 − 30.0 − 60.0 − 60.0 + (FEQ sinθ) − (FLQ sinθ) = 0 

 + 30.0 + (− 0.6FLQ) − 0.6FLQ = 0        ∴ FLQ = + 25.0 kN (Tie) 

 

                   ∴ FEQ = − 25.0 kN (Strut) 

 

Consider section y–y through members DE, EQ, EL, LR and KL. 

 

 

  

 

 

 

 

 

 

 

 

Since the frame and loading are symmetrical   FKL = FLM and FLR = FLQ 

                   ∴ FKL = + 160.0 kN (Tie) 

 

                   ∴ FLR = + 25.0 kN (Tie) 

 

 + 180.0 − 30.0 − 60.0 − 60.0 + (FLR sinθ) − (25.0 × sinθ ) + FEL = 0 

 + 30.0 + (25.0 × 0.6 ) − (25.0 × 0.6) + FEL = 0    ∴ FEL = − 30.0 kN (Strut) 

Solution 
Topic:  Pin-Jointed Frames − Method of Sections 

Problem Number: 3.3            Page No. 2 
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This frame is similar to the frame given in Chapter 1: Figure 1.21 comprising two 

statically determinate frames.  

There are four unknown reactions, however in addition to the three equations of 

static equilibrium, at support N the magnitude of the forces in members MN and NO 

are equal. (Note: the horizontal components must balance each other). This provides 

an additional equation which can be used to solve the problem. 

 

Determine the Support Reactions 

Consider the rotational equilibrium of the frame: 

                        

 + (27.0 × VA) − (75.0 × 21.0) − (75.0 × 18.0) + (VN × 13.5) = 0   Equation (1) 

 + 27.0VA − 2925.0 + 13.5VN           ∴ VA = + 108.33 − 0.5VN 

  

 Consider the horizontal equilibrium of the frame: 

        + HA = 0            Equation (2)  

                      ∴ HA = zero  

 Consider the vertical equilibrium of the frame: 

                       

 + VA − 75.0 − 75.0 + VN + VI = 0           Equation (3) 

                   ∴ VI = + 150.0 − VA − VN 

Consider section x–x at support N 

 

LNO = LMN = 22 5151 .. +  = 2.121 m 

sinθ = (1.5/2.121) = 0.707 

cosθ = (1.5/2.121) = 0.707 

 

 

                      

+ VN + (FNO sinθ) + (FMN sinθ ) = 0  also FNO = FMN 

+ VN + [2 × (FMN  × 0.707)]= 0         ∴ FMN = − 0.707VN 

Solution 
Topic:  Pin-Jointed Frames − Method of Sections 

Problem Number: 3.4            Page No. 1 
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Consider section y–y through members DE, EO and MN. 

 

 

 

 

 

 

      
 
 

LEO = 22 0351 .. + = 3.354 m 

sinα = 3.0/3.354 = 0.894  cosα = 1.5/3.354 = 0.447 

 

 

 + (13.5 × VA) − (75.0 × 7.5) − (75.0 × 4.5) − (FMN cosθ  × 4.5) = 0   Equation (1) 

 + 13.5VA − 900.0 − 3.182FMN = 0       ∴ FMN = + 4.243VA − 282.84 

 

 From section x–x:  FMN = − 0.707VN 

 − 0.707VN = + 4.243VA − 282.84       ∴ VA = − 0.167VN  + 66.66 

 

 From Equation (1): VA = + 108.33 − 0.5VN 

 − 0.167VN  + 66.66  = + 108.33 − 0.5VN         ∴ VN = + 125.14 kN 

 

 VA = − (0.167 × 125.14) + 66.66         ∴ VA = + 45.76 kN 

 

 From Equation (3): VI = + 150.0 − VA − VN 

 VI = + 150.0 − 45.76 − 125.14          ∴ VI = − 20.9 kN 

 

FMN = + (4.243 × 45.76) − 282.84       ∴ FMN = − 88.68 kN (Strut) 

 

        

+ VA − 75.0 − 75.0 + VN + (FMN sinθ)  + (FEO sinα ) = 0 

 FEO = [− 45.76 + 75.0 + 75.0 − 125.14 − (− 88.68  × 0.707)]/0.894 = 0 

                   ∴ FEO = + 46.75 kN (Tie) 

 

         

+ HA + FDE + (FMN cosθ)  + (FEO cosα ) = 0 

 FDE = [zero − (− 88.68  × 0.707) − (46.75 × 0.447)] = 0 

                   ∴ FDE = − 41.80 kN (Tie) 

Solution 
Topic:  Pin-Jointed Frames − Method of Sections 

Problem Number: 3.4            Page No. 2 

+ve ΣME = 0 

+ve    ΣFz = 0 

+ve    ΣFx = 0 

FEO sinα FEO 

α
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FEO cosα N

α

FEO

VA 

R   Q         P         O 

A 

B      C      D            E 
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VN4 bays @ 3.0 m each             1.5 m 

y

y

FDE
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1
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3
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θ
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    LBC = 22 0304 .. + = 5.0 m 

  sinθ = (3.0/5.0) = 0.6 

  cosθ = (4.0/5.0) = 0.8 

 

 

 

Determine the Support Reactions 

Consider the rotational equilibrium of the frame: 

        + (HB × 3.0) + (12.0 × 4.0) = 0      Equation (1) 

                     ∴ HB = − 16.0 kN 

 Consider the horizontal equilibrium of the frame: 

       + HB + HA= 0   ∴ − 16.0 + HA = 0    Equation (2) 

                     ∴ HA = + 16.0 kN 

 Consider the vertical equilibrium of the frame: 

       + VA + VB  − 12.0 = 0         Equation (3) 

                     ∴ VB = + 12.0 − VA 

Consider joint A: 

 

 

 

 

 

                     ∴ VA = zero 

 From Equation (3) VB = + 12.0 − VA         ∴ VB = + 12.0 kN 

 

 

+16.0  + FAC = 0             ∴ FAC = − 16.0 kN (Strut) 

                     

Consider joint C: 

 

 

 

 

 

 

 

−12.0 + FBC sinθ = 0     ∴ FAB = (12.0/0.6)     FAC = + 20.0 kN (Tie) 

VA

B 

CA 

3
.0

 m
 

4.0 m 
12 kN

HB 

VB

HA 
θ

Solution 
Topic:  Pin-Jointed Frames − Joint Resolution  

Problem Number: 3.5            Page No. 1 
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+ve    ΣFz = 0 

VA 
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16.0 kN FAC≡
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    LAB = 2 24.0 3.0+ = 5.0 m 

  sinθ = (3.0/5.0) = 0.6 

  cosθ = (4.0/5.0) = 0.8 

 

    LBC = 2 22.0 3.0+ = 3.606 m 

  sinβ = (3.0/3.606) = 0.832 

  cosβ = (2.0/3.606) = 0.555 

 

 

Determine the Support Reactions 

Consider the rotational equilibrium of the frame: 

        + (5.0 × 3.0) + (15.0 × 4.0) − (VC × 6.0) = 0  Equation (1) 

                     ∴ VC = + 12.5 kN  

 Consider the horizontal equilibrium of the frame: 

       + HA + 5.0 = 0           Equation (2) 

                     ∴ HA = − 5.0 kN 

 Consider the vertical equilibrium of the frame: 

       + VA − 15.0 + VC = 0 ∴ VA = 15.0 − VC    Equation (3) 

                    VA = 15.0 − 12.5 ∴ VA = + 2.5 kN  

 

Consider joint A: 

 

 

 

 

 

 

       − 5.0  + FAB cosθ  + FAC = 0       Equation (a) 

 

 

       + 2.5 + FAB sinθ = 0         Equation (b)  

 

From Equation (b): 

FAB = − (2.5/sinθ ) = − (2.5/0.6 )       ∴ FAB = − 4.17 kN (Strut) 

 

From Equation (a): 

FAC = + 5.0 − (− 4.17 × 0.8)         ∴ FAC = + 8.34 kN (Tie) 

 

 

Solution 
Topic:  Pin−Jointed Frames − Joint Resolution  

Problem Number: 3.6            Page No. 1 

15 kN 

5 kN 

A 

B 

C 

4.0 m                   2.0 m 

3
.0

 m
 

6.0 m 

θ β 

≡ 

+ve    ΣFx = 0 
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HA 
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A
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5.0 kN FAC

FAB FAB sinθ FAB

θ 
A FAB cosθ 
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z 
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Consider joint C:   

 

 

 

 

 

 

 

       − 8.34 − FBC cosβ = 0       Equation (a) 

 

       + 12.5 + FBC sinβ = 0       Equation (b)  

 

From Equation (a): 

FBC = − (8.34/cosβ) = − (8.34/0.555 )      ∴ FBC = − 15.03 kN (Strut) 

 

or 

 

From Equation (b): 

FBC = − (12.5/sinβ) = − (12.5/0.832 )      ∴ FBC = − 15.03 kN (Strut) 

 

 

 

 

 

 

 

 

 

 

                     

 

 

 

 

The reader should consider the equilibrium of joint B to confirm the calculated 

values are correct by checking that: 

 

        and 

 

 

 

Solution 
Topic:  Pin-Jointed Frames − Joint Resolution  

Problem Number: 3.6            Page No. 2 

≡ 

+ve    ΣFx = 0 

C 

VC 

FAC 

FBC 
FBC FBC sinβ 

β
C FBC cosβ 

+ve    ΣFz = 0 

C

12.5 kN

8.34 kN 

FBC 

15 kN
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A 

B

C
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5.0 kN 8.34 kN
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  LAB = 2 24.0 5.0+ = 6.403 m 

  LBC = 6.403 m  

  sinθ = (5.0/6.403) = 0.781 

  cosθ = (4.0/6.403) = 0.625 

 

           

 

 

Determine the Support Reactions 

Consider the rotational equilibrium of the frame: 

        + (20.0 × 4.0) − (VC × 8.0) = 0      Equation (1) 

                     ∴ VC = + 10.0 kN  

 Consider the horizontal equilibrium of the frame: 

       + HA = 0             Equation (2) 

                     ∴ HA = zero 

 Consider the vertical equilibrium of the frame: 

       + VA − 20.0 + VC = 0 ∴ VA = 20.0 − VC    Equation (3) 

                    VA = 20.0 − 10.0 ∴ VA = + 10.0 kN 

  

 

Consider joint A: 

 

 

 

 

 

 

       + FAB cosθ  + FAD = 0        Equation (a) 

 

       + 10.0 + FAB sinθ = 0        Equation (b) 

 

From Equation (b): 

FAB = − (10.0/sinθ ) = − (10.0/0.781 )      ∴ FAB = − 12.8 kN (Strut) 

 

From Equation (a): 

FAD = − (− 12.8 × 0.625)          ∴ FAD = + 8.0 kN (Tie) 

 

 

Solution 
Topic:  Pin-Jointed Frames − Joint Resolution 

Problem Number: 3.7            Page No. 1 

≡ 

+ve    ΣFx = 0 

+ve ΣMA = 0 

+ve    ΣFx = 0 
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Consider joint D: 

 

 

 

 

 

 

       − 8.01 + FCD = 0         Equation (a) 

 

       − 20.0 + FBD = 0         Equation (b)  

 

From Equation (a):              ∴ FCD = + 8.01 (Tie) 

 

From Equation (b):              ∴ FBD = + 20.0 (Tie) 

 

Consider joint C: (or by symmetry) 

 

 

 

 

 

 

       − FBC cosθ  − FCD = 0        Equation (a) 

 

       + 10.0 + FBC sinθ = 0        Equation (b)  

 

From Equation (b): 

FBC = − (10.0/sinθ ) = − (10.0/0.781)      ∴ FBC = − 12.8 kN (Strut) 

 

From Equation (a): 

FCD = − (− 12.8 × 0.625)          ∴ FAD = + 8.0 kN (Tie) 

  

 

The reader should consider the 

equilibrium of joint B to confirm the 

calculated values are correct by 

checking that: 

 

                        and     
   

 

Solution 
Topic:  Pin-Jointed Frames − Joint Resolution 

Problem Number: 3.7            Page No. 2 
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+ve    ΣFx = 0 

+ve    ΣFz = 0 

D 
FAD FCD 

20 kN 

FBD 

D
8.01 kN 

FBD

FCD

20 kN

≡

+ve    ΣFx = 0 

FBC sinθ FBC

θ 
C FBC  cosθ 

+ve    ΣFz = 0 

C 

VC 

FCD 

FBC 
C

10.0 kN

FCD 

FBC 

B 

zero 
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    LBF = 2 25.0 5.0+ = 7.071 m 

       LDF = 7.071 m 

    sinθ = (5.0/7.071) = 0.707 

       cosθ = (5.0/7.071) = 0.707 

 

       

 

 

 

Determine the Support Reactions 

Consider the rotational equilibrium of the frame: 

        + (12.0 × 5.0) + (50.0 × 5.0) + (25.0 × 10.0) − (VE × 10.0) = 0 

                      Equation (1) 

                     ∴ VE = + 56.0 kN  

  

 Consider the horizontal equilibrium of the frame: 

       + HA + 12.0 = 0           Equation (2) 

                     ∴ HA = − 12.0 kN 

  

 Consider the vertical equilibrium of the frame: 

       + VA − 25.0 − 50.0 − 25.0 + VE = 0     Equation (3) 

          ∴ VA = 100.0 − VE   VA = 100.0 − 56.0  ∴ VA = + 44.0 kN 

  

Consider joint A: 

 

 

 

 

 

 

 

       − 12.0 + FAF  = 0          Equation (a) 

 

       + 44.0 + FAB = 0          Equation (b)  

 

From Equation (a):            ∴ FAF = + 12.0  kN (Tie) 

 

From Equation (b):            ∴ FAB = − 44.0 kN (Strut) 

 

Solution 
Topic:  Pin-Jointed Frames − Joint Resolution 

Problem Number: 3.8            Page No. 1 
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Consider joint B: 

 

 

 

 

 

 

 

 

       + 12.0 + FBF cosθ + FBC = 0       Equation (a) 

 

 

       + 44.0 − 25.0 − FBF sinθ = 0       Equation (b) 

 

From Equation (b): 

 

FBF = + (19.0/sinθ ) = + (19.0/0.707 )      ∴ FBF = + 26.87 kN (Tie) 

 

From Equation (a): 

 

FBC = − 12.0 − (26.87 × 0.707)        ∴ FBC = − 31.0 kN (Strut) 

 

Consider joint C: 

 

 

 

 

 

 

 

       + 31.0 + FCD = 0          Equation (a) 

 

 

       − 50.0 − FCF = 0          Equation (b)  

 

 

From Equation (a):            ∴ FCD = − 31.0 kN (Strut) 

 

From Equation (b):            ∴ FCF = − 50.0 kN (Strut) 

 

 

Solution 
Topic:  Pin-Jointed Frames − Joint Resolution 

Problem Number: 3.8            Page No. 2 
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Consider joint D:  

 

 

 

 

 

 

 

       + 31.0 − FDF cosθ = 0         Equation (a) 

 

       − 25.0 − FDF sinθ  − FDE = 0       Equation (b)  

 

From Equation (a): 

FDF = + (31.0/cosθ ) = + (31.0/0.707 )      ∴ FDF = + 43.85 kN (Tie) 

 

From Equation (b): 

FDE = − 25.0 − (43.85 × 0.707)        ∴ FDE = − 56.0 kN (Strut) 

 

Consider joint E: 

  

 

 

 

 

 

 

 

         − FEF = 0       ∴ FEF = zero member 

  

 

The reader should consider the 

equilibrium of joint F to confirm 

the calculated values are correct 

by checking that: 

 

          

    and     
   

 

 

 

+ve    ΣFx = 0 

Solution 
Topic:  Pin-Jointed Frames − Joint Resolution 

Problem Number: 3.8            Page No. 3 
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      LAB = 2 22.5 5.0+ = 5.59 m 

    LDE = 5.59 m 

       LAF = 2 25.0 2.5+ = 5.59 m 

    LEF = 5.59 m 

    LBF = 2 22.5 2.5+ = 3.536 m 

    LDF = 3.536 m 
 

 

           

 

  

 Determine the Support Reactions     

Consider the rotational equilibrium of the frame: 

        + (10.0 × 5.0) + (15.0 × 5.0) − (VE × 10.0) = 0 Equation (1) 

                     ∴ VE = + 12.5 kN 

 Consider the horizontal equilibrium of the frame: 

       + HA + 10.0 = 0           Equation (2) 

                     ∴ HA = − 10.0 kN 

 Consider the vertical equilibrium of the frame: 

       + VA − 15.0 + VE = 0 ∴ VA = 15.0 − VE    Equation (3) 

                       VA = 15.0 − 12.5  ∴  VA = + 2.5 kN 

   

 Consider joint A: 

 

 

 

 

 

 

 

 

sinθ = (5.0/5.59) = 0.894   cosθ = (2.5/5.59) = 0.447 

sinα = (2.5/5.59) = 0.447   cosα = (5.0/5.59) = 0.894 

 

       − 10.0 + FAB cosθ  + FAF cosα = 0    Equation (a) 

 

       + 2.5 + FAB sinθ  + FAF sinα = 0     Equation (b)  

 

 

Solution 
Topic:  Pin-Jointed Frames − Joint Resolution  

Problem Number: 3.9            Page No. 1 
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From Equation (a):   

 FAB = [+10.0 − (FAF × 0.894)]/ 0.447        ∴ FAB = + 22.371 − 2.0FAF 

 

Substitute for FAB in Equation (b) 

+ 2.5 + (22.371 − 2.0FAF) sinθ  + FAF sinα = 0 

+2.5 + [(22.371 × 0.894) − (2.0FAF × 0.894) + (FAF × 0.447) = 0 

+ 22.5 − 1.341FAF = 0           ∴ FAF = + 16.78 kN (Tie) 

 

FAB = + 22.371 − (2.0 × 16.78)        ∴ FAB = − 11.19 kN (Strut) 

 

Consider joint B: 

 

 

 

 

 

 

sinβ = (2.5/5.59) = 0.447   cosβ = (5.0/5.59) = 0.894 

sinγ = (2.5/3.536) = 0.707  cosγ = (2.5/3.536) = 0.707 

 

       + 10.0 + 11.19 sinβ  + FBF sinγ  + FBC = 0   Equation (a) 

 

       + 11.19 cosβ  − FBF cosγ  = 0      Equation (b)  

 

From Equation (b): 

FBF = + (11.19 cosβ /cosγ ) = + [(11.19 × 0.894)/0.707 )] 

                   ∴ FBF = + 14.15 kN (Tie) 

From Equation (a): 

FBC = −[10.0 + (11.19 × 0.447) + (14.15 × 0.707)]   

                   ∴ FBC = − 25.0 kN (Strut) 

Consider joint C: 

 

 

 

 

 

 

       + 25.0 + FCD = 0       ∴ FCD = − 25.0 kN (Strut) 

 

       − 15.0 − FCF = 0       ∴ FCF = − 15.0 kN (Strut) 

 

Solution 
Topic:  Pin-Jointed Frames − Joint Resolution 

Problem Number: 3.9            Page No. 2 
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Consider joint D:  

 

 

 

 

 

 

sinβ = (2.5/5.59) = 0.447   cosβ = (5.0/5.59) = 0.894 

sinγ = (2.5/3.536) = 0.707  cosγ = (2.5/3.536) = 0.707 

 

       + 25.0 − FDF sinγ  + FDE sinβ = 0     Equation (a) 

 

       − FDF cosγ  − FDE cosβ = 0       Equation (b)  

 

From Equation (a):   

 FDE = [− 25.0 + (FDF × 0.707)]/ 0.447    ∴ FDE = − 55.928 + 1.582FDF 

 

Substitute for FDE in Equation (b) 

− FDF cosγ  − FDE cosβ = 0 

− (FDF × 0.707) − [(−55.928 + 1.582FDF ) × 0.894] = 0 

+ 50.0 − 2.121FDF = 0           ∴ FDF = + 23.57 kN (Tie) 

 
FDE = − 55.928 + (1.582 × 23.57)       ∴ FDE = − 18.64 kN (Strut) 

 

Consider joint E: 

 

 

 

 

 

 

 

sinθ = (5.0/5.59) = 0.894   cosθ = (2.5/5.59) = 0.447 

sinα = (2.5/5.59) = 0.447   cosα = (5.0/5.59) = 0.894 

 

       + (18.64× cosθ ) − FEF cosα = 0 

     

FEF = + (18.64 × 0.447)/0.894        ∴ FEF = + 9.32 kN (Tie) 

 

 

Solution 
Topic:  Pin-Jointed Frames − Joint Resolution 

Problem Number: 3.9            Page No. 3 
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The values obtained above can be checked by confirming the horizontal and vertical 

equilibrium at joint F as follows: 

 

Joint F: 

  

 

 

 

 

 

 

 

 sinγ = (2.5/3.536) = 0.707  cosγ = (5.0/3.536) = 0.707 

sinα = (2.5/5.59) = 0.447   cosα = (5.0/5.59) = 0.894 

 

       
= − 16.78 cosα − 14.15 cosγ + 9.32 cosα + 23.57 cosγ 

= − (16.78 × 0.894) − (14.15 × 0.707) + (9.32 × 0.894) + (23.57 × 0.707) 

= zero 

 

 

= − 16.78 sinα  + 14.15 sinγ − 9.32 sinα + 23.57 sinγ − 15.0 

 = − (16.78 × 0.447) + (14.15 × 0.707) − (9.32 × 0.447) + (23.57 × 0.707) − 15.0 

 = zero 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Solution 
Topic:  Pin-Jointed Frames − Joint Resolution 

Problem Number: 3.9            Page No. 4 
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LCE = 22 0903 .. + = 9.487 m; LAC = LCF = 22 0303 .. + = 4.243 m 

Consider triangle CEG: 

 sinθ = (3.0/9.487) = 0.316;  cosθ = (9.0/9.487) = 0.949 

 sinβ = (9.0/9.487) = 0.949;  cosβ = (3.0/9.487) = 0.316 

 

Consider triangle DEF: 

 sinβ = (LDE/LEF)  ∴ LDE = LEF sinβ = (6.0 × 0.949) = 5.692 m 

 

Consider triangle DED′: 
 sinθ = (LDD′ /LDE)  ∴ LDD = LDE sinθ = (5.692 × 0.316) = 1.8 m 

 cosθ = (LED′/LDE)  ∴ LED = LDE cosθ = (5.692 × 0.949) = 5.4 m 

 

 

 

 

 

 

 

 

 

 

 

 

Solution 
Topic:  Pin-Jointed Frames − Joint Resolution 

Problem Number: 3.10            Page No. 1 

HA
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0.6 m                          5.4 m 

D

3.0 m                    3.0 m              6.0 m 
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 Determine the Support Reactions     

Consider the rotational equilibrium of the frame: 

        

 + (12.0 × VA) + (12.0 × VB) + (3.0 × HB) − (12.0 × 9.0) − (4.0 × 9.487) − (24.0 × 5.4)  

− (8.0 × 5.692) = 0 

 ∴ + 12.0VA + 12.0VB + 3.0HB = 321.1         Equation (1) 

 Consider the horizontal equilibrium of the frame: 

        

 + HA + HB − (4.0 cosβ ) − (8.0 cosβ) − (4.0 cosβ) = 0 

  ∴ + HA + HB − 1.264 − 2.528 − 1.264 = 0 

 ∴ + HA + HB = 5.06               Equation (2) 

 Consider the vertical equilibrium of the frame: 

 

 + VA + VB − 12.0 − (4.0 sinβ ) − 24.0 − (8.0 sinβ) − 12.0 − (4.0 sinβ) = 0 

  + VA + VB − 12.0 − 3.796 − 24.0 − 7.592 − 12.0 − 3.796 = 0 

  ∴ + VA + VB = 63.18               Equation (3) 

 

 Consider joint B:  

                 

     VB = 0   VB = zero 

 

From Equation (3):   + VA + VB = 63.18        ∴ VA = + 63.18 kN 

From Equation (1):   + 12.0VA + 12.0VB + 3.0HB = 321.1 

        + (12.0 × 63.18) + (3.0HB ) = 321.1  ∴ HB = − 145.69 kN 

From Equation (2):   + HA + HB = 5.06 

        + HA − 145.69 = 5.06       ∴ HA = + 150.75 kN 

 

        + HB + FBC = 0           ∴ FBC = + 145.69 kN (Tie) 

HA 

HB 

Solution 
Topic:  Pin-Jointed Frames − Joint Resolution 

Problem Number: 3.10            Page No. 2 

+ve ΣME = 0 

+ve    ΣFx = 0 

+ve    ΣFz = 0 

B 
HB

VB  

FBC 

+ve    ΣFz = 0 

It is convenient to consider joint E in this case 

+ve    ΣFx = 0 

D

0.6 m                         5.4 m 

3.0 m                    3.0 m              6.0 m 

3.795 m

5.692 m

1.8 m 
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D′
θ β
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3
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B C 
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12 kN 
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VA 

α
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Consider joint A: 

 

 

 

 

 

 

 sinα = (3.0/4.243) = 0.707  cosα = (3.0/4.243) = 0.707 

 

        + 150.75 + FAC cosα + FAG = 0     Equation (a) 

 

        + 63.18 + FAC sinα = 0       Equaton (b) 

 

From Equation (b):  FAC = − (63.18/0.707) = 0   ∴ FAC = − 89.36 kN (Strut) 

From Equation (a):  FAG = − 150.75 − (− 89.36 × 0.707) 

                    ∴ FAG = − 87.57 kN (Strut) 

 

Consider joint G: 

 

 

 

 

 + 87.57 + FFG = 0      ∴ FFG = − 87.57 kN (Strut) 

       

        + FCG = 0        ∴ FCG = zero member 

 

Consider joint C: 

 

 

 

 

 

 

 

 

   

 

 

 

sinα = (3.0/4.243) = 0.707   cosα = (3.0/4.243) = 0.707 

sinβ = (9.0/9.487) = 0.949   cosβ = (3.0/9.487) = 0.316 

Solution 
Topic:  Pin-Jointed Frames − Joint Resolution 

Problem Number: 3.10            Page No. 3 

≡ 
A 

HA FAG 

VA  

FAC 

+ve    ΣFx = 0 

+ve    ΣFz = 0 

A
150.75 kN FAG

63.18 kN 
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F A
C

 s
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α 

FAC

A 
FAC  cosα 

α

≡ 
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+ve    ΣFz = 0 

G 
FAG FFG 

FCG  
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87.57 kN FFG
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C 
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FFG FCF

C
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4 kN 
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FCD
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zero FCF
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8
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.6
 s

in
α 89.36 kN 

C 
89.36 cosα 

α 

α 

F C
F

 c
o

sα
 

FCF sinα C 

FCF

β

FCD cosβ 

FCD sinβC 

FCD

4
.0

 s
in

β β 

4.0  cosβ 

4.0 kN
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− 145.69 + 89.36 cosα − 4.0 cosβ + FCF sinα  + FCD sinβ = 0 

− 145.69 + (89.36 × 0.707) − (4.0 × 0.316) + (FCF × 0.707) + (FCD × 0.949) = 0 

 − 83.776 + 0.707FCF + 0.949FCD = 0         Equation (a) 

 

 

− 12.0 + 89.36 sinα − 4.0 sinβ − FCF cosα  − FCD cosβ = 0 

− 12.0 + (89.36 × 0.707) − (4.0 × 0.949) − (FCF × 0.707) − (FCD × 0.316) = 0 

 + 47.382 − 0.707FCF − 0.316FCD = 0         Equation (b) 

 

From Equation (a):   

 FCF = (+ 83.776 − 0.949FCD)/ 0.707      ∴ FCF = + 118.5 − 1.342FCD 

 

Substitute for FCF in Equation (b) 

 +47.382 − 0.707FCF − 0.316FCD = 0 

+ 47.382  − [0.707 × (118.5 − 1.342FCD)] − 0.316FCD = 0 

+ 36.4 + 0.633FCD = 0            ∴ FCD = + 57.50 kN (Tie) 

 
∴ FCF = + 118.5 − (1.342 × 57.5)        ∴ FCF = + 41.34 kN (Tie) 

 

Consider joint F: 

 

 

 

 

 

 

sinα = (3.0/4.243) = 0.707   cosα = (3.0/4.243) = 0.707 

 sinβ = (9.0/9.487) = 0.949   cosβ = (3.0/9.487) = 0.316 

 

       + 87.57 − 41.34 cosα + FDF cosβ  + FEF = 0  Equation (a) 

 

       + 41.34 sinα  + FDF sinβ = 0       Equation (b)  

 

From Equation (b): 

FDF = − (41.34 sinα /sinβ )  = − [(41.34 × 0.707)/0.949)] 

                  ∴ FDF = − 30.8 kN (Strut) 

From Equation (a): 

FEF = − 87.57 + (41.34 × 0.707) − (− 30.8 × 0.316)  ∴ FEF = − 48.61 kN (Strut) 

 

F

87.57 kN 

FDF 41.34 kN

FEF

Solution 
Topic:  Pin-Jointed Frames − Joint Resolution 

Problem Number: 3.10            Page No. 4 
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Consider joint E: 

 

 

 

 

 

 

 

 sinθ = (3.0/9.487) = 0.316   cosθ = (9.0/9.487) = 0.949 

sinβ = (9.0/9.487) = 0.949   cosβ = (3.0/9.487) = 0.316 

 

       
+ 48.61 − 4.0 cosβ − FED  cosθ = 0           Equation (a) 

FED = [48.61 − (4.0 × 0.316)]/0.949       ∴ FED = + 49.9 kN (Tie) 

 

or 

 

 

− 12.0 − 4.0 sinβ  + FED sinθ = 0           Equation (b) 

FED = [12.0 + (4.0 × 0.949)]/0.316         ∴ FED = + 49.9 kN (Tie) 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

The reader should consider the equilibrium of joint D to confirm the calculated values 

are correct by checking that:   +ve       ΣFx = 0 and   +ve   ΣFz = 0 
 

+ve    ΣFz = 0 

+ve    ΣFx   

Solution 
Topic:  Pin-Jointed Frames − Joint Resolution 

Problem Number: 3.10            Page No. 5 
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3.4 Method of Tension Coefficients 
The method of tension coefficients is a tabular technique of carrying out joint resolution in 

either two or three dimensions. It is ideally suited to the analysis of pin-jointed space-

frames. 

Consider an individual member from a pin-jointed plane-frame, e.g. member AB shown in 

Figure 3.8 with reference to a particular X–Z co-ordinate system. 

If AB is a member of length LAB having a tensile force in it of TAB, then the components of 

this force in the X and Z directions are TAB cosθ  and TAB sinθ respectively. 

If the co-ordinates of A and B are (XA, ZA)  and (XB, ZB), then the component of TAB in the 

x-direction is given by : 

 x-component = TAB 
( )X X

L
B A

AB

−
 = tAB (XB − XA) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 

where tAB = 
T
L

AB

AB

 and is known as the tension coefficient of the bar. Similarly, the 

component of TAB in the z-direction is given by: 

 

 z-component = TAB = B A

AB

Z Z
L
−

 = tAB(ZB − ZA) 

If at joint A in the frame there are a number of bars, i.e. AB, AC ... AN, and external loads 

XA and ZA acting in the X and Z directions, then since the joint is in equilibrium the sum of 

the components of the external and internal forces must equal zero in each of those 

directions. 

Expressing these conditions in terms of the components of each of the forces then gives: 

 

 tAB (XB − XA) + tAC(XC − XA) + . . . . . . . . . .  . . tAN(XN − XA) + XA = 0   (1) 

 

 tAB (ZB − ZA) + tAC(ZC − ZA) + . . . . . . . . . . .  . tAN(ZN − ZA) + ZA = 0   (2) 

 

LAB,  TAB 

ZB 

XA XB

X 

Z 

A 

B

θ ZA 
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A similar pair of equations can be developed for each joint in the frame giving a total 

number of equation equal to (2 × number of joints) 

In a statically determinate triangulated plane-frame the number of unknown member 

forces is equal to [(2 × number of joints) − 3], hence there are three additional equations 

which can be used to determine the reactions or check the values of the tension 

coefficients. 

Once a tension coefficient (e.g. tAB) has been determined, the unknown member force is 

given by the product: 

 TAB = tABLAB   ( Note: TAB ≡ TBA) 

 

Note: A member which has a  − ve tension coefficient is in compression and is a strut. 

3.4.1 Example 3.2:  Two-Dimensional Plane Truss 
Consider the pin-jointed, plane-frame ABC loaded as shown in Figure 3.9. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 

 

Construct a table in terms of tension coefficients and an X/Z co-ordinate system as shown 

in Table 3.1. 

The equilibrium equations are solved in terms of the ‘t’ values and hence the member 

forces and support reactions are evaluated and entered in the table as shown in Table 3.1. 

 

Consider joint B: 

There are only two unknowns and two equations, hence: 

Adding both equations 

        − 4tAB + 3tBC + 20 = 0 

− 3tAB − 3tBC − 10 = 0 

        − 7tAB           + 10 = 0   tAB = + 1.43 

 

substitute for tAB in the first equation      tBC = − 4.76 

 

 Force in member AB = tAB × LAB = + (1.43 × 5.0) = + 7.15 kN   Tie 

 Force in member BC = tBC × LBC = − (4.76 × 4.243) = − 20.2 kN  Strut 

 

Joints A and C can be considered in a similar manner until all unknown values, including 

reactions, have been determined.  

Az 

10 kN 

20 kN 

Ax 

Cz 4.0 m              3.0 m 
3
.0

 m
 

A 

B

C

X 

Z 

LAB = 5.0 m 

LAC = 7.0 m 

LBC = 4.243 m 
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The reader should complete this solution to obtain the following values:  FAC = + 14.28 kN 

Ax = + 20 kN    Az = − 4.29 kN   Cz = + 14.28 kN 

 

 

Joint 

 

 

Equilibrium Equations 

 

Member 

 

t 
 

Length

(m) 

 

Force 

(kN) 

A 
X 

Z 
4tAB + 7tAC +     Ax = 0 

3tAB            +    Az = 0 

 

AB 

AC  

BC 

+ 1.43 

? 

− 4.76 

5.0  

7.0  

4.243  

+ 7.15 

? 

− 20.20 

B 
X −4tAB + 3tBC + 20   = 0 Support  Reactions (kN) 

Z −3tAB − 3tBC − 10   = 0 Component x z 

C 
X −7tAC − 3tBC       = 0 Support A   

Z +3tBC + Cz       = 0 Support C zero  

  

Table 3.1 

 

In the case of a space frame, each joint has three co-ordinates and the forces have 

components in the three orthogonal X, Z and Y directions. This leads to (3 × Number. of 

joints) equations which can be solved as above to determine the ‘t’ values and 

subsequently the member forces and support reactions. 

3.4.2 Example 3.3:  Three-Dimensional Space Truss 
The space frame shown in Figure 3.10 has three pinned supports at A, B and C, all of 

which lie on the same level as indicated. Member DE is horizontal and at a height of 10 m 

above the plane of the supports.  The planar dimensions (z–x,  x–y and z–y) of the frame 

are indicated in Figure 3.11. 

Determine the forces in the members when the frame carries loads of 80 kN and 40 kN 

acting in a horizontal plane at joints E and D respectively as shown. 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Figure 3.10 
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                      Figure 3.11 

 

Solution: 

Length of members: L = ( )2 2 2+ +x y z  

LDE = 10.0 m            LAE = ( )2 2 210.0 15.0 10.0+ + = 20.62 m 

LAD = ( )2 2 210.0 5.0 10.0+ + = 15.0 m       LBE = ( )2 2 210.0 5.0 10.0+ + = 15.0 m 

LCD = ( )2 2 210.0 5.0 10.0+ + = 15.0 m         LCE = ( )2 2 210.0 5.0 10.0+ + = 15.0 m 

 

The equations from the Tension Coefficient Table are used to determine the ‘t’ values. 

Since only three equations are available at any joint, only three unknowns can be 

determined at any one time, i.e. identify a joint with no more that three unknown member 

forces to begin the calculation; in this case the only suitable joint is D. 

Y (m)

X (m) 

C 

E           D

B                  A 

80 kN 

40 kN 

20 

10 

10 5 15 20 
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D, E 

Z (m) 

X (m)
A, B                C 

10 

2010 

B                 A 

155 

10   

Y (m)

Z (m) 
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E       D 
40 kN

10 20
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Solve the three simultaneous equations at joint D to determine the tension coefficients 

tAD, tDE and tCD; i.e.  

 

Consider Joint D: Equations (10), (11) and (12) 

Equation (12)  −10tAD + 10tCD = 0          tAD = 0 

Equation (11)  +5tAD − 5tCD − 10tDE  + 40 = 0      tDE = + 4.0 

Equation (10)  −10tAD − 10tCD = 0          tCD = 0 

 

Similarly for the next joint in which there are no more than three unknowns, i.e. Joint E 

 

Consider Joint E: Equations (13), (14) and (15) 

Equation (13)  −10tAE − 10tBE  + 10tCE  + 80 = 0      tAE = 0 

Equation (14)  +15tAE − 5tBE + 5tCE + 10tDE = 0      tBE = + 4.0  

Equation (15)  −10tAE − 10tBE − 10tCE = 0       tCE = − 4.0 

 

The support reactions can be determined after the tension coefficient values have been 

determined using Equations (1) to (9). 

 

The sum of the reactions in the x, y and z directions should be checked by ensuring that 

they are equal and opposite to the applied load system. 

 
 

Joint 

 

Equilibrium Equations 

 

Member 

 

t 
 

Length 

(m) 

 

Force 

(kN) 

1 

A 

X +10tAE + 10tAD              + AX = 0 AD 0 15.0 0 

2 Y −15tAE − 5tAD               +  AY = 0 AE 0 20.62 0 

3 Z +10tAE + 10tAD             + AZ  = 0 BE + 4.0 15.0 + 60.0  

4 

B 

X + 10tBE                          + BX = 0 CD 0 15.0 0 

5 Y + 5tBE                            + BY = 0 CE − 4.0 15.0 − 60.0 

6 Z + 10tBE                         + BZ  = 0 DE + 4.0 10.0 + 40.0 

7 

C 

X − 10tCD  − 10tCE            + CX = 0 Support Reactions (kN) 

8 Y + 5tCD − 5tCE                 + CY = 0 Component x y z 

9 Z +10tCD + 10tCE              + CZ = 0 Support A zero zero zero 

10 

D 

X −10tAD + 10tCD                      = 0 Support B − 40.0 −20.0 − 40.0 

11 Y +5tAD − 5tCD − 10tDE  + 40    = 0 Support C − 40.0 − 20.0 + 40.0 

12 Z −10tAD − 10tCD                       = 0 
Σ Applied forces in X-direction = + 80 kN 

Σ Applied forces in Y-direction = + 40 kN 

Σ Applied forces in Z-direction = zero 

13 

E 

X −10tAE − 10tBE  + 10tCE  + 80 = 0 

14 Y +15tAE − 5tBE + 5tCE + 10tDE = 0 

15 Z −10tAE − 10tBE − 10tCE          = 0 

 

Table 3.2 



98 Examples in  Structural Analysis 
 

 

 

3.4.3 Problems:  Method of Tension Coefficients  
The pin-jointed space-frames shown in Problems 3.11 to 3.16 have three pinned supports 

at A, B and C as indicated. In each case the supports A, B and C are in the same plane. 

Using the data given determine: 

 

(i) the member forces and  

(ii) the support reactions, 

 

when the frames are subjected to the loading indicated. 
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Problem 3.13

Problem 3.14 

A 

C 

5.0 m B 
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E 

Z 

X 

Y 
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8
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5
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1
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1
.0

 m
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Y 

X 

Z 

Problem 3.15 

Problem 3.16 

A

1
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1
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C 2.0 m 
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20.0 kN
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4
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 m
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3.0 kN 
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3.4.4 Solutions:  Method of Tension Coefficients  
        

 

 

 

 

 

 

 

 

      

 

 

 

 

 

 

  

L1 = (tan 30° × 2.0) = 1.16 m 

L2 = 
2 22.0 1.16+  = 2.31 m 

Length of member:  L = ( )2 2 2+ +x y z  

Length of members AD, BD and CD: LAD, BD, CD = ( )2 2 22.0 1.16 6.0+ + = 6.43 m 

See Equations in Tension Coefficient Table 

 

Consider Joint D: Equations (10), (11) and (12) 

Equation (10)  − 2.0tAD + 2.0tBD  + 15.0 = 0         tAD = + 1.53 

Equation (11)  − 1.16tAD − 1.16tBD + 2.31tCD = 0       tBD = − 5.97 

Equation (12)  − 6.0tAD − 6.0tBD  − 6.0tCD − 40 = 0       tCD = − 2.22 

 

Consider Joint A: Equations (1), (2) and (3) 

Equation (1)  + 2.0tAD  + Ax = 0           Ax = − 3.06 kN 

Equation (2)  + 1.16tAD  + Ay = 0           Ay = − 1.76 kN 

Equation (3)  + 6.0tAD + Az = 0           Az = − 9.18 kN 

 

Consider Joint B: Equations (4), (5) and (6) 

Equation (4)  − 2.0 tBD  + Bx = 0           Bx = − 11.94 kN 

Equation (5)  + 1.16tBD  + By = 0           By = + 6.87 kN 

Equation (6)  + 6.0tBD + Bz = 0           Bz = + 35.82 kN 

 

Consider Joint C: Equations (7), (8) and (9) 

Equation (7)   + Cx = 0              Cx = zero 

Equation (8)  − 2.31tCD  + Cy= 0           Cy = − 5.11 kN 

Equation (9)  + 6.0tCD + Cz = 0           Cz = + 13.32 kN 

Solution 
Topic: Pin-Jointed Frames − Method of Tension Coefficients 

Problem Number: 3.11            Page No. 1 
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 m
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Y
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Note:  +ve tension coefficient values indicate tension members 

   −ve tension coefficient values indicate compression members 

 
Joint Equilibrium Equations Member t Length (m) Force (kN) 

1 

A 

X + 2.0 tAD                              + Ax = 0    AD  + 1.53 6.43 + 9.84 

2 Y + 1.16 tAD                                          + Ay = 0   BD − 5.97 6.43 − 38.38 

3 Z + 6.0 tAD                             + Az = 0      CD  − 2.22 6.43 − 14.27 

4 

B 

X − 2.0 tBD                            + Bx = 0         

5 Y + 1.16 tBD                          + By = 0        

6 Z + 6.0 tBD                            + Bz = 0      

7 

C 

X                                           + Cx = 0      

8 Y − 2.31 tCD                           + Cy = 0      

9 Z + 6.0 tCD                            + Cz = 0      

10 

D 

X − 2.0 tAD + 2.0 tBD + 15.0            = 0 Support Reactions (kN) 

11 Y −1.16 tAD  − 1.16 tBD  + 2.31 tCD  = 0 Component x y z 

12 Z −6.0 tAD − 6.0 tBD −6.0 tCD − 40 = 0  Support A − 3.06 − 1.76 − 9.18 

 

 

  Support B − 11.94 + 6.87 + 35.82 

   Support C zero − 5.11 + 13.32 

   
Σ Applied forces in X-direction = + 15.0 kN 

Σ Applied forces in Y-direction = zero 

Σ Applied forces in Z-direction = − 40.0 kN 
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Solution: 

Length of members: L = ( )2 2 2+ +x y z  

Length of member AD: LAD = ( )2 2 28.0 8.0 4.0+ + = 12.0 m 

Length of member BD: LBD = ( )2 2 22.0 4.0 4.0+ + = 6.0 m 

Length of member CD: LCD = ( )2 23.0 4.0+ = 5.0 m 

 

See Equations in Tension Coefficient Table. 
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Consider Joint D: Equations (10), (11) and (12) 

Equation (1)  − 8.0tAD − 2.0tBD + 3tCD = 0        tAD = + 2.5 kN 

Equation (2)  − 8.0tAD + 4.0tBD = 0          tBD = + 5.0 kN 

Equation (3)  − 4.0tAD − 4.0tBD − 4.0tCD + 70.0 = 0     tCD = + 10.0 kN 

 

Consider Joint A: Equations (1), (2) and (3) 

Equation (1)  + 8.0tAD  + Ax = 0           Ax = − 20.0 kN 

Equation (2)  + 8.0tAD + Ay = 0           Ay = − 20.0 kN 

Equation (3)  + 4.0tAD + Az = 0           Az = − 10.0 kN 

 

Consider Joint B: Equations (4), (5) and (6) 

Equation (4)  + 2.0tBD + Bx = 0           Bx = − 10.0 kN 

Equation (5)  − 4.0tBD + By = 0           By = + 20.0 kN 

Equation (6)  + 4.0tBD + Bz = 0           Bz = − 20.0 kN 

 

Consider Joint C: Equations (7), (8) and (9) 

Equation (7)  − 3.0tCD + Cx = 0           Cx = + 30.0 kN 

Equation (8)  + Cy = 0              Cy = zero 

Equation (9)  + 4.0tCD + Cz = 0           Cz = − 40.0 kN 

 

Note:  +ve tension coefficient values indicate tension members 

   −ve tension coefficient values indicate compression members 

 
Joint Equilibrium Equations Member t Length (m) Force (kN) 

1 

A 

X + 8.0tAD                             + Ax = 0 AD + 2.5 12.0 + 30.0 

2 Y + 8.0tAD                             + Ay = 0 BD + 5.0 6.0 + 30.0 

3 Z + 4.0tAD                             + Az = 0 CD + 10.0 5.0 + 50.0 

4 

B 

X + 2.0tBD                            + Bx  = 0 Support Reactions (kN) 

5 Y − 4.0tBD                             + By = 0 Component x y z 

6 Z + 4.0tBD                             + Bz = 0 Support A − 20 − 20 − 10 

7 

C 

X −3.0tCD                              + Cx = 0 Support B − 10 + 20 − 20 

8 Y                                                                + Cy = 0 Support C + 30 zero − 40 

9 Z  + 4.0tCD                            + Cz = 0 

Σ Applied forces in X-direction = zero 

Σ Applied forces in Y-direction = zero 

Σ Applied forces in Z-direction = + 70 kN 

10 

D 

X − 8.0tAD  − 2.0tBD + 3tCD           = 0 

11 Y − 8.0tAD  + 4.0tBD                      = 0 

12 Z −4.0tAD  − 4.0tBD − 4.0tCD +70.0 = 0   
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Solution: 

Length of members: L = ( )2 2 2+ +x y z  

Length of member AD: LAD = ( )2 2 25.0 5.0 5.0+ + = 8.66 m 

Length of member BD: LBD = ( )2 2 25.0 5.0 5.0+ + = 8.66 m  

Length of member CD: LCD = 5.0 m 

Length of member CE: LCE = ( )2 210.0 8.0+  = 12.81 m 

Length of member DE: LDE = ( )2 210.0 3.0+  = 10.44 m 

 

See Equations in Tension Coefficient Table.  
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Consider Joint E: Equations (13) and (15) 

Equation (13)  − 10.0tDE − 10.0tCE = 0         tCE = − 40.0 

Equation (15)  − 3.0tDE − 8.0tCE − 200 = 0        tDE = + 40.0 

 

Consider Joint D: Equations (10), (11) and (12) 

Equation (10)  − 5.0tAD − 5.0tBD + 10.0tDE = 0       tAD = + 40.0 

Equation (11)  − 5.0tAD + 5.0tBD = 0          tBD = + 40.0  

Equation (12)  −5.0tAD − 5.0tBD + 3.0tDE − 5.0tCD = 0     tCD = − 56.0 

 

Similarly, the support reactions can be obtained by substituting the values of the 

tension coefficients in Equations (1) to ( 9). 

 

Note:  +ve tension coefficient values indicate tension members 

   −ve tension coefficient values indicate compression members 
 

Joint Equilibrium Equations Member t Length (m) Force (kN) 

1 

A 

X + 5.0tAD                             + Ax = 0 AD + 40.0 8.66 + 346.4 

2 Y + 5.0tAD                             + Ay = 0 BD + 40.0 8.66 + 346.6 

3 Z + 5.0tAD                                           + Az = 0 CD − 56.0 5.0 − 280.0 

4 

B 

X + 5.0tBD                             + Bx = 0 CE − 40.0 12.81 – 512.2 

5 Y − 5.0tBD                              + By = 0 DE + 40.0 10.44 +417.6 

6 Z + 5.0tBD                              + Bz = 0 Support Reactions (kN) 

7 

C 

X + 10.0tCE                           + Cx = 0 Component x y z 

8 Y                                           + Cy = 0 Support A − 200 − 200 − 200 

9 Z +5.0tCD  + 8.0tCE                + Cz = 0 Support B − 200 + 200 − 200 

10 

D 

X − 5.0tAD  −  5.0tBD + 10.0tDE     = 0 Support C + 400 zero + 600 

11 Y − 5.0tAD  +  5.0tBD                     = 0 

Σ Applied forces in X-direction = zero 

Σ Applied forces in Y-direction = zero 

Σ Applied forces in Z-direction = − 200 kN 

12 Z −5.0tAD −5.0tBD +3.0tDE −5.0tCD = 0 

13 

E 

X − 10.0tDE − 10.0tCE                   = 0 

14 Y  

15 Z − 3.0tDE − 8.0tCE − 200            = 0 
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Solution: 

Length of members: L = ( )2 2 2+ +x y z  

Length of members AD and AE: LAD, AE = ( )2 2 23.0 1.0 1.0+ + = 3.32 m 

Length of member BD: LBD = ( )2 2 23.0 1.0 2.0+ + = 3.74 m 

Length of member BE: LBE = ( )2 2 23.0 3.0 2.0+ + = 4.69 m  

Length of member CE: LCE = ( )2 23.0 3.0+ = 4.24 m 

Length of member DE: LDE = 2.0 m 

See Equations in Tension Coefficient Table 
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Consider Joint D: Equations (10), (11) and (12) 

Equation (10)  − 3.0tAD − 3tBD = 0           tAD = + 10.0 

Equation (11)  + 1.0tAD − 1.0tBD + 2.0tDE − 40.0 = 0     tBD = − 10.0  

Equation (12)  + 1.0tAD − 2.0tBD − 30.0 = 0        tDE = + 10.0 

 

Consider Joint E: Equations (13), (14) and (15) 

Equation (13)  − 3.0tAE − 3.0tBE  − 3.0tCE = 0        tAE = + 1.82 

Equation (14)  − 1.0tAE − 3.0tBE − 2.0tDE = 0        tBE = − 7.28 

Equation (15)  + 1.0tAE − 2.0tBE − 3.0tCE = 0        tCE = + 5.46 

 

Similarly, the support reactions can be obtained by substituting the values of the 

tension coefficients in Equations (1) to ( 9). 

 

Note:  +ve tension coefficient values indicate tension members 

   −ve tension coefficient values indicate compression members 

 

Joint Equilibrium Equations Member t Length 

(m) 

Force 

(kN) 

1 

A 

X + 3.0tAD     + 3.0 tAE          + Ax = 0 AD +10.0 3.32 + 33.20 

2 Y − 1.0tAD    + 1.0tAE            + Ay = 0 AE + 1.82 3.32 + 6.03 

3 Z − 1.0tAD   − 1.0tAE             + Az = 0 BD − 10.0 3.74 − 37.40 

4 

B 

X + 3.0tBD  +  3.0tBE             + Bx = 0 BE – 7.28 4.69 – 34.14 

5 Y + 1.0tBD  +  3.0tBE              + By = 0 CE + 5.46 4.24 + 23.17 

6 Z + 2.0tBD  +  2.0tBE              + Bz = 0 DE + 10.0 2.0 + 20.0 

7 

C 

X + 3.0tCE                             + Cx = 0 Support Reactions 

8 Y                                           + Cy = 0 Component x y z 

9 Z + 3.0tCE                              + Cz = 0 Support A – 35.5 kN + 8.2 kN + 11.8 kN 

10 

D 

X − 3.0tAD  −3tBD                           = 0  Support B + 51.8 kN + 31.8 kN + 34.6 kN 

11 Y + 1.0tAD −1.0tBD +2.0tDE − 40.0 = 0 Support C − 16.4 kN zero − 16.4 kN 

12 Z + 1.0tAD −2.0tBD             − 30.0  = 0 

Σ Applied forces in X-direction = zero 

Σ Applied forces in Y-direction = − 40 kN 

Σ Applied forces in Z-direction = − 30 kN 

13 

E 

X  − 3.0tAE − 3.0tBE  − 3.0tCE         = 0 

14 Y − 1.0tAE  − 3.0tBE          − 2.0tDE = 0       

15 Z + 1.0tAE  − 2.0tBE − 3.0tCE         = 0 
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Solution: 

Length of members: L = ( )2 2 2+ +x y z  

Length of members AD and AE: LAD, AE = ( )2 2 22.0 6.0 4.0+ + = 7.48 m 

Length of members BD, DE and CE:  LBD, DE, CE = 4.0 m 

Length of member BE: LBE = ( )2 24.0 4.0+ = 5.66 m 

 

See Equations in Tension Coefficient Table.  
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Consider Joint D: Equations (10), (11) and (12) 

Equation (10)  + 2.0tAD + 4.0tDE = 0          tAD = + 0.5 

Equation (11)  − 6.0tAD + 3.0 = 0           tBD = − 1.75 

Equation (12)  − 4.0tAD − 4.0tBD − 5.0  = 0        tDE = − 0.25 

 

Consider Joint E: Equations (13), (14) and (15) 

Equation (13)  − 2.0tAE − 4.0tDE − 4.0tBE + 2.0 = 0      tAE = + 0.5 

Equation (14)  − 6.0tAE + 3.0 = 0           tBE = + 0.5 

Equation (15)  − 4.0tAE − 4.0tBE − 4.0tCE − 5.0 = 0      tCE = − 2.25 

 

Similarly, the support reactions can be obtained by substituting the values of the 

tension coefficients in Equations (1) to ( 9). 

 

Note:  +ve tension coefficient values indicate tension members 

   −ve tension coefficient values indicate compression members 

 
Joint Equilibrium Equations Member t Length (m) Force (kN) 

1 

A 

X − 2.0tAD  +  2.0tAE             + Ax = 0 AD + 0.5 7.48 + 3.74 

2 Y + 6.0tAD  +  6.0tAE              + Ay = 0 AE + 0.5 7.48 + 3.74 

3 Z + 4.0tAD  + 4.0tAE               + Az = 0 BD − 1.75 4.0 − 7.0 

4 

B 

X + 4.0tBE                             + Bx = 0 BE + 0.5 5.66 + 2.83 

5 Y                                          + By = 0 CE – 2.25 4.0 – 9.0 

6 Z + 4.0tBE  +  4.0tBD              + Bz = 0 DE – 0.25 4.0 – 1.0 

7 

C 

X                                          + Cx = 0 Support Reactions (kN) 

8 Y                                          + Cy = 0 Component x y z 

9 Z + 4.0tCE                              + Cz = 0 Support A zero − 6.0 kN − 4.0 kN 

10 

D 

X + 2.0tAD  +  4.0tDE                     = 0 Support B − 2.0 kN zero + 5.0 kN 

11 Y − 6.0tAD                            + 3.0 = 0 Support C zero zero + 9.0 kN 

12 Z − 4.0tAD  − 4.0tBD             − 5.0 = 0 
Σ Applied forces in X-direction = + 2 kN 

Σ Applied forces in Y-direction = + 6 kN 

Σ Applied forces in Z-direction = + 10 kN 

13 

E 

X − 2.0tAE − 4.0tDE − 4.0tBE   + 2.0 = 0 

14 Y − 6.0tAE                             + 3.0 = 0 

15 Z − 4.0tAE  − 4.0tBE  − 4.0tCE − 5.0 = 0 
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Solution: 

Length of members: L = ( )2 2 2+ +x y z  

Length of members AE and AF: LAE,AF = ( )2 24.0 2.0+ = 4.47 m 

Length of member CE: LCE = ( )2 22.0 2.0+ = 2.83 m 

Length of members AD, BE, CF and EF: LAD,BE,CF,EF = 2.0 m 

Length of members DF and DE: LDF,DE = 4.0 m 

 

See Equations in Tension Coefficient Table. 
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Consider Joint D: Equations (10), (11) and (12) 

Equation (10)  + 1.0tDE − 1.0tDF = 0          tAD = − 10.0 

Equation (11)  + 3.87tDE + 3.87tDF + 8.0 = 0        tDE = − 1.03  

Equation (12)  − 2.0tAD − 20.0 = 0           tDF = − 1.03 

Consider Joint F: Equations (16), (17) and (18) 

Equation (16)  + 1.0tAF + 1.0tDF + 2.0tEF = 0        tAF = + 1.03 

Equation (17)  − 3.87tAF − 3.87tDF = 0         tEF = zero 

Equation (18)  − 2.0tCF − 2.0tAF − 20.0 = 0        tCF = − 11.03 

Consider Joint E: Equations (13), (14) and (15) 

Equation (13)  − 1.0tAE − 2.0tCE − 1.0tDE − 2.0tEF = 0     tAE = + 1.03 

Equation (14)  − 3.87tAE − 3.87tDE = 0         tBE = − 11.03 

Equation (15)  − 2.0tAE − 2.0tCE − 2.0tBE − 20.0 = 0     tCE = zero 

Similarly, the support reactions can be obtained by substituting the values of the 

tension coefficients in Equations (1) to ( 9). 

Note:  +ve tension coefficient values indicate tension members 

   −ve tension coefficient values indicate compression members 

Joint Equilibrium Equations Member t Length (m) Force (kN) 

1 

A 

X + 1.0tAE  −  1.0tAF              + Ax = 0 AD − 10.0 2.0 – 20.0 

2 Y + 3.87tAE  +  3.87tAF          + Ay = 0 AE + 1.03 4.47 + 4.61 

3 Z + 2.0tAE + 2.0tAF + 2.0tAD  + Az = 0 AF + 1.03 4.47 + 4.61 

4 

B 

X                                           + Bx = 0 BE –11.03 2.0 – 22.06 

5 Y                                           + By = 0 CE zero 2.83 zero 

6 Z + 2.0tBE                              + Bz = 0 CF –11.03 2.0 – 22.06 

7 

C 

X + 2.0tCE                              + Cx = 0 DE − 1.03 4.0 − 4.13 

8 Y                                            + Cy = 0 DF – 1.03 4.0 – 4.13 

9 Z + 2.0tCE  +  2.0tCF              + Cz = 0 EF zero 2.0 zero 

10 

D 

X + 1.0tDE  −  1.0tDF                     = 0 Support Reactions (kN) 

11 Y + 3.87tDE  +  3.87tDF  + 8.0       = 0    Component x y z 

12 Z − 2.0tAD                     − 20.0     = 0 Support A zero − 8.0 + 15.9 

13 

E 

X − 1.0tAE −2.0tCE −1.0tDE − 2.0tEF = 0 Support B zero zero + 22.1  

14 Y − 3.87tAE           −3.87tDE            = 0 Support C zero zero + 22.0  

15 Z − 2.0tAE  −2.0tCE  −2.0tBE − 20.0 = 0 
Σ Applied forces in X-direction = zero 

Σ Applied forces in Y-direction = + 8 kN 

Σ Applied forces in Z-direction = − 60 kN 

16 

F 

X + 1.0tAF  + 1.0tDF  + 2.0tEF         = 0 

17 Y − 3.87tAF − 3.87tDF                    = 0 

18 Z −  2.0tAF  −  2.0tCF        − 20.0   = 0 
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3.5 Unit Load Method for Deflection 
The Unit Load Method of analysis is based on the principles of strain energy and 

Castigliano’s 1st Theorem. When structures deflect under load the work-done by the 

displacement of the applied loads is stored in the members of the structure in the form of 

strain energy. 

3.5.1 Strain Energy (Axial Load Effects) 
Consider an axially loaded structural member of length ‘L’, cross-sectional area ‘A’, and 

of material with modulus of elasticity ‘E’ as shown in Figure 3.12(a). 

 

 

 

 

 

       (a)            (b) 

Figure 3.12 

 

When an axial load ‘P’ is applied as indicated, the member will increase in length by ‘δL’ 

as shown in Figure 3.12(b). Assuming linear elastic behaviour, δL ∝ P, this relationship is 

represented graphically in Figure 3.13.  

 

 

 

 

 

 

 

 

                     Figure 3.13 

 

The work-done by the externally applied load ‘P’  is equal to: 
 

(average value of the force × distance through which the force moves in its line of action) 
 

i.e.  Work-done = ⎟
⎠
⎞

⎜
⎝
⎛ × LP δ

2
 

For linearly elastic materials the relationship between the applied axial load and the 

change in length is: 
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This work-done by the externally applied load is equal to the ‘energy’ stored by the 

member when it changes length and is known as the strain energy, usually given the 

symbol ‘U’. It is this energy which causes structural members to return to their original 

length when an applied load system is removed; (Note: it is assumed that the strains are 

within the elastic limits of the material.) 

 

 Strain energy = Work-done by the applied load system 

       U =
AE

LP
2

2

 

(Note: the principles of strain energy also apply to members subject to shear, bending, 

torsion etc.) 

3.5.2 Castigliano’s 1st Theorem 
Castigliano’s 1st Theorem relating to strain energy and structural deformation can be 

expressed as follows: 

 

‘If the total strain energy in a structure is partially differentiated with respect to an 
applied load the result is equal to the displacement of that load in its line of action.’ 
 

In mathematical terms this is: 

 

 Δ =
W
U

∂
∂

 

where: 

U is the total strain energy of the structure due to the applied load system, 

W is the force acting at the point where the displacement is required, 

Δ is the linear displacement in the direction of the line of action of W. 

 

This form of the theorem is very useful in obtaining the deflection at joints in pin-jointed 

structures. Consider the pin-jointed frame shown in Figure 3.14 in which it is required to 

determine the vertical deflection of joint B. 
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Step 1: 

The member forces induced by the applied load system are calculated, in this case referred 

to as the ‘P’ forces, as shown in Figure 3.15. 

 

 

 

 

 

                    P-forces 

 

 

                     

                    Figure 3.15 

Step 2: 

The applied load system is removed from the structure and an imaginary Unit load is 

applied at the joint and in the direction of the required deflection, i.e. a vertical load equal 

to 1.0 at joint B. The resulting member forces due to the unit load are calculated and 

referred to as the ‘u’ forces, as shown in Figure 3.16. 

 

 

 

 

 

                    u-forces 

 

 

                     

                    Figure 3.16 

 

If both the Step 1 and the Step 2 load systems are considered to act simultaneously, then 

by superposition the total force in each member is given by: 

 

 Q = (P + βu) 

 

where: 

P is the force due to the applied load system 

u is the force due to the applied imaginary Unit load applied at B 

β is a multiplying factor to reflect the value of the load applied at B (Since the unit load 

is an imaginary force the value of β = zero and is used here as a mathematical 

convenience.) 

 

The total strain energy in the structure is equal to the sum of the energy stored in all the 

members: 

 

 U =∑ AE
LQ

2

2

 

A            B PAB

PBC

PCDPDE

PAD

P1 P2 

E                       D        C 

PBD 

1.0 

E                            D         C 

A          B uAB

uBC 

uCDuDE

uAD uBD 
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Using Castigliano’s 1st Theorem  the deflection of joint B is given by: 

  Δ =
W
U

∂
∂

 

 ∴ Δβ = 
β∂

∂U
 = 

β∂
∂×

∂
∂ Q

Q
U

 

 and 

  
Q
U

∂
∂

 = ∑ AE
QL

;    
β∂

∂Q
 = u 

 ∴ Δβ = 
β∂

∂U
 = 

β∂
∂×

∂
∂ Q

Q
U

 =∑ AE
QL × u =∑ +

AE
LuP )( β

 × u 

 

Since β = zero the vertical deflection at B (Δβ) is given by: 

  Δβ =∑ u
AE
PL

 

 

i.e. the deflection at any joint in a pin-jointed frame can be determined from: 

  δ = ∑ u
AE
PL

 

where: 

δ  is the displacement of the point of application of any load, along the line of action of 

that load, 

P  is the force in a member due to the externally applied loading system, 

u is the force in a member due to a unit load acting at the position of, and in the 

direction of the desired displacement, 

L/A is the ratio of the length to the cross-sectional area of the members, 

E is the modulus of elasticity of the material for each member (i.e. Young’s Modulus). 

3.5.3 Example 3.4:  Deflection of a Pin-Jointed Truss  
A pin-jointed truss ABCD is shown in Figure 3.17 in which both a vertical and a 

horizontal load are applied at joint B as indicated. Determine the magnitude and direction 

of the resultant deflection at joint B and the vertical deflection at joint D. 

 

 

 

Assume the cross-

sectional area of all 

members is equal to A 

and all members are 

made from the same 

material, i.e. have the 

same modulus of 

elasticity E  

 

                  Figure 3.17 

D 

4.0 m     3.0 m 

3
.0

 m
 

10 kN 

B 

C A 

HA 

VA VC 

20 kN 



 Pin-Jointed Frames  117 

Step 1: Evaluate the member forces. The reader should follow the procedure given in 

Example 3.1 to determine the following results: 

 

Horizontal component of reaction at support A  HA = − 20.0 kN 

Vertical component of reaction at support A   VA = – 4.29 kN 

Vertical component of reaction at support C   VC = + 14.29 kN 

 

Use the method of sections or joint resolution as indicated in Section 3.2 and Section 3.3 

respectively to determine the magnitude and sense of the unknown member forces  (i.e. the 

P forces).  

The reader should complete this calculation to determine the member forces as indicated 

in Figure 3.18. 

 

 

 

 

 

 

 

 

 

 

 

    P − forces 

 

Figure 3.18 

 

Step 2: To determine the vertical deflection at joint B remove the externally applied load 

system and apply a unit load only in a vertical direction at joint B as shown in           

Figure 3.19. Use the method of sections or joint resolution as before to determine the 

magnitude and sense of the unknown member forces (i.e. the u forces).  

The reader should complete this calculation to determine the member forces as indicated 

in Figure 3.19. 

 

 

 

 

 

 

 

 

 

 

 

 

      The u forces for vertical deflection at joint B 

                      Figure 3.19 

C 

B 

A 

20 kN 

10 kN 

D 
20 kN 

4.29 kN 14.29 kN 

zero force + 7.15 kN – 20.20 kN 

+ 14.29 kN + 14.29 kN

+ve  − tension member 

–ve  − compression member 

1.0  

zero 
C 

B 

A D 

0.43 0.57 

zero force – 0.71 – 0.81

+ 0.57 + 0.57

Applied unit load 
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The vertical deflection δ V,B =∑ u
AE
PL

 

 

This is better calculated in tabular form as shown in Table 3.3.  
Member Length (L) Cross-section (A) Modulus (E) P  forces (kN) u forces PL × u (kNm) 

AB  5.0 m A E + 7.15 – 0.71 – 25.38 

BC  4.24 m A E – 20.20 – 0.81 + 69.37  

AD  4.0 m A E + 14.29 + 0.57 + 32.58 

CD  3.0 m A E + 14.29 + 0.57 + 24.44 

BD  3.0 m A E 0.0 0.0 0.0 

     Σ + 101.01 

 

Table 3.3 

 

The +ve sign indicates that the deflection is in the same direction as the applied unit load. 

Hence  the vertical deflection δ V,B =∑ u
AE
PL

 = + (101.01/AE) 

Note: Where the members have different cross-sectional areas and/or moduli of elasticity 

each entry in the last column of the table should be based on (PL × u)/AE and not only  

(PL × u). 

A similar calculation can be carried out to determine the horizontal deflection at            

joint B. The reader should complete this calculation to determine the member forces as 

indicated in Figure 3.20. 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.20 

 

The horizontal deflection δ H,B =∑ u
AE
PL

 

 
Member Length (L) Cross-section (A) Modulus (E) P  forces (kN) u forces PL × u (kNm) 

AB  5.0 m A E + 7.15 + 0.71 + 25.74 

BC  4.24 m A E – 20.20 – 0.61 + 52.25  

AD  4.0 m A E + 14.29 + 0.43 + 24.58 

CD  3.0 m A E + 14.29 + 0.43 + 18.43 

BD  3.0 m A E 0.0 0.0 0.0 

     Σ + 121.00 

Table 3.4 

D C 

B 

A 

1.0  

1.0 

0.43 0.43 

zero force+ 0.71 – 0.61

+ 0.43 + 0.43

The u forces for horizontal deflection at joint B
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Hence the horizontal deflection δ H,B =∑ u
AE
PL

 = + (121.00/AE) 

 

The resultant deflection at joint B can be determined from the horizontal and vertical 

components evaluated above, i.e. 

 

R = ( )2 2101.01 121.0+ /AE = 157.62/AE 

θ = tan−1(121.00/101.01)  = 50.15° 

 

 

A similar calculation can be carried out to determine the vertical deflection at joint D. 

The reader should complete this calculation to determine the member forces as indicated 

in Figure 3.21. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The member u forces for vertical deflection at joint D 

 

Figure 3.21 

 

The vertical deflection δ V,D =∑ u
AE
PL

 

 
Member Length (L) Cross-section (A) Modulus (E) P  forces (kN) u forces PL × u (kNm) 

AB  5.0 m A E + 7.15 – 0.71 – 25.38 

BC  4.24 m A E – 20.20 – 0.81 + 69.37  

AD  4.0 m A E + 14.29 + 0.57 + 32.58 

CD  3.0 m A E + 14.29 + 0.57 + 24.44 

BD  3.0 m A E 0.0 +1.0 0.0 

     Σ + 101.01 

 

Table 3.5 

 

Hence the vertical deflection δ V,D = ∑ u
AE
PL

 = + (101.01/AE) 

zero 

0.43 
1.0  

D C 

B 

A 

0.57 

+ 1.0 – 0.71 – 0.81

+ 0.57 + 0.57

50.15°

157.62/AE 

(121.00/AE) 

(101.01/AE)
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3.5.3.1 Fabrication Errors – (Lack-of-fit)  

During fabrication it is not unusual for a member length to be slightly too short or too long 

and assembly is achieved by forcing members in to place. The effect of this can be 

accommodated very easily in this method of analysis by adding additional terms relating 

to each member for which lack-of-fit applies. The δL term for the relevant members is 

equal to the magnitude of the error in length, i.e. ΔL where negative values relate to 

members which are too short and positive values to members which are too long.  

(Note: under normal applied loading the δL term =
AE
PL

). 

3.5.3.2 Changes in Temperature  

The effects of temperature change in members can also be accommodated in a similar 

manner; in this case the δL term is related to the coefficient of thermal expansion for the 

material, the change in temperature and the original length,  

 

i.e. δL = αLΔT 

where 

α   is the coefficient of thermal expansion, 

L   is the original length, 

ΔT  is the change in temperature – a reduction being considered negative and an increase 

being positive. 

 

Since this is an elastic analysis the principle of superposition can be used to obtain results 

when a combination of applied load, lack-of-fit and/or temperature difference occurs. This 

is illustrated in Example 3.5. 

3.5.4 Example 3.5:  Lack-of-fit and Temperature Difference 
Consider the frame indicated in Example 3.4 and determine the vertical deflection at     

joint D assuming the existing loading and that member BC is too short by 2.0 mm, 

member CD is too long by 1.5 mm and that members AD and CD are both subject to an 

increase in temperature of 5°C.  Assume α =12.0 × 10−6/°C and  AE = 100 × 103 kN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10 kN 

A                            D                  C 
20 kN 

4.29 kN 

20 kN B 

14.29 kN 

+ 14.29 kN + 14.29 kN 

+ 7.15 kN – 20.20 kN 0 

Applied load Unit load 

1.0

+ 1.0− 0.71 − 0.81 

+ 0.57 + 0.57 

A                        D                       C 

B

0.43         0.43 

A                             D                 C          

B 

ΔTAD = ΔTCD = + 5°C 

Change in  

temperature 

Figure 3.22 

ΔBC = − 2.0 mm

A                           D                   C   

B Lack–of-fit 

ΔCD = + 1.5 mm 
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The δL value for member BC due to lack-of-fit  Δ L = − 2.0 mm 

The δL value for member CD due to lack-of-fit  Δ L = + 1.5 mm 

 

The δL value for member AD due to temperature change  = + α LAD Δ T,AD 

                      = + (12 × 10− 6  × 4000 × 5.0) 

                     Δ T = + 0.24 mm 

 

The δL value for member CD due to temperature change  = + α LCD Δ T,CD 

                      = + (12 × 10− 6  × 3000 × 5.0) 

                     Δ T = + 0.18 mm 

 
Member 

 

Length 

(mm) 

AE 
( kN) 

P-force 

(kN) 

PL/AE 

(mm) 

ΔL 

(mm) 

ΔT 

(mm) 
u (PL/AE + ΔL +  ΔT) × u 

(mm) 

AB 5000 100 × 103 + 7.15 + 0.36 0 0 − 0.71 − 0.26 

BC 4243 100 × 103 − 20.20 − 0.86 − 2.0 0 − 0.81 + 2.32 

AD 4000 100 × 103 + 14.29 + 0.57 0 + 0.24 + 0.57 + 0.46 

CD 3000 100 × 103  + 14.29 + 0.43 + 1.5 + 0.18 + 0.57 + 1.20 

BD 3000 100 × 103 0 0 0 0 1.0 0 

        Σ = + 3.72 

 

Table 3.6 

 

The vertical deflection at joint D due to combined loading, lack-of-fit and temperature 

change is given by: 

 

δ V,D =∑ ×⎟
⎠
⎞

⎜
⎝
⎛ ++ uΔΔ

AE
PL

tl  = + 3.72 mm 

 

 

Note: Statically determinate, pin-jointed frames can accommodate small changes in 

geometry without any significant effect on the member forces induced by the applied load 

system, i.e. the member forces in Example 3.5 are the same as those in Example 3.4.  
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3.5.5 Problems: Unit Load Method for Deflection of Pin-Jointed Frames  
A series of pin-jointed frames are shown in Problems 3.17 to 3.20. Using the applied load 

systems and data given in each case, determine the value of the deflections indicated. 

Assume E = 205 kN/mm2 and α = 12 × 10−6/°C  where required. 

 

 
The cross-sectional area of all 

members  is equal to 1500 mm2.  

 

Determine the value of the 

resultant deflection at joint D. 

 

 

 

 
The cross-sectional area of 

members AB, BC and CD is equal 

to 500 mm2.   

The cross-sectional area of all other 

members is equal to 250 mm2.  

Member BE is too short by 3.0 mm. 

 

Determine the value of the 

vertical deflection at joint F and 

the horizontal deflection at joint 

B. 
 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 
The cross-sectional area of all members is 

equal to 1200 mm2. 

 

Determine the value of the horizontal 

deflection at joint D. 

 

Problem 3.18 

Problem 3.19 Problem 3.20 

Problem 3.17 

4.0 m          4.0 m VE 

50 kN                50 kN 

12 kN 

B                                        C 

3
.0

 m
 

A       E                  D 
100 kN 

HA 

VA 

25 kN          25 kN 

VA                 VD

4
.0

 m
 

4.0 m    4.0 m      4.0 m 

A                        F       E        D

B        C 

HA 

The cross-sectional area of members AG, 

BG, CF CG, FG, and EF is equal to 

400 mm2. 

 The cross-sectional area of all other 

members is equal to 100 mm2. 

All members are subjected to a decrease in 

temperature equal to 20°C. 

 

Determine the horizontal deflection at 

joint F. 

G
B           F 

A 

10 kN 

3
.5

 m
 

 
 

 
3
.5

 m
 

3.5 m       3.5 m   3.5 m 

C      D         E 

HA
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2 kN 

30 kN 5 kN 

A          G 

C                  E 

2
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 m
 

 
  
 2
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 2
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B      F 

D 

60° 

HA          HG 
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β 
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3.5.6 Solutions: Unit Load Method for Deflection of Pin-Jointed Frames 
       

 

 

 

 

The cross-sectional area 

of all members  is equal to 

1500 mm2. 

Determine the value of 

the resultant deflection at 

joint D. 

   E = 205 kN/mm2
 

 

 

sinθ = (3.0/5.0) = 0.6  cosθ = (4.0/5.0) = 0.8 

AE1500 = (1500 × 205) = 307.5 × 103 kN 

 

Determine the Support Reactions   

Consider the rotational equilibrium of the frame: 

 +ve     ΣMA = 0  + (12.0 × 3.0) + (50.0 × 4.0) + (100.0 × 8.0) − (VE × 4.0) = 0 

                     ∴ VE = + 259.0 kN 

 Consider the horizontal equilibrium of the frame: 

 +ve        ΣFx = 0 + HA + 12.0 = 0          ∴ HA = − 12.0 kN 

  

 Consider the vertical equilibrium of the frame: 

 +ve ΣFz = 0  + VA − 50.0 − 50.0 − 100.0 + VE = 0   ∴ VA = 200.0 − VE 

              VA = 200.0 − 259.0   ∴ VA = − 59.0 kN 

   

Assume all unknown member forces to be tension and use joint resolution to 

determine the P−forces in the frame. 

 

 Consider joint D:  

  

+ve        ΣFz = 0    − 100.0 + FCDsinθ = 0   Equation (a) 

+ve        ΣFx = 0   − FDE − FCDcosθ = 0   Equation (b)  

From Equation (a):       FCD = + 166.7 kN (Tie) 

From Equation (b):       FDE = − 133.3 kN (Strut) 

 

 Consider joint E:  

  

+ve        ΣFx = 0    − 133.3 − FAE = 0    Equation (a) 

+ve        ΣFz = 0   + FCE + 259.0 = 0    Equation (b)  

From Equation (a):        FAE = − 133.3 kN (Strut) 

From Equation (b):        FCE = − 259.0 kN (Strut) 

θ

4.0 m          4.0 m VE 

50 kN                50 kN 

12 kN 

B                                        C 

3
.0

 m
 

A       E                  D 
100 kN 

HA 

VA 

θ 

Solution 
Topic: Unit Load Method for Deflection of Pin-Jointed Frames 

Problem Number: 3.17            Page No. 1 

100 kN 

FCD 

FDE D θ 

E 

259.0 kN 

FCE 

FAE 133.3 kN 

z 

x 
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 Consider joint B:  

  

+ve        ΣFx = 0  + 12.0 + FBC = 0    Equation (a) 

+ve        ΣFz = 0  − 50.0 − FAB = 0    Equation (b)  

From Equation (a):       FBC = − 12.0 kN (Strut) 

From Equation (b):       FAB = − 50.0 kN (Strut) 

 

 Consider joint C:  

  

+ve        ΣFx = 0  + 12.0 + 166.7cosθ  − FACcosθ = 0 

              FAC = + 181.7 kN (Tie) 

 

 

  

 

 

 

 

 P - forces 

 

 

 

 

 

 

 Vertical deflection at joint D: 

Apply a Unit Load in the vertical direction at joint D and determine the values of the 

u-forces using joint resolution as before. 

 

 

 

 

u - forces 

 

 

 

 

 

 

Complete the Unit Load table to determine the value of δ V,D 

 

Solution 
Topic:  Unit Load Method for Deflection of Pin-Jointed Frames 

Problem Number: 3.17            Page No. 2 

12 kN 
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50 kN 

FAB 

FBC 

259.0 kN 

50 kN                50 kN 

12 kN 

B                                       C 

A       E                  D 
100 kN 

12.0 kN

59.0 kN 

− 50.0 kN 

− 12.0 kN

+ 181.7 kN

− 259.0 kN

+ 166.7 kN

− 133.3 kN− 133.3 kN

B                                C 

2.0 

A       E                  D 

1.0 

zero 

1.0 

zero 

zero

+ 1.67 − 2.0 + 1.67

− 1.33− 1.33

θ 
12 kN C 

50 kN 

FAC 

259.0 kN 

166.7 kN

θ 
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Member Length (mm) AE (kN) P-force (kN) PL/AE (mm) u (PL/AE ) × u 

AB 3000 307.5 × 103 − 50.0 − 0.49 0 0 

AC 5000 307.5 × 103 + 181.7 + 2.95 + 1.67 + 4.93 

AE 4000 307.5 × 103 − 133.3 − 1.73 − 1.33 + 2.31 

BC 4000 307.5 × 103 − 12.0 − 0.16 0 0 

CD 5000 307.5 × 103 + 166.7  + 2.71 + 1.67 + 4.53 

CE 3000 307.5 × 103 − 259.0 − 2.53 − 2.0 + 5.05 

DE 4000 307.5 × 103 − 133.3 − 1.73 − 1.33 + 2.31 

      Σ = + 19.13 

 δ V,D =∑ ×⎟
⎠
⎞

⎜
⎝
⎛ u

AE
PL

 = + 19.13 mm 

 

 Horizontal deflection at joint D: 

Apply a Unit Load in the horizontal direction at joint D and determine the values of 

the u-forces using joint resolution as before. 

 

 

 

 

u - forces 

 

 

 

 

 

Complete the Unit Load table to determine the value of δ H,D 

 

Member Length (mm) AE (kN) P-force (kN) PL/AE (mm) u (PL/AE ) × u 
AB 3000 307.5 × 103 − 50.0 − 0.49 0 0 

AC 5000 307.5 × 103 + 181.7 + 2.95 0 0 

AE 4000 307.5 × 103 − 133.3 − 1.73 + 1.0 − 1.73 

BC 4000 307.5 × 103 − 12.0 − 0.16 0 0 

CD 5000 307.5 × 103 + 166.7  + 2.71 0 0 

CE 3000 307.5 × 103 − 259.0 − 2.53 0 0 

DE 4000 307.5 × 103 − 133.3 − 1.73 + 1.0 − 1.73 

      Σ = − 3.46 

 δ H,D =∑ ×⎟
⎠
⎞

⎜
⎝
⎛ u

AE
PL

 = − 3.46 mm 

 Resultant deflection at joint D = δ R,D = ( )246321319 .. +  = 19.44 mm 

Solution 
Topic:  Unit Load Method for Deflection of Pin-Jointed Frames 

Problem Number: 3.17            Page No. 3 

B                                C 

zero 

A        E                 D 
1.0 1.0 

zero 

zero 

zero

zero zero zero

+ 1.0+ 1.0

10.30 
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The cross-sectional area of 

members AB, BC and CD 

equals 500 mm2.   

The cross-sectional area of all 

other members is equal to     

250 mm2.  

Member BE is too short by    

3.0 mm. 

Determine the value of the vertical deflection at joint F and the horizontal 

deflection at joint B. 

E = 205 kN/mm2 and α = 12 × 10−6/°C; θ = 45°      sinθ = 0.707,   cosθ = 0.707 
Length of members AB, BE and CD  LAB,BE,CD =

22 0404 .. + = 5.657 m 

AE500 = (500 × 205) = 102.5 × 103 kN,  AE250 = (250 × 205) = 51.25 × 103 kN 

Determine the Support Reactions   

Consider the rotational equilibrium of the frame: 

 +ve     ΣMA = 0  + (25.0 × 4.0) + (25.0 × 8.0) − (VD × 12.0) = 0 

                     ∴ VD = + 25.0 kN  

 Consider the horizontal equilibrium of the frame: 

 +ve        ΣFx = 0               ∴ HA = zero 

  

 Consider the vertical equilibrium of the frame: 

 +ve ΣFz = 0  + VA − 25.0 − 25.0 + VD = 0  ∴ VA = 50.0 − 25.0 

                      ∴ VA = + 25.0 kN 

   

Assume all unknown member forces to be tension and use joint resolution to 

determine the P-forces in the frame. 

 Consider joint A:  

  

+ve   ΣFz = 0  + 25.0 + FABsinθ = 0   Equation (a) 

+ve        ΣFx = 0 + FAF +  FABcosθ = 0   Equation (b)  

From Equation (a):       FAB = − 35.36 kN (Strut) 

From Equation (b):       FAF = + 25.0  kN (Tie) 

  

 Consider joint F:  

  

+ve        ΣFx = 0 −  25.0 + FEF = 0    Equation (a) 

+ve   ΣFz = 0  + FBF − 25.0 = 0    Equation (b)  

From Equation (a):       FEF = + 25.0 kN (Tie) 

From Equation (b):        FBF = + 25.0  kN (Tie) 

F 

25 kN 

FBF 

25.0 kN FEF 

Solution 
Topic:  Unit Load Method for Deflection of Pin-Jointed Frames 

Problem Number: 3.18            Page No. 1 
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 Consider joint B:  

  

+ve ΣFz = 0  + 35.36sinθ  − 25.0 − FBEcosθ = 0 

               Equation (a) 

+ve        ΣFx = 0 + 35.36cosθ  + FBC + FBEsinθ = 0 

               Equation (b)  

From Equation (a):       FBE = zero 

From Equation (b):        FBC = − 25.0 kN (Strut) 

By symmetry: 

 FCD = − 35.36 kN (Strut),     FDE = + 25.0 kN (Tie),    FCE = + 25.0 kN (Tie) 

 

 

  

 P - forces 

 

 

 

  

 

 

 

 

 

 

Lack−of−fit (Δ L) 

 

 

 Vertical deflection at joint F: 

Apply a Unit Load in the vertical direction at joint F and determine the values of the 

u-forces using joint resolution as before. 

 

 

 

 

 

u - forces 

 

 

 

 

Complete the Unit Load table to determine the value of δ V,F 

Solution 
Topic:  Unit Load Method for Deflection of Pin-Jointed Frames 

Problem Number: 3.18            Page No. 2 

25.0 kN                  25.0 kN 
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Member 
Length  

(mm) 

AE  
(kN) 

P-force 

(kN) 

PL/AE 
(mm) 

 ΔL 

(mm) 
u (PL/AE + ΔL ) × u 

(mm) 

AB 5657 102.5 × 103  − 35.36 −1.95 0 − 0.94 + 1.83 

AF 4000 51.25 × 103 + 25.0 + 1.95 0 + 0.67  + 1.31 

BC 4000 102.5 × 103 − 25.0 − 0.98 0 − 0.33  + 0.32 

BE 5657 51.25 × 103 0 0 − 3.0 − 0.47  + 1.41 

BF 4000 51.25 × 103 + 25.0 + 1.95 0 + 1.0 + 1.95  

CD 5657 102.5 × 103 − 35.36 −1.95 0 − 0.47 + 0.92 

CE 4000 51.25 × 103 + 25.0 + 1.95 0 + 0.33 + 0.64 

DE 4000 51.25 × 103 + 25.0 + 1.95 0 + 0.33  + 0.64 

EF 4000 51.25 × 103 + 25.0 + 1.95 0 + 0.67 + 1.31 

       Σ = + 10.33 

 δ V,F =∑ ×⎟
⎠
⎞

⎜
⎝
⎛ u

AE
PL

 = + 10.33 mm 

 Horizontal deflection at joint B: 

Apply a Unit Load in the horizontal direction at joint B and determine the values of 

the u-forces using joint resolution as before. 

 

 

 

 

u - forces 

 

 

 

 

Complete the Unit Load table to determine the value of δ H,B 

Member 
Length  

(mm) 

AE  
(kN) 

P-force 

 (kN) 

PL/AE 

(mm) 
ΔL 

(mm) 
u (PL/AE + ΔL) × u 

(mm) 

AB 5657 102.5 × 103  − 35.36 −1.95 0 + 0.47 − 0.92 

AF 4000 51.25 × 103 + 25.0 + 1.95 0 + 0.67 + 1.31 

BC 4000 102.5 × 103 − 25.0 −0.98 0 − 0.33  + 0.32 

BE 5657 51.25 × 103 0 0 − 3.0 − 0.47  + 1.41 

BF 4000 51.25 × 103 + 25.0 + 1.95 0 0 0 

CD 5657 102.5 × 103 − 35.36 −1.95 0 − 0.47 + 0.92 

CE 4000 51.25 × 103 + 25.0 + 1.95 0 + 0.33 + 0.64 

DE 4000 51.25 × 103 + 25.0 + 1.95 0 + 0.33 + 0.64 

EF 4000 51.25 × 103 + 25.0 + 1.95 0 + 0.67 + 1.31 

       Σ = + 5.63 

 δ H,B =∑ ×⎟
⎠
⎞

⎜
⎝
⎛ u

AE
PL

 = + 5.63 mm 
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The cross-sectional area of all members is 

equal to 1200 mm2. 

Determine the value of the horizontal 

deflection at joint D. 

E = 205 kN/mm2
 

LDE = LEF = LFG = 2.887 m 

LBF = 2.887 m  LCF = 3.819 m 

LCE = 1.443 m  LBG = 5.0 m 

 
α = tan−1(4.33/2.5) = 60° 

β = tan−1(2.887/2.5) = 49.11° 

sinα = 0.866  sinβ = 0.756 

cosα = 0.5   cosβ = 0.655 

tanα = 1.732  tanβ = 1.155 

 
AE1200 = (1200 × 205) = 246.0 × 103 kN 

 

Determine the Support Reactions   

 

Consider the rotational equilibrium of the frame: 

 +ve     ΣMA = 0  − (5.0 × 7.5) − (VG × 4.33 ) = 0 

                    ∴ VG = − 8.66 kN  

 Consider the horizontal equilibrium of the frame: 

 +ve        ΣFx = 0 + HA + HG − 5.0 = 0  ∴ HG = 5.0 − HA 

     

 Consider the vertical equilibrium of the frame: 

 +ve ΣFz = 0  + VA − 30.0 + VG = 0  ∴ VA = 30.0 + 8.66 

                    ∴ VA = + 38.66 kN 

   

Assume all unknown member forces to be tension and use joint resolution to 

determine the P-forces in the frame. 

 

 Consider joint A:  

 

+ve   ΣFz = 0   + 38.66 + FAB = 0    Equation (a) 

+ve        ΣFx = 0  + HA = 0       Equation (b)  

From Equation (a):       FAB = − 38.66 kN (Strut) 

From Equation (b):       HA = zero 

                 ∴  HG = 5.0 kN 
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 Consider joint D:  

  

+ve       ΣFx = 0 − 5.0 + FDEsin30°= 0    Equation (a) 

+ve    ΣFz = 0 − 30.0 − FCD − FDE cos30° = 0  Equation (b) 

 

From Equation (a):       FDE = + 10.0 kN (Tie) 

From Equation (b):       FCD = − 38.66 kN (Strut) 

  

 Consider joint E: Resolve forces perpendicular and parallel to FDE and FEF 

  

+ve        ΣFperpendicular = 0 − FCEsin60°= 0    Equation (a) 

 

+ve        ΣFparallel = 0  + FDE  − FEF + FCEcos60° = 0  

                Equation (b) 

From Equation (a):       FEC = zero 

From Equation (b):        FEF = + 10.0  kN (Tie) 

 Consider joint C:  

  

+ve        ΣFx = 0 + FCFsinβ  = 0      Equation (a) 

+ve      ΣFz = 0 − 38.66 − FBC − FCFcosβ = 0  Equation (b)  

 

From Equation (a):       FCF = zero 

From Equation (b):        FBC = − 38.66 kN (Strut) 

 

 Consider joint F: Resolve forces perpendicular and parallel to FFG  

  

+ve        ΣFperpendicular = 0 − FBFsin60° = 0    Equation (a) 

 

+ve        ΣFparallel = 0   + 10.0 − FFG  + FBFcos60° = 0 

                 Equation (b) 

From Equation (a):       FBF = zero 

From Equation (b):        FFG = + 10.0 kN (Tie) 

 

 Consider joint B:  

  

 

+ve        ΣFx = 0 + FBGsinα = 0 

             FBG = zero 
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Horizontal deflection at joint D: 

Apply a Unit Load in the horizontal direction at joint D and determine the values of 

the u-forces using joint resolution as before. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
  
       
     P - forces            u - forces 

 

Complete the Unit Load table to determine the value of δ H,D 

 

Member 
Length 

 (mm) 

AE 

 (kN) 

P-force 

 (kN) 

PL/AE 
(mm) 

u (PL/AE) × u 
(mm) 

AB 2500 246.0 ×103 − 38.66 − 0.39 − 1.73 + 0.68 

BC 2500 246.0 ×103 − 38.66 − 0.39 − 1.73 + 0.68 

BF 2887 246.0 ×103 0 0 0 0 

BG 5000 246.0 ×103 0 0 0 0 

CD 2500 246.0 ×103 − 38.66 − 0.39 − 1.73 + 0.68 

CE 1443 246.0 ×103 0 0 0 0 

CF 3819 246.0 ×103 0 0 0 0 

DE 2887 246.0 ×103 + 10.0 + 0.12 + 2.0 + 0.23 

EF 2887 246.0 ×103 + 10.0 + 0.12 + 2.0 + 0.23 

FG 2887 246.0 ×103 + 10.0 + 0.12 + 2.0 + 0.23 

      Σ = + 2.73 

 δ H,D =∑ ×⎟
⎠
⎞

⎜
⎝
⎛ u

AE
PL

 = + 2.73 mm 

30 kN 

5 kN 

A                 G 
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zero                   5.0 kN 

38.66 kN                               8.66 kN 

− 38.66 kN 

− 38.66 kN 

− 38.66 kN 

+ 10.0 kN 
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+ 10.0 kN zero
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zero 

zero 
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The cross-sectional area of members 

AG, BG, CF, CG, EF, and FG is equal 

to 400 mm2. 

The cross-sectional area of all other 

members is equal to 100 mm2. 

All members are subjected to a decrease 

in temperature equal to 20°C. 

Determine the horizontal deflection 

at joint F. 

E = 205 kN/mm2 and α = 12 × 10−6/°C 

LAG,BC,CF,EF = 2 23.5 3.5+ = 4950 mm2
  

sin45° = 0.707,   cos45° = 0.707 

AE100 = (100 × 205) = 20.5 × 103 kN 
AE400 = (400 × 205) = 82.0 × 103 kN 

The δL value for members AG, BC, CF and EF due to temperature change: 

 ΔT = − αLΔT = − (12 × 10− 6 × 4950 × 20.0) = − 1.19 mm 

The δL value for all other members due to temperature change: 

 ΔT = − αLΔT = − (12 × 10− 6 × 3500 × 20.0) = − 0.84 mm 

 

Determine the Support Reactions   

 

Consider the rotational equilibrium of the frame: 

 +ve     ΣMA = 0  − (2.0 × 7.0) + (10 × 10.5) − (VF × 7.0 ) = 0 

                    ∴ VF = + 13.0 kN  

 Consider the horizontal equilibrium of the frame: 

 +ve        ΣFx = 0 + HA − 2.0 = 0         ∴ HA = + 2.0 kN  

     

 Consider the vertical equilibrium of the frame: 

 +ve ΣFz = 0   + VA − 10.0 + VF = 0  ∴ VA = 10.0 − 13.0 

                    ∴ VA = − 3.0 kN 

   

Assume all unknown member forces to be tension and use joint resolution to 

determine the P-forces in the frame. 

 

 Consider joint A:  

+ve        ΣFx = 0 + 2.0 + FAGcos45° = 0   Equation (a) 

+ve   ΣFz = 0  − 3.0 + FAB + FAGsin45° = 0  Equation (b)  

 

From Equation (a):       FAG = − 2.83 kN (Strut) 

From Equation (b):       FAB = + 5.0 kN (Tie)  

G 
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 Consider joint B:  

+ve   ΣFz = 0   − 5.0 + FBCsin45° = 0   Equation (a) 

+ve       ΣFx = 0  + FBG + FBCcos45° = 0  Equation (b)  

 

From Equation (a):       FBC = + 7.07 kN (Tie) 

From Equation (b):       FBG = − 5.0 kN (Strut) 

  

 

 Consider joint G:  

  

+ve ΣFz = 0   + 2.83cos45° + FCG = 0   Equation (a) 

 

+ve       ΣFx = 0 + 5.0 + 2.83sin45° + FFG = 0   Equation (b) 

 

From Equation (a):       FCG = − 2.0 kN (Strut) 

From Equation (b):         FFG = − 7.0 kN (Strut) 

  

 Consider joint C:  

  

+ve   ΣFz = 0   + 2.0 − 7.07sin45° − FCF sin45° = 0 

                Equation (a) 

+ve       ΣFx = 0  − 2.0 − 7.07cos45° + FCFcos45° + FCD  = 0 

                Equation (b)  

From Equation (a):       FCF = − 4.24 kN (Strut) 

From Equation (b):        FCD = + 10.0 kN (Tie) 

 

 Consider joint D:  

  

+ve        ΣFx = 0   − 10.0 + FDE = 0    Equation (a) 

  

+ve ΣFz = 0  − FDF = 0       Equation (b) 

 

From Equation (a):       FDE = + 10.0 kN (Tie)  

From Equation (b):        FDF = zero 

 

 Consider joint E:  

 

+ve        ΣFx = 0   − 10.0 − FEFcos45° = 0 

 

             FEF = − 14.14 kN (Strut) 
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Horizontal deflection at joint F: 

Apply a Unit Load in the horizontal direction at joint F and determine the values of 

the u-forces using joint resolution as before. 

 

 

 

 

 

 

 

 

 

 

 

       P - forces 

 

 

 
                  u - forces 

 

The δL value for members (AG, BC, CF and EF) due to temperature change: 

                      ΔT = − 1.19 mm 

The δL value for all other members due to temperature change:  ΔT = − 0.84 mm 

Complete the Unit Load table to determine the value of δ H,F 

 

Member 
Length 

 (mm) 

AE 
 (kN) 

P-force 

(kN) 

PL/AE 

(mm) 
ΔT 

(mm) 
u (PL/AE + ΔT) × u 

(mm) 

AB 3500 20.5 ×10
3
 + 5.0 + 0.85 − 0.84 − 0.50 − 0.01 

AG 4950 82.0 ×10
3
 − 2.83 − 0.17 − 1.19 + 1.41 − 1.92 

BC 4950 20.5 ×10
3
 + 7.07 + 1.71 − 1.19 − 0.71 − 0.37 

BG 3500 82.0 ×10
3
 − 5.0 − 0.21 − 0.84 + 0.50 − 0.53 

CD 3500 20.5 ×10
3
 + 10.0 + 1.71 − 0.84 0 0 

CF 4950 82.0 × 10
3
  − 4.24 − 0.26 − 1.19 − 0.71 + 1.02 

CG 3500 82.0 ×10
3
 − 2.0 − 0.09 − 0.84 + 1.00 − 0.93 

DE 3500 20.5 ×10
3
 + 10.0 + 1.71 − 0.84 0 0 

DF 3500 20.5 ×10
3
 0 0 − 0.84 0 0 

EF 4950 82.0 ×10
3
 − 14.14 − 0.85 − 1.19 0 0 

FG 3500 82.0 ×10
3
 − 7.0 − 0.30 − 0.84 + 1.50 − 1.71 

       Σ = − 4.45 

 δ H,F = ∑ ×⎟
⎠
⎞

⎜
⎝
⎛ u

AE
PL

 = − 4.45 mm 
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3.6 Unit Load Method for Singly-Redundant Pin-Jointed Frames 
The method of analysis illustrated in Section 3.5 can also be adopted to determine the 

member forces in singly−redundant frames. Consider the frame shown in Example 3.6. 

3.6.1 Example 3.6:  Singly-Redundant Pin-Jointed Frame 1 
Using the data given, determine the member forces and support reactions for the 

pin−jointed frame shown in Figure 3.23. 

 

 

 

The cross-sectional area of all members is 

equal to 175 mm2. 

 

E = 205 kN/mm2 

 

 

Figure 3.23 

 

 

The degree−of−indeterminacy ID = (m + r) − 2n = (5 + 4) − (2 × 4) = 1 

 

Assume that member BD is a redundant member and consider the original frame to be the 

superposition of two structures as indicated in Figures 3.24(a) and (b). The frame in  

Figure 3.24(b) can be represented as shown in Figure 3.25.  

 

 

 

 

 

 

 

 

           (a)               (b) 

 

Figure 3.24 

 

 

 

 

 

 

 

 

 

 

Figure 3.25 
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To maintain compatibility in the length of member BD in the original frame the change in 

length of the diagonal BD in Figure 3.24(a) must be equal and opposite to that in        

Figure 3.24(b) as shown in Figure 3.26. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.26 

 

(δ′BD due to P−forces) + (δ′′BD due to unit load forces) × FBD = 0 

i.e.  ∑ u
AE
PL

 + ⎟
⎠
⎞

⎜
⎝
⎛∑ u

AE
uL

 × FBD = 0  ∴   FBD = − ∑∑ u
AE
uLu

AE
PL

 

 

Using joint resolution the P-forces and the u-forces can be determined as indicated in 

Figure 3.27. 

 

 

 

 

 

 

 

 

 

 

 

     P - forces              u - forces 

Figure 3.27 

 

Member 
Length 

 (mm) 

AE 
 (kN) 

P-force  

(kN) 

PL/AE 

(mm) 
u (PL/AE ) × u 

(mm) 

(uL/AE ) × u 

(mm) 

Member 

forces 

BC 3000 35.88 ×10
3
 + 10.00 + 0.84 − 0.71 − 0.59 0.04 + 4.38 

CD 3000 35.88 ×10
3
 + 10.00 + 0.84 − 0.71 − 0.59 0.04 + 4.38 

DA 3000 35.88 ×10
3
 0 0 − 0.71 0 0.04 − 5.62 

AC 4243 35.88 ×10
3
 − 14.14 − 1.67 + 1.00 − 1.67 0.12 − 6.23 

BD 4243 35.88 ×10
3
 0 0 + 1.00 0 0.12 + 7.91 

      Σ = − 2.85 Σ = + 0.36  

FBD = − ∑∑ u
AE
uLu

AE
PL

 = + 2.85/0.36 = + 7.91 kN (Tie) 

+ 

10 kN 
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The final member forces = [P-forces + (u-forces × 7.91)] and are given in the last 

column of the table 

 

VA = + 10.0 − (0.71 × 7.91) = + 4.38 kN 

HA = + 10.0 + zero = + 10.0 kN 

VB = zero + (0.71 × 7.91) = + 5.62 kN 

HB = − 10.0 + zero  = − 10.0 kN 

 

 

 

 

 

 

 

Final member forces and 

support reactions 

 

 

                   Figure 3.28 

 

3.6.2 Example 3.7:  Singly-Redundant Pin-Jointed Frame 2 
Using the data given, determine the member forces and support reactions for the 

pin-jointed frame shown  in Figure 3.29. 

The cross−sectional area of all members is equal to 140 mm2.  Assume   E = 205 kN/mm2 

 

 

 

 

 

 

 

 

 

 

                        

 

                       Figure 3.29 

 

 
All member lengths L = 3.0 m 

AE = (140 × 205) = 28.7 × 103 kN 
sin 60° = 0.866  cos60° = 0.5 

Consider the applied load as two components 30.0sin60° = 25.98 kN 

               30.0cos60° = 15.0 kN 

The degree of indeterminacy  ID = (m + r) − 2n = (8 + 7) − (2 × 7) = 1 
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Consider the vertical reaction at support F to be redundant. The equivalent system is the 

superposition of the statically determinate frame and the (unit load frame × VF) as 

shown in Figures 3.30 and 3.31. 

 

 

 

 

 

 

 

 

 

 

 

                        

 

Figure 3.30 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.31 

 

Using joint resolution the P-forces and the u-forces can be determined as indicated in 

Figures 3.32 and 3.33. 

 

 

 

 

 

 

                        P - forces 

 

 

 

 

 

 

Figure 3.32 
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                        u - forces 

 

 

 

 

 

Figure 3.33 

 

Member 
Length 

 (mm) 

AE 
 (kN) 

P-force  

(kN) 

PL/AE 

(mm) 
u (PL/AE ) × u 

(mm) 

(uL/AE ) × u 

(mm) 

Member 

forces 

AB 3000 28.7 ×103 0 0 0 0 0 0 

BC 3000 28.7 ×103 0 0 0 0 0 0 

CD 3000 28.7 ×103 0 0 + 0.58 0 0.035 0 

DE 3000 28.7 ×103 0 0 + 0.58 0 0.035 0 

DF 3000 28.7 ×103 0 0 − 0.58 0 0.035 0 

CF 3000 28.7 ×103 0 0 − 0.58 0 0.035 0 

CG 3000 28.7 ×103 0 0 + 0.58 0 0.035 0 

BG 3000 28.7 ×103 − 30.00 − 3.14 0 0 0 − 30.00 

      Σ = zero Σ = + 0.18  

i.e. ∑ u
AE
PL

 + ⎟
⎠
⎞

⎜
⎝
⎛∑ u

AE
uL

 × VF = 0 

VF = − ∑∑ u
AE
uLu

AE
PL

 = 0/0.18 = zero 

The final member forces = [P-forces + (u-forces × 0)] and are given in the last column 

of the table. 

 

VG = + 25.98 kN 

HG = − 15.0  kN 

 

All other reactions are equal to zero. 

 

 

 

 

Final member forces 

and support reactions 

 

 

 

 

 

                       Figure 3.34 
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3.6.3 Problems: Unit Load Method for Singly-Redundant Pin-Jointed Frames  
Using the data given in the singly-redundant, pin-jointed frames shown in Problem 3.21 to 

Problem 3.24, determine the support reactions and the member forces due to the applied 

loads. Assume E = 205 kN/mm2 and α = 12 × 10−6/°C where required. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problem 3.21 

Problem 3.24 

The cross-sectional area of

members AH, GH, EF and

FG is equal to 200 mm2. 

The cross-sectional area of

all other members is equal to

500 mm2. 

The support at G settles by

12 mm. 

The cross-sectional area of member

BD is equal to 100 mm2. 

The cross-sectional area of all other

members is equal to 300 mm2. 

Member AD is too long by 1.5 mm

and all members are subject to an

increase in temperature of 10°C. 

The cross-sectional 

area of all members 

is equal to 180 mm2.  

The cross-sectional area of all 

members  is equal to 150 mm2.  

 

Member BD is 2.0 mm too short 
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3.6.4 Solutions: Unit Load Method for Singly-Redundant Pin-Jointed Frames 
       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The cross−sectional area of members AH, GH, EF and FG is equal to 200 mm2  

The cross-sectional area of all other members is equal to 500 mm2. 

The support at G settles by 12 mm.  

E = 205 kN/mm2  

LAB, BG, DG, DE = 2 23.0 3.0+ = 4.243 m 

sinθ = (3.0/4.243) = 0.707  cosθ  = (3.0/4.243) = 0.707 

AE200 = (200 × 205) = 41.0 × 103 kN 
AE500 = (500 × 205) = 102.5 × 103 kN 

 

Consider the vertical reaction at support G to be redundant. 

The equivalent system is the superposition of the statically determinate frame 

and the (unit load frame × VG) as shown: 

 

 

 

 

 

P - forces 

 

  

 

 

 

 

 

 
u - forces     × VG 
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Determine the Support Reactions  for the statically determinate frame. 

 

Consider the rotational equilibrium of the frame: 

+ve     ΣMA = 0 + (50.0 × 3.0) + (100 × 6.0) + (50.0 × 9.0) − (15.0 × 3.0) 

      − (VE′ × 12.0 ) = 0       ∴ VE′ = + 96.25 kN  

  

 Consider the horizontal equilibrium of the frame: 

 +ve        ΣFx = 0 + HA′ − 15.0  = 0       ∴ HA′ = + 15.0 kN  

  

 Consider the vertical equilibrium of the frame: 

 +ve ΣFz = 0  + VA′ − 50.0 − 100.0 − 50.0 + VE′ = 0 ∴  VA′ = 200.0 − 96.25 

                   ∴ VA′ = + 103.75 kN 

 

 Assume all unknown member forces to be tension and use joint resolution to 

determine the P-forces in the frame. 

 

 Consider joint A:  

+ve   ΣFz = 0  + 103.75 + FABsinθ = 0   Equation (a) 

+ve        ΣFx = 0 + 15.0 + FAH + FABcosθ = 0  Equation (b)  

 

From Equation (a):       FAB = − 146.70 kN  (Strut) 

From Equation (b):       FAH = + 88.75 kN (Tie) 

 

  

 Consider joint H:  

+ve   ΣFz = 0  + FBH = 0       Equation (a) 

+ve        ΣFx = 0 − 88.75 + FGH = 0     Equation (b) 

 

From Equation (a):       FBH = zero 

From Equation (b):       FGH = + 88.75 kN (Tie) 

  

 

 Consider joint B:  

 +ve   ΣFz = 0  − 50.0 + 146.7cosθ − FBGcosθ  = 0 

                Equation (a) 

+ve        ΣFx = 0 + 146.7sinθ  + FBG sinθ  + FBC = 0 

                Equation (b) 

 

From Equation (a):       FBG = + 76.0 kN (Tie) 

From Equation (b):        FBC = − 157.45 kN (Strut) 

  

Solution 
Topic:  Unit Load Method for Singly-Redundant Pin-Jointed Frames 
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 Consider joint C:  

  

  +ve ΣFz = 0  − 100.0 − FCG = 0  Equation (a) 

  +ve        ΣFx = 0 + 157.45 + FCD = 0  Equation (b)  

 

  From Equation (a):      FCG = − 100.0 kN (Strut) 

  From Equation (b):       FCD = − 157.45 kN (Strut) 

 

 Consider joint G:  

  

  +ve ΣFz = 0    − 100.0 + 76.0 sinθ  + FDGsinθ = 0 

               Equation (a) 

  +ve        ΣFx = 0 − 88.75 − 76.0cosθ  + FDGcosθ  + FFG = 0 

                Equation (b) 

 

  From Equation (a):      FDG = + 65.42 kN (Tie) 

  From Equation (b):      FFG = + 96.25 kN (Tie) 

 

 Consider joint F:  

 

  +ve ΣFz = 0    + FDF = 0     Equation (a) 

  +ve        ΣFx = 0    − 96.23 + FEF  = 0   Equation (b) 

 

  From Equation (a):      FDF = zero 

  From Equation (b):      FEF = + 96.25 kN (Tie) 

 

 Consider joint E:  

 

  +ve        ΣFx = 0   − 96.25 − FDEcosθ = 0 

               FDE = − 136.12 kN  (Strut) 

 

 

 

 

 

                      P - forces 
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Apply a Unit Load in the vertical direction at support G and determine the values of 

the u-forces using joint resolution as before. 

 

 

 
                       u - forces 

 

 

 

 

 

(δ VG due to P-forces) + (δ VG due to unit forces) × VG = − 12.0 mm 

i.e.∑ u
AE
PL

 + ⎟
⎠
⎞

⎜
⎝
⎛∑ u

AE
uL

 × VG = − 12.0 

 ∴ VG = ∑∑ ⎟
⎠
⎞

⎜
⎝
⎛ −− u

AE
uLu

AE
PL.     012  

 

Complete the Unit Load table to determine the value of VG 

 

Member 
Length 

 (mm) 

AE 
 (kN) 

P-force  

(kN) 

PL/AE 

(mm) 
u (PL/AE ) × u 

(mm) 

(uL/AE ) × u 

(mm) 

Member 

forces 

AB 4243 102.5 ×10
3
 −146.70 −6.07 +0.71 − 4.293 + 0.021 − 70.40 

AH 3000 41.0 ×10
3
 +88.75 +6.49 −0.50 − 3.247 + 0.018 + 34.79 

BC 3000 102.5 ×10
3
 −157.45 −4.61 +1.00 − 4.608 + 0.029 − 49.53 

BG 4243 102.5 ×10
3
 +76.00 +3.15 −0.71 − 2.224 + 0.021 − 0.30 

BH 3000 102.5 ×10
3
 0 0 0 0 0 zero 

CD 3000 102.5 ×10
3
 −157.45 −4.61 +1.00 − 4.608 + 0.029 − 49.53 

CG 3000 102.5 ×10
3
 −100.00 −2.93 0 0 0 − 100.00 

DE 4243 102.5 ×10
3
 −136.12 −5.63 +0.71 − 3.984 + 0.021 − 59.82 

DG 4243 102.5 ×10
3
 +65.42 + 2.71 −0.71 − 1.915 + 0.021 − 10.88 

DF 3000 102.5 ×10
3
 0 0 0 0 0 zero 

EF 3000 41.0 ×10
3
 +96.25 +7.04 −0.50 − 3.521 + 0.018 + 42.29 

FG 3000 41.0 ×10
3
 +96.25 +7.04 −0.50 − 3.521 + 0.018 + 42.29 

GH 3000 41.0 ×10
3
 +88.75 +6.49 −0.50 − 3.247 + 0.018 + 34.79 

      Σ = − 35.169 Σ = + 0.215  

 VG = ∑∑ ⎟
⎠
⎞

⎜
⎝
⎛ −− u

AE
uLu

AE
PL.     012  = [− 12.0 − (− 35.169)]/0.215 = + 107.76 kN 

 The final member forces = [P-forces + (u-forces × 107.76)] and are given in the last 

column of the table 

 VA = 103.75 − (0.5 × 107.76) = + 49.87 kN   HA = + 15.0 kN 

 VE = 96.25 − (0.5 × 107.76) = + 42.37 kN 

Solution 
Topic:  Unit Load Method for Singly-Redundant Pin-Jointed Frames 

Problem Number: 3.21            Page No. 4 
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  + 0.71 − 0.71 − 0.71 + 0.71 

zerozero zero

+ 1.0 + 1.0



 Pin-Jointed Frames  145 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The cross-sectional area of all members is equal to 180 mm2. 

E = 205 kN/mm2  

LAB, CD = 3.606 m  LAF, DE = 3.162 m   LBE, CF = 6.708 m 

sinα = (3.0/3.606) = 0.832  cosα = (2.0/3.606) = 0.555 

sinβ = (6.0/6.708) = 0.894  cosβ = (3.0/6.708) = 0.447 

sinθ = (3.0/3.162) = 0.949  cosθ = (1.0/3.162) = 0.316 

AE180 = (180 × 205) = 36.9 × 103 kN 
 

Consider member CF to be redundant. 

The equivalent system is the superposition of the statically determinate frame 

and the (unit load frame × FCF) as shown: 

 

 

 

 

 

  P - forces 

 

  

 

 

 

 

 

 
 u - forces     × FCF 

 

 

 

 

Solution 
Topic:  Unit Load Method for Singly-Redundant Pin-Jointed Frames 

Problem Number: 3.22            Page No. 1 

B                  C 

3.0 m      6.0 m        3.0 m 

1
.0

 m
  

  
2
.0

 m
 

40 kN 

A                                D

VA                       F                  E                     VD  

θ             θ HA 

α   β                                                β   α 

β                                                β 

θ             θ HA′ 

B                  C 

3.0 m      6.0 m        3.0 m 

1
.0

 m
  
  

2
.0

 m
 

40 kN 

A                               D 

VA′                       F                  E                    VD′ 

α   β                                                      α

β 

B                  C 

A                                D

VA′′                  F                   E                  VD′′  

θ             θ HA′′ 

α   β                                                β   α 

1.0 

1.0

β                                                β

z 

x 



146 Examples in  Structural Analysis 
 

 

 

      

 

 

 

 

 

Determine the Support Reactions  for the statically determinate frame. 

 

Consider the rotational equilibrium of the frame: 

+ve     ΣMA = 0 + (40.0 × 3.0)  − (VD′ × 12.0 ) = 0   ∴ VD′ = + 10.0 kN  

  

 Consider the horizontal equilibrium of the frame: 

 +ve        ΣFx = 0 + HA′ = 0           ∴ HA′ = zero  

     

 Consider the vertical equilibrium of the frame: 

 +ve ΣFz = 0  + VA′ − 40.0 + VD′ = 0       ∴ VA′ = 40.0 − 10.0 

                    ∴ VA′ = + 30.0 kN 

 

 Assume all unknown member forces to be tension and use joint resolution to 

determine the P-forces in the frame. 

 

 Consider joint A:  

+ve   ΣFz = 0   + 30.0 + FAB cosα  − FAFcosθ = 0  Equation (a) 

+ve        ΣFx = 0 + FABsinα  +  FAF sinθ = 0    Equation (b)  

 

From Equation (a):       FAB = − 36.06 kN (Strut) 

From Equation (b):       FAF = + 31.6 kN (Tie)  

 

  

 Consider joint F:  

+ve   ΣFz = 0    + 31.6cosθ  − 40.0 + FBF = 0 Equation (a) 

+ve        ΣFx = 0 − 31.6sinθ + FEF = 0    Equation (b)  

 

From Equation (a):       FBF = + 30.0 kN (Tie) 

From Equation (b):        FEF = + 30.0 kN (Tie) 

  

 

 Consider joint B:  

 +ve   ΣFz = 0  − 30.0 + 36.06 cosα − FBEcosβ = 0 

                Equation (a) 

+ve        ΣFx = 0  + 36.06sinα + FBE sinβ + FBC = 0  

                Equation (b) 

 

From Equation (a):       FBE = − 22.34 kN (Strut) 

From Equation (b):        FBC = − 10.0 kN (Strut) 

  

Solution 
Topic:  Unit Load Method for Singly-Redundant Pin-Jointed Frames 
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 Consider joint E:  

  

+ve        ΣFx = 0 − 30.0 + 22.34sinβ  + FDEsinθ = 0 

                Equation (a) 

+ve   ΣFz = 0     − 22.34cosβ  + FDEcosθ  + FCE = 0 

                Equation (b)  

 

From Equation (a):       FDE = + 10.57 kN (Tie) 

From Equation (b):        FCE = + 6.65 kN (Tie) 

 

 Consider joint D:  

  

+ve        ΣFx = 0    − 10.57sinθ − FCDsinα = 0 

             FCD = − 12.06 kN (Strut)

  

 

 

  

 

 

 

 

 

                      P - forces 

 

 

 

 

Apply a Unit Load at joints F and C in the direction of member FC and determine 

the values of the u-forces using joint resolution as before. 

 

 

 
                       u - forces 
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(δFC due to P−forces) + (δ FC due to unit forces) × FCF = 0 

 

i.e. ∑ u
AE
PL

 + ⎟
⎠
⎞

⎜
⎝
⎛∑ u

AE
uL

 × FCF = 0 

  

 ∴ FCF = − ∑∑ u
AE
uLu

AE
PL

 

 

Complete the Unit Load table to determine the value of FCF 

 

Member 
Length 

 (mm) 

AE 
 (kN) 

P-force  

(kN) 

PL/AE 

(mm) 
u (PL/AE ) × u 

(mm) 

(uL/AE ) × u 

(mm) 

Member 

forces 

AB 3606 36.9 ×10
3
 −36.06 − 3.52 0 0 0 − 36.06 

AF 3162 36.9 ×10
3
 + 31.60 + 2.71 0 0 0 + 31.60 

BC 6000 36.9 ×10
3
 −10.00 − 1.63 − 0.89 + 1.454 + 0.130 − 21.31 

BE 6708 36.9 ×10
3
 −22.34 − 4.06 1.00 − 4.061 + 0.182 − 9.69 

BF 3000 36.9 ×10
3
 + 30.00 + 2.44 − 0.45 − 1.090  + 0.016 + 24.35 

CD 3606 36.9 ×10
3
 −12.06 − 1.18 0 0 0 − 12.06 

CE 3000 36.9 ×10
3
 + 6.65  + 0.54 − 0.45 − 0.242 + 0.016 + 1.00 

CF 6708 36.9 ×10
3
 0 0 1.00 0 + 0.182 + 12.65 

DE 3162 36.9 ×10
3
 + 10.57 + 0.91 0 0 0 + 10.57 

EF 6000 36.9 ×10
3
 + 30.00 + 4.88 − 0.89 − 4.361 + 0.130 + 18.69 

      Σ = − 8.30 Σ = + 0.656  

 

FCF = − ∑∑ u
AE
uLu

AE
PL

 = − (− 8.30)/0.656 = + 12.65 kN (Tie) 

  

The final member forces = [P-forces + (u-forces × 12.65)] and are given in the last 

column of the table 

  

 VA = + 30.0 kN   HA = zero VD = + 10.0 kN 

 

 

 

 

 

 

 

 

 

Solution 
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The cross-sectional area of member BD is equal to 100 mm2. 

The cross-sectional area of all other members is equal to 300 mm2. 

Member AD is too long by 1.5 mm and all members are subject to an increase in 

temperature of 10°C. 

E = 205 kN/mm2   α = 12 × 10−6/°C 

LAB,BC = 3.162 m  LAD,CD = 3.041 m   LBD = 0.5 m 

The δL value for all members due to temperature change: 

 ΔT,AB,BC = − αLΔT = − (12 × 10− 6 × 3162 × 10.0) = + 0.38 mm 

 ΔT,AD,CD = − αLΔT = − (12 × 10− 6 × 3041 × 10.0) = + 0.36 mm 

 ΔT,BD = − αLΔT = − (12 × 10− 6 × 500 × 10.0) = + 0.06 mm 

 

sinα = (1.0/3.162) = 0.316            cosα  = (3.0/3.162) = 0.949 

sinθ = (0.5/3.041) = 0.164               cosθ = (3.0/3.041) = 0.987 

AE100 = (100 × 205) = 20.5 × 103 kN   AE300 = (300 × 205) = 61.5 × 103 kN 
 

Consider member BD to be redundant. 

The equivalent system is the superposition of the statically determinate frame 

and the (unit load frame × FBD) as shown: 

 

 

 

 

 

P - forces 
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 u - forces       × FBD 

 

 

 

 

 

 

Determine the Support Reactions  for the statically determinate frame. 

 

Consider the rotational equilibrium of the frame: 

+ve     ΣMA = 0 + (30.0 × 3.0)  − (VC′ × 6.0 ) = 0    ∴ VC′ = + 15.0 kN  

  

 Consider the horizontal equilibrium of the frame: 

 +ve        ΣFx = 0 + HA′ + HC′ = 0    HC′ = − HA′ 
  

 Consider the vertical equilibrium of the frame: 

 +ve ΣFz = 0  + VA′ − 30.0 + VC′ = 0  VA′ = 30.0 − 15.0 

                    ∴ VA′ = + 15.0 kN 

 

 Assume all unknown member forces to be tension and use joint resolution to 

determine the P-forces in the frame. 

 

 Consider joint B:  

+ve   ΣFz = 0   − 30.0 − FBAsinα  − FBCsinα = 0   Equation (a) 

+ve        ΣFx = 0  − FBAcosα  +  FBCcosα = 0   Equation (b) 

 

From Equation (a):       FBA = − 47.47 kN (Strut) 

From Equation (b):       FBC = − 47.47 kN (Strut) 

  

 Consider joint A:  

+ve   ΣFz = 0   + 15.0 − 47.47sinα  + FADsinθ = 0  Equation (a) 

+ve        ΣFx = 0   HA − 47.47cosα  + FADcosθ = 0 Equation (b) 

 

From Equations (a):       FAD = zero 

From Equation (b):        HA = + 45.0 kN  

             Hc = − 45.0 kN 

B 

FBC FBA 

α              α 

30.0 kN 

Solution 
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 Consider joint C:  

 

+ve ΣFz = 0 + 15.0 − 47.47sinα  + FCDsinθ = 0  Equation (a) 

               FCD = zero 

 

 

 

 

 

 

 

                      P - forces 

 

 

 

 

 

 

Apply a Unit Load at joints B and D in the direction of member BD and determine 

the values of the u-forces using joint resolution as before. 

 

 

 

 
                       u - forces 

 

 

 

 

 

 

 

(δBD due to P-forces) + (δBD due to unit forces) × FBD = 0 

 

i.e. L T

PL u
AE

Δ Δ⎛ ⎞+ +⎜ ⎟
⎝ ⎠

∑  + ⎟
⎠
⎞

⎜
⎝
⎛∑ u

AE
uL

 × FBD = 0 

  

 ∴ FBD = − L T

PL uLu u
AE AE

Δ Δ⎛ ⎞+ +⎜ ⎟
⎝ ⎠

∑ ∑  

Solution 
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The term L T  
PL
AE

Δ Δ⎛ ⎞+ +⎜ ⎟
⎝ ⎠

∑ is evaluated separately here for convenience, normally 

this would be incorporated in one table. 

 

Member 
Length 

 (mm) 

AE 
 (kN) 

P-force  

(kN) 

(PL/AE) 

(mm) 
ΔL Temp. 

change ΔT 
(PL/AE +ΔL + ΔT )  

 (mm) 

AB 3162 61.5 ×10
3
 − 47.47 − 2.44 0 + 10 + 0.38 − 2.06 

BC 3162 61.5 ×10
3
 − 47.47 − 2.44 0 + 10 + 0.38 − 2.06 

BD 500 20.5 ×10
3
 0 0 0 + 10 + 0.06 + 0.06 

CD 3041 61.5 ×10
3
 0 0 0 + 10 + 0.36 + 0.36 

DA 3041 61.5 ×10
3
 0 0 + 1.5 + 10 + 0.36 + 1.86 

 

 

Complete the Unit Load table to determine the value of F BD 

 

Member 
Length 

(mm) 

AE 
(kN) 

(PL/AE 
+ΔL+ ΔT) 

(mm) 
u (PL/AE +ΔL + ΔT) × u 

(mm) 
(uL/AE ) × u 

(mm) 

Member 

forces 

AB 3162 61.5 ×10
3
 − 2.06 −1.58 + 3.261 + 0.129 − 29.80 

BC 3162 61.5 ×10
3
 − 2.06 −1.58 + 3.261 + 0.129 − 29.80 

BD 500 20.5 ×10
3
 + 0.06 + 1.00 + 0.060 + 0.024 − 11.17 

CD 3041 61.5 ×10
3
 + 0.36 + 3.04 + 1.110 + 0.457 − 33.97 

DA 3041 61.5 ×10
3
 + 1.86 + 3.04 + 5.671 + 0.457 − 33.97 

     Σ = + 13.363 Σ = + 1.196  

  

FBD = − L T

PL uLu u
AE AE

Δ Δ⎛ ⎞+ +⎜ ⎟
⎝ ⎠

∑ ∑  = − 13.363/1.196 = − 11.17 kN (Strut) 

  

The final member forces = [P-forces + (u-forces × (−)11.17)] and are given in the 

last column of the table 

  

 VA = + 15.0 + zero = + 15.0 kN 

 HA = + 45.0 − (1.5 × (−)11.17) = + 61.76 kN  

  

 VC = + 15.0 + zero = + 15.0 kN 

 HC = − 45.0 + (1.5 × (−)11.17) = − 61.76 kN  
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The cross-sectional area of all members is 

equal to 150 mm2. 

 
Member BD is 2.0 mm too short. 

E = 205 kN/mm2  

 

AE150 = (150 × 205) = 30.75 × 103 kN 
 

 

sin45° = 0.707 

cos45° = 0.707 

 

 

 

Consider member AB to be redundant. 

The equivalent system is the superposition of the statically determinate frame 

and the (unit load frame × FAB) as shown: 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 
 

 
 
    P − forces            (u − forces) × FAB 
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 Assume all unknown member forces to be tension and use joint resolution to 

determine the P-forces in the frame. 

 

 Consider joint B:  

+ve        ΣFx = 0 + 25.0 + FBD cosθ = 0     Equation (a) 

+ve   ΣFz = 0  + FBC − FBD sinθ = 0      Equation (b)  

 

From Equation (a):       FBD = − 35.36 kN (Strut) 

From Equation (b):       FBC = − 25.0 kN (Strut) 

  

 Consider joint C:  

 

+ve   ΣFz = 0     + 25.0 +  VC′ = 0     Equation (a) 

+ve        ΣFx = 0 + HC′ = 0        Equation (b) 

 

From Equation (a):       VC′ = − 25.0 kN 

From Equation (b):        HC′ = zero 

   

 Consider joint D:  

 

+ve   ΣFz = 0     − 35.36sinθ  + VD′  = 0   Equation (a) 

+ve        ΣFx = 0 + 35.36cosθ + HD′ = 0   Equation (b) 

 

From Equation (a):         VD′ = + 25.0 kN 

From Equation (b):       HD′ = − 25.0 kN 

 

 

 

 

 

 

         P - forces         Lack-of-fit 
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Apply a Unit Load at joints A and B in the direction of member AB and determine 

the values of the u-forces using joint resolution as before. 

 

 

 
                        

 

 

 

                     u - forces 

 

 

 

 

 

 

 

 

 

(δAB due to P-forces) + (δAB due to unit forces) × FAB = 0 

 

i.e. L

PL u
AE

Δ⎛ ⎞+⎜ ⎟
⎝ ⎠

∑  + ⎟
⎠
⎞

⎜
⎝
⎛∑ u

AE
uL

 × FAB = 0 

 

 ∴ FAB = − L  
PL uLu u
AE AE

Δ⎛ ⎞+⎜ ⎟
⎝ ⎠

∑ ∑  

 

The term L  
PL
AE

Δ⎛ ⎞+⎜ ⎟
⎝ ⎠

∑ is evaluated separately here for convenience, normally this 

would be incorporated in one table. 

 

Member 
Length 

 (mm) 

AE 
 (kN) 

P-force 

(kN) 

(PL/AE) 

(mm) 
ΔL (PL/AE +ΔL) 

 (mm) 

AB 2000 30.75 ×10
3
 0 0 0 0 

BC 2000 30.75 ×10
3
 − 25.00 − 1.63 0 − 1.63 

BD 2000 30.75 ×10
3
 − 35.36 − 2.30 − 2.0 − 4.30 
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Complete the Unit Load table to determine the value of FAB 

 

Member 
Length 

(mm) 

AE 
(kN) 

(PL/AE+ΔL) 

(mm) 
u (PL/AE +ΔL ) × u 

(mm) 

(uL/AE ) × u 

(mm) 

Member 

forces 

AB 2000 30.75 ×10
3
 0 + 1.00 0 + 0.065 + 25.38 

BC 2000 30.75 ×10
3
 − 1.63 + 1.42 − 2.315 + 0.131 + 10.87 

BD 2000 30.75 ×10
3
 − 4.30 + 1.00 − 4.300 + 0.065 − 9.99 

     Σ = − 6.615 Σ = + 0.261  

 

  

FAB = − L  
PL uLu u
AE AE

Δ⎛ ⎞+⎜ ⎟
⎝ ⎠

∑ ∑  = + 6.615/0.261 = 25.34 kN (Tie) 

  

The final member forces = [P-forces + (u-forces × 25.37)] and are given in the last 

column of the table 

  

  

 VA = zero − (0.71 × 25.34) = − 17.99 kN 

 HA = zero − (0.71 × 25.34) = − 17.99 kN  

   

 VC = − 25.0 + (1.42 × 25.34) = + 10.98 kN 

 HC = zero 

 

 VD = + 25.0 − (0.71 × 25.34) = + 7.01 kN 

 HD = − 25.0 + (0.71 × 25.34) = − 7.01 kN 
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4. Beams   

4.1 Statically Determinate Beams 
Two parameters which are fundamentally important to the design of beams are shear force 
and bending moment. These quantities are the result of internal forces acting on the 
material of a beam in response to an externally applied load system.  

4.1.1 Example 4.1:  Beam with Point Loads  
Consider a simply-supported beam as shown in Figure 4.1 carrying a series of secondary 
beams each imposing a point load of 4 kN. 
 
 
 

 
 
 
 
 

Figure 4.1 

 
This structure can be represented as a line diagram as shown in Figure 4.2: 
 
 
 
 
 
 
 
 

Figure 4.2 

 

Since the externally applied force system is in equilibrium, the three equations of static 
equilibrium must be satisfied, i.e. 
 

+ve ΣFz = 0 The sum of the vertical forces must equal zero. 
 

+ve ΣM = 0 The sum of the moments of all forces about any point on the plane of 
the forces must equal zero. 

 
+ve ΣFx = 0 The sum of the horizontal forces must equal zero. 

The assumed positive directions are as indicated. In this particular problem there are no 
externally applied horizontal forces and consequently the third equation is not required.  
(Note: It is still necessary to provide horizontal restraint to a structure since it can be 
subject to a variety of load cases, some of which may have a horizontal component.) 

4 kN      4 kN       4 kN      4 kN      4 kN

VA                                 VG 
A       B      C        D             E              F                 G 

6 @ 600 mm = 3600 mm 

6 @ 600 mm = 3600 mm 
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Consider the vertical equilibrium of the beam: 
 
 
 + VA − (5 × 4.0) + VG = 0        ∴ VA + VG = 20 kN  Equation (1) 
Consider the rotational equilibrium of the beam: 
 
 
Note: The sum of the moments is taken about one end of the beam (end A) for 
convenience. Since one of the forces (VA) passes through this point it does not produce a 
moment about A and hence does not appear in the equation. It should be recognised that 
the sum of the moments could have been considered about any known point in the same 
plane. 
 + (4.0 × 0.6) + (4.0 × 1.2) + (4.0 × 1.8) + (4.0 × 2.4) + (4.0 × 3.0) − (VG × 3.6) = 0 
                ∴ VG = 10 kN    Equation (2) 
Substituting into Equation (1) gives          VA = 10 kN 
This calculation was carried out considering only the externally applied forces, i.e. 
 
 
 
 
 
 
 

Figure 4.3 

 
The structure itself was ignored, however the applied loads are transferred to the end 
supports through the material fibres of the beam. Consider the beam to be cut at        
section X−X producing two sections each of which is in equilibrium as shown in        
Figure 4.4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4 
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Clearly if the two sections are in equilibrium there must be internal forces acting on the cut  
surfaces to maintain this; these forces are known as the shear force and the bending 
moment, and are illustrated in Figure 4.5 
 
 
 
 
 
 

 
 
 
 

Figure 4.5 

 
The force V and moment M are equal and opposite on each surface. The magnitude and 
direction of V and M can be determined by considering two equations of static equilibrium 
for either of the cut sections; both will give the same answer. 
 
Consider the left-hand section with the ‘assumed’ directions of the internal forces V and M 
as shown in Figure 4.6. 
 
 
 
            + 10 − 4.0 − 4.0 − V = 0  ∴ V = 2 kN 
 
 
 
            + (4.0 × 0.6) + (4.0 × 1.2) + (V × 1.5) − M = 0 
                     ∴ M = 10.2 kNm 
   Figure 4.6 

4.1.2 Shear Force Diagrams  
In a statically determinate beam, the numerical value of the shear force can be obtained by 
evaluating the algebraic sum of the vertical forces to one side of the section being 
considered. The convention adopted in this text to indicate positive and negative shear 
forces is shown in Figure 4.7. 
 
 
 
 
 
 
 
 

Figure 4.7 
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The calculation carried out to determine the shear force can be repeated at various 
locations along a beam and the values obtained plotted as a graph; this graph is known as 
the shear force diagram. The shear force diagram indicates the variation of the shear force 
along a structural member. 
 
Consider any section of the beam between A and B: 
 
   
 
              0 < x < 600 mm 
 
 
 

Note: The value immediately under the point load at the cut section is not being 
considered. 

 
 The shear force at any position x = Σ vertical forces to one side 
               = + 10.0 kN 
 
This value is a constant for all values of x between zero and 600 mm, the graph will 
therefore be a horizontal line equal to 10.0 kN. This force produces a +ve shear effect, i.e. 
 
   +ve shear effect 
 
 
Consider any section of the beam between B and C: 
 
      
 
                  600 mm ≤ x < 1200 mm 
 
 
 The shear force at any position x = Σ vertical force to one side 
              = + 10.0 − 4.0 = 6.0 kN  
 
This value is a constant for all values of x between 600 mm and 1200 mm, the graph will 
therefore be a horizontal line equal to 6.0 kN. This force produces a +ve effect shear 
effect. 
 
Similarly for any section between C and D: 
 
 
 
                      
                            
                  1200 mm ≤ x < 1800 mm 

10 kN 
A       B       C  

x 

 4 kN           4 kN  

10 kN 
A             B   

x 

4 kN 

x 10 kN 
A       B        C              D  

4 kN               4 kN                  4 kN 
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 The shear force at any position x = Σ vertical forces to one side 
               = + 10.0 − 4.0 − 4.0 = 2.0 kN  
 
Consider any section of the beam between D and E: 
 
 
      
 
 
 
 
                   1800 mm ≤ x < 2400 mm 
 
 The shear force at any position x = Σ vertical forces to one side 
               = + 10.0 − 4.0 − 4.0 − 4.0 = − 2.0 kN  
 
 
 
In this case the shear force is negative: 
 
Similarly between E and F  2400 mm < x < 3000 mm 
 The shear force at any position  x = Σ vertical forces to one side 
                 = + 10.0 − 4.0 − 4.0 − 4.0 − 4.0 = − 6.0 kN  
and 
 
between F and G     3000 mm < x < 3600 mm 
 The shear force at any position  x = Σ vertical forces to one side 
                 = + 10.0 − 4.0 − 4.0 − 4.0 − 4.0 − 4.0 = − 10.0 kN  
 
In each of the cases above the value has not been considered at the point of application of 
the load. 
Consider the location of the applied load at B shown in Figure 4.8. 
 
 
 
 
 
 
 
 
 

Figure 4.8 

 
The 4.0 kN is not instantly transferred through the beam fibres at B but instead over the 
width of the actual secondary beam. The change in value of the shear force between          
x < 600 mm and  x > 600 mm occurs over this width, as shown in Figure 4.9. 
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Figure 4.9 

 

The width of the secondary beam is insignificant when compared with the overall span, 
and the shear force is assumed to change instantly at this point, producing a vertical line 
on the shear force diagram as shown in Figure 4.10. 
 
 
 
 

Figure 4.10 

 
The full shear force diagram can therefore be drawn as shown in Figure 4.11. 
 
 
 
 
 
 
 
 
 
 
 
 
   Shear Force Diagram 

Figure 4.11 

 

The same result can be obtained by considering sections from the right-hand side of the 
beam. 
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4.1.3 Bending Moment Diagrams 
In a statically determinate beam the numerical value of the bending moment (i.e. moments 
caused by forces which tend to bend the beam) can be obtained by evaluating the algebraic 
sum of the moments of the forces to one side of a section. In the same manner as with 
shear forces either the left-hand or the right-hand side of the beam can be considered. The 
convention adopted in this text to indicate positive and negative bending moments is 
shown in Figures 4.12(a) and (b). 
Bending inducing tension on the underside of a beam is considered positive. 
 
 
 
 
 

 

 

Figure 4.12 (a) 

 

Bending inducing tension on the top of a beam is considered negative. 
 
 
 

           
 
 
 

Figure 4.12 (b) 

 

Note: Clockwise/anti-clockwise moments do not define +ve or −ve bending moments. The 

sign of the bending moment is governed by the location of the tension surface at the point 

being considered. 

 
As with shear forces the calculation for bending moments can be carried out at various 
locations along a beam and the values plotted on a graph; this graph is known as the              
‘bending moment diagram’. The bending moment diagram indicates the variation in the 
bending moment along a structural member. 
Consider sections between A and B of the beam as before: 
 
   
   
 
              0 < x < 600 mm 
 
 
 
In this case when x = 600 mm the 4.0 kN load passes through the section being considered 
and does not produce a bending moment, and can therefore be ignored. 
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Bending moment = Σ algebraic sum of the moments of the forces to one side of a section. 
        = Σ (Force × lever arm) 
      Mx = 10.0 × x = 10.0 x kNm 
 
Unlike the shear force, this expression is not a constant and depends on the value of ‘x’ 
which varies between the limits given. This is a linear expression which should be 
reflected in the calculated values of the bending moment. 
 
 x = 0    Mx = 10.0 × 0 = zero 
 x = 200 mm  Mx = 10.0 × 0.2 = 2.0 kNm 
 x = 400 mm  Mx = 10.0 × 0.4 = 4.0 kNm 
 x = 600 mm  Mx = 10.0 × 0.6 = 6.0 kNm 
 
Clearly the bending moment increases linearly from zero at the simply-supported end to a 
value of 6.0 kNm at point B. 
 
Consider sections between B and C of the beam:  
 
      
 
                   600 mm ≤ x ≤ 1200 mm 
 
 
 
Bending moment = Σ algebraic sum of the moments of the forces to ‘one’ side of a section 
      Mx = + (10.0 × x) − (4.0 × [x − 0.6] ) 
 
 
 
 

 
 
 

 x = 800 mm  Mx = + (10.0 × 0.8) − (4.0 × 0.2) = 7.2 kNm 
 x = 1000 mm Mx = + (10.0 × 1.0) − (4.0 × 0.4) = 8.4 kNm 
 x = 1200 mm Mx = + (10.0 × 1.2) − (4.0 × 0.6) = 9.6 kNm 
 
As before the bending moment increases linearly, i.e. from 7.2 kNm at x = 800 mm to a 
value of  9.6 kNm at point C. 
 
Since the variation is linear it is only necessary to evaluate the magnitude and sign of the 
bending moment at locations where the slope of the line changes, i.e. each of the point 
load locations. 
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x
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Consider point D: 
 
 
 
 
 
 
 

 x = 1800 mm  Mx = (10.0 × 1.8) − (4.0 × 1.2) – (4.0 × 0.6) = 10.8 kNm 
 
Consider point E: 
 
 
 
 
 
 
 

 x = 2400 mm Mx = (10.0 × 2.4) − (4.0 × 1.8) − (4.0 × 1.2) – (4.0 × 0.6) = 9.6 kNm 
 
Similarly at point F: 
 x = 3000 mm Mx = (10.0 × 3.0) − (4.0 × 2.4) − (4.0 × 1.8) − (4.0 × 1.2) – (4.0 × 0.6) 
        = 6.0 kNm 
 
The full bending moment diagram can therefore be drawn as shown in Figure 4.13. 
 
 
 
 
 
 
 
 
 
 
 
 

 

Bending Moment Diagram 

 

Figure 4.13 

 

The same result can be obtained by considering sections from the right-hand side of the 
beam. The value of the bending moment at any location can also be determined by 
evaluating the area under the shear force diagram. 
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Consider point B: 
 
 
 
 
 
 
 
 
 
 
 Bending moment at B = shaded area on the shear force diagram 
 MB = (10.0 × 0.6) = 6.0 kNm  as before 
 
Consider a section at a distance of  x = 800 mm along the beam between B and C: 
 
 
 
 
 
 
 
 
 
 
 
 Bending moment at x = shaded area on the shear force diagram 
 Mx = (10.0 × 0.6) + (6.0 × 0.2) = 7.2 kNm as before 
Consider a section at a distance of  x = 2100 mm along the beam between D and E: 
 
 
 
 
 
 
 
 
 
 
 
 
 Bending moment at x = shaded area on the shear force diagram 
 Mx = (10.0 × 0.6) + (6.0 × 0.6) + (2.0 × 0.6) − (2.0 × 0.3) 
       = 10.2 kNm 
 
(Note: A maximum bending moment occurs at the same position as a zero shear force). 

9.6 kNm 9.6 kNm 
6.0 kNm 6.0 kNm 

10.8 kNm 

10 kN 
6 kN 

6 kN 

2 kN 

2 kN 

10 kN 

600 mm 
 B 

2100 mm 

+ ve area 

10 kN 
6 kN 

6 kN 

2 kN 

2 kN 

10 kN 

−ve area 

9.6 kNm 9.6 kNm 
6.0 kNm 6.0 kNm 

10.8 kNm 

Mx

9.6 kNm 9.6 kNm 
6.0 kNm 6.0 kNm 

10.8 kNm 

Mx 

800 mm 

10 kN 
6 kN 

6 kN 

2 kN 

2 kN 

10 kN 



 Beams 167

4.1.4 Example 4.2:  Beam with a Uniformly Distributed Load  (UDL) 
Consider a simply-supported beam carrying a uniformly distributed load of 5 kN/m as 
shown in Figure 4.14. 
 
 
 
 

 

Figure 4.14 

 

The shear force at any section a distance x from the support at A is given by: 
 Vx = algebraic sum of the vertical forces 
 
           The force inducing +ve shear = 9.0 kN 
           The force inducing −ve shear = (5.0 × x) = 5.0x kN 
 
           Vx = + 9.0 − 5.0x 
 
This is a linear equation in which Vx decreases as x increases. The points of interest are at 
the supports where the maximum shear forces occur, and at the locations where the 
maximum bending moment occurs, i.e. the point of zero shear. 
 
 Vx = 0    when   + 9.0 − 5.0x = 0  ∴ x = 1.8 m  
 
Any intermediate value can be found by substituting the appropriate value of ‘x’ in the 
equation for the shear force; e.g. 
 x = 600 mm  Vx = + 9.0 − (5.0 × 0.6) = + 6.0 kN 
 x = 2100 mm Vx = + 9.0 − (5.0 × 2.1) = − 1.5 kN 
The shear force can be drawn as shown in Figure 4.15. 
 
 
 
 
 
 

                  Shear Force Diagram 

Figure 4.15 

 

The bending moment can be determined as before, either using an equation or evaluating 
the area under the shear force diagram. 
Using an equation: 

 
 
 
 
 Bending moment at x:  Mx = + (9.0 × x) − [(5.0 × x) × (x/2)] = (9.0x − 2.5x2) 
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In this case the equation is not linear, and the bending moment diagram will therefore be 
curved. 
Consider several values: 
 x = 0    Mx = zero 
 x = 600 mm  Mx = + (9.0 × 0.6) − (2.5 × 0.62) = 4.5 kNm 
 x = 1800 mm Mx = + (9.0 × 1.8) − (2.5 × 1.82) = 8.1 kNm 
 x = 2100 mm Mx = + (9.0 × 2.1) − (2.5 × 2.12) = 7.88 kNm 
 

Using the shear force diagram: 

x = 600 mm  
 
 
 
 
 
 Mx = shaded area = + [0.5 × (9.0 + 6.0) × 0.6] = 4.5 kNm 
 
 x = 1800 mm  
 
 
 
 
 Mx = shaded area = + [0.5 × 9.0 × 1.8] = 8.1 kNm 
 x = 2100 mm  
 
 
 
 
 
 
 
 Mx = shaded area = + [8.1 − (0.5 × 0.3 × 1.5)] = 7.88 kNm 
 The bending moment diagram is shown in Figure 4.16. 
 
 
 
 
 
 

  Bending Moment Diagram 

 
Figure 4.16 

 
The UDL loading is a ‘standard’ load case which occurs in numerous beam designs and 
can be expressed in general terms using L for the span and w for the applied load/metre or 
Wtotal  (= wL) for the total applied load, as shown in Figure 4.17. 
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Figure 4.17 

 
Clearly both give the same magnitude of support reactions, shear forces and bending 
moments. 
In cantilever beams, all support restraints are provided at one location, i.e. an ‘encastré’ or 
‘fixed’ support as shown in Example 4.3.  

4.1.5 Example 4.3:  Cantilever Beam  
Consider the cantilever beam shown in Figure 4.18 which is required to support a 
uniformly distributed load in addition to a mid-span point load as indicated. 
 
 
 
 
                      
 
 
 
 

Figure 4.18 

 
 

Support Reactions 

Consider the rotational equilibrium of the beam: 
 

MA + (6.0 × 6.0)(3.0) + (15.0 × 3.0) = 0       ∴ MA = − 153.0 kNm  
 
Consider the vertical equilibrium of the beam: 
 
 + VA − (6.0 × 6.0) − 15.0 = 0           ∴ VA = + 51.0 kN 
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2
wL

VA MA 

Fixed 
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A                                                                               C 

3.0 m                  3.0 m 
B

15 kN          6 kN/m 
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Shear force at B: 
  VB = [51.0 − (6.0 × 3.0)] = 33.0 kN 
 and = (33.0 − 15.0) = 18.0 kN 

 
 

 
 
 
 
 
 

Shear Force Diagram 
 
Bending moment at B: 
 MB = − (6.0 × 3.02/2) = − 27.0 kNm 

 

 
 
 
 
 
 
 

Bending Moment Diagram 
 

 
 
 
 

4.1.6 Problems: Statically Determinate Beams – Shear Force and Bending Moment 
A series of simply-supported beams are indicated in Problems 4.1 to 4.10. Using the 

applied loading given in each case: 

 

i)   determine the support reactions, 

ii)   sketch the shear force diagram  and 

iii) sketch the bending moment diagram indicating the maximum value(s).  
 
 
 

 

 

 

 

 

 Problem 4.1 

3.0 m                           5.0 m 

A                     C 
B 

   12 kN                             8 kN/m 

33.0 kN 

A                                  B                                            C 

51.0 kN 

18.0 kN

27.0 kNm 

153.0 kNm 

A                                  B                                    C 

tension topside 
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Problem 4.2 

2.0 m                                6.0 m 

A                     C 
B 

6 kN/m           15 kN                             12 kN/m 

5 kN              10 kN                5 kN

Problem 4.3 

2.0 m                2.0 m   2.0 m              2.0 m 

A                     E 
B                    C                     D 

3 kN/m                 2 kN/m                                  4 kN/m  

Problem 4.6 

   10 kN/m                                                  8 kN            5 kN/m 

6.0 m                    1.0 m   1.0 m 
A               B       C           D 

6 kN/m              12 kN

Problem 4.5

4.0 m                  2.0 m 

A                  C 
B

2 kN/m 

Problem 4.4 

A                        E 

2.0 m            1.0 m      3.0 m                              3.0 m 
B           C                                 D 

   3 kN/m 

8 kN                                         12 kN 
6 kN/m
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A                             F 

6 kN/m                                 5 kN/m                        4 kN/m   

1.0 m                         4.0 m                              4.0 m                                   2.0 m 

B                                          C                                     D                 E 

Problem 4.8 

Problem 4.9

2.0 m                  1.5 m 

A                                                                                       C 
B

20 kN          4 kN/m 8 kN/m 

Problem 4.10

1.0 m      1.0 m                      2.0 m                               2.0 m 

A                                                                                          E 

8 kN/m          15 kN   

B                 C                                  D

10 kN 

Problem 4.7 

   6 kN/m                            20 kN                         4 kN/m 

A                        E 

1.0 m            3.0 m        1.0 m                          4.0 m 
B                                C        D
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4.1.7 Solutions: Statically Determinate Beams – Shear Force and Bending Moment 
 
 
 
 

 
 

 
 
 
 
 

 

 Support Reactions 

Consider the rotational equilibrium of the beam: 
 
 + (12.0 × 3.0) + (8.0 × 8.0)(4.0) − (VC × 8.0) = 0     ∴ VC = + 36.5 kN 
 
 Consider the vertical equilibrium of the beam: 
 
 + VA − 12.0 − (8.0 × 8.0) + VC = 0          ∴ VA = + 39.5 kN 

 
Shear Force Diagram 

 
 
 
 
 
 
Position of zero shear force  x = [3.0 + (3.5/ 8.0)] = 3.438 m 
(This corresponds with the position of the maximum bending moment in the beam.) 
 

Bending Moment Diagram 

Mx = + (39.5 × 3.438) − (8.0 × 3.4382/2.0) − (12.0 × 0.438) = + 83.3 kNm 
 
Alternatively, calculating the area under the shear force diagram: 
Mx = + [0.5(39.5 + 15.5)(3.0)] + (0.5 × 0.438 × 3.5) = + 83.3 kNm 
 
 
 
 
 
 
 
 
 

Solution 
Topic:  Statically Determinate Beams – Shear Force and Bending Moment 

Problem Number: 4.1            Page No. 1 

VA                                  VC 3.0 m                            5.0 m 

A                   C 
B 

      12 kN                                   8 kN/m 

+ve ΣMA = 0 

+ve ΣFz = 0 

  A                    C 
B 

x 

39.5 kN 
15.5 kN

3.5 kN

36.5 kN 

 A                    C 

tension underside 

A        B                  C 

83.3 kNm 
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 Support Reactions 

Consider the rotational equilibrium of the beam: 
 + (6.0 × 2.0)(1.0) + (15.0 × 2.0) + (12.0 × 6.0)(2.0 + 3.0) − (VC × 8.0) = 0 
                     ∴ VC = + 50.25 kN 
 
 Consider the vertical equilibrium of the beam: 
 + VA − (6.0 × 2.0) − 15.0 − (12.0 × 6.0) + VC = 0      
                     ∴ VA = + 48.75 kN 

 
Shear Force Diagram 

 
 
 
 
 
 
Position of zero shear force  x = [2.0 + (21.75/12.0)] = 3.813 m 
(This corresponds with the position of the maximum bending moment in the beam.) 
 

Bending Moment Diagram 

Mx  = + (48.75 × 3.813) − (6.0 × 2.0)(3.813 − 1.0) − (15.0 × 1.813) − (12.0 ×1.8132/2) 
   = + 105.2 kNm 
 
Alternatively, calculating the area under the shear force diagram: 
Mx = + [0.5(48.75 + 36.75)(2.0)] + (0.5 × 1.813 × 21.75) = + 105.2 kNm 
 
 
 
 
 
 
 
 
 

Solution 
Topic:  Statically Determinate Beams – Shear Force and Bending Moment 

Problem Number: 4.2            Page No. 1 

+ve ΣMA = 0 

+ve ΣFz = 0 

 A                    C 

tension underside 

A                        B                       C 

105.2 kNm

VA                                     VC 2.0 m                                6.0 m 

A                     C 
B 

  6 kN/m             15 kN                                      12 kN/m 

x 

B 
A                   C 

48.75 kN 
36.75kN 

21.75kN 

50.25 kN
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 Support Reactions 

Consider the rotational equilibrium of the beam: 
 
 + (3.0 × 2.0)(1.0) + (5.0 × 2.0) + (2.0 × 4.0)(4.0) + (10.0 × 4.0) + (5.0 × 6.0) 
  + (4.0 × 2.0)(7.0) − (VE × 8.0) = 0 
                     ∴ VE = + 21.75 kN 
  
 Consider the vertical equilibrium of the beam: 
 
 + VA − (3.0 × 2.0) − 5.0 − (2.0 × 4.0) − 10.0 − 5.0 − (4.0 × 2.0) + VE = 0 
                      ∴ VA = + 20.25 kN 

 Shear Force Diagram 

 
 
 
 
 
 
 
Position of zero shear force  x = 4.0 m 
(This corresponds with the position of the maximum bending moment in the beam.) 
 

Bending Moment Diagram 

Mx = + (20.25 × 4.0) − (3.0 × 2.0)(3.0) − (5.0 × 2.0) − (2.0 × 2.0)(1.0) = + 49.0 kNm 
 
Alternatively, calculating the area under the shear force diagram: 
Mx = + [0.5(20.25 + 14.25)(2.0)] + [0.5(9.25 + 5.25)(2.0)]  = + 49.0 kNm 
 
 
 
 
 
 
 

Solution 
Topic:  Statically Determinate Beams – Shear Force and Bending Moment 

Problem Number: 4.3            Page No. 1 

+ve ΣMA = 0 

+ve ΣFz = 0 

 A                    E 

tension underside 

VA                                     VE 

5 kN                     10 kN                   5 kN 

2.0 m                2.0 m     2.0 m                     2.0 m 

A                     E 
B                         C                         D 

3 kN/m                    2 kN/m                                            4 kN/m         

B 

13.75 kN

8.75kN

21.75 kN 

A                   E 

x 

20.25 kN 
14.25 kN 

5.25 kN
9.25 kN 

4.75 kN

C

D

49.0 kNm

A                        B                        C                          D                         E 
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 Support Reactions 

Consider the rotational equilibrium of the beam: 
 
 + (3.0 × 2.0)(1.0) + (8.0 × 2.0) + (6.0 × 6.0)(6.0) + (12.0 × 6.0) − (VE × 9.0) = 0 
                     ∴ VE = + 34.44 kN 
 
 Consider the vertical equilibrium of the beam: 
 
 + VA − (3.0 × 2.0) − 8.0 − (6.0 × 6.0) − 12.0 + VE = 0 
                     ∴ VA = + 27.56 kN 

Shear Force Diagram 

 
 
 
 
 
 
 
 
Position of zero shear force  x = [3.0 + (13.56/6.0)] = 5.26 m  (3.74 m from E) 
(This corresponds with the position of the maximum bending moment in the beam.) 
 

Bending Moment Diagram 

Mx = + (34.44 × 3.74) − (6.0 × 3.742/2) − (12.0 × 0.74)  = + 77.96 kNm 
 
Alternatively, calculating the area under the shear force diagram: 
Mx = + [0.5(34.44 + 16.44)(3.0)] + (0.5 × 0.74 × 4.44) = + 77.96 kNm 
 
 
 
 
 
 
 

Solution 
Topic:  Statically Determinate Beams – Shear Force and Bending Moment 

Problem Number: 4.4            Page No. 1 

+ve ΣFz = 0 

 A                    E 

tension underside 

A                     B          C                                   D                                E 

77.96 kNm

+ve ΣMA = 0 

 VA                                                                 VE 

A                           E 

2.0 m             1.0 m        3.0 m                                        3.0 m 

B             C                                          D 

   3 kN/m                                                                                                  6 kN/m  
8 kN                                                  12 kN  

 A                    E 

x 

27.56 kN 
21.56 kN 

13.56 kN

34.44 kN 

4.44 kN

16.44 kN

B         C 

D
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 Support Reactions 

Consider the rotational equilibrium of the beam: 
 
 + (2.0 × 4.0)(2.0) + (6.0 × 2.0)(5.0)  + (12.0 × 6.0) − (VB × 4.0) = 0 
                     ∴ VB = + 37.0 kN 
 
 Consider the vertical equilibrium of the beam: 
 
 + VA − (2.0 × 4.0) − (6.0 × 2.0) − 12.0 + VB = 0 
                     ∴ VA = − 5.0 kN 

Shear Force Diagram 

 
 
 
 
 
 
 
Position of zero shear force  x = 4.0 m 
(This corresponds with the position of the maximum bending moment in the beam.) 
 

Bending Moment Diagram 

Mx = − (5.0 × 4.0) − (2.0 × 4.02/2) = − 36.0 kNm 
 
Alternatively, calculating the area under the shear force diagram: 
Mx = − [0.5(5.0 + 13.0)(4.0)] = − 36.0 kNm 
 
 
 
 
 
 
 
 

Solution 
Topic:  Statically Determinate Beams – Shear Force and Bending Moment 

Problem Number: 4.5            Page No. 1 

+ve ΣMA = 0 

+ve ΣFz = 0 

A                                  B           C 

tension topside 

A                                                                       B                                 C 

36.0 kNm

VA                     VB 

6 kN/m                12 kN 

4.0 m            2.0 m 

A                  C 
B

2 kN/m 

24.0 kN

13.0 kN

A                    C 

x 

5.0 kN 

12.0 kN

B
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 Support Reactions 

Consider the rotational equilibrium of the beam: 
+ (10.0 × 6.0)(3.0) + (5.0 × 2.0)(7.0) + (8.0 × 7.0) − (VB × 6.0) = 0  
                     ∴ VB = + 51.0 kN 

 
 Consider the vertical equilibrium of the beam: 
 + VA − (10.0 × 6.0) − (5.0 × 2.0) − 8.0  + VB = 0 
                     ∴ VA = + 27.0 kN 

Shear Force Diagram 

 
 
 
 
 
 
Positions of zero shear force:   x = (27.0/ 10.0) = 2.7 m   and  x = 6.0 m 
(These correspond with the positions of the maximum bending moments in the beam.) 
 

Bending Moment Diagram 

Mx = + (27.0 × 2.7) − (10.0 × 2.72/2) = + 36.5 kNm 
MB = − (5.0 × 2.0)(1.0) − (8.0 × 1.0) = − 18.0 kNm 
 
Alternatively, calculating the area under the shear force diagram:  
Mx = − (0.5 × 2.7 × 27.0) = + 36.5 kNm 
MB = − [0.5(18.0 + 13.0)(1.0)] + (0.5 × 1.0 × 5.0) = + 18.0 kNm 
 
 
 
 
 
 
 
 
 

Solution 
Topic:  Statically Determinate Beams – Shear Force and Bending Moment 

Problem Number: 4.6            Page No. 1 

+ve ΣMA = 0 

+ve ΣFz = 0 

VA             VB 

    10 kN/m                                                                8 kN              5 kN/m 

6.0 m                      1.0 m     1.0 m 

A               B              C             D 

5.0 kN
  A                    D 

x 

27.0 kN 

33.0 kN

18.0 kN 13.0 kN

B        C 

 B           C           D 

18.0 kNm

36.5 kNm 

A 
point of contraflexure

 A              B      C    D 
tension underside 

tension topside 
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Load between A and B = (0.5 × 1.0 × 6.0) = 3.0 kN: centre of gravity is 0.67 m from A 
Load between B and C = (6.0 × 3.0) =18.0 kN: centre of gravity is 2.50 m from A 
Load between C and D = (0.5 x 1.0 x 6.0)  = 3.0 kN: centre of gravity is 4.33 m from A 
 

 Support Reactions 

Consider the rotational equilibrium of the beam: 
 + (3.0 × 0.67) + (18.0 × 2.5) + (3.0 × 4.33) + (20.0 × 5.0) + (4.0 × 4.0)(7.0) 
 − (VE × 9.0) = 0 
                     ∴ VE = + 30.22 kN 
 
 Consider the vertical equilibrium of the beam: 
 + VA − 3.0 − 18.0 − 3.0  − 20.0 − (4.0 × 4.0) + VE = 0    ∴ VA = + 29.78 kN 

 
Shear Force Diagram   (Note: the diagram is curved from A to B and from C to D) 
 
 
 
 
 
 
 
Position of zero shear force  x = 5.0 m 
(This corresponds with the position of the maximum bending moment in the beam.) 
 

Bending Moment Diagram: (consider the right-hand side) 
Mx = + (30.22 × 4.0) − (4.0 × 4.02/2) = + 88.9 kNm 
Alternatively, calculating the area under the shear force diagram:  
Mx = + 0.5(14.22 + 30.22)(4.0) = + 88.9 kNm 
 
 
 
 
 
 
 

Solution 
Topic:  Statically Determinate Beams – Shear Force and Bending Moment 

Problem Number: 4.7            Page No. 1 

+ve ΣMA = 0 

+ve ΣFz = 0 

 A                    E 

tension underside 

VA                                                                 VE 

   6 kN/m                                 20 kN                                 4 kN/m 

 A                           E 

1.0 m                 3.0 m        1.0 m                               4.0 m 

B                                       C           D 

  A                    E 
5.78 kN

x 

29.78 kN 

8.78 kN

14.22 kN
30.22 kN 

26.78 kN 

B          C       D 

88.9 kNm 

A        B                                   C          D         E 
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 Support Reactions 

Consider the rotational equilibrium of the beam: 
 
 − (6.0 × 1.0)(0.5) + (0.5 × 8.0 × 5.0)(4.0) + (0.5 × 2.0 × 4.0)(9.0) − (VD × 8.0) = 0 
                     ∴ VD = + 14.13 kN 
  

Consider the vertical equilibrium of the beam: 
 − (6.0 × 1.0) + VB − (0.5 × 8.0 × 5.0) − (0.5 × 2.0 × 4.0) + VD = 0 
                     ∴ VB = + 15.87 kN 

Shear Force Diagram 

 
 
 
 
 
 
 

(h/x) = (5.0/4.0)   ∴ h = 1.25x 
Force over length x = (0.5 × x × 1.25x) = 0.625x2 
This force must equal 9.78 for zero shear at x 

 
Position of zero shear force  x: 9.78 = 0.625x2 ∴ x = 3.956 m from B 
                ∴ h = (1.25 × 3.956) = 4.945 
Bending Moment Diagram 

Mx = − (6.0 × 1.0)( 4.456) + (15.87 × 3.956) − [(0.625 × 3.9562)(3.956/3.0)] 
       = + 23.15 kNm 
MB = − (6.0 × 1.02)/2 = − 3.0 kNm;  MD = − (0.5 × 2.0 ×4.0)(1.0) = + 4.0 kNm  
 

 
 
 
 
 
 
 

Solution 
Topic:  Statically Determinate Beams – Shear Force and Bending Moment 

Problem Number: 4.8            Page No. 1 

+ve ΣFz = 0 

 A                            F 

6 kN/m                                5 kN/m                           4 kN/m   

1.0 m                          4.0 m                               4.0 m                                    2.0 m 

B                                                   C                                                D                      E 

VB                                           VD 

B                       C 

5 kN/m 

x 

4.0 m 

h 

6.0 kN 
10.13 kN

9.87 kN 

4.0 kN

B                                                                                                              D             E 

x 

 A                              F 
C

+ve ΣMB = 0 

A       B                                                             C                                               D                     E            F     

point of 
contraflexure 

point of 
contraflexure 

C 

A          B                                                                                                                     D              E              F 

tension underside 

tension topside tension topside 

23.15 kNm

3.0 kN 4.0 kN 
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 Support Reactions 

Consider the rotational equilibrium of the beam: 
 
 MA + (8.0 × 2.0)(1.0) + (20.0 × 2.0) + (4.0 × 1.5)(2.75) = 0  ∴ MA = − 72.5 kNm 
 
  
 Consider the vertical equilibrium of the beam: 
 
 + VA − (8.0 × 2.0) − 20.0 − (4.0 × 1.5) = 0       ∴ VA = + 42.0 kN 

 
Shear Force Diagram 

 
 
 
 
 
 
Bending Moment Diagram 

MA = = − 72.5 kNm 

MB  = − (4.0 × 1.5)(0.75) = − 4.5 kNm 

 
Alternatively, calculating the area under the shear force diagram: 
MA = − [0.5(42.0 + 26.0)(2.0)] − (0.5 × 1.5 × 6.0) = − 72.5 kNm 
MB = − (0.5 × 1.5 × 6.0) = − 4.5 kNm 
 
 
 
 
 
 
 
 
 
 

Solution 
Topic:  Statically Determinate Beams – Shear Force and Bending Moment 

Problem Number: 4.9            Page No. 1 

+ve ΣMA = 0 

+ve ΣFz = 0 

26.0 kN

A                                             B                                      C 

42.0 kN 

6.0 kN

VA 2.0 m                           1.5 m 

A                                                                                                         C 
B

20 kN              4 kN/m8 kN/m 

MA

A                                                  B                                    C 

tension topside

A            B      C 

4.5 kNm

72.5 kNm 
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 Support Reactions 

Consider the rotational equilibrium of the beam: 
 
 − (10.0 × 5.0) − (8.0 × 4.0)(2.0) − (15.0 × 2.0) + ME = 0  ∴ ME = + 144.0 kN 
  
 Consider the vertical equilibrium of the beam: 
 
 − 10.0 − (8.0 × 4.0) − 15.0 + VE = 0        ∴ VE = + 57.0 kN 

 
Shear Force Diagram 

 
 
 
 
Bending Moment Diagram 

MA = MB = zero 

MC = − (10.0 × 1.0) = − 10.0 kNm 

MD = − (10.0 × 3.0) − (8.0 × 2.02/2) = − 46.0 kNm 

ME = − 144.0 kNm 

 
Alternatively, calculating the area under the shear force diagram: 
MC = − (10.0 × 1.0) = − 10.0 kNm 
MD = − (10.0 × 1.0) − [0.5(10.0 + 26.0)(2.0)] = − 46.0 kNm 
ME = − (10.0 × 1.0) − [0.5(10.0 + 26.0)(2.0)] − [0.5(41.0 + 57.0)(2.0)] = − 144.0 kNm 
 
 
 
 
 
 
 
 
 
 

 

41.0 kN

26.0 kN

10.0 kN 

A                     B                    C                                         D                                    E 

10.0 kN 

57.0 kN 

Solution 
Topic:  Statically Determinate Beams – Shear Force and Bending Moment 

Problem Number: 4.10           Page No. 1 

VE 1.0 m      1.0 m                          2.0 m                               2.0 m 

A                                                                                                           E 

8 kN/m             15 kN       

B                     C                                          D 

10 kN ME 

+ve ΣME = 0 

+ve ΣFz = 0 

  A                                                                                                           E 

tension topside

10.0 kNm 

46.0 kNm 

144.0 kNm 

zero moment 
from A to B 

Diagram straight
from B to C  Curved from C to E  
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4.2 McCaulay’s Method for the Deflection of Beams 
In elastic analysis the deflected shape of a simply-supported beam is normally assumed to 
be a circular arc of radius R (R is known as the radius of curvature), as shown in         
Figure 4.19. 
 
Consider the beam AB to be subject to 
a variable bending moment along its 
length. The beam is assumed to deflect 
as indicated. 
 
R is the radius of curvature, 
L is the span, 
I  is the second moment of area about 

the axis of bending, 
E is the modulus of elasticity, 
ds is an elemental length of beam 

measured a distance of x from the 
left-hand end 

M is the value of the bending moment 
at position x. 

 
 
The slope of the beam at position x is given by:             

 slope = dz

dx
 = dx

EI

M
∫  

 
Differentiating the slope with respect to x gives: 

 
2

2
d z

dx
= 

EI

M   and hence: 

 EI
2

2
d z

dx
 = M            Equation (1) – bending moment (Mx) 

 
Integrating Equation (1) with respect to x gives 

 EI
dz

dx
= ∫Mdx            Equation (2) –  EI × slope (EIθ ) 

 
Integrating Equation (2) with respect to x gives 
 EIz = ( )Mdx dx∫∫           Equation (3) – EI × deflection  (EIδ ) 

 
Equations (1) and (2) result in two constants of integration A and B; these are determined 
by considering boundary conditions such as known values of slope and/or deflection at 
positions on the beam.  
 

ds

dθ 

dy  
dx 

R

L,E,I

A B 

Figure 4.19 

X

Z

x
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4.2.1 Example 4.4:  Beam with Point Loads  
Consider a beam supporting three point loads as shown in Figure 4.20. 
 
 
 
 
 
 
 
 

Figure 4.20 

 

Step 1: Formulate an equation which represents the value of the bending moment at a 
position measured x from the left-hand end of the beam. This expression must include all 
of the loads and x should therefore be considered between points D and E.  
 
 
 
 
 
 
 

 

Figure 4.21 

 

Consider the vertical equilibrium of the beam: 
 

 
 VA − 5.0 − 10.0 − 8.0 + VE = 0  ∴ VA + VE = 23 kN  (i) 
 
Consider the rotational equilibrium of the beam: 
 
 
 (5.0 × 2.0) + (10.0 × 6.0) + (8.0 × 9.0) − (VE × 10.0) = 0  (ii) 
            ∴ VE = 14.2 kN 
 
Substituting into equation (i) gives     VA = 8.8 kN 
 
The equation for the bending moment at x: 

 EI
2

2
d z

dx
 = Mx = + 8.8x – 5.0[x – 2] – 10.0[x – 6] – 8.0[x – 9] Equation (1) 

 
The equation for the slope (θ ) at x: 

 EI
dz

dx
 = ∫Mdx  = + 

2
8.8

x2 – 
2
0.5 [x – 2]2 – 

2
0.10 [x – 6]2 – 

2
0.8 [x – 9]2 + A 

  Equation (2) 

5 kN                 10 kN               8 kN     

VA                        VE 
A      B                         C                D           E    

5 kN                10 kN           8 kN     

VA                    VE 

A     B                               C                   D           E 

x 

+ve ΣFz = 0 

+ve ΣMA = 0 

2.0 m             4.0 m             3.0 m           1.0 m 
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The equation for the deflection (δ ) at x: 

 EIz = ( )Mdx dx∫∫  = + 
6
8.8

x3 – 
6
0.5 [x – 2]3 – 

6
0.10 [x – 6]3 – 

6
0.8 [x – 9]3 + Ax + B  

 Equation (3) 
 
where A and B are constants of integration related to the boundary conditions. 
 
Note: It is common practice to use square brackets, i.e. [ ], to enclose the lever arms for 
the forces as shown. These brackets are integrated as a unit and during the calculation for 
slope and deflection they are ignored if the contents are –ve, i.e. the position x being 
considered is to the left of the load associated with the bracket. 
 
Boundary Conditions 

The boundary conditions are known values associated with the slope and/or deflection. In 
this problem, assuming no settlement occurs at the supports then the deflection is equal to 
zero at these positions, i.e. 

when x = 0,  z = 0 

 + 
6
8.8

x3 – 
6
0.5 [x – 2]3 – 

6
0.10 [x – 6]3 – 

6
0.8 [x – 9]3 + Ax + B  = 0 

 
Substituting for x and z in equation (3)  gives B  = 0 
 when x = 10.0,  z = 0 

 + 
6
8.8 103 – 

6
0.5 [10 – 2]3 – 

6
0.10 [10 – 6]3 – 

6
0.8 [10 – 9]3 + (A × 10) = 0 

 
 + (1.466 × 103) – (0.426 × 103 ) – (0.106 × 103 ) – 1.33 + 10A = 0 
  A = – 93.265 
 
The general equations for the slope and deflection at any point along the length of the 
beam are given by: 
The equation for the slope at x: 

  EI
dz

dx
= EIθ = + 

2
8.8

x2 – 
2
0.5 [x – 2]2 – 

2
0.10 [x – 6]2 – 

2
0.8 [x – 9]2 − 93.265 

Equation (4) 
The equation for the deflection at x: 

 EIz = EIδ  = + 
6
8.8

x3 – 
6
0.5 [x – 2]3 – 

6
0.10 [x – 6]3 – 

6
0.8 [x – 9]3 − 93.265x 

Equation (5) 
 
e.g. the deflection at the mid-span point can be determined from equation (5) by 
substituting the value of x = 5.0 and ignoring the [ ] when their contents are – ve,  i.e. 
 

EIz = + 
6
8.8 53 – 

6
0.5 [5 – 2]3 – 

6
0.10 [5 – 6]3 – 

6
0.8 [5 – 9]3 – (93.265 × 5)  

 ignore ignore 

ignore ignore ignore 
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 EIz = + 183.33 – 22.5 – 466.325   ∴ z = – 
EI

5.305  m = –
⎭
⎬
⎫

⎩
⎨
⎧ ×

EI

3105.305 mm 

 
The maximum deflection can be determined by calculating the value of x when the slope, 
i.e. equation (4) is equal to zero and substituting the calculated value of x into equation (5) 
as above.  
In most simply-supported spans the maximum deflection occurs near the mid-span point. 
This can be used to estimate the value of x in equation (4) and hence eliminate some of the 
[ ] brackets, e.g. if the maximum deflection is assumed to occur at a position less than    
6.0 m from the left-hand end the last two terms in the [ ] brackets need not be used to 
determine the position of zero slope. This assumption can be checked and if incorrect a 
subsequent calculation carried out including an additional bracket until the correct answer 
is found. 
Assume zmaximum  occurs between 5.0 m and 6.0 m from the left-hand end of the beam, 
then: 
The equation for the slope at x is: 
 

EI
dz

dx
 = + 

2
8.8

x2 – 
2
0.5 [x – 2]2 – 

2
0.10 [x – 6]2 – 

2
0.8 [x – 9]2 – 93.265  = 0 for zmaximum 

 
This equation reduces to: 
 
 1.9x2 + 10x – 103.265 = 0  and hence  x = 5.2 m 
 
since x was assumed to lie between 5.0 m and 6.0 m ignoring the two [ ] terms was correct. 
The maximum deflection can be found by substituting the value of x = 5.2 m in       
equation (5) and ignoring the [ ] when their contents are –ve,  i.e. 
 

EIzmaximum = + 
6
8.8 5.23 – 

6
0.5 [5.2 – 2]3 – 

6
0.10 [5.2 – 6]3 – 

6
0.8 [5.2 – 9]3 – (93.265 × 5.2) 

 
 

EIzmaximum = + 206.23 – 27.31 – 484.98  ∴ zmaximum = – 
EI

306  m 

 
Note: There is no significant difference from the value calculated at mid-span. 

4.2.2 Example 4.5:  Beam with Combined Point Loads and UDLs  
A simply-supported beam ABCD carries a uniformly distributed load of 3.0 kN/m 
between A and B, point loads of 4 kN and 6 kN at B and C respectively, and a uniformly 
distributed load of 5.0 kN/m between B and D as shown in Figure 4.22. Determine the 
position and magnitude of the maximum deflection. 
 
 
 

ignore ignore 

ignore ignore 
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Figure 4.22 

 
Consider the vertical equilibrium of the beam: 
 

 
 VA − (3.0 × 2.0) − 4.0 − 6.0 − (5.0 × 4.0) + VD = 0   ∴ VA + VD = 36 kN  (i) 
 
Consider the rotational equilibrium of the beam: 
 
 
 (3.0 × 2.0 × 1.0) + (4.0 × 2.0) + (6.0 × 4.0) + (5.0 × 4.0 × 4.0) − (VD × 6.0) = 0  (ii) 
                   ∴ VD = 19.67 kN 
 
Substituting into equation (i) gives           VA = 16.33 kN 
 
 
 
 
 
 
 

 

Figure 4.23 

 

In the case of a UDL when a term is written in the moment equation in square brackets,      
[ ] this effectively applies the load for the full length of the beam. For example in         
Figure 4.23 the 3.0 kN/m load is assumed to apply from A to D and consequently only an 
additional 2.0 kN/m need be applied from position B onwards as shown in Figure 4.24. 
 
 
 
 
 
 
 

 

Figure 4.24 

 
 

3.0 kN/m                5.0 kN/m 

6.0 m

VA                              VD 2.0 m      2.0 m           2.0 m   
A                      B                      C                            D 

4.0 kN                6.0 kN 

+ve ΣFz = 0 

+ve ΣMA = 0 

3.0 kN/m                   5.0 kN/m 

16.33 kN                                19.67 kN 

A                          B                           C                                  D 

4.0 kN                          6.0 kN  

x 

3.0 kN/m                  2.0 kN/m 

16.33 kN                               19.67 kN 

A                          B                            C                                  D     

4.0 kN                          6.0 kN 

x 
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The equation for the bending moment at x is: 

 EI
2

2
d z

dx
 = + 16.33x – 3.0

2

2x  – 4.0[x – 2.0] – 2.0 [ ]
2
2 2−x  – 6.0[x – 4] Equation (1) 

 
The equation for the slope at x is: 

 EI
dz

dx
 = (θ ) = + 16.33

2

2x  – 3.0
6

3x  – 4.0 [ ]
2
2 2−x  – 2.0 [ ]

6
2 3−x  – 6.0 [ ]

2
4 2−x  + A 

 Equation (2) 
 
The equation for the deflection at x is: 

 EIz = (δ ) = + 16.33
6

3x  – 3.0
24

4x  – 4.0 [ ]
6
2 3−x  – 2.0 [ ]

24
2 4−x  – 6.0 [ ]

6
4 3−x  + Ax + B 

    Equation (3) 
where A and B are constants of integration related to the boundary conditions. 
 
Boundary Conditions 

In this problem, assuming no settlement occurs at the supports then the deflection is equal 
to zero at these positions, i.e. 
 when x = 0,  z = 0 

+ 16.33
6

3x  – 3.0
24

4x  – 4.0 [ ]
6
2 3−x  – 2.0 [ ]

24
2 4−x  – 6.0 [ ]

6
4 3−x  + Ax + B 

 
Substituting for x and z in equation (3)  ∴ B  = 0 
 when x = 6.0, z = 0 

 + 16.33
6

3x  – 3.0
24

4x  – 4.0 [ ]
6
2 3−x  – 2.0 [ ]

24
2 4−x  – 6.0 [ ]

6
4 3−x  + Ax = 0 

 + 16.33
6
0.6 3

 – 3.0
24
0.6 4

 – 4.0
6
0.4 3

 – 2.0
24
0.4 4

 – 6.0
6
0.2 3

 + 6.0A =0 

 ∴  A  = – 58.98 
 
The general equations for the slope and bending moment at any point along the length of 
the beam are given by: 
 
The equation for the slope at x: 

 EI
dz

dx
 = + 16.33

2

2x – 3.0
6

3x – 4.0 [ ]
2
2 2−x – 2.0 [ ]

6
2 3−x – 6.0 [ ]

2
4 2−x  − 58.98 

 Equation  (4)  
The equation for the deflection at x: 

 EIz = + 16.33
6

3x – 3.0
24

4x – 4.0 [ ]
6
2 3−x – 2.0 [ ]

24
2 4−x – 6.0 [ ]

6
4 3−x − 58.98 x   

  Equation  (5) 
 

ignore ignore ignore 
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Assume zmaximum  occurs between 2.0 m and 4.0 m from the left-hand end of the beam, 
then: 
The equation for the slope at ‘x’ is: 
 

EI
dz

dx
 = + 16.33

2

2x – 3.0
6

3x – 4.0 [ ]
2
2 2−x – 2.0 [ ]

6
2 3−x – 6.0 [ ]

2
4 2−x  – 58.98 = 0  

 
 

This cubic can be solved by iteration. 
 
Guess a value for x, e.g. 3.1 m 
(16.33 × 3.12)/2 – (3.0 × 3.13)/6 – (4.0 × 1.12)/2 – (2.0 × 1.13)/6 – 58.98 = 1.73 > 0 
 
The assumed value of 3.1 is slightly high, try x = 3.05 m 
(16.33 × 3.052)/2 – (3.0 × 3.053)/6 – (4.0 × 1.052)/2 – (2.0 × 1.053)/6 – 58.98 = 0.20 
 
This value is close enough. x = 3.05 m and since x was assumed to lie between 2.0 m and 
4.0 m, ignoring the [x – 4] term was correct. 
 
The maximum deflection can be found by substituting the value of x = 3.05 m in    
equation (5) and ignoring the [ ] when their contents are –ve,  i.e. 
 

EI zmaximum = + 16.33
6

3x – 3.0
24

4x – 4.0 [ ]
6
2 3−x – 2.0 [ ]

24
2 4−x – 6.0 [ ]

6
4 3−x – 58.98 x  

 
 

 EI zmaximum = + 77.22 – 10.82 – 0.77 – 0.1 – 179.89  ∴ zmaximum = – 
EI

4.114  m  

4.3 Equivalent Uniformly Distributed Load Method for the Deflection of Beams  
In a simply-supported beam, the maximum deflection induced by the applied loading 
always approximates the mid-span value if it is not equal to it. A number of standard 
frequently used load cases for which the elastic deformation is required are given in 
Appendix 2 in this text.  
In many cases beams support complex load arrangements which do not lend themselves 
either to an individual load case or to a combination of the load cases given in Appendix 2. 
Provided that deflection is not the governing design criterion, a calculation which gives an 
approximate answer is usually adequate. The equivalent UDL method is a useful tool for 
estimating the deflection in a simply-supported beam with a complex loading. 
 
Consider a single-span, simply-supported beam carrying a non-uniform loading which 
induces a maximum bending moment of M as shown in Figure 4.25. 
 
 
 

ignore 

ignore 
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Bending Moment Diagram 

 
Figure 4.25 

 
The equivalent UDL (we) which would induce the same magnitude of maximum bending 
moment (but note that the position may be different) on a simply-supported span carrying 
a uniform loading can be determined from: 
 

 Maximum bending moment   M =
8

2
e Lw

  

          ∴  we = 2
8
L

 M  

where we is the equivalent uniform distributed load. 
The maximum deflection of the beam carrying the uniform loading will occur at the mid- 

span and will be equal to  δ =
EI

Lw

384
5 4

e   (see Appendix 2) 

 
Using this expression, the maximum deflection of the beam carrying the non-uniform 
loading can be estimated by substituting for the we term, i.e. 
 

 δ ≈
4

e5  
384

w L

EI
=  

EI 

L 
L

M
  

 
384

85 4
2 ⎟
⎠
⎞

⎜
⎝
⎛×

=
EI

L  M
 

2104.0  

 
The maximum bending moments in Example 4.4 and Example 4.5 are 32.8 kNm and 
30.67 kNm respectively (the reader should check these answers). 
Using the equivalent UDL method to estimate the maximum deflection in each case gives: 

 Example 4.4  δmaximum ≈ 
EI

L  M
 

2104.0  = –
EI

1.341 m (actual value = 
EI

.5305 m) 

 Example 4.5  δmaximum ≈ 
EI

L  M
 

2104.0  = –
EI

9.114 m (actual value = 
EI

4.114 m) 

 
Note: The estimated deflection is more accurate for beams which are predominantly 
loaded with distributed loads. 

non-uniform loading 

M 
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4.3.1 Problems: McCaulay’s and Equivalent UDL Methods for Deflection of Beams 
A series of simply-supported beams are indicated in Problems 4.11 to 4.15. Using the 

applied loading given in each case determine the maximum deflection. Assume all 

beams are uniform with Young’s Modulus of Elasticity = E and Second Moment of 

Area = I 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problem 4.11 

2.0 m                                6.0 m 

A                     C 
B 

6 kN/m           15 kN                             12 kN/m 

5 kN              10 kN                5 kN

Problem 4.12 

2.0 m                2.0 m   2.0 m              2.0 m 

A                     E 
B                    C                     D 

3 kN/m                 2 kN/m                                  4 kN/m  

Problem 4.13 

A                        E 

2.0 m            1.0 m      3.0 m                              3.0 m 
B           C                                 D 

   3 kN/m                                                                                6 kN/m  
8 kN                                         12 kN 

Problem 4.15 

   10 kN/m                                                  8 kN            5 kN/m 

6.0 m                    1.0 m   1.0 m 
A                        B       C          D 

Problem 4.14

1.0 m      1.0 m                      2.0 m                               2.0 m 

A                                                                                  E 

8 kN/m          15 kN   

B                 C                                  D

10 kN 
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4.3.2 Solutions: McCaulay’s and Equivalent UDL Methods for Deflection of Beams  
        
 
 
 

 
 

 
 
 
 
 

 

 

(See Problem 4.2 for the support reactions) 
The equation for the bending moment at x is: 

EI
2

2
d z

dx
 = Mx = + 48.75x – (6x2)/2 − 15.0[x – 2] – 6.0[x – 2]2/2     Equation (1) 

 
The equation for the slope at x is: 

EI
dz

dx
 = EIθ = + 24.38x2 – x3 – 7.5[x – 2]2 – [x – 2]3 + A          Equation (2)  

 
The equation for the deflection at x is: 
EIz = EIδ = + 8.13x3 – 0.25x 4 – 2.5[x – 2]3 – 0.25[x – 2]4 + Ax + B   Equation (3) 
 
where A and B are constants of integration related to the boundary conditions. 
 

when x = 0,  z = 0  and substituting for x and z in equation (3) 
EI (0) = + 8.13(0)3 – 0.25(0)4 – 2.5[– 2]3 – 0.25[– 2]4 + A(0) + B 

                        ∴ B = 0 

 

when x = 8.0,  z = 0  and substituting for x and z in equation (3) 
EI (0) = + 8.13(8.0)3 – 0.25(8.0)4 – 2.5[6.0]3 – 0.25[6.0]4 + A(8.0) 
                       ∴ A = − 284.32 
 
The general equations for the slope and deflection at any point along the length of the 
beam are given by substituting for A and B in equations (2) and (3) 
 
The equation for the slope at x: 
EIθ = + 24.38x2 – x3 – 7.5[x – 2]2 – [x – 2]3 − 284.32        Equation (4)  
 
The equation for the deflection at x: 
EIδ = + 8.13x3 – 0.25x 4 – 2.5[x – 2]3 – 0.25[x – 2]4 − 284.32x       Equation (5) 

 

Solution 
Topic:  Statically Determinate Beams – Deflection 

Problem Number: 4.11            Page No. 1 

2.0 m                                6.0 m 

A                   C 
B 

 15 kN                                      6 kN/m     (Total BC = 12 kN/m) 6 kN/m 

48.75 kN                        50.25 kN 
x 

ignore ignore
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The position of the maximum deflection at the point of zero slope can be determined 
from equation (4) as follows: 
Assume that zero slope occurs when 2.0 ≤ x ≤ 8.0 and neglect [ ] when negative 
 
EIθ = 0 = + 24.38x2 – x3 – 7.5[x – 2]2 – [x – 2]3 − 284.32 
 
Solve the resulting cubic equation by trial and error. 
Guess x = 3.9 m   (i.e. slightly to the left of the mid-span) 
+ 24.38(3.9)2  – 3.93 − 7.5(1.9)2 − (1.9)3 − 284.32 = − 6.75     Increase x 
try  x = 3.95 
+ 24.38(3.95)2  – 3.953 − 7.5(1.95)2 − (1.95)3 − 284.32 = − 1.49   Increase x 
try  x = 3.96 
+ 24.38(3.96)2  – 3.963 − 7.5(1.96)2 − (1.96)3 − 284.32 = − 0.44 
Accept  x = 3.96 m 
 
The maximum deflection is given by: 
δmax. = {+ 8.13(3.96)3 – 0.25(3.96) 4 – 2.5(1.96)3 – 0.25(1.96)4 − 284.32(3.96)}/EI 
δ max. = – 705.03/EI  

 
 

Equivalent Uniformly Distributed Load Method: 

δ max.  ≈ − (0.104MmaximumL2)/EI 
 
The maximum bending moment = 105.2 kNm  (see Problem 4.2) 
 
δ max. ≈ − (0.104 × 105.2 × 8.02)/EI = − 700.2/EI 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

Solution 
Topic:  Statically Determinate Beams - Deflection   

Problem Number: 4.11            Page No. 2 
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(See Problem 4.3 for the support reactions) 
 
The distributed loads must continue to the end of the beam from the point where they 
begin. An equivalent load system is therefore required to ensure that the applied loads 
are represented in the equations. 
 
Equivalent Load System:  

    
 
 
 
 
 
 
 
 
The equation for the bending moment at x is: 
 

EI
2

2
d z

dx
 = Mx = + 20.25x – (3x2)/2 − 5.0[x – 2] + 1.0[x – 2]2/2 − 10.0[x – 4] 

      − 5.0[x – 6] − 2.0[x – 6]2/2           Equation (1) 
 
The equation for the slope at x is: 

EI
dz

dx
 = EIθ = + 10.13x2 – 0.5x3 − 2.5[x – 2]2 + 0.17[x – 2]3 − 5.0[x – 4]2 

      − 2.5[x – 6]2 − 0.33[x – 6]3 + A          Equation (2)  
 
The equation for the deflection at x is: 
EIz = EIδ = + 3.38x3 – 0.125x4 − 0.83[x – 2]3 + 0.04[x – 2]4 − 1.67[x – 4]3 
      − 0.83[x – 6]3 − 0.08[x – 6]4 + Ax + B        Equation (3)  
 
where A and B are constants of integration related to the boundary conditions. 
 

 

Solution 
Topic:  Statically Determinate Beams - Deflection   

Problem Number: 4.12            Page No. 1 

5 kN                    10 kN                   5 kN 

2.0 m                2.0 m       2.0 m                   2.0 m 

A                   E 
B                         C                          D 

3 kN/m                    2 kN/m                                            4 kN/m         

20.25 kN                   21.75 kN 

20.25 kN                   21.75 kN 

A                     E 

x 

    5 kN                10 kN                   5 kN 

2.0 m                2.0 m      2.0 m                  2.0 m 

   3 kN/m                                                                            2 kN/m    (Total DE = 4 kN/m)       

    1 kN/m 
B                         C                         D

(Total BCD   =  2 kN/m)
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when x = 0,  z = 0 and substituting for x and z in equation (3) 
 

EI (0) = + 3.38(0)3 – 0.125(0)4 − 0.83[−2.0]3 + 0.04[– 2.0]4 − 1.67[– 4.0]3− 0.83[– 6.0]3  
              − 0.08[– 6.0]4 + A(0) + B         
                       ∴ B = 0 
when x = 8.0,  z = 0  and substituting for x and z in equation (3) 
EI (0) = + 3.38(8.0)3 – 0.125(8.0)4 − 0.83[6.0]3 + 0.04[6.0]4 − 1.67[4.0]3 

    − 0.83[2.0]3 − 0.08[2.0]4 + A(8.0)          ∴ A = − 122.04 
 
The general equations for the slope and deflection at any point along the length of the 
beam are given by substituting for A and B in equations (2) and (3) 
 
The equation for the slope at x: 
EIθ = + 10.13x2 – 0.5x3 − 2.5[x – 2]2 + 0.17[x – 2]3 − 5.0[x – 4]2 − 2.5[x – 6]2  
           − 0.33[x – 6]3 − 122.04               Equation (4)  
 
The equation for the deflection at x: 
EIδ = + 3.38x3 – 0.125x4 − 0.83[x – 2]3 + 0.04[x – 2]4 − 1.67[x – 4]3 − 0.83[x – 6]3  
     − 0.08[x – 6]4 − 122.04x                  Equation (5) 
 
The position of the maximum deflection at the point of zero slope can be determined 
from equation (4) as follows: 
Assume that zero slope occurs when 4.0 ≤ x ≤ 6.0 and neglect [ ] when negative 
EIθ = 0 = + 10.13x2 – 0.5x3 − 2.5[x – 2]2 + 0.17[x – 2]3 − 5.0[x – 4]2 − 2.5[x – 6]2  
       − 0.33[x – 6]3 − 122.04 
 
Solve the resulting cubic equation by trial and error. 
Guess  x = 4.1 m  EIθ = + 4.33 > 0  ∴  reduce x 
try  x = 4.05   EIθ = + 1.86 > 0  try  x = 4.02   EIθ = + 0.38 
Accept x = 4.02 m 
 
The maximum deflection is given by: 
δ max. = {+ 3.38(4.02)3 – 0.125(4.02)4 − 0.83(2.02)3 + 0.04(2.02)4 − 1.67(0.02)3 
        − (122.04 × 4.02)}/EI 
δmax. = – 309.84/EI  

 
Equivalent Uniformly Distributed Load Method: 

δ max. ≈ − (0.104MmaximumL2)/EI  
The maximum bending moment = 49.0 kNm  (see Problem 5.3) 
δ max. ≈ − (0.104 × 49.0 × 8.02)/EI = − 326.14/EI 

Solution 
Topic:  Statically Determinate Beams - Deflection   

Problem Number: 4.12            Page No. 2 

ignore ignore ignore ignore 

ignore

ignore 

ignore 



196 Examples in Structural Analysis 

 
 

 

        
 
 
 

 
 

 
 
 
 
 
 

 
(See Problem 4.4 for the support reactions) 

 
The distributed loads must continue to the end of the beam from the point where they 
begin. An equivalent load system is therefore required to ensure that the applied loads 
are represented in the equations. 
 
Equivalent Load System: 

 

 

 

 

 

 

 

 
 
The equation for the bending moment at x is: 
 

EI
2

2
d z

dx
= Mx = + 27.56x – (3x2)/2 − 8.0[x – 2] + 3.0[x – 2]2/2 − 6.0[x – 3]2/2 

       − 12.0[x – 6]               Equation (1) 
 
The equation for the slope at x is: 

EI
dz

dx
= EIθ  = + 13.78x2 – 0.5x3 − 4.0[x – 2]2 + 0.5[x – 2]3 − [x – 3]3   − 6.0[x – 6]2 + A

                        Equation (2)  
 
The equation for the deflection at x is: 
EIz = EIδ  = + 4.59x3 – 0.125x4 − 1.33[x – 2]3 + 0.125[x – 2]4 − 0.25[x – 3]4

 

        − 2.0[x – 6]3 + Ax + B             Equation (3)  
 
where A and B are constants of integration related to the boundary conditions. 
 

Solution 
Topic:  Statically Determinate Beams - Deflection   

Problem Number: 4.13            Page No. 1 

A                           E 

2.0 m            1.0 m           3.0 m                                    3.0 m 

B             C                                          D 

3 kN/m                                                                                                  6 kN/m  
8 kN                                                  12 kN  

27.56 kN                     34.44 kN 

27.56 kN                                          34.44 kN 
B              C                                        D 

A                        E 

   3 kN/m                                                                                  6 kN/m   (Total CDE = 6 kN/m) 

2.0 m             1.0 m            3.0 m                                 3.0 m 

8 kN                                                   12 kN 

3 kN/m 

x 
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when x = 0,  z = 0  and substituting for x and z in equation (3) 
 

EI (0)  = + 4.59(0)3 – 0.125(0)4 − 1.33[− 2.0]3 + 0.125[– 2.0]4 − 0.25[– 3.0]4 

    − 2.0[– 6.0]3 − A(0) + B                
                       ∴B = 0 
when x = 9.0,  z = 0  and substituting for x and z in equation (3) 
EI (0) = + 4.59(9.0)3 – 0.125(9.0)4 − 1.33[7.0]3 + 0.125[7.0]4 − 0.25[6.0]4− 2.0[3.0]3  
         − A(9.0)                    ∴ A = − 221.32 
 
The general equations for the slope and deflection at any point along the length of the 
beam are given by substituting for A and B in equations (2) and (3) 
 
The equation for the slope at x: 
EIθ = + 13.78x2 – 0.5x3 − 4.0[x – 2]2 + 0.5[x – 2]3 − [x – 3]3 − 6.0[x – 6]2 − 221.32  
                        Equation (4)  
 
The equation for the deflection at x: 
EIδ  = + 4.59x3 – 0.125x4 − 1.33[x – 2]3 + 0.125[x – 2]4 − 0.25[x – 3]4 − 2.0[x – 6]3  
      − 221.32x                      Equation (5) 
 
The position of the maximum deflection at the point of zero slope can be determined 
from equation (4) as follows: 
 
Assume that zero slope occurs when    3.0 ≤ x ≤ 6.0   and neglect [ ] when negative 
EIθ  = 0 = + 13.78x2 – 0.5x3 − 4.0[x – 2]2 + 0.5[x – 2]3 − [x – 3]3 − 221.32 
 
Solve the resulting equation by trial and error.  
Guess  x = 4.6 m  EIθ  = − 0.75 > 0  ∴ reduce x 
try  x = 4.61 m EIθ  = + 0.02 > 0  Accept  x = 4.61 m 
 
The maximum deflection is given by: 
δ max. = {+ 4.59(4.61)3 – 0.125(4.61)4 − 1.33(2.61)3 + 0.125(2.61)4 − 0.25(2.61)4 
    − (221.32 × 4.61)}/EI 
δ max. = – 656.5/EI 

 
Equivalent Uniformly Distributed Load Method: 

δ max. ≈ − (0.104MmaximumL2)/EI  
The maximum bending moment = 78.0 kNm  (see Problem 5.4) 
δ max. ≈ − (0.104 × 78.0 × 9.02)/EI = − 657.4/EI 

 

Solution 
Topic:  Statically Determinate Beams - Deflection   
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 (See Problem 4.10 for the support reactions) 
 
The equation for the bending moment at x is: 

EI
2

2
d z

dx
 = Mx = – 10.0[x − 1] − 8.0[x – 2]2/2 – 15.0[x – 4]      Equation (1) 

 
The equation for the slope at x is: 

EI
dz

dx
 = EIθ = – 5.0[x − 1]2 − 1.33[x – 2]3 – 7.5[x – 4]2 + A         Equation (2)  

 
The equation for the deflection at x is: 
EIz = EIδ  = – 1.67[x − 1]3 − 0.33[x – 2]4 – 2.5[x – 4]3 + Ax+ B    Equation (3) 
 
where A and B are constants of integration related to the boundary conditions. 
 

when x = 6.0,  dz/dx = 0  and substituting for x and z in equation (2) 
  EI (0) = – 5.0(5.0)2 −  1.33(4.0)3 – 7.5(2.0)2  + A   

                   ∴ A = + 240.12 
 
when x = 6.0,    z = 0  and substituting for x and z in equation (3) 
EI (0) = – 1.67(5.0)3 − 0.33(4.0)4 – 2.5(2.0)3  + (240.12 × 6.0) + B 
                   ∴ B = − 1127.49 
 
The general equations for the slope and deflection at any point along the length of the 
cantilever are given by substituting for A and B in equations (2) and (3). 
 
The equation for the slope at x: 
EIθ = – 5.0[x − 1]2 − 1.33[x – 2]3 – 7.5[x – 4]2  + 240.12         Equation (4)  
 
The equation for the deflection at x: 
EIδ = – 1.67[x − 1]3 − 0.33[x – 2]4 – 2.5[x – 4]3 + 240.12x − 1127.49 

 Equation (5) 

57.0 kNm 

x 

1.0 m      1.0 m                      2.0 m                               2.0 m 

 A                                                                                      E 

8 kN/m              15 kN      

B                     C                                          D 

10 kN 144.0 kNm 

Solution 
Topic:  Statically Determinate Beams - Deflection   

Problem Number: 4.14            Page No. 1 
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The maximum deflection occurs at the free end of the cantilever i.e. when x = 0 
neglecting all [ ] which are negative. 
 

δmax. = − 1127.49 / EI 
 
The deflection at any other location can be found by substituting the appropriate value 
of x, e.g. 
 
At B:  x = 1.0 
δB = {+ (240.12 × 1.0) − 1127.49}/EI          δB = – 887.4/EI 

 
At C:  x = 2.0 
δC = {– 1.67(1)3 + (240.12 × 2.0) − 1127.49}/EI       δC = – 648.9/EI 

 

At D:  x = 4.0 
δD = {– 1.67(3.0)3 − 0.33(2.0)4 + (240.12 × 4.0) − 1127.49}/EI   δD = – 217.4/EI 
 

 

Note: The Equivalent Uniformly Distributed Load Method only applies to 

single-span beams. 
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(See Problem 4.6 for the support reactions) 

 
The distributed loads must continue to the end of the beam from the point where they 
begin. An equivalent load system is therefore required to ensure that the applied loads 
are represented in the equations. 
 
Equivalent Load System: 

 

 

 

 

 

 

 

 
 
The equation for the bending moment at x is: 
 

EI
2

2
d z

dx
 = Mx = + 27.0x – (10x2)/2 + 51.0[x – 6] + 5.0[x – 6]2/2 − 8.0[x – 7] 

                        Equation (1) 
 
The equation for the slope at x is: 

EI
dz

dx
 = EIθ = + 13.5x2 – 1.67x3 + 25.5[x – 6]2 + 0.83[x – 6]3 − 4.0[x – 7]2 + A 

                        Equation (2)  
 
The equation for the deflection at x is: 
EIz = EIδ = + 4.5x3 – 0.42x4 + 8.5[x – 6]3 + 0.21[x – 6]4 − 1.33[x – 7]3 + Ax + B 
                        Equation (3)  
 
where A and B are constants of integration related to the boundary conditions. 
 
 

Solution 
Topic:  Statically Determinate Beams - Deflection   

Problem Number: 4.15            Page No. 1 

   10 kN/m                                                                8 kN              5 kN/m 

6.0 m                    1.0 m       1.0 m 

A               B          C            D 

27.0 kN            51.0 kN 

A                B       D 

27.0 kN            51.0 kN
x 

   10 kN/m                                                                8 kN               (Total BC = 5 kN/m) 

6.0 m                     1.0 m     1.0 m 5.0 kN/m 
C
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when x = 0,  z = 0  and substituting for x and z in equation (3) 
EI (0) = + 4.5(0)3 – 0.42(0)4 + 8.5[− 6.0]3 + 0.21[− 6.0]4 − 1.33[− 7.0]3 + A(0) + B 

          
                       ∴ B = 0 

when x = 6.0,  z = 0  and substituting for x and z in equation (3) 
EI (0) = + 4.5(6.0)3 – 0.42(6.0)4 + A(6.0)          ∴ A = − 71.28 
 
The general equations for the slope and deflection at any point along the length of the 
beam are given by substituting for A and B in equations (2) and (3) 
 
The equation for the slope at x: 
EIθ = + 13.5x2 – 1.67x3 + 25.5[x – 6]2 + 0.83[x – 6]3 − 4.0[x – 7]2 − 71.28 

Equation (4)  
 
The equation for the deflection at x: 
EIδ = + 4.5x3 – 0.42x4 + 8.5[x – 6]3 + 0.21[x – 6]4 − 1.33[x – 7]3 − 71.28x  

Equation (5) 
 
The position of the maximum deflection between A and B at the point of zero slope can 
be determined from equation (4) as follows: 

 
Assume that zero slope occurs when    3.0 ≤ x ≤ 6.0   and neglect [ ] when negative 
EIθ = 0 = + 13.5x2 – 1.67x3 − 71.28 
  
Solve the resulting equation by trial and error.  
Guess  x = 2.9 m   EIθ = + 1.53 > 0  ∴ reduce x 
try  x = 2.85 m  EIθ = − 0.29 < 0  Accept x = 2.85 m 
 
The maximum deflection is given by: 
δ AB max. = {+ 4.5(2.85)3 – 0.42(2.85)4 − (71.28 × 2.85)}/EI   δAB max. = – 126.69/EI 

 
The maximum deflection of the cantilever occurs when x = 8.0 m 
δ D = {+ 4.5(8.0)3 – 0.42(8.0)4 + 8.5(2.0)3 + 0.21(2.0)4 − 1.33(1.0)3 − (71.28 × 8.0)}/EI 

     δD max. = + 83.47/EI 
Equivalent Uniformly Distributed Load Method: 

This can be used to give a conservative estimate of δ AB assuming AB to be a simply 
supported 6.0 m span without the cantilever 
δ max. ≈ − (0.104MmaximumL2)/EI  
The maximum bending moment in span AB = 36.5 kNm  (see Problem 5.6) 
δ max. ≈ − (0.104 × 36.5 × 6.02)/EI = − 136.7/EI 

 

Solution 
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4.4 The Principle of Superposition 
The Principle of Superposition can be stated as follows: 
 
‘If the displacements at all points in a structure are proportional to the forces causing 

them, the effect produced on that structure by a number of forces applied simultaneously, 

is the same as the sum of the effects when each of the forces is applied individually.’ 
 
This applies to any structure made from a material which has a linear load−displacement 
relationship. Consider the simply−supported beam ABCD shown in Figure 4.26 which 
carries two point loads at B and C as indicated. 
 
 
 
 

 
 
 
                   

Figure 4.26 
 
 
 
 
 
                  Shear Force Diagram 
 
 
 
 
 
 
                  Bending Moment Diagram 
 
 
 
 
                  Deflected Shape 
 

Figure 4.27 

 
Note: the maximum deflection  does not necessarily occur at the mid−span point. 
 
 
When the loads are considered individually the corresponding functions are as indicated in 
Figure 4.28. 

 

8.0 m 

A                  B               C                         D

VA = 19.5 kN                                   VD = 16.5 kN 

16 kN               20 kN

2.0 m           3.0 m               3.0 m 

39.0 kNm 
49.5 kNm 

A   B        C           D 

19.5 kN    19.5 kN 

3.5 kN           3.5 kN 

16.5 kN     16.5 kN 

A   B      C                D 

δmid−span 
δB δC 



 Beams 203

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.28 

 
It is evident from Figure 4.28 that: 
 VA = (12.0 + 7.5) = 19.5 kN;   VD = (4.0 + 12.5) = 16.5 kN  
 
 δB = (δB1 + δB2);   δmid−span = (δmid−span1 + δmid−span2);    δC = (δC1 + δC2) 
 
 Shear Force at B left−hand side = (+ 12.0 + 7.5) = + 19.5 kN 
 Shear Force at B right−hand side = (− 4.0 + 7.5) = + 3.5 kN 
 Shear Force at C left−hand side = (− 4.0 + 7.5) = + 3.5 kN 
 Shear Force at C right−hand side = (− 4.0 − 12.5) = − 16.5 kN 
 Bending Moment at B = (+ 24.0 + 15.0) = + 39.0 kNm 
 Bending Moment at C = (+ 12.0 + 37.5) = + 49.5 kNm 
 
 This Principle can be used very effectively when calculating the deflection of beams, 
(particularly non−uniform beams), as used in the Examples and Problems given in    
Section 4.5.  Examples 5.6 to 5.10 illustrate the application of the Principle. 

4.4.1 Example 4.6:   Superposition− Beam 1 
 
 
 
 
 
 
 

Figure 4.29 

 

Using superposition this beam can be represented as the sum of the two load cases shown 
in Figure 4.30. 

12.0 kN

4.0 kN            4.0 kN

A      B       C    D

12.5 kN

7.5 kN     7.5 kN

A      B     C    D

+

12.0 kNm  
24.0 kNm 

A   B        C    D 

15.0 kNm 
37.5 kNm 

A   B        C    D 

+

45.0 kN                         30.0 kN 

A      B                    C   

45 kN 
5 kN/m 

2.0 m  4.0 m 
6.0 m 

35.0 kN
45.0 kN

A         B                     C 

10.0 kN
30.0 kN

Maximum bending moment 
occurs at point of zero shear 

80.0 kNm 

A       B               C  

A           B         C             D 

12.0 kN                         4.0 kN 

16 kN 

20 kN 
A           B      C                D 

7.5 kN                         12.5 kN 

δC2 δ mid−span 2 
δB2 

δC1 δB1 
δ mid−span 1 
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Figure 4.30 

 

 VA = (30.0 + 15.0) = 45.0 kN;   VC = (15.0 + 15.0) = 30.0 kN 
 Shear Force at B left−hand side = (+ 30.0 + 5.0) = + 35.0 kN 
 Shear Force at B right−hand side = (− 15.0 + 5.0) = + 10.0 kN 
 Bending Moment at B = (+ 60.0 + 20.0) = + 80.0 kNm 

4.4.2 Example 4.7:   Superposition− Beam  2 
 
 
 
 
 
 
 

 

Figure 4.31 

 

Using superposition this beam can be represented as the sum of: 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.32 

12.0 kN

30.0 kN                         15.0 kN 

A      B                    C  

45 kN 

15.0 kN                         15.0 kN 

A      B                    C  

5 kN/m

A       B               C  

60.0 kNm 

20.0 kNm 

A         B               C  

+ 

5.0 kN
C

15.0 kN

15.0 kN

2.0 m    4.0 m       2.0 m 
12.0 kN                         12.0 kN 

A    B                        C     D  
6 kN/m 

8.0 m 

12.0 kN

12.0 kN

A    B                C        D 

12.0 kN

A      B          C        D

A     B         C        D 

12.0 kN

12.0 kN

 zero                                    zero 

A    B                        C     D  
6 kN/m 

 12.0 kN      12.0 kN  

12.0 kN                         12.0 kN 

A    B                         C    D  

12.0 kN        12.0 kN 

+ 

A       B               C  

24.0 kNm 

A         B               C  

24.0 kNm 

12.0 kNm 

A    B             C       D 

Maximum bending moment 
occurs at point of zero shear 

36.0 kNm 

24.0 kNm     24.0 kNm 

A         B 

30.0 kN

A 
15.0 kN            15.0 kN

B                   C 
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 VA = (zero + 12.0) = 12.0 kN;   VD = (zero + 12.0)  = 12.0 kN;  
 Shear Force at B left−hand side = (zero + 12.0) = + 12.0 kN 
 Shear Force at B right−hand side = (+ 12.0 + zero)  = + 12.0 kN 
 Shear Force at mid−span = zero 
 Shear Force at C left−hand side = (− 12.0 + zero) = − 12.0 kN 
 Shear Force at C right−hand side = (zero − 12.0) = − 12.0 kN 
 Bending Moment at B = (zero + 24.0) = + 24.0 kNm 
 Bending Moment at mid−span = (+ 12.0 + 24.0) = + 36.0 kNm 
 Bending Moment at C = (zero + 24.0) = + 24.0 kNm 

4.4.3 Example 4.8:   Superposition− Beam  3 
 
 
 
 
 
 

Figure 4.33 

 

Using superposition this beam can be represented as the sum of: 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.34 

 VA = (24.0 + 12.0 + 5.0 − 2.5) = 38.5 kN; 

B       C       D       E 

24.0 kN 

A           B 

A           B 

A 
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38.5 kN                        39.5 kN 
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                         C       D 
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A             B    C 
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 VD = (zero + 12.0 + 15.0 + 12.5) = 39.5 kN; 
 Shear Force at B left−hand side = (− 24.0 + 12.0 + 5.0 − 2.5) = − 9.5 kN 
 Shear Force at B right−hand side = (zero − 12.0 − 15.0 − 2.5) = − 29.5 kN 
 Shear Force at C left−hand side = (zero − 12.0 − 15.0 − 2.5) = − 29.5 kN 
 Shear Force at C right−hand side = (zero − 12.0 − 15.0 − 2.5) = − 29.5 kN 
 Shear Force at D left−hand side = (zero − 12.0 − 15.0 − 2.5) = − 29.5 kN 
 Shear Force at D right−hand side = + 10.0 kN 
 Shear Force at E = + 10.0 kN 
 Bending Moment at B = (zero + 48.0 + 20.0 − 10.0) = + 58.0 kNm 
 Bending Moment at C = (zero + 24.0 + 30.0 − 15.0) = + 39.0 kNm 
 Bending Moment at D = − 20.0 kNm 

4.4.4 Example 4.9:   Superposition− Beam  4 
 
 
 
 
 
 

 
Figure 4.35 

 

Using superposition this beam can be represented as the sum of: 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 4.36 
 
 VA = (32.0 + 30.0) = 62.0 kN 
 MA = (− 64.0 − 90.0) = 154.0 kN 
 Shear Force at B left−hand side = (−8.0 − 30.0) = − 38.0 kN 
 Shear Force at B right−hand side = − 8.0 kN 
 Bending Moment at B = − 4.0 kNm 
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4.4.5 Example 4.10:   Superposition − Beam  5 
 
 
 
 
 
 
 

Figure 4.37 

 

Using superposition this beam can be represented as the sum of: 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.38 

 

 VB = (+ 10.0 + 7.5 − 1.5) = 16.0 kN; 
 VD = (− 2.0 + 7.5 + 7.5) = 13.0 kN; 
 Shear Force at B left−hand side = − 8.0 kN 
 Shear Force at B right−hand side = (+ 2.0 + 7.5 − 1.5) = + 8.0 kN 
 Shear Force at C left−hand side = (+ 2.0 + 7.5 − 1.5) = + 8.0 kN 
 Shear Force at C right−hand side = (+ 2.0 − 7.5 − 1.5) = − 7.0 kN 
 Shear Force at D left−hand side = (+ 2.0 − 7.5 − 1.5) = − 7.0 kN 
 Shear Force at D right−hand side = + 6.0 kN 
 Shear Force at E = + 6.0 kN 
 Bending Moment at B = − 8.0 kNm 
 Bending Moment at C = (− 4.0 + 15.0 − 3.0) = + 8.0 kNm 
 Bending Moment at D = − 6.0 kNm 
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4.5 Unit Load Method for Deflection of Beams 
In Chapter 3, Section 3.5 the deflection of pin−jointed frames was calculated using the 
concept of strain energy and Castigliano’s 1st. Theorem. This approach can also be applied 
to structures such as beams and rigid−jointed frames in which the members are primarily 
subject to bending effects. 
In the case of pin−jointed frames the applied loads induce axial load effects and 
subsequent changes in the lengths of the members. In the case of beams and rigid−jointed 
frames, the corresponding applied loads induce bending moments and subsequent changes 
in the slope of the member.  
Pin−jointed frames comprise discrete members with individual axial loads which are 
constant along the length of the member. In beams the bending moment generally varies 
along the length and consequently the summation of the bending effect for the entire beam 
is the integral of a function involving the bending moment. 

4.5.1 Strain Energy  (Bending Load Effects)  
A simply−supported beam subjected to a single point load is shown in Figure 4.39. An 
incremental length of beam dx, over which the bending moment can be considered to be 
constant, is indicated a distance ‘x’ from the left−hand support. 
 
 
 
 
                     
 
 
           
        Figure 4.39 

 

From ‘simple bending theory’ 
yR

E

I

M σ==    ∴ 
EI

M =
R

1  

where R is the radius of curvature and 1/R  is the curvature of the beam, i.e. the rate of 

change of slope.    ∴ 
R

1  = 
dx

dθ  = 
EI

M  

Assuming the moment is applied to the beam gradually, the relationship between the 
moment and the change in slope is as shown in Figure 4.40. 

 
The external work−done on the member 
by the bending moment ‘M’ is equal to 
the strain energy stored and is given by 
the expression: 

dU = ⎟
⎠
⎞

⎜
⎝
⎛ × θdM

2
1  

   

      Figure 4.40 

 

δθ 
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M  M 

dx 



 Beams 209

Differentiating the expression for strain energy with respect to x gives: 

 
dx

dU  = ⎟
⎠
⎞

⎜
⎝
⎛ ×

dx

d
M

θ
2
1  

substituting for 
dx

dθ  ∴ 
dx

dU  = ⎟
⎠
⎞

⎜
⎝
⎛ ×

EI

M
M

2
1  = 

EI

M

2

2

 

Transposing dx in this equation    dU = dx
EI

M

2

2

 

The total strain energy in the beam   U = 
2

0 2

L
M

dx
EI∫  

Using Castigliano’s 1st Theorem relating to strain energy and structural deformation: 
 

 Δ = 
W

U

∂
∂  

where: 
U is the total strain energy of the structure due to the applied load system, 
W is the force or moment acting at the point where the displacement or rotation is 

required, 
Δ is the linear displacement or rotation in the direction of the line of action of W. 
 
Consider the simply−supported beam ABCD shown in Figure 4.41 in which it is required 
to determine the mid−span deflection at C due to an applied load  P at position B. 
 
 
 
 
                    Figure 4.41 

 
Step 1: 

The applied load bending moment diagram is determined as shown in Figure 4.42 
 
 
 
                    Figure 4.42 

 

Step 2: 

The applied load system is removed from the structure and an imaginary Unit load is 
applied at the position and in the direction of the required deflection, i.e. a vertical load 
equal to 1.0 at point C. The resulting bending moment diagram due to the unit load is 
indicated in Figure 4.43 
 
 
                     

                    Figure 4.43 

P 

A                      B       C         D 

L, E, I 
mid−span position 

M applied load diagram 

m unit load diagram
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If both the Step 1 and the Step 2 load systems are considered to act simultaneously, then 
by superposition the bending moment in the beam is given by: 
 
 Q = (M + βm) 
where: 
M is the bending moment due to the applied load system 
m is the bending moment due to the applied imaginary Unit load applied at C 
β is a multiplying factor to reflect the value of the load applied at C, (since the unit load 

is an imaginary force the value of β = zero and is used here as a mathematical 
convenience.) 

 
The strain energy in the structure is equal to the total energy stored along the full length of 
the beam: 

 U = 
2

0
2

L
Q

dx
EI∫  

Using Castigliano’s 1st Theorem  the deflection of point C is given by: 

 Δ = 
W

U

∂
∂  

 ∴ Δβ = 
β∂

∂U  = 
β∂

∂×
∂
∂ Q

Q

U  

 and 
Q

U

∂
∂  = 

0

L
Q

dx
EI∫ ;   

β∂
∂Q  = m 

 ∴ Δβ = 
β∂

∂U  = 
β∂

∂×
∂
∂ Q

Q

U  = 
0

L
Q

dx
EI∫ × m = 

( )
0

L
M m

dx
EI

β+
∫ × m 

 
Since β  = zero  the vertical deflection at C (Δβ) is given by: 

 Δβ = 
0

L
Mm

dx
EI∫  

i.e. the deflection at any point in a beam can be determined from: 

 δ  = 
0

L
Mm

dx
EI∫  

where: 
δ  is the displacement of the point of application of any load, along the line of action of 

that load, 
M  is the bending in the member due to the externally applied load system, 
m is the bending moment in member due to a unit load acting at the position of, and in 

the direction of the desired displacement, 
I is the second−moment of area of the member, 
E is the modulus of elasticity of the material for the member. 
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4.5.2 Example 4.11:   Deflection and Slope of a Uniform  Cantilever  
A uniform cantilever beam is shown in Figure 4.44 in which a 20 kN is applied at B as 
indicated. Determine the magnitude and direction of the deflection and slope at B.  
 
                E and I are constant from A to B.  
              
 
                   Figure 4.44 

 
The bending moment diagrams for the applied load, a unit point load at B and a unit 
moment at B are shown in Figure 4.45.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.45 

Solution: 

 δB = 
0

L
Mm

dx
EI∫  

The bending moment at position ‘x’ due to the applied vertical load   M = − 20.0x 
 
The bending moment at position ‘x’ due to the applied unit vertical  load m = − x 

Mm = + 20x2  ∴ δB = 
4 2

0

20x

x

x
dx

EI

=

=
∫  = 

43

0

20
3

x

EI

⎡ ⎤
⎢ ⎥
⎣ ⎦

= + 
EI

.67426 m  

 
The bending moment at position ‘x’ due to the applied unit moment at B m = − 1.0 

Mm = + 20x  ∴ θB = 
4

0

20x

x

x
dx

EI

=

=
∫  = 

42

0

20
2

x

EI

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

= + 
EI

160 rad.  

VA 4.0 m 

20 kN

A                               B 

MA 

1.0 

A                                        B 

1.0 

zero 

1.0 

1.0 

A                                      B 

4.0 m 

80 kNm centroid of the applied load 
bending moment diagram 

x 

  y1 
4.0 m

x m for unit vertical load at B 

M for applied loads 

x m for unit moment at B 

1.0      y2                   1.0 

20 kN 

A                                          B 

80 kNm 

20 kN 
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The product integral 
0

 
L

Mm dx∫  can be also be calculated as: 

(Area of the applied load bending moment diagram × the ordinate on the unit load 
bending moment diagram corresponding to the position of the centroid of the applied 
load bending moment diagram), e.g. to determine the vertical deflection: 
 
Area of the applied load bending moment diagram   A = (0.5 × 4.0 × 80.0) = 160 kNm2 
Ordinate at the position of the centroid     y1 = 2.67 m 

0

 
L

Mm dx∫  = (160 × 2.67) = 426.67   ∴ δB = 
0

L
Mm

dx
EI∫  = + 

EI

.67426 m 

To determine the slope: 
Area of the applied load bending moment diagram A = (0.5 × 4.0 × 80.0) = 160 kNm2 
Ordinate at the position of the centroid    y2 = 1.0  

0

 
L

Mm dx∫  = (160 × 1.0) = 160    ∴ δB = 
0

L
Mm

dx
EI∫  = + 

EI

160 rad. 

4.5.3 Example 4.12:   Deflection and Slope of a Non−Uniform  Cantilever  
Consider the same problem as in Example 4.11 in which the cross−section of the cantilever 
has a variable EI value as indicated in Figure 4.46.  
 
                .            
    
                   Figure 4.46 
                    

The bending moment diagrams for the applied load, a unit point load at C and a unit 
moment at C are shown in Figure 4.47.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.47 

EI 
A                               C 

VA 2.0 m                2.0 m 

20 kNMA 
1.5EI 

B 

4.0 m 

1.0 

1.0 

A                                       C 

1.5EI EI 

B

1.0 

A                                        C 

1.0 

zero 
1.5EI EI 

B

  1.5EI                    EI 

1.0    y3   y2          y1                 1.0 

m for unit moment at B 

y1 
4.0 m

m for unit vertical load at B 

A1A2

A3

80 kNm 

x M for applied loads 

x 

x 

y2 y3 

40 kNm

20 kN 

20 kN 

A                                        C 

80 kNm 

1.5EI EI 

B
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Solution: 

 δC = 
0

L
Mm

dx
EI∫  

In this case since (Mm/EI) is not a continuous function the product integral must be 
evaluated between each of the discontinuities, i.e. C to B  and B to A. 

 δC = 
0

L
Mm

dx
EI∫  = 

B

C

Mm
dx

EI∫  + 
1.5

A

B

Mm
dx

EI∫  

 
Consider the section from C to B: 0 ≤ x ≤ 2.0 m 
 M = − 20x  m = − x    ∴ Mm = + 20x2 

 
B

C

Mm
dx

EI∫  = 
2 2

0

20x
dx

EI∫  = 
23

0

20
3

x

EI

⎡ ⎤
⎢ ⎥
⎣ ⎦

= + 
EI

.3353 m  

 
Consider the section from B to A: 2.0  ≤  x  ≤  4.0 m 
 M = − 20x  m = − x   ∴ Mm = + 20x2 

 
A

B

Mm
dx

EI∫  = 
4 2

2

20
1.5

x
dx

EI∫  = 
43

2

20
4.5

x

EI

⎡ ⎤
⎢ ⎥
⎣ ⎦

= ⎥
⎦

⎤
⎢
⎣

⎡ ×−×
EI.EI. 54
220

54
420 33

 = + 
EI

.89248 m  

∴ δC = + 
EI

.3353  + 
EI

.89248  = 
EI

.22302 m 

 
Similarly to determine the slope: 

 θC = 
0

L
Mm

dx
EI∫  = 

B

C

Mm
dx

EI∫  +
1.5

A

B

Mm
dx

EI∫  

 
Consider the section from C to B: 0  ≤  x  ≤  2.0 m 
 M = − 20x  m = −1.0   ∴ Mm = 20x 

 ∫
B

C

dx
EI

Mm  = 
2

0

20x
dx

EI∫  = 
22

0

20
2

x

EI

⎡ ⎤
⎢ ⎥
⎣ ⎦

= + 
EI

.040 rad. 

 
Consider the section from B to A: 2.0  ≤  x  ≤  4.0 m 
 M = − 20x  m = −1.0   ∴ Mm = 20x 

 
A

B

Mm
dx

EI∫  = 
4

2

20
1.5

x
dx

EI∫  = 
42

2

20
3.0

x

EI

⎡ ⎤
⎢ ⎥
⎣ ⎦

= ⎥
⎦

⎤
⎢
⎣

⎡ ×−×
EI.EI. 03
220

03
420 22

 = + 
EI

.080 rad. 

 

∴ θC = + 
EI

.040  + 
EI

.080  = + 
EI

.0120 rad. 
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Alternatively, the applied bending moment diagram can be considered as a the sum of the 
areas created by the discontinuity. (In most cases this will result in a number of recognised 
shapes e.g. triangular, rectangular or parabolic, in which the areas and the position of the 
centroid can be easily calculated). 
The deflection can then be determined by summing the products, i.e. (area × ordinate), for 
each of the shapes. 
 
 A1 = (0.5 × 2.0 × 40.0) kNm2,  y1 = 1.333 m,  ∴ A1y1 = 53.32 kNm3 
 A2 = (2.0 × 40.0) kNm2,    y2 = 3.0 m,   ∴ A2y2 = 240.0 kNm3 
 A3 = (0.5 × 2.0 × 40.0) kNm2,  y3 = 3.333 m,  ∴ A3y3 = 133.32 kNm3 
 

δC = 
0

L
Mm

dx
EI∫  = (53.32/EI) + (240.0/1.5EI) + (133.32/1.5EI) = + (302.22/EI) m 

 
The slope can then be determined by summing the products, i.e. (area × ordinate), for each 
of the shapes. 
 
 A1 = (0.5 × 2.0 × 40.0) kNm2,  y1 = 1.0,   ∴ A1y1 = 40.0 kNm3 
 A2 = (2.0 × 40.0) kNm2,    y2 = 1.0,   ∴ A2y2 = 80.0 kNm3 
 A3 = (0.5 × 2.0 × 40.0) kNm2,  y3 = 1.0,   ∴ A3y3 = 40.0 kNm3 
 

δC = 
0

L
Mm

dx
EI∫  = (40.0/EI) + (80.0/1.5EI) + (40/1.5EI) = + (120.0/EI) rad. 

4.5.4 Example 4.13:   Deflection and Slope of a Linearly Varying Cantilever  
Consider the same problem as in Example 4.11 in which the cross−section of the cantilever 
has an I which varies linearly from I at the free end to 2I at the fixed support at A as 
indicated in Figure 4.48.  Determine the vertical displacement and the slope at point B for 
the loading indicated. 
 
                .            
    
                       

 

 

                      Figure 4.48 
                    

 
The value of I at position ‘x’ along the beam is given by:  I + I(x/L)  = I (L + x) /L. 
 
In this case since the I term is dependent on x it cannot be considered outside the integral 
as a constant. The displacement must be determined using integration and cannot be 
calculated using the sum of the (area × ordinate) as in Example 5.11 and Example 5.12. 

 A                                      B
EI 

VA 4.0 m 

20 kN 
MA 

2.0EI

x
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Figure 4.49 

Solution: 

The bending moment at position ‘x’ due to the applied vertical load            M = − 20.0x 
The bending moment at position ‘x’ due to the applied unit vertical  load  m = − x 

 Mm = + 20x2  ∴ δB = ( )
4 2

0

20x

x

x L
dx

EI L x

=

=
+∫  = ( )

4 2

0

20 x

x

L x
dx

EI L x

=

=
+∫  

 Let v = (L + x)  ∴ x = (v − L)    dx = dv    and   x2 = (v − L)2 
 when   x = 0  v = L = 4.0 and  when   x = 4  v = (L + 4.0) = 8.0  

 δB = ( )
4 2

0

20 x

x

L x
dx

EI L x

=

=
+∫  = 

( )28

4

4.080.0 v

v

v
dv

EI v

=

=

−
∫  = 

( )28

4

8 0 16 080 0 v

v

v . v ..
dv

EI v

=

=

− +
∫  

  = 
8

4

80.0 16.08.0
v

v

v dv
EI v

=

=

⎛ ⎞− +⎜ ⎟
⎝ ⎠∫  = 

8.02

4.0

80.0 8 16.0ln
2

v

v

v
v v

EI

=

=

⎡ ⎤
− +⎢ ⎥

⎣ ⎦
 

= ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+×−−⎥

⎦

⎤
⎢
⎣

⎡
+×− 401648

2
04801688

2
08080 22

ln.
.

ln.
.

EI

. = + 
EI

.20247 m  

The bending moment at position ‘x’ due to the applied unit moment at B m = − 1.0 

 Mm = + 20x   ∴ θB = ( )
4

0

20x

x

xL
dx

EI L x

=

=
+∫  = ( )

4

0

20 x

x

L x
dx

EI L x

=

=
+∫  

 θB = ( )
4

0

20 x

x

L x
dx

EI L x

=

=
+∫  = 

( )8

4

4.080.0 v

v

v
dv

EI v

=

=

−
∫  = 

8

4

80.0 4.01
v

v

dv
EI v

=

=

⎛ ⎞−⎜ ⎟
⎝ ⎠∫  

  = [ ] 8.0
4.0

80.0 4.0 v

v
v lnv

EI

=
=−  = [ ] [ ]{ }4040480408080

ln..ln..
EI

. −−−  = + 
EI

.1998 rad.  

2.0EI 20 kN 

A                                      B 

20 kN 
80 kNm 

EI 

A                                       B 

1.0 

1.0 
4.0 m 

2.0EI 
EI 

EI 
A                                        B 

1.0 1.0 

zero 2.0EI 

80.0 kNm

x M for applied loads 

4.0 m

m for unit vertical load at B x 

1.0                                                          1.0 

m for unit moment at B x 
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4.5.5 Example 4.14:   Deflection of a Non-Uniform,  Simply-Supported Beam  
A non-uniform, single-span beam ABCD is simply-supported at A and D and carries 
loading as indicated in Figure 4.50. Determine the vertical displacement at point B.  
 
 
 
                .            
    
                    

 

 

Figure 4.50 
 
The bending moment diagrams for the applied load, a unit point load at B are shown in 
Figure 4.51.  
The beam loading can be considered as the superposition of a number of load cases each 
of which produces a bending moment diagram with a standard shape. Since there are 
discontinuities in the bending moment diagrams the product integrals should be carried out 
for the three regions A to B, D to C and C to B. 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.51 

EI                 EI 

A            B                                        C             D 

11.25 kN                                   3.75 kN 

15 kN 

2EI 

EI                 EI 

A            B                                        C             D 

0.75                                               0.25 

1.0 

2EI 

EI                 EI 

A           B                                          C             D

zero       12.0 kN                      12.0 kN       zero 

6 kN/m 

2EI 

EI                 EI 

A            B                                           C           D 

12.0 kN                              12.0 kN

12.0 kN                12.0 kN 

2EI 

A               B                                   C              D 

x 12.0 kNm 

A               B                                    C              D 

x x

24.0 kNm                   24.0 kNm 

A                B                                    C             D 

x x
22.5 kNm

A                B                                    C             D 

1.5 m
1.0 m 1.0 m

0.333 m 

M for applied loads 

m for unit vertical load at B

M for applied loads 

M for applied loads 

    VA      2.0 m           4.0 m          2.0 m          VD   

EI                EI 

A                   B               C    D 

15 kN                 6 kN/m 

8.0 m

2EI
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Solution: 

It is convenient in this problem to change the position of the origin from which ‘x’ is 
measured for the different regions A−B, D−C and C−B as shown in Figure 4.51. 

 δB = 
0

L
Mm

dx
EI∫  = 

B

A

Mm
dx

EI∫  + 
C

D

Mm
dx

EI∫  + 
2

B

C

Mm
dx

EI∫  

 
Consider the section from A to B: 0 ≤ x ≤ 2.0 m 
 M = (12x  + 11.25x) = 23.25x    m = + 0.75 x   ∴ Mm = + 17.44 x2 

 
B

A

Mm
dx

EI∫  = 
2 2

0

17.44x
dx

EI∫  = 
23

0

17.44
3

x

EI

⎡ ⎤
⎢ ⎥
⎣ ⎦

 = 
317 44 2

3
.

EI

⎡ ⎤×
⎢ ⎥
⎣ ⎦

= + 
EI

.5146 m  

Consider the section from D to C: 0 ≤ x ≤ 2.0 m 
 M = (12x + 3.75x) = 15.75x    m = + 0.25x  ∴ Mm = + 3.94x2 

 
C

D

Mm
dx

EI∫  = 
2 2

0

3.94x
dx

EI∫  = 
2

0

3

3
943

⎥
⎦

⎤
⎢
⎣

⎡
EI

x.  = 
33 94 2

3
.

EI

⎡ ⎤×
⎢ ⎥
⎣ ⎦

 = + 
EI

.5110 m 

Consider the section from C to B: 2.0  ≤  x  ≤  6.0 m 
 M = [12(x − 2) − 6(x − 2)2/2] + [12x − 12(x − 2)] + 3.75x = (27.75x − 3x2 − 12) 
 m = + 0.25 x            ∴ Mm = (6.94x2 − 0.75x3 − 3x) 

 
B

C

Mm
dx

EI∫ = 
( )2 36

2

6.94 0.75 3

2

x x x
dx

EI

− −
∫  = 

63 4 2

2

6.94 0.75 3
6 8 4

x x x

EI EI EI

⎡ ⎤
− −⎢ ⎥

⎣ ⎦
 

     = ⎥
⎦

⎤
⎢
⎣

⎡ ×−×−×−⎥
⎦

⎤
⎢
⎣

⎡ ×−×−×
EIEI

.

EI

.

EIEI

.

EI

.

4
23

8
2750

6
2946

4
63

8
6750

6
6946 243243

 

    = +
EI

.5996 m  

    ∴ δB = ⎟
⎠
⎞

⎜
⎝
⎛ ++

EI

.

EI

.

EI

. 599651105146  = 
EI

.61153 m 

Alternatively: considering Σ (areas × ordinates) 
 

 

 

 

 

 

 

 

 

 

 

 

 m for unit vertical load at B

A                B                                    C             D 

y1,3,7
y2,5 

y4,8 
y6 1.5 m

0.5 m 

Figure 5.52

A1 

M for applied loads 

A                B                                   C              D 

12.0 kNm 

M for applied loads 

A               B                                    C              D 

24.0 kNm                   24.0 kNm 

A2

A3

A4 

7.5 kNm 

A                B                                    C             D 

22.5 kNm 

M for applied loads 

A5 

A6 
A7

A8



218 Examples in Structural Analysis 

 
 

 

 A1 = (0.667 × 4.0 × 12.0) kNm2,   y1 = 1.0 m,   ∴ A1y1 = 32.0 kNm3 
 A2 = (0.5 × 2.0 × 24.0) kNm2,   y2 = 1.0 m,   ∴ A2y2 = 24.0 kNm3 
 A3 = (4.0 × 24.0) kNm2,     y3 = 1.0 m,   ∴ A3y3 = 96.0 kNm3 
 A4 = (0.5 × 2.0 × 24.0) kNm2,   y4 = 0.333 m,  ∴ A4y4 = 8.0 kNm3 
 A5 = (0.5 × 2.0 × 22.5) kNm2,   y5 = 1.0 m,   ∴ A5y5 = 22.5 kNm3 
 A6 = (0.5 × 4.0 × 15.0) kNm2,   y6 = 1.167 m,  ∴ A6y6 = 35.0 kNm3 
 A7 = (4.0 × 7.5) kNm2,     y7 = 1.0 m,   ∴ A7y7 = 30.0 kNm3 
 A8 = (0.5 × 2.0 × 7.5) kNm2,    y8 = 0.333 m,  ∴ A8y8 = 2.5 kNm3 
 

δB = 
0

L
Mm

dx
EI∫  = (32.0/2EI) + (24.0/EI) + (96.0/2EI) + (8.0/EI) + (22.5/EI) + (35.0/2EI) 

      + (30.0/2EI) + (2.5/EI)   ∴ δB = (153.5/EI) m 

4.5.6 Example 4.15:   Deflection of a Frame and Beam Structure  
A uniform beam BCD is tied at B, supported on a roller at C and carries a vertical load at 
D as indicated in Figure 4.53. Using the data given determine the vertical displacement at 
point D.  
 
 
 
 
 
 
 
 
 
 
 
 
 
             Figure 4.53 

 
Solution: 

Consider the rotational equilibrium of the beam: 
+ve ΣMA = 0  − (VC × 1.5) + (5.0 × 3.5) = 0    ∴ VC = 11.67 kN 

 
Consider the vertical equilibrium of the structure: 

+ve ΣFz = 0  VA + VC − 5.0 = 0        ∴ VA = − 6.67 kN 
 
Since the structure comprises both an axially loaded member and a flexural member the 
deflection at D is given by: 

 δD = 
Member AB

PL
u

AE

⎛ ⎞
⎜ ⎟
⎝ ⎠

+ 
0 Member BCD

L
Mm

dx
EI

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠
∫  

1.
5 

m
 

1.5 m                2.0 m 

A 

B         C           D 

VA 

VC
5.0 kN 

Member Properties: 

E beam = 10.5 kN/mm2  
I beam = 450 × 106 mm4 
 
E tie = 80 kN/mm2   
A tie = 300 mm2  

Tie member 
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                .            
    
                    

 
 
 
 
 
 
 
 
            Figure 4.54 

 

 
Member AB

PL
u

AE

⎛ ⎞
⎜ ⎟
⎝ ⎠

    = 6 67 1500 1 33
300 80
.

.
×⎛ ⎞×⎜ ⎟×⎝ ⎠

 = + 0.55 mm 

 
0 Member BCD

L
Mm

dx
EI

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠
∫ = 

C

B

Mm
dx

EI

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠
∫  + 

C

D

Mm
dx

EI

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠
∫  

 
Consider the section from B to C: 0 ≤ x ≤ 1.5 m 
 M = − 6.67x   m = − 1.33 x  ∴ Mm = + 8.87 x2 

 
C

B

Mm
dx

EI∫  = 
1 5 2

0

8 87.
. x

dx
EI∫  = 

1 53

0

8 87
3

.

. x

EI

⎡ ⎤
⎢ ⎥×⎣ ⎦

= 
329 94 10

3 10 5 450
.

.

⎛ ⎞×
⎜ ⎟× ×⎝ ⎠

 = + 2.11 mm 

 
Consider the section from D to C: 0 ≤  x  ≤  2.0 m 
 M = − 5.0 x     m = − 1.0 x   ∴ Mm = + 5.0 x2 

 
C

D

Mm
dx

EI∫  = 
2 2

0

5 0. x
dx

EI∫  = 
23

0

5 0
3
. x

EI

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 = 
340 0 10

3 10 5 450
.

.

⎛ ⎞×
⎜ ⎟× ×⎝ ⎠

 = + 2.82 mm 

δD = 
Member AB

PL
u

AE

⎛ ⎞
⎜ ⎟
⎝ ⎠

+ 
0 Member BCD

L
Mm

dx
EI

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠
∫ = (0.55 + 2.11 + 2.82) = + 5.48 mm 

Member BCD Properties: 

E beam  = 10.5 kN/mm2  
I beam   =  450 × 106 mm4 

Member AB Properties: 

E tie   =  80 kN/mm2   
A tie   = 300 mm2  

Applied Load Effects:  P and M 

A 

B        C           D 

6.67 kN 

11.67 kN 5.0 kN 

+ 6.67 kN 

xx 

− 10.0 kNm 

B         C              D 

Unit Load Effects: u and m 

A 

B        C           D 

1.33 

2.33  1.0 

+ 1.33 1.333 m                           1.333 m

xx 

− 2.0 m

B         C              D 
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In the previous examples the product integrals were also determined using: 
 
(the area of the applied bending moment diagram × ordinate on the unit load 

bending moment diagram). 

 

In Table 4.1 coefficients are given to enable the rapid evaluation of product integrals for 
standard cases along lengths of beam where the EI value is constant. 
 

Product Integral  ∫
0

L Mm dx
EI

 = [Coefficient × a × b × L]/EI 

 
 
 

    

 
 
 

1.0 0.5 0.5 0.5 

 
 
 

0.5 0.333 0.167 0.25 

 
 
 

0.5 0.167 0.333 0.25 

 
 
 

0.5 0.25 0.25 0.333 

 
 
 

0.667 0.333 0.333 0.417 

 
 
 

0.333 0.25 0.083 0.146 

 
 
 

0.333 0.083 0.25 0.146 

 
Table 4.1 

 
Consider the contribution from the beam BCD to the vertical deflection at D in        
Example 4.15. 

 Product Integral 
0

L
Mm

 dx
EI∫ = Σ [Coefficient × a × b × L]/EI 

 From  (B to C) + (D to C) = [(0.333 × 10.0 × 2.0 × 1.5) + (0.333 × 10.0 × 2.0 × 2.0)]/EI 
 
              = + 23.31/EI  i.e. same as [(2.11 + 2.82] calculated above. 

a 

L 

a 

L 

a 

L 

a 

L 

a 

L 

a 

L 

a 

L 

M 

m 
b 

L 

b

L 

b

L 

b 

L 
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4.5.7 Example 4.16:   Deflection of a Uniform Cantilever using Coefficients  
A uniform cantilever beam is shown in Figure 4.55 in which a uniformly distributed load 
and a vertical load is applied as indicated. Using the coefficients in Table 4.1 determine 
the magnitude and direction of the deflection at D.  
 
 
                E and I are constant.      
          
 
                   Figure 4.55 

 
The bending moment diagrams for the applied loads and a unit point load at B are shown 
in Figure 4.56.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.56 

Solution: 

Consider the unit load bending moment diagrams for both applied loads as the sum of  
rectangular and a triangular area as shown. 
 
 
 
 
 
 
 
 
 δD, point load  = [(0.5 × 48.0 × 2.0 × 4.0) + (0.333 × 48.0 × 4.0 × 4.0)]/EI = 447.74/EI 
 δD, UDL  = [(0.333 × 8.0 × 4.0 × 2.0) + (0.25 × 8.0 × 2.0 × 2.0)]/EI = 29.31/EI 

δD, Total  = (447.74 + 29.31) /EI = + 477.05/EI 

A                       B                C         D

VA 
6.0 m 

12 kN MA 

2.0 m         2.0 m        2.0 m 

4.0 kN/m 

1.0 

1.0 

A                         B                   C      D 

6.0 m 

12 kN 

A                        B                   C               D 

48 kNm 

12 kN 
0.75L 

L

x 

8.0 kNm 

M for UDL 

48 kNm 

x M for point load 

8.0 kN 

A      B                   C           D 

8.0 kNm 4.0 kN/m 

4.0 m
6.0 m 

2.0 m 

48.0 kNm Point Load Bending 
Moment Diagram 

2.0 m 

2.0 m
6.0 m

4.0 m

8.0 kNm 

Uniformly Distributed Load 
Bending Moment Diagram 

4.0 m

2.0 m
4.0 m

6.0 m

x m for unit vertical load at D 
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4.5.8 Problems: Unit Load Method for Deflection of Beams / Frames 
A series of statically−determinate beams/frames are indicated in Problems 4.16 to 

4.23. Using the applied loading given in each case determine the deflections indicated. 

The relative values of Young’s Modulus of Elasticity (E), Second Moment of Area (I) 

and Cross−sectional area (A) are given in each case. 

 

 

 

 

 

 
 
 
 

Determine the value of the vertical deflection at B given that EI = 50.0 × 103 kNm2  
 
 
 
 
 
 
 
 
 

 
 

Determine the value of the vertical deflection at B given: 
Ebeam = 9.0  kN/mm2    Ibeam = 14.6 × 109 mm4  
E AE and CD = 170  kN/mm2   AAE = 80 mm2     ACD = 120 mm2  

 
 
 
 
 
 
 
 
 
 

 
The EI value of the beam ABCD varies linearly from EI at the supports A and D to 1.5EI 
at B and C respectively and is constant between B and C. 
 
Determine the value of the vertical deflection at B given that EI = 15.0 × 103 kNm2     

 
 

A                                B         C            D EI 

7.5 m

24 kN/m

VA                   3.0 m      3.0 m    1.5 m         VD 

Problem 4.16

Problem 4.17

20 kN           20 kN 
A                 B                           C        D          E  ME 2EI 

  EI            1.5EI     1.5EI          EI 
VA        2.0 m    3.0 m     2.0 m                            4.0 m      VE 

7.0 m 

Problem 4.18

D 

EI 2EI 
A                                                                   C 

VE                  4.0 m                 4.0 m

8.0 m

20 kN                  8 kN/m 

VD 

2.0 m 
1.0 m 

E 

B
AEAE 

AECD 
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Determine the value of the vertical deflection at G given that EI = 5.0 × 103 kNm2  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Determine the value of the vertical deflection at A given: 
Ebeam = 205 kN/mm2  Ibeam = 60.0 × 106 mm4  
ECD    = 205 kN/mm2  ACD   = 50 mm2     

 
 
 
 
 
 
 
 
 

Determine the value of the vertical deflection at C 

given: 
Ebeam = 205 kN/mm2  Ibeam = 90.0 × 106 mm4  
EBD     = 205 kN/mm2  ABD   = 1500 mm2     

 
 
 
 

Problem 4.19

1.0 m        1.0 m                           3.0 m                          2.0 m           0.5 m  0.5 m 

EI A                 B   C                                      D                         E           F     G  

VB                                      VE 

10 kN/m                                  20 kN                                 8 kN 

8.0 m 

Problem 4.20

Problem 4.21 

AECD 

     A        B                           C 

D

8.0 m

2.0 m                       6.0 m 

EI 

5 kN                                       15 kN/m 

VB 
1.5EI 

VD 

1.
5 

m
 

   A                                   B        C 

2.0 m                   2.0 m   

EI       EI 

4.0 m 

4 kN/m        15 kN 

D 

2.
0 

m
 

VD 

VA 

HD 

HA 

AEBD 

θ 
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Determine the value of the vertical deflection at D given: 
 

Ebeam = 205 kN/mm2      Ibeam = 500.0 × 106 mm4  
EAll frame members = 205 kN/mm2  AAll frame members  = 4000 mm2 

 
 
   
 
 
 
 
 
 
 
 
 
 
 
  
 

The EI value of the cantilever ABC varies linearly from 2EI at the fixed support to EI at B 
and is constant from B to C. 
 
Determine the value of the vertical deflection at F and at C given: 
EIcantilever ABC = 1080 × 103 kNm2,  EAAll frame members = 300 × 103 kN 

 
 
 

Problem 4.22

Problem 4.23

A                                               C                    F            E 
MA 

VA                                                       VE 
4.0 m     4.0 m     4.0 m     4.0 m 

3.
0 

m
 

EI                         EI 

D

2EI 120 kN

40 kN

B 

pin−jointed frame

HE 

 A                                    B          C        D 
EI

VF 3.0 m                   3.0 m      3.0 m   

9.0 m

6 kN/m

F          E 

4.
0 

m
 

12 kN 

HF 

HA 

VA 

pin−jointed frame

θθ 
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4.5.9 Solutions: Unit Load Method for Deflection of Beams / Frames  
        
 
 
 

 
 

 
 
 
 
 

 

 Determine the value of the vertical deflection at B given that EI = 50.0 × 103 kNm2 
 

Support Reactions 

Consider the rotational equilibrium of the beam: 
+ve ΣMA = 0  + (24.0 × 3.0)(4.5) − (VD × 7.5) = 0    ∴ VD = + 43.2 kN 

   
 Consider the vertical equilibrium of the beam: 
 +ve ΣFz = 0  + VA − (24.0 × 3.0) + VD = 0      ∴ VA = + 28.8 kN 

 

   
 
 
 
 
 
 
 
 

δB = 
0

L
Mm

dx
EI∫  

(Mm/EI) is not a continuous function and the product integral must be evaluated 
between each of the discontinuities, i.e. A to B, D to C and C to B. 

δB = 
0

L
Mm

dx
EI∫  = 

B

A

Mm
dx

EI∫  + 
C

D

Mm
dx

EI∫  + 
B

C

Mm
dx

EI∫  

 
Consider the section from A to B: 0 ≤ x ≤ 3.0 m 
M = + 28.8x  m = + 0.6x   ∴ Mm = 17.28x2 
B

A

Mm
dx

EI∫  = 
3 2

0

17 28. x
dx

EI∫  = 
33

0

17 28
3
. x

EI

⎡ ⎤
⎢ ⎥
⎣ ⎦

= + 155 52.

EI
m  

Solution 
Topic:  Statically Determinate Beams/Frames – Deflection Using Unit Load 

Problem Number: 4.16            Page No. 1 

A                                       B         C              D EI 

7.5 m 

24 kN/m 

VA                   3.0 m          3.0 m           1.5 m         VD 

x

A                           B                                      C          D 

   28.8 kN                              43.2 kN 

24 kN/m 

x 

EI 
Applied load 

0.6                                     0.4      

1.0

A                          B                                   C             D 

x x 

Unit load 
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Consider the section from D to C: 0 ≤ x ≤ 1.5 m 
M = + 43.2x   m = + 0.4x  ∴ Mm = 17.28x2 
C

D

Mm
dx

EI∫  =
1 5 2

0

17 28.
. x

dx
EI∫  = 

1 53

0

17 28
3

.

. x

EI

⎡ ⎤
⎢ ⎥
⎣ ⎦

= + 19 44.

EI
m  

 
Consider the section from C to B: 1.5 ≤ x ≤ 4.5 m 
M = + 43.2x − 24(x − 1.5)2/2 = 43.2x − 12(x2 − 3x + 2.25)  
     = − 12x2 + 79.2x − 27.0 
m = + 0.4x 
 Mm = − 4.8x3 + 31.68x2 − 10.8x  
B

C

Mm
dx

EI∫  = 
4 5 3 2

1 5

4 8 31 68 10 8.

.

. x . x . x
dx

EI

− + −
∫  = 

4 54 3 2

1 5

4 8 31 68 10 8
4 3 2

.

.

. x . x . x

EI EI EI

⎡ ⎤
− + −⎢ ⎥
⎣ ⎦

 

          = 360 86 17 42. .

EI EI

⎛ ⎞+ −⎜ ⎟
⎝ ⎠

 = 343 44.

EI
+  

∴ δB = 155 52 19 44 343 44. . .

EI EI EI

⎛ ⎞+ + +⎜ ⎟
⎝ ⎠

 = 518 4.
EI

= 3
518 4

50 0 10
.

. ×
m = 10.37 mm 

Alternatively: 

δB = Σ(Area applied bending moment diagram × Ordinate unit load bending moment diagram) 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 

Solution 
Topic:  Determinate Beams/Frames – Deflection Using Unit Load 

Problem Number: 4.16            Page No. 2 

1.0 

A                      B                               C          D 

0.6                                                                      0.4 

m for unit vertical load at B 

A                          B                           C             D 

1.8 m
y2 y1,3 

y5 
y4

EI 

A                       B                                C          D 

zero                 36.0 kN                36.0 kN   zero 

24 kN/m 

M for applied loads 

27.0 kNm 

A                          B                           C            D 

A1

EI 

A                       B                                 C         D 

28.8 kN                       43.2 kN 

36.0 kN           36.0 kN 

A                          B                            C            D 

86.4 kNm                   64.8 kNm 

A2
A3

A4

A5 

M for applied loads 
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A1 = (0.667 × 3.0 × 27.0) kNm2,   y1 = 1.2 m,   ∴ A1y1 = 64.83 kNm3 
A2 = (0.5 × 3.0 × 86.4) kNm2,   y2 = 1.2 m,   ∴ A2y2 = 155.52 kNm3 
A3 = (3.0 × 64.8) kNm2,     y3 = 1.2 m,   ∴ A3y3 = 233.28 kNm3 
A4 = (0.5 × 3.0 × 21.6) kNm2,   y4 = 1.4 m,   ∴ A4y4 = 45.36 kNm3 
A5 = (0.5 × 1.5 × 64.8) kNm2,   y5 = 0.4 m,   ∴ A5y5 = 19.44 kNm3 
δB = (64.83 + 155.52 + 233.28 + 45.36 + 19.44)/50.0 × 103 = 0.0104 m = 10.37 mm 

 

Using the coefficients given in Table 4.1: 

 

Area A1: 
 

 

 
0

L
Mm

dx
EI∫  = [(0.667 × 27 × 0.6 × 3.0) + (0.333 × 27 × 1.2 × 3.0)]/EI = 64.78/EI 

 Area A2: 
  

 
0

L
Mm

dx
EI∫  = (0.333 × 86.4 × 1.8 × 3.0)/EI = 155.36/EI 

 

Area A3: 
 

 
0

L
Mm

dx
EI∫  = [(1.0 × 64.8 × 0.6 × 3.0) + (0.5 × 64.8 × 1.2 × 3.0)]/EI = 233.28/EI 

 

Area A4: 
 

 

 
0

L
Mm

dx
EI∫  = [(0.5 × 21.6 × 0.6 × 3.0) + (0.333 × 21.6 × 1.2 × 3.0)]/EI = 45.33/EI 

 

Area A5: 
 

 
0

L
Mm

dx
EI∫  = (0.333 × 64.8 × 0.6 × 1.5)/EI = 19.42/EI 

δB = ( )D

A
Coefficient a b L / EI× × ×∑  

δB = (64.78 + 155.36 + 233.28 + 45.33 + 19.42)/50.0 × 103 = 0.0102 m  = 10.2 mm 

Solution 
Topic:  Determinate Beams/Frames – Deflection Using Unit Load 

Problem Number: 4.16            Page No. 3 

3.0 m 

21.6 kNm

3.0 m

27 kNm 

1.8 m

3.0 m

64.8 kNm 

86.4 kNm 

3.0 m

0.6 m 

1.8 m 

0.6 m 

1.8 m 

0.6 m 

1.8 m 

1.5 m 

64.8 kNm
0.6 m 
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Determine the value of the vertical deflection at B given: 
Ebeam = 9.0  kN/mm2 ,   Ibeam = 14.6 × 109 mm4 
EAE and CD = 170 kN/mm2  AAE = 80 mm2 ,   ACD = 120 mm2 
EI = (9.0 × 14.6 × 109)/106 = 131.4 × 103 kNm2 
AEAE = (80.0 × 170.0) = 13.6 × 103 kN ;     AECD = (120.0 × 170.0) = 20.4 × 103 kN 
 

δB = 
0

L
Mm

dx
EI∫  +

AE,CD

PL
u

AE

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑  

 

Consider the beam ABC: 

Support Reactions 

Consider the rotational equilibrium of the beam: 
+ve ΣMA = 0 + (8.0 × 8.0)(4.0) + (20.0 × 4.0) − (VC × 8.0) = 0 
                     ∴ VC = + 42.0 kN 

 Consider the vertical equilibrium of the beam: 
 +ve ΣFz = 0 + VA − 20.0 − (8.0 × 8.0) + VC = 0     ∴ VA = + 42.0 kN 

 

   
 
 
 
 
 
 
 
 

 
(Mm/EI) is not a continuous function the product integral must be evaluated between 
each of the discontinuities, i.e. A to B and C to B. 

δB = 
0

L
Mm

dx
EI∫  = 

B

A

Mm
dx

EI∫  + 
B

C

Mm
dx

EI∫  

0.5                                     0.5      

1.0
A                                  B                                          C   

x x 

Unit load 

Solution 
Topic:  Determinate Beams/Frames – Deflection Using Unit Load 

Problem Number: 4.17            Page No. 1 

Applied loads 
A                                 B                                 C  

   42.0 kN                              42.0 kN 

8 kN/m 

x x

EI 

20.0 kN 

2EI 

VA 
  A                                                            C 

20 kN             8 kN/m 

B
VC 

D 

EI 
2EI 

A                                                                              C 

VE                     4.0 m                         4.0 m 

8.0 m 

20 kN                       8 kN/m 

VD 

2.0 m 

1.0 m 

E 

B 
AEAE 

AECD 
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Consider the section from A to B: 0 ≤ x ≤ 4.0 m 

M = + 42.0x − 8.0x2/2 = 42.0x − 4.0x2    m = + 0.5x 
 Mm = (42.0x − 4.0x2)(0.5x) = 21.0x2 − 2.0x3 
 
B

A

Mm
dx

EI∫  = 
4 2 3

0

21 0 2 0. x . x
dx

EI

−
∫  = 

43 4

0

21 0 2 0
3 4
. x . x

EI EI

⎡ ⎤
−⎢ ⎥

⎣ ⎦
= + 320 0.

EI
m 

 
Consider the section from C to B: 0 ≤ x ≤ 4.0 m 

M = + 42.0x − 8.0x2/2 = 42.0x − 4.0x2     m = + 0.5x 
 Mm = (42.0x − 4.0x2)(0.5x) = 21.0x2 − 2.0x3 
 
B

C

Mm
dx

EI∫  = 
4 2 3

0

21 0 2 0
2

. x . x
dx

EI

−
∫  = 

43 4

0

21 0 2 0
6 8
. x . x

EI EI

⎡ ⎤
−⎢ ⎥

⎣ ⎦
= + 160 0.

EI
m  

 
0

L
Mm

dx
EI∫  = 320 0 160 0. .

EI EI

⎛ ⎞+ +⎜ ⎟
⎝ ⎠

 = 480 0.
EI

 = 3
480 0

131 4 10
.

. ×
m = 3.65 mm 

 

Consider the columns AE and CD: 

 

 

 

 

 

 

 

 

 

 

 

AE,CD

PL
u

AE

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑  = 
AE

42 0 1000 0 5. .

AE

⎛ ⎞× ×
⎜ ⎟
⎝ ⎠

 + 
CD

42 0 2000 0 5. .

AE

⎛ ⎞× ×
⎜ ⎟
⎝ ⎠

 

          = 
3

3
21 0 10
13 6 10

.

.

⎛ ⎞×
⎜ ⎟

×⎝ ⎠
 + 

3

3
42 0 10
20 4 10

.

.

⎛ ⎞×
⎜ ⎟

×⎝ ⎠
 = + 1.54 + 2.06 = 3.6 mm 

δB = 
0

L
Mm

dx
EI∫  + 

AE,CD

PL
u

AE

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ = 3.65 + 3.6 = 7.25 mm 

 

Solution 
Topic:  Determinate Beams/Frames – Deflection Using Unit Load 

Problem Number: 4.17            Page No. 2 

2.0 m 
1.0 m 

E 

A                                                                                C 

20 kN                       8 kN/m 

B 

D 

Member AE: 
Applied axial load PAE = 42.0 kN 
Unit axial load       uAE = 0.5 Member CD: 

Applied axial load PCD = 42.0 kN 
Unit axial load       uCD = 0.5 

42.0 kN                      42.0 kN 
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Alternatively for the beam ABC: 

δB = Σ(Area applied bending moment diagram × Ordinate unit load bending moment diagram) 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
A1 = (0.667 × 4.0 × 16.0) kNm2,  y1 = 1.0 m,  ∴ A1y1 = 42.69 kNm3 
A2 = (0.667 × 4.0 × 16.0) kNm2,   y2 = 1.0 m,  ∴ A2y2 = 42.69 kNm3 
A3 = (0.5 × 4.0 × 104.0) kNm2,  y3 = 1.33 m,  ∴ A3y3 = 276.6 kNm3 
A4 = (0.5 × 4.0 × 104.0) kNm2,  y4 = 1.33 m,  ∴ A4y4 = 276.6 kNm3 

0

L
Mm

dx
EI∫  = [(42.69 + 276.6)/EI + (42.69 + 276.6)/2EI] = 478.9/EI  

Using the coefficients given in Table 4.1: 

0

L
Mm

dx
EI∫  = ( )B

A Coefficient a b L / EI× × ×∑  + ( )B
C 2Coefficient a b L / EI× × ×∑  

        = (0.333 × 16.0 × 2.0 × 4.0)/EI + (0.333 × 104.0 × 2.0 × 4.0)/EI 

                + (0.333 × 16.0 × 2.0 × 4.0)/2EI + (0.333 × 104.0 × 2.0 × 4.0)/2EI 
     = 479.5/EI 

Solution 
Topic:  Determinate Beams/Frames – Deflection Using Unit Load 

Problem Number: 4.17            Page No. 3 

16.0 kNm 

A                                   B                               C  

M for applied loads A1
EI 

A                                 B                                  C 

16.0 kN                 16.0 kN                           zero 

8 kN/m 

16.0 kNm 

A                                   B                               C  

M for applied loads A2 

8 kN/m 

2EI 

A                                 B                                  C 

zero        16.0 kN                    16.0 kN 

M for applied loads 

104.0 kNm

A                                   B                               C  

A3 A4 

A                              B                                     C 

2EI 
26.0 kN                                   26.0 kN 

52.0 kN 

EI 

m for unit vertical load at B 

A                              B                                     C 

2EI 

0.5                                                     0.5 

1.0 

EI 
y1

2.0 m

A                                   B                               C  

y3 y4
y2 
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The EI value of the beam ABCD varies linearly from EI at the supports A and D to 
1.5EI at B and C respectively and is constant between B and C. 
Determine the value of the vertical deflection at B given that EI = 15.0 × 103 kNm2 
 
Consider beam ABCD: 

Support Reactions 

Consider the rotational equilibrium of the beam: 
+ve ΣMA = 0 + (20.0 × 2.0) + (20.0 × 5.0) − (VD × 7.0) = 0  ∴ VD = + 20.0 kN 

 Consider the vertical equilibrium of the beam: 
 +ve ΣFz = 0 + VA − 20.0 − 20.0 + VD = 0       ∴ VA = + 20.0 kN 

   
 
 
 
 
 
 
 

 

δB = 
0

L
Mm

dx
EI∫  

(Mm/EI) is not a continuous function and the product integral must be evaluated 
between each of the discontinuities, i.e. A to B, D to C and C to B. 

δB = 
0

L
Mm

dx
EI∫  = 

B

A

Mm
dx

EI∫  + 
C

D

Mm
dx

EI∫  + 
B

C

Mm
dx

EI∫  

 
Consider the section from A to B: 0  ≤  x  ≤  2.0 m 
M = + 20.0x  m = + 0.71x   ∴ Mm = 14.2x2 
Also 
The EI value varies linearly between A and B and at distance ‘x’ from A is given by:   
EI (1 + 0.25x) 

Solution 
Topic:  Determinate Beams/Frames – Deflection Using Unit Load 

Problem Number: 4.18            Page No. 1 

Unit load 

20 kN       20 kN 

x

A                B                                         C                 D 

   20.0 kN                              20.0 kN 
x 

EI         1.5 EI                1.5 EI   EI 
Applied load 

1.0

x

A                B                                         C                 D 

   0.71                                  0.29 
x

EI         1.5 EI                1.5 EI   EI 

A                     B                                C              D          E   

ME 

2EI 
 EI                1.5EI               1.5EI        EI 

VA         2.0 m         3.0 m       2.0 m                                    4.0 m       VE 

7.0 m 

20 kN                  20 kN 
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B

A

Mm
dx

EI∫  = ( )
2 2

0

14 2
1 0 25

. x
dx

EI . x+∫  

Let v = (1 + 0.25x)   ∴ x = 4.0(v − 1),    dx = 4.0dv and     x2 = 16.0(v − 1)2 
when   x = 0  v = 1.0 and   when     x = 2  v = (1+ 0.5) = 1.5  
 

Mm dx = 14.2x2 = [14.2 × 16.0(v − 1)2] × 4.0dv = 908.8(v − 1)2 dv 

= ( )
2 2

0

14 2
1 0 25

. x
dx

EI . x+∫  = 
( )21 5

1 0

1908 8 v .

v .

v.
dv

EI v

=

=

−
∫  = 

( )21 5

1 0

2 0 1 0908 8 v .

v .

v . v ..
dv

EI v

=

=

− +
∫  

= 
1 5

1 0

908 8 1 02 0
v .

v .

. .
v . dv

EI v

=

=

⎛ ⎞− +⎜ ⎟
⎝ ⎠∫  = 

1 52

1 0

908 8 2 0
2

v .

v .

. v
. v lnv

EI

=

=

⎡ ⎤
− +⎢ ⎥

⎣ ⎦
 

= ( ) ( )
2 2908 8 1 5 1 02 0 1 5 1 5 2 0 1 0 1 0

2 2
. . .

. . ln . . . ln .
EI

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪− × + − − × +⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

 

= + 27 69.

EI
m 

 
Consider the section from D to C: 0 ≤ x ≤ 2.0 m 
M = + 20.0x  m = + 0.29x   ∴ Mm = 5.8x2 
Also 
The EI value varies linearly between D and C, and at distance x from A is given by:   
EI (1 + 0.25x) 
C

D

Mm
dx

EI∫  = ( )
2 2

0

5 8
1 0 25

. x
dx

EI . x+∫   

 
Let v = (1 + 0.25x)   ∴ x = 4.0(v − 1),    dx = 4.0dv and  x2 = 16.0(v − 1)2 
when   x = 0  v = 1.0  and when  x = 2  v = (1+ 0.5) = 1.5  
 

Mm dx = 5.8x2 = [5.8 × 16.0(v − 1)2] × 4.0dv = 371.2(v − 1)2 dv 

 

= ( )
2 2

0

14 2
1 0 25

. x
dx

EI . x+∫  = 
( )21 5

1 0

1371 2 v .

v .

v.
dv

EI v

=

=

−
∫  = 

( )21 5

1 0

2 0 1 0371 2 v .

v .

v . v ..
dv

EI v

=

=

− +
∫  

= 
1 5

1 0

371 2 1 02 0
v .

v .

. .
v . dv

EI v

=

=

⎛ ⎞− +⎜ ⎟
⎝ ⎠∫  = 

1 52

1 0

371 2 2 0
2

v .

v .

. v
. v lnv

EI

=

=

⎡ ⎤
− +⎢ ⎥

⎣ ⎦
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= ( ) ( )
2 2371 2 1 5 1 02 0 1 5 1 5 2 0 1 0 1 0

2 2
. . .

. . ln . . . ln .
EI

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪− × + − − × +⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

 

= + 11 31.

EI
m  

 
Consider the section from C to B: 2.0 ≤ x ≤ 5.0 m 

M = + 20.0x − 20.0(x − 2.0) = 40.0   m = + 0.29x   ∴ Mm = 11.6x 

 

1 5

B

C

Mm
dx

. EI∫  = 
5

2

11 6
1 5

. x
dx

. EI∫  = 
52

2

11 6
3 0

. x

. EI

⎡ ⎤
⎢ ⎥
⎣ ⎦

= + 81 2.
EI

m  

 
Consider the cantilever beam DE: 

 

 

 

 

 

 

 

 

M = − 20.0x     m = − 0.29x   ∴  Mm = + 5.8x2 
  
E

D

Mm
dx

EI∫  = 
4 2

0

5 8
2
. x

dx
EI∫  = 

43

0

5 8
6
. x

EI

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

= + 61 87.

EI
m 

 

 δB = 27 69 11 31 81 2 61 87. . . .

EI EI EI EI

⎛ ⎞+ + + +⎜ ⎟
⎝ ⎠

 = 182 07.

EI
 = 3

182 07
15 0 10

.

. ×
m = 12.14 mm 

 

Alternatively: 

Sections A to B and D to C must be carried out using the product integrals as above 
The terms relating to the central section C to B and the cantilever beam D to E can 
also be evaluated using the product (area × ordinate) or the Coefficients given in   
Table 4.1 since the EI value is constant along these lengths. 
 
The reader should carry out these calculations to confirm the results. 
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2EI 
 4.0 m  20.0 kN 

20 kN 80 kNm 

x 

D            E 

2EI 
 4.0 m        0.29 

0.29 1.16 m 

x 

D            E 
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Determine the value of the vertical deflection at G given that EI = 5.0 × 103 kNm2 
 
Support Reactions 

Consider the rotational equilibrium of the beam: 
+ve ΣMB = 0  + (20.0 × 4.0) + (8.0 × 6.5) − (VE × 6.0) = 0   ∴ VE = + 22.0 kN 

   
 Consider the vertical equilibrium of the beam: 
 +ve ΣFz = 0  + VB − (10.0 × 2.0) − 20.0 − 8.0 + VE = 0     ∴ VB = + 26.0 kN 

 

 

   
 
 
 
 
 
 
 
 

 

 

δG = ∫
L

dx
EI

Mm

0

 

(Mm/EI) is not a continuous function and the product integral must be evaluated 
between each of the discontinuities, i.e. A to B, B to C, C to D, D to E, G to F and    
F to E 

δG = 
0

L
Mm

dx
EI∫  =

B

A

Mm
dx

EI∫  +
C

B

Mm
dx

EI∫  +
D

C

Mm
dx

EI∫  +
E

D

Mm
dx

EI∫  +
F

G

Mm
dx

EI∫  +
E

F

Mm
dx

EI∫  
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Unit load 

x x 

20 kN          8 kN 

A              B    C                       D        E         F    G 

26.0 kN                       22.0 kN 

10 kN/m 

EI 
Applied load 

x x 

1.0 

A              B    C                       D        E           F   G 

0.167                              1.167 

EI A                    B   C                                             D                               E               F      G    

VB                                            VE 

10 kN/m                                                20 kN                                          8 kN 

8.0 m 

1.0 m          1.0 m                                   3.0 m                         2.0 m            0.5 m  0.5 m 



 Beams 235

        
 
 
 

 
Consider the section from A to B: 0 ≤ x ≤ 1.0 m 
M = − 10.0x2/2  m = zero   ∴ Mm = zero 
B

A

Mm
dx

EI∫  = zero 

 
Consider the section from B to C: 1.0 ≤ x ≤ 2.0 m 
M = − 10.0x2/2 + 26.0(x − 1.0) = (− 5.0x2 + 26.0x − 26.0) 
m = − 0.167(x − 1.0) 
Mm = [(− 5.0x2 + 26.0x − 26.0)] × [ − 0.167(x− 1.0)] 
    = (0.84x3 − 5.18x2 + 8.68x − 4.34) 
C

B

Mm
dx

EI∫  = 
2 0 3 2

1 0

0 84 5 18 8 68 4 34.

.

. x . x . x .
dx

EI

− + −
∫  

    = 
2 04 3 2

1 0

0 84 5 18 8 68 4 34
4 3 2

.

.

. x . x . x . x

EI EI EI EI

⎡ ⎤
− + −⎢ ⎥

⎣ ⎦
= + 1 77 1 52. .

EI EI

⎡ ⎤⎛ ⎞− − −⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

 = 0 25.

EI
−  

 
Consider the section from C to D: 2.0 ≤ x ≤ 5.0 m 
M = − (10.0 × 2.0)(x − 1.0) + 26.0( x − 1.0) = + 6.0(x − 1.0)     m = − 0.167(x − 1.0)  
 Mm = 6.0(x − 1.0)(− 0.167x + 0.167) = (− x2 + 2.0x − 1.0) 
 
D

C

Mm
dx

EI∫  = 
5 0 2

2 0

2 0 1 0.

.

x . x .
dx

EI

− + −
∫  = 

5 03 2

2 0

2 0
3 2

.

.

x . x x

EI EI EI

⎡ ⎤
− + −⎢ ⎥
⎣ ⎦

 

     = 21 67 0 67. .

EI EI

⎛ ⎞− −⎜ ⎟
⎝ ⎠

 = 22 34.

EI
−  

 
Consider the section from D to E: 5.0  ≤  x  ≤  7.0 m 
M = − (10.0 × 2.0)(x − 1.0) + 26.0( x − 1.0) − 20.0(x − 5.0) = (− 14.0x + 94.0) 
 m = − 0.167(x − 1.0)    
 Mm = (− 14.0x + 94.0)(− 0.167x + 0.167) = (2.34x2 − 18.04x + 15.7) 
 
E

D

Mm
dx

EI∫  = 
7 0 2

5 0

2 34 18 04 15 7.

.

. x . x .
dx

EI

− +
∫  = 

7 03 2

5 0

2 34 18 04 15 7
3 2

.

.

. x . x . x

EI EI EI

⎡ ⎤
− +⎢ ⎥

⎣ ⎦
 

     = 64 54 49 5. .

EI EI

⎡ ⎤⎛ ⎞− − −⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

 = 15 04.

EI
−  

 

Solution 
Topic:  Determinate Beams/Frames – Deflection Using Unit Load 

Problem Number: 4.19            Page No. 2 



236 Examples in Structural Analysis 

 
 

 

        
 
 
 

 
Consider the section from G to F: 0 ≤ x ≤ 0.5 m 
M = zero  m = − x   ∴ Mm = zero 

 
F

G

Mm
dx

EI∫  = zero 

 
Consider the section from F to E: 0.5  ≤  x  ≤  1.0 m 
M = − 8.0(x − 0.5)   m = − x   ∴ Mm = (8.0x2  − 4.0 x) 
E

F

Mm
dx

EI∫  = 
1 0 2

0 5

8 0 4 0.

.

. x . x
dx

EI

−
∫  = 

1 03 2

0 5

8 0 4 0
3 2

.

.

. x . x

EI EI

⎡ ⎤
−⎢ ⎥

⎣ ⎦
= 0 67 0 17. .

EI EI

⎡ ⎤⎛ ⎞+ − −⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

= 0 84.

EI
+

 δG = 0 25 22 34 15 04 0 84. . . .

EI EI EI EI

⎛ ⎞− − − +⎜ ⎟
⎝ ⎠

 = − 36 79.

EI
 = − 3

36 79
5 0 10

.

. ×
m = − 7.36 mm 

Alternatively: 

δG = Σ(Area applied bending moment diagram  × Ordinate unit load bending moment diagram) 
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A           B                    C                                                      D                              E          F         G EI 

10 kN/m 

   10.83 kN                    0.83 kN 
5.0 kNm 

A1 M for applied loads A2 

5.0 kN 

A           B                 C                                                         D                              E          F         G EI 

  4.17 kN                        0.83 kN 

1.25 kNm A3 

A           B                 C                                                         D                              E          F         G 

10 kN/m 

EI 

5.0 kN    5.0 kN                zero 

M for applied loads 

4.17 kNm M for applied loads 

A4 A5
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A1 = not required since  y1 = zero 
A2 = − (0.5 × 6.0 × 5.0) = − 15.0 kNm2,  y2 = − 0.33 m  ∴ A2y2 = + 5.0 kNm3 
A3 = (0.667 × 1.0 × 1.25) = 0.83 kNm2   y3 = − 0.08 m  ∴ A3y3 = − 0.07 kNm3 
A4 = (0.5 × 1.0 × 4.17)  = 2.35 kNm2,   y4 = − 0.11 m  ∴ A4y4 = − 0.26 kNm3  
A5 = (0.5 × 5.0 × 4.17)  = 10.43 kNm2,   y5 = − 0.45 m  ∴  A5y5 = − 4.69 kNm3 
A6 = (0.5 × 4.0  × 26.67) = 53.34 kNm2,  y6 = − 0.45 m  ∴ A6y6 = − 24.0 kNm3 
A7 = (0.5 × 2.0 × 26.67) = 26.67 kNm2,  y7 = − 0.78 m   ∴ A7y7 = − 20.8 kNm3 

A8 = − (0.5 × 6.0 × 4.0) = − 12.0 kNm2,  y8 = − 0.67 m  ∴ A8y8 = + 8.0 kNm3 
A9 = − (0.5 × 0.5 × 4.0) = − 1.0 kNm2,   y9 = − 0.83 m  ∴ A9y9 = + 0.83 kNm3 

20 kN 

A           B                    C                                                      D                              E          F         G EI 

      6.67 kN                 13.33 kN 

8 kN 

A           B                 C                                                         D                              E          F         G EI 

0.67 kN                  1.67 kN  

A9 

4.0 kNm 

M for applied loads 
A8
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1.0 

A           B                 C                                                         D                              E          F         G EI 

0.167 kN                  1.167 kN  
1.0 m 

m for unit vertical load at B 

y2 
y3 y4 

y5,6

y7y8
y9

M for applied loads 
26.67 kNm

A6 
A7
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δG = 
0

L
Mm

dx
EI∫  = Σ(Ay)/EI 

      = (+ 5.0 − 0.07 − 0.26 − 4.69 − 24.0 − 20.8 + 8.0 + 0.83)/EI 
δG = − 35.99/EI = − (35.99/5.0 × 103) m = − 7.20 mm 

 

Using the coefficients given in Table 4.1: δG = ( )0
L

Coefficient a b L / EI× × ×∑  

Area A2: 
0

L
Mm

dx
EI∫  = + (0.167 × 5.0 × 1.0 × 6.0)/EI = + 5.0/EI 

 Area A3: 
0

L
Mm

dx
EI∫  = − (0.333 × 1.25 × 0.167 × 1.0)/EI = − 0.07/EI 

Area A4: 
0

L
Mm

dx
EI∫  = − (0.333 × 4.17 × 0.167 × 1.0)/EI = − 0.23/EI 

Area A5: 
0

L
Mm

dx
EI∫  = − [(0.5 × 4.17 × 0.167 × 5.0) + (0.167 × 4.17 × 0.83 × 5.0)]/EI 

        = − 4.63/EI 

Area A6: 
0

L
Mm

dx
EI∫  = − (0.333 × 26.67 × 0.67 × 4.0)/EI = − 23.80/EI 

Area A7: 
0

L
Mm

dx
EI∫  = − [(0.5 × 26.67 × 0.67 × 2.0) + (0.167 × 26.67 × 0.33 × 2.0)]/EI 

        = − 20.81/EI 

Area A8: 
0

L
Mm

dx
EI∫  = + (0.333 × 4.0 × 1.0 × 6.0)/EI = + 8.0/EI 

Area A9: 
0

L
Mm

dx
EI∫  = + [(0.5 × 4.0 × 0.5 × 0.5) + (0.333 × 4.0 × 0.5 × 0.5)]/EI 

        = + 0.83/EI 

  

δG = (5.0 − 0.07 − 0.23 − 4.63 − 23.80 − 20.81 + 8.0 + 0.83)/EI = − 35.71/EI 
      = − (35.71/5.0 × 103) m = − 7.14 mm 
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Determine the value of the vertical deflection at A given: 
Ebeam = 205 kN/mm2,    Ibeam = 60.0 × 106 mm4 
ECD = 205 kN/mm2,    ACD = 50 mm2 
EI = (205 × 60 × 106)/106 = 12.3 × 103 kNm2 
AECD = (50.0 × 205.0) = 10.25 × 103 kN 

δA = 
0

L
Mm

dx
EI∫  +

CD

PL
u

AE

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑  

 

Consider the beam ABC: 

Support Reactions 

Consider the rotational equilibrium of the beam: 
+ve ΣMB = 0 − (5.0 × 2.0) + (15.0 × 8.0 × 2.0) − (VC × 6.0) = 0 
                    ∴ VC = + 38.33 kN 

 Consider the vertical equilibrium of the beam: 
 +ve ΣFz = 0 + VB − 5.0 − (15.0 × 8.0) + VC = 0    ∴ VB = + 86.67 kN 
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AECD 

 A       B                              C 

D 

8.0 m 

2.0 m                              6.0 m 

EI 

5 kN                                                 15 kN/m 

VB 

1.5EI 

VD 

1.
5 

m
 

0.333 

Unit load 

1.0

A                        B                                    C  

1.333 
x x 

1.5EIEI 

Applied loads A                        B                                    C  

   86.67 kN  

15 kN/m 

x x

EI 

38.33 kN5 kN 

1.5EI 

 A       B                                        C 

5 kN                                15 kN/m 

VB 

VC 
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(Mm/EI) is not a continuous function and the product integral must be evaluated 
between each of the discontinuities, i.e. A to B and C to B. 

0

L
Mm

dx
EI∫  = 

B

A

Mm
dx

EI∫  + 
1 5

B

C

Mm
dx

. EI∫  

 
Consider the section from A to B: 0 ≤ x ≤ 2.0 m 

M = − 5.0x − 15.0x2/2 = − 5.0x − 7.5x2    m = − x 
 Mm = (− 5.0x − 7.5x2)(x) = 5.0x2 + 7.5x3 
B

A

Mm
dx

EI∫  = 
2 2 3

0

5 0 7 5. x . x
dx

EI

+
∫  = 

23 4

0

5 0 7 5
3 4
. x . x

EI EI

⎡ ⎤
+⎢ ⎥

⎣ ⎦
 = + 43 33.

EI
m 

 
Consider the section from C to B: 0 ≤ x ≤ 6.0 m 

M = + 38.33x − 15.0x2/2 = + 38.33x − 7.5x2   m = − 0.333x 
 Mm = − (38.33x − 7.5x2)(0.333x) = − 12.77x2 + 2.5x3 
 
B

C

Mm
dx

EI∫  = 
6 2 3

0

12 77 2 5
1 5

. x . x
dx

. EI

− +
∫  = 

63 4

0

12 77 2 5
4 5 6

. x . x

. EI EI

⎡ ⎤
− +⎢ ⎥
⎣ ⎦

= 72 96.

EI
− m  

 
0

L
Mm

dx
EI∫  = 43 33 72 96. .

EI EI

⎛ ⎞+ −⎜ ⎟
⎝ ⎠

 = − 29 63.

EI
 = − 3

29 63
12 3 10

.

. ×
m = − 2.41 mm 

 

Consider member CD: 

Applied axial load   PCD = + 58.33 kN  (tension) 
 
Unit axial load        uCD = − 0.333     (compression) 
 

CD

PL
u

AE

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ = − 
CD

38 33 1500 0 333. .

AE

⎛ ⎞× ×
⎜ ⎟
⎝ ⎠

 = − 
3

3
19 146 10
10 25 10

.

.

⎛ ⎞×
⎜ ⎟

×⎝ ⎠
m = − 1.87 mm 

 

δA = 
0

L
Mm

dx
EI∫  + 

CD

PL
u

AE

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ = − 2.41 − 1.87 = − 4.28 mm 
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Alternatively: 

δA = Σ(Area applied bending moment diagram × Ordinate unit load bending moment diagram) 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
A1 = − (0.5 × 2.0 × 10.0) kNm2,    y1 = − 1.33 m,   ∴ A1y1 = + 13.33 kNm3 
A2 = − (0.5 × 6.0 × 10.0) kNm2,    y2 = − 1.33 m,   ∴ A2y2 = + 40.0 kNm3 
A3 = − (0.333 × 2.0 × 30.0) kNm2,   y3 = − 1.5 m,   ∴ A3y3 = + 30.0 kNm3 
A4 = − (0.5 × 6.0 × 30.0) kNm2,     y4 = − 1.33 m,   ∴ A4y4 = + 120.0 kNm3 
A5 = + (0.667 × 6.0 × 67.5) kNm2,   y5 = − 1.0 m,   ∴ A4y4 = − 270.0 kNm3 

0

L
Mm

dx
EI∫  = (13.33 + 30.0)/EI + (40.0 + 120.0 − 270.0)/1.5EI = 30.0/EI 

Using the coefficients given in Table 4.1: 

0

L
Mm

dx
EI∫  = ( )B

A Coefficient a b L / EI× × ×∑ + ( )B
C 2Coefficient a b L / EI× × ×∑  

         = (0.333 × 10.0 × 2.0 × 2.0)/EI + (0.25 × 30.0 × 2.0 × 2.0)/EI  
         + (0.333 × 10.0 × 2.0 × 6.0)/1.5EI + (0.333 × 30.0 × 2.0 × 6.0) /1.5EI 
                 − (0.333 × 67.55 × 2.0 × 6.0) /1.5EI = 30.07/EI 
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M for applied loads 

m for unit vertical load at B 

A              B                                                       C  

10.0 kNm 

A1 A2
EI      1.5 EI A           B                                                        C 

6.67 kN 

5 kN 1.67 kN

M for applied loads 

A              B                                                       C  

30.0 kNm 

A3 A4 

15 kN/m 

EI      1.5 EI A            B                                                        C 

35.0 kN 

5.0 kN 

67.5 kNm 
M for applied loads 

A              B                                                       C  

A5

15 kN/m 

EI      1.5 EI A            B                                                        C 

45.0 kN 

45.0 kN

EI      1.5 EI A           B                                                        C 

1.333 m 

1.0 m 0.333 m y2,4y1

A              B                                                       C  

2.0 my3
y5
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              Cosθ  = (2.0/2√2) = 0.707 
              LBD = (2.0 × √2) = 2.828 m 
 
 
 
 
 
Determine the value of the vertical deflection at C given: 
EABC = 205 kN/mm2, IABC = 90.0 × 106 mm4 
EBD = 205 kN/mm2,   ABD = 1500 mm2 

EIABC = (205 × 90 × 106)/106 = 18.45 × 103 kNm2 
AEBD = (1500 × 205.0) = 307.5 × 103 kN   

δC = 
0

L
Mm

dx
EI∫  +

BD

PL
u

AE

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑  

 

Consider the beam ABC: 

Support Reactions 

Consider the rotational equilibrium of the beam: 
+ve ΣMA = 0 + (4.0 × 2.0× 1.0) + (15.0 × 4.0) − (FBDCosθ × 2.0) = 0 
                    ∴ FBD = + 48.09 kN 

 Consider the vertical equilibrium of the beam: 
 +ve ΣFz = 0  + VA − (4.0 × 2.0) − 15.0 + FBDCosθ  = 0   ∴ VA = − 11.0 kN 
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Applied loads A                                             B                     C  

11.0 kN 

4 kN/m 

x x

EI 

48.09 kN 

15 kN

θ 

   A                                            B        C 

2.0 m                   2.0 m         

EI               EI 

4.0 m 

4 kN/m           15 kN 

D 

2.
0 

m
 

VD 

VA 

HD 

HA 

AEBD 

θ

Unit load 

2.83 

A                                             B                     C   

  1.0 

x x 

EI 

  1.0  

θ

4 kN/m

A                                 B     C 

VA              FBD 

15 kN 

θ
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(Mm/EI) is not a continuous function and the product integral must be evaluated 
between each of the discontinuities, i.e. A to B and C to B. 

0

L
Mm

dx
EI∫  = 

B

A

Mm
dx

EI∫  + 
B

C

Mm
dx

EI∫  

 
Consider the section from A to B: 0 ≤ x ≤ 2.0 m 

M = − 11.0x − 4.0x2/2 = − 11.0x − 2.0x2      m = − x 
 Mm = − (− 11.0x − 2.0x2)(x) = 11.0x2 + 2.0x3 
B

A

Mm
dx

EI∫  = 
2 2 3

0

11 0 2 0. x . x
dx

EI

+
∫  = 

23 4

0

11 0 2 0
3 4
. x . x

EI EI

⎡ ⎤
+⎢ ⎥

⎣ ⎦
 = + 37 33.

EI
m 

 
Consider the section from C to B: 0 ≤ x ≤ 2.0 m 

M = − 15.0x    m = − x   ∴ Mm = + 15.0x2 
 
B

C

Mm
dx

EI∫  = 
2 2

0

15 0. x
dx

EI∫  = 
23

0

15 0
3 0

. x

. EI

⎡ ⎤
⎢ ⎥
⎣ ⎦

= + 40 0.
EI

m 

 
0

L
Mm

dx
EI∫  = 37 33 40 0. .

EI EI

⎛ ⎞+⎜ ⎟
⎝ ⎠

 = + 77 33.

EI
 = + 3

77 33
18 45 10

.

. ×
m = + 4.19 mm 

 

Consider member BD: 

Applied axial load   PBD = − 48.09 kN  (compression) 
 
Unit axial load        uBD = − 2.836    (compression) 
 

BD

PL
u

AE

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ = +
BD

48 09 2828 2 83. .

AE

⎛ ⎞× ×
⎜ ⎟
⎝ ⎠

 = + 
3

3
384 88 10
307 5 10

.

.

⎛ ⎞×
⎜ ⎟

×⎝ ⎠
m = + 1.25 mm 

 

δC = 

0

L
Mm

dx
EI∫  + 

BD

PL
u

AE

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ = + 4.19 + 1.25 = + 5.44 mm 
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Alternatively: 

δC = Σ(Area applied bending moment diagram × Ordinate unit load bending moment diagram) 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 

  
 
 
 
 
A1 = + (0.667 × 2.0 × 2.0) kNm2,   y1 = − 1.0 m,   ∴ A1y1 = − 2.67 kNm3 
A2 = − (0.5 × 2.0 × 30.0) kNm2,    y2 = − 1.33 m,   ∴ A2y2 = + 40.0 kNm3 
A3 = − 0.5 × 2.0 × 30.0) kNm2,    y3 = − 1.33 m,   ∴ A3y3 = + 40.0 kNm3 
 

0

L
Mm

dx
EI∫  = (− 2.67 + 40.0 + 40.0)/EI = 77.33/EI 

 

Using the coefficients given in Table 4.1: 

0

L
Mm

dx
EI∫  = ( )0

L
Coefficient a b L / EI× × ×∑  

 

0

L
Mm

dx
EI∫  = [− (0.333 × 2.0 × 2.0 × 2.0) + (0.333 × 30.0 × 2.0 × 4.0)]/EI = 77.33/EI 
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m for unit vertical load at B

A                                   B                                      C EI 

4.0 kN    4.0 kN 

   4 kN/m 

2.0 kNm 
M for applied loads 

A                                   B                                  C  

A1

15.0 kN

A                                   B                                      C EI 

15.0 kN   30.0 kN 
M for applied loads 

A                                   B                                 C  

30.0 kNm 

A2 A3 

1.0 

A                                   B                                      C EI 

1.0 kN     2.0 kN 

2.0 m 
y1 y3

A                                   B                                 C  

y2
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Determine the value of the vertical deflection at D given: 
Ebeam = 205 kN/mm2,  Ibeam = 500.0 × 106 mm4 
E All frame members = 205 kN/mm2 ,   A All frame members = 4000 mm2 
EIBCD = (205 × 500 × 106)/106 = 102.5 × 103 kNm2 
AE = (4000 × 205.0) = 820 × 103 kN   

δD = 
0

L
Mm

dx
EI∫  + 

All frame members

PL
u

AE

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑  

 

Consider the beam BCD: 

Support Reactions  

Consider the rotational equilibrium of the beam: 
+ve ΣMB = 0  + (6.0 × 6.0× 3.0) + (12.0 × 6.0) − (VC × 3.0) = 0 
                      ∴ VC  = + 60.0 kN 

 Consider the vertical equilibrium of the beam: 
 +ve ΣFz = 0  + VB − (6.0 × 6.0) − 12.0 + VC  = 0       ∴ VB  = − 12.0 kN 
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Applied loadsEI B                              C                       D   

12.0 kN 

6 kN/m 

x x

60.0 kN  
12 kN

B                         C          D 

VB                       VC 12 kN 

6 kN/m

EI 

Unit load EI 

1.0  

 B                             C                        D   

1.0 

x x 

2.0 

θ 
 A                                   B          C          D 

EI 

VF 3.0 m           3.0 m             3.0 m       
9.0 m 

6 kN/m 

F            E 

4.
0 

m
 12 kN 

HF 

HA 

VA 

pin−jointed frame 

θ 
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(Mm/EI) is not a continuous function and the product integral must be evaluated 
between each of the discontinuities, i.e. B to C and D to C. 

0

L
Mm

dx
EI∫  = 

C

B

Mm
dx

EI∫  +
C

D

Mm
dx

EI∫  

 
Consider the section from B to C: 0 ≤ x ≤ 3.0 m 

M = − 12.0x − 6.0x2/2 = − 12.0x − 3.0x2     m = − x 
 Mm = − (− 12.0x − 3.0x2)(x) = 12.0x2 + 3.0x3 
C

B

Mm
dx

EI∫  = 
3 2 3

0

12 0 3 0. x . x
dx

EI

+
∫  = 

33 4

0

12 0 3 0
3 4
. x . x

EI EI

⎡ ⎤
+⎢ ⎥

⎣ ⎦
= + 168 75.

EI
m 

 
Consider the section from D to C: 0 ≤ x ≤ 3.0 m 

M = − 12.0x − 6.0x2/2 = − 12.0x − 3.0x2     m = − x 
C

D

Mm
dx

EI∫  = 
3 2 3

0

12 0 3 0. x . x
dx

EI

+
∫  = 

33 4

0

12 0 3 0
3 4
. x . x

EI EI

⎡ ⎤
+⎢ ⎥

⎣ ⎦
= + 168 75.

EI
m 

 

 
0

L
Mm

dx
EI∫  = 168 75 168 75. .

EI EI

⎛ ⎞+⎜ ⎟
⎝ ⎠

 = + 337 5.
EI

 = + 3
337 5

102 5 10
.

. ×
m = + 3.29 mm 

 

Consider the pin−jointed frame: 

The applied load axial effects (P−forces)and the unit load axial effects (u−forces) can 
be determined using joint resolution and/or the method of sections as indicated in 
Chapter 3. 
 

 

 

 

 

 

 

 

 

 

 

 

      P − forces           u − forces 
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1.0 2.0  

θ θ A                             B       C 

1.0 

F       E 2.25 

2.25 

zero 

− 1.5 

− 1.25
+ 2.0 

− 2.5 

+ 2.25  + 1.5 

θθ 
 A                             B       C 

48.0 kN 

F             E 

12.0 kN 

81.0 kN 

81.0 kN 

zero 

60.0 kN

− 45.0 kN 

− 60.0 kN 
+ 60.0 kN 

− 75.0 kN

+ 81.0 kN + 45.0 kN 



 Beams 247

        
 
 
 

 
 
Member Length (mm) AE (kN) P-force (kN) PL/AE (mm) u (PL/AE ) × u 

AB 3000 820.0 × 103 + 81.0 + 0.30 + 2.25 + 0.68 
BC 3000 820.0 × 103 + 45.0 + 0.16 + 1.50 + 0.24 
BF 5000 820.0 × 103 − 60.0 − 0.37 − 1.25 + 0.46 
BE 4000 820.0 × 103 + 60.0 + 0.29 + 2.00 + 0.58 
CE 5000 820.0 × 103 − 75.0  − 0.46 − 2.50 + 1.15 
FE 3000 820.0 × 103 − 45.0 − 0.16 − 1.50 + 0.24 

      Σ = + 3.35 

 

All frame members

PL
u

AE

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑  = 3.35 mm 

δD = 

0

L
Mm

dx
EI∫  + 

All frame members

PL
u

AE

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ = + 3.29 + 3.35 = + 6.64 mm 

 

Alternatively: 

δD = Σ(Area applied bending moment diagram × Ordinate unit load bending moment diagram) 
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B                                   C                                      D EI 

9.0 kN    9.0 kN 

   6 kN/m 

6.75 kNm 
M for applied loads 

B                                   C                                  D  

A1

12.0 kN

B                                   C                                      D EI 

12.0 kN    24.0 kN 
M for applied loads 

B                                   C                                  D  

36.0 kNm 

A4 A5 

1.0 

B                                   C                                      D EI 

1.0 kN     2.0 kN 

B                                   C                                      D EI 

9.0 kN    27.0 kN 

   6 kN/m 

B                                   C                                  D  

27.0 kNm 

M for applied loads 

A2 A3 

  B                                 C                                  D 

m for unit vertical load at D 

3.0 m 
y1 y5y2,4 y3
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A1 = + (0.667 × 3.0 × 6.75) kNm2,   y1 = − 1.5 m,   ∴ A1y1 = − 20.26 kNm3 
A2 = − (0.5 × 3.0 × 27.0) kNm2,    y2 = − 2.0 m,   ∴ A2y2 = + 81.0 kNm3 
A3 = − (0.333 × 3.0 × 27.0) kNm2,   y3 = − 2.25 m,   ∴ A3y3 = + 60.69 kNm3 
A4 = − (0.5 × 3.0 × 36.0) kNm2,    y4 = − 2.0 m,   ∴ A4y4 = + 108.0 kNm3 
A5 = − (0.5 × 3.0 × 36.0) kNm2,    y5 = − 2.0 m,   ∴ A5y5 = + 108.0 kNm3 
 

0

L
Mm

dx
EI∫  = (− 20.26 + 81.0 + 60.69 +108.0 +108.0)/EI = 337.43/EI 

 

Using the coefficients given in Table 4.1: 

0

L
Mm

dx
EI∫  = ( )0

L
Coefficient a b L / EI× × ×∑  

 

 
0

L
Mm

dx
EI∫  = [− (0.333 × 6.75 × 3.0 × 3.0) + (0.333 × 27.0 × 3.0 × 3.0) 

        + (0.25 × 27.0 × 3.0 × 3.0) + (0.333 × 36.0 × 3.0 × 6.0) ]/EI = 337.22/EI 
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The EI value of the cantilever ABC varies linearly from 2EI at the fixed support to 
EI at B and is constant from B to C. 
Determine the value of the vertical deflection at F and at C given: 
EIcantilever ABC = 1080 × 103 kNm2 ,  EAAll frame members = 300 × 103 kN 
 

δF = ∫
L

dx
EI

Mm

0

 + 
All frame members

PL
u

AE

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑  

Consider the pin−jointed frame: 

 

 

 

 

 

 

Support Reactions 

Consider the rotational equilibrium of the frame: 
+ve ΣMC = 0 + (120.0 × 4.0) − (40.0 × 3.0) − (VE × 8.0) = 0 ∴ VE  = + 45.0 kN 

  
 Consider the vertical equilibrium of the frame: 
 +ve ΣFz = 0  + VC − 120.0 + VE = 0             ∴ VC  = + 75.0 kN 

  
 Consider the horizontal equilibrium of the frame: 
 +ve   ΣFx = 0  − 40.0 + HE = 0             ∴ HE  = + 40.0 kN 

 
The applied load axial effects (P−forces) and the unit load axial effects (u−forces) 
can be determined using joint resolution and/or the method of sections as indicated 
in Chapter 3. 
 

A                                                      C                              F              E 
MA 

VA                                                       VE 
4.0 m     4.0 m     4.0 m    4.0 m 

3.
0 

m
 

EI        EI 

D 

2EI 120 kN 

40 kN

B 

pin−jointed frame

HE 
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3.
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m
 

120 kN 

40 kN
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     P − forces           u − forces 

 
Member Length (mm) AE (kN) P-force (kN) PL/AE (mm) u (PL/AE ) × u 

CD 5000 300.0 × 103 − 125.0 − 2.08 − 0.83 + 1.73 
CF 4000 300.0 × 103 + 100.0 + 1.33 + 0.67 + 0.89 
DF 3000 300.0 × 103 + 120.0 + 1.20 + 1.0 + 1.20 
DE 5000 300.0 × 103 − 75.0 − 1.25 − 0.83 + 1.04 
EF 4000 300.0 × 103 + 100.0  + 1.33 + 0.67 + 0.89 

      Σ = + 5.75 

 

All frame members

PL
u

AE

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ = 5.75 mm 

 

Consider the beam ABC: 
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C                   F             E 

75.0 kN                              45.0 kN 120 kN

40 kN 

40.0 kN 

D 

+ 100.0 kN + 100.0 kN 

+ 120.0 kN − 75.0 kN −125.0 kN 

+ 0.67 + 0.67 
C                   F             E 

0.5                                                       0.5 
1.0

zero 

D

+ 1.0 − 0.83 − 0.83

x

A 600.0 kNm 

75.0 kN 
EI        EI 2EI 

75.0 kN 

4.0 m     4.0 m 

B            C

M for applied loads 

0.5 

A 4.0 m 

EI         EI
2EI 

0.5 

4.0 m     4.0 m 

B            C

x

m for unit vertical load at F 
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(Mm/EI) is not a continuous function and the product integral must be evaluated 
between each of the discontinuities, i.e. C to B and B to A. 
 
The value of EI at position ‘x’ along the beam between B and A is given by: 
EI + EI [(x− 4.0)/4] = 0.25EI x 

∫
L

dx
EI

Mm

0

 = ∫
B

C

dx
EI

Mm  + 
0 25

A

B

Mm
dx

. EIx∫  = 
B

C

Mm
dx

EI∫  + 4 0 A

B

. Mm
dx

EI x∫  

 
Consider the section from C to B: 0  ≤  x  ≤  4.0 m 
M = − 75.0x  m = − 0.5x    ∴ Mm = + 37.5x2 
B

C

Mm
dx

EI∫  = 
4 2

0

37 5. x
dx

EI∫  = 
43

0

37 5
3
. x

EI

⎡ ⎤
⎢ ⎥
⎣ ⎦

= + 800
EI

m 

 
Consider the section from B to A: 4.0  ≤  x  ≤  8.0 m 
M = − 75.0x  m = − 0.5x     ∴  Mm = + 37.5x2 

4 0 A

B

. Mm
dx

EI x∫  = 
8 0 2

4 0

4 0 37 5.

.

. . x
dx

EI x∫  = 
8 0

4 0

150 0 .

.

.
x dx

EI ∫  = 
82

4

150 0
2

. x

EI

⎡ ⎤
⎢ ⎥
⎣ ⎦

= + 3600
EI

m 

 
0

L
Mm

dx
EI∫  = 800

EI
 + 3600

EI
 = 4400

EI
 = 3

4400
1080 10×

m = + 4.07 mm 

δF = ∫
L

dx
EI

Mm

0

 +
All frame members

PL
u

AE

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ = + 4.07 + 5.75 = + 9.82 mm 

 

Vertical deflection at C: 

In this case when a unit load is applied at point C all of the u−forces for the pin−jointed 
frame are equal to zero. 

δC = 

0

L
Mm

dx
EI∫  +

All frame members

PL
u

AE

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑  ∴ δC = 

0

L
Mm

dx
EI∫  

M = − 75.0x  m = − x    ∴ Mm = + 75.0x2 

∫
L

dx
EI

Mm

0

 = 

4 2

0

75 0. x
dx

EI∫  + 
8 0 2

4 0

4 0 75 0.

.

. . x
dx

EI x∫  = 1600
EI

 + 7200
EI

 = 8800
EI

 

 δC = 3
8800

1080 10×
m = + 8.15 mm 
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4.6 Statically Indeterminate Beams 
In many instances multi-span beams are used in design, and consequently it is necessary to 
consider the effects of the continuity on the support reactions and member forces. Such 
structures are indeterminate (see Chapter 1) and there are more unknown variables than 
can be solved using only the three equations of equilibrium. A few examples of such 
beams are shown in Figure 4.57 (a) to (d). 
 
 
  
 
 
 
                    Figure 4.57(a) 

 
 
 
 
 
 
 

Figure 4.57(b) 

 
 
 
 
 
 
 
 

Figure 4.57(c) 

 
 
 
 
 
 
  
 

Figure 4.57(d) 

 
A number of analysis methods are available for determining the support reactions, and 
member forces in indeterminate beams. In the case of singly−redundant beams the 
‘unit−load method’ can be conveniently used to analyse the structure. In multi−redundant 
structures the method of ‘moment distribution’ is a particularly useful hand−method of 
analysis. These methods are considered in Sections 4.6.1 and 4.6.2 respectively. 

4 Unknown reactions: 
1 horizontal 
2 vertical 
1 moment 

MA 

HA 

A                                B     C 

VA                                VB  

15 kN 
  θ 

8 kN/m        25 kN 

HA 

VA                                VB                             VC 

A                               B         C MA 

12 kN   20 kN     30 kN          50 kN 
12 kN/m 5 Unknown reactions: 

1 horizontal 
3 vertical 
1 moment 

 θ 

4 Unknown reactions: 
1 horizontal 
3 vertical 

HA 

VA                                VB                             VC 

 A                         B      C 

20 kN       40 kN     20 kN          30 kN 
10 kN 
  θ 

4 Unknown reactions: 
1 horizontal 
3 vertical 

HA 

VA                                VB                             VC 

 A                        B    C 

20 kN       40 kN     20 kN          30 kN 
10 kN 
θ
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4.6.1 Unit Load Method for Singly−Redundant Beams  
Using the method of analysis illustrated in Section 4.5 and considering the compatibility of 
displacements, member forces in singly−redundant beams can be determined as shown in 
Example 4.17 and Example 4.18 and in Problems 4.24 to 4.27. 

4.6.2 Example 4.17:   Singly−Redundant Beam 1 
A propped cantilever ABC is fixed at A, supported on a roller at C and carries a mid−span 
point load of 15 kN as shown in Figure 4.58, 
 
 (i)  determine the value of the support reactions and 
 (ii)  sketch the shear force and bending moment diagram. 
 
 
 
 
 
 
 
 E and I are constant.                

Figure 4.58 

 
The degree−of−indeterminacy  ID = [(3m + r)] − 3n = [(3 × 1) + 4] − (3 × 2) = 1 
 
Assume that the reaction at C is the redundant reaction and consider the original beam to 
be the superposition of two beams as indicated in Figures 4.59(a) and (b). The beam in 
Figure 4.59(b) can be represented as shown in Figure 4.60.   (Note: HA = zero) 
 
 
 
 
 
 
         (a)              (b) 

Figure 4.59 

 
 
 
 
 
 

Figure 4.60 

 
To maintain compatibility at the roller support, i.e. no resultant vertical displacement, the 
deformation of point C in Figure 4.59(a) must be equal and opposite to that in            
Figure 4.59(b) as shown in Figure 4.61. 
 

15 kN 

A                                B                           C  

M′A 

V′A 

+

≡ 

3.0 m                3.0 m EI 
A                                   B                                           C

VA                      VC
6.0 m

15.0 kN MA 
HA 

×  VC 
M′′A 

V′′A 
A                            B                         C 

1.0

M 

V 
A                                  B                            C 

VC 

M 

V 
A                           B                         C 

VC 



254 Examples in Structural Analysis 

 
 

 

 
 
 
 
 
 

Figure 4.61 

 
 (δ ′ due to the applied load) + (δ ′′ due to the unit load) × VC = 0 
 

 i.e.  
0

L
Mm

dx
EI∫  + 

0

 
L

mm
dx

EI

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭
∫  × VC = 0      ∴    VC = − 

2

0 0

L L
Mm m

dx dx
EI EI∫ ∫  

 
The product integrals can be evaluated as before in Section 4.5, e.g. using the coefficients 
in Table 4.1. 
 
Solution: 

The bending moment diagrams for the applied loads and a unit point load at B are shown 
in Figure 4.62. 
 
 
 
  
 
 
 
 
 
 
 
 

Figure 4.62 

 

Using the coefficients given in Table 4.1: 

 δ′C, point load = 
0

L
Mm

dx
EI∫  

 δ′C, point load = [(0.5 × 45.0 × 3.0 × 3.0) + (0.333 × 45.0 × 3.0 × 3.0)]/EI = − 337.5/EI 

 δ′′C, unit load = 
2

0

L
m

dx
EI∫  

 δ′′C, unit load = (0.333 × 6.0 × 6.0 × 6.0)/EI = + 71.93/EI 
 

 VC = − 
2

0 0

L L
Mm m

dx dx
EI EI∫ ∫  = − (− 337.5/EI)/(71.93/EI) = 4.69 kN 

+ ×  VC δ′′C 
A                            B                        C 

1.0

M′′A 

V′′A 
δ′C 

A                           B                            C 

15 kN 
M′A 

V′A 

A                           B                            C 

15 kN M′A = − 45.0 kNm 

V′A = 15.0 kN 

A                            B                        C 

1.0 

M′′A = 6.0 m 

V′′A = 1.0 

45 kNm

M for point load 

−ve

m for unit vertical load at C 

3.0 m6.0 m
3.0 m +ve
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 MA = M ′A + (M ′′A × VC) = − 45.0 + (6.0 × 4.69)      ∴ MA = − 16.86 kNm 

 

MB = M ′B + (M ′′B × VC) = zero + (3.0 × 4.69)        ∴ MB  = + 14.07 kNm 

 
 VA = V ′A + (V′′A × VC) = + 15.0 − (1.0 × 4.69)    ∴ VA  = + 10.31 kN 

 
 
 
 
                   Shear Force Diagram 

 
 
 
 
                    

                   Bending Moment Diagram 

 
 

 

Figure 4.63 

4.6.3 Example 4.18:   Singly−Redundant Beam 2 
A non−uniform, two−span beam ABCD is simply-supported at A, B and D as shown in 
Figure 4.64. The beam carries a uniformly distributed load on span AB and a point at the 
mid−span point of BCD. Using the data given: 
 
 (i)  determine the value of the support reactions,  
 (ii)  sketch the shear force and bending moment diagrams. 
 
 
 
 
 
 
 
                       

 

Figure 4.64 

        3.0 m               3.0 m 

 A                                                     B                                                     C 

VA                 4.69 kN 
6.0 m 

15.0 kN 
MA 

C

10.31 kN      10.31 kN 

4.69 kN      4.69 kN 
A                                             B 

A 

16.86 kN m 

14.07 kNm 

B                                               C 

C

VA            VB                       VD  
3.0 m          2.5 m        2.5 m 

 A                                                             D EI 1.5EI

8.0 m

20 kN

B

8 kN/m 
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Solution: 

Assume that the reaction at B is the redundant reaction. The bending moment diagrams for 
the applied loads and a unit point load at B are shown in Figure 4.65.  
 
 
 
 
 
         
 
 
 
 
 
 
 

 

 

 

 
 
 

 

 

 

 

 

 

Figure 4.65 

 
0

L
Mm

dx
EI∫  = 

B

A

Mm
dx

EI∫  + 
1 5

B

D

Mm
dx

. EI∫ : 

 
 A1 = + (0.667 × 3.0 × 9.0) = + 18.0 kNm2,  y1 = − 0.94 m,  ∴ A1y1 = − 16.92 kNm3 
 A2 = + (0.5 × 3.0 × 22.5) = + 33.75 kNm2,    y2 = − 1.25 m,  ∴ A2y2 = − 41.29 kNm3 
 A3 = + (0.5 × 3.0 × 18.75) = + 28.13 kNm2,  y3 = − 1.25 m,  ∴ A3y3 = − 35.16 kNm3 
 A4 = + (0.5 × 5.0 × 22.5) = + 52.25 kNm2,  y4 = − 1.25 m,  ∴ A4y4 = − 65.31 kNm3 
 A5 = + (2.5 × 18.75) = + 46.88 kNm2,  y5 = − 1.41 m,  ∴ A5y5 = − 66.10 kNm3 
 A6 = + (0.5 × 2.5 × 15.63) = + 19.54 kNm2,  y6 = − 1.25 m,  ∴ A6y6 = − 24.43 kNm3 
 A7 = + (0.5 × 2.5 × 34.38) = + 42.98 kNm2,   y7 = − 0.63 m,   ∴ A7y7 = − 27.08 kNm3 
 

 
0

L
Mm

dx
EI∫  = 

( )n 7
n n

n 1

A y

EI

=

=
∑   

     = − [(16.92 + 41.29 +35.16)/EI + (65.31 + 66.10 + 24.43 + 27.08)/1.5EI] 
      = − 216.13/EI 

9.0 kNm 
M for applied loads 

A                        B                      C                   D  

A1

22.5 kNm 

M for applied loads 

A4 

A                      B                       C           D 

A2

A5

34.38 kNm 

M for applied loads 

A7 

A                      B                       C                   D  

A3

A6

18.75 kNm

m for unit vertical load at B 

1.88 m

y1
y5y2,3 y4,6

A                       B                     C          D  

y7 

12.0 kN          12.0 kN         zero 
3.0 m   2.5 m    2.5 m 

B 
A                                                                         D 

8 kN/m 

EI 1.5EI 

C 

A                                                                         D 
B 

12 kN 

7.5 kN                             4.5 kN 

C 

A                                                                         D 
B 

20 kN 

6.25 kN                         13.75 kN 

C 

B 
A                                                                         D 

0.625                  1.0           0.375 

C 
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2

0

L
m

dx
EI∫  = 

2B

A

m
dx

EI∫  + 
2

1 5

B

D

m
dx

. EI∫ : 

 

 A1 = − (0.5 × 3.0 × 1.88) = − 2.82 m2,      y1 = − 1.25 m,    ∴ A1y1 = + 3.53 m3 
 A2 = − (0.5 × 5.0 × 1.88) = − 4.70 kNm2,    y2 = − 1.25 m,    ∴ A2y2 = + 5.88 m3 

 
2

0

L
m

dx
EI∫  = 

( )n 2
n n

n 1

A y

EI

=

=
∑  = [ + (3.53/EI) + (5.88/1.5EI) ] = + 7.45/EI 

VB = − 
2

0 0

L L
Mm m

dx dx
EI EI∫ ∫  = − (− 216.13/EI)/(7.45/EI) = + 29.01 kN 

 
 
 
 
 
     
 
 
 
 VA = + 12.0 + 7.5 + 6.25 − (0.625 × 29.01)    ∴ VA = + 7.62 kNm 

VD = zero + 4.5 + 13.75 − (0.375 × 29.01)     ∴ VD = + 7.37 kNm 

 MB  = + 22.5 + 18.75 − (1.88 × 29.01)      ∴ MB  = − 13.29 kN 

MC  = + 11.25 + 34.38 − (0.94 × 29.01)     ∴ MC = − 18.36 kN 

 
  
 
 
 
                   Shear Force Diagram 

 

 
 
 
 
                    
                   Bending Moment Diagram 

 
 

            Figure 4.66 

VA         29.01 kN                                         VD  
3.0 m          2.5 m        2.5 m 

 A                                                                           D EI 1.5EI 

8.0 m 

  20 kN

B 

8 kN/m 

A                                                                         D 
B               C 

0.625                  1.0           0.375 

1.88 m
y2y1

A                       B                     C                    D 

1.88 m

A                       B                     C                   D 

A2A1

7.37 kN 7.37 kN 

7.62 kN 

C         D

A                                       B 

12.63 kN

16.38 kN 

13.29 kNm 

18.36 kNm 

A                     C        D

B 
3.64 kNm 

C 
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4.6.4 Problems: Unit Load Method for Singly-Redundant Beams 
A series of singly-redundant beams are indicated in Problems 4.24 to 4.27. Using the 

applied loading given in each case: 

 

i)  determine the support reactions, 

ii)   sketch the shear force diagram  and 

iii) sketch the bending moment diagram.  
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Support C settles by 4.0 mm and EI = 100.0 × 10
3
 kNm

2
  

 

 

Problem 4.25

B EI 
A                                                                                    C

EI 

4 kN 
15 kN/m

3.0 m                        5.0 m 
8.0 m 

VB             2EI    VC 

Problem 4.24

Problem 4.26

Problem 4.27

VA                                     VB         VC 
2.0EI

A                             C
1.5EI 

5.0 m        5.0 m 

B
6 kN/m 9 kN/m 

VA                                   VB        VC 4.0 m      4.0 m      2.0 m 

A                             D
2.0EI      1.5EI      EI 

B       C 

8 kN/m 
4 kN 

A              B               C    D                          E               F 

12 kN/m 
8 kN 

EI EI 

10 kN 

VA        3.0 m   4.0 m     VC    3.0 m                   5.0 m                      3.0 m        VF 

6 kN 

7.0 m 11.0 m
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4.6.5 Solutions: Unit Load Method for Singly-Redundant Beams 
        
 
 
 

 
 
 

 
 
 
 
 

 Determine the value of the support reactions and sketch the shear force and bending 
moment diagrams. 
Assume that the reaction at B is the redundant reaction. 

 
 
 
 
 
         
 
 
 
 
 
 
 

 

 

 

 
 
 
 

 

 

 

 

 

 

  

 
0

L
Mm

dx
EI∫  = 

1 5

B

A

Mm
dx

. EI∫  + 
2 0

B

C

Mm
dx

. EI∫  

 

Solution 
Topic:  Unit Load − Singly-Redundant Beams  

Problem Number: 4.24            Page No. 1 

5.0 m        5.0 m VA                                             VB         VC 

2.0EI 

A                            C 

1.5EI 

B
6 kN/m 9 kN/m 

15.0 kN                      15.0 kN            zero 

B 
A                                                                         C 

6 kN/m 

zero                       22.5 kN            22.5 kN 

B 
A                                                                         C 

6 kN/m 

A                                                                         C 

37.5 kN 

18.75 kN                                         18.75 kN 

B 

0.5                            1.0                  0.5 

B 
A                                                                         C 

2.5 m

M for applied loads 

A                                 B                                   C  

A1

M for applied loads 

A4 

A                                  B                                 C  

A2

m for unit vertical load at B

A                                  B                                 C   

M for applied loads 

A                                  B                                  C  

A3

93.75 kNm

28.13 kNm 

18.75 kNm
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Using the coefficients given in Table 4.1: 

0

L
Mm

dx
EI∫  = ( )0

L
Coefficient a b L / EI× × ×∑  

 
0

L
Mm

dx
EI∫  = [− (0.333 × 18.75 × 2.5 × 5.0) − (0.333 × 93.75 × 2.5 × 5.0)]/1.5EI 

     + [− (0.333 × 28.13 × 2.5 × 5.0) − (0.333 × 93.75 × 2.5 × 5.0) ]/2.0EI 

     = − 565.85/EI 

 
2

0

L
m

dx
EI∫  = + (0.333 × 2.5 × 2.5 × 5.0)/1.5EI + (0.333 × 2.5 × 2.5 × 5.0)/2.0EI 

        = + 12.14/EI 
 

 VB = − 
2

0 0

L L
Mm m

dx dx
EI EI∫ ∫  = − (− 565.85/EI)/(12.14/EI) = + 46.61 kN 

 
 
 
 
 
 
 

VA = + 15.0 + 18.75 − (0.5 × 46.61)       ∴ VA = + 10.45 kN 

VC = + 22.5 + 18.75 − (0.5 × 46.61)       ∴ VC = + 17.94 kN 

MB  = + 93.75 − (2.5 × 46.61)         ∴ MB = − 22.78 kNm 

 
  
 
 
 
                   Shear Force Diagram 

 

 
 
 
 
                    
                   Bending Moment Diagram 

 
 

Solution 
Topic:  Unit Load − Singly-Redundant Beams 

Problem Number: 4.24            Page No. 2 

VA                                   46.61 kN               VC 
2.0EI 

 A                               C 

1.5EI 

5.0 m        5.0 m 

B
6 kN/m 9 kN/m 

17.85 kNm 

22.78 kNm

A                                                    C 

B 

9.1 kNm 

1.990 m

27.06 kN 

17.94 kN

10.45 kN 

A                                                     B          C 

19.55 kN 1.742 m 
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 Determine the value of the support reactions and sketch the shear force and bending 
moment diagrams. 
Assume that the reaction at C is the redundant reaction. 

 
 
 
 
 
  
 
 
 
 
 
 

 

 

 

 
 
 
 
  

 
0

L
Mm

dx
EI∫  = 

2 0

B

A

Mm
dx

. EI∫  + 
2 0

B

C

Mm
dx

. EI∫ + 
C

D

Mm
dx

EI∫  

 

Using the coefficients given in Table 4.1: 

0

L
Mm

dx
EI∫  = ( )0

L
Coefficient a b L / EI× × ×∑  

 
0

L
Mm

dx
EI∫  = [+ (0.333 × 16.0 × 4.0 × 4.0) − (0.333 × 90.0 × 4.0 × 4.0)]/2.0EI 

        + [− (0.5 × 30.0× 4.0 × 4.0) − (0.333 × 60.0 × 4.0 × 4.0) ]/1.5EI 

     = − 570.26/EI 

Solution 
Topic:  Unit Load − Singly-Redundant Beams 

Problem Number: 4.25            Page No. 1 

VA                                  VB                       VC 4.0 m      4.0 m        2.0 m 

A                           D 

2.0EI      1.5EI      EI 

B       C 

8 kN/m 4 kN 

B            C 
A                                                                        D 

1.0                       2.0            1.0 

2.0EI                  1.5EI              EI 

16.0 kN             16.0 kN 

B         C 
A                                                                         D 

8 kN/m 

15 kN 

A                                                                        D 

22.5 kN             37.5 kN 

B        C 

zero since m is equal to zero 

30.0 kNm 

90.0 kNm 

A                            B                           C           D 

M for applied loads 

A                      B                                C            D  

A1

A3

A2

16.0 kNm 

A                         B        C          D  

4.0 m

m for unit vertical load at C 

A4 

M for applied loads 
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2

0

L
m

dx
EI∫  = + (0.333 × 4.0 × 4.0 × 4.0)/2.0EI + (0.333 × 4.0 × 4.0 × 4.0)/1.5EI 

       = + 24.87/EI 

 

 VC = − 
2

0 0

L L
Mm m

dx dx
EI EI∫ ∫  = − (− 570.26/EI)/(24.87/EI) = + 22.93 kN 

 

 

 

  
  
 
 

 

VA = + 16.0 − 22.5 + (1.0 × 22.93)       ∴ VA = + 16.43 kN 

VB  = + 16.0 + 37.5 − (2.0 × 22.93)       ∴ VC = + 7.64 kN 

MB  = − 90.0 + (4.0 × 22.93)         ∴ MB = + 1.72 kNm 

MC  = − 30.0              ∴ MC = − 30.0 kNm 

 

 
  
 
 
 
                    Shear Force Diagram 

 

 
 
 
 
                    
                    
                    Bending Moment Diagram 

 
 

 

 

 

 

 

Solution 
Topic:  Unit Load − Singly-Redundant Beams 

Problem Number: 4.25            Page No. 2 

VA                                   VB           22.93 kN 
4.0 m      4.0 m      2.0 m 

A                             D
2.0EI      1.5EI      EI 

B       C 

8 kN/m 4 kN 

 7.93 kN                     7.93 kN 
15.57 kN 

15.0 kN        15.0 kN 16.43 kN 

A                                       B            C               D 

2.054 m 

30.0 kNm 

1.72 kNm 

A                                      B 

16.9 kNm 

C                  D
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The EI value of the beam BC varies linearly from EI at support B to 2.0EI at C. 
  

Determine the value of the support reactions and sketch the shear force and bending 
moment diagrams. 
 
Assume that the reaction at B is the redundant reaction. 
 
 
 
 
 
 
 

 
The value of EI at a distance of x m 
from A is given by: EI (0.4 + 0.2x) 

 
 

 

 

 

 

 

(Mm/EI) is not a continuous function the product integral must be evaluated between 
each of the discontinuities, i.e. A to B and B to C. 
 

The value of I at position ‘x’ along the beam between B and C is given by: 
EI (0.4 + 0.2x) 
 

∫
L

dx
EI

Mm

0

 = 
B

A

Mm
dx

EI∫  + ( )0 4 0 2

C

B

Mm
dx

EI . . x+∫  

 

1.0 

Solution 
Topic:  Unit Load − Singly-Redundant Beams 

Problem Number: 4.26            Page No. 1 

m for unit vertical load at B 

A                  C 

x 

4.0 kN 
512.0 kNm

EI               EI 
2EI 

15.0 kN/m 

3.0 m     5.0 m 

B 

M for applied loads 

124 kN

x 

A                  C 

5.0 m

B 

1.0

2EI 

( x − 3)

B           C 

EI + EI(x − 3)/5 

EI

B EI 

A                                                                                    C 

EI 

4 kN 
15 kN/m 

 3.0 m                            5.0 m 

8.0 m 

VB                      2EI   VC 

MC 
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Consider the section from A to B: 0 ≤ x ≤ 3.0 m 
m = zero ∴ Mm = zero 
B

A

Mm
dx

EI∫  = zero  

 
Consider the section from B to A: 3.0 ≤ x ≤ 8.0 m 
M = − 4.0x − 15.0x2/2 = − 4.0x − 7.5x2 
m = + 1.0(x − 3) 
 Mm = (x − 3)(− 4.0x − 7.5x2) = 12.0x + 18.5x2 − 7.5x3 
m2 = + (x − 3)2 
 

( )0 4 0 2

C

B

Mm
dx

EI . . x+∫  = ( )
8 0 2 3

3 0

12 0 18 5 7 5
0 4 0 2

.

.

. x . x . x
dx

EI . . x

+ −
+∫  

 
Let v  = (0.4 + 0.2x)  ∴ x = (5v −2)  and dx = 5dv 
x2 = (25v2 − 20v + 4.0) 
x3  = (125v3 − 150v2 + 60v − 8.0) 
 
when   x = 3.0 v = 1.0   and  when    x = 8.0 v = 2.0  
 
Mm = 12.0x + 18.5x2 − 7.5x3 

    = 12.0(5v − 2) + 18.5(25v2 − 20v + 4.0) − 7.5(125v3 − 150v2 + 60v − 8.0) 
    = (− 760v + 110 + 1587.5v2 − 937.5v3) 
 

( )0 4 0 2

C

B

Mm
dx

EI . . x+∫  = ( )
8 0 2 3

3 0

12 0 18 5 7 5
0 4 0 2

.

.

. x . x . x
dx

EI . . x

+ −
+∫  

         = 
2 0 2 3

1 0

760 110 1587 5 937 5 5 0
.

.

v . v . v
. dv

EIv

− + + −
∫  

         = 
2 0

2

1 0

5 0 110760 1587 5 937 5
.

.

.
. v . v dv

EI v

⎛ ⎞− + + −⎜ ⎟
⎝ ⎠∫  

         = 
2 02 3

1 0

5 0 1587 5 937 5760 110
2 0 3 0

.

.

. . v . v
v lnv

EI . .

⎡ ⎤
− + + −⎢ ⎥
⎣ ⎦

 

         = ( ) ( )5 0 768 8 278 8.
. .

EI
⎡ ⎤− − −⎣ ⎦ = + 2450 0.

EI
m  

 

Solution 
Topic:  Unit Load − Singly-Redundant Beams 

Problem Number: 4.26            Page No. 2 
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m2 = + (x − 3)2  = x2 − 6x + 9.0  = 25v2 − 50v + 25.0 
 

( )
2

0 4 0 2

C

B

m
dx

EI . . x+∫  = ( )
8 0 2

3 0

6 0 9 0
0 4 0 2

.

.

x . x .
dx

EI . . x

− +
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1 0
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.

. v . v .
. dv

EIv

− +
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 = 
2 0

1 0

5 0 25 025 0 50 0
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.

. .
. v . dv

EI v

⎛ ⎞− +⎜ ⎟
⎝ ⎠∫  = 

2 02

1 0
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2 0

.
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. . v
. v . lnv

EI .

⎡ ⎤
− +⎢ ⎥

⎣ ⎦
 

 = ( ) ( )5 0 32 67 37 5.
. .

EI
⎡ ⎤− − −⎣ ⎦ = + 24 15.

EI
m 

 VB = − 
2

0 0

L L
Mm m

dx dx
EI EI∫ ∫  = − (− 2450/EI)/(24.15/EI) = + 101.45 kN 

 

 

 

  
  
 
 

 

 

VC = + 124.0 − (1.0 × 101.45)        ∴ VA = + 22.55 kN 

MC  = − 512.0 + (5.0 × 101.45)        ∴ MC  = − 4.75 kNm 

MB  = − (4.0 × 3.0) − (15.0 × 3.0)(1.5)      ∴ MB  = − 79.5 kNm 

 
  
 
 
 
                      Shear Force Diagram 

 

 
 
 
 
                    
                    
                    Bending Moment Diagram 

 

 

Solution 
Topic:  Unit Load − Singly-Redundant Beams 

Problem Number: 4.26            Page No. 2 

49.0 kN 

52.45 kN 

22.55 kN
A                                       B                                 C

1.503 m

4.75 kNm 

B 

79.5 kNm 

12.2 kNm 

A                                                    C 

B EI

A                                                                                                       C 

EI 

4 kN 15 kN/m 

      3.0 m                        5.0 m 

8.0 m 

101.45 kN                2EI    VC 
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 Support C settles by 4.0 mm and EI = 100.0 × 10
3
 kNm

2
 

Determine the value of the support reactions and sketch the shear force and bending 
moment diagrams. 
Assume that the reaction at C is the redundant reaction.- 
 

 
 
 
 
 
         
 
 
 
 
 
 
 

 

 

 

 
 
 
 

 

 

 

 

 

 

  
 
 

y11y1

m for unit vertical load at B

A                                                                        F  
B    C        D                E  

y2,8,12 y3,7
y4

y5y6

y10

y9 y13

y14 y15 
4.28

A                                                                        F 

42.0 kN

25.67 kN                                              16.33 kN

B    C        D                E  

A                                                                        F  
B   C        D                 E  

A12

A13

A14
A15 

15.0 kNm 
7.0 kNm 

Note: B.M. diagrams not to scale 

Solution 
Topic:  Unit Load − Singly-Redundant Beams 

Problem Number: 4.27            Page No. 1 

A                 B                 C    D                          E                   F 
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42.0 kN           42.0 kN                        zero 

B      C     D                E  
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B    C        D                E  
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6 kN 

1.0 kN                                              5.0 kN

B    C        D                E  

A                                                                        F 

0.61               1.0                                   0.39 

B       C     D                E  

A                                                                      F  
B   C        D                 E  

M for applied loads 73.50 kNm
A1

179.69 kNm 

A                                                                        F  

A2
A3 

B   C         D                E  

A                                                                        F  

A7 
25.0 kNm 

B   C         D                E  

A4

A5
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18.33 kNm

24.92 kNm
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B   C         D                E  
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0

L
Mm

dx
EI∫  + 

0

  
L

mm
dx

EI

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭
∫  × VC = − 0.004        VC = − 

2

0 0

0 004
L L

Mm m
. dx dx

EI EI

⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫  

0

L
Mm

dx
EI∫  = 

F

A

Mm
dx

EI∫   

 (Note: The reader should check this using the coefficients given in Table 4.1). 
A1 = + (0.67 × 7.0 × 73.5) = + 344.72 kNm2 
y1 (3.5 m from A) = − 2.14 m           ∴ A1y1 = − 737.70 kNm3 
A2 = + (0.5 × 7.0 × 179.69)  = + 628.92 kNm2 
y2 (4.67 m from A) = − 2.85 m           ∴ A2y2 = − 1792.42 kNm3 
A3 = + (0.5 × 11.0 × 179.69) = + 988.30 kNm2 
y3 (7.33 m from F) = − 2.85 m            ∴ A3y3 = − 2816.66 kNm3 
A4 = + (0.5 × 3.0 × 25.0) = + 37.50 kNm2 
y4 (2.0 m from A) = − 1.22 m           ∴ A4y4 = − 45.75 kNm3 
A5 = + (4.0 × 18.33) = + 73.32 kNm2 
y5 (5.0 m from A) = − 3.05 m         ∴ A5y5 = − 223.63 kNm3 
A6 = + (0.5 × 4.0 × 6.67) = + 13.34 kNm2 
y6 (4.33 m from A) = − 2.64 m         ∴ A6y6 = − 35.22 kNm3 
A7 = + (0.5 × 11.0 × 18.33) = + 100.82 kNm2 
y7 (7.33 m from F) = − 2.85 m           ∴ A7y7 = − 287.34 kNm3 
A8 = + (0.5 × 7.0 × 24.92) = + 87.22 kNm2 
y8 (4.67 m from A) = − 2.85 m           ∴ A8y8 = − 248.58 kNm3 
A9 = + (3.0 × 24.92) = + 74.76 kNm2 
y9 (9.50 m from F) = − 3.71 m           ∴ A9y9 = − 277.36 kNm3 
A10  = + (0.5 × 3.0 × 10.68) = + 16.02 kNm2 
y10 (9.0 m from F) = − 3.51 m            ∴ A10y10 = − 56.23 kNm3 
A11 = + (0.5 × 8.0 × 35.6) = + 142.4 kNm2 
y11 (5.33 m from F) = − 2.08 m           ∴ A11y11 = − 296.19 kNm3 
A12 = + (0.5 × 7.0 × 7.0) = + 24.50 kNm2 
y12 (4.67 m from A) = − 2.85 m         ∴ A12y12 = − 69.83 kNm3 
A13 = + (8.0 × 7.0) = + 56.0 kNm2 
y13 (7.0 m from F) = − 2.73 m         ∴ A13y13 = − 152.88 kNm3 
A14 = + (0.5 × 8.0 × 8.0) = + 32.0 kNm2 
y14 (5.67 m from F) = − 2.21 m           ∴ A14y14 = − 70.72 kNm3 
A15 = + (0.5 × 3.0 × 15.0) = + 22.5 kNm2 
y15 (2.0 m from F) = − 0.78 m           ∴ A15y15 = − 17.55 kNm3 

 
0

L
Mm

dx
EI∫  = 

( )n 15
n n

n 1

A y

EI

=

=
∑  = − 7128.06/EI m 
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2

0

L
m

dx
EI∫  = 

2F

A

m
dx

EI∫  

A1 = + (0.5 × 7.0 × 4.28) = − 14.98 kNm2 
y1 (4.67 m from A) = − 2.85 m          ∴ A1y1 = + 42.69 kNm3 
A2 = + (0.5 × 11.0 × 4.28) = − 23.57 kNm2 
y2 (7.33 m from A) = − 2.85 m          ∴ A2y2 = + 67.09 kNm3 

2

0

L
m

dx
EI∫  = 

( )2
n n

1

n

n

A y

EI

=

=
∑  = [+ (42.69/EI) + (67.09/EI)] = + 109.78/EI 

VC = − 
2

0 0

0 004
L L

Mm m
. dx dx

EI EI

⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫  = − (0.004 − 7128.06/EI)/ 109.78/EI 

      = + 61.03 kN 
 
 
 
 
 
 
 
 
 
VA = + 42.0 + 25.67 + 8.33 + 3.56 + 1.0 − (0.61 × 61.03)    ∴ VA = + 43.33 kN 

VF = + 16.33 + 1.67 + 4.44 + 5.0 − (0.39 × 61.03)      ∴ VF  = + 3.64 kN 

MC  = + 179.69 + 18.33 + 24.92 + 7.0 − (4.28 × 61.03)     ∴ MC = + 31.27 kNm 

 

 

 
  
 
 
 
                   Shear Force Diagram 

 

 
 
 
 
                             
                   Bending Moment Diagram 

Solution 
Topic:  Unit Load − Singly-Redundant Beams 

Problem Number: 4.27            Page No. 3 
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4.7 Moment Distribution Method for Multi−Redundant Beams 
This section deals with continuous beams and propped cantilevers. An American engineer, 
Professor Hardy Cross, developed a very simple, elegant and practical method of analysis 
for such structures called Moment Distribution. This technique is one of developing 
successive approximations and is based on several basic concepts of structural behaviour 
which are illustrated in Sections 4.7.1 to 4.7.10. 

4.7.1 Bending (Rotational) Stiffness 
A fundamental relationship which exists in the elastic behaviour of structures and 
structural elements is that between an applied force system and the displacements which 
are induced by that system, i.e. 
 
 Force = Stiffness × Displacement   i.e. P = kδ 
 
where: 
P is the applied force, 
k is the stiffness, 
δ is the displacement. 
 
A definition of stiffness can be derived from this equation by rearranging it such that: 
 
 k = P/δ  
 
when δ = 1.0 (i.e. unit displacement) the stiffness is: ‘the force necessary to maintain a 
UNIT displacement, all other displacements being equal to zero.’ 
 
The displacement can be a shear displacement, an axial displacement, a bending 
(rotational) displacement or a torsional displacement, each in turn producing the shear, 
axial, bending or torsional stiffness. 
When considering beam elements in continuous structures using the moment distribution 
method of analysis, the bending stiffness is the principal characteristic which influences 
behaviour. 
Consider the beam element AB shown in Figure 4.67 which is subject to a UNIT rotation 
at end A and is fixed at end B as indicated. 
 
 
 
 
 
 

Figure 4.67 

 
The force (MA) necessary to maintain this displacement can be shown to be equal to 
(4EI)/L (see Chapter 7, Section 7.2.2). From the definition of stiffness given previously, 
the bending stiffness of the beam is equal to (Force/1.0), therefore k = (4EI)/L. This is 
known as the absolute bending stiffness of the element. Since most elements in continuous 

A                    B
MB Unit rotation 

MA Fixed-End 
(zero rotation)

E, I, L 
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structures are made from the same material, the value of Young’s Modulus (E) is constant 
throughout and 4E in the stiffness term is also a constant. This constant is normally 
ignored, to give k = I/L which is known as the relative bending stiffness of the element. It 
is this value of stiffness which is normally used in the method of Moment Distribution. 
It is evident from Figure 4.67 that when the beam element deforms due to the applied 
rotation at end A, an additional moment (MB) is also transferred by the element to the 
remote end if it has zero slope (i.e. is fixed) The moment MB is known as the carry-over 
moment. 

4.7.2 Carry-Over Moment  
Using the same analysis as that to determine MA, it can be shown that MB = (2EI)/L,         
i.e. (½ × MA).  It can therefore be stated that ‘if a moment is applied to one end of a beam 
then a moment of the same sense and equal to half of its value will be transferred to the 
remote end provided that it is fixed.’ 
If the remote end is ‘pinned’, then the beam is less stiff, there is no carry-over moment 
and the value of MA is smaller then when it is fixed as shown in Figure 4.69. 

4.7.3 Pinned End  
Consider the beam shown in Figure 4.68 in which a unit rotation is imposed at end A as 
before but the remote end B is pinned. 
 
 
 
 
 

Figure 4.68 

 
The force (MA) necessary to maintain this displacement can be shown (e.g. using 
McCaulay’s Method) to be equal to (3EI)/L, which represents the reduced absolute 
stiffness of a pin-ended beam. It can therefore be stated that ‘the stiffness of a pin-ended 
beam is equal to ¾ × the stiffness of a fixed-end beam.’ In addition it can be shown that 
there is no carry-over moment to the remote end. These two cases are summarised in 
Figure 4.69. 
 
Remote End Fixed: 
                  MA = 4EI/L 
 
                  MB  = 2EI/L 
 
Remote End Pinned: 
                  MA = 3EI/L 
 
                  MB  = zero 
 

Figure 4.69 

k = (I/L ) A      B
MA 

MB Unit rotation 

k = ¾ (I/L)  

zero 
A                B 

Unit rotation 

MA 
E, I, L Pinned End 

A          B 
MB 

MA 

Unit rotation 
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4.7.4 Free and Fixed Bending Moments  
When a beam is free to rotate at both ends as shown in Figures 4.70(a) and (b) such that no 
bending moment can develop at the supports, then the bending moment diagram resulting 
from the applied loads on the beam is known as the Free Bending Moment Diagram. 
 
 
 
 
 
 
 
 
 
    (a)            (b) 
        

Figure 4.70 – Free Bending Moment Diagrams 

 
When a beam is fixed at the ends (encastré) such that it cannot rotate, i.e. zero slope at the 
supports, as shown in Figure 4.71, then bending moments are induced at the supports and 
are called Fixed-End Moments. The bending moment diagram associated only with the 
fixed-end moments is called the Fixed Bending Moment Diagram. 
 
 
 
  
 

Figure 4.71 − Fixed Bending Moment Diagram 

 

Using the principle of superposition, this beam can be considered in two parts in order to 
evaluate the support reactions and the Final bending moment diagram: 
 

(i) The fixed-reactions (moments and forces) at the supports  

 
 
 
                  Figure 4.72 

 
(ii) The free reactions at the supports and the bending moments throughout the 

length due to the applied load, assuming the supports to be pinned 

 
  

  
                  Figure 4.73 

 

 

Combining (i) + (ii) gives the final bending moment diagram as shown in Figure 4.74: 

L

Pab  
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2wL
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    VA free            VB free 
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MA 
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VA fixed           VB fixed 
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 VA = (VA fixed  + VA free); VB = (VB fixed  + VB free)  
 
 MA = (MA + 0); MB = (MB + 0) 
 
   
   Note: M = − [MB + (MA − MB)b/L] 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.74 

 

The values of MA and MB for the most commonly applied load cases are given in    
Appendix 2. These are standard Fixed-End Moments relating to single-span encastré 
beams and are used extensively in structural analysis. 

4.7.5 Example 4.19:  Single-span Encastré Beam  
Determine the support reactions and draw the bending moment diagram for the encastré 
beam loaded as shown in Figure 4.75. 
 
 
 
 
 
 
 
 

Figure 4.75 

Solution: 

Consider the beam in two parts. 
 
(i) Fixed Support Reactions 

The values of the fixed-end moments are given in Appendix 2. 

 MA = − 
2L

Pab2

 = − 2

2

6
4220 ××  = − 17.78 kNm 

 MC  = + 
2

2

L

bPa  = + 2

2

6
4220 ××  = + 8.89 kNm 

Free Bending Moment Diagram 

+ve 

L

Pab  

+          = 

M 

MB 
MA 

−ve 

Fixed bending moment diagram 

Final Bending Moment Diagram 

MA 

⎟
⎠
⎞

⎜
⎝
⎛ − M

L

Pab  

L

Pab  

MB 
−ve −ve 

+ve 

VA                   VC 
A                    C

6.0 m 
2.0 m       4.0 m 

20 kN
MA                 MC 
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Consider the rotational equilibrium of the beam: 
 
 
 − (17.78) + (8.89) − (6.0 × VC fixed) = 0           Equation (1) 
            ∴ VC fixed = − 1.48 kN 
   
Consider the vertical equilibrium of the beam: 
 
 
 + VA fixed + VC fixed = 0  ∴ VA fixed = − (− 1.48 kN) = + 1.48 kN        Equation (2) 
 
 

 
 
 
 
 
 
 
Consider the rotational equilibrium of the beam: 
 
 
 + (20 × 2.0) − (6.0 × VC free) = 0   ∴ VC free = + 6.67 kN    Equation (1) 
        
Consider the vertical equilibrium of the beam: 
 

 
 + VA free + VC free − 20 = 0     ∴ VA free = + 13.33 kN    Equation (2) 
 
Bending Moment under the point load = (+ 13.33 × 2.0) = + 26.67 kNm 
                 (This induces tension in the bottom of the beam) 
 
The final vertical support reactions are given by (i) + (ii): 
 

VA = VA fixed + VA free = (+ 1.48 + 13.33) = + 14.81 kN 
 VC = VC fixed + VC free = (− 1.48 + 6.67)   = + 5.19 kN 
 
Check the vertical equilibrium:   Total vertical force  = + 14.81 + 5.19 = + 20 kN 

+ve ΣFz = 0 

+ve ΣMA = 0 

+ve ΣFz = 0 

+ve ΣMA = 0 

(These moments induce
tension in the top of the
beam). 

A                                                          C 

17.78 kNm                                                                      8.89 kNm 

VA fixed                          VC fixed 

6.0 m 

A                    C 

VA free                           VC free 
6.0 m 

20 kN 

2.0 m        4.0 m 
B
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 M = {8.89 + [(17.78 − 8.89) × (4/6)]} = 14.82 kNm 

Fixed Bending Moment Diagram 
 
 
 
 
 
 

Free Bending Moment Diagram 
 
 
 
 
 

 
 
 
 

 
Final Bending Moment Diagram 

 

Figure 4.76 

 

Note the similarity between the shape of the bending moment diagram and the final 
deflected shape as shown in Figure 4.77. 
 
 
 
 
 
 
                   

 

Figure 4.77 

4.7.6 Propped Cantilevers  
The fixed-end moment for propped cantilevers (i.e. one end fixed and the other end 
simply-supported) can be derived from the standard values given for encastré beams as 
follows. Consider the propped cantilever shown in Figure 4.78, which supports a 
uniformly distributed load as indicated. 

+ 

= 

26.67 kNm 

+ve 

tension                tension

tension point of 
contraflexure 

point of 
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bending moment diagram 
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−ve 

A                C 

A                C
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8.89 kNm 
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(26.67 − 14.82) = 11.87 kNm 

26.67 kNm 

−ve 

+ve

−ve

17.78 kNm 
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                     Figure 4.78 

 

 

The structure can be considered to be the superposition of an encastré beam with the 
addition of an equal and opposite moment to MB applied at B to ensure that the final 
moment at this support is equal to zero, as indicated in Figure 4.79. 
 
 
 
 
 
 
 
 
 
                 Figure 4.79 

 

 

4.7.7 Example 4.20:  Propped Cantilever  
Determine the support reactions and draw the bending moment diagram for the propped 
cantilever shown in Figure 4.80. 
 
 
 
 
 

                    Figure 4.80 

 

Solution 

Fixed-End Moment for Propped Cantilever: 

Consider the beam fixed at both supports. 
The values of the fixed-end moments for encastre beams are given in Appendix 2. 
 

 MA = − 
12

2wL  = − 
12

810 2×  = − 53.33 kNm 

 MB  = + 
12

2wL  = + 
12

810 2×  = + 53.33 kNm 

 
The moment MB must be cancelled out by applying an equal and opposite moment at B 
which in turn produces a carry-over moment equal to − (0.5 × MB ) at support A. 
 

+        =

MA          MB  

carry-over = − (0.5 × MB) 

− MB  

− MB /2 

VA                  VB 

A                   B 

MA                   10 kN/m  

8.0 m 

VA                  VB 

MA 

L  

w kN/m 
A                       B

 A              B 

 A               B 

 A             B 

VA                          L        VB  

(MA − 0.5MB) w kN/m 
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(i) Fixed Support Reactions 

 
 
 
 
 
Consider the rotational equilibrium of the beam: 
 
 
  

− (80) − (8.0 × VB fixed) = 0              Equation (1) 
         ∴ VB fixed  = − 10.0 kN 
 
Consider the vertical equilibrium of the beam: 
 

 
 
 + VA fixed + VB fixed = 0  ∴ VA fixed = − (− 10.0 kN) = + 10.0 kN   Equation (2) 
 
(ii) Free Support Reactions 

 

 
 
 
 
 
Consider the rotational equilibrium of the beam: 
 
 
 + (10 × 8.0 × 4.0) − (8.0 × VB free) = 0  ∴ VB free = + 40.0 kN   Equation (1) 
   
Consider the vertical equilibrium of the beam: 
 

 
 + VA free + VB free − (10 × 8.0) = 0   ∴ VA free = + 40.0 kN   Equation (2) 

+ve ΣFz = 0 

+ve ΣMA = 0 

+ve ΣFz = 0 

+ve ΣMA = 0 

53.33 kNm        53.33 kNm  

+        = 

carry-over 53.33 kNm 

26.67 kNm VA                              8.0 m       VB  

80 kNm 10 kN/m 
 A             B 

 A               B 

 A             B 

VA fixed                             8.0 m            VB  fixed   

80 kNm 
A             B

VA free        8.0 m      VB free  

10 kN/m 

 A             B 
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The final vertical support reactions are given by (i) + (ii): 
 

VA = VA fixed + VA free = (+ 10.0 + 40.0) = + 50.0 kN 
 VB = VB fixed + VB free = (− 10.0 + 40.0) = + 30.0 kN 
 
Check the vertical equilibrium: Total vertical force  = + 50.0 + 30.0 = + 80 kN 
 
 
 
 
 

Fixed Bending Moment Diagram 
 
 
 

 
 
 

Free Bending Moment Diagram 
 

 
 
 
 
 
 
 
 
 

 
 
 

Final Bending Moment Diagram 

Figure 4.81 

 

Note the similarity between the shape of the bending moment diagram and the final 
deflected shape as shown in Figure 4.82. 
 
 
 
 
 
 

Figure 4.82 

 

The position of the maximum bending moment can be determined by finding the point of 
zero shear force as shown in Figure 4.83. 

tension Deflected shape indicating 
tension zones and the 
similarity to the shape of the 
bending moment diagram point of contraflexure tension 
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The position of zero shear: 

x = 
10
30  = 3.0 m 

 
 
Maximum bending moment: 
M = [+ (30 × 3.0) − (10 × 3.0 × 1.5)] 
   = + 45.0 kNm 
or 

        Figure 4.83 M = shaded area over length ‘x’ 
   = (0.5 × 30.0 × 3.0) = 45.0 kNm 

4.7.8 Distribution Factors  
Consider a uniform two-span continuous beam, as shown in Figure 4.84. 
 
 

                   Figure 4.84 

 

 

If an external moment M is applied to this structure at support B it will produce a rotation 
of the beam at the support; part of this moment is absorbed by each of the two spans BA 
and BC, as indicated in Figure 4.85. 
 
 
 
 
 
   Applied moment    Rotation of beam at support (Mapplied = M1 + M2) 

 

Figure 4.85 

 
The proportion of each moment induced in each span is directly proportional to the 
relative stiffnesses, e.g. 
 
 Stiffness of span BA = kBA = (I1 /L1) 
 Stiffness of span BC = kBC = (I2 /L2) 
 
Total stiffness of the beam at the support = ktotal = ( kBA + kBC ) = [(I1 /L1) + (I2 /L2)] 
 

The moment absorbed by beam BA    M1 = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

total

BA
applied

k

k
M   

The moment absorbed by beam BC     M2 = ⎟⎟
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⎞
⎜⎜
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⎛
×
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BC
applied

k

k
M   

 A                   C 

    I1, L1                     I2, L2 
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A             C 
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A              C 
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M2 

Shear Force Diagram 30 kNx  

50 kN 

50 kN                            8.0 m            30 kN  
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The ratio ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

totalk

k  is known as the Distribution Factor for the member at the joint where 

the moment is applied. 
 
As indicated in Section 4.7.2, when a moment (M) is applied to one end of a beam in 
which the other end is fixed, a carry-over moment equal to 50% of M is induced at the 
remote fixed-end and consequently moments equal to ½ M1 and ½ M2 will develop at 
supports A and C respectively, as shown in Figure 4.86. 
 
 
 
 
 

                   Figure 4.86 

4.7.9 Application of the Method  
All of the concepts outlined in Sections 4.7.1 to 4.7.8 are used when analysing 
indeterminate structures using the method of moment distribution. Consider the two 
separate beam spans indicated in Figure 4.87. 
 
 
 

 

 

 

 

Figure 4.87 

 

Since the beams are not connected at the support B they behave independently as simply-
supported beams with separate reactions and bending moment diagrams, as shown in 
Figure 4.88. 
 
 

 

 

 

 

 

 

 

          Figure 4.88 

 

When the beams are continuous over support B as shown in Figure 4.89(a), a continuity 
moment develops for the continuous structure as shown in Figures 4.89(b) and (c). Note 
the similarity of the bending moment diagram for member AB to the propped cantilever in      
Figure 4.81. Both members AB and BD are similar to propped cantilevers in this structure. 
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(a) 

 

 

 

(b) 

 

 

 

 

(c) 

 

                  

 

Figure 4.89 

 

Moment distribution enables the evaluation of the continuity moments. The method is 
ideally suited to tabular representation and is illustrated in Example 4.21. 

4.7.10  Example 4.21:  Three-span Continuous Beam  
A non-uniform, three span beam ABCDEF is fixed at support A and pinned at support F, 
as illustrated in Figure 4.90. Determine the support reactions and sketch the bending 
moment diagram for the applied loading indicated. 
 
  

 

 

 

 

 

Figure 4.90 

Solution: 

Step 1 
The first step is to assume that all supports are fixed against rotation and evaluate the 
‘fixed-end moments’. 
 
 
 
 
 
 
 
 
The values of the fixed-end moments for encastre beams are given in Appendix 2. 
 

10 kN       10 kN/m            25 kN             15 kN/m 
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C                 D  
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Bending Moment Diagram 
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  A                   D 
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 A                   D Deformed shape 
B      C 
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Span AC 

 MAC  = − 2

2

L

Pab = − 2

2

0.6
4210 ××  = − 8.89 kNm 

 MCA = + 2

2

L

bPa = + 2

2

0.6
4210 ××  = + 4.44 kNm 

Span CD 

 MCD = − 
12

2wL  = − 
12

810 2×  = − 53.33 kNm 

 MDC = + 
12

2wL  = + 
12

810 2×  = + 53.33 kNm 

Span DF* 

 MDF = − 
12

2wL − 
8

PL  = − 
8

525
12

515 2 ×−×  = − 46.89 kNm 

 MFD = + 
12

2wL + 
8

PL  = + 
8

525
12

515 2 ×+× = + 46.89 kNm 

* Since support F is pinned, the fixed-end moments are (MDF − 0.5MFD)  at D and zero at F 
 (see Figure 4.79):    (MDF − 0.5MFD) = [− 46.89 − (0.5 × 46.89) ] = − 70.34 kNm. 
 

Step 2 
The second step is to evaluate the member and total stiffness at each internal joint/support  
and determine the distribution factors at each support. Note that the applied force system 
is not required to do this. 
 
 
 
 
 
 
 
Support C 

Stiffness of CA = kCA = (I / 6.0) = 0.167I  
 Stiffness of CD = kCD = (2I / 8.0) = 0.25I  
 

Distribution factor (DF) for CA = CA

total

k

k
= 

I

I

417.0
167.0  = 0.4 

 Distribution factor (DF) for CD = CD

total

k

k
= 

I

I

417.0
25.0  = 0.6 

 
Support D 

Stiffness of DC = kDC = kDC = 0.25I 
 Stiffness of DF = kDF = ¾  × (1.5I / 5.0) = 0.225I 
 
 

ktotal = (0.167 + 0.25)I = 0.417I 

ktotal = (0.25 + 0.225)I = 0.475I 

Note: the remote end F is 
pinned and k = ¾ (I/L) 

Σ DF’s = 1.0

 A                          F 

C             D 

6.0 m         8.0 m       5.0 m 

E, I                   E, 2I       E, 1.5I 
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Distribution factor (DF) for DC = DC

total

k

k
 = 

I

I

475.0
25.0 = 0.53 

 Distribution factor (DF) for DF = DF

total

k

k
 = 

I

I

475.0
141.0 = 0.47 

The structure and the distribution factors can be represented in tabular form, as shown in 
Figure 4.91.  
 

 

Joints/Support 

 

 

A 

  

 

C 

  

 

D 

  

 

F 

Member AC  CA CD  DC DF  FD 

Distribution 

Factors 

0  0.4 0.6  0.53 0.47  1.0 

 

Figure 4.91 

 

The distribution factor for fixed supports is equal to zero since any moment is resisted by 
an equal and opposite moment within the support and no balancing is required. In the case 
of pinned supports the distribution factor is equal to 1.0 since 100% of any applied 
moment, e.g. by a cantilever overhang, must be balanced and a carry-over of ½ × the 
balancing moment transferred to the remote end at the internal support. 
 
Step 3 
The fixed-end moments are now entered into the table at the appropriate locations, taking 
care to ensure that the signs are correct. 

 

 

Joints/Support 

 

 

A 

  

 

C 

  

 

D 

  

 

F 

Member AC  CA CD  DC DF  FD 

Distribution 

Factors 

0  0.4 0.6  0.53 0.47  1.0 

Fixed-End 
Moments 

− 
8.89 

 + 
4.44 

− 
53.33

 + 
53.33

− 
70.34

  
zero 

 

Step 4 
When the structure is restrained against rotation there is normally a resultant moment at a 
typical internal support. For example, consider the moments C:  
 

MCA = + 4.44 kNm    and  MCD = − 53.33 kNm 
 
The ‘out-of-balance’ moment is equal to the algebraic difference between the two: 
The out-of-balance moment = (+ 4.44 − 53.33) = − 48.89 kNm  
 

Σ DF’s = 1.0
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If the imposed fixity at one support (all others remaining fixed), e.g. support C, is released, 
the beam will rotate sufficiently to induce a balancing moment such that equilibrium is 
achieved and the moments MCA and MCD are equal and opposite. The application of the 
balancing moment is distributed between CA and CD in proportion to the distribution 

factors calculated previously. 
 
 Moment applied to CA = + (48.89 × 0.4) = +19.56 kNm 
 
 Moment applied to CD = + (48.89 × 0.6) = + 29.33 kNm 
 
 

 

Joints/Support 

 

 

A 

  

 

C 

  

 

D 

  

 

F 

Member AC  CA CD  DC DF  FD 

Distribution 

Factors 

0  0.4 0.6  0.53 0.47  1.0 

Fixed-End 
Moments 

− 
8.89 

 + 
4.44 

− 
53.33

 + 
53.33

− 
70.34

  
zero 

Balance 

Moment 

  + 

19.56

+ 

29.33

     

 
 
As indicated in Section 4.7.2, when a moment is applied to one end of a beam whilst the 
remote end is fixed, a carry-over moment equal to (½ × applied moment) and of the same 
sign is induced at the remote end. This is entered into the table as shown. 
 
 

 

Joints/Support 

 

 

A 

  

 

C 

  

 

D 

  

 

F 

Member AC  CA CD  DC DF  FD 

Distribution 

Factors 

0  0.4 0.6  0.53 0.47  1.0 

Fixed-End 
Moments 

− 
8.89 

 + 
4.44 

− 
53.33

 + 
53.33

− 
70.34

  
zero 

Balance 
Moment 

  + 
19.56

+ 
29.33

     

Carry-over to 

Remote Ends 

+ 

9.78 

    + 

14.67
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Step 5 
The procedure outline above is then carried out for each restrained support in turn. The 
reader should confirm the values given in the table for support D. 
 

 

Joints/Support 

 

 

A 

  

 

C 

  

 

D 

  

 

F 

Member AC 

 

 CA CD  DC DF  FD 

Distribution 

Factors 

0  0.4 0.6  0.53 0.47  1.0 

Fixed-End 
Moments 

− 
8.89 

 + 
4.44 

− 
53.33

 + 
53.33

− 
70.34

  
zero 

Balance 
Moment 

  + 
19.56

+ 
29.33

     

Carry-over to 
Remote Ends 

+ 
9.78 

    + 
14.67

   

Balance 

Moment 

 

 

    + 

1.27 

+ 

1.12 

  

Carry-over to 

Remote Ends 

   + 

0.64 

     

 
If the total moments at each internal support are now calculated they are: 
 

MCA = (+ 4.44 + 19.56) = + 24.0 kNm 
 MCD = (− 53.33 + 29.33 + 0.64) = − 23.36 kNm 
 

MDC = (+ 53.33 + 14.67 + 1.27) = + 69.27 kNm 
 MDF = (− 70.34 + 1.12) = − 69.27 kNm 
 
It is evident that after one iteration of each support moment the true values are nearer to 
23.8 kNm  and 69.0 kNm for C and D respectively. The existing out-of-balance moments 
which still exist, 0.64 kNm, can be distributed in the same manner as during the first 
iteration. This process is carried out until the desired level of accuracy has been achieved, 
normally after three or four iterations. 
 
A slight modification to carrying out the distribution process which still results in the same 
answers is to carry out the balancing operation for all supports simultaneously and the 
carry-over operation likewise. This is quicker and requires less work. The reader should 
complete a further three/four iterations to the solution given above and compare the results 
with those shown in Figure 4.92. 
 
 
 
 
 

The difference = 0.64 kNm     i.e. 
the value of the carry-over moment 

The difference = 0 

Note: 

No carry-over 
to the pinned 
end 
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Joints/Support 

 

 

A 

  

 

C 

  

 

D 

  

 

F 

Member AC  CA CD  DC DF  FD 

Distribution 

Factors 

0  0.4 0.6  0.53 0.47  1.0 

Fixed-End 
Moments 

− 
8.89 

 + 
4.44 

− 
53.33

 + 
53.33

− 
70.34

  
zero 

Balance 
Moment 

  + 
19.56

+ 
29.33

 + 
9.01 

+ 
7.99 

  

Carry-over to 
Remote Ends 

+ 
9.78 

  + 
4.50 

 + 
14.67

   

Balance 
Moment 

 
 

 − 
1.80 

− 
2.70 

 − 
7.78 

− 
6.89 

  

Carry-over to 
Remote Ends 

−0.91   − 
3.89 

 − 
1.35 

   

Balance 
Moment 

+ 
0.78 

carry- 
over* 

+ 
1.56 

+ 
2.33 

 + 
0.72 

+ 
0.63 

  

 

Total 

+ 

0.76 

 + 

23.76
− 

23.76

 + 

68.60
− 

68.61

  

zero 

 
*The final carry-over, to the fixed support only, means that this value is one iteration more accurate than the 

internal joints. 
 

Figure 4.92 

 
The continuity moments are shown in Figure 4.93. 
 

 

 

 

 

 

 

 

Figure 4.93 

 

The support reactions and the bending moment diagrams for each span can be calculated 
using superposition as before by considering each span separately. 
 
 
 
 
 
 

0.76 kNm  

10 kN       10 kN/m          15 kN/m 

 A                           F 

C          D 

25 kN 

VA                 VC          VD             VF 

23.76 kNm      68.61 kNm 

B                  E 
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(i) Fixed vertical reactions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Consider span AC: 
 
 

+ 0.76 + 23.76 − (6.0 × VCA fixed) = 0           Equation (1) 
        ∴ VCA fixed = + 4.09 kN 
 
Consider the vertical equilibrium of the beam: 
 

 
 + VAC fixed + VCA fixed = 0 ∴ VAC fixed = − 4.09 kN       Equation (2) 
 
Consider span CD: 
 
 

−23.76 + 68.61 − (8.0 × VDC fixed) = 0           Equation (1) 
        ∴ VDC  fixed = + 5.61 kN 
 
Consider the vertical equilibrium of the beam: 
 

 
 + VCD fixed + VDC fixed = 0 ∴ VCD fixed = − 5.61 kN       Equation (2) 
 
Consider span DF: 
 
 

− 68.61 − (5.0 × VFD fixed) = 0              Equation (1) 
        ∴ VFD fixed = − 13.72 kN 
 
 

+ve ΣFz = 0 

+ve ΣMA = 0 

+ve ΣFz = 0 

+ve ΣMC = 0 

+ve ΣMD = 0 

A 

                6.0 m                       8.0 m           2.5 m    2.5 m 

  C                D 

VAC fixed        VCA fixed    VCD fixed       VDC fixed   VDF fixed            VFD fixed 

F 

23.76 kNm 

A                C   C          D   D             F 

68.61 kNm 

0.76 kNm 
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Consider the vertical equilibrium of the beam: 
 

 
 + VDF fixed + VFD fixed = 0  ∴ VDF fixed = + 13.72 kN       Equation (2) 
 

The total vertical reaction at each support due to the continuity moments is equal to the 
algebraic sum of the contributions from each beam at the support. 
 
 VA fixed = VAC fixed = − 4.09 kN 
 VC fixed  = VCA fixed + VCD fixed = (+ 4.09 − 5.61) = − 1.52 kN 
 VD fixed  = VDC fixed + VDF fixed = (+ 5.61 + 13.72) = + 19.33 kN 
 VF fixed  = VFD fixed = − 13.72 kN 
 

  
 
 
 
 
 
 
 
 
 
 
 
 

Free bending moments 

 Span AC  
L

Pab  = 
6

4210 ××  = 13.3 kNm  

 Span CD  
8

2wL  = 
8

810 2×  = 80.0 kNm  

 Span DF  ⎥
⎦

⎤
⎢
⎣

⎡
+

48

2 PLwL = ⎥
⎦

⎤
⎢
⎣

⎡ ×+×
4

525
8

515 2

= 78.13 kNm  

 
(ii) Free vertical reactions 
 
Consider span AC: 

 
 
 + (10 × 2.0) − (6.0 × VCA free) = 0   ∴ VCA free = + 3.33 kN    Equation (1) 
 
Consider the vertical equilibrium: 
 

 
  + VCA free + VCA free − 10.0 = 0    ∴ VAC free = + 6.67 kN    Equation (2) 

+ve ΣFz = 0 

+ve ΣFz = 0 

+ve ΣMA = 0 

VAC free        VCA free   VCD free         VDC free  VDF free              VFD free 

2

8
wL

2

8 4
wL PL+  

Pab

L
 

A          C            C             D  D          F 

C D 

2.0 m   4.0 m 

10 kN 
A 

10 kN/m 
F 

25 kN 15 kN/m 

8.0 m 2.5 m            2.5 m 

B E 
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Consider span CD: 

 
 
 + (10 × 8.0 × 4.0) − (8.0 × VDC free) = 0   ∴ VDC free = + 40.0 kN   Equation (1) 
 
Consider the vertical equilibrium: 
 

 
 + VCD free + VDC free − (10 × 8.0) = 0    ∴ VCD free = + 40.0 kN   Equation (2) 
 
Consider span DF: 

 
 

+ (25 × 2.5) + (15 × 5.0 × 2.5) − (5.0 × VFD free) = 0 
               ∴ VFD free = + 50.0 kN   Equation (1) 
Consider the vertical equilibrium: 
 

 
 + VDF free + VFD free − 25.0 − (15 × 5.0) = 0  ∴ VDF free = + 50.0 kN   Equation (2) 
 
 VA free = VAC free = + 6.67 kN 
 VC free = VCA free  + VCD free = (+ 3.33 + 40.0) = + 43.33 kN 
 VD free = VDC free + VDF free = (+ 40.0 + 50.0) = + 90.0 kN 
 VF free  = VFD free = + 50.0 kN 
 
The final vertical support reactions are given by (i) + (ii): 
 VA = VA fixed + VA free = (− 4.09 + 6.67) = + 2.58 kN 
 VC = VC fixed + VC free = (− 1.58 + 43.33) = + 41.81 kN 
 VD = VD fixed + VD free = (+ 19.33 + 90.0) = + 109.33 kN 
 VF = VF fixed + VF free = (− 13.72 + 50.0) = + 36.28 kN 
 
Check the vertical equilibrium: Total vertical force  = + 2.58 + 41.81 + 109.33 + 36.28 
                 = + 190 kN  (= total applied load) 
The final bending moment diagram is shown in Figure 4.94. 
 
 
 
 
 
 
 
 
 

 

 

   Figure 4.94 

+ve ΣFz = 0 

+ve ΣMC = 0 

+ve ΣFz = 0 

+ve ΣMD = 0 

E 
A                              F 

0.76 kNm 

23.76 kNm 

68.61 kNm

80 kNm 
78.13 kNm 

5.89 kNm 

maximum +ve value 

at point of zero shear 

equals 43.84 kNm 
Bending Moment Diagram 

34.3 kNm 46.19 kNm

maximum +ve value 

at point of zero shear 

equals 35.4 kNm 

B 

C D 
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4.7.11  Problems: Moment Distribution − Continuous Beams 
A series of continuous beams are indicated in Problems 4.28 to 4.32 in which the 

relative EI values and the applied loading are given. In each case: 

 

i)  determine the support reactions, 

ii)   sketch the shear force diagram  and 

iii) sketch the bending moment diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problem 4.31 

E, I            E, 1.5I 
2.0 m      2.0 m         2.0 m         2.0 m 

A                         E 
B                      C             D 

10 kN/m     20 kN              20 kN Pinned Support  

E, I                 E, I B

40 kN/m           60 kN/m 

A                      C 

2.0 m            4.0 m 

Problem 4.28 

Problem 4.29 

18 kN                             6 kN/m                         16 kN  
B                                                      E 

C                D 

A                           F 

   2.0 m  4.0 m        10.0 m            5.0 m   5.0 m 
E, I       E, I       E, 2I 

B             E

 35 kN                        8 kN/m        20 kN                 6 kN/m 

Problem 4.32 

C          D                             F

A                          G 

  2.0 m   2.0 m         6.0 m         3.0 m     1.0 m     2.0 m 
E, 1.5I      E, 2I      E, I                    E, I 

Problem 4.30 

40 kN/m                                            20 kN/m 

A                           D 
B         C 

    3.0 m               3.0 m                           6.0 m 
E, I     E, 1.5I         E, 2I 

Support C settles by 5 mm;  EI = 10 × 10
3
  kNm

2
  

Pinned Support  
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4.7.12   Solutions: Moment Distribution− Continuous Beams 
        
 
 
 

 
 

 
 
 
 
 

Fixed-end Moments: 

 
 
 
 
 
 
 

 
Span AB 

 MAB = − 
12

2wL  = − 
12

240 2×  = − 13.33 kNm 

 MBA = + 
12

2wL  = + 
12

240 2×  = + 13.33 kNm 

 

Span BC 

 MBC = − 
12

2wL = − 
12

460 2×  = − 80.0 kNm 

 MCB = + 
12

2wL = + 
12

460 2×  = + 80.0 kNm 

 
Distribution Factors : Joint B 

kBA = ⎟
⎠
⎞

⎜
⎝
⎛

2
I  = 0.5I        DFBA = 

Total

BA

k

k  = 
75.0
5.0  = 0.67 

kBC = ⎟
⎠
⎞

⎜
⎝
⎛

4
I  = 0.25I        DFBC = 

Total

BC

k

k
 = 

75.0
25.0  = 0.33 

 
In this case, since there is only one internal joint, only one balancing operation and 
one carry-over will be required during the distribution of the moments. 
 
 

Solution 
Topic:  Moment Distribution – Continuous Beams 

Problem Number: 4.28            Page No. 1 

   A                    C 
E, I                   E, I  B 

40 kN/m               60 kN/m 

   2.0 m        4.0 m 

B 

 A                        C 

MAB    MBA    MBC                              MCB  

40 kN/m                 60 kN/m 

2.0 m                             4.0 m 

ktotal =  0.75I 
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Moment Distribution Table: 

 
Joint A  B C 

 AB BA BC CB 

Distribution Factors 0 0.67 0.33 0 

Fixed-end Moments − 13.33 + 13.33 − 80.0 + 80.0 
Balance  + 44.67 + 22.0  

Carry-over + 22.33   + 11.0 
Total + 9.0 + 58.0 − 58.0 + 91.0 

 

Continuity Moments: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fixed Bending Moment Diagrams 
 

(i)  Fixed vertical reactions: 

 

Consider span AB:  +ve ΣMA = 0 
+ 9.0 + 58.0 − (2.0 × VBA fixed) = 0    ∴ VBA fixed = + 33.5 kN 
 
Consider the vertical equilibrium of the beam: +ve    ΣFz  = 0 
+ VAB fixed + VBA fixed = 0       ∴ VAB fixed = − 33.5 kN 
 

Solution 
Topic:  Moment Distribution – Continuous Beams   

Problem Number: 4.28            Page No. 2 

B 

  A                                                  C 

 9.0 kNm             58.0 kN     58.0 kNm                                                  91.0 kNm 

40 kN/m                                60 kN/m 

  2.0 m                                        4.0 m 

                 2.0 m                                             4.0 m 

  A                                                       B                                             C 

VAB fixed       VBA fixed    VBC fixed                                           VCB fixed   

A                       B                                       C 

58.0 kNm 

91.0 kNm  

9.0 kNm 
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Consider span BC: +ve  ΣMB = 0 
−58.0 + 91.0 − (4.0 × VCB fixed) = 0    ∴ VCB  fixed = + 8.25 kN 
 
Consider the vertical equilibrium of the beam: +ve   ΣFz = 0 
+ VBC fixed + VCB fixed = 0       ∴ VBC fixed = − 8.25 kN 

 
The total vertical reaction at each support due to the continuity moments is equal to 
the algebraic sum of the contributions from each beam at the support. 
 
VA fixed = VAB fixed = − 33.5 kN 
VB fixed  = VBA fixed + VBC fixed = (+33.5 − 8.25) = + 25.25 kN 
VC fixed  = VCB fixed = + 8.25 kN 

 
Free bending moments: 

 

 
 
 
 
 
 
 
 
 
 
 
 

Span AB  
8

2wL  = 
8

240 2×  = 20.0 kNm  

Span BC  
8

2wL  = 
8

460 2×  = 120.0 kNm  

 

(ii)  Free Vertical Reactions: 

Consider span AB: +ve   ΣMA = 0 
+ (40 × 2.0 × 1.0) − (2.0 × VBA free) = 0   ∴ VBA free = + 40.0 kN 
 
Consider the vertical equilibrium of the beam: +ve   ΣFz = 0 
+ VAB free + VBA free − (40.0 × 2.0) = 0   ∴ VAB free = + 40.0 kN  
 

Solution 
Topic:  Moment Distribution – Continuous Beams   

Problem Number: 4.28            Page No. 3 

  A                                                  B                                                                        C 

VAB free        VBA free  VBC free                VCB free  

  60 kN/m 

4.0 m 

  40 kN/m 

2.0 m 

   A          B   B              C 

2

8
wL

2

8
wL  
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Consider span BC: +ve  ΣMB = 0 
+ (60 × 4.0 × 2.0) − (4.0 × VCB free) = 0   ∴ VCB free = + 120.0 kN 
 
Consider the vertical equilibrium of the beam: +ve   ΣFz = 0 
+ VBC free + VCB free − (60.0 × 4.0) = 0   ∴ VBC free = + 120.0 kN 
 
VA free = VAB free = + 40.0 kN 
VB free = VBA free  + VBC free = (+ 40.0 + 120.0) = + 160.0 kN 
VC free = VCB free = + 120.0 kN 
 
The final vertical support reactions are given by (i) + (ii): 

VA = VA fixed + VA free = (− 33.5 + 40.0) = + 6.5 kN 
VB = VB fixed + VB free = (+ 25.5 + 160.0) = + 185.25 kN 
VC = VC fixed + VC free = (+ 8.25 + 120.0) = + 128.25 kN 
 
Check the vertical equilibrium:  

Total vertical force = + 6.5 + 185.25 + 128.25 
        = + 320.0 kN (= total applied load) 
 
 
 
 
 
 
 
 
 
 
 
                    

 
Shear Force Diagram 

 

 
 
 

 

                    

 

 
Bending Moment Diagram 

 

Solution 
Topic:  Moment Distribution – Continuous Beams   

Problem Number: 4.28            Page No. 4 

A                    B                                                  C 

40 kN/m                                          60 kN/m 

VA = 6.5 kN           VB = 185.25 kN                 VC = 128.25 kN 

6.5 kN 

111.75 kN 

128.25 kN 73.5 kN 

1.863 m 

A                   C 
B 

9.0 kNm 

58.0 kNm 91.0 kNm 

120.0 kNm 

Maximum bending 

moment M = 46.1 kNm

74.5 kNm 

A                   C 
B 
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Fixed-end Moments: 

 
 
 
 
 
 
 

 
Span AC 

 MAC  = − 2

2

L

Pab = − 2

2

0.6
4218 ××  = − 16.0 kNm 

 MCA = + 2

2

L

bPa = + 2

2

0.6
4218 ××  = + 8.0 kNm 

Span CD 

 MCD = − 
12

2wL  = − 
12

100.6 2×  = − 50.0 kNm 

 MDC = + 
12

2wL  = + 
12

100.6 2×  = + 50.0 kNm 

Span DF 

 MDF = − 
8

PL  = − 
8

100.16 ×  = − 20.0 kNm 

 MFD = + 
8

PL  = + 
8

0.100.16 ×  = + 20.0 kNm 

 
Distribution Factors : Joint C 

kCA = ⎟
⎠
⎞

⎜
⎝
⎛

6
I  = 0.167I       DFCA = CA

Total

k

k
 = 

267.0
167.0  = 0.63 

kCD = ⎟
⎠
⎞

⎜
⎝
⎛
10
I  = 0.1I        DFCD = CD

Total

k

k
 = 

267.0
1.0  = 0.37 

Solution 
Topic:  Moment Distribution – Continuous Beams   

Problem Number: 4.29            Page No. 1 

ktotal =  0.267I 

 A                           F 

 18 kN          6 kN/m                                 16 kN         
C                   D 

MAC       MCA    MCD               MDC MDF              MFD    
  2.0 m    4.0 m        10.0 m              5.0 m       5.0 m 

 18 kN                                       6 kN/m                                 16 kN  

 A                           F 

C                 D

   2.0 m       4.0 m        10.0 m              5.0 m   5.0 m 

E, I         E, I                E, 2I 

B                                                                 E 

B                                                                 E 
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Distribution Factors : Joint D 

kDC = ⎟
⎠
⎞

⎜
⎝
⎛
10
I  = 0.1I       DFDC = DC

Total

k

k
 = 

3.0
1.0  = 0.33 

kDF  = ⎟
⎠
⎞

⎜
⎝
⎛

10
2I  = 0.2I       DFDF = DF

Total

k

k
 = 

3.0
2.0  = 0.67 

Moment Distribution Table: 

 
Joint A  C  D F 

 AC  CA CD DC DF FD 

DF’s 0  0.63 0.37 0.33 0.67 0 

FEM’s − 16.0  + 8.0 − 50.0 + 50.0 − 20.0 + 20.0 
Balance   + 26.5 + 15.5 − 9.9 − 20.1  

Carry-over + 13.3  − 5.0 + 7.8  − 10.1 
Balance   + 3.2 + 1.8 − 2.6 − 5.2  

Carry-over + 1.6  − 1.3 + 0.9  − 2.6 
Balance   + 0.8 + 0.5 − 0.3 − 0.6  

Carry-over + 0.4    − 0.3 
Total − 0.7  + 38.5 − 38.5 + 45.9 − 45.9 + 7.0 

 

Continuity Moments: 

 

 

 

 

 

 

 

 
 
 
               Fixed Bending Moment Diagram 
 
 
 
 
 
               Fixed Bending Moment Diagram 
 

Solution 
Topic:  Moment Distribution – Continuous Beams   

Problem Number: 4.29            Page No. 2 

ktotal = 0.3I 

 A          C 

  VAC fixed              6.0 m          VCA fixed  

A                                C  

0.7 kNm 
38.5 kNm  

C          D 

VCD fixed              10.0 m    VDC fixed  

C                                  D 

38.5 kNm 45.9 kNm  

 18 kN          6 kN/m                                 16 kN         

            6.0 m               10.0 m                            10.0 m 

 A                           F 

C                D 

0.7 kNm   38.5 kNm    38.5 kNm                    45.9 kNm     45.9 kNm                    7.0 kNm  

B                                                                  E 
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               Fixed Bending Moment Diagram 
 
 

(i)  Fixed vertical reactions: 

 

Consider span AC:  +ve  ΣMA = 0 
− 0.7 + 38.5 − (6.0 × VCA fixed) = 0   ∴ VCA fixed = + 6.3 kN 
 
Consider the vertical equilibrium of the beam: +ve    ΣFz = 0 
+ VAC fixed + VCA fixed = 0      ∴ VAC fixed = − 6.3 kN 
 
Consider span CD: +ve  ΣMC = 0 
− 38.5 + 45.9 − (10.0 × VDC fixed) = 0  ∴ VDC fixed = + 0.74 kN 
 
Consider the vertical equilibrium of the beam: +ve    ΣFz = 0 
+ VCD fixed + VDC fixed = 0      ∴ VCD fixed = − 0.74 kN 

 
Consider span DF: +ve  ΣMD = 0 
−45.9 + 7.0 − (10.0 × VFD fixed) = 0   ∴ VFD  fixed = − 3.89 kN 
 
Consider the vertical equilibrium of the beam: +ve    ΣFz = 0 
+ VDF fixed + VFD fixed = 0      ∴ VDF fixed = + 3.89 kN 

 
The total vertical reaction at each support due to the continuity moments is equal to 
the algebraic sum of the contributions from each beam at the support. 
 
VA fixed = VAC fixed = − 6.3 kN 
VC fixed  = VCA fixed + VCD fixed = (+ 6.3 − 0.74) = + 5.56 kN 
VD fixed  = VDC fixed + VDF fixed = (+ 0.74 + 3.89) = + 4.63 kN 
VF fixed  = VFD fixed = − 3.89 kN 
 

 

 

 

 

 

Solution 
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   D                                                       F 

    VDF fixed                 10.0 m     VFD fixed  

D                                 F 

7.0 kNm 
45.9 kNm  
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Free bending moments: 

 

 
 
 
 
 
 
 
 
  
 
 
 
 

Span AC  MAC = + 
L

Pab  = +
0.6

420.18 ××  = + 24.0 kNm 

Span CD  MCD = + 
8

2wL  = +
8
100.6 2×  = + 75.0 kNm 

Span DF  MDF = + 
4

PL  = +
4

1016×  = + 40.0 kNm 

 

(ii)  Free Vertical Reactions: 

Consider span AC: +ve ΣMA = 0 
+ (18.0 × 2.0) − (6.0 × VCA free) = 0    ∴ VCA free = + 6.0 kN 
 
Consider the vertical equilibrium of the beam: +ve   ΣFz = 0 
+ VAC free + VCA free − 18.0 = 0     ∴ VAC free = + 12.0 kN 
 
Consider span CD: +ve ΣMC = 0 
+ (6.0 × 10.0 × 5.0) − (10.0 × VDC free) = 0  ∴ VDC free = + 30.0 kN 
 
Consider the vertical equilibrium of the beam: +ve    ΣFz = 0 
+ VCD free + VDC free − (6.0 × 10.0) = 0   ∴ VCD free = + 30.0 kN 
 
Consider span DF +ve     ΣMD = 0 
+ (16.0 × 5.0) − (10.0 × VFD free) = 0   ∴ VFD free = + 8.0 kN 
 
Consider the vertical equilibrium of the beam: +ve    ΣFz = 0 
+ VDF free + VFD free − 16.0 = 0     ∴ VDF free = + 8.0 kN 

Solution 
Topic:  Moment Distribution – Continuous Beams   

Problem Number: 4.29            Page No. 4 

2

8
wL  

A          C C                  D   D       E                       F 

4
PL+

5.0 m               5.0 m 

 A            B                  C                D                         E                              F 

VAC free       VCA free  VCD free             VDC free  VDF free                           VFD free  

2.0 m  4.0 m 

18 kN 16 kN   6 kN/m 

10.0 m 

Pab

L
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VA free = VAC free = + 12.0 kN 
VC free = VCA free + VCD free = (+ 6.0 + 30.0) = + 36.0 kN 
VD free = VDC free + VDF free = (+ 30.0 + 8.0) = + 38.0 kN 
VF free = VFD free = + 8.0 kN 
 
The final vertical support reactions are given by (i) + (ii): 

VA = VA fixed + VA free = (− 6.3 + 12.0) = + 5.7 kN 
VC = VC fixed + VC free = (+ 5.56 + 36.0) = + 41.56 kN 
VD = VD fixed + VD free = (+ 4.63 + 38.0) = + 42.63 kN 
VF = VF fixed + VF free = (− 3.89 + 8.0) = + 4.11 kN 
 
Check the vertical equilibrium:  

Total vertical force  = + 5.7 + 41.56 + 42.63 + 4.11 
        = + 94.0 kN (= total applied load) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Shear Force Diagram 

 

 

 

 

 

 

 

 

 

 
Bending Moment Diagram 

 

Solution 
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18 kN          6 kN/m                                 16 kN 

A                           F 

VA = 5.7 kN                VB = 41.56 kN                                  VC = 42.63 kN                              VD = 4.11 kN 

C                                                    D 
B                                                                 E 

5.7 kN 

12.3 kN 

29.26 kN 

30.74 kN

11.89 kN

4.11 kN 4.11 kN 
4.877 m 

 A                                                                                                            F 
B                C                                                      D        E 

0.7 kNm 75.0 kNm 

24.0 kNm 

40.0 kNm

38.5 kNm 45.9 kNm

7.0 kNm 

Maximum bending 

moment M = 32.85 kNm 

42.2 kNm

26.45 kNm
13.3 kNm 

A                                                                                                                  F 
C                                                     D 

E B 
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Fixed-end Moments due to loads: 

 
 
 
 
 
 
 

Fixed-end Moments due to settlement: 

 
 
 
 
 
 
 
 
Total Fixed - End Moments: 

 
Span AB 

 MAB = − 
12

2wL  = − 
12

340 2×  = − 30.0 kNm 

 MBA = + 
12

2wL  = + 
12

340 2×  = + 30.0 kNm 

 
Span BC 

 MBC = − 2
6

L

EIδ  = − 
9

005.0105.10.6 4 ×××  = − 50.0 kNm 

 MCB = − 
2L

6EIδ  = − 
9

005.0105.10.6 4 ×××  = − 50.0 kNm 

 
 

 A                           D 

   40 kN/m                                                                    20 kN/m           
B             C 

MAB        MBA    MBC            MCB   MCD                                 MDC 
  3.0 m                         3.0 m                    6.0 m 

Solution 
Topic:  Moment Distribution – Continuous Beams   
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(6EIδ/L2 ) (6EIδ/L2 ) 

(6EIδ/L2 ) 

 A                                                                                                                                   D 

3.0 m                   3.0 m                                                6.0 m 

(6EIδ/L2 ) 

B 

C 

   40 kN/m                                                   20 kN/m 

 A                           D 
B          C 

      3.0 m                  3.0 m                                6.0 m 

E, I           E, 1.5I             E, 2I 

Support C settles by 5 mm;  EI = 10 × 10
3
  kNm

2
 

Pinned Support  
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Span CD  * 

 MCD = − 
12

2wL  + 2
6

L

EIδ  = − 
12

60.20 2×  + 
36

005.0100.20.6 4 ×××  = − 43.33 kNm 

 MDC = + 
12

2wL  + 2
6

L

EIδ  = + 
12

60.20 2×  + 
36

005.0100.20.6 4 ×××  = + 76.67 kNm 

* Since support D is pinned, the fixed-end moments are (MCD − 0.5MDC) at C and 
zero at D 
 (MCD − 0.5MDC) = [− 43.33 − (0.5 × 76.67)] = − 81.67 kNm. 
 
Distribution Factors : Joint B 

kBA = ⎟
⎠
⎞

⎜
⎝
⎛

3
I  = 0.333I        DFBA = 

Total

BA

k

k  = 
833.0
333.0  = 0.4 

kBC = ⎟
⎠
⎞

⎜
⎝
⎛

3
5.1 I  = 0.5I        DFBC = 

Total

BC

k

k  =
833.0
5.0  = 0.6 

Distribution Factors : Joint C 

kCB = ⎟
⎠
⎞

⎜
⎝
⎛

3
5.1 I  = 0.5I        DFCB = 

Total

CB

k

k  = 
75.0
5.0  = 0.67 

kCD = ⎟
⎠
⎞

⎜
⎝
⎛ ×

6
2

4
3 I  = 0.25I       DFCD = 

Total

CD

k

k  = 
75.0
25.0  = 0.33 

 

Moment Distribution Table: 

 
Joint A  B  C  D 

 AB  BA BC CB CD  DC 

DF’s 0  0.4 0.6 0.67 0.33  1.0 

FEM’s − 30.0  + 30.0 − 50.0 − 50.0 − 81.67  0 
Balance   + 8.0 + 12.0 + 88.22 + 43.45   

Carry-over + 4.0  + 44.1 + 6.0    
Balance   − 17.6 − 26.5 − 4.0 − 2.0   

Carry-over − 8.8  − 2.0 − 13.3    
Balance   + 0.8 + 1.2 + 8.9 + 4.4   

Carry-over + 0.4  + 4.5 + 0.6    
Balance   − 1.8 − 2.7 − 0.4 − 0.2   

Carry-over − 0.9  − 0.2 − 1.2    
Balance   + 0.1 + 0.1 + 0.8 + 0.8   

Total − 35.3  + 19.5 − 19.5 + 35.2 − 35.2  0 

  

Solution 
Topic:  Moment Distribution – Continuous Beams   
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ktotal = 0.75I 

ktotal =  0.833I 
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Continuity Moments: 

 

 

 

 

 

 

 

 

 

 
 
 
               Fixed Bending Moment Diagram 
 
 
 
 
 
               Fixed Bending Moment Diagram 
 
 

 
 
 
               Fixed Bending Moment Diagram 
 
 

(i)  Fixed vertical reactions: 

 

Consider span AB: +ve ΣMA = 0 
− 35.3 + 19.5 − (3.0 × VBA fixed) = 0   ∴ VBA fixed = − 5.27 kN 
 
Consider the vertical equilibrium of the beam: +ve   ΣFz = 0 
+ VAB fixed + VBA fixed = 0      ∴ VAB fixed = + 5.27 kN 
 
Consider span BC: +ve  ΣMB = 0 
 −19.5 + 35.2 − (3.0 × VCB fixed) = 0   ∴ VCB  fixed = + 5.23 kN 
 
Consider the vertical equilibrium of the beam: +ve   ΣFz = 0 
+ VBC fixed + VCB fixed = 0      ∴ VBC fixed = − 5.23 kN 

Solution 
Topic:  Moment Distribution – Continuous Beams   

Problem Number: 4.30            Page No. 3 

C                                 D 

35.2 kNm  

 A           B 

  VAB fixed                  3.0 m    VBA fixed  

A                                B 

35.3 kNm 
19.5 kNm  

B            C 

   VBC fixed                  3.0 m    VCB fixed  

B                                C 

19.5 kNm 
35.2 kNm  

  3.0 m                     3.0 m                            6.0 m 

 A                                 D 

    40 kN/m                                                                20 kN/m    B       C 

35.3 kNm  19.5 kNm     19.5 kNm     35.2 kNm   35.2 kNm 

Pinned Support  

  VCD fixed                 6.0 m          VDC fixed  

C                              D 
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Consider span CD: +ve  ΣMC = 0 
− 35.2  − (6.0 × VDC fixed) = 0     ∴ VDC  fixed = − 5.87 kN 
 
Consider the vertical equilibrium of the beam: +ve   ΣFz = 0 
+ VCD fixed + VDC fixed = 0      ∴ VCD fixed = + 5.87 kN 

 
The total vertical reaction at each support due to the continuity moments is equal to 
the algebraic sum of the contributions from each beam at the support. 
 
VA fixed = VAB fixed = + 5.27 kN 
VB fixed  = VBA fixed + VBC fixed = (− 5.27 − 5.23) = − 10.5 kN 
VC fixed  = VCB fixed + VCD fixed = (+ 5.23 + 5.87) = + 11.1 kN 
VD fixed  = VDC fixed = − 5.87 
 

Free bending moments: 

 

 
 
 
 
 
 
 
 
 
 

Span AB  MAB = + 
8

2wL = + 
8

30.40 2×  = + 45.0 kNm 

Span BC  MBC = 0 

Span CD  MCD = + 
8

2wL  = + 
8

620 2×  = + 90.0 kNm 

(ii) Free Vertical Reactions: 

Consider span AB: +ve  ΣMA = 0 
+ (40 × 3.0 × 1.5) − (3.0 × VBA free) = 0   ∴ VBA free = + 60.0 kN 
 
Consider the vertical equilibrium of the beam: +ve    ΣFz = 0 
+ VAB free + VBA free − (40 × 3.0) = 0    ∴ VAB free = + 60.0 kN 
 
Consider span BC:  
 VCB free = 0  VBC free = 0 

Solution 
Topic:  Moment Distribution – Continuous Beams   

Problem Number: 4.30            Page No. 4 

A                                            B                   C                                                                      D 
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2
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wL

A         B         B      C              C            D 

3.0 m 
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3.0 m 

2

8
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Consider span CD: +ve ΣMC = 0 
+ (20.0 × 6.0 × 3.0) − (6.0 × VDC free) = 0   ∴ VDC free = + 60.0 kN 
 
Consider the vertical equilibrium of the beam: +ve    ΣFz = 0 
 + VCD free + VDC free − (60 × 6.0) = 0    ∴ VCD free = + 60.0 kN 
 

VA free = VAB free = + 60.0 kN 
VB free = VBA free  + VBC free = (+ 60.0 + 0) = + 60.0 kN 
VC free = VCB free  + VCD free = ( 0  + 60.0) = + 60.0 kN 
VD free = VDC free = + 60.0 kN 
 
The final vertical support reactions are given by (i) + (ii): 

VA = VA fixed + VA free = (+ 5.27 + 60.0) = + 65.27 kN 
VB = VB fixed + VB free = (− 10.5 + 60.0) = + 49.5 kN 
VC = VC fixed + VC free = (+ 11.1 + 60.0) = + 71.1 kN 
VD = VD fixed + VD free = (− 5.87 + 60.0) = + 54.13 kN 
 

Check the vertical equilibrium:  

Total vertical force = + 65.25 + 49.5 + 71.1 + 54.13 
        = + 240.0 kN (= total applied load) 
 

 

 

 

 

 

 

 

 

 

 

              
              Shear Force Diagram 

 

 

 

 

 

 

 
 Bending Moment Diagram 
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VA = 65.25 kN             VB = 49.5 kN                    VC = 71.1 kN                          VD = 54.13 kN 
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  A                                    D 
B            C 

54.75 kN 

5.25 kN 5.25 kN

54.13 kN 

65.25 kN 65.85 kN

1.631 m 

2.707 m 

 A                            D 
 B                   C 

A                          D 

19.5 kNm 
35.2 kNm35.3 kNm 
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Maximum bending 
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45.0 kNm 
Maximum bending 

moment M = 17.9 kNm 

27.4 kNm 
17.6 kNm

B      C 
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Fixed-end Moments: 

 
 
 
 
 
 

 
Span AB 

 MAB = − 
12

2wL  = − 
12

210 2×  = − 3.33 kNm 

 MBA = + 
12

2wL  = + 
12

210 2×  = + 3.33 kNm 

 

Span BE* 

 MBE = − 2

2
1

L

abP − 2

2
2

L

abP  = − 2

2

6
4220 ××  − 2

2

6
2420 ××  = − 26.67 kNm 

 MEB = + 2
1

L

baP 2

+ 2
2

L

baP 2

 = + 2

2

6
4220 ××  − 2

2

6
2420 ××  = + 26.67 kNm 

* Since support E is pinned, the fixed-end moments are (MBC − 0.5MCB) at BE and 
zero at E 
 (MBE − 0.5MEB) = [−26.67 − (0.5 × 26.67) ] = − 40.0 kNm. 
 
 

Distribution Factors : Joint B 

kBA = ⎟
⎠
⎞

⎜
⎝
⎛

2
I  = 0.5I          DFBA = 

Total

BA

k

k  = 
075

5.0  = 0.67 

kBE = ⎟
⎠
⎞

⎜
⎝
⎛ ×

6
2

4
3 I  = 0.25I        DFBE = BE

Total

k

k
 = 

75.0
25.0  = 0.33 

 
In this case, since there is only one internal joint, only one balancing operation and 
one carry-over will be required during the distribution of the moments. 

Solution 
Topic:  Moment Distribution – Continuous Beams   
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ktotal =  0.833I 

   A                                                   E 
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B            C            D 

10 kN/m            20 kN                         20 kN 
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Pinned Support  

   MAB    MBA              MBE                                                           MEB   
   A                                                                                                        E 

10 kN/m                   20 kN                         20 kN 

2.0 m     2.0 m                          2.0 m                          2.0 m          

B 
        C            D 
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Moment Distribution Table: 

 
Joint A  B E 

 AB BA BE EB 

Distribution Factors 0 0.67 0.33 1.0 

Fixed-end Moments − 3.33 + 3.33 − 40.0 0 
Balance  + 24.57 + 12.1  

Carry-over + 12.29    
Total + 8.96 + 27.9 − 27.9 0 

 

Continuity Moments: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
        Fixed Bending Moment Diagrams 
 

(i)  Fixed vertical reactions: 

Consider span AB:  +ve ΣMA = 0 
+ 8.96 + 27.9 − (2.0 × VBA fixed) = 0     ∴ VBA fixed = + 18.43 kN 
  
Consider the vertical equilibrium of the beam: +ve   ΣFz = 0 
+ VAB fixed + VBA fixed = 0        ∴ VAB fixed = − 18.43 kN 
 
Consider span BE: +ve  ΣMB = 0 
−27.9 − (6.0 × VEB fixed) = 0       ∴ VEB  fixed = − 4.65 kN 
 
Consider the vertical equilibrium of the beam: +ve   ΣFz = 0 
+ VBE fixed + VEB fixed = 0        ∴ VBE fixed = + 4.65 kN 
  

Solution 
Topic:  Moment Distribution – Continuous Beams   
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 A                        B                                     E 

27.9 kNm 

8.96 kNm 
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               2.0 m                                             6.0 m  
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10 kN/m                     20 kN                       20 kN 
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B 
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The total vertical reaction at each support due to the continuity moments is equal to 
the algebraic sum of the contributions from each beam at the support. 
 
VA fixed = VAB fixed = − 18.43 kN 
VB fixed  = VBA fixed + VBE fixed = (+18.43 + 4.65) = + 23.08 kN 
VE fixed = VEB fixed = − 4.65 kN 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

(ii)  Free Vertical Reactions: 

Consider span AB: +ve ΣMA = 0 
+ (10 × 2.0 × 1.0) − (2.0 × VBA free) = 0    ∴ VBA free = + 10.0 kN 
 
Consider the vertical equilibrium of the beam: +ve   ΣFy = 0 
+ VAB free + VBA free − (10.0 × 2.0) = 0    ∴ VAB free = + 10.0 kN 
 
Consider span BE: +ve ΣMB = 0 
+ (20 × 2.0) + (20 × 4.0) − (6.0 × VEB free) = 0  ∴ VEB free = + 20.0 kN 
 
Consider the vertical equilibrium of the beam: +ve   ΣFy = 0 
+ VBE free + VEB free − (20 + 20) = 0     ∴ VBE free = + 20.0 kN 
 
 
VA free = VAB free = + 10.0 kN 
VB free = VBA free  + VBE free = (+ 10.0 + 20.0) = + 30.0 kN 
VE free = VEB free = + 20.0 kN 
 
 

Solution 
Topic:  Moment Distribution – Continuous Beams   

Problem Number: 4.31            Page No. 3 

A        B  B          C                D                           E 

2

8
wL  

2.0 m 

 A                                                   B                                                                                                          E 

VAB free      VBA free   VBE free                                         VEB free   

20 kN                      20 kN 

2.0 m                         2.0 m                     2.0 m 

10 kN/m 

(VBE × 2.0) (VEB × 2.0)

         C            D 
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Free bending moments: 

Span AB  
8

2wL  = 
8

210 2× = 5.0 kNm 

Span BE  (VBE free × 2.0) = (20 × 2.0) = 40.0 kNm 
 
The final vertical support reactions are given by (i) + (ii): 

VA = VA fixed + VA free = (− 18.43 + 10.0) = − 8.43 kN 
VB = VB fixed + VB free = (+ 23.08 + 30.0) = + 53.08 kN 
VE = VE fixed + VE free = (− 4.65 + 20.0) = + 15.35 kN 
 
Check the vertical equilibrium:  

Total vertical force  = − 8.43 + 53.08 + 15.35 
        = + 60.0 kN (= total applied load) 
 
 
 
 
 
 
 
 
   
 
 
                    

 
          Shear Force Diagram 

 
 
 

 

      

 

 

              

 
      Bending Moment Diagram 
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VA = 8.43 kN     VB = 53.08 kN                                                   VE = 15.35 kN    

  A                                                                                                                 E 

10 kN/m                      20 kN                       20 kN B 

 C             D 

8.43 kN 

24.65 kN 

4.65 kN 

28.43 kN 
15.35 kN 

A                             E 
 B                    C                            D 

A                            E 

40.0 kNm 8.96 kNm 

27.9 kNm 

Maximum bending moment 

M = 30.7 kNm 

18.6 kNm 
9.3 kNm 

− 4.47 kNm 

9.47 kNm 

B 

C D
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Fixed-end Moments: 

 

 

 

 

 

 

 
Span AC 

 MAC = − 
8

PL  = − 
8

40.35 ×  = − 17.5 kNm 

 MCA = + 
8

PL  = + 
8

40.35 × = + 17.5 kNm 

 
Span CD 

 MCD = − 
12

2wL  = − 
12

60.8 2× = − 24.0 kNm 

 MDC = + 
12

2wL  = + 
12

60.8 2× = + 24.0 kNm 

 
Span DF 

 MDF = − 2

2

L

Pab  = − 2

2

0.4
130.20 ××  = − 3.75 kNm 

 MFD = + 2

2

L

bPa  = + 2

2

0.4
130.20 ××  = + 11.25 kNm 

 
Span FG 

 MFG = − 
2

2wL  = − 
2

20.6 2×  = − 12.0 kNm 

 
 MGF = 0 
 

Solution 
Topic:  Moment Distribution – Continuous Beams   
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 35 kN                               8 kN/m                 20 kN                   6 kN/m 

B                       E 
C                  D                                    F 

 A                          G 

  2.0 m   2.0 m         6.0 m         3.0 m     1.0 m     2.0 m 

E, 1.5I          E, 2I                E, I                       E, I 
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 A                             G 

MAC        MCA       MCD                MDC  MDF       MFD      MFG  

C                  D                                  F 
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Distribution Factors : Joint C 

kCA = ⎟
⎠
⎞

⎜
⎝
⎛

4
5.1 I  = 0.375I        DFCA = CA

Total

k

k
 = 

708.0
375.0  = 0.53 

kCD = ⎟
⎠
⎞

⎜
⎝
⎛

6
2I  = 0.333I        DFCD = CD

Total

k

k
 = 

708.0
333.0  = 0.47 

Distribution Factors : Joint D 

Note: At joint D the stiffness of member DF is (¾ × I/L) since support F is a simple 
support with a cantilever end, i.e. rotation can occur at this point. 

kDC = ⎟
⎠
⎞

⎜
⎝
⎛

6
2I  = 0.333I        DFDC = DC

Total

k

k
 = 

521.0
333.0  = 0.64 

kDF  = ⎟
⎠
⎞

⎜
⎝
⎛ ×

44
3 I  = 0.188I       DFDF = DF

Total

k

k
 = 

521.0
18.0 = 0.36 

Distribution Factors : Joint F 

Note: At joint F the cantilever FG has zero stiffness. 

kFD  = ⎟
⎠
⎞

⎜
⎝
⎛

4
I  = 0.25I         DFFD = FD

Total

k

k
 = 

25.0
25.0  = 1.0 

kFG  = 0            DFFG = 0 
 

Moment Distribution Table: 

 
Joint A  C  D  F  G 

 AC  CA CD  DC DF  FD FG  GF 

DF’s 0  0.53 0.47  0.64 0.36  1.0 0  0 

FEM’s − 17.5  + 17.5 − 24.0  + 24.0 − 3.75  + 11.25 − 12.0  0 
Balance   + 3.4 + 3.1  − 13.0 − 7.25  + 0.75    

Carry-over + 1.7   − 6.5  + 1.6 + 0.38      
Balance   + 3.4 + 3.1  − 1.27 − 0.71      

Carry-over + 1.7   − 0.63  + 1.6       
Balance   + 0.33 + 0.30  − 1.0 − 0.6      

Carry-over + 0.2            
Total − 13.9  + 24.6 − 24.6 + 11.9 − 11.9 + 12.0 − 12.0  0 

 

Note: The out-of-balance moment at joint F is balanced during the first balancing 
operation and (½ × moment) carried-over to joint D. Since (¾ × stiffness) was used 
for kDF, no carry-overs are made from D to F. 
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Continuity Moments: 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
                Fixed Bending Moment Diagram 
 
 
 
 
 
                
                
 
                Fixed Bending Moment Diagram 

 
 
 
                
 
 

 
                Fixed Bending Moment Diagram 
 
                
 
 

 

 

                Fixed Bending Moment Diagram 
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  D                              F 

  VDF fixed              4.0 m          VFD fixed  

D                                F 

11.9 kNm                                            12.0 kNm 

  A            C 

  VAC fixed               4.0 m        VCA fixed  

  C            D 

  VCD fixed               6.0 m         VDC fixed  

11.9 kNm  

24.6 kNm 

C                                D 

12.0 kNm  

F                                G 

13.9 kNm 

A                                                  C  

24.6 kNm  

  F                          G 

  VFG fixed                   2.0 m 
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35 kN                                  8 kN/m                       20 kN           6 kN/m  
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C                     D                                    F 
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(i)  Fixed vertical reactions: 

 

Consider span AC:  +ve ΣMA = 0 
− 13.9 + 24.6 − (4.0 × VCA fixed) = 0     ∴ VCA fixed = + 2.68 kN 
    
Consider the vertical equilibrium of the beam: +ve    ΣFz = 0 
+ VAC fixed + VCA fixed = 0        ∴ VAC fixed = − 2.68 kN 
 
 
Consider span CD: +ve  ΣMC = 0 
− 24.6 + 11.9 − (6.0 × VDC fixed) = 0     ∴  VDC  fixed = − 2.12 kN 
 
Consider the vertical equilibrium of the beam: +ve    ΣFz = 0 
+ VCD fixed + VDC fixed = 0        ∴ VCD fixed = + 2.12 kN 

 
 
Consider span DF: +ve  ΣMD = 0 
− 11.9 + 12.0 − (4.0 × VFD fixed) = 0     ∴ VFD  fixed = + 0.03 kN 
 
Consider the vertical equilibrium of the beam: +ve    ΣFz = 0 
+ VDF fixed + VFD fixed = 0        ∴ VDF fixed = − 0.03 kN 

 
 
Consider span FG: +ve  ΣMF = 0 
− 12.0 − (2.0 × VGF fixed) = 0       ∴ VGF  fixed = − 6.0 kN 
 
Consider the vertical equilibrium of the beam: +ve    ΣFz = 0 
+ VFG fixed + VGF fixed =  0        ∴ VFG fixed = + 6.0 kN 
 
 
The total vertical reaction at each support due to the continuity moments is equal to 
the algebraic sum of the contributions from each beam at the support. 
 
VA fixed = VAC fixed = − 2.73 kN 
VC fixed  = VCA fixed + VCD fixed = (+ 2.68 + 2.12) = + 4.8 kN 
VD fixed  = VDC fixed + VDF fixed = (− 2.12 − 0.03) = − 2.15 kN 
VF fixed  = VFD fixed + VFG fixed = (+ 0.03 + 6.0) = + 6.03 kN 
VG fixed  = VGF fixed = − 6.0 kN 
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Free bending moments: 

 

 
 
 
 
 
 
 
 
 
 

Span AC  MAC = + 
4

PL  = + 
0.4

40.35 ×  = + 35.0 kNm 

Span CD  MCD = + 
8

2wL  = + 
8

60.8 2×  = + 36.0 kNm 

Span DF  MDF = + 
L

Pab  = + 
4

130.20 ××  = + 15.0 kNm 

Span FG  MFG = + 
8

2wL  = + 
8

20.6 2×  = + 3.0 kNm 

 
(ii)  Free Vertical Reactions: 

Consider span AC: +ve ΣMA = 0 
+ (35.0 × 2.0) − (4.0 × VCA free) = 0      ∴ VCA free = + 17.5 kN 
Consider the vertical equilibrium of the beam: +ve   ΣFz = 0 
+ VAC free + VCA free − 35.0 = 0       ∴ VAC free = + 17.5 kN 
Consider span CD: +ve ΣMC = 0 
+ (8.0 × 6.0 × 3.0) − (6.0 × VDC free) = 0    ∴ VDC free = + 24.0 kN 
Consider the vertical equilibrium of the beam: +ve   ΣFz = 0 
+ VCD free + VDC free − (8.0 × 6.0 = 0      ∴ VCD free = + 24.0 kN 
Consider span DF: +ve ΣMD = 0 
+ (20.0 × 3.0) − (4.0 × VFD free) = 0      ∴ VFD free = + 15.0 kN 
 Consider the vertical equilibrium of the beam: +ve   ΣFz = 0 
+ VDF free + VFD free − 20.0  = 0       ∴ VDF free = + 5.0 kN 
Consider span FG: +ve ΣMF = 0 
+ (6.0 × 2.0 × 1.0) − (2.0 × VGF free) = 0    ∴ VGF free = + 6.0 kN 
 Consider the vertical equilibrium of the beam: +ve   ΣFz = 0 
+ VFG free + VGF free − (6.0 × 2.0) = 0      ∴ VFG free = + 6.0 kN 
 

A     B       C C           D          D             E F     F               G 

Solution 
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VA free = VAC free = + 17.5 kN 
VC free = VCA free + VCD free = (+ 17.5 + 24.0) = + 41.5 kN 
VD free = VDC free + VDF free = (+ 24.0 + 5.0) = + 29.0 kN 
VF free = VFD free+ VFG free = (+ 15.0 + 6.0) = + 21.0 kN 
VG free = VGF free = + 6.0 kN 
 
The final vertical support reactions are given by (i) + (ii): 

VA = VA fixed + VA free = (− 2.73 + 17.5) = + 14.77 kN 
VC = VC fixed + VC free = (+ 4.8 + 41.5) = + 46.3 kN 
VD = VD fixed + VD free = (− 2.15 + 29.0) = + 26.85 kN 
VF = VF fixed + VF free = (+ 6.03 + 21.0) = + 27.03 kN 
VG = VG fixed + VG free = (− 6.0 + 6.0) = + 0 
 
Check the vertical equilibrium:  

Total vertical force = + 14.77 + 46.3 + 26.85 + 27.03 
        = + 114.95 kN (= total applied load) 

 

 

 

 

 

 

 

 

 

 

 

 

 
Shear Force Diagram 

 

 

 

 

 

 

 

                            
                Bending Moment Diagram 
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4.8 Redistribution of Moments  
When continuous structures approach their failure load there is a redistribution of load as 
successive plastic hinges develop until failure occurs; this is dependent on the ductility of 
the material. Advantage can be taken of this behaviour to reduce the maximum moments 
whilst at the same time increasing others to maintain static equilibrium as shown in 
Example 4.22 below. 

4.8.1 Example 4.22:  Redistribution of Moments in a Two-span Beam  
A two-span beam is required to support an ultimate design load of 150 kN/m as shown in 
Figure 4.95. Reduce the support moment by 20% and determine the redistributed bending 
moment diagram. 
 
 
                       
 
 Figure 4.95 

 
Use moment distribution to determine the moments over the supports and in the spans. 
  

Fixed - end moments: 

 Span AB  MAB = 0  MBA = + 
2

8
wL = + 

2150 4 0
8

,×  = + 300,0 kNm 

 Span BC  MBC = – 
2

8
wL = – 

2150 5 0
8

,×  = – 469,0 kNm   MCB = 0 

Stiffnesses: 

KBA = 
4
I = 0,25         DFBA = 0 25

0 45
,

,
= 0,56 

 KBC = 
5
I = 0,2         DFBc = 0 2

0 45
,

,
= 0,44 

Moment distribution table: 

 

Joint A  B C 
 AB   BA BC CB 
Distribution Factors 1,0 0,56 0,44 1,0 
FEMs 0 + 300,0 – 469,0 0 
Balance  + 94,6 + 74,4   
Final Moments     + 394,6 – 394,6  

 
 
 
 
 
 

Figure 4.96 

ktotal = 0,45 

150 kN/m 394,6 kNm 

VA           VB                  VC 
4,0 m          5,0 m 

150 kN/m 

A        B           C 

 4,0 m          5,0 m 
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Consider span AB: 

 

 
ΣMoments to the L.H.S. = 0 
(VA × 4,0) + 394,6 – (150 × 4,0 × 2,0) =  0 

        VA = 201,4 kN 
           Figure 4.97 
 
Consider span BC: 

 
ΣMoments to the R.H.S. = 0 
– (VC × 5,0) – 394,6 + (150 × 5,0 × 2,5)  = 0 

          VC = 296,1 kN 
           Figure 4.98 
 
 
 
 
 
 
 
 
 
  Figure 4.99 
 
 
Span AB: xAB = (201,4/150) = 1,34 m    
 Maximum bending moment = (0,5 × 1,34 × 201,4) = 134,9 kNm 
 
Span BC:  xBC =  (296,1/150) = 1,97 m 
 Maximum bending moment = (0,5 × 1,97 × 296,1) = 291,7 kNm 
 
 
 
 
 
 
 
 
  Figure 4.100 
 
 
Allowing for 20% redistribution the reduced bending moment at support B is given by: 
 MB,reduced = 0,8 × 394,6 = 315,7 kNm. 
The above calculation must be repeated with the reduced value of the support moment to 
determine the revised support reactions the redistributed maximum moments in the spans. 

394,6 kNm 

VC  
5,0 m 

150 kN/m 

B 

394,6 kNm

VA 
4,0 m 

150 kN/m 

B 

Shear Force Diagram before redistribution 

xAB 

xBC 

201,4 kN 

296,1 kN 

453,9 kN

389,6 kN

A         B             C 

Bending Moment Diagram before redistribution 

134,9 kNm 

394,6 kNm 

291,7 kNm 
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Consider span AB: 

 
 
ΣMoments to the L.H.S. = 0 
(VA × 4,0) + 315,7 – (150 × 4,0 × 2,0)  = 0 

         VA = 221,1 kN 
            Figure 4.101 

 

Consider span BC: 

ΣMoments to the R.H.S. = 0 
– (VC × 5,0) – 315,7 + (150 × 5,0 × 2,5) =  0 
          VC  = 311,9 kN 

 
            Figure 4.102 

 
 
 
 
 
 
 
 
 
 
 

    Redistributed Shear Force Diagram 

 Figure 4.103 
 

Span AB: xAB =  (221,1/150) = 1,47 m    
 Maximum bending moment = (0,5 × 1,47 × 221,1)  = 162,5 kNm 
 
Span BC:  xBC =  (311,9/150) = 2,08 m 
 Maximum bending moment = (0,5 × 2,08 × 311,9) = 324,4 kNm 
 
 
 
 
 
 
 
 
 
 

Redistributed Bending Moment Diagram 

  

Figure 4.104 

315,7 kNm 

VC  
5,0 m 

150 kN/m 

B 

315,7 kNm

VA 
4,0 m 

150 kN/m 

B 

162,5 kNm 

315,7 kNm 

324,4 kNm

Original bending moment diagram

A            B              C 

A                  B           C 
xAB 

xBC 

221,1 kN 

311,9 kN 

438,1 kN

378,9 kN
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4.9 Shear Force and Bending Moment Envelopes  
Shear force and bending moment envelopes are graphs which show the variation in the 
minimum and maximum values for the function along the structure due to the application 
of all the possible load cases or load combinations.  
The diagrams are obtained by superimposing the separate diagrams for a function based on 
each load case or combination considered. The resulting diagram that shows the upper and 
lower bounds for the function along the structure due to the loading conditions is called 
the envelope.  
A three-span beam with four separate load combinations and their associated bending 
moment diagrams, and the bending moment envelope encompassing all of the 
combinations considered indicating the positive and negative bending moments in each 
span, is shown in Figure 4.105. Note: the values of the bending moments are given for 
illustration only. A similar envelope can be drawn for the shear force diagrams. 
 

 

 

 

 

  

 

 

 

 

  

 

 

  

 

  

 

 

 

 

  

 

 

 

  

  

  

 

   

        Bending Moment Envelope 

        

     Figure 4.105 
 

Maximum moment in spans AB and CD

A                     B               C         D * *

Maximum moment over support B 

A                    B           C     D 

*

Maximum moment in span BC 

A                   B           C     D *

Maximum moment over support C 

A                    B          C     D 

*

28,4 kNm

57,2 kNm

44,5 kNm

53,5 kNm 

16,0 kNm 

28,4 kNm 57,2 kNm 

44,5 kNm 

53,5kNm 

16,0 kNm 



 

5. Rigid-Jointed Frames  
5.1 Rigid−Jointed Frames 
Rigid−jointed frames are framed structures in which the members transmit applied loads 

by axial, shear and bending effects. There are basically two types of frame to consider; 

 

 (i)  statically determinate frames; see Figure 5.1(a) and 

 

(ii) statically indeterminate frames; see Figure 5.1(b). 

 

 

 

 

 

 

 

 

 

 

(a) Statically−Determinate Frames 

 

 

 

 

 

 

 

 

 

 

 

(b) Statically−Indeterminate Frames 

 

Figure 5.1 
 

Rigid−joints (moment connections) are designed to transfer axial and shear forces in 

addition to bending moments between the connected members whilst pinned joints (simple 

connections) are designed to transfer axial and shear forces only. Typical moment and 

simple connections between steel members is illustrated in Figure 5.2. 

In the case of statically determinate frames, only the equations of equilibrium are required 

to determine the member forces. They are often used where there is a possibility of support 

settlement since statically determinate frames can accommodate small changes of 

geometry without inducing significant secondary stresses. Analysis of such frames is 

illustrated in this Examples 5.1 and 5.2 and Problems 5.1 to 5.4. 
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(a)  Typical moment connections between members 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b)  Typical simple connections between members 

 

Figure 5.2 
 

Statically indeterminate frames require consideration of compatibility when determining 

the member forces. The analysis of singly-redundant frames using the Unit Load method is 

illustrated in Example 5.3 and Problems 5.5 to 5.8 One of the most convenient and most 

versatile methods of analysis for such frames is moment distribution. When using this 

method there are two cases to consider; no−sway frames and sway frames. Analysis of the 

former is illustrated in Example 5.4 and Problems 5.9 to 5.16 and in the latter in      

Example 5.5 and Problems 5.17 to 5.22.  

5.1.1 Example 5.1 Statically Determinate  Rigid−Jointed Frame 1 
An asymmetric portal frame is supported on a roller at A and pinned at support D as 

shown in Figure 5.3. For the loading indicated: 

 

i) determine the support reactions and 

  

ii) sketch the axial load, shear force and bending moment diagrams.  
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                  Figure 5.3 

 
 
Solution: 
Apply the three equations of static equilibrium to the force system  

+ve ΣFz = 0  VA − 12.0 − (16.0 × 5.0) − 12.0 + VD = 0    Equation (1) 

+ve     ΣFx = 0 (6.0 × 4.0) + 16.0 + HD = 0        Equation (2) 

+ve    ΣMA = 0 (6.0 × 4.0)(2.0) + (16.0 × 5.0)(2.5) + (12.0 × 5.0) + (16.0 × 4.0)  

        − (VD × 8.0) = 0           Equation (3) 

 

From equation (2):  40.0 + HD = 0        ∴ HD = − 40.0 kN 

 From equation (3):  372.0 − 8.0VD = 0       ∴ VD = + 46.5 kN 

 From equation (1):  VA − 104.0 + 46.5 = 0      ∴ VA = + 57.5 kN 
 

Assuming positive bending moments induce tension inside the frame:  

MB  = − (6.0 × 4.0)(2.0) = − 48.0 kNm 

MC = + (46.5 × 3.0) − (40.0 × 4.0) = − 20.50 kNm 

 

 

 

 

 

 

 

 

 

Member forces 
 
 
 

Figure 5.4 
 

The values of the end−forces F1 to F8 can be determined by considering the equilibrium 

of each member and joint in turn. 

40.0 kN 
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48.0 kNm 

C

20.50 kNm 

F5

F6
16 kN/m 

8.0 m 

5.0 m        3.0 m 
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 Rigid-Jointed Frames 321

Consider member AB: 

+ve ΣFz = 0 + 57.50 − F1 = 0          ∴ F1 = 57.50 kN 

+ve    ΣFx = 0 + (6.0 × 4.0) − F2 = 0         ∴ F2 = 24.0 kN 

 

Consider joint B:   

+ve ΣFz = 0  There is an applied vertical load at joint B = 12 kN 

 − F1 + F3 = − 12.0               ∴ F3 = 45.50 kN 

+ve     ΣFx = 0  

− F2 + F4  = 0                ∴ F4 = 24.0 kN 

 

Consider member BC: 

+ve ΣFz = 0  + 45.5 − (16.0 × 5.0) + F5 = 0     ∴ F5 = 34.5 kN  

+ve     ΣFx = 0 + 24.0 − F6 = 0          ∴ F6 = 24.0 kN 

 

Consider member CD: 

+ve ΣFz = 0  + 46.5 − F7 = 0          ∴ F7 = 46.5 kN  

+ve     ΣFx = 0 − 40.0 + F8 = 0          ∴ F8 = 40.0 kN 

 

Check joint C: 

+ve ΣFz      There is an applied vertical load at joint C = 12 kN 

 + F5 − F7 = + 34.5 − 46.5 = − 12.0 

+ve     ΣFx    There is an applied horizontal at joint C = 16 kN 

 − F6 + F8 = − 24.0 + 40.0 = + 16.0 

 

The axial force and shear force in member CD can be found from: 

Axial load = +/− (horizontal force × cosα ) +/− (vertical force × sinα )  

Shear force = +/−  (horizontal force × sinα ) +/− (vertical force × cosα)  

The signs are dependent on the directions of the respective forces. 

 
Member CD: 

α = tan−1(4.0/3.0) = 53.13° 

cos α = 0.60; sin α = 0.80 

 

Assume axial compression to be positive. 

At joint C 

Axial force = + (40.0 × cosα ) + (46.50 × sinα ) = + 61.2 kN 

Shear force = + (40.0 × sinα ) − (46.50 × cosα ) = + 4.10 kN 

 

 

Similarly at joint D  

Axial force = + 61.2 kN 

Shear force = + 4.10 kN 

 

 

 

C 
α α 40.0kN 

46.50 kN 

α 

D α 
α 

40.0kN 

46.50 kN 

α 
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Figure 5.5 
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4.10 kN 

4.10 kN 

A                       D 

 B               C

45.50 kN 

24.0 kN 
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Maximum bending moment: 
  M  = − 48.0 + (0.5 × 2.84)(45.50) 
   = 16.61 kNm  
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5.1.2 Example 5.2  Statically Determinate  Rigid−Jointed Frame 2 
A pitched−roof portal frame is pinned at supports A and H and members CD and DEF are 

pinned at the ridge as shown in Figure 5.6. For the loading indicated: 

 

i) determine the support reactions and 

  

ii) sketch the axial load, shear force and bending moment diagrams.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.6 

 

Apply the three equations of static equilibrium to the force system in addition to the        

Σ moments at the pin = 0: 

 

 +ve ΣFz = 0 

 VA − 15.0 − (12.0 × 4.0) − 25.0 − 35.0 − 20.0 + VH = 0       Equation (1) 

+ve     ΣFx = 0 

 HA + 12.0 + 8.0 + 5.0 + 8.0 + HH = 0            Equation (2) 

+ve    ΣMA = 0 

 (12.0 × 2.5) + (8.0 × 5.0) + (12.0 × 4.0)(2.0) + (25.0 × 4.0) + (35.0 × 7.0) 

 + (20.0 × 10.0) + (5.0 × 5.0) + (8.0 × 2.0) − (HH × 1.0) − (VH × 10.0) = 0 

                        Equation (3) 

+ve    ΣMpin = 0 (right−hand side) 

 + (35.0 × 3.0) + (20.0 × 6.0) − (5.0 × 2.0) − (8.0 × 5.0) −  (HH × 8.0) − (VH × 6.0) = 0 

                        Equation (4) 

  

 From Equation (3):   + 752.0 − HH − 10.0VH = 0        Equation (3a) 

 From Equation (4):   + 175.0 − 8.0HH − 6.0VH = 0        Equation (3b) 
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Solve equations 3(a) and 3(b) simultaneously:  VH = + 78.93 kN     HH = − 37.30 kN 
From Equation (2):  HA + 33.0 + HH = 0       HA = + 4.30 kN 

 From Equation (1):  VA − 143.0 + VH = 0       VA = + 64.07 kN 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

                     Figure 5.7 
 

Assuming positive bending moments induce tension inside the frame: 

 MB  = − (4.30 × 2.5) = − 10.75 kNm 

 MC = − (4.30 × 5.0) − (12.0 × 2.5) = − 51.50 kNm 

 MD = zero  (pin) 

 ME = − (20.0 × 3.0) + (5.0 × 1.0) + (8.0 × 4.0) − (37.3 × 7.0) + (78.93 × 3.0) 

   = − 47.31 kNm 

 MF = + (8.0 × 3.0) − (37.30 × 6.0) = − 199.80 kNm 

 MG = − (37.30 × 3.0) = − 111.90 kNm 

 

 

   

   

 

 

 

 

 

 

 

 

 
 

Member Forces 

 

 

 
Figure 5.8 
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The values of the end−forces F1 to F12 can be determined by considering the equilibrium 

of each member and joint in turn. 

 

Consider member ABC: 

+ve ΣFz = 0  + 64.07 − F1 = 0         ∴ F1 = 64.07 kN 

+ve     ΣFx = 0 + 4.30 + 12.0 − F2 = 0        ∴ F2 = 16.30 kN 

 

Consider joint C: 

+ve ΣFz = 0  There is an applied vertical load at joint C = 15 kN 

 − F1 + F3 = − 15.0               ∴ F3 = 49.07 kN 

+ve     ΣFx = 0 There is an applied horizontal load at joint C = 8 kN 

− F2 + F4 = + 8.0               ∴ F4 = 24.30 kN 

 

Consider member CD: 

+ve ΣFz = 0  + 49.07 − (12.0 × 4.0) + F5 = 0     ∴ F5 = − 1.07 kN 

+ve     ΣFx = 0 + 24.30 − F6 = 0         ∴ F6 = 24.30 kN 

 

Consider member FGH: 

+ve ΣFz = 0  + 78.93 − F11 = 0         ∴ F11 = 78.93 kN 

+ve     ΣFx = 0 − 37.30 + 8.0 + F12 = 0       ∴ F12 = 29.30 kN 

 

Consider joint F: 

+ve ΣFz = 0  There is an applied vertical load at joint F = 20 kN 

 F11 + F9  = − 20.0               ∴ F9 = 58.93 kN 

 

+ve     ΣFx = 0 There is an applied horizontal load at joint F = 5 kN 

+ F12 − F10 = + 5.0               ∴ F10 = 24.30 kN 

 

Consider member DF: 

 +ve ΣFz = 0  + 58.93 − 35.0 + F7 = 0       ∴ F7 = 23.93 kN 

+ve     ΣFx = 0 − 24.30 + F8 = 0         ∴ F8 = 24.30 kN 

 

The calculated values can be checked by considering the equilibrium at joint D. 

 

 

 

 

 

 

 
Figure 5.9 

 

+ve     ΣFx   − 24.30 + 24.30 = 0 

 

 +ve ΣFz   − 1.07 − 23.93 = − 25.0 kN  (equal to the applied vertical load at D). 
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The axial force and shear force in member CD can be found from: 

 

Axial load = +/− (horizontal force × cosα ) +/− (vertical force × sinα )  

Shear force = +/− (horizontal force × sinα ) +/− (vertical force × cosα)  

The signs are dependent on the directions of the respective forces. 

 

Similarly with θ for member DEF. 

 
Member CD: 

α = tan−1(2.0/4.0) = 26.565° 

cos α = 0.894;  sin α = 0.447 

 

Assume axial compression to be positive. 

At joint C 

Axial force = + (24.30 × cosα ) + (49.07× sinα ) = + 43.66 kN 

 Shear force = − (24.30 × sinα ) + (49.07× cosα ) = + 33.01 kN 

 

 

At joint D 

Axial force = + (24.30 × cosα ) + (1.07× sinα ) = + 22.20 kN 

 Shear force = − (24.30 × sinα ) + (49.07× cosα ) = − 9.91 kN 

 

 
 
Member DEF: 
 
 

θ = tan−1(2.0/6.0) = 18.435° 

cos θ = 0.947;  sin θ = 0.316 

 

Assume axial compression to be positive. 

At joint D 

Axial force = + (24.30 × cosθ ) + (23.93× sinθ ) = + 30.57 kN 

 Shear force = + (24.30 × sinθ ) − (23.93 × cosθ ) = + 14.98 kN 

 

 

 

At joint F 

Axial force = + (24.30 × cosθ ) + (58.93× sinθ)  = + 41.63 kN 

 Shear force = − (24.30 × sinθ ) + (58.93× cosθ ) = + 48.13 kN 
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Figure 5.10 
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5.1.3 Problems: Statically Determinate Rigid-Jointed Frames  
A series of statically determinate, rigid-jointed frames are indicated in Problems 5.1 
to 5.4. In each case, for the loading given: 
 

i) determine the support reactions and 
  

ii) sketch the axial load, shear force and bending moment diagrams.  
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5.1.4 Solutions: Statically Determinate Rigid-Jointed Frames  
        
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Apply the three equations of static equilibrium to the force system in addition to the 

Σ moments at the pin = 0: 

 

+ve ΣFz = 0 

 VA − 24.0 − (6.0 × 6.0) + VF = 0              Equation (1) 

 

+ve     ΣFx = 0 

HA + 12.0 + 15.0 + HF = 0               Equation (2) 

 

+ve   ΣMA = 0 

(12.0 × 5.0) + (24.0 × 3.0) + (6.0 × 6.0)(6.0) + (15.0 × 2.5) − (VF × 9.0) = 0 

                        Equation (3) 

+ve    ΣMpin = 0 (right-hand side) 

− (15.0 × 2.5) − (HF × 5.0) = 0              Equation (4) 

 

From Equation (4):   − 37.5 − 5.0HF = 0        HF = − 7.5 kN 
 

From Equation (2):   HA + 27.0 − 7.5 = 0       HA = − 19.5 kN  
 

From Equation (3):  385.5 − 9.0VF = 0        VF = + 42.83 kN 
 

From Equation (1):  VA − 60.0 + 42.83 = 0       VA = + 17.17 kN 
 

Solution 
Topic:  Statically Determinate Rigid-Jointed Frames   
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Assuming positive bending moments induce tension inside the frame:  

 

MB  = + (19.5 × 5.0) = + 97.50 kNm 

MC  = + (17.17 × 3.0) + (19.5 × 5.0) = + 149.0 kNm 

MD = zero  (pin) 

ME = − (7.5 × 2.5) = − 18.75 kNm 

 

 

 

 

 

 

 

 

 

 

 

Member Forces 
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Apply the three equations of static equilibrium to the force system in addition to the 

Σ moments at the pin = 0: 

 

+ve ΣFz = 0 

 VA − 16.0 − 16.0 − 8.0 + VH = 0              Equation (1) 

 

+ve     ΣFx = 0 

HA + 5.0 + 5.0 + HH = 0                Equation (2) 

 

+ve    ΣMA = 0 

(5.0 × 3.5) + (5.0 × 7.0) + (16.0 × 5.0) + (16.0 × 8.0) + (8.0 × 12.0) − (VH × 13.0) 

 + (HH × 1.0) = 0                  Equation (3) 

 

+ve    ΣMpin = 0 

+ (16.0 × 3.0) + (16.0 × 6.0) + (8.0 × 10.0) − (VH × 11.0) − (HH × 6.0) = 0 Equation (4) 

 

From Equation (3):   + 356.5 − 13.0VH + HH = 0             Equation (3a) 

From Equation (4):   + 224.0 − 11.0VH − 6.0HH   = 0             Equation (3b) 

 

Solve equations 3(a) and 3(b) simultaneously:  VH = + 26.55 kN     HH = − 11.34 kN 
 

From Equation (2):  HA + 10.0 + HH = 0            HA = + 1.34 kN 
 

From Equation (1):  VA + 64.0 + VH = 0               VA = + 13.45 kN 
 

Solution 
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Assuming positive bending moments induce tension inside the frame:  

MB  = − (1.34 × 3.5) + (13.45 × 1.0)  = + 8.76 kNm 

MC  = zero  (pin) 

MD = + (13.45 × 5.0) − (1.34 × 6.33) − (5.0 × 2.83) + (5.0 × 0.67) = + 47.97 kNm 

ME = + (26.55 × 5.0) − (11.34 × 4.67) − (8.0 × 4.0) = + 47.79 kNm 

MF = − (8.0 × 1.0) − (11.34 × 4.0) + (26.55 × 2.0) = − 0.26 kNm 

MG = − (11.34 × 2.0) + (26.55 × 1.0) = + 3.87 kNm 

   

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Member Forces 

Solution 
Topic:  Statically Determinate Rigid-Jointed Frames   
Problem Number: 5.2            Page No. 2 

Note: For member ABC. 
Axial load  =  +/− (horizontal force × cosα )  

       +/− (vertical force × sinα )  

Shear force = +/− (horizontal force × sinα )  

       +/− (vertical force × cosα)  

 

The signs are dependent on the directions of the

respective forces.  
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Apply the three equations of static equilibrium to the force system in addition to the 

Σ moments at the pin = 0: 

 

+ve ΣFz = 0 

 VA − 20.0 − (8.0 × 16.0) − 40.0 − 20.0 + VE = 0         Equation (1) 

 

+ve     ΣFx = 0                  

HA + (4.0 × 6.0) + 6.0 + (2.0 × 6.0) = 0           Equation (2) 

 

+ve    ΣMA = 0 

MA + (4.0 × 6.0)(3.0) + (6.0 × 6.0) + (8.0 × 16.0)(8.0) + (40.0 × 8.0) + (20.0 × 16.0) 

+  (2.0 × 6.0)(3.0) − (VE × 16.0) = 0            Equation (3) 

 

+ve    ΣMpin = 0 

+ (8.0 × 8.0)(4.0) + (20.0 × 8.0) − (2.0 × 6.0)(6.0) − (VE × 8.0) = 0   Equation (4) 

 

From Equation (2):   HA + 42.0 = 0            HA = − 42.0 kN 
 

From Equation (4):   + 344.0 − 8.0VE = 0       VE = + 43.0 kN 

 

From Equation (3):  MA + 1808.0 − (43.0 × 16.0) = 0   MA = − 1120.0 kN 
 

From Equation (1):  VA − 208.0 + 43.0 = 0       VA = + 165.0 kN 

Solution 
Topic:  Statically Determinate Rigid-Jointed Frames   
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Assuming positive bending moments induce tension inside the frame: 

MA = − 1120.0 kNm  

MB  = − 1120.0 − (4.0 × 6.0)(3.0) + (42.0 × 6.0) = − 940.0 kNm 

MC  = zero  (pin) 

MD = + (2.0 × 6.0)(3.0) = + 36.0 kNm 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Member Forces 

 

Solution 
Topic:  Statically Determinate Rigid-Jointed Frames   
Problem Number: 5.3            Page No. 2 

Note: For members BC and CD. 
Axial load  =  +/− (horizontal force × cosθ )  

       +/− (vertical force × sinθ )  

Shear force = +/− (horizontal force × sinθ )  

       +/− (vertical force × cosθ )  

 

The signs are dependent on the directions of the

respective forces. 
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Apply the three equations of static equilibrium to the force system in addition to the 

Σ moments at the pin = 0: 

 

+ve ΣFz = 0 

 VA − 10.0 − (12.0 × 3.0) − 25.0 − 30.0 −15.0 + VF = 0       Equation (1) 

 

+ve     ΣFx = 0 

HA + 8.0 + 10.0 + HF = 0                Equation (2) 

 

+ve    ΣMA = 0 

(8.0 × 5.0) + (12.0 × 3.0)(1.5) + (25.0 × 3.0) + (30.0 × 7.5) + (15.0 × 12.0) 

+ (10.0 × 7.0) − (VF × 12.0) = 0              Equation (3) 

 

+ve    ΣMpin = 0 

+ (VA × 3.0) − (HA × 5.0) − (10.0 × 3.0) − (12.0 × 3.0)(1.5) = 0    Equation (4) 

 

From Equation (3):   2710.0 − 12.0VF = 0       VF = + 53.67 kN 
 

From Equation (1):   VA − 116.0 + 53.67 = 0      VA = + 62.33 kN 

 

From Equation (4):  + (62.33 × 3.0) − 5.0HA − 84.0 = 0   HA = + 20.60 kN 
 

From Equation (2):  + 20.60 + 18.0 + HF = 0      HF = − 38.60 kN 
 

Solution 
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Problem Number: 5.4            Page No. 1 

       3.0 m                   4.5 m         4.5 m 

B                C 

    15 kN 

10 kN                   25 kN 

30 kN 

pin 

 A                       F 

12.0 m 

7
.0

 m
 

5
.0

 m
 

8 kN 

10 kN

D

E

VA 

HA 

VF 

HF 

   12 kN/m 



340 Examples in Structural Analysis  

 

 

 

        
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Assuming positive bending moments induce tension inside the frame: 

MB  = − (20.60 × 5.0)  = − 103.0 kNm 

MC  = zero  (pin) 

MD = − (15.0 × 4.5) − (10.0 × 1.0) − (38.60 × 6.0) + (53.67 × 4.5) = − 67.59 kNm 

ME = − (38.60 × 7.0) = − 270.2 kNm 
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5.2 Unit Load Method for Singly-Redundant, Rigid-Jointed Frames 
The method of analysis illustrated in Chapter 4: Section 4.6.1 for singly redundant beams 

can be adopted for the analysis of singly-redundant, rigid-jointed frames. Consider the 

frame shown in Figure 5.11. 

 

 

 

 

 

 

 

 

 

 

 

 

   Figure 5.11 
 

 

The frame is statically indeterminate where the number of degrees-of-indeterminacy is 

given by   ID = [(3m + r) − 3n] = [(3 × 3) + 4 − (3 × 4)] = 1 

The frame shown in Figure 5.11 can be represented as the superposition of two separate 

structures, i.e.  

Figure 5.12(a) in which a redundant reaction e.g. the horizontal component of reaction at 

support A is removed and all of the external loading is applied in addition to the 

components of reaction necessary to maintain equilibrium; they are V 'A, V 'D and H 'D and  

Figure 5.12(b) in which only the redundant reaction is applied in addition to the 

components of reaction necessary to maintain equilibrium as indicated in terms of a unit 

load, i.e V ''A, V ''D and H 'D. 

 

 

 

 

 

 

 

 

 

 

 

   Force system (I)          Force system (II) 

     (a)                (b) 

Figure 5.12 

 

Assuming that there is no horizontal movement at support A, the following equation is 

valid:   δA = (δ1 + HAδ2) = 0   where δ1 and δ2 are as indicated in Figures 12(a) and (b). 
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Considering force system (I) and using the Unit Load method considering bending effects 

only, the value of the displacement δ1 can be determined as follows: 

 

 δ1 = 

0
1.5

L B C D

A B C

Mm Mm Mm Mm
dx dx dx dx

EI EI EI EI
= + +∫ ∫ ∫ ∫  

where: 

M is the bending moment due to the applied load system, 

m is the bending moment due to a horizontal unit load applied at support A as shown in 

Figure 5.12. (see Chapter 4: Section 4.5). 

 

The product integral 

0

 

L
Mm

dx
EI∫  can be be calculated as: 

Σ  (the area of the applied load bending moment diagram × the ordinate on the unit 
load bending moment diagram corresponding to the position of the centroid of the 

applied load bending moment diagram)/EI for each member. 

 

Considering force system (II) and using the Unit Load method considering bending effects 

only, the value of the displacement δ2 can be determined as follows: 

 

 δ2 = 
2 2 2 2

0
1.5

L B C D

A B C

m m m m
dx dx dx dx

EI EI EI EI
= + +∫ ∫ ∫ ∫  

 

The product integral 
2

0

L
m

dx
EI∫  can be be calculated as: 

Σ  (the area of the unit load bending moment diagram × the ordinate on the unit load 

bending moment diagram corresponding to the position of the centroid of the applied 

load bending moment diagram)/EI for each member. 

 

Considering the horizontal displacent at support A: 

 δA = (δ1 + HAδ2) = 0     gives   

0

L
Mm

dx
EI∫  + 

2

A

0

L
m

H dx
EI

⎛ ⎞
⎜ ⎟×
⎜ ⎟
⎝ ⎠

∫  = 0 

 and hence  HA = 0

2

0

L

L

Mm
dx

EI

m
dx

EI

−
∫

∫
. 

 

In the case of a horizontal movement δ3 at support A then the above equation can be 

modified accordingly, i.e. δA = (δ1 + HAδ2) = δ3. 
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The magnitude and sense of the components of the support reactions and bending 

moments can be determined by superposition of the values determined from the two force 

systems as follows, (see Figure 5.12): 

 

 Final value = force system (I) value + HA × force system (II) value   i.e.  

 

 Support reactions: 

 HA = zero + HA × (1.0) 

 VA = V 'A + HA × (V ''A) 

 HD = H 'D + HA × (H ''D) 

 VD = V 'D + HA × (V ''D) 

 

 Bending moments at A, B, C and D: 

 MA = zero  

 MB = M 'B + HA × (M ''B)      i.e. = M 'B + HA × (− 1.0 × h1) 

 MC = M 'C + HA × (M ''C)   i.e. = H 'D (h1 + h2) + HA  × [− H ''D (h1 + h2)] 

 VD = zero 

5.2.1 Example 5.3  Singly-Redundant, Rigid-Jointed Frame 
A non-uniform, asymmetric pitched-roof portal frame ABCDE is pinned at supports A and 

E and subjected to the loading indicated in Figure 5.13.  

  

i) determine the support reactions, and 

 

ii) determine the change in the bending moment at B due to an outwards horizontal 

movement of support A equal to 15 mm 

 

  Note: EI = 20.0 × 103 kNm2 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

   
 
 

Figure 5.13 
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The reactions in force system (I) and force system (II) are as indicated in Figure 5.14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  (a)  Force system (I)                     (b)  Force system (II) 

Figure 5.14 
 

Apply the three equations of static equilibrium to force system (I) in Figure 5.14(a) 

+ve ΣFz = 0  V'A − (10.0 × 8.0) + V'E = 0         Equation (1) 

+ve     ΣFx = 0 − 15.0 + H'E = 0            Equation (2) 

 +ve    ΣMA = 0 (10.0 × 8.0)(4.0) − (15.0 × 4.0) − (V'E × 8.0) = 0   Equation (3) 

 

From equation (2):  − 15.0 + H'E = 0       ∴ H'E = + 15.0 kN 

 From equation (3):  260.0 − 8.0V'E = 0       ∴ V'E = + 32.50 kN 

 From equation (1):  V'A − 80.0 + 32.5 = 0      ∴ V'A = + 47.50 kN 
 
Apply the three equations of static equilibrium to force system (II) in Figure 5.14(b) 

+ve ΣFz = 0  V''A  + V''E = 0             Equation (4) 

+ve     ΣFx = 0 1.0 + H''E = 0             Equation (5) 

 +ve    ΣMA = 0 − (V''E × 8.0) = 0            Equation (6) 

 

From equation (5):  1.0 + H''E = 0        ∴ H''E = − 1.0 kN 

 From equation (6):  − 8.0V''E = 0        ∴ V''E = zero 

 From equation (4):  V''A  + V''E = 0        ∴ V''A = zero  
 

Consider the frame shown in Figure 5.14. 

 

Determine the values of M' and m at each of the node points for Figure 5.14(a) and      

Figure 5.14(b). 

 

Node A: M'A = 0              m = 0 

Node B: M'B = 0              m = − (1.0 × 4,0) = − 4.0 

Node C: M'C = + (47.5 × 2.0) − (10.0 × 2.0 × 1.0) = + 75.0 kNm 

                   m = − (1.0 × 7.0) = − 7.0 

Node D: M'D = + (15.0 × 4.0) = + 60.0 kNm      m = − (1.0 × 4.0) = − 4.0 

 

+   HA ×

H'E 

B                D 

A                 E 

C 
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10 kN/m 

H'A V'E 

1.0 H''E 

B                D 

A                 E 
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V''A V''E 
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Node E: M'E = 0 

      m = 0 

  

The bending moment diagram for the frame in 

Figure 5.14(a) is given in Figure 5.15 and can be 

considered to be the sum of the fixed and free 

bending moment diagrams for each member as 

indicated in  Figure 5.16. 

              
 
                 Applied load bending moment diagram  

                    Figure 5.15 
 
  
 
 
 
 
 
 
 
 
 

       
 

Fixed and free bending moment diagrams (M) 

Figure 5.16 
 

The unit load bending moment diagram for the frame shown in Figure 5.14(b) is indicated 

in  Figure 5.17. 

 
 
 

Length of BC = 3.61 m 

 

Length of CD = 6.71 m 

 

 

 

             

 

                 

 
  
        
   Figure 5.17          Unit load bending moment diagram  
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Using the unit load method δ1 = 

0
1.5

L B C D E

A B C D

Mm Mm Mm Mm Mm
dx dx dx dx dx

EI EI EI EI EI
= + + +∫ ∫ ∫ ∫ ∫  

The product integral 

0

 

L

Mm dx∫  can be be calculated as: 

Σ  (Area of the applied load bending moment diagram × the ordinate on the unit load 

bending moment diagram corresponding to the position of the centroid of the applied 

load bending moment diagram) for each member. 

 0 since  = 0

B

A

Mm
dx M

EI
=∫  

 
( ) ( )0.5 3.61 75.0 6.0 0.67 3.61 5.0 5.5 878.76

C

B

Mm
dx

EI EI EI

× × × + × × ×
= − = −∫  

( ) ( ) ( )0.5 6.71 15.0 6.0 6.71 60 5.5 0.67 6.71 45.0 5.5

1.5 1.5

2419.29
                 

D

C

Mm
dx

EI EI

EI

× × × + × × + × × ×
= −

= −

∫

 
( )0.5 4.0 60.0 2.67 320.40

E

D

Mm
dx

EI EI EI

× × ×
= − = −∫  

 ∴ δ1 = 

0

L
Mm

dx
EI∫ = − (0 + 878.76 + 2419.29 + 320.40)/EI = − 3618.45/EI 

 
Consider the frame shown in Figure 5.14(b) in which only the redundant reaction is 

applied in addition to the components of reaction necessary to maintain equilibrium.  

 δ2 = 
2 2 2 2 2

0
1.5

L B C D E

A B C D

m m m m m
dx dx dx dx dx

EI EI EI EI EI
= + + +∫ ∫ ∫ ∫ ∫  

 

 

 

 

 

 

 

 

 

 

 

     Figure 5.18      Unit load bending moment diagrams (m) 
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( )2 0.5 4.0 4.0 2.67 21.36

B

A

m
dx

EI EI EI

× × ×
= =∫  

 
( ) ( )2 0.5 3.61 3.0 6.0 3.61 4.0 5.5 111.91

C

B

m
dx

EI EI EI

× × × + × ×
= =∫  

( ) ( )2 0.5 6.71 3.0 6.0 6.71 4.0 5.5 138.67

1.5 1.5

D

C

m
dx

EI EI EI

× × × + × ×
= =∫   

 
( )2 2 0.5 4.0 4.0 2.67 21.36

E B

D A

m m
dx dx

EI EI EI EI

× × ×
= = =∫ ∫   

 ∴ δ2 = 
2

0

L
m

dx
EI∫ = (21.36 + 111.91 + 138.67 + 21.36)/EI = 293.54/EI 

 and 

 HA δ2 = HA × 
2

0

L
m

dx
EI∫  = 293.54HA/EI 

In case (i) 

Considering the horizontal displacent at support A: 

δA = (δ1 + HAδ2) = 0   gives   

0

 

L
Mm

dx
EI∫  + 

2

A

0

L
m

H dx
EI

⎛ ⎞
⎜ ⎟×
⎜ ⎟
⎝ ⎠

∫  = 0  ∴  HA = 0

2

0

L

L

Mm
dx

EI

m
dx

EI

−
∫

∫
 

where: 

 

0

L
Mm

dx
EI∫ = − 3618.45/EI    and  

2

0

L
m

dx
EI∫ = 293.54/EI 

 ∴  HA = 0

2

0

L

L

Mm
dx

EI

m
dx

EI

−
∫

∫
= − (− 3618.45/293.54) = + 12.33 kN   

 

i.e.  in the same direction as the assumed unit load  and, using superposition with force 

systems (I) and (II): 

 

 HA = zero + HA × (1,0) = 0 + (12.33 × 1.0)  = + 12.33 kN 

 VA = V 'A + HA × (zero) = + 47.5 + (12.33 × 0) = + 47.5 kN 

 MA = zero  
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 HE = H 'E + HA × (− 1,0) = + 15.0 + (12.33 × − 1.0) = + 2.67 kN 

 VE = V 'E + HA × (zero) = + 32.5 + (12.33 × 0) = + 32.5 kN 

 ME = zero 

 

 Bending moments at B, C and D: 

 MB = M'B + HA × (− 4.0) = 0 − (12.33 × 4.0) = − 49.32 kNm 

 MC = M'C + HA × (− 7.0) = + 75.0 − (12.33 × 7.0) = − 11.31 kNm 

 MD = M'D + HA × (− 4.0) = + 60.0 − (12.33 × 4.0) = + 10.68 kNm 

  

 

 (Readers should complete 

the axial load and shear 

force diagrams indicating 

all the salient values.) 

 

 

 

 

     

        Figure 5.19            

 

                Bending Moment Diagram 

In case (ii) 

Considering the 15.0 mm horizontal displacement at support A: 

 δA = (δ1 + HAδ2) = − 0.015  and hence  HA = 0

2

0

 0.015

L

L

Mm
dx

EI

m
dx
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− − ∫

∫
 

 HA = 
3

3

3618.45
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20.0 10  11.30 kN
293.54

20.0 10

− +
× = +

×

 

 i.e.  in the same direction as the assumed unit load   

  

 The bending moment at B, MB = (HA × 4.0) = (11.30 × 4.0) = 45.20 kNm 

 

 The change in the bending moment at B due to the horizontal displacement at A is 

given by  (49.32 − 45.20)  i.e. a reduction of 4.12 kNm  
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5.2.2 Problems: Unit Load Method for Singly-Redundant, Rigid-Jointed Frames  
A series of statically indeterminate, rigid-jointed frames are indicated in          
Problems 5.5 to 5.8. In each case, for the loading given: 
 

i) determine the support reactions and 
  

ii) determine the magnitude and sense of the bending moments at the joints and 
under the point loads. (Assume tension inside the frame is positive bending). 

   
(Note: readers should complete the axial load, shear force and bending moment 
diagrams for each frame) 
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Problem 5.8 
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5.2.3 Solutions: Unit Load Method for Singly-Redundant, Rigid-Jointed Frames  
        
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 Assume the horizontal force at support A to be the redundant reaction.  

 

 

 

 

 

 

 

 

 

 

    Force system (I)              Force system (II)  

 

 The support reactions in force system (I): 

 Apply the three equations of static equilibrium to force system (I)  

+ve ΣFz = 0  V'A − 24.0 + V'F = 0           Equation (1) 

+ve     ΣFx = 0 + 12.0 + 15.0 + H'F = 0          Equation (2) 

 +ve    ΣMA = 0 + (12.0 × 5.0) + (24.0 × 3.0) + (15.0 × 2.5) − (V'F × 9.0) = 0  

                        Equation (3) 

From equation (2):  + 27.0 + H'F = 0       ∴ H'F = − 27.0 kN 

 From equation (3):  260.0 − 8.0V'E = 0       ∴ V'E = + 18.83 kN 

 From equation (1):  V'A − 24.0 + 18.83 = 0      ∴ V'A = + 5.17 kN 
 

Solution 
Topic:  Unit Load Method for Singly-Redundant, Rigid-Jointed Frames   
Problem Number: 5.5            Page No. 1 
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 The support reactions in force system (II): 

 Apply the three equations of static equilibrium to force system (II). 

+ve ΣFz = 0  V''A  + V''F = 0             Equation (4) 

+ve     ΣFx = 0 1.0 + H''F = 0             Equation (5) 

 +ve    ΣMA = 0 − (V''F × 9.0) = 0            Equation (6) 

 

From equation (5):  1.0 + H''F = 0        ∴ H''F = − 1.0 kN 

 From equation (6):  − 9.0V''F = 0         ∴ V''F = zero 

 From equation (4):  V''A  + V''F = 0        ∴ V''A = zero  
 

Determine the values of M' and m at each of the node and load points:       

Node A: M' = 0              m = 0 

Node B: M' = 0              m = − (1.0 × 5,0) = − 5.0 

Node D: M' = + (15.0 × 2.5) − (27.0 × 5.0) = − 97,50 kNm  

                  m = − (1.0 × 5.0) = − 5.0 

Node F: M' = 0              m = 0 

 

Point C: M' = + (5.17 × 3.0) = + 15.51 kNm      m = − (1.0 × 5.0) = − 5.0 

Point E: M'= − (27.0 × 2.5) = − 67,50 kNm      m = − (1.0 × 2.5) = − 2.5 

 

  

 

 

 

 

 

 

 

 

Applied load bending moment diagram  

 

 

 

              
 
                  
 
 

      

  

Fixed and free bending moment diagrams (M) 

Solution 
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Unit load bending moment diagram (m) 

 

   Using the unit load method δ1 = 

0

L B D F

A B D

Mm Mm Mm Mm
dx dx dx dx

EI EI EI EI
= + +∫ ∫ ∫ ∫  
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dx

EI EI EI
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 δ1 = 

0

L
Mm

dx
EI∫ =  (+ 1113.75 + 928.88)/EI = + 2042.63/EI 

 Using the unit load method δ2 = 
2 2 2 2

0

L B D F

A B D

m m m m
dx dx dx dx

EI EI EI EI
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 δ2 = 
2

0

L
m

dx
EI∫ = (41.63 + 225.0 + 41.63)/EI = 308.26/EI 

 and 

 HA δ2 = HA × 
2

0

L
m

dx
EI∫  = 308.26HA/EI 

 Considering the horizontal displacent at support A: 

δA = (δ1 + HAδ2) = 0   gives   

0

 

L
Mm

dx
EI∫  + 

2

A

0

L
m

H dx
EI

⎛ ⎞
⎜ ⎟×
⎜ ⎟
⎝ ⎠

∫  = 0  ∴  HA = 0

2

0

L

L

Mm
dx

EI

m
dx

EI

−
∫

∫
 

 where: 

 

0

L
Mm

dx
EI∫ = + 2042.63/EI    and  

2

0

L
m

dx
EI∫ = + 308.26/EI 

   HA = 0

2

0

L

L

Mm
dx

EI

m
dx

EI

−
∫

∫
= − (2042.63/308.26) = − 6.63 kN   

  i.e.  in the opposite direction to the assumed unit load   

  

 and using superposition with force systems (I) and (II): 

 

 HA = zero + HA × (+ 1,0) = 0 + (6.63 × 1.0) = − 6.63 kN 

 VA = V 'A + HA × (zero) = + 5.17 + (6.63 × 0) = + 5.17 kN 

 MA = zero  

 HF = H 'F + HA × (− 1,0) = − 27.0 + (6.63 × − 1.0) = − 20.37 kN 

 VE = V 'E + HA × (zero) = + 18.83 + (6.63 × 0) = + 18.83 kN 

MF = zero 

  

 Bending moments at B, C, D, and E : 

 MB = zero + HA × (− 5.0) = 0 + (6.63 × 5.0) = + 33.15 kNm 

 MC = M 'C + HA × (− 5.0) = + 15.50 + (6.63 × 5.0) = + 48.65 kNm 

 MD = M 'D + HA × (− 5.0) = − 97.50 + (6.63 × 5.0) = − 64.35 kNm 

 ME = M 'E + HA × (− 2.5) = − 67.50 + (6.63 × 2.5) = − 50.93 kNm 

Solution 
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Assume the vertical force at support D to be the redundant reaction.  

 

 

 

 

 

 

 

 

 

 

 

 

    Force system (I)              Force system (II)  

  

 The support reactions in force system (I): 

 Apply the three equations of static equilibrium to force system (I)  

+ve ΣFz = 0  V'A − (8.0 × 5.0) − 40.0 = 0         Equation (1) 

+ve     ΣFx = 0 + H'A = 0               Equation (2) 

 +ve    ΣMA = 0 + (8.0 × 5.0 × 4.5) + (40.0 × 4.5) + M'A = 0    Equation (3) 

 

From equation (2):              ∴ H'A = zero 

 From equation (3):  360.0 − M'A = 0        ∴ M'A = − 360.0 kNm 

 From equation (1):  V'A − 40.0 − 40.0 = 0      ∴ V'A = + 80.0 kN 

Solution 
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 The support reactions in force system (II): 

 Apply the three equations of static equilibrium to force system (II). 

+ve ΣFz = 0  V''A + 1.0 = 0             Equation (4) 

+ve     ΣFx = 0 + H''A = 0              Equation (5) 

 +ve    ΣMA = 0 M''A − (1.0 × 7.0) = 0           Equation (6) 

 

From equation (5):  H''A = 0          ∴ H''F = zero 

 From equation (6):  V''A = − 1.0         ∴ V''A = − 1.0 

 From equation (4):  M''A − 7.0 = 0        ∴ M''A = + 7.0  
 

Determine the values of M and m at each of the node and load points:       

Node A: M = − 360.0 kNm         m = + 7.0 

Node B: M = − 360.0 + (80.0 × 2.0) = − 200.0 kNm m = − (1.0 × 2,0) + 7.0 = + 5.0 

Node D: M = zero            m = zero 

 

Point C: M = − (8.0 × 2.5 × 1.25) = − 25.0 kNm  m = + (1.0 × 2.5) = + 2.5 

 

 

 

 

 

 

         LAB = (2.02 + 4.02)0.5 = 4.472 m 

 

 

 

 

Applied load bending moment diagram  

 

 

 

 

              
 
                  
 
 

      

     

Fixed and free bending moment diagrams (M) 

Solution 
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        Unit load bending moment diagram (m) 

 

   Using the unit load method δ1 = 

0

L B D

A B

Mm Mm Mm
dx dx dx

EI EI EI
= +∫ ∫ ∫  

 
( ) ( )0.5 4.472 160.0 6.34 200.0 4.472 6.0 7634.60

B

A

Mm
dx

EI EI EI

− × × × − × ×
= = −∫  

 

( ) ( ) ( )0.5 5.0 200.0 3.33 0.5 5.0 50.0 2.5 0.67 5.0 25.0 2.5

1143.13
               =

D

B

Mm
dx

EI EI

EI

− × × × + × × × + × × ×
=

−

∫
 

 δ1 = 

0

L
Mm

dx
EI∫ =  − (7634.60 + 1143.13)/EI = − 8777.73/EI 

 Using the unit load method δ2 = 
2 2 2

0

L B D

A B

m m m
dx dx dx

EI EI EI
= +∫ ∫ ∫  

 
( ) ( )2 4.472 5.0 6.0 0.5 4.472 2.0 6.34 162.51

B

A

m
dx

EI EI EI

+ × × + × × ×
= = +∫  

 
( )2 0.5 5.0 5.0 3.33 41.63

D

B

m
dx

EI EI EI

+ × × ×
= = +∫  

 

 δ2 = 
2

0

L
m

dx
EI∫ = (162.51 + 41.63)/EI = 204.14/EI 
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 and 

 VD δ2 = VD × 
2

0

L
m

dx
EI∫  = 204.14VD/EI 

 Considering the vertical displacent at support D: 

δD = (δ1 + VDδ2) = − (VD × 0.0005)   

 

0

 

L
Mm

dx
EI∫  + 

2

D

0

L
m

V dx
EI

⎛ ⎞
⎜ ⎟×
⎜ ⎟
⎝ ⎠

∫  = − 0.0005VD  ∴  VD = 0

2

0

0.0005

L

L

Mm
dx

EI

m
dx

EI

−

+

∫

∫
 

 where: 

 

0

L
Mm

dx
EI∫ = − 8777.73/EI    and  

2

0

L
m

dx
EI∫ = + 204.14/EI 

 VD = 0

2

0

0.0005

L

L

Mm
dx

EI

m
dx

EI

−

+

∫

∫
= + 8777.73/[204.14 + (0.0005 × 20 × 103)] = + 41.0 kN   

  i.e.  in the direction of the assumed unit load   

 

 and using superposition with force systems (I) and (II): 

 

 HA = zero + VD × (zero) = 0 + (41.0 × 0) = zero 

 VA = V 'A + VD × (− 1.0) = + 80.0 − (41.0 × 1.0) = + 39.0 kN 

 MA = M 'A + VD × (+ 7.0) = − 360.0 + (41.0 × 7.0) = − 73.0 kNm 

 HD = H 'D + VD × (zero) = 0 + (41.0 × 0) = zero 

 VD = V 'D + VD × (+ 1.0) = 0 + (41.0 × 1.0) = + 41.0 kN 

MD = zero 

  

 Bending moments at B and C: 

 MB = M 'B + VD × (+ 5.0) = − 200.0 + (41.0 × 5.0) = + 5.0 kNm 

 MC = M 'C + VD × (+ 2.5) = (− 100.0 + 50.0 + 25.0) + (41.0 × 2.5) = + 77.5 kNm 
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Assume the horizontal force at support A to be the redundant reaction.  

   

 

 

 

 

 

 

 

 

 

 

 

  Force system (I)          Force system (II)  

 

 The support reactions in force system (I): 

 Apply the three equations of static equilibrium to force system (I)  

+ve ΣFz = 0  V'A − 40.0 + V'E = 0           Equation (1) 

+ve     ΣFx = 0 10.0 + H'E = 0             Equation (2) 

 +ve    ΣMA = 0 + (40.0 × 2.0) − (10.0 × 3.0) − (H'E × 7.0) − (V'E × 7.0) = 0   

                        Equation (3) 

 

From equation (2):              ∴ H'E = − 10.0 kN 

 From equation (3):  50.0 + (7.0 × 10.0) − 7.0V'E = 0   ∴ V'E = + 17.14 kN 

 From equation (1):  V'A − 40.0 + 17.14 = 0      ∴ V'A = + 22.86 kN 

Solution 
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 The support reactions in force system (II): 

 Apply the three equations of static equilibrium to force system (II). 

+ve ΣFz = 0  V''A + V''E = 0             Equation (4) 

+ve     ΣFx = 0 1.0 + H''E = 0             Equation (5) 

 +ve    ΣMA = 0 − (H''E × 7.0) − (V''E × 7.0)= 0        Equation (6) 

 

From equation (5):  H''E = − 1.0         ∴ H''E = − 1.0  
 From equation (6):  + (1.0 × 7.0) − (V''E × 7.0) =  0   ∴ V''E = + 1.0 

 From equation (4):  V''A + 1.0 = 0        ∴ V''A = − 1.0  
 

Determine the values of M and m at each of the node and load points:       

Node A: M = zero             m = zero 

Node C: M = + (22.86 × 4.0) − (40.0 × 2.0) = + 11.44 kNm 

                 m = − (1.0 × 4,0) = − 4.0 

Node D: M = − (10.0 × 4.0) = − 40.0 kNm     m = − 4.0 

Node E: M = zero             m = zero 

 

Point B: M = + (22.86 × 2.0) = + 45.72 kNm    m = − (1.0 × 2,0) = − 2.0 

 

 

 

 

 

LCD = (3.02 + 3.02)0.5 = 4.243 m 

   x = 4.243 × (11.44/51.44) = 0.944 m 

 

 

        Applied load bending moment diagram 

 

 

 

 

 

 

              
 
                  
 
 

 Fixed and free bending moment diagrams (M) 
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 Unit load bending moment diagram (m) 

 

    

 

 Using the unit load method δ1 = 

0

L C D E

A C D

Mm Mm Mm Mm
dx dx dx dx

EI EI EI EI
= + +∫ ∫ ∫ ∫  

 
( ) ( )0.5 4.0 11.4 2.67 0.5 4.0 40.0 2.0 220.88

C

A

Mm
dx

EI EI EI

− × × × − × × ×
= = −∫  

 
( ) ( )0.5 0.944 11.4 4.0 0.5 3.299 40.0 4.0 242.40

D

C

Mm
dx

EI EI EI

− × × × + × × ×
= = +∫

 
( )0.5 4.0 40.0 2.67 213.60

=

E

D

Mm
dx

EI EI EI

+ × × ×
= +∫  

 δ1 = 

0

L
Mm

dx
EI∫ =  (− 220.88 + 242.40 + 213.60)/EI = + 235.12/EI 

 Using the unit load method δ2 = 
2 2 2 2

0

L C D E

A C D

m m m m
dx dx dx dx

EI EI EI EI
= + +∫ ∫ ∫ ∫  

 
( )2 0.5 4.0 4.0 2.67 21.36

C

A

m
dx

EI EI EI

× × ×
= = +∫ ;   

 
( )2 4.243 4.0 4.0 67.89

D

C

m
dx

EI EI EI

× ×
= = +∫   

 
( )2 0.5 4.0 4.0 2.67 21.36

E

D

m
dx

EI EI EI

× × ×
= = +∫  
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 δ2 = 
2

0

L
m

dx
EI∫ = (21.36 + 67.89 + 21.36)/EI = 110.61/EI 

 and 

 HA δ2 = HA × 
2

0

L
m

dx
EI∫  = + 110.61HA/EI 

 Considering the horizontal displacent at support A: 

δA = (δ1 + HAδ2) = 0   

 

0

 

L
Mm

dx
EI∫  + 

2

D

0

L
m

H dx
EI

⎛ ⎞
⎜ ⎟×
⎜ ⎟
⎝ ⎠

∫  = 0  ∴  HA = 0

2

0

L

L

Mm
dx

EI

m
dx

EI

−
∫

∫
 

 where: 

 

0

L
Mm

dx
EI∫ = + 235.12/EI    and  

2

0

L
m

dx
EI∫ = + 110.61/EI 

 HA = 0

2

0

L

L

Mm
dx

EI

m
dx

EI

−
∫

∫
= − 235.12/110.61 = − 2.13 kN   

  i.e.  opposite to the direction of the assumed unit load.   

 

 and using superposition with force systems (I) and (II): 

 

 HA = zero + HA × (+ 1,0) = 0 − (2.13 × 1.0) = − 2.13 kN 

 VA = V 'A + HA × (− 1.0) = + 22.86 + (2.13 × 1.0) = + 24.99 kN 

 MA = zero  

 HE = H 'E + HA × (− 1.0) = − 10.0 + (2.13 × 0) = − 7.87 kN 

 VE = V 'E + HA × (+ 1.0) = + 17.14 − (2.13 × 1.0) = + 15.01 kN 

ME = zero 

 

 Bending moments at B, C and D: 

 MB = M 'B + HA × (− 2.0) = + 45.72 + (2.13 × 2.0) = + 49.98 kNm 

 MC = M 'C + HA × (− 4.0) = + 11.44 + (2.13 × 4.0) = + 19.96 kNm 

 MD = M 'D + HA × (− 4.0) = − 40.0 + (2.13 + 4.0) = + 31.48 kNm 

Solution 
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Assume the moment at support E to be the redundant reaction.  

  The support reactions in force system (I): 

 

 

 

 

 

 

 

 

 

 

 

 

  Force system (I)          Force system (II)  

 

 Apply the three equations of static equilibrium to force system (I)  

+ve  ΣMD = 0  − (H'E × 4.0) − (V'E × 2.0) = 0              Equation (1) 

+ve  ΣMA = 0  + (8.0 × 7.0) + (30.0 × 6.5) + (4.0 × 5.0) + (H'E × 1.0) − (V'E × 13.0)  

 = 0 

          + 271.0 + H'E − 13.0V'E = 0                   Equation (2) 

 

From Equation (1):  H'E = − 0.5V'E  and from Equation (2):  H'E = − 271.0 − 13.0V'E  

∴ V'E = + 20.07 kN     and    H'E = − 10.04 kN 

Solution 
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+ve ΣFz = 0  V'A − 30.0 + 20.07 = 0       V'A = + 9.93 kN   

+ve     ΣFx = 0 H'A + 8.0 + 4.0 − 10.04 = 0     H'A = − 1.96 kN    

  

 The support reactions in force system (II): 

 Apply the three equations of static equilibrium to force system (II). 

+ve  ΣMD = 0  + 1.0 − (H''E × 4.0) − (V''E × 2.0) = 0           Equation (3) 

+ve  ΣMA = 0  + 1.0 + (H''E × 1.0) − (V''E × 13.0) = 0          Equation (4) 

From Equation (3):  H''E = 0.25 − 0.5V''E   

From Equation (4):  H''E = − 1.0 + 13.0V''E  

∴ V''E = + 0.093 kN       and    H''E = + 0.204 kN 
 
+ve ΣFz = 0  V''A − 0.093 = 0        V''A = − 0.093 kN   

+ve     ΣFx = 0 H''A + 0.204 = 0        H''A = − 0.204 kN    

 

Determine the values of M and m at each of the node and load points:       

Node A: M = zero        m = zero 

Node B: M = + (9.93 × 2.0) + (1.96 × 7.0) = + 33.58 kNm 

                   m = − (0.093 × 2.0) + (0.204 × 7.0) = + 1.24  

Node C: M = + (9.93 × 6.5) + (1.96 × 6.0) + (8.0 × 1.0) = + 84.31 kNm  

                   m = − (0.093 × 6.5) + (0.204 × 6.0) = + 0.62  

Node D: M = zero        m = zero 

Node E: M = zero        m = − 1.0 

 

 

 

            LAB = (7.02 + 2.02)0.5 = 7.280 m 

            LCD = (9.02 + 2.02)0.5 = 9.220 m 

            LDE = (4.02 + 2.02)0.5 = 4.472 m 

 

         

Applied load bending moment diagram 

 

 

 

 

 

 

              
 
      Fixed and free bending moment diagrams (M) 
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      Unit load bending moment diagram (m) 

 

 

 Using the unit load method δ1 = 

0

L B D E

A B D

Mm Mm Mm Mm
dx dx dx dx

EI EI EI EI
= + +∫ ∫ ∫ ∫  

 
( )0.5 7.28 33.58 0.83 67.63

1.5

B

A

Mm
dx

EI EI EI

+ × × ×
= = +∫  

 
( ) ( )0.5 9.22 33.58 0.83 0.5 9.22 67.5 0.62 160.71

2.0

D

C

Mm
dx

EI EI EI

+ × × × + × × ×
= = +∫

 zero

E

D

Mm
dx

EI
=∫  

 δ1 = 

0

L
Mm

dx
EI∫ =  (67.63 + 160.71)/EI = + 228.34/EI 

 Using the unit load method δ2 = 
2 2 2 2

0

L B D E

A B D

m m m m
dx dx dx dx

EI EI EI EI
= + +∫ ∫ ∫ ∫  

 
( )2 0.5 7.28 1.24 0.83 2.50

1.5

B

A

m
dx

EI EI EI

+ × × ×
= = +∫  

 
( )2 0.5 9.22 1.24 0.83 2.37

2.0

D

C

m
dx

EI EI EI

+ × × ×
= = +∫

 
( )2 0.5 4.472 1.0 0.67 1.49

E

D

m
dx

EI EI EI

× × ×
= = +∫  
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 δ2 = 
2

0

L
m

dx
EI∫ = (2.50 + 2.37 + 1.49)/EI = 6.36/EI 

 and 

 ME δ2 = ME × 
2

0

L
m

dx
EI∫  = + 6.36ME/EI 

 Considering the rotational displacent at support E: 

δE = (δ1 + MEδ2) = 0   

 

0

 

L
Mm

dx
EI∫  + 

2

E

0

L
m

M dx
EI

⎛ ⎞
⎜ ⎟×
⎜ ⎟
⎝ ⎠

∫  = 0   ∴  ME = 0

2

0

L

L

Mm
dx

EI

m
dx

EI

−
∫

∫
 

 where: 

 

0

L
Mm

dx
EI∫ = + 228.34/EI    and  

2

0

L
m

dx
EI∫ = + 6.36/EI 

 ME = 0

2

0

L

L

Mm
dx

EI

m
dx

EI

−
∫

∫
= − 228.34/6.36 = − 35.90 kNm   

  i.e.  opposite to the direction of the assumed unit moment.   

 

 and using superposition with force systems (I) and (II): 

 

 HA = H 'A + ME × (− 0.204) = − 1.96 + (35.90 × 0.204) = + 5.36 kN 

 VA = V 'A + ME × (− 0.093) = + 9.93 + (35.90 × 0.093) = + 13.27 kN 

 MA = zero 

 HE = H 'E + ME × (+ 0.204) = − 10.04 − (35.90 × 0.204) = − 17.32 kN 

 VE = V 'E + ME × (+ 0.093) = + 20.07 − (35.90 × 0.093) = + 16.73 kN 

ME = − 35.90 kNm 

  

 Bending moments at B, C, D: 

 MB = M 'B + ME × (+ 1.24) = + 33.58 − (35.90 × 1.24) = − 10.94 kNm 

 MC = M 'C + ME × (+ 0.62) = + 84.31 − (35.90 × 0.62) = + 62.05 kNm 

 MD = zero 

Solution 
Topic:  Unit Load Method for Singly-Redundant, Rigid-Jointed Frames   
Problem Number: 5.8            Page No. 4 
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5.3 Moment Distribution for No-Sway Rigid-Jointed Frames 
The principles of moment distribution are explained in Chapter 4 in relation to the analysis 

of multi−span beams. In the case of rigid−jointed frames there are many instances where 

there more than two members meeting at a joint. This results in the out−of−balance 

moment induced by the fixed−end moments being distributed among several members.   

Consider the frame shown in Figure 5. 20: 

 

 

 

 

 

 

 

 

 

                       Figure 5.20 
Fixed−End Moments:  

MBC = − 
2

12

wL
 = − 

212.0 8.0

12

×
 = − 64.0 kNm;   MCB = + 

2

12

wL
 = + 

212.0 8.0

12

×
 = 64.0 kNm 

 

 

 

 

 

 

 

                       Figure 5.21 
 

Distribution Factors:  
At joint B there are four members contributing to the overall stiffness of the joint. 

 

kBA = 
I

L

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
4.0

I⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 0.25I         D.F.BA = BA

Total

k

k
 = 

0.25

1.16

I

I

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 0.22 

kBC = 
I

L

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
2

8.0

I⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 0.25I         D.F.BC = BC

Total

k

k
 = 

0.25

1.16

I

I

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 0.22  

kBE = 
I

L

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
3.0

I⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 0.33I         D.F.BE = BE

Total

k

k
 = 

0.33

1.16

I

I

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 0.28  

kBF = 
I

L

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
3.0

I⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 0.33I         D.F.BF = BF

Total

k

k
 = 

0.25

1.16

I

I

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 0.28  

                 Distribution factors∑ = 1.0 

The sum of the distribution factors is equal 1.0 since 100% of the out−of−balance moment 

must be distributed between the members. 

 

12 kN/m

 A     EI  B                        2EI                           C           1.5EI     D 
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 F                       G 

64.0 kNm64.0 kNm 

EI       EI

EI 
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 A     EI  B                   2EI                     C     1.5EI      D

E 

 F                     G

4.0 m       8.0 m          6.0 m

3
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At joint C there are three members contributing to the overall stiffness of the joint. 

kCB = 
I

L

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
2

8.0

I⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 0.25I         D.F.CB = CB

Total

k

k
 = 

0.25

0.83

I

I

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 0.3 

kCD = 
3

4

I

L

⎛ ⎞× ⎜ ⎟
⎝ ⎠

 = 
1.5

6.0

I⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 0.25I       D.F.CD = CD

Total

k

k
 = 

0.25

0.83

I

I

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 0.3  

kCG = 
3

4

I

L

⎛ ⎞× ⎜ ⎟
⎝ ⎠

 = 
3.0

I⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 0.33I       D.F.CG = CG

Total

k

k
 = 

0.33

0.83

I

I

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 0.4 

The balancing moment at joint B = + 64.0 kNm 

The balancing moment at joint C = − 64.0 kNm 

At joint B:   
Moment on BA = + (0.22 × 64.0) = + 14.08 kNm  

Moment on BC = + (0.22 × 64.0) = + 14.08 kNm 

Moment on BE = + (0.28 × 64.0) = + 17.92 kNm 

Moment on BF = + (0.28 × 64.0) = + 17.92 kNm 

At joint C:   
Moment on CB = − (0.3 × 64.0)  = − 19.20 kNm;  

Moment on CD = − (0.3 × 64.0) = − 19.20 kNm 

Moment on CG = − (0.4 × 64.0) = − 25.60 kNm 

 

 

 

 

 

 

 

 

 

                       Figure 5.22 
                      

The carry−over moments equal to 50% of the balancing moments are applied to joints A, 

B, E, F and C. 

 

 

 

 

 

 

 

                        
 
                      Figure 5.23 
 

As before with beams, the above process is carried out until the required accuracy is 

obtained. This is illustrated in Example 5.4 and the solutions to Problems 5.9 to 5.16. 

kTotal = 0.83I 

+14.08 

−19.20

 F                                                    G 

 A                                                                                                                                D   

E 

+17.92 

+14.08 

+17.92 

−19.20

−25.60

C
B 

These balancing moments

are indicated on the frame in

Figure 5.22 

 F                                                    G +8.96 

+8.96 

 A                                                                                                                                D   

E 

+17.92 

+14.08 
+14.08 

−19.20
−19.20

−25.60

C
B 

+17.92

+7.04

−9.60 

No carry−over to D:  

stiffness = ¾ I/L 

No carry−over to G: 

stiffness = ¾ I/L 

+7.04 
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5.3.1 Example 5.4  No−Sway Rigid−Jointed Frame 1 
A rigid-jointed, two-bay rectangular frame is pinned at supports A, D and E and carries 

loading as indicated in Figure 5.24. Given that supports D and E settle by 3 mm and 2 mm 

respectively and that EI = 102.5 × 103 kNm2; 

 

i) sketch the bending moment diagram and determine the support reactions, 

 

ii) sketch the deflected shape (assuming axially rigid members) and compare with 

the shape of the bending moment diagram, (the reader should check the answer 

using a computer analysis solution). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.24 
 

Fixed-end Moments: 
The final fixed-end moments are due to the combined effects of the applied member 

loads and the settlement; consider the member loads, 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

                       Figure 5.25 
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Member AB * 

MAB = −
8

PL
= − 

8

40.16 ×
 = − 8.0 kNm 

MBA = +
8

PL
 = + 

8

40.16 ×
 = + 8.0 kNm 

* Since support A is pinned, the fixed-end moments are (MBA − 0.5MAB) at B and zero at 

A. 

(MBA − MAB/2) = [+ 8.0 + (0.5 × 8.0)] = + 12.0 kNm. 

 

Member BC  

MBC = −
2

2

L

Pab
 = − 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ××−
2

2

6

0.20.40.20
 = − 8.9 kNm 

MCB = + 
2

2

L

bPa
 = + 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ××+
2

2

6

0.20.40.20
 = + 17.8 kNm 

Member CE * 

MCE = −
12

2wL
 = − 

12

60.6 2×
 = − 18.0 kNm; 

MEC = +
12

2wL
 = + 

12

60.6 2×
 = + 18.0 kNm 

* Since support E is pinned, the fixed-end moments are (MCE − 0.5MEC) at C and zero at  

E. 

 (MCE − 0.5MEC) = [− 18.0 − (0.5 × 18.0) ] = − 27.0 kNm.  

 

Consider the settlement of supports D and E:  δAB = 3.0 mm and δBC = 1.0 mm 
 

 

 

 

 

 

 

 

 

 

 

 

 

                       Figure 5.26 
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Note: the relative displacement between B and C i.e. δBC = (3.0 − 2.0) = 1.0 mm  

MBC = + 
( )*

BC

2
BC

6 1.5E I

L

δ
 = +

( )3

2

6 1.5 102.5 10 0.001

6.0

× × ×
 = + 25.6 kNm  

MCB = + 25.6 kNm 

 

Final Fixed-end Moments: 
 
Member AB: MAB = 0           MBA = + 12.0 − 57.6 = − 45.6 kNm 

Member BC: MBC = − 8.9 + 25.6   = + 16.7 kNm  MCB = + 17.8 + 25.6 = + 43.4 kNm 

Member CE  MCE = − 27.0 kNm       MEC = 0 

 

Distribution Factors : Joint B 
 

kBA = ⎟
⎠
⎞

⎜
⎝
⎛ ×

0.44

3 I
 = 0.19I           DFBA = 

Total

BA

k

k
 = 

63.0

19.0
 = 0.3 

kBC = ⎟
⎠
⎞

⎜
⎝
⎛

0.6

1.5I
 = 0.25I            DFBC = 

Total

BC

k

k
 = 

63.0

25.0
 = 0.4 

kBD = ⎟
⎠
⎞

⎜
⎝
⎛ ×

0.44

3 I
 = 0.19I           DFBD = 

Total

BD

k

k
 = 

63.0

19.0
 = 0.3 

 

Distribution Factors : Joint C 
 

kCB = ⎟
⎠
⎞

⎜
⎝
⎛

0.6

1.5I
 = 0.25I            DFCB = 

Total

CB

k

k
 = 

44.0

25.0
 = 0.57 

kCE  = ⎟
⎠
⎞

⎜
⎝
⎛ ×

0.6

5.1

4

3 I
 = 0.19I           DFCE = 

Total

CE

k

k
 = 

44.0

19.0
 = 0.43 

 
Moment Distribution Table: 

Joint A D  B  C  E 
 AB DB  BA BD BC  CB CE  EC 

Distribution 
Factors 1.0 1.0  0.3 0.3 0.4  0.57 0.43  1.0 

Fixed-end 
Moments    − 45.60  + 16.7  + 43.4 − 27.0   

Balance    + 8.67 + 8.67 + 11.56  − 9.35 − 7.05   

Carry-over      − 4.67  + 5.78    

Balance    +1.40 + 1.40 + 1.87  − 3.29 − 2.49   

Carry-over      − 1.65  + 0.93    

Balance    + 0.49 + 0.49 + 0.66  − 0.53 − 0.4   

Carry-over      − 0.27  + 0.33    

Balance    0.08 + 0.08 + 0.11  − 0.19 − 0.14   

Total 0 0  −34.96 + 10.65 + 24.31  + 37.08 − 37.08  0 
 
 

ktotal =  0.63I  

ktotal = 0.44I  
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Continuity Moments: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
         Fixed Bending Moment Diagrams 
 
Free bending moments: 

 

  

 

  

 

 

                

 

 

 

 

Member AB:           Member BC 

Mfree = 
4
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Member CE: 

 

 

 

 

 

Mfree = 
8

2wL
 = 

8

0.66 2×
 = 27.0 kNm 

 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
         Bending Moment Diagram 
 
The maximum value along the length of member CE can be found by identifying the 
point of zero shear as follows: 

 
 

 

  +ve  ΣMC = 0 

  + (6.0 × 6.0 × 3.0) − 37.08 − (HE × 6) = 0 

             HE = + 11.82 kN 

 
  x = (11.82/6.0) = 1.97 m 

  Mmaximum = (0.5 × 1.97 × 11.82) = 11.64 kNm 

                
     
     Shear Force Diagram 
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Consider Member BD 

+ve    ΣMB = 0 

+ 10.65 − (HD × 4.0) = 0            ∴ HD = + 2.66 kN 

 

Consider a section at B 

+ve    ΣMB = 0 

+ 24.31 + (20.0 × 4.0) − (11.82 × 6.0) + (6.0 × 6.0 × 3.0) − (VE × 6.0) = 0 

                  ∴ VE = + 23.57 kN 

Consider Member AB: 

 

+ve    ΣMB = 0 

− 34.96 − (16.0 × 2.0) + (VA × 4.0) = 0 

    ∴ VA = + 16.74 kN 

 

 

For the complete frame: 

+ve  ΣFz = 0 

+ 16.74 − 16.0 − 20.0 + 23.57 + VD = 0       ∴ VD = − 4.31 kN 
 

+ve   ΣFx = 0 

HA + 11.82 + 2.66 − (6.0 × 6.0) = 0         ∴ HA = + 21.52 kN 
 
 

 
 
 
 
 
 
 
 
 

                    Deflected Shape 
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5.3.2 Problems: Moment Distribution – No-Sway Rigid-Jointed Frames 
A series of rigid-jointed frames are indicated in Problems 5.9 to 5.16 in which the 
relative EI values and the applied loading are given. In each case: 
 

i) sketch the bending moment diagram and determine the support reactions, 
   

ii) sketch the deflected shape (assuming axially rigid members) and compare 
with the shape of the bending moment diagram, (check the answer using a 
computer analysis solution). 
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Problem 5.13
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5.3.3 Solutions: Moment Distribution – No-Sway Rigid-Jointed Frames 
        
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fixed-end Moments: 
 

 

 

 

 

 

 

 

 

 

 

Member BC 

 MBC = − 
8

PL
 = − 

8

825×
 = − 25.0 kNm 

 MCB = + 
8

PL
 = + 

8

825×
 = + 25.0 kNm 

 
Distribution Factors : Joint B 

kBA = ⎟
⎠
⎞

⎜
⎝
⎛

5

I
 = 0.2I          DFBA = 

Total

BA

k

k
 = 

45.0

2.0
 = 0.44 

kBC = ⎟
⎠
⎞

⎜
⎝
⎛

8

2I
= 0.25I          DFBC = 

Total

BC

k

k
 = 

45.0

25.0
 = 0.56 

 

In this case, since there is only one internal joint, only one balancing operation and 

one carry-over will be required during the distribution of the moments. 

Solution 
Topic:  Moment Distribution – No-Sway Rigid-Jointed Frames   
Problem Number: 5.9            Page No. 1 
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Moment Distribution Table: 
 

Joint A  B  C 
 AB  BA BC  CB 

Distribution Factors 0  0.44 0.56  0 
Fixed-end Moments    − 25.0  + 25.0 

Balance   + 11.0 + 14.0   

Carry-over + 5.5     + 7.0 

Total + 5.5  + 11.0 − 11.0  + 32.0 
 
Continuity Moments: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
           Fixed Bending Moment Diagrams 

 

Free bending moment: 
 

 

 

 

 

 

               Member BC: 

               Mfree = 
4

PL
 = 

4

825×
 = 50.0 kNm 

 

 

Solution 
Topic:  Moment Distribution – No-Sway Rigid-Jointed Frames   
Problem Number: 5.9            Page No. 2 

4.0 m                    4.0 m 

5
.0

 m
 

A 

B 

C

5.5 kNm

11.0 kNm

11.0 kNm 32.0 kNm

11.0 kNm  

B                                 C 

32.0 kNm 

B 

A 

11.0 kNm 

5.5 kNm 

  12.5 kN                                  12.5 kN 4.0 m               4.0 m     

25 kN 

4

PL+  

B                                     C 



380 Examples in Structural Analysis  

 

 

 

        
 

 

 

 

  

 

 

 

 

 
   

 

 

 

 

 

 
 

            Bending Moment Diagram 
 

Consider Member AB: 

 

+ve    ΣMB = 0 

+ 5.5 + 11.0 − (HA × 5.0) = 0   ∴ HA = + 3.3 kN 

 
For the complete frame: 

+ve   ΣFx = 0 

3.3 + HC = 0         ∴ HC = − 3.3 kN 

+ve    ΣMA = 0 

+ 5.5 + (25.0 × 4.0) − (3.3 × 5.0) + 32.0 − (VC × 8.0) = 0 

             ∴ VC = + 15.13 kN 

+ve  ΣFz = 0 

VA − 25.0 + 15.13 = 0      ∴ VA = + 9.87 kN 

 
 
 
 
 
 
 
 

 
 
 
                  Deflected Shape 

Solution 
Topic:  Moment Distribution – No-Sway Rigid-Jointed Frames   
Problem Number: 5.9            Page No. 3 
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B 
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5
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A 

5.5 kNm 

11.0 kNm 

HA 

VA 

5.5 kNm 

11.0 kNm 

32.0 kNm

Maximum bending moment: 
 M = − [0.5 × (11.0 + 32.0)] + 50.0 
 M  = + 28.5 kNm  

21.5 kNm 

A 

B                    C 
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Fixed-end Moments: 
 
 

 

 

 

 

 

 

 

 

 

 

Length of member AB = ( )2 22.0 4.0+ = 4.472 m 

 

Member BC* 

 MBC = − 
8

PL − 
2

12

wL
 = − 

8

50.40 ×
 − 

12

50.8 2×
 = − 41.67 kNm 

 MCB = + 
8

PL
+ 

2

12

wL
 = + 

8

50.40 ×
 + 

12

50.8 2×
 = + 41.67 kNm 

 
* Since support C is pinned, the fixed-end moments are (MBC − 0.5MCB) at B and 

zero at C. 

 (MBC − 0.5MCB) = [− 41.67 − (0.5 × 41.67)] = − 62.51 kNm. 

 
 

Solution 
Topic:  Moment Distribution – No-Sway Rigid-Jointed Frames   
Problem Number: 5.10            Page No. 1 

4
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 m
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HA 
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4
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Distribution Factors : Joint B 

kBA = ⎟
⎠
⎞

⎜
⎝
⎛

472.4

I
 = 0.22I         DFBA = 

Total

BA

k

k
 = 

37.0

22.0
 = 0.59 

kBC = ⎟
⎠
⎞

⎜
⎝
⎛×

54

3 I
 = 0.15I          DFBC = 

Total

BC

k

k
 = 

37.0

15.0
 = 0.41 

 
Moment Distribution Table: 

 

Joint A  B  C 
 AB  BA BC  CB 

Distribution Factors 0  0.59 0.41  1.0 
Fixed-end Moments    − 62.51   

Balance   + 36.88 + 25.63   

Carry-over + 18.44      

Total + 18.44  + 36.88 − 36.88  0 
 

Continuity Moments: 
 
 
 
 
 
 
 
 
 
 
 

Fixed Bending Moment Diagrams 

 
 Free bending moment: 

 

 

 Member BC: 

 Mfree = 
4

PL
 + 

8

2wL
 

     = 
4

540×
 + 

8

0.50.8 2×
 

     = 75.0 kNm 

Solution 
Topic:  Moment Distribution – No-Sway Rigid-Jointed Frames   
Problem Number: 5.10            Page No. 2 

36.88 kNm 

B                            C 

B 

36.88 kNm 
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ktotal = 0.37I 

18.44 kNm
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36.88 kNm zero

4
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A 
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40 kN                  40 kN 2.5 m            2.5 m 

40 kN 

8 kN/m 

2

4 8

PL wL+  

B C 
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            Bending Moment Diagram 

 
 

Consider Member BC: 

 

 

 

+ve    ΣMB = 0 

− 36.88 + (40.0 × 2.5) + (8.0 × 5.0 × 2.5) − (VC × 5.0) = 0  ∴ VC = + 32.62 kN 

 

For the complete frame: 

+ve    ΣMA = 0   

+ 18.44 + (40.0 × 4.5) + (8.0 × 5.0 × 4.5) − (32.62 × 7.0) + (HC × 4.0) = 0 

                   ∴ HC = − 37.53 kN 

+ve  ΣFz = 0 

VA − 40.0 − (8.0 × 5.0) + 32.62 = 0         ∴ VA = + 47.38 kN 

 

+ve   ΣFx = 0 

HA − 37.53 = 0               ∴ HA = + 37.53 kN 

 
 
 
 
 
 
 
 
 
 
 

                 Deflected Shape 

Solution 
Topic:  Moment Distribution – No-Sway Rigid-Jointed Frames   
Problem Number: 5.10            Page No. 3 
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zero 
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36.88 kNm 

Maximum bending moment: 
 M = − (0.5 × 36.88) + 75.0 
 M  = + 56.56 kNm  

18.44 kNm

A 

B               C

36.88 kNm 8.0 kN/m 

    2.5 m             2.5 m 

B C HC

VC 

40 kN
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Fixed-end Moments: 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Member AB* 

 MAB = − 
8

PL
= − 

8

60.30 ×
 = − 22.5 kNm 

 MBA = + 
8

PL
= + 

8

60.30 ×
 = + 22.5 kNm 

  

* Since support A is pinned, the fixed-end moments are zero at A and (MBA − 0.5MAB)    

at B.  

  (MBA − 0.5MAB) = [22.5 + (0.5 × 22.5)] = + 33.75 kNm. 

 

 

Solution 
Topic:  Moment Distribution – No-Sway Rigid-Jointed Frames   
Problem Number: 5.11            Page No. 1 

B
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D 

VA 

HA 

VD 
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E, I 
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3
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 m
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30 kN                                    45 kN 
3
.5

 m
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MBA MBC 
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Member BC 

 MBC = − 
8

PL
= − 

8

40.45 ×
 = − 22.5 kNm 

 MCB = + 
8

PL
= + 

8

40.45 ×
 = + 22.5 kNm 

 

Member BD 

 MBD = + 
12

2wL
= + 

12

5.30.10 2×
 = + 10.21 kNm 

 MDB = − 
12

2wL
= − 

12

5.30.10 2×
 = − 10.21 kNm 

 
Distribution Factors : Joint B 
 

kBA = ⎟
⎠
⎞

⎜
⎝
⎛×

0.6

5.1

4

3 I
 = 0.19I         DFBA = 

Total

BA

k

k
 = 

73.0

19.0
 = 0.26 

 

kBC = ⎟
⎠
⎞

⎜
⎝
⎛

4

I
 = 0.25I           DFBC = 

Total

BC

k

k
 = 

73.0

25.0
 = 0.34 

 

kBD = ⎟
⎠
⎞

⎜
⎝
⎛

5.3

I
 = 0.29I          DFBD = 

Total

BD

k

k
 = 

73.0

29.0
 = 0.40 

 
Moment Distribution Table: 

 

Joint A  B C D 
 AB  BA BD BC CB DB 

Distribution Factors 1.0  0.26 0.40 0.34 0 0 
Fixed-end Moments   + 33.75 

 

+ 10.21 − 22.5 + 22.5

 
− 10.21 

Balance   − 5.58 − 8.58 − 7.3   

Carry-over      − 3.7 − 4.29 

Total 0  + 28.17 + 1.63 − 29.8 + 18.8 − 14.5 
 
 
 
 

Solution 
Topic:  Moment Distribution – No-Sway Rigid-Jointed Frames   
Problem Number: 5.11            Page No. 2 

ktotal =  0.73I 

Note: the sum of the 

moments at joint B = zero 
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Continuity Moments: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                Fixed Bending Moment Diagrams 
 
 

 

Free bending moments: 
 

  

 

 

 

 

 

 

 

 

 

 

 
 

Free Bending Moment Diagrams 

18.8 kNm

1.63 kNm

zero B
C

A 

D

14.5 kNm

3
.5

 m
 

  3.0 m                   3.0 m             2.0 m         2.0 m 

28.17 kNm 29.8 kNm

Solution 
Topic:  Moment Distribution – No-Sway Rigid-Jointed Frames   
Problem Number: 5.11            Page No. 3 
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Member AB: 

 Mfree = + 
4

PL
 = 

4

60.30 ×
 = 45.0 kNm  

Member BD: 

 Mfree = + 
8

2wL
= 

8

5.30.10 2×
 = 15.31 kNm  

Member BC: 

 Mfree = + 
4

PL
 = 

4

40.45 ×
 = 45.0 kNm  

 

 

 

 

 

 

 

 

 

 
   

 

 

 

 

 
Bending Moment Diagram 

 
*  The maximum value along the length of member DB can be found by 

identifying the point of zero shear as follows: 
 

 

+ve     ΣMB = 0 

+ 1.63 − (10 × 3.5 × 1.75) − 14.5 + (HD × 3.5) = 0 

         ∴ HD = + 21.18 kN 

 
x = (21.18/10.0) = 2.118 m 

Mmaximum = (0.5 × 2.118 × 21.18) − 14.5 = 7.93 kNm 

 
                   Shear Force Diagram 
 

Solution 
Topic:  Moment Distribution – No-Sway Rigid-Jointed Frames   
Problem Number: 5.11            Page No. 4 

28.17 kNm

A 

29.8 kNm 
18.8 kNm 

1.63 kNm 

14.5 kNm 

C B 

D 

14.09 kNm 

24.3 kNm 

Maximum bending moment: 
 M = − (0.5 × 28.17) + 45.0 
 M  = + 30.92 kNm  

Maximum bending moment: 
 M = − [0.5 × (29.8 + 18.8)] + 45.0 
 M  = + 20.7 kNm  

Maximum bending moment: * 
 M  = 7.93 kNm  

x 

13.82 kN 

21.18 kN 

14.5 kNm

1.63 kNm
10.0 kN/m 

3
.5

 m
 

HD 

B 

D 
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Consider Member AB: 

 

 

 

 

 

 

+ve    ΣMB = 0 

+ 28.17 − (30.0 × 3.0) + (VA × 6.0) = 0        ∴ VA = + 10.31 kN 

 

Consider Member BC: 

 

 

 

 

 

 

+ve    ΣMB = 0 

− 29.8 + (45.0 × 2.0)  + 18.8 − (VC × 4.0) = 0      ∴ VC = + 19.75 kN 

 

 

For the complete frame: 

+ve  ΣFz = 0 

 10.31 − 30.0 − 45.0 + 19.75 + VD = 0        ∴ VD = + 44.94 kN 

 

There is insufficient information from the moment distribution analysis to 
determine the values of HA and HC separately;  i.e.  
  
+ve   ΣFx = 0 

 (10.0 × 3.5) + HA + HD + HC = 0   ∴ HA + HC = (35.0 − 21.18) = 13.82 kN 
 

 
 
 
 
 
 
 
 
 

                    Deflected Shape 

Solution 
Topic:  Moment Distribution – No-Sway Rigid-Jointed Frames   
Problem Number: 5.11            Page No. 4 
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Fixed-end Moments: 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Member BC* 

 MBC = − 
2

2

L

Pab
 − 

12

2wL
 = − 

2

2

4

130.24 ××
 − 

12

40.12 2×
 = − 20.5 kNm 

 MCB = + 
2

2

L

bPa
 + 

12

2wL
 = + 

2

2

4

130.24 ××
 + 

12

40.12 2×
= + 29.5 kNm 

  

* Since support C is a roller, the fixed-end moments are (MBC − 0.5MCB) at B and 

zero at C. 

 (MBC − 0.5MCB) = [− 20.5 − (0.5 × 29.5)] = − 35.25 kNm. 

 

 

Solution 
Topic:  Moment Distribution – No-Sway Rigid-Jointed Frames   
Problem Number: 5.12            Page No. 1 
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Length of member AB = ( )2 26.0 2.5+ = 6.5 m 

 
Distribution Factors : Joint B 
 

kBA = ⎟
⎠
⎞

⎜
⎝
⎛×

5.6

2

4

3 I
 = 0.23I          DFBA = 

Total

BA

k

k
 = 

71.0

23.0
 = 0.32 

kBC = ⎟
⎠
⎞

⎜
⎝
⎛×

0.44

3 I
 = 0.19I          DFBC = 

Total

BC

k

k
 = 

71.0

19.0
 = 0.27 

kBD = ⎟
⎠
⎞

⎜
⎝
⎛

5.3

I
 = 0.29I           DFBD = 

Total

BD

k

k
 = 

71.0

29.0
 = 0.41 

 
Moment Distribution Table: 

 

Joint A  B C D 
 AB  BA BD BC CB DB 

Distribution Factors 1.0  0.32 0.41 0.27 1.0 0 
Fixed-end Moments    

 

 − 35.25   

Balance   + 11.28 + 14.45 + 9.52   

Carry-over       + 7.23 

Total 0  + 11.28 + 14.45 − 25.73 0 + 7.23 
 
 
 
Continuity Moments: 
 
 
 
 
 
 
 
 
 
 
 
 

Solution 
Topic:  Moment Distribution – No-Sway Rigid-Jointed Frames   
Problem Number: 5.12            Page No. 2 

ktotal =  0.71I  

Note: the sum of the moments 

at joint B = zero 

C

zero
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6
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11.28 kNm

14.45 kNm
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Fixed Bending Moment Diagrams 

 

 
 
Free bending moments: 

 
 
 

 

 

 

  
                Free Bending Moment Diagram 

 

 

Member BC: Mfree = + [(42.0 × 1.0) − (12.0 × 1.0 × 0.5)] = + 36.0 kNm 

 

 

 

 

 

 

 

 

 

 

 

  
 
 
   Bending Moment Diagram 

 

 

 

Solution 
Topic:  Moment Distribution – No-Sway Rigid-Jointed Frames   
Problem Number: 5.12            Page No. 3 

25.73 kNm 

B C 

A 

B 

11.28 kNm

D 
7.23 kNm 

14.45 kNm 
B 

24 kN 

30.0 kN                           3.0 m                     1.0 m        42.0 kN 

  B               C 

12 kN/m 

36.0 kNm 

D

CB 

A 

11.28 kNm 

7.23 kNm 

14.45 kNm 

25.73 kNm 

6.43 kNm  

Maximum bending moment: 
 M = − (0.25 × 25.73) + 36.0 
 M  = + 29.57 kNm  

Note: 
In this problem, the point of 

zero shear in member BC 

occurs under the point load. 
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Consider Member BC: 

 

 

 

 

 

 

+ve    ΣMB = 0 

− 25.73 + (12.0 × 4.0 × 2.0) + (24.0 × 3.0) − (VC × 4.0) = 0 ∴ VC = + 35.57 kN 

 
Consider Member BD: 

 

 

 

+ve    ΣMB = 0 

+ 14.45 + 7.23 − (HD × 3.5) = 0  ∴ HD = + 6.19 kN 

 

 

 

 

For the complete frame: 

+ve   ΣFx = 0 

+ HA + HD = 0               ∴ HA = − 6.19 kN 
+ve    ΣMA = 0 

+ 7.23 + (12.0 × 4.0 × 8.0) + (24.0 × 9.0) − (35.57 × 10.0) − (6.19 × 6.0) − (VD × 6.0) 

                          = 0 

∴ VD = + 35.73 kN 
+ve  ΣFz = 0 

 35.73 − (12.0 × 4.0) − 24.0 + 35.57 + VA = 0     ∴ VA = + 0.7 kN 

 
 
 
 
 
 
 
 
 
 
 

                  Deflected Shape 

Solution 
Topic:  Moment Distribution – No-Sway Rigid-Jointed Frames   
Problem Number: 5.12            Page No. 4 
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Fixed-end Moments: 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Member AB 

 MAB = − 
12

2wL
 = − 

12

40.12 2×
 = − 16.0 kNm 

 MBA = + 
12

2wL
 = + 

12

40.12 2×
 = + 16.0 kNm 

 

 

Solution 
Topic:  Moment Distribution – No-Sway Rigid-Jointed Frames   
Problem Number: 5.13            Page No. 1 
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Member CD* 

 MCD = −
8

PL
= − 

8

40.36 ×
 = − 18.0 kNm 

 MDC = +
8

PL
= + 

8

40.36 ×
 = + 18.0 kNm 

* Since support D is pinned, the fixed-end moments are (MCD − 0.5MDC) at C and 

zero at D. 

 (MCD − 0.5MDC) = [− 18.0 − (0.5 × 18.0)] = − 27.0 kNm.  

 

Distribution Factors : Joint B 

kBA = ⎟
⎠
⎞

⎜
⎝
⎛

0.4

I
  = 0.25I          DFBA = 

Total

BA

k

k
 = 

5.0

25.0
 = 0.5 

kBC = ⎟
⎠
⎞

⎜
⎝
⎛

0.4

I
 = 0.25I          DFBC = 

Total

BC

k

k
 = 

5.0

25.0
 = 0.5 

 
Distribution Factors : Joint C 

kCB = ⎟
⎠
⎞

⎜
⎝
⎛

0.4

I
 = 0.25I          DFCB = 

Total

CB

k

k
 = 

44.0

25.0
 = 0.57 

kCD = ⎟
⎠
⎞

⎜
⎝
⎛×

0.44

3 I
 = 0.19I         DFCD = 

Total

CD

k

k
 = 

44.0

19.0
 = 0.43 

 
Moment Distribution Table: 

 

Joint A  B C  D 
 AB  BA BC CB CD  DC 

Distribution Factors 0  0.5 0.5 0.57 0.43  1.0 
Fixed-end Moments − 16.0  + 16.0   − 27.0   

Balance   − 8.0 − 8.0 + 15.39 + 11.61   

Carry-over − 4.0   + 7.7 − 4.0    

Balance   − 3.85 − 3.85 + 2.28 + 1.72   

Carry-over − 1.79   + 1.14 − 1.93    

Balance   − 0.57 − 0.57 + 1.1 + 0.83   

Carry-over − 0.29   + 0.55 − 0.29    

Balance   − 0.27 − 0.27 + 0.17 + 0.12   

Carry-over − 0.13        

Total − 22.35  +3.31 − 3.31 + 12.72 − 12.72   
 

Solution 
Topic:  Moment Distribution – No-Sway Rigid-Jointed Frames   
Problem Number: 5.13            Page No. 2 

ktotal = 0.51I  

ktotal =  0.44I  
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 Continuity Moments: 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

Fixed Bending Moment Diagrams 

 

Free bending moments: 
 
 
 

 

 

 

  

  

 

 
Free Bending Moment Diagrams 

 

Member AB: Mfree = (12.0 × 42)/8 = 24.0 kNm 

Member CD: Mfree = (36.0 × 4)/4 = 36.0 kNm 

 

Solution 
Topic:  Moment Distribution – No-Sway Rigid-Jointed Frames   
Problem Number: 5.13            Page No. 3 
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     Bending Moment Diagram 
     

 

• The maximum value along the length of member AB can be found by 
identifying the point of zero shear as follows: 

 
 

 

 

 

 

 

 
                Shear Force Diagram 

 

 

+ve    ΣMB = 0 

− 22.35 − (12.0 × 4.0 × 2.0) + 3.31 + (VA × 4.0) = 0    ∴ VA = + 28.76 kN 

 
 x = (28.76/12.0) = 2.4 m 

 

 Mmaximum = (0.5 × 2.4 × 28.76) − 22.35 = 12.16 kNm 

 

 

Solution 
Topic:  Moment Distribution – No-Sway Rigid-Jointed Frames   
Problem Number: 5.13            Page No. 4 
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Maximum bending moment: 
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 M  = + 29.64 kNm  
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Consider Member CD: 

 

 

 

 

 

 

 

 

+ve    ΣMC = 0 

− 12.72 + (36.0 × 2.0) − (VD × 4.0) = 0        ∴ VD = + 14.82 kN 

 
For the complete frame: 

+ve  ΣFz = 0 

28.76 − (12.0 × 4.0) − 36.0 + 14.82 + VC = 0      ∴ VC = + 40.42 kN 

 

+ve   ΣMA = 0 

− 22.35 + (12.0 × 4.0 × 2.0) + (36.0 × 6.0) − (40.42 × 4.0) − (14.82 × 8.0) − (HD × 4.0) 

                          = 0  

∴ HD = + 2.35 kN 
+ve   ΣFx = 0 

+ HA + HD = 0               ∴ HA = − 2.35 kN 
 

 

l 

 

 
 
 
 
 
 
 
 

 
 

                  
 

                   Deflected Shape 
 

Solution 
Topic:  Moment Distribution – No-Sway Rigid-Jointed Frames   
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Fixed-end Moments: 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Member BC 

 MBC = −
12

2wL
 = − 

12

60.20 2×
 = − 60.0 kNm 

 MCB = + 
12

2wL
 = + 

12

60.20 2×
 = + 60.0 kNm 

 

Solution 
Topic:  Moment Distribution – No-Sway Rigid-Jointed Frames   
Problem Number: 5.14            Page No. 1 
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Length of member AB = ( )2 24.0 4.0+ = 5.657 m 

 

Distribution Factors : Joint B 

kBA = ⎟
⎠
⎞

⎜
⎝
⎛

657.5

0.2 I
 = 0.35I         DFBA = 

Total

BA

k

k
 = 

6.0

35.0
 = 0.58 

 

kBC = ⎟
⎠
⎞

⎜
⎝
⎛

0.6

5.1 I
 = 0.25I          DFBC = 

Total

BC

k

k
 = 

6.0

25.0
 = 0.42 

 
Distribution Factors : Joint C 

kCB = ⎟
⎠
⎞

⎜
⎝
⎛

0.6

5.1 I
 = 0.25I          DFCB = 

Total

CB

k

k
 = 

69.0

25.0
 = 0.36 

 

kCD = ⎟
⎠
⎞

⎜
⎝
⎛×

0.44

3 I
 = 0.19I         DFCD = 

Total

CD

k

k
 = 

69.0

19.0
 = 0.28 

 

kCE  = ⎟
⎠
⎞

⎜
⎝
⎛

0.4

I
 = 0.25I          DFCE = 

Total

CE

k

k
 = 

69.0

25.0
 = 0.36 

 
Moment Distribution Table: 

 
Joint A  B  C  E D 

 AB  BA BC  CB CD CE  EC DC 
Distribution Factors 0  0.58 0.42  0.36 0.28 0.36  0 1.0 
Fixed-end Moments    − 60.0  + 60.0      

Balance   + 34.8 + 25.2  − 21.6 − 16.8 − 21.6    

Carry-over + 17.4   − 10.8  + 12.6    − 10.8  

Balance   + 6.26 + 4.54  − 4.54 − 3.52 − 4.54    

Carry-over + 3.13   − 2.27  + 2.27    − 2.27  

Balance   + 1.32 + 0.95  − 0.82 − 0.63 − 0.82    

Carry-over + 0.66   − 0.41  + 0.48    − 0.41  

Balance   + 0.24 + 0.17  − 0.17 − 0.14 − 0.17    

Carry-over + 0.12         − 0.09  

Total + 21.3  +  42.6 − 42.6  + 48.2 − 21.1 − 27.1  − 13.6 0 
 
 

 
 
 

Solution 
Topic:  Moment Distribution – No-Sway Rigid-Jointed Frames   
Problem Number: 5.14            Page No. 2 
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 Continuity Moments: 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
       Fixed Bending Moment Diagrams 

 

 
Free bending moments: 

 
 
 

 

 

    

     

  

 Member BC: Mfree  = (20.0 × 62)/8 = 90.0 kNm 

  
                Free Bending Moment Diagram  

 

 

Solution 
Topic:  Moment Distribution – No-Sway Rigid-Jointed Frames   
Problem Number: 5.14            Page No. 3 
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Bending Moment Diagram 
 

 
*  The maximum value along the length of member BC can be found by 

identifying the point of zero shear as follows: 
 

 

 

 

 

 

 
                Shear Force Diagram 

 

 

+ve   ΣMC = 0 

− 42.6 − (20.0 × 6.0 × 3.0) + 48.2 + (VB × 6.0) = 0      ∴ VB = + 59.1 kN 

 
x = (59.1/20.0) = 2.96 m 

 

Mmaximum = (0.5 × 2.96 × 59.1) − 42.6 = 44.9 kNm 
 

Solution 
Topic:  Moment Distribution – No-Sway Rigid-Jointed Frames   
Problem Number: 5.14            Page No. 4 
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Consider Member CE: 

+ve    ΣMC = 0 

− 27.1 −13.6 − (HE × 4.0) = 0 

     ∴ HE = − 10.18 kN 

 
 
 
 
 
 
 
 
 
 
Consider Member CD: 

+ve    ΣMC = 0 

− 21.1 + (HD × 4.0) = 0 

     ∴ HD = + 5.28 kN 

 

 
 
 
 
 
 
 
 
Consider Member AB: 

+ve    ΣMB = 0 

+ 42.6 + 21.3 − (HA × 4.0) + (VA × 4.0) = 0 

       ∴  HA = VA + 15.98 

 

 

 

 

 

Solution 
Topic:  Moment Distribution – No-Sway Rigid-Jointed Frames   
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Consider a section at C: 

+ve    ΣMC = 0 

+ 48.2 − (20.0 × 6.0 × 3.0) + 21.3 − (HA × 4.0) + (VA × 10.0) = 0  

                  ∴ HA = 2.5VA − 72.63 
  
∴ VA + 15.98 = 2.5VA − 72.63         ∴ VA = 59.1 kN 
                  ∴ HA = 75.1 kN 

For the complete frame: 

+ve   ΣFx = 0 

 + 75.1 + 5.28 − 10.18 + HB = 0         ∴ HB = + 70.2 kN 
 

 There is insufficient information from the moment distribution analysis to 
determine the values of VD  and VE separately;  i.e.  
 +ve  ΣFz = 0 

 − (20.0 × 6.0) + 59.1 + VD + VE  = 0  ∴ VD + VE = + (120.0 − 59.1) = + 60.9 kN 
 
 

 
 
 

 
 

                    
 
 
 
 
 

          Deflected Shape 

Solution 
Topic:  Moment Distribution – No-Sway Rigid-Jointed Frames   
Problem Number: 5.14            Page No. 5 
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Fixed-end Moments: 
 
 
 

 

 

 

 

 

 

 

 

 

 

Member BC * 

 MBC = −
8

PL
= − 

8

40.50 ×
= − 25.0 kNm 

 MCB  = +
8

PL
= + 

8

40.50 ×
= + 25.0 kNm 

* Since support C is pinned, the fixed-end moments are (MBC − 0.5MCB) at B and 

zero at C. 

(MBC − 0.5MCB) = [− 25.0 − (0.5 × 25.0)] = − 37.5 kNm. 

Solution 
Topic:  Moment Distribution – No-Sway Rigid-Jointed Frames   
Problem Number: 5.15            Page No. 1 
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Distribution Factors : Joint B 

kBA = ⎟
⎠
⎞

⎜
⎝
⎛×

0.5

5.1

4

3 I
 = 0.23I         DFBA = 

Total

BA

k

k
 = 

12.1

23.0
 = 0.21 

kBC = ⎟
⎠
⎞

⎜
⎝
⎛×

0.4

2

4

3 I
 = 0.38I         DFBC = 

Total

BC

k

k
 = 

12.1

38.0
 = 0.33 

kBD = ⎟
⎠
⎞

⎜
⎝
⎛

5.3

I
 = 0.29I          DFBD = 

Total

BD

k

k
 = 

12.1

29.0
 = 0.26 

kBE  = ⎟
⎠
⎞

⎜
⎝
⎛

5.4

I
 = 0.22I          DFBE = 

Total

BE

k

k
 = 

12.1

22.0
 = 0.20 

 
Moment Distribution Table: 

 

Joint A D   B    E C 

 AB DB  BD BA BC BE  EB CB 

Distribution Factors 1.0 0  0.26 0.21 0.33 0.2  0 1.0 

Fixed-end Moments      − 37.5     

Balance    + 9.7 + 7.9 + 12.4 + 7.5    

Carry-over  + 4.9       + 3.8  

Total 0 + 4.9  + 9.7 + 7.9 − 25.1 + 7.5  + 3.8 0 
 

 Continuity Moments: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution 
Topic:  Moment Distribution – No-Sway Rigid-Jointed Frames   
Problem Number: 5.15            Page No. 2 
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Fixed Bending Moment Diagrams 

 

 
Free bending moments: 

 
 
 

 

 

    

 

  

  

 

 

 

 

 
Free Bending Moment Diagram 

 

Member BC: Mfree = (50.0 × 4)/4 = 50.0 kNm 

 

Solution 
Topic:  Moment Distribution – No-Sway Rigid-Jointed Frames   
Problem Number: 5.15            Page No. 3 
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               Bending Moment Diagram 
 

 
Consider Member AB: 

+ve    ΣMB = 0 

+ 7.9 + (VA × 5.0) = 0 

     ∴ VA = + 1.58 kN  
 
 
 
Consider Member BC: 

+ve    ΣMB = 0 

− 25.1 + (50.0 × 2.0) − (VC × 4.0) = 0 

     ∴ VC = + 18.73 kN 
 

 

 
 
 
Consider Member BE: 

+ve    ΣMB = 0 

+ 7.5 + 3.8 − (HE × 4.5) = 0 

                   ∴ HE = + 2.51 kN 

 
 

4.9 kNm 

3.8 kNm 

A 

7.9 kNm 

25.1 kNm 

C 
7.5 kNm 

E 

9.7 kNm

D

B 

Maximum bending moment: 
 M = − (0.5 × 25.1) + 50.0 
 M  = + 37.45 kNm  

12.55 kNm 

Solution 
Topic:  Moment Distribution – No-Sway Rigid-Jointed Frames   
Problem Number: 5.15            Page No. 4 

7.9 kNm B 

5.0 m 

A 

VA 

HA 

25.1 kNm 

B 

50 kN 

C 

VC 

HC 

2.0 m           2.0 m 

4
.5

 m
 

B 

E
VE 

HE 

7.5 kNm 

3.8 kNm 



408 Examples in Structural Analysis  

 

 

 

        
 

 

 

 

 
 
 
Consider Member BD: 

+ve    ΣMB = 0 

+ 9.7 + 4.9 + (HD  × 3.5) = 0 

       ∴ HD = − 4.17 kN  
 

 

 

 

 

 There is insufficient information from the moment distribution analysis to 
determine the values of HA, HC, VD  and VE separately;  i.e.  
  
+ve   ΣFx = 0 
HA + HC − 4.17 + 2.51 = 0           ∴ HA + HC  = + 1.66 kN 
 

+ve  ΣFz = 0 

− 50.0 + 1.58 + 18.73 + VD + VE = 0        ∴ VD + VE = + 29.69 kN 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                      Deflected Shape 

Solution 
Topic:  Moment Distribution – No-Sway Rigid-Jointed Frames   
Problem Number: 5.15            Page No. 4 
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Fixed-end Moments: 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Member AB  

 MAB = −
12

2wL
= − 

12

40.8 2×
 = − 10.67 kNm 

 MBA = +
12

2wL
= + 

12

40.8 2×
 = + 10.67 kNm 

 

Solution 
Topic:  Moment Distribution – No-Sway Rigid-Jointed Frames   
Problem Number: 5.16            Page No. 1 
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Member BC  

 MBC = − 
12

2wL
 − 

2

2
1

L

abP
 − 

2

2
2

L

abP
 

     = − 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ××+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ××+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
2

2

2

22

6

0.20.40.20

6

0.40.20.16

12

60.25
 = − 98.1 kNm 

 MCB = + 
12

2wL
 + 

2

2
1

L

baP
 + 

2

2
2

L

baP
 

     = + 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ××+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ××+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
2

2

2

22

6

0.20.40.20

6

0.40.20.16

12

60.25
 = + 99.9 kNm 

 

Member CD * 

 MCD = +
12

2wL
= + 

12

60.6 2×
 = + 18.0 kNm 

 MDC = −
12

2wL
 = 

12

60.6 2×
 = − 18.0 kNm 

* Since support D is pinned, the fixed-end moments are (MCD − 0.5MDC) at C and 

zero at D. 

 (MCD − 0.5MDC) = [+ 18.0 + (0.5 × 18.0) ] = + 27.0 kNm. 

 

 

Distribution Factors : Joint B 

kBA = ⎟
⎠
⎞

⎜
⎝
⎛

0.4

I
 = 0.25I          DFBA = 

Total

BA

k

k
 = 

42.0

25.0
 = 0.6 

 

kBC = ⎟
⎠
⎞

⎜
⎝
⎛

0.6

I
 = 0.17I          DFBC = 

Total

BC

k

k
 = 

42.0

17.0
 = 0.4 

 

Distribution Factors : Joint C 
 

kCB = ⎟
⎠
⎞

⎜
⎝
⎛

0.6

I
 = 0.17I          DFCB = 

Total

CB

k

k
 = 

3.0

17.0
 = 0.57 

 

kCD = ⎟
⎠
⎞

⎜
⎝
⎛×

0.64

3 I
 = 0.13I        DFCD = 

Total

CD

k

k
 = 

3.0

13.0
 = 0.43 
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Moment Distribution Table: 

Joint A  B C  D 
 AB  BA BC CB CD  DC 

Distribution Factors 0  0.6 0.4 0.57 0.43  1.0 
Fixed-end Moments −10.67  + 10.67 − 98.1 + 99.9 + 27.0   

Balance   + 52.46 + 34.97 − 72.3 − 54.6   

Carry-over + 26.23   − 36.2 + 17.49    

Balance   + 21.72 + 14.48 − 9.97 − 7.52   

Carry-over + 10.86   − 4.99 + 7.24    

Balance   + 3.0 + 1.99 − 4.13 − 3.11   

Carry-over + 1.5   − 2.07 + 1.0    

Balance   + 1.2 + 0.87 − 0.57 − 0.43   

Carry-over + 0.6        

Total + 28.52  + 89.1 − 89.1 + 38.66 − 38.66  0 
 
 Continuity Moments: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

 

 
             Fixed Bending Moment Diagrams 
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Free bending moments: 
 
 

 
 
 

 

 

    

     

                 

             

 

 

 

 

 

 
Free Bending Moment Diagrams 

 

Member AB: Mfree = (8.0 × 42)/8 = 16.0 kNm 

 

* Member BC: 

 

 

 

 

 

 

 

 

 

+ve  ΣMC = 0 

− (16.0 × 4.0) − (20.0 × 2.0) − (25.0 × 6.0 × 3.0 + (VB × 6.0) = 0   VB = + 92.3 kN 
 

Position of zero shear x = [2.0 + (26.3 / 25.0)] = 3.05 m  

 

     Mmaximum free bending moment = [0.5 × (92.3 + 42.3) × 2.0] + (0.5 × 1.05 × 26.3) 

       = 148.4 kNm 

 

Member DC:     Mfree = (6.0 × 62)/8 = 27.0 kNm 

 

Solution 
Topic:  Moment Distribution – No-Sway Rigid-Jointed Frames   
Problem Number: 5.16            Page No. 4 
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           Bending Moment Diagram 

 

 
*  The maximum value along the length of members BC and DC can be found 

by identifying the point of zero shear as follows: 
 

Member BC: 

+ve    ΣMC = 0 

− 89.1 − (16.0 × 4.0) − (20.0 × 2.0)  

− (25.0 × 6.0 × 3.0) + 38.66 + (VB × 6.0) = 0

           VB  = + 100.8 kN 

 

x = 2.0 + (34.8/25.0) = 3.39 m 

Mmaximum = [0.5 × (100.8 + 50.8) × 2.0] 

    + (0.5 × 1.39 × 34.8) − 89.1 

                            Mmaximum = 86.67 kNm 
 

Member CD: 

 

+ve    ΣMC = 0 

− 38.66 − (6.0 × 6.0 × 3.0) + (HD × 6.0) = 0  

        HD = + 24.44 kN 

 
x = (24.4/6.0) = 4.07 m 

Mmaximum = (0.5 × 4.07 × 24.44) = 49.74 kNm 

 

Shear Force Diagram

x 

100.8 kN 34.8 kN 

35.3 kN 85.3 kN 

50.8 kN 

25.0 kN/m 

B 
38.66 kNm 89.1 kNm 

16.0 kN    20 kN 

C 

6.0 m 
VB 

Shear Force Diagram

x 

24.44 kN 

6
.0

 m
 

6.0 kN/m 

HD 

C 

D 

38.66 kNm

89.1 kNm 

38.66 kNm 
89.1 kNm 

28.52 kNm 

Maximum bending moment:* 
  M  = + 86.67 kNm  

38.66 kNm

Maximum bending moment:* 
  M  = 49.74 kNm  

A 

B                   C 

D

Solution 
Topic:  Moment Distribution – No-Sway Rigid-Jointed Frames   
Problem Number: 5.16            Page No. 5 
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Consider Member AB: 
 

 
 
 

Consider Member AB: 

+ve    ΣMB = 0 

+ 89.1 + 28.52 − (8.0 × 4.0 × 2.0) − (HA × 4.0) = 0 

          ∴ HA  = + 13.41 kN  
 

 

 

 
For the complete frame: 

+ve   ΣFx = 0 

13.41 + (8.0 × 4.0) + (6.0 × 6.0) − 24.44 − HC = 0    ∴ HC = + 56.97 kN 
 

+ve    ΣMA = 0 

+ 28.52 + (8.0 × 4.0 × 2.0) + (25.0 × 6.0 × 3.0) + (16.0 × 2.0) + (20.0 × 4.0) 

− (56.97 × 4.0) + (6.0 × 6.0 × 1.0) + (24.44 × 2.0) − (VD × 6.0) = 0 

                    ∴ VD = + 85.25 kN 

+ve  ΣFz = 0 

VA − (25.0 × 6.0) − 16.0 − 20.0 + 85.25 = 0      ∴ VA = + 100.75 kN 

 

 
 
 
 
 
 
 
 
 
 
 

               
 
 
 

               Deflected Shape 
 

Solution 
Topic:  Moment Distribution – No-Sway Rigid-Jointed Frames   
Problem Number: 5.16            Page No. 6 

tension  
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A 
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contraflexure
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D 

C B

A

VA 

HA 

4
.0

 m
 

    8 kN/m 

B 

A 

89.1 kNm 

28.52 kNm 
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5.4 Moment Distribution for Rigid-Jointed Frames with Sway 
The frames in Section 5.3 are prevented from any lateral movement by the support 

conditions. In frames where restraint against lateral movement is not provided at each 

level, unless the frame, the supports and the loading are symmetrical it will sway and 

consequently induce additional forces in the frame members.  

Consider the frame indicated in Figure 5.27(a) in which the frame, supports and applied 

load are symmetrical. 

 

 

 

 

 

 

 

                  (a) 

 

 

 

 

 

 

 

 

                  (b) 

Figure 5.27 
 

Consider the same frame in which the load has been moved such that it is now asymmetric 

as indicated in Figure 5.28(a)  

 

 

 

 

 

 

                  (a)          

           

 

 

 

 

 

 

 

 

                  (b) 

Figure 5.28 

4.0 m      4.0 m 

8.0 m 

16 kN 

EI                 EI 

   B                     EI                     C  

 A                     D 

3
.0

 m
 

16 kN 

   B                                               C 

 A               D 
8.0 kN 8.0 kN 

6.74 kN 6.74 kN

6.74 kNm6.74 kNm 

The reader should analyse this

frame to confirm the results

indicated in Figure 5.27(b). 

The frame  loads and reactions

satisfy the equations of

equilibrium, i.e. 

ΣFx = 0,  ΣFz = 0,  ΣFmoments = 0, 

The reader should analyse this 

frame to confirm the results 

indicated in Figure 5.28(b). 

The frame  loads and reactions 

DO NOT satisfy the equations 

of equilibrium, i.e. 

ΣFx ≠ 0,   ΣFmoments ≠ 0, 

16 kN 

   B                                               C 

 A               D 
10.6 kN 5.4 kN 

7.53 kN 5.12 kN

5.12 kNm7.53 kNm 

3.0 m        5.0 m 

16 kN 

EI                 EI 

   B                     EI                     C  

 A                     D 

3
.0

 m
 



416 Examples in Structural Analysis  

 

 

 

It is evident from Figure 5.28(b) that the solution to this problem is incomplete. Inspection 

of the deflected shapes of each of the frames in Figure 5.27(a) and 5.28(a) indicates the 

reason for the inconsistency in the asymmetric frame. 

Consider the deflected shapes shown in Figures 5.29 (a) and (b): 

 

 

 

 

 

 

                    
       (a)              (b) 

Figure 5.29 
 

In case (a) the deflected shape indicates the equal rotations of the joints at B and C due to 

the balancing of the fixed−end moments induced by the load; note that there is no lateral 

movement at B and C.  

In case (b) in addition to rotation due to the applied load there is also rotation of the joints 

due to the lateral movement ‘δ ’ of B and C. The sway of the frame also induces forces in 

the members and this effect was not included in the results given in Figure 5.28(b). It is 

ignoring the ‘sway’ of the frame which has resulted in the inconsistency. In effect, the 

frame which has been analysed is the one shown in Figure 5.30, i.e. including a prop force 

preventing sway. The value of the prop force ‘P’ is equal to the resultant horizontal force 

in Figure 5.28. 

 

 

 

 

 

 

                 Figure 5.30 
      No−Sway Frame 

 

The complete analysis should include the effects of the sway and consequently an 

additional distribution must be carried out for sway−only and the effects added to the 

no−sway results, i.e. to cancel out the non−existent ‘prop force’ assumed in the no−sway 

frame. 

 
 

 
Final Forces = ‘No-Sway Forces’  +  
       ‘Sway−Only Forces’ 

 

      Sway−Only Frame       Figure 5.31 
 

The technique for completing this calculation including the sway effects is illustrated in 

Example 5.5 and the solutions to Problems 5.17 to 5.22. 

16 kN 

   B                                               C 

 A                     D 

   B                                               C  

16 kN

 A                      D 

δ δ 

16 kN 

EI                  EI 

   B                     EI                     C  

 A                     D 

Prop Force

EI                  EI 

   B                     EI                     C  

 A                     D 

Sway Force
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5.4.1 Example 5.5  Rigid−Jointed Frame with Sway− Frame 1  
A rigid−jointed frame is fixed at support A, pinned at support H and supported on a roller 

at F as shown in Figure 5.32. For the relative EI values and loading given: 

 
i) sketch the bending moment diagram, 

  

ii) determine the support reactions  and 

 

iii) sketch the deflected shape (assuming axially rigid members) and compare with 

the shape of the bending moment diagram, (the reader should check the answer 

using a computer analysis solution). EI = 10 × 103  kNm2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.32 
 

Consider the frame analysis as the superposition of two effects: 

 

Final Forces = ‘No-Sway Forces’ + ‘Sway Forces’ 
 
 
 
 
 

 

 

 

 
 
 
                   No-Sway Frame 
 

Figure 5.33 
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B        C      D     E      F 
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   A             H
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VH
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2
.0
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2
.0

 m
 

4
.0
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12 kN 

VH

6 kN 

B           C       D      E          F 

12 kN
10 kN 

G

 A                             H

8 kN/m 

VA 

MA 

HA HH

VF

Prop Force 

P

Settlement = 3.0 mm 
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                   Sway Frame 

Figure 5.34 
 
Consider the No-Sway Frame: 
Fixed-end Moments Member BCD 

  

 

 

 

 

 

 

MBC = − 
8

PL − 
2

12

wL
 − 

2

6EI

L
δ  = − 

12 6

8

×
 − 

28 6

12

×
 −

( )3

2

6 2 10 10 0.003

6.0

× × ×
= − 43.0 kNm 

MCB = + 
8

PL
+ 

2

12

wL
 − 

2

6EI

L
δ  = + 

12 6

8

×
 + 

28 6

12

×
 −

( )3

2

6 2 10 10 0.003

6.0

× × ×
= + 23.0 kNm 

 
Fixed-end Moments Member DEF 

  

 

 

 
 
 

 

Since F is a roller support, the fixed-end moments are (MDF − 0.5MFD) at D and zero at F. 

 

MDF = − 
2

2

Pab

L
 + 

2

6EI

L
δ  = − 

2

2

12 1.0 3.0

4.0

× ×
 + 

3

2

6 10 10 0.003

4.0

× × ×
 = + 4.5 kNm 

 

MFD = + 
2

2

Pa b

L
 + 

2

6EI

L
δ  = + 

2

2

12 1.0 3.0

4.0

× ×
 + 

3

2

6 10 10 0.003

4.0

× × ×
 = + 13.5 kNm 

 

(MDF − 0.5MFD) = [+ 4.5 − (0.5 × 13.5)] = − 2.25 kNm.  

 

 H ′A 

Sway Force

V ′F

V′A 

M′A 

B          C       D      E          F 

G

 A                            H 
H ′H

P 

V ′H

+ 

+ 

B     C        D 

   3.0 m                    3.0 m 

12 kN 

MBC MCB 8 kN/m 

δ = 3.0 mm 6

2

EI

L
δ

D   E               F 
6

2

EI

L
δ

D            F 

  1.0 m           3.0 m 

12 kN 

MDF MFD 

E 

δ = 3.0 mm 

B     C           D 

6

2

EI

L
δ

6

2

EI

L
δ
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Fixed-end Moments Member DGH 
Since support H pinned, the fixed-end moments are (MDH − 0.5MHD) at D and zero at H. 

 

 

MDH =  + 
8

PL
 = + 

6 4.0

8

×
 = + 3.0 kNm 

MHD =  − 
8

PL
 = − 

6 4.0

8

×
 = − 3.0 kNm 

(MDF − 0.5MFD) = [+ 3.0 + (0.5 × 3.0)] = + 4.5 kNm. 

 

 

 
 
Distribution Factors : Joint B 

kBA = ⎟
⎠
⎞

⎜
⎝
⎛

5

I
 = 0.2I           DFBA = BA

Total

k

k
 = 

0.2

0.53
 = 0.38 

 

kBD = 
2

6

I⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 0.33I          DFBD = BD

Total

k

k
 = 

0.33

0.53
 = 0.62 

 
Distribution Factors : Joint D 

kDB = 
2

6

I⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 0.33I          DFDB = DB

Total

k

k
 = 

0.33

0.71
 = 0.46 

 

kDH = 
3

4 4

I⎛ ⎞× ⎜ ⎟
⎝ ⎠

 = 0.19I         DFDH = DH

Total

k

k
 = 

0.19

0.71
 = 0.27 

 

kDF = 
3

4 4

I⎛ ⎞× ⎜ ⎟
⎝ ⎠

 = 0.19I          DFDF = DF

Total

k

k
 = 

0.19

0.71
 = 0.27 

No-Sway Moment Distribution Table: 
Joint A  B  D  F H 

 AB  BA BD  DB DH DF  FD HD 
Distribution Factors 0  0.38 0.62  0.46 0.27 0.27  1.0 1.0 
Fixed-end Moments    − 43.0  + 23.0 + 4.5 − 2.25  0 0 

Balance   + 16.34 + 26.66  − 11.62 − 6.82 − 6.82     

Carry-over + 8.17   − 5.81   + 13.33      

Balance   + 2.21  + 3.60   − 6.13 − 3.60 − 3.60    

Carry-over + 1.10   − 3.07  + 1.80      

Balance   + 1.17 + 1.90  − 0.83 − 0.49 − 0.48    

Carry-over + 0.58   − 0.41  + 0.94      

Balance   + 0.15 + 0.26  − 0.44 − 0.25 − 0.25    

Carry-over + 0.08           

Total + 9.93   + 19.87 − 19.87  + 20.06 − 6.66 − 13.40  0 0 
 

ktotal =  0.53I 

ktotal = 0.71I 

G 

H 

D 

2
.0

 m
  

  
  

  
  

  
2
.0

 m
 

6 kN 

MHD 

MDH 
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Determine the value of the reactions and prop force P: 
 
 
 
 
 
 
 
 
 
 
 
Consider member DEF: 
 

+ve   ΣMD = 0 

− 13.40 + (12.0 × 1.0) − (VF × 4.0) = 0 

            ∴ VF  = − 0.35 kN 

 

 
Consider member DGH: 

 

 

 

+ve   ΣMD = 0 

− 6.66 − (6.0 × 2.0) − (HH × 4.0) = 0 

            ∴ HH = − 4.67 kN 

 

 

 

Consider member BA and a section to the left of D: 
 

 

 

 

 

 

 

 

 

 

+ve    ΣMB = 0 

+ 9.93 + (VA × 3.0) − (HA × 4.0) + 19.87 = 0  ∴ VA = − 9.93 + 1.33HA   Equation (1) 

 

+ve    ΣMD = 0 

+ 9.93 + (VA × 9.0) − (HA × 4.0) − (8.0 × 6.0)(3.0) − (12.0 × 3.0) + 20.06 = 0 

               ∴ VA = + 16.67 + 0.44HA  Equation (2) 

G

12 kN 

VH 

 6 kN

B             C        D       E             F 

12 kN 
10 kN 

 A                                 H 

8 kN/m 

VA 

9.93 kNm 

HA HH

VF

Prop Force 

P 

Settlement = 3.0 mm

13.40 kNm 

D       E          F 

VF 

12 kN 

G 

VH 

D 

H HH 

6 kN 

6.66 kNm 

B19.87 kNm 

9.93 kNm 

10 kN 

 A VA 

HA 

12 kN 

B             C        D 

10 kN

 A

8 kN/m 

VA 

HA

9.93 kNm 

20.06 kNm 
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Solve equations (1) and (2) simultaneously: 

− 9.93 + 1.33HA = + 16.67 + 0.44HA          ∴ HA = + 29.89 kN 

VA = + 16.67 + (0.44 × 29.89)           ∴ VA = + 29.82 kN 

 
Consider the equilibrium of the complete frame: 

+ve   ΣFz = 0 

VA − (8.0 × 6.0) − 12.0 + VH − 12.0 + VF = 0 

+ 29.89 − 48.0 − 12.0 + VH − 12.0 − 0.35 = 0       ∴ VH = + 42.46 kN 

 

+ve      ΣFx = 0 

HA + 10.0 + 6.0 + HH − P = 0 

+ 29.89 + 16.0 − 4.67 − P = 0           ∴ P = + 41.22 kN 
 

Since the direction of the prop force is right-to-left the sway of the frame is from left-to-

right as shown. 

 

 

 

 

 

 

 

 

 

 

 

Apply an arbitrary sway force P′  to determine the ratios of the fixed−end moments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         Fixed-end Moments due to Sway 
 

The fixed−end moments in each member are related to the end−displacements (δ) in each 

case. The relationship between δAB, δBD and δDH can be determined by considering the 

displacement triangle at joint B and the geometry of the frame. 

G 
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V ′F 
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B            C        D      E            F 

 A                                 H 
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B                         D                      F 
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2
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6EI

L
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2
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2
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Displacement triangle: 

 Length of LAB = 
2 23.0 4.0+  

        = 5.0 m 

 cosθ = 3.0/5.0 = 0.6 

sinθ = 4.0/5.0 = 0.8 

 δBD = (δAB cosθ) = 0.6δAB 

 δDH = (δAB sinθ) = 0.8δAB 

 

Ratio of Fixed-end Moments: MAB : MBA : MBD : MDB : MDH  

= −
( )

2
AB

AB6

L

EIδ
  :  −

( )AB

2
AB

6 EI

L

δ
  :  +

( )BD

2
BD

6 EI

L

δ
  :  +

( )BD

2
BD

6 EI

L

δ
  :  −

( )DH

2
DH

3 EI

L

δ
  

= −
( )

2
AB

AB6

L

EIδ
:−

( )
2
AB

AB6

L

EIδ
:+

( )AB

2
BD

6 CosEI

L

δ θ×
:+

( )AB

2
BD

6 CosEI

L

δ θ×
:−

( )AB

2
DH

3 SinEI

L

δ θ×
  

= −
( )AB

2

6

5.0

EIδ
:−

( )AB

2

6

5.0

EIδ
:+

( )AB

2

6 2.0 0.6

6.0

EIδ ×
:+

( )AB

2

6 2.0 0.6

6.0

EIδ ×
:−

( )AB

2

3 0.8

4.0

EIδ ×
  

= {− 0.24 : − 0.24 : + 0.20 : + 0.20 :  − 0.15} × (EIδ)AB 

 

Assume arbitrary fixed-end moments equal to:  

{− 24.0 : − 24.0 : + 20.0 : + 20.0 :  − 15.0} × (EIδ)AB/100 

 
Sway-Only Moment Distribution Table: 

Joint A  B  D  F H 
 AB  BA BD  DB DH DF  FD HD 

Distribution Factors 0  0.38 0.62   0.46 0.27 0.27  1.0 1.0 
Fixed-end Moments − 24.0  − 24.0 + 20.0  + 20.00 − 15.0   0 0 

Balance   + 1.52 + 2.48  − 2.30 − 1.35 − 1.35    

Carry-over + 0.76   − 1.15  + 1.24      

Balance   + 0.44 + 0.71  − 0.57 − 0.33 − 0.33    

Carry-over + 0.22   − 0.29  + 0.36      

Balance   + 0.11 + 0.18  − 0.16 − 0.10 − 0.10    

Carry-over + 0.05   − 0.08  + 0.09      

Balance   + 0.03 + 0.05  − 0.05 − 0.02 − 0.02    

Carry-over + 0.02           

Total − 22.95  − 21.90 + 21.90  + 18.60 − 16.80 − 1.80  0 0 
 
Determine the value of the arbitrary sway force P′ : 
 
 
 
 
 
 
 
 
 

B' 

A θ 

α 

B D 

V′H 

B           C              D      E            F 

G

  A                                             H 

V′A 

22.95 kNm 

H′A H′H 

V′F

Arbitrary Sway Force 

P′ 
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ABδ

DHδ
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Consider member DEF: 
 

+ve    ΣMD = 0 

− 1.80 − (V′F × 4.0) = 0 

            ∴ V′F = − 0.45 kN 

 

 
Consider member DGH: 

 

 

 

+ve    ΣMD = 0   

− 16.80  − (H′H × 4.0) = 0 

            ∴ H′H = − 4.20 kN 

 

 

 

 

Consider member AB and a section to the left of D: 
 

 

 

 

 

 

 

 

 

 

+ve    ΣMB = 0 

− 22.95 + (V′A × 3.0) − (H′A × 4.0) − 21.90 = 0   ∴ V′A = + 14.95 + 1.33H′A   Equation (3) 

+ve    ΣMD = 0 

− 22.95 + (V’A × 9.0) − (H′A × 4.0) + 18.60 = 0   ∴ V′A = + 0.48 + 0.44H′A   Equation (4) 

 

Solve equations (3) and (4) simultaneously: 

+ 14.95 + 1.33H′A = + 0.48 + 0.44H′A          ∴ H′A = − 16.26 kN 

V′A = + 0.48 − (0.44 × 16.26)           ∴ V′A = − 6.67 kN 

 
Consider the equilibrium of the complete frame: 

+ve  ΣFz = 0 

V′A + V′H + V′F = 0 

− 6.67 + V′H − 0.45 = 0             ∴ V′H = + 7.12 kN 

 

+ve      ΣFx = 0 

H′A + H′H + ′P = 0 

− 16.26 − 4.20 + P′ = 0             ∴ P′ = + 20.46 kN 

1.80 kNm 

D       E          F 

V′F 

V’H 
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 H H′H 

16.80 kNm 
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22.95 kNm 
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 A V′A 

H′A 

B            C        D 

 AV′A 

H′A

22.95 kNm 
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                     No Sway Frame 

 

 

 

 

 
      
            
 
                     Sway Only Frame 
 
 

For the complete frame: 

Final Forces = ‘No-Sway Forces’ + ‘Sway Forces’ 
 

P + P ′= 0 
− 41.22 + [20.46 × (EIδ)AB /100] = 0  ∴ (EIδ)AB /100 = + 2.02 

 

The multiplying factor for the sway moments = + 2.02 

 

Final Moments Distribution Table: 
Joint A  B  D  F H 

 AB  BA BD  DB DH DF  FD HD 
No-Sway Moments + 9.93   + 19.87 − 19.87  + 20.06 − 6.66 − 13.40  0 0 

Sway Moments × 2.02  − 46.36  − 44.24 + 44.24  + 37.57 − 33.93 − 3.64  0 0 

Final Moments (kNm) − 36.43  − 24.37 + 24.37  + 57.63 − 40.59 − 17.04  0 0 
 

δAB = 
2 02 100.

EI

×⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
3

2 02 100

10 10

. ×⎛ ⎞
⎜ ⎟×⎝ ⎠

 = 0.02 m = 20 mm 

The horizontal deflection at the rafter level =  δDH = 0.8δAB = (0.8 × 20) = 16 mm 

 

Final values of support reactions: 
MA = + 9.93 − (22.95 × 2.02) = − 36.43 kNm 

HA = + 29.89 − (16.26 × 2.02) = − 2.96 kN 

VA = + 29.82 − (6.67 × 2.02) = + 16.35 kN 

HH = − 4.67 − (4.20 × 2.02) = − 13.15 kN 

VH = + 42.46 + (7.12 × 2.02) = + 56.84 kN 

VF = − 0.35 − (0.45 × 2.02) = − 1.26 kN 

 

Settlement = 3.0 mm 
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Continuity Moments: 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
Free bending moment member BCD: 
  

 

 

 

 

 

           Mfree = 
2

4 8

PL wL⎛ ⎞
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⎝ ⎠
 = 

212 6 8 6.0

4 8

⎛ ⎞× ×+⎜ ⎟
⎝ ⎠

= 54.0 kNm 

Free bending moment member DEF: 
 

 

 

 

           Mfree = 
Pab

L
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⎝ ⎠
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12 1.0 3.0

4

× ×⎛ ⎞
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 = 9.0 kNm  

 

Free bending moment member DGH: 
 

 

 

 

 

 

 

           Mfree = 
4

PL⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
6 4.0

4

×⎛ ⎞
⎜ ⎟
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30.0 kN                  30.0 kN 

3.0 m               3.0 m     

8 kN/m 

B      C       D 

12 kN 

9.0 kN        3.0 kN 

1.0 m          3.0 m     

D      E                 F 

6 kN 
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2
.0
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2
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D 

H 

3.0 kN 
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B              D            F 
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C 

H 

D 40.59 kNm  
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Bending Moment Diagram 

 
*  The maximum value along the length of members BCD can be found by identifying 

the point of zero shear as follows: 

 

+ve    ΣMD = 0 

+ 24.37 − (12.0 × 3.0) − (8.0 × 6.0)(3.0) 

+ 57.63 + (VB × 6.0) = 0  

VB = + 16.33 kN 

 

 

 

 

x = (16.33/8.0) = 2.04 m 

Mx = 24.37 + [(0.5 × 2.04) × 16.33] 

Mmaximum = + 41.03 kNm 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Deflected Shape 

Shear Force Diagram 

57.63 kNm 

C 
B 

24.37 kNm 

12 kN 

D 

6.0 m 
VB 

8 kN/m 

7.67 kN 

19.67 kN 

43.67 kN

16.33 kN 

x 

tension 

outside 

tension outside 

tension inside 

B           C             D   E              F 

G 

 A                                         H 

tension 

outside

point of contraflexure 

zero slope 

B           C            D   E              F 

G

 A                                        H 

Maximum bending moment* 
  M = + 41.03 kNm  

36.43 kNm 

B                      C                     D           E                       F 

G

A                                                   H 

24.37 kNm 

57.63 kNm 

17.04 kNm 

40.59 kNm 

26.30 kNm 
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5.4.2 Problems: Moment Distribution – Rigid-Jointed Frames with Sway 
A series of rigid-jointed frames are indicated in Problems 5.17 to 5.22 in which the 
relative EI values and the applied loading are given. In each case: 
 

i) sketch the bending moment diagram and 
   

ii) sketch the deflected shape (assuming axially rigid members) and compare 
the shape of the bending moment diagram with a computer analysis solution 
of the deflected shape. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6
.0

 m
 

20 kN 
25 kN/m 

2.0 m      2.0 m     2.0 m 

VD 

HD 
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MA 
HA 

4
.0

 m
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 8 kN/m

D 

C B

A

E, I

E, I

E, I

16 kN 

Problem 5.19

Problem 5.17

E, I 

4.0 m                 4.0 m 

5
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A 

B C
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HA 
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4
.0

 m
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VC 

40 kN 8 kN/m 

E, I 

E, I 



428 Examples in Structural Analysis  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Problem 5.20
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4
.0

 m
  

E, I 

E, I 

E, I 

DC 

B 
A 

VA 

MA 

HA 

VD 

HD 

36 kN 

12 kN/m 

Problem 5.21 
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HD 
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4
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 4
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4.0 m           6.0 m 
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   2.0 m      2.0 m                4.0 m            2.0 m 

6
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4
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5.4.3 Solutions: Moment Distribution – Rigid-Jointed Frames with Sway 
        
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider the frame analysis as the superposition of two effects: 

Final Forces = ‘No-Sway Forces’ + ‘Sway Forces’ 
 

 

 

 

 

 

 

 

 

 

 
  
      No-Sway Frame          Sway Frame 
 
Consider the No-Sway Frame: 
 
Fixed-end Moments: 
 

Member BC* 

 MBC = − 
8

PL
 = − 

8

825×
 = − 25.0 kNm 

 MCB = + 
8

PL
 = + 

8

825×
 = + 25.0 kNm 

 
* Since support C is pinned, the fixed-end moments are (MBC − MCB/2) at B and zero    

at C. 

 (MBC − MCB/2) = [− 25.0 − (0.5 × 25.0)] = − 37.5 kNm. 

Solution 
Topic:  Moment Distribution – Rigid-Jointed Frames with Sway   
Problem Number: 5.17           Page No. 1 
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Distribution Factors : Joint B 

kBA = ⎟
⎠
⎞

⎜
⎝
⎛

5

I
 = 0.2I          DFBA = 

Total

BA

k

k
 = 

39.0

2.0
 = 0.51 

kBC = ⎟
⎠
⎞

⎜
⎝
⎛×

8

2

4

3 I
= 0.19I         DFBC = 

Total

BC

k

k
 = 

39.0

19.0
 = 0.49 

In this case, since there is only one internal joint, only one balancing operation and 
one carry-over will be required during the distribution of the moments. 

 
No-Sway Moment Distribution Table: 

 

Joint A  B  C 
 AB  BA BC  CB 

Distribution Factors 0  0.51 0.49  0 
Fixed-end Moments    − 37.5  0 

Balance   + 19.12 + 18.38   

Carry-over + 9.56      

Total + 9.56  + 19.12 − 19.12  0 
 
Determine the value of the prop force P: 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

+ve    ΣMB = 0 

+ 19.12 + 9.56 − (HA × 5.0) = 0          ∴ HA = + 5.74 kN 

 
For the complete frame: 

+ve   ΣFx = 0 

+ 5.74 − P = 0               ∴ P = 5.74 kN 

 

Solution 
Topic:  Moment Distribution – Rigid-Jointed Frames with Sway 
Problem Number: 5.17            Page No. 2 

ktotal =  0.39I 

HA 
A 

B 

C

9.56 kNm 

19.12 kNm 

19.12 kNm zero 
P 

25 kN 

B 

9.56 kNm

19.12 kNm

5
.0

 m
 

HA A
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 Since the direction of the prop force is right-to-left the sway of the frame is from 

left-to-right as shown. 

 

 

 

  

 

 

 

 

 

 

   Apply arbitrary sway force P’    Fixed-end Moments due to Sway 

 

 Ratio of Fixed-end Moments: 

 MAB : MBA = −
( )

2
AB

AB6

L

EIδ
  :  −

( )
2
AB

AB6

L

EIδ
  =   −

( )
25

6 ABδEI
  :  −

( )
25

6 ABδEI
 

      = { − 0.24 : − 0.24 } × (EIδ)AB 

Assume arbitrary fixed-end moments equal to {− 24.0 : − 24.0} × (EIδ)AB /100 

 
  Sway-Only Moment Distribution Table: 

Joint A  B  C 
 AB  BA BC  CB 

Distribution Factors 0  0.51 0.49  0 
Fixed-end Moments − 24.0  − 24.0   0 

Balance   + 12.24 + 11.76   

Carry-over + 6.12      

Total − 17.88  − 11.76 + 11.76  0 
 
Determine the value of the arbitrary sway force P': 
 
 
 
 
 
 
 
 
 
 

Solution 
Topic:  Moment Distribution – Rigid-Jointed Frames with Sway 
Problem Number: 5.17            Page No. 3 

C 

H ′A 
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+ve    ΣMB = 0   

− 11.76 − 17.88 − (H'A × 5.0) = 0         ∴ H 'A = − 5.93 kN 

 
For the complete frame: 

+ve   ΣFx = 0   

− 5.93 + P′ = 0              ∴ P ' = + 5.93 kN 
 

 

 

 

 

 

 

 

 

 

 
      
    No Sway Frame       Sway Only Frame × (EIδ)AB /100 

 
P + P ′ = 0   
− 5.74 + [5.93 × (EIδ)AB /100] = 0   ∴     (EIδ)AB /100 = 0.968  

 

The multiplying factor for the sway moments = 0.968 

 

   Final Moments Distribution Table: 
Joint A  B  C 

 AB  BA BC  CB 
No-Sway Moments + 9.56  + 19.12 − 19.12  0 

Sway Moments × 0.968  − 17.31  − 11.38 + 11.38  0 

Final Moments (kNm) − 7.75  + 7.74* − 7.74  0 
 

The horizontal deflection at the rafter level = δAB =
0 968 100.

EI

×⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 96.8/EI 

 For horizontal equilibrium at prop level: − 5.74 + (5.93 × 0.968) = 0   

        Final value of HA = + 5.74 − (5.93 × 0.968) = 0 

 

* Since the horizontal reaction at A is equal to zero, the moment at the top of 

column AB is equal to MA, i.e. approximately 7.75 kNm. 

Solution 
Topic:  Moment Distribution – Rigid-Jointed Frames with Sway 
Problem Number: 5.17            Page No. 4 
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For the complete frame: 

 

+ve    ΣMA = 0   

− 7.75 + (25.0 × 4.0) − (VC × 8.0) = 0    ∴  VC = + 11.53 kN 

+ve  ΣFz = 0   

+ 11.53 − 25.0 + VA = 0        ∴  VA = + 13.47 kN 
 
Continuity Moments: 
 
 

 

 

 

 

 

 

 

 

 

 

Free bending moments: 
 

 

 Member BC:  

 Mfree = 
4

PL
 = 

4

825×
 = 50.0 kNm  

 

 

 

7.75 kNm 

B                                  C 
B 

A 

7.75 kNm 

7.75 kNm 

Solution 
Topic:  Moment Distribution – Rigid-Jointed Frames with Sway 
Problem Number: 5.17            Page No. 5 
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        Bending Moment Diagram 
 
 
 
 
 
 
 
 
 
 
 
 

    Support Reactions 
 
 
 
 
 
 
 
 

                  
 
                  Deflected Shape 
 
 
 
 

Solution 
Topic:  Moment Distribution – Rigid-Jointed Frames with Sway 
Problem Number: 5.17            Page No. 6 
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7.75 kNm 

7.75 kNm 

Maximum bending moment: 
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Consider the frame analysis as the superposition of two effects: 

 

Final Forces = ‘No-Sway Forces’ + ‘Sway Forces’ 
 
 
 
 
 
 
 
 
 
 
 
  
 
 

    
 

  

 No-Sway Moments are given in the Table below; (see Problem 5.16) 

Joint A  B C  D 
 AB  BA BC CB CD  DC 

No-Sway Moments + 28.52  + 89.1 − 89.1 + 38.66 − 38.66  0 

Solution 
Topic:  Moment Distribution – Rigid-Jointed Frames with Sway 
Problem Number: 5.18            Page No. 1 
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Determine the value of the prop force P: 
 
 
 
 
 
 
 
 

 
 
 
 
 
Prop force   P =  56.97 kN    (see Problem 5.16) 

 

 Since the direction of the prop force is right-to-left the sway of the frame is from 

left-to-right as shown below. 

 

 

 

 

 

  

 

 

 

 

 

 

  

Apply arbitrary sway force P′     Fixed-end Moments due to Sway 

 

 Ratio of Fixed-end Moments: 

 MAB : MBA : MCD = −
( )

2

6
AB

AB

EI

L

δ
 : −

( )
2

6
AB

AB

EI

L

δ
 : −

( )
2

3
CD

CD

EI

L

δ
 

        = −
( )6

16

AB
EIδ

 : −
( )6

16

AB
EIδ

 : −
( )3

36

CD
EIδ

 

        = {− 0.375 : − 0.375 : − 0.083 } × (EIδ) 

Assume arbitrary fixed-end moments equal to {− 37.5 : − 37.5 : − 8.3} × (EIδ) /100 

Solution 
Topic:  Moment Distribution – Rigid-Jointed Frames with Sway 
Problem Number: 5.18            Page No. 2 
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Sway-Only Moment Distribution Table: 

Joint A  B  C  D 
 AB  BA BC  CB CD  DC 

Distribution Factors 0  0.6 0.4  0.57 0.43  1.0 
Fixed-end Moments −37.5  − 37.5 0  0 − 8.3   

Balance   + 22.5 + 15.0  + 4.73 + 3.57   

Carry-over + 11.25   + 2.37  + 7.5    

Balance   − 1.42 − 0.95  − 4.28 − 3.22   

Carry-over − 0.71   − 2.14  − 0.48    

Balance   + 1.28 + 0.86  + 0.27 + 0.21   

Carry-over + 0.64   + 0.14  + 0.43    

Balance   − 0.08 − 0.06  − 0.25 − 0.18   

Carry-over − 0.04         

Total − 26.36  − 15.22 + 15.22  + 7.92 − 7.92  0 
 
 Determine the value of the arbitrary sway force P': 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Consider column AB: 

+ve    ΣMB = 0 

− 15.22 − 26.36 − (H'A × 4.0) = 0        ∴ H'A = − 10.4 kN 

Consider column CD: 

+ve    ΣMC = 0 

− 7.92 − (H'D × 6.0) = 0           ∴ H'D = − 1.32 kN 

For the complete frame: 

+ve   ΣFx = 0 

− 10.4 − 1.32 + P' = 0            ∴ P ' = 11.72 kN 
 
 

Solution 
Topic:  Moment Distribution – Rigid-Jointed Frames with Sway 
Problem Number: 5.18            Page No. 3 
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     No Sway Frame       Sway Frame × (EIδ) /100 

 
P + P ′ = 0 
− 56.97 +  [11.72 ×  (EIδ) /100] = 0  ∴ (EIδ)/100 = 4.861 

 

The multiplying factor for the sway moments = 4.861 

 

Final Moments Distribution Table: 
Joint A  B  C  D 

 AB  BA BC  CB CD  DC 
No-Sway Moments + 28.52  + 89.1 − 89.1  + 38.66 − 38.66  0 

Sway Moments × 4.861 −  128.14  − 73.98 + 73.98  + 38.5 − 38.5  0 

Final Moments − 99.62  + 15.12 − 15.12  + 77.16 − 77.16  0 
 

The horizontal deflection at B = δ = 486.1/EI 

 

Final value of HA = + 13.41 − (10.4 × 4.861) = − 37.14 kN 

Final value of HD = − 24.44 − (1.32 × 4.861) = − 30.86 kN 

 

 

 

 

 

 

 

 

+ 

Solution 
Topic:  Moment Distribution – Rigid-Jointed Frames with Sway 
Problem Number: 5.18            Page No. 4 
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For addition of Continuity Moments and Free Bending Moments see         
Problem 5.16. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
     Bending Moment Diagram 
 
*  The maximum value along the length of members BC and CD can be found 

by identifying the point of zero shear as follows: 
 

Member BC: 

+ve    ΣMC = 0 

− 15.12 − (16.0 × 4.0) − (20.0 × 2.0)  

− (25.0 × 6.0 × 3.0) + 77.16 + (VB × 6.0) = 0

         ∴ VB = + 82.0 kN 

 

x = 2.0 + (16.0/25.0)  = 2.64 m 

Mx = [0.5 × (82.0 + 32.0) × 2.0]  

+ (0.5 × 0.64 × 16.0) − 15.12 

       Mmaximum = 104.0 kNm 

 

Member CD: 

 

 

x = (30.86/6.0) = 5.14 m 

Mx = (0.5 × 5.14 × 30.86)  

       Mmaximum = 79.31 kNm 
 

 

 

Shear Force Diagram

34.0 kN 
x 

82.0 kN 
16.0 kN 

54.0 kN 
104.0 kN

32.0 kN 

25.0 kN/m 

B 
77.16 kNm 15.12 kNm 

16.0 kN    20 kN 

C 

6.0 m 
VB 

Shear Force Diagram

30.86 kN 

x

Solution 
Topic:  Moment Distribution – Rigid-Jointed Frames with Sway 
Problem Number: 5.18            Page No. 5 
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Maximum bending moment:* 
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Consider the complete frame: 

+ve    ΣMA = 0 

− 99.62 + (8.0 × 4.0 × 2.0) + (25.0 × 6.0 × 3.0) + (16.0 × 2.0) + (20.0 × 4.0) 

+ (6.0 × 6.0 × 1.0) + (30.86 × 1.0) − (VD × 6.0) = 0 

                   ∴ VD = + 104.0 kN 

 

+ve  ΣFz = 0 

+ VA − (25.0 × 6.0) − 16.0 − 20.0 + 104.0 = 0     ∴ VA = + 82.0 kN 
 
 
 
 
 
 
 
 
 
 
 

               Support Reactions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

               Deflected Shape 
 
 

Solution 
Topic:  Moment Distribution – Rigid-Jointed Frames with Sway 
Problem Number: 5.18            Page No. 6 
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Consider the frame analysis as the superposition of two effects: 

Final Forces = ‘No-Sway Forces’ + ‘Sway Forces’ 
 

 
 
 
 
 
 
  
 
 
 
 

  No-Sway Moments are given in the Table below; (see Problem 5.10) 

Joint A  B  C 
 AB  BA BC  CB 

No-Sway Moments  + 18.44  + 36.88 − 36.88  0 
 
Determine the value of the prop force P: 

 

 

 

 

 

 

 

 

 

 

Solution 
Topic:  Moment Distribution – Rigid-Jointed Frames with Sway   
Problem Number: 5.19            Page No. 1 
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Prop force   P = 37.53 kN   (see Problem 5.10) 
  

Since the direction of the prop force is right-to-left the sway of the frame is from 

left-to-right as shown below. 

 

 

 

 

 

 
 
 

 

 

 

 

   Apply arbitrary sway force P '    Fixed-end Moments due to Sway 

 

 Displacement triangle: 

 

Length of LAB =
22 0.40.2 +  

        = 4.472 m 

 

 cosθ = 2.0/4.47 = 0.447 

sinθ  = 4.0/4.472 = 0.894 

                   δBC = (δAB cosθ) 

 

 

 Ratio of Fixed-end Moments: 

 

 MAB : MBA : MBC = −
( )

2
AB

AB6

L

EIδ
 : −

( )
2
AB

AB6

L

EIδ
 : +

( )
2
BC

BC3

L

EIδ
 

       = −
( )

2

AB

472.4

6 δEI
 : −

( )
2

AB

472.4

6 δEI
 : +

( )
2

AB

0.5

447.03 ×δEI
 

 

       = {− 0.30 : − 0.30 : + 0.05 } × (EIδAB) 

 

Assume arbitrary fixed-end moments equal to {− 30.0 : − 30.0 : + 5.0} × (EIδAB)/100 

 

Solution 
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Sway- Only Moment Distribution Table: 
Joint A  B  C 

 AB  BA BC  CB 
Distribution Factors 0  0.59 0.41  0 
Fixed-end Moments − 30.0  − 30.0 + 5.0  0 

Balance   + 14.75 + 10.25   

Carry-over + 7.38      

Total − 22.62  − 15.25 + 15.25  0 
 

Determine the value of the arbitrary sway force P': 
 

 

 

 

 

 

 

 

 

 

 
Consider beam BC: 

+ve    ΣMB = 0 

+ 15.25 − (V'C × 5.0) = 0            ∴ V'C = + 3.05 kN 

For the complete frame: 

+ve    ΣMA = 0   

− 22.62 − (3.05 × 7.0) + (P' × 4.0) = 0        ∴ P '= + 10.99 kN 
 
 
 
 
 
 
 
 
 
 
 
 
    No Sway Frame       Sway Frame × (EIδ)AB /100 
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P + P ′ = 0 
− 37.53 +  [10.99 × (EIδ)AB /100] = 0   ∴ (EIδ)AB /100 = 3.415 

The multiplying factor for the sway moments = 3.415 

 

   Final Moments Distribution Table: 
Joint A  B   C 

 AB  BA BC  CB 
No-Sway Moments + 18.44  + 36.88 − 36.88  0 

Sway Moments × 3.415 − 77.25  − 52.08 + 52.08  0 

Final Moments − 58.81  − 15.20 + 15.20  0 
 

The horizontal deflection at B = (δAB sinθ) = (341.5/EI) × 0.894 = 305.3/EI 

The vertical deflection at B = (δAB cosθ) = (341.5/EI) × 0.447 = 152.7/EI 

 

Final value of HA = + 37.53 − (10.99 × 3.415) = 0 

Final value of VC = + 32.62 + (3.05 × 3.415) = + 43.0 kN 

Final value of VA = + 47.38 − (3.05 × 3.415) = + 37.0 kN 

 
 
 
 
 
 
 

    Bending Moment Diagrams 
 

  

 

 

 

 

 

 

 
   

 

 

 

 
                 Deflected Shape 

 

Solution 
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Consider the frame analysis as the superposition of two effects: 

Final Forces = ‘No-Sway Forces’ + ‘Sway Forces’ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   No-Sway Moments are given in the Table below; (see Problem 5.13) 

Joint A  B C  D 
 AB  BA BC CB CD  DC 

No-Sway Moments − 22.35  + 3.31 − 3.31 + 12.72 − 12.72  0 
 
 
 

Solution 
Topic:  Moment Distribution – Rigid-Jointed Frames with Sway   
Problem Number: 5.20            Page No. 1 
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Determine the value of the prop force P: 
 
 
 
 
 
 
 

 
 
 
 
 

Prop force   P = 40.42 kN    (see Problem 5.13) 
 

 Since the direction of the prop force is upwards the sway of the frame is 

downwards as shown below. 

 
 
 
 
 
 
 
 
 
 
 

               δCD = δAB = δ 
 
   Apply arbitrary sway force P '    Fixed-end Moments due to Sway 

 

 Ratio of Fixed-end Moments: 

 MAB : MBA : MCD = −
( )

2
AB

AB6

L

EIδ
 : −

( )
2
AB

AB6

L

EIδ
 : +

( )
2
CD

CD3

L

EIδ
 

       = −
( )

2

AB

0.4

6 δEI
 : −

( )
2

AB

0.4

6 δEI
 : +

( )
2

AB

0.4

3 δEI
 

       = {− 0.375 : − 0.375 : + 0.188 } × (EIδ) 

 

Assume arbitrary fixed-end moments equal to {− 37.5 : − 37.5 : + 18.8} × (EIδ) /100 

Solution 
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Sway-Only Moment Distribution Table: 

Joint A  B  C   D 
 AB  BA BC CB CD  DC 

Distribution Factors 1.0  0.5 0.5  0.57 0.43  1.0 
Fixed-end Moments − 37.5  − 37.5    + 18.8  0 

Balance   + 18.75 + 18.75  − 10.72 − 8.08   

Carry-over + 9.4   − 5.36  + 9.38    

Balance   + 2.68 + 2.68  − 5.35 − 4.03   

Carry-over + 1.34   − 2.68  + 1.34    

Balance   + 1.34 + 1.34  − 0.76 − 0.58   

Carry-over + 0.29   − 0.38  + 0.67    

Balance   + 0.19 + 0.19  − 0.38 − 0.29   

Carry-over + 0.2         

Total − 26.27  − 14.54 + 14.54  − 5.82 + 5.82   
 

Determine the value of the arbitrary sway force P ' 
  

 

 

 

 

 

 

 

 

 

 

 

Consider beam AB: 

+ve    ΣMB = 0 

− 26.27 − 14.54 + (V′A × 4.0) = 0         ∴ V'A = + 10.2 kN 

 

Consider beam CD: 

+ve    ΣMC = 0   

+ 5.82 − (V′D × 4.0) = 0            ∴V′D = + 1.46 kN 

 

For the complete frame: 

+ve  ΣFz = 0   

+ 10.2 + 1.46 − P ′ = 0            ∴ P′ = + 11.66 kN 
 

Solution 
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    No Sway Frame       Sway Frame × (EIδ) /100 

 
P + P ′ = 0 
+ 40.42 − [11.66 × (EIδ) /100] = 0    ∴ (EIδ) /100 = 3.47 

 

The multiplying factor for the sway moments = 3.47 

 

 

 Final Moments Distribution Table 

Joint A  B  C  D 
 AB  BA BC  CB CD  DC 

No-Sway Moments − 22.35  + 3.31 − 3.31  + 12.72 − 12.72  0 

Sway Moments × 3.47 − 91.16  − 50.45 + 50.45  − 20.19 + 20.19  0 

Final Moments − 113.51  − 47.14 + 47.14  − 7.47 + 7.47  0 
 

The vertical deflection at C = δ = (347/EI)  

 

Final value of   VA = + 28.76 + (3.47 × 10.2)     ∴ VA = + 64.15 kN 

Final value of   VD = + 14.82 + (3.47 × 1.46)     ∴ VD = + 19.89 kN 

 

Consider the complete frame: 

+ve    ΣMA = 0 

− 113.51 + (12.0 × 4.0 × 2.0) + (36.0 × 6.0) − (19.89 × 8) − (HD × 4.0) = 0 

                  ∴ HD = + 9.84 kN 

+ve    ΣFx = 0 

+ HA − HD  = 0              ∴ HA = − 9.84 kN 

 
 

+ 

26.27 kNm

D 
C

B

A
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                  Bending Moment Diagram 
     

 

         

 

 

 

 
                     Support Reactions 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                Deflected Shape 
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Consider the frame analysis as the superposition of two effects: 

Final Forces = ‘No-Sway Forces’ + ‘Sway Forces’ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 No-Sway Moments are given in the Table below; (see Problem 5.14) 

 
Joint A  B  C  E D 

 AB  BA BC  CB CD CE  EC DC 
No-Sway Moments + 21.3  +  42.6 − 42.6  + 48.2 − 21.1 − 27.1  − 13.6 0 

 
 

Solution 
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Determine the value of the prop force P: 
 
 
 
 
 
 
 

 
 
 
 
 
Prop force    P = 70.2 kN    (see Problem 5.14) 

 

 Since the direction of the prop force is right-to-left the sway of the frame is left-to-

right as shown below. 

 
 
 
 
 
 
 
 
 
 

  
 
  
  Apply arbitrary sway force P ' 
 
 
 
 
 
 

             Fixed-end Moments due to Sway  

 

δCD = δCE = the horizontal displacement of joint B since BC is assumed to be axially 

rigid. 

 

Solution 
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 Displacement triangle: 

 Length of LAB =
22 0.40.4 +  

        = 5.657 m 

 

cosθ = 4.0/5.657 = 0.707 

sinθ = 4.0/5.657 = 0.707 

 

                  δBC = (δAB cosθ) 

                 δCE = δCD = (δAB sinθ) 

  

 Note:  MAB = MBA    MBC = MCB    MCE = MEC  

 

 Ratio of Fixed-end Moments: 

 MAB : MBC :  MCE :  MCD = − 
( )

2
AB

AB26

L

IE δ
 : + 

( )
2
BC

BC5.16

L

IE δ
 :  − 

( )
2
CE

CE6

L

EIδ
 : + 

( )
2
CD

CD3

L

EIδ
 

  = − 
( )AB

2

6 2

5 657

E I

.

δ
 :   + 

( )
2

AB

0.6

707.05.16 ×δIE
 :   − 

( )
2

AB

0.4

707.06 ×δEI
 :    + 

( )
2

AB

0.4

707.03 ×δEI
 

  = { − 0.375     :             + 0.177           :        − 0.265           :    + 0.133} × (EIδAB) 

 

Assume arbitrary fixed-end moments 

{MAB :    MBA    :    MBC   :    MCB  :    MCE   :    MEC  :    MCD }  × (EIδAB)/100 

equal to: 

{− 37.5 :   − 37.5 :  + 17.7 :  + 17.7 :  − 26.5 :  − 26.5 :  + 13.3 } × (EIδAB)/100 

 
Moment Distribution Table: 

 
Joint A  B  C  E D 

 AB  BA BC  CB CD CE  EC DC 
Distribution Factors 0  0.58 0.42  0.36 0.28 0.36  0 1.0 
Fixed-end Moments −37.5    −37.5 +17.7  +17.7 +13.3 −26.5  −26.5 0 

Balance   +11.48 +8.32  −1.62 −1.26 −1.62    

Carry-over +5.74   −0.81  +4.16    −0.81  

Balance   +0.47 +0.34  −1.5 −1.16 −1.5    

Carry-over +0.24   −0.75  +0.17    _−0.75  

Balance   +0.44 +0.31  −0.06 −0.05 −0.06    

Carry-over +0.22   −0.03  +0.16    −0.03  

Balance   +0.02 +0.01  −0.06 −0.04 −0.06    

Carry-over +0.1         −0.03  

Total −31.3  −25.09 +25.09  +18.95 +10.78 −29.73  −28.12  
 

Solution 
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Determine the value of the arbitrary sway force P ' 
 

 
 
 
 
 
 
 
 
 

 
Consider Member CE: 

+ve    ΣMC = 0 − 29.73 − 28.12 − (H'E × 4.0) = 0  ∴ H'E = − 14.46 kN 

 
Consider Member CD: 

+ve    ΣMC = 0 + 10.78 + (H'D × 4.0) = 0     ∴ H'D = − 2.70 kN 

 
Consider Member AB: 

+ve    ΣMB = 0 − 25.09 − 31.3 − (H'A × 4.0) + (V'A × 4.0) = 0 

                  ∴ H'A = + V'A − 14.1 

 

 
 
 
 
 
 
 
 
 
Consider a section at C: 

+ve    ΣMC = 0   

+ 18.95 − 31.3 − (H'A × 4.0) + (V'A × 10.0) = 0             

                  ∴ H'A = 2.5V'A − 3.09 

∴ V'A − 14.1 = 2.5V'A − 3.09          ∴ V'A = − 11.46 kN 
                  ∴ H'A = − 25.56 kN 

For the complete frame: 

+ve   ΣFx = 0 

− 14.46 − 2.70 − 25.56 + P' = 0         ∴ P' = + 42.72 kN 

Solution 
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     No Sway Frame       Sway Frame × (EIδ)AB /100 

 
 
P + P ′ = 0 
− 70.2 +  [42.72 × (EIδ)AB /100] = 0   ∴ (EIδ)AB /100 = 1.643 

The multiplying factor for the sway moments = 1.643 

 

 Final Moments Distribution Table: 
Joint A  B  C  E D 

 AB  BA BC  CB CD CE  EC DC 
No-Sway Moments + 21.3  +42.6 −42.6  +48.2 −21.1 −27.1  −13.6 0 

Sway Moments  

× 1.643 
−51.43  −41.22 +41.22  +31.13 +17.71 −48.85  −46.20 0 

Final Moments −30.13  +1.38 −1.38  +79.33 −3.39 −75.95  −59.8 0 
 

The horizontal deflection at B = (δAB sinθ) = (164.3/EI) × 0.707 = 116.2/EI 

The vertical deflection at B = (δAB cosθ) = (164.3EI) × 0.707 = 116.2/EI 

 

Final value of VA = + 59.1 − (11.46 × 1.643)     ∴ VA = + 40.27 kN 

Final value of HA = + 75.1 − (25.56 × 1.643)     ∴ HA = + 33.10 kN 

Final value of HE = − 10.18 − (14.46 × 1.643)    ∴ HE = − 33.93 kN 

Final value of HD = + 5.28 − (2.71 × 1.643)     ∴ HD = + 0.83 kN 

 

There is insufficient information to determine the values of VD and VE. 

 
 

 

 

Solution 
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Bending Moment Diagram 
 
* The maximum value along the length of member BC can be found by 

identifying the point of zero shear as follows: 
 
 

 

 

 

 
 

 
                Shear Force Diagram 
 

 

 

+ve  ΣMC = 0 

− 1.38 − (20.0 × 6.0 × 3.0) + 79.15 + (VB × 6.0) = 0   VB = + 47.04 kN 

 
x = (47.04/20.0) = 2.35 m 

 Mmaximum = (0.5 × 2.35 × 47.04) − 1.38 

      = 53.89 kNm 

 

79.15 kNm1.38 kNm 20.0 kN/m

6.0 m VB 

CB 
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                 Support Reactions 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
     Deflected Shape 
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Consider the frame analysis as the superposition of two effects: 

Final Forces = ‘No-Sway Forces’ + ‘Sway Forces’ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 No-Sway Moments are given in the Table below; (see Example 5.4) 

 
Joint A E  B  C  D 

 AB EB  BA BD BC  CB CE  DC 
No-Sway Moments 0 0  −34.96 + 10.65 + 24.31  + 37.08 − 37.08  0 

 
 
 

Arbitrary Sway Force P ' 
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D
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Determine the value of the prop force P: 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

Prop force   P = 21.52 kN   (see Example 5.4) 
 

 Since the direction of the prop force is left-to-right the sway of the frame is right-to-

left as shown below. 

 
 
 
 
 
 
 
 
 

  
 Apply arbitrary sway force P ' 

 
 
 
 
 
 
 

 δBD = δCD = δ 
  

 

 Fixed-end Moments due to Sway  
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 Ratio of Fixed-end Moments: 

 MBD : MCE = + 
( )BD

2
BD

3 EI

L

δ
 :  +

( )CE

2
CE

3 EI

L

δ
 =  + 

( )
2

3

4.0

EIδ
 : + 

( )
2

3 1.5

6.0

E Iδ
 

       = {+ 0.188 : + 0.125} × (EIδ) 

 

Assume arbitrary fixed-end moments 

{MBD : MCE} × (EIδ) /100 = {+ 188 : + 125} × (EIδ) /1000 

 
Moment Distribution Table: 

Joint A E  B  C  D 
 AB EB  BA BD BC  CB CE  DC 

Distribution 
Factors 1.0 1.0  0.3 0.3 0.4  0.57 0.43  1.0 

Fixed-end 
Moments     + 188.0    +125.0   

Balance    − 56.4 − 56.4 − 75.2  − 71.25 − 53.75   

Carry-over      −35.63  − 37.6    

Balance    + 10.69 + 10.69  + 14.25  + 21.43  +16.17   

Carry-over      + 10.72   + 7.13    

Balance    − 3.21 − 3.21 − 4.29  − 4.06 − 3.06   

Carry-over      − 2.03  − 2.14    

Balance    + 0.61 + 0.61 + 0.81  + 1.22 + 0.92   

Total 0 0  − 48.32 + 139.68 − 91.36  − 85.28 + 85.28  0 
 
Determine the value of the arbitrary sway force P ' 
 

 

 

 

 

 

 

 

 

 

Consider Member BD: 

+ve    ΣMB = 0 + 139.68 − (H'D × 4.0) = 0 ∴ H'D = + 34.92 kN 

Consider Member CE: 

+ve    ΣMC = 0 + 85.28 − (H'E × 6.0) = 0  ∴ H'E = + 14.21 kN 

For the complete frame: 

+ve   ΣFx = 0 

+ 34.92 + 14.21 − P' = 0        ∴ P' = 49.13 kN 

Solution 
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   No Sway Frame        Sway Frame × (EIδ) /1000 

 
P + P ′ = 0   
+ 21.52 − [49.13 × (EIδ) /1000] = 0  ∴ (EIδ) /1000 = 0.438 

 

The multiplying factor for the sway moments = 0.438 

 
Final Moments Distribution Table:  

Joint A E  B  C  D 
 AB EB  BA BD BC  CB CE  DC 

No-Sway Moments 0 0  − 34.96 + 10.65 + 24.31  + 37.08 − 37.08  0 
Sway Moments  

× 0.438 0 0  − 21.16 + 61.18 − 40.02  − 37.35 + 43.75  0 

Final Moments 0 0  − 56.12 + 71.83 − 15.71  − 0.27 + 0.27  0 
 
The horizontal deflection of A, B and C = δ = (438/EI) 

 

Final value of HD = + 2.66 + (34.92 × 0.438)      ∴ HD = + 17.95 kN 

Final value of HE = + 11.82 + (14.21 × 0.438)     ∴ HE = + 18.04 kN 

 
Consider Member AB: 

 

 

 

 

 

 

+ve    ΣMB = 0 

− 56.12 − (16.0 × 2.0) + (VA × 4.0) = 0        ∴ VA = + 22.03 kN 

 

Solution 
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Consider a section at B 

+ve    ΣMB = 0 

− 15.71 + (20.0 × 4.0) − (18.04 × 6.0) + (6.0 × 6.0 × 3.0) − (VE × 6.0) = 0 

             ∴ VE = + 10.68 kN 

For the complete frame: 

+ve  ΣFz = 0 

+ 22.03 − 16.0 − 20.0 + 10.68 + VD = 0 

             ∴ VD = + 3.29 kN 
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6. Buckling Instability  
6.1 Introduction 
Structural elements which are subjected to tensile forces are inherently stable and will 
generally fail when the stress in the cross-section exceeds the ultimate strength of the 
material. In the case of elements subjected to compressive forces, secondary bending 
effects, (e.g. example caused by imperfections within materials and/or fabrication 
processes, inaccurate positioning of loads or asymmetry of the cross-section), can induce 
premature failure either in a part of the cross-section (local buckling), such as the 
web/outstand flange of an I section, or of the member as a whole (flexural buckling).  
There are numerous modes of buckling which can occur e.g.  
 

• local buckling, 
• distorsional buckling, 
• flexural buckling, 
• lateral torsional buckling, 
• torsional buckling, 
• torsional-flexural buckling, 
• web buckling and  
• shear buckling of plates, 

 
as shown in Figure 6.2.  
The design of most compressive members is governed by their flexural buckling 
resistance, i.e. the maximum compressive load which can be carried before failure occurs 
by excessive deflection in the plane of greatest slenderness. 
Typically this occurs in columns in building frames and in trussed frameworks as shown in 
Figure 6.1.  
 
 
 
 
 
 
 
 
 
 

 
Figure 6.1 

 
Only local and flexural buckling are considered in this text.  

6.1.1 Local Buckling  
Local buckling is characterised by localized deformation of slender cross-section 

Buckling of  a 
column in a frame 

Buckling of the compression boom 
and uprights in a lattice girder 
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elements, involving only rotation (no translation) at the nodes of a cross-section, e.g. 
flanges, webs etc. It is dependent on various parameters such as the size, shape, 
slenderness, type of stress and material properties. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.2 
 

The effect of local buckling on global behaviour at the ultimate limit state is such that the 
yield stress cannot develop in all of the fibres of the cross-section. A consequence of this 
is that the limiting elastic moment of resistance cannot develop. The reduction in strength 
is due to premature buckling of the slender elements of the cross-section which are in 
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compression. A direct consequence of this is a reduction of stiffness in these elements and 
a redistribution of the stresses to the stiffer edges as shown in Figure 6.3. 
 
 
 
 
 
 
 
 

 
   
   
 

Figure 6.3 
 
Where local buckling must be taken into consideration, the formation of ‘non-effective 
zones’ in the compression parts of elements should be determined. The extent and 
position of the non-effective zones is calculated in accordance with EN 1993-1-1-5:   
Table 4.1/Table 4.2 to determine the effective width ‘beff’ and location of any slender part 
of the cross-section. The reduced effective plate widths and the effective area of a Class 4 
element are given by the Winter formula i.e. 
 
 beff = (ρ × b)    and   Ac,eff = (ρ × Ac)  where Ac is the gross cross-sectional area. 
 
When any of the compression elements of a cross-section do not satisfy the requirements 
for a Class 3 section, local buckling must be taken into account, e.g. by using effective 
cross-sectional properties. 
In EN 1993-1-1: Clause 5.5.2(1)/Table 5.2, four classes of cross-section in relation to local 
buckling are specified for internal and external elements as shown in Figure 6.5. 

6.1.1.1 Class 1 Sections 
The failure of a structure such that plastic collapse occurs is dependent on a sufficient 
number of plastic hinges developing within the cross-sections of the members to produce a 
mechanism, (i.e. the value of the internal bending moment reaching Mp at sufficient 
locations). For full collapse this requires one more than the number of redundancies in the 
structure, as illustrated in the rigid-jointed rectangular portal frame in Figure 6.4. 
 
 
 
 
 
  
 
 

Figure 6.4 
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Figure 6.5 – Extract from EN 1993-1-1:2005 
  

The required number of hinges will only develop if there is sufficient rotational capacity in 
the cross-section to permit the necessary redistribution of the moments within the 
structure. When this occurs, the stress diagram at the location of the hinge is as shown in 
Chapter 2: Figure 2.45(c) and the slenderness of the elements of the cross-section are low 
enough to prevent local buckling from occurring. Such cross-sections are defined as 
plastic sections and classified as Class 1. Full plastic analysis and design can only be 
carried out using Class 1 sections. (See Chapter 8 for plastic analysis of beams and 
frames.) 

6.1.1.2 Class 2 Sections 
When cross-sections can still develop the full plastic moment as in Figure 2.45(c) but are 
prevented by the possibility of local buckling from undergoing enough rotation to permit 
redistribution of the moments, the section is classified as a Class 2 section. These sections 
can be used without restricting their capacity, except at plastic hinge positions. 
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6.1.1.3 Class 3 Sections 
Class 3 sections may be prevented from reaching their full plastic moment capacity by 
local buckling of one or more of the elements of the cross-section. The slenderness of the 
elements of the cross-section may be such that only the extreme fibre stress can attain the 
design strength before local buckling occurs. Such sections are classified as Class 3 and 
their capacity is therefore based on the limiting elastic moment as indicated in              
Figure 2.45(b). 

6.1.1.4 Class 4 Sections 
When the slenderness of the element(s) of a cross-section is relatively high, then local 
buckling may prevent a part of the cross-section from reaching the design strength as 
indicated in Figure 2.45(a). Such sections are classified as Class 4 sections; their reduced 
capacity is based on effective cross-section properties as specified in EN 1993-1-5:   
Clause 4.3. 

6.1.1.5 Section Classification 
The section classification is dependent on the aspect ratio for each of the compression 
plate elements in the cross-section. These elements include all component plates which are 
either totally or partially in compression due to the applied action effects, e.g. axial forces, 
bending moments etc. The plate elements are either: 
 

♦ internal compression parts; considered to be simply supported along two edges 
parallel to the direction of the compression stress or 

♦ outstand parts; considered to be simply supported along one edge and free on the 
other edge, parallel to the direction of the compression stress. 

 
In EN 1993-1-1: Table 5.2 the limiting values are given for the aspect ratios of 
compression elements based on the web or flange plate slenderness for different loading 
conditions, i.e. bending, compression, and combined bending and compression.  
These values ensure that in non-slender elements, yielding occurs before the plate critical 
stress ‘σcr’ is reached and buckling can occur.  
The value of c, the flat portion of the web/flange plate, defined in EN 1993-1-1:Table 5.2 
excludes the root radii for rolled sections and the weld leg length for welded sections. This 
enables one set of tables to be used for both rolled and welded cross-sections. For hollow 
sections where the internal corner radius is not known, the value of the flat portion can be 
taken as: c = (b − 3t) or       c = (h − 3t). In addition, a base stress of fy = 235 MPa has been 
adopted in the code for the limiting values given. In order to cover for all grades of steel a 
reduction factor is also given, i.e.   
                    
 y235 fε =  EN 1993-1-1: Table 5.2 

 
The classification of a cross-section is based on the highest class of its component parts or 
alternatively may be defined by quoting both the flange and the web classifications as 
indicated in EN 1993-1-1: Clause 5.5.2. 
Local buckling and effective section properties are not considered further in this text. 
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6.1.2 Flexural Buckling  
Flexural buckling is characterised by out-of-plane movement of the cross-section at the 
critical load and is the predominant buckling mode in typical building structures using hot-
rolled sections. In 1757 the Swiss engineer/mathematician Leonhard Euler developed a 
theoretical analysis of premature failure due to buckling.  
The theory is based on the differential equation of the elastic bending of a pin-ended 
column which relates the applied bending moment to the curvature along the length of the 
column. The resulting equation for the fundamental critical load for a pin-ended column is 
known as the Euler equation, i.e. 

 
2

cr 2
cr

Euler critical buckling load   = EIN
L

π  

where:  
Lcr is the critical buckling length,  
I is the second moment of area about the axis of buckling, 
E  is Young’s Modulus of elasticity.  
 
Compression elements for this mode of buckling can be considered to be sub-divided into 
three groups: short elements, slender elements and intermediate elements. Each group is 
described separately, in Sections 6.1.2.1, 6.1.2.2 and 6.1.2.3 respectively. 

6.1.2.1 Short Elements  
Provided that the slenderness of an element is low, e.g. the length is not greater than       
(10 × the least cross-section dimension), the element will fail by crushing of the material 
induced  
by predominantly axial compressive stresses as indicated in Figure 6.6(a). Failure occurs 
when the stress over the cross-section reaches a yield or crushing value for the material.  
The failure of such a column can be represented on a stress/slenderness curve as shown in 
Figure 6.6(b). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   (a)                (b) 

 
Figure 6.6 
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6.1.2.2 Slender Elements  
When the slenderness of an element is high, the element fails by excessive lateral 
deflection (i.e. flexural buckling) at a value of stress considerably less than the yield or 
crushing values as shown in Figures 6.7(a) and (b). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
    (a)              (b) 

 
Figure 6.7 

6.1.2.3 Intermediate Elements  
The failure of an element which is neither short nor slender occurs by a combination of 
buckling and yielding/crushing as shown in Figures 6.8(a) and (b). 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          (a)               (b) 

Figure 6.8 
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6.2 Secondary Stresses  
As mentioned in Section 6.1, buckling is due to small imperfections within materials, 
application of load etc. which induce secondary bending stresses which may or may not be 
significant depending on the type of compression element. Consider a typical column as 
shown in Figure 6.9 in which there is an actual centre-line, reflecting the variations within 
the element, and an assumed centre-line along which acts an applied compressive load, 
assumed to be concentric. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.9 

 
At any given cross-section the point of application of the load N will be eccentric to the 
actual centre-line of the cross-section at that point, as shown in Figure 6.10. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.10 
 
The resultant eccentric load produces a secondary bending moment in the cross-section. 
The cross-section is therefore subject to a combination of an axial stress due to N and a 
bending stress due to (Ne) where e is the eccentricity from the assumed centre-line as 
indicated in Figure 6.11 
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Figure 6.11 
 

The combined axial and bending stress is given by: 
N Ne
A W

σ ⎛ ⎞= ±⎜ ⎟
⎝ ⎠

 

where: 
σ is the combined stress, 
N  is the applied load, 
e is the eccentricity from the assumed centre-line,  
A is the cross-sectional area of the section, and 
W is the elastic section modulus about the axis of bending. 
 
This equation, which includes the effect of secondary bending, can be considered in terms 
of each of the types of element. 

6.2.1 Effect on Short Elements 
In short elements the value of the bending stress in the equation is insignificant when 

compared to the axial stress i.e. 
N
A

⎛ ⎞
⎜ ⎟
⎝ ⎠

 >> 
Ne
W

⎛ ⎞
⎜ ⎟
⎝ ⎠

 and consequently the lateral movement 

and buckling effects can be ignored. 

6.2.2 Effect on Slender Elements 
In slender elements the value of the axial stress in the equation is insignificant when 

compared to the bending stress i.e. 
N
A

⎛ ⎞
⎜ ⎟
⎝ ⎠

 << 
Ne
W

⎛ ⎞
⎜ ⎟
⎝ ⎠

 particularly since the eccentricity 

during buckling is increased considerably due to the lateral deflection; consequently the 
lateral movement and bending effects determine the structural behaviour. 

6.2.3 Effect on Intermediate Elements 
Most practical columns are considered to be in the intermediate group and consequently 
both the axial and bending effects are significant in the column behaviour, i.e. both terms 

in the equation 
N Ne
A W

σ ⎛ ⎞= ±⎜ ⎟
⎝ ⎠

are important. 

6.3 Critical Stress (σcr) 
In each case described in Sections 6.2.1 to 6.2.3 the critical load Ncr (i.e. critical stress × 
cross-sectional area) must be estimated for design purposes. Since the critical stress 

N 
e' 

x           x x           x 

N 
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depends on the slenderness it is convenient to quantify slenderness in mathematical terms 
as:  

 slenderness λ = EL
i

 

where: 
LE is the effective buckling length, 

i is the radius of gyration = 
A
I    and 

I and A are the second moment of area about the axis of bending and the cross-sectional 
area of the section as before. 

6.3.1 Critical Stress for Short Columns  
Short columns fail by yielding/crushing of the material and σcr = fy, the yield stress of the 
material. If, as stated before, columns can be assumed short when the length is not greater 
than (10 × the least cross-section dimension) then for a typical rectangular column of 
cross-section (b × h) and length L  ≈ 10b, a limit of slenderness can be determined as 
follows: 

 radius of gyration      i = 
A
I  = 

( )
3

12
hb

b h× ×
 = 

2 3
b  

 slenderness     λ = 
L
i

 ≈ 
32

10
b

b  = 30 ∼ 35 

From this we can consider that short columns correspond with a value of slenderness less 
than or equal to approximately 30 to 35. 

6.3.2 Critical Stress for Slender Columns 
Slender columns fail by buckling and the applied compressive stress σcr << fy. 
The critical load in this case is governed by the bending effects induced by the lateral 
deformation.  

6.3.3 Euler Equation  
The Euler theory of premature failure due to flexural buckling is based on the differential 
equation of the elastic bending of a pin-ended column which relates the applied bending 
moment to the curvature along the length of the column, i.e. 
 

 Bending Moment   M = −
2

2
d zEI
dx

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

where 
2

2

d z
dx

⎛ ⎞
⎜ ⎟
⎝ ⎠

 approximates to the curvature of the deformed column. 

 
Since this expression for bending moment only applies to linearly elastic materials, it is 
only valid for stress levels equal to and below the elastic limit of proportionality. This 



472 Examples in Structural Analysis 
 
 

 

therefore defines an upper limit of stress for which the Euler analysis is applicable. 
Consider the deformed shape of the assumed centre-line of a column in equilibrium under 
the action of its critical load Ncr as shown in Figure 6.12. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.12 
 
The bending moment (M) at position x along the column is equal to (Ncr × z) = Ncr z 

and hence M = − 
2

2
d zEI
dx

⎛ ⎞
⎜ ⎟
⎝ ⎠

 =  Ncr z  ∴ 
2

2
d zEI
dx

⎛ ⎞
⎜ ⎟
⎝ ⎠

+ Ncr z = 0 

This is a 2nd order differential equation of the form:  
2

2 0d za bz
dx

+ =  

The solution of this equation can be shown to be: 
2π EIN n
L

= 2
cr 2  

where: 
n is 0,1,2,3 … etc. 
E, I and L are as before. 
 
This expression for Ncr defines the Euler critical load for a pin-ended column in flexural 
buckling. The value of n = 0 is meaningless since it corresponds to a value of Ncr = 0. All 
other values of n correspond to the 1st, 2nd, 3rd …etc. harmonics (i.e. buckling mode 
shapes) for the sinusoidal curve represented by the differential equation. The first three 
harmonics are indicated in Figure 6.13. 
The higher level harmonics are only possible if columns are restrained at the appropriate 
levels, e.g. mid-height point in the case of the 2nd harmonic and the third-height points in 
the case of the 3rd harmonic. 
The fundamental critical load (i.e. n = 1) for a pin-ended column is therefore given by: 

Euler Critical Load NE = 2

2π
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Figure 6.13 – Buckling mode-shapes for pin-ended columns 
 
The fundamental case can be modified to determine the critical load for a column with 
different end-support conditions by defining an effective buckling length equivalent to 
that of a pin-ended column by identifying points of contraflexure in the column. 

6.3.4 Effective Buckling Length (LE)  
The Euler critical load for the fundamental buckling mode is dependent on the buckling 
length between pins and/or points of contraflexure as indicated in Figure 6.13. In the case 
of columns which are not pin-ended, a modification to the boundary conditions when 
solving the differential equation of bending given previously yields different mode shapes 
and critical loads as shown in Figure 6.14. 
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Figure 6.14 – Effective buckling lengths for different end conditions 
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The Euler critical stress (σE) corresponding to the Euler buckling load for a pin-ended 
column is given by: 

 σ E = E

Area( )
N

A
 = 

AL
EIπ

2

2

    and    I = Ai2  ∴ σ E = 
( )

2

2/
E

L i
π

 

where (L /i) is the slenderness λ as before. 
 
Note: In practical design it is very difficult to achieve full fixity as assumed for the end 
conditions. This is allowed for by modifying the effective length coefficients e.g. 
increasing the value of 0.5L to 0.7L and 0.7L to 0.85L. 
 
A lower limit to the slenderness for which the Euler Equation is applicable can be found 
by substituting the stress at the proportional limit σe for σcr as shown in the following 
example with a steel column. 
Assume that σe  = 200 MPa (N/mm2)  and that E = 210 kN/mm2  
 

 ∴ 200 = 
( )

2 3

2
210 10

/L i
π × ×

     ∴ (L/i) = 
2 3210 10

200
π × ×

 ≈ 100 

 
In this case the Euler load is only applicable for values of slenderness ≥ ≈ 100 and can be 
represented on a stress/slenderness curve in addition to that determined in Section 6.3.1 for 
short columns as shown in Figure 6.15. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.15 

 
The Euler buckling load has very limited direct application in terms of practical design 
because of the following assumptions and limiting conditions: 
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• the column is subjected to a perfectly concentric axial load only, 
• the column is pin-jointed at each end and restrained against lateral loading, 
• the material is perfectly elastic, 
• the maximum stress does not exceed the elastic limit of the material, 
• there is no initial curvature and the column is of uniform cross-section along its 

length, 
• lateral deflections of the column are small when compared to the overall length, 
• there are no residual stresses in the column, 
• there is no strain hardening of the material in the case of steel columns, 
• the material is assumed to be homogeneous. 

 
Practical columns do not satisfy these criteria, and in addition in most cases are considered 
to be intermediate in terms of slenderness. 

6.3.5 Critical Stress for Intermediate Columns  
Since the Euler curve is unsuitable for values of 
stress greater than the elastic limit it is necessary 
to develop an analysis which overcomes the 
limitations outlined above and which can be 
applied between the previously established 
slenderness limits (see Figure 6.15) as shown in  
Figure 6.16.  
                       Figure 6.16  

6.3.6 Tangent Modulus Theorem  
Early attempts to develop a relationship for intermediate columns included the Tangent 
Modulus Theorem. Using this method a modified version of the Euler equation is adopted 
to determine the stress/slenderness relationship in which the value of the modulus of 
elasticity at any given level of stress is obtained from the stress/strain curve for the 
material and used to evaluate the corresponding slenderness. Consider a column 
manufactured from a material which has a stress/strain curve as shown in Figure 6.17(a).  
 
 
 
 
 
 
 
 
 
 
 
 
       (a)             (b) 

Figure 6.17 
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The slope of the tangent to the stress/strain curve at a value of stress equal to σ  is equal to 
the value of the tangent modulus of elasticity Et  (Note: this is different from the value of 
E at the elastic limit). The value of Et can be used in the Euler Equation to obtain a 
modified slenderness corresponding to the value of stress σ as shown at position ‘x’ in                   
Figure 6.17 (b): 
 

 σ = 
( )

2

2/
tE

L i
π

  ∴  Slenderness λ  at position x = (L/i) = 
σ
Eπ t

2

 

 
If successive values of λ for values of stress between σ e and σ y are calculated and plotted 
as shown, then a curve representing the intermediate elements can be developed. This 
solution still has many of the deficiencies of the original Euler equation.  

6.4 Perry-Robertson Formula 
The Perry-Robertson Formula was developed to take into account the deficiencies of the 
Euler equation and other techniques such as the Tangent Modulus Method. This formula 
evolved from the assumption that all practical imperfections could be represented by a 
hypothetical initial curvature of the column.  
As with the Euler analysis a 2nd order differential equation is established and solved using 
known boundary conditions, and the extreme fibre stress in the cross-section at mid-height 
(the assumed critical location) is evaluated. The extreme fibre stress, which includes both 
axial and bending effects, is then equated to the yield value. Clearly the final result is 
dependent on the initial hypothetical curvature. 
Consider the deformed shape of the assumed centre-line of a column in equilibrium under 
the action of its critical load Ncr and an assumed initial curvature as shown in Figure 6.18. 
 
 
                      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                  Figure 6.18 
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The bending moment at position x along the column is equal to = Ncr (z + zo) 
 

and hence the bending moment  M = −
2

2

d zEI
dx

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = Ncr (z + zo) 

            ∴ 
2

2

d z
dx

⎛ ⎞
⎜ ⎟
⎝ ⎠

 + crN z
EI

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = − cr
o

N z
EI

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

If the initial curvature is assumed to be sinusoidal, then  zo = a sin x
L

π⎛ ⎞
⎜ ⎟
⎝ ⎠

where a is the 

amplitude of the initial displacement and the equation becomes: 
 

        ∴ 
2

2

d z
dx

⎛ ⎞
⎜ ⎟
⎝ ⎠

 + crN z
EI

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = − crN
EI

⎛ ⎞
⎜ ⎟
⎝ ⎠

a sin
L
πx  

 
The solution to this differential equation is: 

        z = A cos crN x
EI

⎛ ⎞
⎜ ⎟
⎝ ⎠

 + B sin crN x
EI

⎛ ⎞
⎜ ⎟
⎝ ⎠

 + 
cr

2
cr

2

N a
EI

N
L EI
π⎛ ⎞−⎜ ⎟
⎝ ⎠

 sin ⎟
⎠
⎞

⎜
⎝
⎛

L
πx  

 
The constants A and B are determined by considering the boundary values at the pinned 
ends, i.e. when x = 0   z = 0  and when  x = L   z = 0. 
 
Substitution of the boundary conditions in the equation gives: 
  x = 0   z = 0   ∴ A = 0 

 x = L   z = 0  ∴ B sin crN L
EI

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 0  For crN
EI

⎛ ⎞
⎜ ⎟
⎝ ⎠

not equal to zero, then B = 0 

 z = 
cr

2
cr

2

N a
EI

N
L EI
π⎛ ⎞−⎜ ⎟
⎝ ⎠

 sin ⎟
⎠
⎞

⎜
⎝
⎛

L
πx   If the equation is divided throughout by crN

EI
⎛ ⎞
⎜ ⎟
⎝ ⎠

then  

  

 z = 
2

2
cr

sin

1.0

xa
L

EI
N L

π

π

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
−⎜ ⎟

⎝ ⎠

  The Euler load NE = 2

2

L
EIπ   ∴ z = 

cr

sin

1.0E

xa
L

N
N

π⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
−⎜ ⎟

⎝ ⎠

  

 
The value of the stress at mid-height is the critical value since the maximum eccentricity 
of the load (and hence maximum bending moment) occurs at this position:  
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when x = L / 2,   sin x
L

π⎛ ⎞
⎜ ⎟
⎝ ⎠

= 1.0  and zmid-height = 
E

cr

sin

1.0

xa
L

N
N

π⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
−⎜ ⎟

⎝ ⎠

 = 
E

cr

 

1.0

a
N
N

⎛ ⎞
−⎜ ⎟

⎝ ⎠

 

(Note: zo at mid-height is equal to the amplitude a of the assumed initial curvature). 

The maximum bending moment   M = Ncr (a + zmid-height) = Ncr a
E

cr

1 1
1.0N

N

⎡ ⎤
⎢ ⎥
⎢ ⎥+
⎢ ⎥⎛ ⎞

−⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 

The maximum combined stress at this point is given by: 

 σmaximum = 
axial load bending moment c

A I
×⎛ ⎞+⎜ ⎟

⎝ ⎠
 = cr

2

N M c
A Ai

×⎛ ⎞+⎜ ⎟
⎝ ⎠

 

where c is the distance from the neutral axis of the cross-section to the extreme fibres. 
The maximum stress is equal to the yield value, i.e. σmaximum = σy 

 ∴ σy = cr
2

N M c
A Ai

×⎛ ⎞+⎜ ⎟
⎝ ⎠

 = crN
A

 + Ncr a
E

cr

1 1
1.0N

N

⎡ ⎤
⎢ ⎥
⎢ ⎥+
⎢ ⎥⎛ ⎞

−⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

× 2

c
Ai

 

The average stress over the cross-section is the load divided by the area, i.e. (Ncr /A) 

 σy = σaverage + σaverage
E

E cr

N
N N

⎛ ⎞
⎜ ⎟−⎝ ⎠

× 2

ac
i

 = σaverage 2
cr

1 E

E

N ac
N N i

⎡ ⎤⎛ ⎞
+ ×⎢ ⎥⎜ ⎟−⎝ ⎠⎣ ⎦

 

 σaverage = (Ncr /A)  and  σ E = (NE /A) 

 σy = σaverage E
2

E average

1 ac
i

σ
σ σ

⎡ ⎤⎛ ⎞
+ ×⎢ ⎥⎜ ⎟⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦

 

The (ac/i2) term is dependent upon the assumed initial curvature and is normally given the 
symbol η. 

 σy = σaverage E

E average

1 ησ
σ σ

⎡ ⎤⎛ ⎞
+⎢ ⎥⎜ ⎟⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦

 

This equation can be rewritten as a quadratic equation in terms of the average stress: 
 σy (σ E − σaverage) = σaverage [(1 + η)σE − σaverage]  
 
 σ 2average − σaverage [σy + (1 + η)σE] + σyσ E = 0 
 
The solution of this equation in terms of σaverage  is: 

 σ average = 
( )[ ] ( )[ ]

0.2

411 Ey
2

EyEy σσσησσησ −++−++
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This equation represents the average value of stress in the cross-section which will induce 
the yield stress at mid-height of the column for any given value of η. Experimental 
evidence obtained by Perry and Robertson indicated that the hypothetical initial curvature 
of the column could be represented by; 
 

η = 0.3(LE/100i2) 
 
which was combined with a load factor of 1.7 and used for many years in design codes to 
determine the critical value of average compressive stress below which overall buckling 
would not occur. The curve of stress/slenderness for this equation is indicated in        
Figure 6.19 for comparison with the Euler and Tangent Modulus solutions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                  Figure 6.19 
 

6.5 European Column Curves  
Whilst the Perry-Robertson formula does take into account many of the deficiencies of the 
Euler and Tangent Modulus approaches, it does not consider all of the factors which 
influence the failure of columns subjected to compressive stress. In the case of steel 
columns for example, the effects of residual stresses induced during fabrication, the type 
of section being considered (i.e. the cross-section shape), the material thickness, the axis 
of buckling, the method of fabrication (i.e. rolled or welded), etc. are not allowed for. 
A more realistic formula of the critical load capacity of columns has been established 
following extensive full-scale testing both in the UK and in other European countries. The 
Perry-Robertson formula has in effect been modified and adopted by the Eurocodes.  
The Euler critical buckling stress and the ‘slenderness’ can be written as: 
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where λ is the slenderness and Lcr is the critical buckling length (LE). 
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This can be re-written such that the slenderness 
cr

Eλ π
σ

= . A graph of critical stress 

versus slenderness, i.e. the Euler curve is shown in Figure 6.20. 
 
The critical stress on the Euler curve is limited by the yield stress fy of the material. The 
slenderness corresponding with this value is known as the Euler slenderness (λ1). 
 
 
 
 
 
 
 
 
 
 
  
 

 
Figure 6.20 

6.9.9 Non-dimensional Slenderness  
EN 1993-1-1: Clause 6.3.1.2 defines a non-dimensional slenderness λ including material 
properties  (E,  fy) which affect the theoretical buckling load, (Note: λ = Lcr/i). 
The use of a non-dimensional slenderness allows a more direct comparison of 
susceptibility to flexural buckling for columns with different material strengths and 
requires only one set of curves. A typical non-dimensional buckling curve is shown in 
Figure 6.21. In the EN 1993-1-1, non-dimensional slenderness is defined in terms of forces 

rather than stresses as above, e.g. for flexural buckling y

cr

Af
N

λ =  and χ is a reduction 

factor. 
 
 
 
 
 
 
 
 
 
 
 
 
                  Figure 6.21 
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The buckling curves given in EN 1993-1-1 are the result of more than 1000 tests on 
various types of cross-sections with values of slenderness ranging from 55 to 160. The 
curves include the effects of imperfections such as initial out-of-straightness, residual 
stresses, eccentricity of applied axial load and strain-hardening.  
In total five curves, (a), (b), (c), (d) and (a)0 are given, the first four relating to the 
following steel grades: S 235, S 275, S 355 and S 420. The latter curve (a)0 relates to the 
higher grade steel S 460.  
 

♦ Curve (a): represents quasi-p erfect shapes e.g. some hot-rolled I-sections with 
buckling perpendicular to the major axis and hot-rolled hollow 
sections. 

♦ Curve (b): represents shapes with medium imperfections e.g. some hot-rolled I-
sections with medium flange thickness, welded I-sections with 
buckling perpendicular to the minor axis, most welded box-sections 
and angle sections. 

♦ Curve (c): represents shapes with many imperfections e.g. some hot-rolled I-
sections, welded I-sections with buckling perpendicular to the minor 
axis, thick welded box-sections, U, T and solid sections. 

♦ Curve (d): represents shapes with maximum imperfections e.g. hot-rolled I-
sections with very thick flanges and thick welded I-section buckling 
about the minor axis. 

 
The selection of a particular curve is given in EN 1993-1-1: 2005: Table 6.2 for various 
cross-sections as indicated in Figure 6.22. 
 
       
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
     Figure 6.22 
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The non-dimensional slenderness for flexural buckling is presented in two forms in         
EN 1993-1-1: Clause 6.3.1.3 of the code: 
 

 
2 2

y cr y cr cr
2 2 2

1

EN 1993-1-1: Equation (6.50)      

i.e. = = =
Af L f L Lλ

iλπ EI π Ei

y cr

cr 1

 =                        λ
λ

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

Af L
N i

       

 

 
2

1 y
y y

235 235 and  =       = E f
f f

πλ ε
ε

= ∴       and    

 The Euler slenderness 
2

1
210000 93,9
235

πλ ε ε×= =  

 
There is very little guidance given in EN 1993-1-1 in relation to Lcr, the critical buckling 
length, other than in Annex BB for some triangulated and lattice structures. Engineers can 
use the recommendations given in BS 5950: Part 1 as indicated in Figure 6.14 for no-sway 
columns and in Figure 6.23 for columns in which sway can occur. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.23 

 
The buckling curves give values of the reduction factor ‘χ’ to be applied to the 
compressive resistance of an element cross-section as a function of the non-dimensional 
slenderness and is defined by EN 1993-1-1: Equation (6.49) as follows: 
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α  is an imperfection factor which is dependent on the shape of the element cross-section, 
the axis of buckling and the fabrication process, (hot-rolled, welded or cold-formed) 
and increases with increasing degree of imperfection as indicated in Table 6.1 below. 

 
Imperfection factors for buckling curves 

Buckling curve a0 a b c d 
Imperfection factor α 0.31 0.21 0.34 0.49 0.76

 
Table 6.1  

 
The formulation of EN 1993-1-1: Equation (6.49) is as follows: 
 
A pin-ended column including an assumed initial deformation of magnitude zo is shown in                
Figure 6.24.  
 
 
 
Assuming this to have a sinusoidal 
wave form, it can be written as: 
 

 o  = sin xz a
L

π    

 
where a is the amplitude of the 
sine wave. The differential 
equation representing the final 
deformation is:  
 

 ( )2
o

2 0
N z zd z

EId x
+

+ =   

  
     Figure 6.24 
 
Substituting for the initial imperfection z0 and applying the boundary conditions, (the 
member is pinned at the ends), the solution of this 2nd order differential equation is: 
 

 ( )cr
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1
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N N L
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−
  

 
The maximum total deflection ‘e’ of the column occurs when x = L/2 and is given by: 

 emid-height = zo + zmid-height  ∴ ( ) ( )mid-height
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The eccentricity of the applied axial load due to the deformation induces a secondary 
bending moment equal to (N × e). The maximum stress at the mid-height position (fy) is 
then given by: 
 

 y b b N N e N N A e Aef
A W A A W W

σ σ× ×⎛ ⎞= + = + × = +⎜ ⎟
⎝ ⎠

  

Substituting for ( )mid-height
b cr

  = 
1

ae e
N N

=
−

 and   N/Ncr = σb/σcr 

 ( )
b

y b
b cr

 
1

a Af
W

σσ
σ σ

= + ×
−

    where σcrit is the Euler critical stress = π2E/λ2 

     = ( )( )cr b y b b cr
Af a

W
σ σ σ σ σ− − =   

 
This equation can be further modified to include other effects such as accidental 
eccentricity of the applied load, and residual stresses. The classical form of this equation, 
which is known as the Ayrton-Perry formula is: 
 
 ( )( )cr b y b b crfσ σ σ ησ σ− − =   

  
where η is a factor to allow for the imperfections and σb is the buckling stress. An 
alternative representation of this equation is given by dividing by ( fy)2 

 

 cr b b b cr

y y y y y
1  

f f f f f
σ σ σ σ ση
⎛ ⎞⎛ ⎞

− − =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

  

The reduction factor ‘χ’ = σb/fy  and y y2

cr cr
  

f f
λ λ

σ σ
= ∴ =  

 
Multiplying the equation above by fy/σcr gives the following quadratic equation in χ: 
 
 ( )( ) ( )2 2 2 21  1        1  + 1 = 0  χ λ χ ηχ λ χ λ η χ− − = ∴ − + +   

 
Assuming ( )0η α λ λ= − , the smallest solution for this quadratic equation is: 

 

 
( ) ( ){ }22 2 2

0 0

2

1 1 4

2

α λ λ λ α λ λ λ λ
χ

λ

⎡ ⎤+ − + − + − + −⎣ ⎦
=   

 
 Let 0 0,2λ =  and ( ) 2 = 0,5 1+ 0,2α λ λ⎡ ⎤Φ − +⎣ ⎦   

Multiplying by the conjugate, the equation for χ can be re-written as: 



 Buckling Instability 485 

 

[ ]{ } [ ]{ }
[ ]{ } ( )

( )

2 22 2
2 2 2

2 2 2 2 22

2 2 4 2 2 4 4 4 4
2 2 22 2 4

   

λ λ λχ
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This equation is given in EN 1993-1-1: Clause 6.3.1.2 with the value of  0 0.2λ =  (i.e. the 
end of the horizontal plateau) and factor α for both geometrical and mechanical 
imperfections as given in EN1993-1-1: Table 6.1, i.e.   

 
2 2

1   but   1.0     χ χ
λ

= ≤
Φ + Φ −

 EN 1993-1-1: Equation (6.49) 

 
where     ( ) 2 = 0.5 1+ 0.2α λ λ⎡ ⎤Φ − +⎣ ⎦   
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=

 

The value of the reduction factor χ can be determined using EN 1993-1-1:                
Equation (6.49), in EN 1993-1-1: Figure 6.4 (see Figure 6.25 in this text), or alternatively 
from Table 6.2 given below. (Note: this table is not given in EN 1993-1-1.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.25 – Extract from EN 1993-1-1:2005 
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Reduction Factor χ 

 

Reduction Factor χ 

Curve 
(a) 

Curve 
(b) 

Curve 
(c) 

Curve 
(d)

Curve 
(a)

Curve 
(b)

Curve 
(c)

Curve 
(d) 

0,1 1,00 1,00 1,00 1,00 1,6 0,33 0,30 0,28 0,25 

0,2 1,00 1,00 1,00 1,00 1,7 0,30 0,27 0,25 0,22 

0,3 0,97 0,96 0,95 0,92 1,8 0,27 0,25 0,23 0,21 

0,4 0,95 0,92 0,89 0,85 1,9 0,24 0,23 0,21 0,19 

0,5 0,92 0,88 0,84 0,78 2,0 0,22 0,21 0,19 0,17 

0,6 0,89 0,83 0,78 0,71 2,1 0,20 0,19 0,18 0,16 

0,7 0,84 0,78 0,72 0,64 2,2 0,18 0,17 0,16 0,15 

0,8 0,79 0,72 0,66 0,58 2,3 0,17 0,16 0,15 0,14 

0,9 0,73 0,66 0,60 0,52 2,4 0,15 0,15 0,14 0,13 

1,0 0,66 0,59 0,54 0,46 2,5 0,14 0,14 0,13 0,12 

1,1 0,59 0,53 0,48 0,41 2,6 0,13 0,13 0,12 0,11 

1,2 0,53 0,47 0,43 0,37 2,7 0,12 0,12 0,11 0,10 

1,3 0,47 0,42 0,38 0,33 2,8 0,11 0,11 0,10 0,10 

1,4 0,41 0,38 0,35 0,30 2,9 0,11 0,10 0,10 0,09 

1,5 0,37 0,34 0,31 0,27 3,0 0,10 0,10 0,09 0,08 

 
Table 6.2 

 
The design of the majority of concrete and timber column members is usually based on 
square, rectangular or circular cross-sections, similarly with masonry columns square or 
rectangular sections are normally used. In the case of structural steelwork there is a wide 
variety of cross-sections which are adopted, the most common of which are shown in 
Figure 6.26. 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.26 
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In all cases, irrespective of the material or member cross-section, an assessment of end and 
intermediate restraint conditions must be made in order to estimate critical buckling 
lengths (Lcr) and hence the non-dimensional slenderness λ .  
It is important to recognise that the critical buckling length is not necessarily the same 
about all axes. Typically, it is required to determine two Lcr and λ  values (e.g. Lcr,y, yλ  

and Lcr,z, zλ ), and subsequently determine the critical compressive stress relating to each 
one; the lower value being used to calculate the compressive resistance of a member. In 
the case of angle sections other axes are also considered. The application of the Ayrton-
Perry formula to various steel columns is illustrated in Examples 6.1 to 6.4 and      
Problems 6.1 to 6.5. 

6.6 Example 6.1  Slenderness 
The hollow square column section shown in Figure 6.27 is pinned about both the y-y, and 
z-z axes at the top and fixed about both axes at the bottom. An additional restraint is to be 
provided to both axes at a height of L1 above the base. Determine the required value of L1 
to optimize the compression resistance of the section. 

For optimum compression resistance the maximum non-
dimensional slenderness for lengths AB and BC must be 
the same. i.e. ABλ = BCλ   

y cr cr

cr 1
Note:  =   i.e.    

Af L L
N i i

λ λ α
λ

=  and hence: 

Lcr,AB/iyy = Lcr,BC/izz 
 
Since the section is square iyy = izz and 
Lcr,AB = Lcr,BC 
 
Figure 6.27 
 

Consider the critical lengths of AB and BC 
 Lcr,AB = 0.85L1  and  Lcr,BC = 1.0L2  ∴ 0.85L1 = 1.0L2 
 
 The total height of the column (L1 + L2) = 6.0 m 
   
       ∴ L1 + 0.85L1 = 6.0 and hence  L1 = 3.24 m 
                                           L2 = 2.76 m 

                       The required value of L1 = 3.24 m 

6.7 Example 6.2  Rolled Universal Column Section 
A column which is subjected to a concentric axial load ‘N’ is shown in Figure 6.28. 
Restraint against lateral movement but not rotation, is provided about both axes at the top 
and the bottom of the column. Additional lateral restraint is also provided about the z-z 
axis at mid-height as shown. 
Considering flexural buckling only and using the data provided, determine the 
compression resistance of the column using the EN 1993-1-1 flexural buckling formulae.  

  L
1  

 
 

L 2
 

6.
0 

m
 

Fixed support 

Pinned support 
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Data: 
Yield Stress  fy = 355 MPa (N/mm2)   E = 210 kN/mm2  

 
 
  
 
 
 
 
 

           
   
 
 
 Figure 6.28 

 
Solution: 
EN 10025-2:2004 
Table 7 For S355 steel thickness tf = 14.2 mm   (≤ 16 mm)  
 fy = 355 MPa       
 (Note: for thicknesses of steel ≤ 16 mm, fy = steel grade) 
 Section classification for a 203 x 203 x 60 UKB S355 (compression) 
EN 1993-1-1:2005  
 y235 235 355 0,81fε = = =  

Table 5.2(1) Web: 
 c = [h − 2(tf + r)] = [209.6 − 2 × (14.2 + 10,2)] = 160.8 mm   
 c/t = (160.8/9.4) = 17.1 
 33ε = (33 × 0,81) = 26.73   (See Figure 6.5 in this text) 
 c/t < 33ε  ∴ The web is Class 1 
Table 5.2(2) Flange: 
 c = [b − (tw  + 2r)]/2 = [205.8 − (9.4 + 2 × 10,2)]/2 = 88.0 mm 
 c/t = (88.0/14.2) = 6.20 
 9ε = (9 × 0,81) = 7.29  (See Figure 6.5 in this text) 
 c/t < 9ε  ∴ The flanges are Class 1  
  Section is Class 1 
 Flexural buckling resistance 

Clause 6.3.1.3(1) y cr

cr 1

1Af L
N i

λ
λ

= = ×  where 1 93.9 93.9 0.81 76.06λ ε= = × =  

 
 Consider the y-y axis:  assume Lcr,y = (1.0 × 4.50) = 4.50 m 

Equation (6.50) cr
y

y 1

1 4500 1 0.66
89.6 76.06

L
i

λ
λ

= × = × =   

Table 6.2 h/b = 209.60/205.80 = 1.02 < 1,2   and tf < 100 mm 
 

Section 
Property 

Section 
203 × 203 × 60 UKC 
 Universal Column 

Cross-sectional area (A) 76.40 cm2 
Radius of gyration (izz) 5.20 cm 
Radius of gyration (iyy) 8.96 cm 
Depth of the section (h) 209.60 mm 
Width of the section (b) 205.80 mm 
Flange thickness (tf) 14.20 mm 
Web thickness (tw) 9.40 mm 
Root radius (r) 10.20 mm 

2.
25

 m
   

   
   

   
 2

.2
5 

m
 

4.
5 

m
 

pinned base 

NAssume pinned 
at the top 

z       z 

y

y
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 For buckling about the y-y axis use curve b 
  (Figure 6.22 in this text) 

Equation (6.49) 
2 2

1  but   1.0     χ χ
λ

= ≤
Φ + Φ −

  

  where     ( ) 2 = 0.5 1+ 0.2α λ λ⎡ ⎤Φ − +⎣ ⎦   

 
Table 6.1 Imperfection factor for curve b: α = 0.34   
 (see Figure 6.24 in this text)  
 
 ( ) 2= 0.5 1+0.34 0.66 0.2 0.66 0.796⎡ ⎤Φ − + =⎣ ⎦  

 
2 2

1 = 0.81  but   1,0     
0.796 0.796 0.66

χ χ= ≤
+ −

 

 
 Alternatively use the curves given in EN 1993-1-1: Figure 6.4  
 (see Figure 6.26 in this text) 
 
 Consider the z-z axis:  assume Lcr,z = (1.0 × 2.25) = 2.25 m 

Equation (6.50) cr
z

z 1

1 2250 1 0.57
52.0 76.06

L
i

λ
λ

= × = × =   

Table 6.2 h/b = 209.60/205.80 = 1.02 < 1,2   and tf < 100 mm 
 
 For buckling about the z-z axis use curve c 
  (Figure 6.22 in this text) 
  
Table 6.1 Imperfection factor for curve b: α = 0.49   
 (see Figure 6.24 in this text)  
Equation (6.49) ( ) 2= 0.5 1+0.49 0.57 0.2 0.57 0.753⎡ ⎤Φ − + =⎣ ⎦  

 
2 2

1 = 0.80  but   1,0     
0.753 0.753 0.57

χ χ= ≤
+ −

 

 
 Alternatively use the curves given in EN 1993-1-1: Figure 6.4  
 (see Figure 6.26 in this text) 
 

Critical value χz ≈ 0,80 

Equation (6.47) Nb,z,Rd = y
3

M1

0,80 7640 355 2169.8 kN
1,0 10

Afχ
γ

× ×= =
×  

 

The maximum design axial load with respect to flexural buckling = 2169.8 kN 
 

Note: EN 1993-1-1: Clause 6.3.1.4(1) ‘For members with open cross-sections account 
should be taken of the possibility that the resistance of the member to either torsional or 
torsional-flexural buckling could be less than its resistance to flexural buckling.’ 
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6.8 Example 6.3  Compound Column Section 
A column ABCE is shown in Figure 6.29. The column is 15.0 m long and supports a roof 
beam DEF at E. The beam carries a load of w kN/m length along its full length DEF. The 
column is fabricated from a 152 × 152 × 23 UKC with plates welded continuously to the 
flanges as shown. Using the data given and considering only flexural buckling, determine: 
 
 (i)  the compression resistance of the column,  and 
 (ii)  the maximum value of w which can be supported. 
 
   Data: 

Section classification:  Class 1 
 
Yield Stress fy = 275 MPa  
 
Young’s Modulus E = 210 kN/mm2 

 
Buckling curve: 
Assume a welded box section where 
all the longitudinal welds are near 
the corners of the cross-section. 
 
For both the y–y axis and the z–z 
axis use curve b. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 
 

Figure 6.29 

Section 
Property 

Section
152 × 152 × 23 UKC 
 Universal Column 

Cross-sectional area (A) 29.2 cm2 
Radius of gyration (izz) 3.70 cm 
Radius of gyration (iyy) 6.54 cm 
Depth of the section (h) 152.40 mm 
Width of the section (b) 152.20 mm 
Flange thickness (tf) 6.80 mm 
Web thickness (tw) 5.80 mm 
Root radius (r) 7.60 mm 
2nd Moment of area Iyy 1250.0 cm4 
2nd Moment of area Izz 400.0 cm4 
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Solution: 
(i) 
A = [2920 + 2 × (10 × 200)] = 6.92 × 103 mm2  

IA–A = ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
×+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
××+×× 42

3

1040028120010
12

102002 .  = 30.41 × 106 mm4 

IB–B = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ××+×
12
200102101250

3
4  = 25.83 × 106 mm4 

iA–A = 3

6

10926
104130

×
×

.
. = 66.29 mm;    iB–B = 3

6

10926
108325

×
×

.
.  = 61.10 mm 

 
Flexural buckling resistance 
Table 5.2  ε = (235/275)0.5 = 0.92 

Clause 6.3.1.3(1) y cr

cr 1

1Af L
N i

λ
λ

= = ×  where 1 93.9 93.9 0.92 86.39λ ε= = × =  

 
 Consider the A-A axis:   

Lcr,A ≥ (0.85 × 2.0) = 1.7 m 
      ≥ (1.0 × 4.0) = 4.0 m 
      ≥ (1.0 × 9.0) = 9.0 m 

The critical buckling length Lcr,A = 9.0 m 

Equation (6.50) cr
A

A 1

1 9000 1 1.57
66.29 86.39

L
i

λ
λ

= × = × =   

 
 Consider the B-B axis:   

Lcr,B ≥ (1.0 × 6.0) = 6.0 m 
      ≥ (0.85× 9.0) = 7.65 m 

The critical buckling length Lcr,B = 7.65 m 

Equation (6.50) cr
B

B 1

1 7650 1 1.45
61.10 86.39

L
i

λ
λ

= × = × =   

 
 Since the same buckling curve is used for both axes the largest value 

of λ
 
is used to determine the reduction factor, i.e. λ

 
= 1.57 

Equation (6.49) 
2 2

1  but   1.0     χ χ
λ

= ≤
Φ + Φ −

  

  where     ( ) 2 = 0.5 1+ 0.2α λ λ⎡ ⎤Φ − +⎣ ⎦   

 
Table 6.1 Imperfection factor for curve b: α = 0.34   
 (see Figure 6.24 in this text)  
 ( ) 2= 0.5 1+0.34 1.57 0.2 1.57 1.97⎡ ⎤Φ − + =⎣ ⎦  
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2 2

1 = 0.32  but   1,0     
1.97 1.97 1.57

χ χ= ≤
+ −

 

 Alternatively use the curves given in EN 1993-1-1: Figure 6.4  
 (see Figure 6.26 or Table 6.1 in this text) 
 

Critical value χz ≈ 0,32 
 

Equation (6.47) Nb,z,Rd = y
3

M1

0,32 6920 275 608.96 kN
1,0 10

Afχ
γ

× ×= =
×  

 

The maximum design axial load with respect to flexural buckling = 608.96 kN 
 
(ii) 
 
 
 
                     Figure 6.30 
 
The maximum value of the vertical reaction at E = 608.96 kN 
+ve ΣMF = 0  (15.0 × VE) − (w × 202/2) = 0 
      ∴ wmaximum = (15.0 × 608.96) / 200 = 45.67 kN/m  

6.9 Built-up Compression Members 
The advantage of using built-up columns from various different elements e.g. as shown in        
Figure 6.31, is that they produce relatively light members with relatively high radii of 
gyration. The buckling of each individual element must be verified in addition to the 
overall column section. Built-up columns are more flexible than solid columns with the 
same 2nd moment of area and in addition, the shear stiffness is much smaller. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  (a)               (b) 
           Figure 6.31             
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Consider the effect of shear deformation on the elastic critical buckling load of a column.  
 
The moment at a point along the column  M = Nz     

The shear at a point along the beam dM dzV N
dx dx

= =   

The deflection at mid-height is given by:  z = z1 + z2 where z1 is due to the bending 
moment and z2 is due to the shear force. 

2
1

2
1The curvature due to bending  is given by d z M Nz
R EI EIdx

= = − = −   

The slope due to the shear force V is given by: 2  dz V
dx GA

β=  

where  
β is a shape factor related to the cross-section (= 1,2 for a rectangle), 
A is the cross-sectional area and G is the shear modulus. 
 
The curvature due to the shear force V is given by: 

 
2 2

2
2 2

d z dV N d z
GA dx GAdx dx
β β= =          

2

2Note:  ;dz dV d zV N N
dx dx dx

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
     

The total curvature due to the bending moment and the shear force is given by: 

 
2 2 2 2

1 2
2 2 2 2

d z d z d z Nz N d z
EI GAdx dx dx dx

β= + = − +   

 
This 2nd order differential equation can be re-written as: 

 ( )
2

2  = 0
1

d z N z
N GA EIdx β

=
−

  

 
This can be solved  to give the critical value for N: 

 ( )
2

2= 
1

N
N GA EI L

π
β−

   

 
Solving for the 2nd order differential above equation results in an expression for the elastic 
critical load including both bending and shear deformations, i.e. 
 

 cr,M,V cr
cr

cr V V

1 1
1 1 1

N N N
N S S

= =
+ +

    

where: 

Ncr is the Euler critical buckling load = 
2

2
EI

L
π  

SV is the shear stiffness of the column = GA
β
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Clearly Ncr,M,V <  Ncr. For solid rolled cross-sections, SV is much greater than Ncr  and can 
be neglected in design. In the case of built-up columns, SV is much smaller than Ncr and 
can be very significant. 

6.9.1 Shear Stiffness for Laced Columns 
Consider a built-up column with N-shaped 
lacing as shown in Figure 6.32. The shear 
stiffness is determined by considering the 
elongation of one diagonal and one 
horizontal member as follows: 
 

 
v

1  
S a

δγ= =    

 
where the flexibility of the system is 
represented by 1/Sv. 
 
 The value of the horizontal 
displacement δ caused by an applied unit 
load can be determined using the theory 
of virtual work. 
          Figure 6.32 

 δ  = δhorizontal member  + δdiagonal member  = 
2u L

AE∑      

  

 
2 2 2

v v d d

v d

u L N L N L
AE A E A E

δ = = +∑  ∴ ( )22 3
0o o

2
v d v o d

1,0 d h dh h d
A E A E A E h A E

δ ×= + = +  

where: 
Nv = 1,0;     Lv = ho;      Nd = d/ho;     Ld = d;    Av and Ad are the shear areas of the laces. 
  

 Flexibility    v
v

1         The shear stiffness    aS
S a

δγ
δ

= = ∴ =  

 δ can be re-written as: 
3 3

d o
2 3
o d v

1d A h
h A E A d

δ
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

           

 and the shear stiffness as: 
2

d
v 3

3 d 0
3

v

=
1

a ah A ES
A hd
A d

δ
=

⎛ ⎞
+⎜ ⎟

⎝ ⎠

 for each plane of lacings. 

 
This is indicated in EN 1993-1-1: Clause 6.4.2.1/Figure 6.9. Similar values are also given 
for alternative lacing systems.  
 
 

N-shaped lacing 
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Determination of the design load in a built-
up column is based on the assumption that it 
can be represented by a simple elastic 
column with an equivalent initial 
imperfection and shear flexibility as shown 
in Figure 6.33.  
The initial curvature is assumed to be 
sinusoidal, i.e. 
 
  zo = eo sin(πx/l)        
 
where eo is the bow imperfection equal to 
l/500 as indicated in EN 1993-1-1:        
Clause 6.4.1(1). 
 
 
The initial geometric imperfections are amplified by the application of a design axial load 
N such that: 

 ( ) ( ) ( )o
o

cr,M,V cr,M,V

1  sin
1 1

ez x z x x lN N
N N

π= =
− −

    

 
At the mid-span point of the column, the axial load is N and the bending moment is given 
by: 

 ( )( ) o
0,5L

cr,M,V
1

e NM N z N
N

= × =
−

 
 

         

The maximum axial load in the most loaded chord member is given by: 

 o

cr,M,V

1 
2 2 1

N M e hN N Nh
N

⎛ ⎞
⎜ ⎟
⎜ ⎟= + = +
⎜ ⎟−⎜ ⎟
⎝ ⎠

 where cr,M,V cr
cr

V

1

1
N N N

S

=
+

  

 

cr

v

cr,M,V cr cr v
cr

cr

V

1
1 1 1 11

1

NN
SN N N N

N N N SN N
S

⎛ ⎞
+⎜ ⎟⎛ ⎞ ⎝ ⎠− − = − = − −⎜ ⎟⎜ ⎟

⎝ ⎠
+

=        

 

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟− −⎜ ⎟
⎝ ⎠

o

cr v

1
2 2 1

N M e hN = + = N +  N Nh
N S

 

This is similar to the formulation given in EN 1993-1-1: Equation (6.69). 

Figure 6.33 
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In the case of laced columns the effective length is taken as equal to the system length 
between the lacing connections; in battened columns (disregarding any possible end 
restraint) the effective length of the chords is taken as equal to the distance between the 
centre lines of the battens.  
 The forces in the lacing members and in the chords adjacent to the ends are derived 
from the shearing force V and the axial load N.  
 
The shear force at the ends of a built-up column is given by: 
 

 1
1-

⎛ ⎞
⎜ ⎟
⎝ ⎠

0
cr,M.Vx=0

dz π πV = N = Ne × = M
dx l N N l

   

 
This is similar to the formulation given in EN 1993-1-1: Equation (6.70). 
 
The axial force in the diagonal lacings of a built-up column is given by: 
 

 
0

VdN
nh

=  

 
In the case of battened columns the chords, battens and their connections to the chords, are 
designed to resist the bending moments, shear forces and axial loads indicated in         
Figure 6.34 
 
 
 
 
 
 
 
 
 
 
 Figure 6.34 
 
 

6.10 Example 6.4  Laced Built-up Column  
The laced built-up column shown in  Figure 6.35 is required to support a design axial load 
of 4000 kN. The ends of the column are assumed to be pinned and the laces occur on both 
faces.  Using the design data given:  
 

(i) determine the section classification for chord members, 
 

(ii) verify the suitability, or otherwise, of the compression resistance of the chord 
members, 

ho 

a 

a/2

a/2 

V/2 V/2 

V/2 V/2 

N/2 N/2

N/2 +Va/ho N/2 − Va/ho 

Va/ho 

Va/ho Va/2

Va/2 
Va/4 Va/4 



 Buckling Instability 497 

 
(iii) verify the suitability, or otherwise, of the  457 x 191 x 74 UKB S275 for the 

flexural buckling resistance chord section, 
 

(iv)  verify the suitability, or otherwise, of the  50 mm x 10 mm thick S275 flat plates 
for the flexural buckling resistance of the laces. 

  
Design data: 
Chords    457 x 191 x 74 UKB section 
Lacings 60 mm wide x 12 mm thick flat plates welded to flanges at 850 mm centres 
Centre-to-centre distance of UKB sections (ho) 550 mm 
 
Section properties of each 457 x 191 x 74 UKB S275 chord member: 
h = 457.0 mm b = 190.4 mm tw = 9.0 mm      tf = 14.5 mm  Ag = 94.60 cm2        

iy = 18.80 cm iz = 4.20 cm r = 10.2 mm Iy = 33300 cm4  Iz = 1670 cm4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6.35 
 
Solution: 
 Length of the lacings  d = (5502 + 4252)0.5 = 695.07 mm 
 
EN 10025-2:2004 
Table 7 For S275 steel thickness tf = 14.5 mm  
 fy = 275 MPa  and    fu = 410 MPa 
 
EN 1993-1-1:2005  
Clause 6.1(1) γM0 = 1,0 
Clause 3.2.6 E = 210000 MPa,      G = 81000 MPa 
 
(i) Section classification for a 457 x 191 x 74 UKB S275 (compression) 
 y235 235 275 0.92fε = = =  

z 

z 

z

z

y y 8,
5 

m
 

NEd = 4000 kN 

NEd = 4000 kN 

Lacing at  850 mm 
centres 

85
0 

m
m

 

60 mm × 12 mm thick laces

457 x 191 x 74 UKB chord sections 

85
0 

m
m

 

550 mm 
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Table 5.2(1) Web: 
 c = [h − 2(tf + r)] = [457.0 − 2 × (14.5 + 10.2)] = 407.6 mm   
 c/t = (407.6/9,0) = 45.29 
 42ε = (42 × 0.92) = 38.64 
 c/t > 42ε  ∴ The web is Class 4 
 
Table 5.2(2) Flange: 
 c = [b − (tw  + 2r)]/2 = [190.4 − (9.0 + 2 × 10.2)]/2 = 80.50 mm 
 c/t = (80.50/14.5) = 5.55 
 9ε = (9 × 0.92) = 8.28 
 c/t < 9ε  ∴ The flanges are Class 1  
  Section is Class 4 
 
Determine the effective area of the web in accordance with EN 1993-1-5: Clause 4.4. 
EN 1993-1-5:2006 
Clause 4.4(1)  ‘The effective area, Aeff, is determined assuming that the cross-section 

is subject only to stresses due to uniform axial compression.’ 
   Ac,eff = ρAc 

   Consider a single chord member: 

   The plate slenderness is given by: p
σ28.4

b t
k

λ
ε

=  

Table 4.1 For internal compression elements with uniform compression 

 ψ = σ2/σ1 = 1.0   and    kσ = 4.0   ∴ p
45.29 0.867

28.4 0.92 4.0
λ = =

× ×
 

Clause 4.4(2) Reduction factor for plate widths (ρ) 
  ρ = 1.0  for p 0 5 0 085 0 055   . . .λ ψ≤ + − = 0.673 

 
( )p

2
p

0,055 3
1.0

λ ψ
ρ

λ
− +

= ≤ for p 0 5 0 085 0 055   . . .λ ψ> + −  

 For the web:  

 p 0.867λ =   and ( )
2

0.867 0.055 3 1.0
0.861 1.0

0.867
ρ

− +
= = ≤  

 beff  = (0.861 × 407.60) = 350.94 mm  
 Length of the non-effective zone = 56.66 mm 
  
 Reduction in the area = (407.60 − 350.94) × 9.0 = 509.94 mm2 
 Ac,eff, = (Ag − 5.10) = (94.60 − 5.10) = 89.50 cm2      
 
 Reduction in second moment of area  Iy  

 = 
3

4 49.0 56.66 13.642 10  mm
12

× = ×  

 Ieff,y = (33300 − 13.642) ×104 = 33286.36 × 104 mm4 
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 Reduction in second moment of area  Iz  

 = 
3

4 456.66 9.0 0.344 10  mm
12

× = ×  

 Ieff,z = (1670.0 − 0.344) ×104 = 1669.66 × 104 mm4 
 
(ii)  Verification for compression resistance of the chord members 
EN 1993-1-1:2005  

Equation (6.11) eff y
c,Rd

M0
  for Class 4 cross-sections

A f
N

γ
=  

 Cross-sectional area A = (2 × 8950) = 17.90 × 103 mm2 

 Verification: 
3

c,Rd 3
17.9 10 275 4922.5 kN > 4000 kN

1.0 10
N × ×= =

×
 

The chord section is satisfactory with respect to the compression resistance  
 
(iii)  Verification for flexural buckling resistance of the chord members 
EN 1993-1-1:2005  
 Second moment of area of built-up section: 
Clause 6.4.2.1(4) 2

eff o ch= 0.5I h A  = 0.5 × 5502 × 8950 = 1353.68 × 106 mm4 
 Shear stiffness of lacings: 

Figure 6.9  
2

d 0
v 32
  nEA ahS

d
=    where     Ad = (50 ×10) = 500 mm2  and  n = 2 

 
2

v 3
2 210 500 850 550 80398.5 kN/mm

2 695.07
S × × × ×= =

×
 

 
 Chord design force at mid-height: 

Clause 6.4.1(6) Ed 0 ch
ch,Ed Ed

eff
0.5

2
M h AN N

I
= +   

 

Equation (6.69)  where 
1

Ed o Ed
Ed

Ed Ed

cr v

   
1

N e MM N N
N S

+=
− −

and 
2

eff
cr 2    EIN

L
π=  

 1
Ed 0M =    and   2Ed 0 ch Ed

eff ch
eff 0

 when  = 0.5
2

M h A M I h A
I h

=      

 
Clause 6.4.1(1) Bow imperfection e0 = L/500 = 8500/500 = 17 mm 

 
2 2 6

eff
cr 2 2

210 1353.68 10 = 38832.6 kN    
8500

EIN
L

π π × × ×= =  

 

 
1

Ed o Ed
Ed

Ed Ed

cr v

4000 17.0 0 80260.5 kNmm   4000 40001 1
38832.6 80398.5

N e MM N N
N S

+ × += =
− − − −

 =   
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( )

Ed 0 ch Ed
ch,Ed Ed Ed

eff 0
0.5 0.5

2
80260.5         0.5 4000 2145.93 kN

550

M h A MN N N
I h

⎛ ⎞ ⎛ ⎞
= + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= × + =

 

Design axial load Nch,Ed = 2145.93  kN 
 

Clause 6.3.1.3(1) 

eff y

eff y cr

cr y 1

A
A f L A
N i

= = ×λ
λ

where 1
23593.9 93.9 86.80
275

λ ε= = × =  

 
 Consider the y-y axis:  assume Lcr,y = 8.50 m 
 Use the radius of gyration based on the gross cross-section 
 iy = 18.80 cm 
 

Equation (6.50) cr
y

y 1

1 8500 1 0.52
188.0 86.8

L
i

λ
λ

= × = × =  

Table 6.2 h/b = 457.0/190.4 = 2.40 ≥ 1.2   and tf < 40 mm 
 For buckling about the y-y axis use curve a 
Figure 6.4  χy ≈ 0.92 
  
 Consider the z-z axis:  assume Lcr,z = 850 mm 
 Use the radius of gyration based on the gross cross-section 
 iz = 4.20 cm 
 

Equation (6.50) cr

z 1

1 850 1 0.23
42.0 86.8z

L
i

λ
λ

= × = × =   

Table 6.2 h/b = 457.0/190.4 = 2.40 ≥ 1.2   and tf < 40 mm 
 For buckling about the z-z axis use curve b 
Figure 6.4  χz ≈ 0.98 

Critical value χy ≈ 0.92 
 

Equation (6.47) Ny,b,Rd = y eff y
3

M1

0.92 8950 275 2264.35 kN
1.0 10

A fχ
γ

× ×= =
×  

 

Equation (6.46) Verification: Ed

b,Rd

2145.93 0.95
2264.35

N
N

= = < 1,0 

 
The chord section is satisfactory with respect to the flexural buckling resistance  

(Note:  the torsional and torsional–flexural buckling resistance should also be checked, 
e.g. when using channel sections.) 
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(iv)  Verification for flexural buckling resistance of the laces 
EN 1993-1-1:2005  

 
The axial force in the laces NEd is given by: 

  Ed
Ed

0

V dN
nh

=  (see Figure 6.33) 

Equation (6.70) Ed
Ed

80260.5 29.66 kN
8500

MV
L

π π= = =  

 ∴ Ed
29.66 695.07 18.74 kN

2 550
N ×= =

×
 

 
 Consider the z-z axis:  assume Lcr,z = d = 695.07 mm 

 iy = d,z
d,z d

d
12 12.0 12 =3.46 mm

I
i h

A
= = =  

Equation (6.50) cr
d,z

z 1

1 695.07 1 2.31
3.46 86.8

L
i

λ
λ

= × = × =   

Table 6.2 For solid sections use buckling curve c for any axis 
Figure 6.4  χdz ≈ 0.14 

Clause 6.3.1.1(3) Ndz,b,Rd = d,z y
3

M1

0.14 60 12 275 27.72 kN
1.0 10

Afχ
γ

× × ×= =
×  

 

Equation (6.46) Verification: Ed

b,Rd

18.74 0.67
27.72

N
N

= = < 1,0 

 
The lacing section is satisfactory with respect to the flexural buckling resistance  

6.11 Problems: Buckling Instability  
A selection of column cross-sections is indicated in Problems 6.1 to 6.4 in addition to the 
position of the restraints about the y–y and z–z axes.  

(a) Considering flexural buckling only and using the data provided, determine the 
compression resistance of the columns using the EN 1993-1-1 flexural buckling 
formulae. 

(b) Verify the suitability of the chords for the laced column shown in Problem 6.5. 
 
Data: 

Problem 
No. 

fy  
(N/mm2) 

E  
(kN/mm2)  

Buckling curve 
y–y axis z-z axis 

6.1 275  210  (b)  (c) 
6.2 255  210 (b) (b) 
6.3 275  210 (b) (b) 
6.4 275 210 (c) (c) 
6.5 355* 210 (a) (a) 

* Hot rolled hollow sections  are not available in S275 steel 

Table 6.3: Material Property and Buckling Curve Data 
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Section 
Property 

Section 
533 × 210 × 82 

UKB 
457 × 152 × 52 

UKB 

200 × 90 × 30 
UKPFC 

(Channel) 

150 × 100 × 10 
RHS 

(Hollow Section) 
Cross-sectional area (A) 105.0 cm2 66.6 cm2 37.9 cm2 44.9 cm2 
Radius of gyration (izz) 4.38 cm 3.11 cm 2.88 cm 3.85 cm 
Radius of gyration (iyy) 21.30 cm 17.90 cm 8.16 cm 5.34 cm 
Depth of the section (h) 528.30 mm 449.8 mm 200.0 mm 150.0 mm 
Width of the section (b) 208.80 mm 152.4 mm 90.0 mm 100.0 mm 
Flange thickness (tf) 13.20 mm 10.90 mm 14.0 mm 10.0 mm 
Web thickness (tw) 9.6 mm 7.60 mm 7.0 mm 10.0 mm 
Root radius (r) 12.70 mm 10.20 mm 12.0 mm - 
2nd Moment of area Iyy 47500.0 cm4 21400.0 cm4 2520.0 cm4 1280.0 cm4 
2nd Moment of area Izz 2010.0 cm4 645.0 cm4 314.0 cm4 665.0 cm4 

 
Table 6.4- Section Property Data 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Problem 6.2 

Restraint 
about the  
A–A axis 

Restraint 
about the  
B–B axis 

250 mm × 10 mm thick plate 

z 

z 

533 × 210 × 82 UKB 

250 mm × 10 mm thick plate 

y     y 

Restraint 
about the  
y–y axis 

Restraint 
about the  
z–z axis 

Problem 6.1 

denotes a pinned support 

denotes a fixed support 

2.
0 

m
   

 2
.0

 m
   

  2
.0

 m
   

 2
.0

 m
 

4.
0 

m
   

   
   

   
   

 4
.0

 m
   

   
  

8.
0 

m
 

denotes a lateral restraint 

4 
m

   
   

   
   

   
 1

1 
m

   
   

   
   

   
 

15
 m

 

4 
m

   
   

3 
m

   
3 

m
   

   
  5

 m
 

B                                             B 

z                      z 

z                      z 

A 

480 mm wide × 10 mm thick plate 
top and bottom 

533 × 210 × 82 UKB 

A 

   125 mm   125 mm 
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Problem 6.3 

Problem 6.4 

Problem 6.5 

9.6 mm 

A 

A 

B                                             B 

533 × 210 × 82 UKB 

457× 152× 52 UKB 

Restraint 
about the  
B–B axis 

Restraint 
about the  
A–A axis 

10
.5

 m
 

5.
25

 m
   

   
   

   
   

5.
25

 m
   

   
 

3.
0 

m
   

   
3.

5 
m

   
   

   
4.

0 
m

 

Restraint 
about the  
B–B axis 

Restraint 
about the  
A–A axis 

10
.0

 m
 

2.
5 

m
   

  2
.5

 m
   

   
   

 5
.0

 m
 

2.
5 

m
   

  2
.0

 m
  2

.0
 m

   
   

3.
5 

m
 

B                                             B 

A 

A 

2 / 200 × 90× 30 channel sections  
welded at the toes 

z               z 

z              z 

31.2 mm 

6.
0 

m
 

NEd = 1000 kN 

NEd = 1000 kN 

80
0 

m
m

 

40 mm x 8 mm thick 
lacings at  600 mm centres 

       laces at 600 mm centres 

2 / 150 × 100 × 10 
Rectangular Hollow Sections 
Class 1 section 

y                                     B           y 

150 mm   150 mm 

z                          z 

z                          z 
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6.12 Solutions: Buckling Instability  
        
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Data: 

Section classification:  Class 1 
Yield Stress fy = 275 MPa  
Young’s Modulus E = 210 kN/mm2 

 
Buckling curve: 
Assume a welded box section where all 
the longitudinal welds are near the 
corners of the cross-section. 
 
For the y–y axis use curve (b) 
For the z–z axis use curve (c).  
 

 
A = [10500 + 2 × (10 × 250)] = 15.5 × 103 mm2  

Iy–y = ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
××+××+× 2

3
4 269.1550210

12
1025021047500  = 837.28 × 106 mm4 

Iz–z = 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
×+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ×× 4
3

102010
12
250102  = 46.14 × 106 mm4 

iy–y = 3

6

10515
1028837

×
×

.

.  = 232.4 mm   iz–z = 3

6

10515
101446

×
×

.
. = 54.56 mm;     

 
 

Section 
Property 

Section 
533 × 210 × 82 UKB 

Cross-sectional area (A) 105.0 cm2 
Radius of gyration (izz) 4.38 cm 
Radius of gyration (iyy) 21.30 cm 
Depth of the section (h) 528.30 mm 
Width of the section (b) 208.80 mm 
Flange thickness (tf) 13.20 mm 
Web thickness (tw) 9.6 mm 
Root radius (r) 12.70 mm 
2nd Moment of area Iyy 47500.0 cm4 
2nd Moment of area Izz 2010.0 cm4 

Solution 
Topic:  Buckling Instability   
Problem Number: 6.1            Page No. 1 

Restraint 
about the  
y–y axis 

Restraint 
about the  
z–z axis 

250 mm × 10 mm thick plate 

z 

z 

533 × 210 × 82 UKB 

250 mm × 10 mm thick plate 

y     y 26
9.

15
 m

m
 

4.
0 

m
   

   
   

   
   

 4
.0

 m
   

   
  

8.
0 

m
 

2.
0 

m
   

 2
.0

 m
   

  2
.0

 m
   

 2
.0

 m
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 Flexural buckling resistance 
EN 1993-1-1:2005 
Table 5.2  ε = (235/275)0.5 = 0.92 

Clause 6.3.1.3(1) y cr

cr 1

1Af L
N i

λ
λ

= = ×  where 1 93.9 93.9 0.92 86.39λ ε= = × =  

  
 Consider the y-y axis:   
 Lcr,y ≥ (0.85 × 4.0) = 3.4 m 

        ≥ (1.0 × 4.0) = 4.0 m The critical buckling length Lcr,y = 4.0 m 

Equation (6.50) cr
y

y 1

1 3400 1 0.17
232.4 86.39

L
i

λ
λ

= × = × =   

  Figure 6.4 Since y 0.2λ ≤  the reduction factor χ = 1.0 
 (see Figure 6.26/Table 6.1 in this text) 
  
 Consider the z-z axis:   
 Lcr,z ≥ (0.85 × 2.0) = 1.7 m 

        ≥ (1.0 × 2.0) = 2.0 m The critical buckling length Lcr,z = 2.0 m 

Equation (6.50) cr
z

z 1

1 2000 1 0.42
54.56 86.39

L
i

λ
λ

= × = × =   

Equation (6.49) 
2 2

1  but   1.0     χ χ
λ

= ≤
Φ + Φ −

  

  where     ( ) 2 = 0.5 1+ 0.2α λ λ⎡ ⎤Φ − +⎣ ⎦   

Table 6.1 Imperfection factor for curve c: α = 0.49   
 (see Figure 6.24 in this text)  
 ( ) 2= 0.5 1+0.49 0.42 0.2 0.42 0.64⎡ ⎤Φ − + =⎣ ⎦  

 
2 2

1 = 0.89  but   1,0     
0.64 0.64 0.42

χ χ= ≤
+ −

 

 Alternatively use the curves given in EN 1993-1-1: Figure 6.4  
 (see Figure 6.26 or Table 6.1 in this text) 
  

Critical value χz ≈ 0,89 
 

Equation (6.47) Nb,z,Rd = 
3

y
3

M1

0,89 15.5 10 275 3793.6 kN
1,0 10

Afχ
γ

× × ×= =
×  

 

The maximum design axial load with respect to flexural buckling = 3793.6 kN 

Solution 
Topic:  Buckling Instability     
Problem Number: 6.1            Page No. 2 
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 Data: 
Section classification:  Class 1 
Yield Stress fy = 275 MPa  
Young’s Modulus E = 210 kN/mm2 

 
Buckling curve: 
Assume a welded box section where all 
the longitudinal welds are near the 
corners of the cross-section. 
 
For the y–y axis use curve (b) 
For the z–z axis use curve (b).  
 

 
A = 2 × [10500 + (10 × 480)] = 30.6 × 103 mm2  

IB–B = 2 × ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
××+×+× 2

3
4 269.1580410

12
104801047500 = 1645.52 × 106 mm4 

IA–A = 2 × ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
×+×+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ × 24
3

125 10500102010
12
48010  = 552.65 × 106 mm4 

iB–B = 3

6

10630
10521645

×
×

.
. = 231.89 mm   iA–A = 3

6

10630
1065552

×
×

.

. = 134.39 mm;  

 

Section 
Property 

Section 
533 × 210 × 82 UKB 

Cross-sectional area (A) 105.0 cm2 
Radius of gyration (izz) 4.38 cm 
Radius of gyration (iyy) 21.30 cm 
Depth of the section (h) 528.30 mm 
Width of the section (b) 208.80 mm 
Flange thickness (tf) 13.20 mm 
Web thickness (tw) 9.6 mm 
Root radius (r) 12.70 mm 
2nd Moment of area Iyy 47500.0 cm4 
2nd Moment of area Izz 2010.0 cm4 

Solution 
Topic:  Buckling Instability     
Problem Number: 6.2            Page No. 1 

B                                             B 

z                       z 

z                      z 

A 

480 mm wide × 10 mm thick plate 
top and bottom 

533 × 210 × 82 UKB 

A 

   125 mm   125 mm 
Restraint 
about the  
A–A axis 

Restraint 
about the  
B–B axis 

4 
m

   
   

3 
m

   
  3

 m
   

   
  5

 m
 

4 
m

   
   

   
   

   
 1

1 
m

   
   

   
   

   
 

15
 m

 



 Buckling Instability 507 

        
 
 
 
 

 Flexural buckling resistance 
EN 1993-1-1:2005 
Table 5.2  ε = (235/275)0.5 = 0.92 

Clause 6.3.1.3(1) y cr

cr 1

1Af L
N i

λ
λ

= = ×  where 1 93.9 93.9 0.92 86.39λ ε= = × =  

  
 Consider the B-B axis:   
 Lcr,B ≥ (0.85 × 11.0) = 9.35 m 

        ≥ (1.0 × 4.0) = 4.0 m The critical buckling length Lcr,B = 9.35 m 

Equation (6.50) cr
B

B 1

1 9350 1 0.47
231.89 86.39

L
i

λ
λ

= × = × =   

 
 Consider the A-A axis:   
 Lcr,A ≥ (0.85 × 5.0) = 4.25 m 

         ≥ (1.0 × 3.0) = 3.0 m  
         ≥ (1.0 × 4.0) = 4.0 m  The critical buckling length Lcr,A = 4.25 m 

Equation (6.50) cr
A

A 1

1 4250 1 0.37
134.39 86.39

L
i

λ
λ

= × = × =
 

Since the same curve is used for both axes the critical value of cr B 0.47λ λ= =   

Equation (6.49) 
2 2

1  but   1.0     χ χ
λ

= ≤
Φ + Φ −

  

  where     ( ) 2 = 0.5 1+ 0.2α λ λ⎡ ⎤Φ − +⎣ ⎦   

Table 6.1 Imperfection factor for curve b: α = 0.34   
 (see Figure 6.24 in this text)  
 ( ) 2= 0.5 1+0.34 0.47 0.2 0.47 0.66⎡ ⎤Φ − + =⎣ ⎦  

 
2 2

1 = 0.89  but   1,0     
0.66 0.66 0.47

χ χ= ≤
+ −

 

 Alternatively use the curves given in EN 1993-1-1: Figure 6.4  
 (see Figure 6.26 or Table 6.1 in this text) 
  

Critical value χ ≈ 0,89 
 

Equation (6.47) Nb,z,Rd = 
3

y
3

M1

0,89 30.6 10 275 7489.4 kN
1,0 10

Afχ
γ

× × ×= =
×  

 

The maximum design axial load with respect to flexural buckling = 7489.4 kN 

Solution 
Topic:  Buckling Instability     
Problem Number: 6.2            Page No. 2 
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   Data: 

 
Section classification:  Class 1 
Yield Stress fy = 275 MPa  
 
Young’s Modulus E = 210 kN/mm2 

 
For the B–B axis use curve (b) 
For the A–A axis use curve (b). 
 

 
 
 

Section 
Property 

Section 
533 × 210 × 82 UKB  457 × 152 × 52 UKB 

Cross-sectional area (A) 105.0 cm2 66.6 cm2 
Radius of gyration (izz) 4.38 cm 3.11 cm 
Radius of gyration (iyy) 21.30 cm 17.90 cm 
Depth of the section (h) 528.30 mm 449.8 mm 
Width of the section (b) 208.80 mm 152.4 mm 
Flange thickness (tf) 13.20 mm 10.90 mm 
Web thickness (tw) 9.6 mm 7.60 mm 
Root radius (r) 12.70 mm 10.20 mm 
2nd Moment of area Iyy 47500.0 cm4 21400.0 cm4 
2nd Moment of area Izz 2010.0 cm4 645.0 cm4 

Restraint 
about the  
B–B axis 

Restraint 
about the  
A–A axis 

Solution 
Topic:  Buckling Instability     
Problem Number: 6.3            Page No. 1 

9.6 mm 

A 

A 

B                                             B 

533 × 210 × 82 UKB 

457× 152× 52 UKB 

10
.5

 m
 

5.
25

 m
   

   
   

   
   

5.
25

 m
   

   
 

3.
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3.

5 
m

   
   

   
4.
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m

 

A 

A 
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y  

y 
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A = (10500 + 6660) = 17.16 × 103 mm2  

y  = ( )[ ]
31016.17

9.2248.46660
×

+×  = 89.15 mm 

IB–B = ( ) ( )[ ]44 016451047500 ×+×  = 481.45 × 106 mm4 

IA–A = ( )[ ] ( )[ ]2424 5514066601021400158910500102010 .. ×+×+×+×  
    = 449.11 × 106 mm4 

iB–B = 3

6

1016.17
1085.481

×
×  = 167.51 mm   iA–A = 3

6

101617
1011449

×
×

.
.  = 161.78 mm;   

 
 Flexural buckling resistance 
EN 1993-1-1:2005 
Table 5.2  ε = (235/275)0.5 = 0.92 

Clause 6.3.1.3(1) y cr

cr 1

1Af L
N i

λ
λ

= = ×  where 1 93.9 93.9 0.92 86.39λ ε= = × =  

  
 Consider the B-B axis:   
 Lcr,B ≥ (0.85 × 5.25) = 4.463 m 

         The critical buckling length Lcr,B = 4.463 m 
 

Equation (6.50) cr
B

B 1

1 4463 1 0.31
167.51 86.39

L
i

λ
λ

= × = × =   

 
 Consider the A-A axis:   
 Lcr,A ≥ (1.0 × 3.0) = 3.0 m 

         ≥ (1.0 × 3.5) = 3.5 m  
         ≥ (1.0 × 4.0) = 4.0 m   The critical buckling length Lcr,A = 4.0 m 

Equation (6.50) cr
A

A 1

1 4000 1 0.28
161.78 86.39

L
i

λ
λ

= × = × =
 

Since the same curve is used for both axes the critical value of cr B 0.31λ λ= =   

Equation (6.49) 
2 2

1  but   1.0     χ χ
λ

= ≤
Φ + Φ −

  

  where     ( ) 2 = 0.5 1+ 0.2α λ λ⎡ ⎤Φ − +⎣ ⎦   

Table 6.1 Imperfection factor for curve b: α = 0.34   
 (see Figure 6.24 in this text)  

Solution 
Topic:  Buckling Instability     
Problem Number: 6.3            Page No. 2 
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 ( ) 2= 0.5 1+0.34 0.31 0.2 0.31 0.57⎡ ⎤Φ − + =⎣ ⎦  

 
2 2

1 = 0.95  but   1,0     
0.57 0.57 0.31

χ χ= ≤
+ −

 

 Alternatively use the curves given in EN 1993-1-1: Figure 6.4  
 (see Figure 6.26 or Table 6.1 in this text) 
  

Critical value χ ≈ 0,95 
 

Equation (6.47) Nb,z,Rd = 
3

y
3

M1

0,95 17.6 10 275 4598.0 kN
1,0 10

Afχ
γ

× × ×= =
×  

 

The maximum design axial load with respect to flexural buckling = 4598.0 kN 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution 
Topic:  Buckling Instability     
Problem Number: 6.3            Page No. 3 



 Buckling Instability 511 

        
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Data: 
Section classification:  Class 1 
Yield Stress fy = 275 MPa  
 
Young’s Modulus E = 210 kN/mm2 

 
Buckling curve: 
In this case assume: 
For the B–B axis use curve (c) 
For the A–A axis use curve (c). 
(Note: welded box sections generally relate to 
fabricated sections where all the longitudinal 
welds are near the corners of the cross-
section.) 

 
A = (2 × 3790) = 7.58 × 103 mm2  
 
IB–B = (2 × 2520 × 104 ) = 50.40 × 106 mm4 

 
IA–A = 2 × ( )[ ]24 8.58379010314 ×+×  = 32.49 × 106 mm4 

 

iB–B = 3

6

10587
104050

×
×

.
.  = 81.54 mm   iA–A = 3

6

10587
104932

×
×

.
.  = 65.47 mm;   

 

Section 
Property 

Section 
200 × 90 × 30 

UKPFC 
Cross-sectional area (A) 37.9 cm2 
Radius of gyration (izz) 2.88 cm 
Radius of gyration (iyy) 8.16 cm 
Depth of the section (h) 200.0 mm 
Width of the section (b) 90.0 mm 
Flange thickness (tf) 14.0 mm 
Web thickness (tw) 7.0 mm 
Root radius (r) 12.0 mm 
2nd Moment of area Iyy 2520.0 cm4 
2nd Moment of area Izz 314.0 cm4 

Restraint 
about the  
A–A axis 

Restraint 
about the  
B–B axis 

Solution 
Topic:  Buckling Instability     
Problem Number: 6.4            Page No. 1 

B                                             B 

A 

A 

2 / 200 × 90× 30 channel sections  
welded at the toes 
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 Flexural buckling resistance 
EN 1993-1-1:2005 
Table 5.2  ε = (235/275)0.5 = 0.92 

Clause 6.3.1.3(1) y cr

cr 1

1Af L
N i

λ
λ

= = ×  where 1 93.9 93.9 0.92 86.39λ ε= = × =  

  
 Consider the B-B axis:   
 Lcr,B ≥ (0.85 × 5.0) = 4.25 m 

        ≥ (1.0 × 2.5) = 2.5 m The critical buckling length Lcr,B = 4.25 m 

Equation (6.50) cr
B

B 1

1 4250 1 0.60
81.54 86.39

L
i

λ
λ

= × = × =   

 
 Consider the A-A axis:   
 Lcr,A ≥ (1.0 × 2.5) = 2.5 m 

         ≥ (1.0 × 2.0) = 2.0 m  
         ≥ (1.0 × 3.5) = 3.5 m  The critical buckling length Lcr,A = 3.5 m 

Equation (6.50) cr
A

A 1

1 3500 1 0.62
65.47 86.39

L
i

λ
λ

= × = × =
 

Since the same curve is used for both axes the critical value of cr A 0.62λ λ= =   

Equation (6.49) 
2 2

1  but   1.0     χ χ
λ

= ≤
Φ + Φ −

  

  where     ( ) 2 = 0.5 1+ 0.2α λ λ⎡ ⎤Φ − +⎣ ⎦   

Table 6.1 Imperfection factor for curve c: α = 0.49   
 (see Figure 6.24 in this text)  
 ( ) 2= 0.5 1+0.49 0.62 0.2 0.62 0.80⎡ ⎤Φ − + =⎣ ⎦  

 
2 2

1 = 0.77  but   1,0     
0.80 0.80 0.62

χ χ= ≤
+ −

 

 Alternatively use the curves given in EN 1993-1-1: Figure 6.4  
 (see Figure 6.26 or Table 6.1 in this text) 
  

Critical value χ ≈ 0,77 
 

Equation (6.47) Nb,z,Rd = 
3

y
3

M1

0,77 7.58 10 275 1605.1 kN
1,0 10

Afχ
γ

× × ×= =
×  

 

The maximum design axial load with respect to flexural buckling = 1605.1 kN 

Solution 
Topic:  Buckling Instability     
Problem Number: 6.4            Page No. 2 
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   Data: 

Section classification:  Class 1 
 
Yield Stress fy = 355 MPa  
 
Young’s Modulus E = 210 kN/mm2 

 
The section is built-up, laced 
compression member, see Section 6.9 
of this text. 
 
Buckling curve: 
For the y–y axis use curve (a) 
For the z–z axis use curve (a). 

Solution: 
Length of the lacings  d = (3002 + 3002)0.5 = 424.26 mm 
 
Verification for compression resistance of the chord members 
EN 1993-1-1:2005  

Equation (6.11) y
c,Rd

M0
  for Class 1 cross-sections

Af
N

γ
=  

 Cross-sectional area A = (2 × 4490) = 8.98 × 103 mm2 

 Verification: 
3

c,Rd 3
8.98 10 355 3187.9 kN > 1000 kN

1.0 10
N × ×= =

×
 

The chord section is satisfactory with respect to the compression resistance  
 

Section 
Property 

Section 
150 × 100 ×10 RHS

Hollow Section
Cross-sectional area (A) 44.9 cm2 
Radius of gyration (izz) 3.85 cm 
Radius of gyration (iyy) 5.34 cm 
Depth of the section (h) 150.0 mm 
Width of the section (b) 100.0 mm 
Flange thickness (tf) 10.0 mm 
Web thickness (tw) 10.0 mm 
Root radius (r) - 
2nd Moment of area Iyy 1280.0 cm4 
2nd Moment of area Izz 665.0 cm4 

Solution 
Topic:  Buckling Instability     
Problem Number: 6.5            Page No. 1 

150 mm   150 mm laces at 600 mm centres 

2 / 150 × 100 × 10 
Rectangular Hollow Sections 
Class 1 section 

y                                     B               y 

z             z 

z              z 

6.
0 

m
 

NEd = 1000 kN 

NEd = 1000 kN 

40 mm x 8 mm thick 
lacings at  600 mm centres 

80
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m
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Verification for flexural buckling resistance of the chord members 
 
EN 1993-1-1:2005  
 Second moment of area of built-up section: 
Clause 6.4.2.1(4) 2

eff o ch= 0.5I h A  = 0.5 × 3002 × 4490 = 202.05 × 106 mm4 
 
 Shear stiffness of lacings: 

Figure 6.9  
2

d 0
v 32
  nEA ahS

d
=    where     Ad = (40 × 8) = 320 mm2  and  n = 2 

 
2

v 3
2 210 320 600 300 47518.94 kN/mm

2 424.26
S × × × ×= =

×
 

 
 Chord design force at mid-height: 

Clause 6.4.1(6) Ed 0 ch
ch,Ed Ed

eff
0.5

2
M h AN N

I
= +   

 

Equation (6.69)  where 
1

Ed o Ed
Ed

Ed Ed

cr v

   
1

N e MM N N
N S

+=
− −

and 
2

eff
cr 2    EIN

L
π=  

 1
Ed 0M =    and   2Ed 0 ch Ed

eff ch
eff 0

 when  = 0.5
2

M h A M I h A
I h

=      

 
Clause 6.4.1(1) Bow imperfection e0 = L/500 = 6000/500 = 12 mm 

 
2 2 6

eff
cr 2 2

210 202.05 10 = 11632.56 kN    
6000

EIN
L

π π × × ×= =  

 
1

Ed o Ed
Ed

Ed Ed

cr v

1000 12.0 0 13438.0 kNmm   1000 10001 1
11632.56 47518.94

N e MM N N
N S

+ × += =
− − − −

 =  

 

( )

Ed 0 ch Ed
ch,Ed Ed Ed

eff 0
0.5 0.5

2
13438.0         0.5 1000 544.79 kN

300

M h A MN N N
I h

⎛ ⎞ ⎛ ⎞
= + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= × + =

 

Design axial load Nch,Ed = 544.79  kN 
 

Solution 
Topic:  Buckling Instability     
Problem Number: 6.5            Page No. 2 



 Buckling Instability 515 

        
 
 
 
 

Clause 6.3.1.3(1) 

y

y cr

cr y 1

Af
Af L A
N i

λ
λ

= = × where 

  1
23593.9 93.9 76.40
355

λ ε= = × =
 

 Consider the y-y axis:  assume Lcr,y = 6.0 m 
 Use the radius of gyration based on the gross cross-section 
 iy = 53.4 cm 
 

Equation (6.50) cr
y

y 1

1 6000 1 1.47
53.4 76.4

L
i

λ
λ

= × = × =  

Table 6.2 For buckling about the y-y axis use curve a 
Figure 6.4  χy ≈ 0.38 
  
 Consider the z-z axis:  assume Lcr,z = 600 mm 
 Use the radius of gyration based on the gross cross-section 
 iz = 3.85 cm 
 

Equation (6.50) cr
z

z 1

1 600 1 0.20
38.5 76.4

L
i

λ
λ

= × = × =   

Table 6.2 For buckling about the z-z axis use curve a 
Figure 6.4  χz ≈ 1.0 

Critical value χy ≈ 0.38 
 

Equation (6.47) Ny,b,Rd = y y
3

M1

0.38 4490 355 605.7 kN
1.0 10

Afχ
γ

× ×= =
×  

 

Equation (6.46) Verification: Ed

b,Rd

544.79 0.90
605.7

N
N

= = < 1,0 

 
The chord section is satisfactory with respect to the flexural buckling resistance  

 
 
 
 
 

Solution 
Topic:  Buckling Instability     
Problem Number: 6.5            Page No. 3 



 

7. Direct Stiffness Method 

7.1 Direct Stiffness Method of Analysis  
The ‘stiffness’ method of analysis is a matrix technique on which most structural computer 
analysis programs are based. There are two approaches; the indirect and the direct 
methods. The direct method as illustrated in this chapter requires the visual recognition of 
the relationship between structural forces/displacements and the consequent element 
forces/displacements induced by the applied load system. The indirect method is primarily 
for use in the development of computer programs to enable the automatic correlation 
between these displacements. 
Neither method is regarded as a hand−analysis.  The direct method is included here to 
enable the reader to understand the concepts involved and the procedure which is 
undertaken during a computer analysis. The examples and problems used to illustrate these 
concepts have been restricted to rigid−jointed structures assuming axially−rigid elements. 
In addition, the structures have been limited to having no more than three 
degrees−of−freedom and do not have any sloping members. In both methods it is necessary 
to develop element stiffness matrices, related to a local (element) co−ordinate system and a 
structural stiffness matrix related to a global co−ordinate system. The development of 
these matrices and co−ordinate systems is explained in Sections 7.2 and 7.3. 

7.2 Element Stiffness Matrix   [k] 
One of the fundamental characteristics governing the behaviour of elastic structures is the 
relationship between the applied loads and the displacements which these induce. This can 
be expressed as: 
 
         [F ] = [k] × [δ ] 
where: 
[F ] is a vector representing the forces acting on an element at its nodes i.e. the

(element end forces vector), 
[k]  is the element stiffness matrix relating to the degrees-of-freedom at the nodes 

relative to the local co−ordinate system, 
[δ ] is a vector representing the displacements (both translational and rotational) of the 

element at its nodes relative to the local axes co−ordinate system (element 
displacement vector). 

 
Considering an element with only one degree−of−freedom, the matrix and vectors can be 

re-written as  k  = 
δ
F , leading to a definition of stiffness as: 

 
“The force necessary to maintain a ‘unit’ displacement.” 

 

The ‘axial’ stiffness of a column as shown in Figure 7.1, can be derived from the standard 
relationship between the elastic modulus, stress and strain as follows: 
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Elastic Modulus E = 
strain
stress  = ( )

( )Lδ
AF  = 

Aδ
FL  

 
This equation can be re-arranged to give: 
 

      F = δ
L

EA  

hence when δ =1.0 (i.e. unit displacement) then the axial stiffness  k (= F) = 
L

EA  

7.2.1 Beam Elements with Two Degrees−of−Freedom  
Consider a ‘beam element’ of length L, Young’s Modulus E and cross-sectional area A 
which is subject to axial forces F1 and F2 at the end nodes A and B as shown in Figure 7.2. 
 
 
 
 

 

Figure 7.2 

 
Assume that node A is displaced a distance of δ1 in the direction of the longitudinal axis 
(i.e. the x-direction) and similarly node B is displaced a distance of δ2 as shown in     
Figure 7.3. 
 
 
 
 

Figure 7.3 

 
The force/displacement relationships for this element are: 

F1 =   change in length  AE L
L

⎛ ⎞×⎜ ⎟
⎝ ⎠

   ∴ F1 = + ( )21 δδ
L

AE −×  (assuming δ 1 > δ 2 ) 

 
Considering equilibrium in the x direction: 

F2 = − F1          ∴ F2 = − ( )21 δδ
L

AE −×  

 
These two equations can be expanded and written in the form: 

F1 = + 1δL
AE  − 2δL

AE       Equation (1) 

F2 = − 1δL
AE  + 2δL

AE       Equation (2) 

 

node A node B L, EA 

F1 F2 

L, EA 

node A                  node B 

δ 1 
F1 F2 

δ 2 

cross-sectional area A

δ  

F 

F 

L  

Figure 7.1 

X  

Z  
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in matrix form this gives:  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

×
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−

−+
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

2

1

2

1

δ

δ

    

L
AE

L
AE

L
AE

L
AE

    F

F

 

 
     i.e.      [F ] = [k] × [δ ] 
 
where [k] is the element stiffness matrix. 
 
This element stiffness matrix [k] representing two-degrees-of-freedom is adequate for pin-
jointed structures in which it is assumed that elements are subject to purely axial loading.  

7.2.2 Beam Elements with Four Degrees−of−Freedom 
In the case of rigid-jointed, plane-frame structures the loading generally consists of axial, 
shear and bending forces, the effects of which must be determined by the axial, shear and 
bending effects on the elements. Consider a beam element with the following properties: 
 
 Length                 = L 
 Second Moment of area about the axis of bending = I 
 Modulus of Elasticity (Young’s Modulus)         = E 
 
which is assumed to be axially rigid, (i.e. neglect axial deformations), and has four-
degrees-of-freedom as indicated in Figure 7.4. 
 
 
 
 
 

Figure 7.4 

 
When this element is displaced within a structure each node will displace in a vertical 
direction and rotate as indicated in Figure 7.5, where δ1 to δ4 are the nodal displacements. 
 
 
 
 
 
 
 

 
Axially-Rigid Beam Element with four degrees-of-freedom 

 

Figure 7.5 

δ4 

L, EI 
A                    B

F1, δ1 F2, δ2 

F3, δ3 

F4, δ4 

δ2 
Original Position 

δ1 

δ3 

Position after Deformation 
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The forces induced in this element by the loaded structure, and which maintain its’ 
displaced form can be represented by the element end forces F1 to F4 as shown in       
Figure 7.6. 
 
 
 
 
 

 
Axially-Rigid Beam Element with four element end-forces 

 
Figure 7.6 

 
The element end-forces can be related to the element end-displacements as in the previous 
case giving; 
              [F ] = [k] × [δ ] 
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

4

3

2

1

F
F
F
F

 = 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

×

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

4

3

2

1

4,43,42,41,4

4,33,32,31,3

4,23,22,21,2

4,13,12,11,1

δ
δ
δ
δ

 

kkkk
kkkk
kkkk
kkkk

 

where k11, k12, k13  etc. are the stiffness coefficients for the element. 
 
The displacement configuration in Figure 7.5 can be considered as consisting of the 
superposition of four independent displacements each having only one degree-of-freedom 
as shown in  Figure 7.8. 
Similarly the element end-forces can be represented as the superposition of four sets of 
forces, each of which is required to maintain a displaced form as indicated in Figure 7.9 
The values of  k1,1,  k2,1,  k3,1 and k4,1 (which represent the forces necessary to maintain a 
unit displacement) can be evaluated using an elastic method of analysis such as 
McCaulay’s Method, (see Chapter 4, Section 4.2). 
Consider the case in which a unit displacement is applied in direction δ 1, (i.e. the slope at 
A = −1.0) as shown in Figure 7.7. 

 
 
 

 

 

 

 

 

 

 

 

Figure 7.7 

A L, EI
F1 

F2 

F4
F3 

B

L,EI

A                      B 

k1,1 k2,1 

k3,1 

k4,1 

x 

unit 

displacement 

x  

z  
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Consider δ 1 = 1.0   δ 2 = δ 3 = δ 4 = 0 
 

 
 
 
 

Consider δ 2 = 1.0   δ 1 = δ 3 = δ 4 = 0 
 
 
 
 
 
 

 
Consider δ 3 = 1.0   δ 1 = δ 2 = δ 4 = 0 
 

 
 
 
 

 
Consider δ 4 = 1.0   δ 1 = δ 2 = δ 3 = 0 

 
 
 
 

 

Figure 7.8 

Position after Deformation − δ 2 only

Original Position 

1.0 

Position after Deformation − δ 4 only

Original Position 

1.0

+ 

+ 

+ 

× δ 1  

× δ 3  

× δ 2  

× δ 4  

Position after Deformation − δ 1 only

Original Position 

1.0 

Position after Deformation − δ 3  only

Original Position 

1.0

Original Position 
δ2 

δ1 δ3

δ4 

Position after Deformation 
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Consider δ 1 = 1.0   δ 2 = δ 3 = δ 4 = 0 
 
 
 
 
 
Consider δ 2 = 1.0   δ 1 = δ 3 = δ 4 = 0 
 
 
 
 
 
Consider δ 3 = 1.0   δ 1 = δ 2 = δ 4 = 0 
 
 
 
 
 
Consider δ 4 = 1.0   δ 1 = δ 2 = δ 3 = 0 
 
 
 
 
 

 

Figure 7.9 

 

e.g. F1 = {(k1,1 δ 1) + (k1,2 δ 2) + (k1,3 δ 3) + (k1,4 δ 4 )} 

+ 

Original Position 
F2 F1 

F4

A                              B 

Position after Deformation
F3

× δ 1  A                       B 

k1,1 k2,1 

k3,1

k4,1

Original Position 

Position after Deformation − δ 1 only

× δ 2  
k1,2 

k2,2 k3,2

k4,2

Original Position
A                                  B 

Position after Deformation − δ 2  only

+ 

× δ 3  
A                               B

k3,3

k4,3k1,3 
k2,3 Original Position 

Position after Deformation − δ 3  only

+ 

× δ 4  

k3,4

k4,4

k1,4 k2,4 

A                                 BOriginal Position

Position after Deformation − δ 4 only
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The bending moment at any position ‘x’  along the element can be expressed as: 

Bending moment: Mx = EI
2

2
d z
dx

 = k1,1 + k2,1 x         Equation (1) 

Slope:        z
x

d
d

θ⎛ ⎞=⎜ ⎟
⎝ ⎠

 = EI dz
dx

 = k1,1 x + 
2

2
1,2 xk

 + A     Equation  (2) 

Deflection:         (δ = z) =  EIz = 21,1

2
x

k
 + 31,2

6
x

k
 + Ax + B    Equation (3) 

Boundary Conditions:  when  x = 0;  deflection   δ = 0   and slope θ  = −1.0 
    x = L ;     δ = 0      θ  = 0 

 
Substitute for x and θ  in equation (2): (x = 0,  θ  = −1.0) 

Slope:     z
x

d
d

θ⎛ ⎞=⎜ ⎟
⎝ ⎠

= EI dz
dx

 = k1,1 x + 
2

2
1,2 xk

 + A     Equation (2a) 

      EI(−1.0) = A   ∴ A = −EI 
 
Substitute for x and δ  in equation (3): (x = 0,  δ  = 0) 

Deflection:   (δ = z) = EI z = 21,1

2
x

k
 + 31,2

6
x

k
 + Ax + B    Equation (3a) 

      EI (0) = B   ∴ B = 0  
 
Re-write equations (2a) and (3a): 

Slope:     z
x

d
d

θ⎛ ⎞=⎜ ⎟
⎝ ⎠

 = EI dz
dx

 = k1,1 x + 
2

2
1,2 xk

 − EI     Equation (4) 

Deflection:     (δ = z) = EI z = 21,1

2
x

k
 + 31,2

6
x

k
 − EIx     Equation (5) 

 
Substitute for x and θ  in equation (4): (x = L,  θ = 0) 

Slope:    z
x

d
d

θ⎛ ⎞=⎜ ⎟
⎝ ⎠

 = 0 = k1,1 L + 
2

2
1,2 Lk

 − EI       Equation (6) 

 
Substitute for x and δ  in equation (5): (x = L,  δ  = 0) 

Deflection:   (δ = z) = 0 = 21,1

2
L

k
 + 31,2

6
L

k
 − EIL      Equation (7) 

 
Solving equations (6) and (7) simultaneously and evaluating Σ M = 0,  ΣFz = 0  gives: 

k1,1 = + 
L
EI4   k2,1 = − 2

6
L
EI   k3,1 = + 2EI

L
 and  k4,1 = + 2

6
L
EI   

 
A similar analysis considering the other three unit displacement diagrams produces the 
following values for the element stiffness matrix coefficients: 
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[k] =  

kkkk
kkkk
kkkk
kkkk

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

4,43,42,41,4

4,33,32,31,3

4,23,22,21,2

4,13,12,11,1

 = 

2 2

2 3 2 3

2 2

2 3 2 3

4 6 2 6

6 12 6 12

2 6 4 6

6 12 6 12

EI EI EI EI
L LL L
EI EI EI EI

L L L L
EI EI EI EI
L LL L
EI EI EI EI
L L L L

−⎡ ⎤
⎢ ⎥
⎢ ⎥

− − −⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 

where: 
E is Young’s Modulus, 
I is the Second Moment of area of the cross-section and 
L is the length of the member. 
 
This is the ‘element stiffness matrix’ for a beam element with four degrees-of-freedom as 
indicated in  Figure 7.10 
 

 
 

Figure 7.10 

7.2.3 Local Co−ordinate System 
The co−ordinate system defining the positive directions for the element end displacements 
and the corresponding end forces is known as the ‘local co−ordinate system.’ A typical 
local co−ordinate system for axially rigid elements in a frame is shown in Figure 7.11. 
 
 
 
 
 

                  Figure 7.11 

7.2.4 Beam Elements with Six Degrees–of−Freedom 
A typical computer analysis program for plain frame elements in rigid−jointed frames uses 
beam elements with six degrees−of−freedom as shown in Figure 7.12. 
 

 

 

 

 

 

 

 

 

                    Figure 7.12 
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A                      B 
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F4, δ4 
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δ2, F2 δ4, F4 

node A node B
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δ2, F2 δ5, F5 

δ3, F3 δ6, F6 

node A node B
δ1, F1 δ4, F4 

δ6 
Original Position δ3 

δ2 
δ5 Position after Deformation 
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The resulting stiffness matrix for such elements is: 
 

[k] = 

1,1 1,2 1,3 1,4 1,5 1,6

2,1 2,2 2,3 2,4 2,5 2,6

3,1 3,2 3,3 3,4 3,5 3,6

4,1 4,2 4,3 4,4 4,5 4,6

5,1 5,2 5,3 5,4 5,5 5,6

6,1 6,2 6,3 6,4 6,5 6,6

k k k k k k
k k k k k k
k k k k k k
k k k k k k
k k k k k k
k k k k k k

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
The values of the stiffness coefficients are as determined in Sections 7.2.1 and 7.2.2, 
combining the effects of both the two and four degree−of−freedom cases. The order in 
which the values appear in the matrix is dependent on the numerical order defined in the 
local co−ordinate system,  see Figure 7.12. 
 
 
 
 

[k] = 

2 2

2 3 2 3

2 2

2 3 2 3

0 0 0 0

4 6 2 60 0

6 12 6 120 0

0 0 0 0

2 6 4 60 0

6 12 6 120 0

AE AE
L L

EI EI EI EI
L LL L
EI EI EI EI
L L L L

AE AE
L L

EI EI EI EI
L LL L
EI EI EI EI
L L L L

⎡ ⎤+ −⎢ ⎥
⎢ ⎥
⎢ ⎥+ − + +⎢ ⎥
⎢ ⎥
⎢ ⎥− + − −
⎢ ⎥
⎢ ⎥
⎢ ⎥− +
⎢ ⎥
⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥
⎢ ⎥
⎢ ⎥+ − + +
⎣ ⎦

 

 
It is evident from the stiffness matrices developed in each case that they are symmetrical 
about the main diagonal, (this is a consequence of Maxwell’s Reciprocal Theorem). The 
elements in matrices represent the force systems necessary to maintain unit displacements 
as indicated in Figure 7.12. 
The element stiffness matrices must be modified to accommodate the orientation of any 
elements which are not parallel to the ‘global co−ordinate system’, see Section 7.3. This is 
achieved by applying ‘transformation matrices’ such that: 
   
  [k] = [T]T[k][T] 
 
where [T] is the transformation matrix relating the rotation of the element to the global 
axis system. This is not considered further in this text. 

F2 

F3 

F1 

F5 

F6 

F4 
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7.3 Structural Stiffness Matrix [K] 
The stiffness matrix for an entire structure is dependent on the number of structural 
degrees-of-freedom which corresponds with the nodal (i.e. joint) displacements, e.g. 
consider the structures indicated in Figure 7.13, (Note: assuming axial rigidity). 

 
Each node is fixed with respect to 
translation and rotation and hence there 
are NO degrees-of-freedom. 
 
Node 1 at the base of the cantilever is 
restrained in both translation and 
rotation. 
Node 2 at the top of the cantilever is 
free to move in a horizontal direction 
and rotate. 
There are TWO degrees-of-freedom in 
this structure. 
 
Node 1 is restrained in both translation 
and rotation. 
Node 2 is free to move in a horizontal 
direction and to rotate. 
Node 3 is free to rotate. 
There are THREE degrees-of-freedom 
in this structure. 
 
(Note: since the elements are assumed 
to be axially rigid, the horizontal 
movement at node 4 is the same as that 
at node 8 and hence does not constitute 
an additional degree-of-freedom,  
similarly for nodes 3, 5 and 9 and 
nodes 2, 6, 10 and 12). 

 
 

. 
 

 
                      Figure 7.13 

                 
Each level of the frame can sway independently of the others and consequently there are 
three degrees-of-freedom due to sway (i.e. translation). In addition all of the internal joints 
can rotate producing nine degrees-of-freedom due to rotation.  
Three of the supports can rotate whilst one i.e. the roller can also move horizontally. The 
total number of degrees-of-freedom when the frame is assumed to be axially rigid is equal 
to SIXTEEN. 

    node 1           node 2 

 node 1 

   node 2 
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node 7     node 11          node 13 

node 2     node 6       node 10   node 12 

node 3      node 5               node 9 

node 1 
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node 1 

node 3Δ1 

Δ2 
Δ3

Since the element is assumed to 
be axially−rigid, the horizontal 
movement at node 3 is the same 
as that at node 2. 

node 2 
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When the axial deformations of the members is also included the number of degrees-of-
freedom increases to THIRTY ONE. 
In order to generate a structural stiffness matrix and complete the subsequent analysis it is 
necessary to establish a global co-ordinate system which defines the positions of the nodes 
and their displacements. The global co−ordinate system is also used to define the positive 
directions of the applied load system. 
Consider a portal frame having three degrees-of-freedom as indicated in Figure 7.14. 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.14 

 
The nodal displacements in the structure can be related to the applied structural loads in 
the same way as those for the elements, i.e. 
  

            [P ] = [K] × [Δ ] 
where: 
[P ] is a vector representing the equivalent nodal loads applied to the structure (see 

Section 7.3) relative to the global axes − (structural load vector), 
[K] is the structural stiffness matrix relating to the degrees-of-freedom at the nodes 

relative to the global axes, 
[Δ ] is a vector representing the displacements (both translational and rotational) of the 

structure at its nodes relative to the global axes, − (structural displacement vector). 
 
The coefficients for the structural stiffness matrix (i.e. K1,1, K1,2, K1,3 etc.) can be 
determined by evaluating the forces necessary to maintain unit displacements for each of 
the degrees−of−freedom in turn; in a similar manner to the element stiffness matrices.  
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Consider the uniform rectangular portal frame shown in Figure 7.15 which supports a 
number of loads as indicated. 
 
 
 
  
 
 
 
 
 
               All members have the same EI value 

 

Figure 7.15 

 
The structural displacements are as indicated in Figure 7.16 (assuming axially rigid 
members).  
 
 
 
 
 
 
               Figure 7.16 
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Consider Δ3 = 1.0   Δ1 = Δ2 = Δ4 = 0 
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1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

K K K K
K K K K
K K K K
K K K K

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
In each case the size of the structural stiffness matrix is the same as the number of 
degree−of−freedom. 

7.4 Structural Load Vector [P ] 
In most cases the loading applied to a structure occurs within, or along the length of the 
elements. Since only nodal loads are used in this analysis, the applied loading must be 
represented as ‘equivalent nodal loads’ corresponding to the degrees−of−freedom of the 
structure. This is easily carried out by replacing the actual load system by a set of forces 
equal in magnitude and opposite in direction to the ‘fixed−end forces.’ 
 

The ′fixed−end forces′ due to the applied loads are calculated for each applied load case 
and only those which correspond to structural degrees−of−freedom are subsequently used 
to develop the structural load vector as shown in Figures 7.17. to 7.19. 
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PL/8 = (24.0 × 6.0)/8.0 = 18.0 kNm 
P/2 = 24.0/2.0 = 12.0 kN 
wL2/12 = (1.5 × 3.02)/12 = 1.13 kNm 
wL/2 = (1.5 × 3.0)/2.0  = 2.25 kN 
 

Since these values do not 
correspond with any 
degrees−of−freedom, they 
are not required. 

 
Figure 7.17 

 
The structural displacements and equivalent nodal load system are as indicated in       
Figure 7.18, (assuming axially rigid members).  
 
 
 
 
 
 
 
 
 
 

Figure 7.18 

 
The equivalent nodal loads can be determined as follows: 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.19 

 

 
P1 = (− 1.13 + 18.0 + 10.0) = + 26.87 kNm  
P2 = − 18.0 kN  
P3 = (+2.25 + 8.0) = + 10.25 kN 
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7.5 Structural Displacement Vector [Δ ] 
The structural displacement vector can be determined from the product of the inverse of 
the structural stiffness matrix and the structural load vector, i.e.  
 

[Δ ] = [K]
−1

 × [P ] 
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7.6 Element Displacement Vector  [δ ] 
An element displacement vector is required for each element and is dependent on the 
relationship between the structural displacements and the element nodal displacements in 
each case. The structural displacements in terms of the global co−ordinate system and the 
individual element displacements in terms of their local co−ordinate systems are shown in 
Figure 7.20. 
 
 
 
 
 
 
 
 
 
 
 
 
 
    Figure 7.20 
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In the direct stiffness method the correlation between the structural displacements and the 
element displacements is carried out visually by inspection as indicated above.  
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7.7 Element Force Vector [F]Total  
The element end-forces due to the structural displacements can be related to the element 
end-displacements as indicated in Section 7.2.2. 

[F ] = [k] × [δ ] 
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The total nodal forces developed at the nodes are given by: 
 

 [F]Total  = [F ] + [Fixed−End Forces] 
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7.8 Example 7.1: Two−span Beam  
Consider a uniform two-span beam ABC which is fully-fixed at supports A and C and 
simply supported at B as indicated in Figure 7.21. A uniformly distributed load of            
24 kN/m is applied to span AB and a central point load of 24 kN is applied to span BC as 
shown. 
Using the data given, the degrees-of-freedom indicated and assuming both members to be 
axially rigid,  
 

(i)  generate the structural stiffness matrix [K] and the applied load vector [P], 
(ii)  determine the structural displacements, 
(iii) determine the member end forces and the support reactions, 
(iv) sketch the shear force and bending moment diagrams, 
(v)  sketch the deflected shape.  

 
 
 
 
 
 
 
 

 
 

                    Figure 7.21 
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Solution: 

To develop the structural stiffness matrix each degree−of−freedom is given a unit 
displacement in turn and the forces (corresponding to all degrees−of−freedom) necessary 
to maintain the displaced shape are determined. In this case there is only one 
degree−of−freedom and hence the stiffness matrix comprises one element. 
 

Structural Stiffness Matrix [K]: 
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The stiffness matrix [K] = [k11] = [1.34EI] 

The inverse of the stiffness matrix = [K]
−1

 = 
EI34.1

1  

 

Structural Load Vector [P]: 

The structural load vector comprises coefficients equal in magnitude and opposite in 
direction to the fixed−end forces which correspond to the structural degrees−of−freedom. 
In this case, only the moment at joint B is required. 
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Fixed−end forces for member BC 
FEF1 = − (24.0 × 6.0)/8.0  
         = − 18.0 kNm 
FEF3 = + 18.0 kNm 
 
FEF2  = + (24.0/2.0)  = + 12.0 kN 
FEF4 = + 12.0 kN 
 
Equivalent nodal loads for BC 

 
 

 

 

 

 

 

 

 
Applied load in direction of Δ 1 at joint B = [−72.0 + 18.0] = − 54.0 kNm 
 

Structural Load Vector   [P] = [− 54.0] 
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Element End Forces [F]: 
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⎢ ⎥
⎣ ⎦

 + 

1

2

3

4

FEF
FEF
FEF
FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [k][δ] + [FEF]  

δ 4 

δ 3

δ 2 

δ 1 

A B 

F4 

F3 

F2 

F 1 

B C 
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[k][δ] + [FEF] = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++−+
++−+
−−+−
++−+

06.017.006.017.0
17.067.017.034.0
06.017.006.017.0
17.034.017.067.0

  EI

0
0

40 30
0

. / EI

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 + 

72 0
72 0
72 0
72 0

.

.

.

.

−⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥+
⎢ ⎥+⎣ ⎦

 

 
F1 = − (0.34 × 40.30) − [72.0] = − 85.70 kNm 
F2 = + (0.17 × 40.30) + [72.0] = + 78.85 kN 
F3 = − (0.67 × 40.30) + [72.0] = + 45.0 kNm 
F4 = − (0.17 × 40.30) + [72.0] = + 65.15 kN 

 

Consider element BC:  

L
EI4  = 

0.6
4EI  = 0.67EI    2

6
L
EI  = 20.6

6EI   = 0.17EI; 

L
EI2   = 

0.6
2EI  = 0.34EI    3

1
L
2EI  = 30.6

12EI
 = 0.06EI  

 

[k]BC = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++−+
++−+
−−+−
++−+

06.017.006.017.0
17.067.017.034.0
06.017.006.017.0
17.034.017.067.0

  EI  

 

Displacement Vector [δ]:          Fixed-End Forces Vector [FEF]: 

 

 

1

2

3

4 AB

δ

δ

δ

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 

40 30

0

0

0

. / EI−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                   

1

2

3

4 BC

FEF

FEF

FEF

FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 

18 0

12 0

18 0

12 0

.

.

.

.

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦

 

 

Element End Forces [F]BC: 

           

            [F]Total = 

1

2

3

4

F
F
F
F

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

1

2

3

4

FEF
FEF
FEF
FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [k][δ] + [FEF]  

δ 4 

δ 3 

δ 2 

δ 1 

B C 

F4 

F3 

F2 

F 1 

B C 
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[k][δ] + [FEF] = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++−+
++−+
−−+−
++−+

06.017.006.017.0
17.067.017.034.0
06.017.006.017.0
17.034.017.067.0

  EI

40 30
0
0
0

. / EI−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

18 0
12 0
18 0
12 0

.

.

.

.

−⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥+
⎢ ⎥+⎣ ⎦

 

F1 = − (0.67 × 40.30) − [18.0] = − 45.0 kNm 
F2 = + (0.17 × 40.30) + [12.0] = + 18.85 kN 
F3 = − (0.34 × 40.30) + [18.0] = + 4.30 kNm 
F4 = − (0.17 × 40.30) + [12.0] = + 5.15 kN 
 
Reactions: 

Support A:  

VA = (F2)AB = + 78.85 kN 
MA = (F1)AB = − 85.70 kNm 
 

Support B:  

VB = (F4)AB + (F2)BC = + 65.15 + 18.85 = 84.0 kN 
MB = (F3)AB = (F1)BC = 45.0 kNm 
 

Support C:  

VC = (F4)BC = + 5.15 kN 
MC = (F3)BC = + 4.30 kNm 
 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

                    

  

 

 

 

 

 

Figure 7.22 

65.15 kN 

18.85 kN 

5.15 kN 

78.85 kN 

(78.85/24.0) = 3.29 m 5.15 kN 

18.85 kN 

B
 A                             C 

Shear Force Diagram 

4.30 kNm 

85.70 kNm 

44.0 kNm 

45.0 kNm 

11.35 kNm 

 A                             C 
B

Bending Moment Diagram 

A                            C 

Deflected Shape 

B

Points of contraflexure 
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7.9 Example 7.2:  Rigid−Jointed Frame  
A non−uniform, rigid−jointed frame ABCD is fully-fixed at supports A and D as indicated 
in Figure 7.23. A uniformly distributed load  of 3 kN/m is applied to element BC a central 
point load of 5 kN is applied to element AB and a point load at node C as shown. 
Using the data given, the degrees-of-freedom indicated and assuming all members to be 
axially rigid,  
 

(i)  generate the structural stiffness matrix [K] and the applied load vector [P], 
(ii)  determine the structural displacements, 
(iii) determine the member end forces and the support reactions, 
(iv) sketch the shear force and bending moment diagrams, 
(vi) sketch the deflected shape.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       Figure 7.23 

Solution: 

Each degree−of−freedom is given a unit displacement in turn and the forces necessary 
to maintain the displacements is calculated in each case. 

 Δ1 = 1.0   Δ2 = Δ3 = 0 

K11 = 
AB

4EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

+ 
BC

4EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

 

    = 
( )4 2 0 4

3 0 4 0
. EI EI
. .

⎡ ⎤ ⎡ ⎤+⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
 = + 3.67EI 

K21 = 
BC

2EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

= 2
4 0
EI
.

⎡ ⎤
⎢ ⎥⎣ ⎦

 = + 0.50EI 

K31 = 2
AB

6EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

= 
( )

2
6 2.0

3 0

EI

.

⎡ ⎤
⎢ ⎥
⎣ ⎦

= + 1.33EI 

node 1 

 node 2                               node 3 Δ 3 

Δ 2  Δ 1  

D 

A 

B                                                         C 

node 4 

K31
K11 

K21 

X 

Z 

Global Axes 

D 

A 

B                               C 

5 kN 

3 kN/m 

X  

Z  

Global Axes 

D 

2EI 

A 

 B                        EI                           C 

3EI 

1.
5 

m
   

   
   

   
 1

.5
 m

 

3.
0 

m
 

4.0 m 

2 kN 

5.
0 

m
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Δ2 = 1.0   Δ1 = Δ3 = 0 

K12 = 
BC

2EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

= 2
4 0
EI
.

⎡ ⎤
⎢ ⎥⎣ ⎦

 = + 0.50EI 

 

K22 = 
BC

4EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

+ 
CD

4EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

 

    = 
( )4 3 04

4 0 5 0
. EIEI

. .
⎡ ⎤⎡ ⎤ + ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 = + 3.40EI 

 

K32 = 2
CD

6EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

= 
( )

2
6 3.0

5 0

EI

.

⎡ ⎤
⎢ ⎥
⎣ ⎦

 = + 0.72EI 

 
Δ3 = 1.0   Δ1 = Δ2 = 0  

K13 = 2
AB

6EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

= 
( )

2
6 2.0

3 0

EI

.

⎡ ⎤
⎢ ⎥
⎣ ⎦

 = + 1.33EI 

 

K23 = 2
CD

6EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

= 
( )

2
6 3.0

5 0

EI

.

⎡ ⎤
⎢ ⎥
⎣ ⎦

= + 0.72EI 

 

K33 = 3
AB

12EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

+ 3
CD

12EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

 

    =
( ) ( )

3 3

12 2 0 12 3 0
3 0 5 0

. EI . EI
. .

⎡ ⎤ ⎡ ⎤
+⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
= + 1.18EI 

 

Structural stiffness matrix = [K] = 
3 67 0 50 1 33
0 50 3 40 0 72
1 33 0 72 1 18

. . .
EI . . .

. . .

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
There are several methods for inverting matrices, the technique used here is given in 
Appendix 3. 
 

The invert of a matrix is given by [K]−1 = 

TCK

K

⎡ ⎤⎣ ⎦  

where: 
[KC] is the co-factor matrix for [K] 
|K|  is the determinant of [K]  and 
[KC]T is the transpose of the co-factor matrix 
 

 

3 67 0 50 1 33
0 50 3 40 0 72
1 33 0 72 1 18

. . .
EI . . .

. . .

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

  +            −            + 

 −             +            − 

 +             −            + 

K22 

K32 
K12 

X 

Z 

Global Axes 

D 

A 

B                                 C 

B                               C 

K23 
K33 

K13 

X 

Z 

Global Axes 

D 

A 
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Co-factor Matrix: [KC
]  

(Note:  the transpose of a symmetric matrix is the same as the original matrix) 
c
11k  = + {(3.40 × 1.18) − (0.72 × 0.72)}EI 2 = + 3.49EI 2 
c
12k  = c

21k  = − {(0.50 × 1.18) − (1.33 × 0.72)}EI 2 = + 0.37EI 2 
c
13k  = c

31k  = + {(0.50 × 0.72) − (1.33 × 3.40)}EI 2 = − 4.16EI 2 
c
22k  = + {(3.67 × 1.18) − (1.33 × 1.33}EI 2 = + 2.56EI 2 
c
23k  = c

32k  = − {(3.67 ×  0.72) − (1.33 × 0.50)}EI 2 = − 1.98EI 2 
c
33k  = + {(3.67 × 3.40) − (0.50 × 0.50)}EI 2 = + 12.23EI 2 

 

Determinant of [K]: 

Det [K] = EI 3 {+ (3.67 × 3.49) + (0.5 × 0.37) − (1.33 × 4.16 } = + 7.46EI 3  
 

Inverted stiffness matrix = [K]
−1 = 

0.468 0.050 0.558
1 0.050 0.343 0.265

0.558 0.265 1.639
EI

+ + −⎡ ⎤
⎢ ⎥+ + −⎢ ⎥
⎢ ⎥− − +⎣ ⎦

 

 
Structural Load Vector: [P]: 

 

Fixed−end forces for member AB 
FEF1 = + (5.0 × 3.0)/8.0 
     = + 1.88 kNm 
FEF3 = − 1.88 kNm 
FEF2 = (5.0/2.0) = 2.5 kN 
FEF4 = 2.5 kN 
 
 

 
                  Equivalent nodal loads for AB 

 

 
Fixed−end forces for member BC 
FEF1 = − (3.0 × 4.02)/12.0 
     = − 4.0 kNm 
FEF3 = + 4.0 kNm 
FEF2 = (3.0 × 4.0)/2.0) = 6.0 kN 
FEF4 = 6.0 kN 
 
 
 

 
               Equivalent nodal loads for BC 

Applied nodal load at C = 2.0 kN 

PL/8 

B

A

PL/8 

3.
0 

m
 

P 

P/2

P/2

1.88 kNm 

1.88 kNm 

B

A

2.5 kN 

2.5 kN 

B             C 

w kN/m   wL2/12          wL2/12 

4.0 m 

wL/2              wL/2 

B             C 

6.0 kN                6.0 kN 

4.0 kNm        4.0 kNm 
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The equivalent nodal loads required are those which correspond with the nodal 
degree−of−freedom as follows: 
 
P1 = (+1.88 + 4.0) = + 5.88 kNm 
P2 = − 4.0 = − 4.0 kNm 
P3 = (+ 2.5 + 2.0) = + 4.5 kNm 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Structural Load Vector [P] = 
5.88
4.0
4.5

+⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥+⎣ ⎦

 

 
Structural Displacements [Δ]: 

 

[Δ] = [K]
−1

 [P]  

1

2

3

Δ
Δ
Δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 = 

0.468 0.050 0.558
1 0.050 0.343 0.265

0.558 0.265 1.639
EI

+ + −⎡ ⎤
⎢ ⎥+ + −⎢ ⎥
⎢ ⎥− − +⎣ ⎦

5.88
4.0

4.50

+⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥+⎣ ⎦

 

 

Δ1 = ( ) ( ) ( )1 0.467 5.88 0.05 4.0 0.558 4.5
EI

⎡ ⎤× − × − ×⎣ ⎦  = 0.03
EI

+ radians 

 

Δ2 = ( ) ( ) ( )1 0.05 5.88 0.343 4.0 0.265 4.5
EI

⎡ ⎤+ × − × − ×⎣ ⎦  = 2.27
EI

− radians 

 

Δ3 = ( ) ( ) ( )1 0.558 5.88 0.265 4.0 1.639 4.5
EI

⎡ ⎤− × + × + ×⎣ ⎦  = 5.15
EI

+ m 

 
 
 
 

Equivalent Nodal Loads 

B                                C 

node 4 

 node 2               node 3 
P3 

P1 
P2 

X 

Z 

Global Axes 

D 

A 

node 1 

B                               C 

node 4

 node 2             node 3 
4.5 kN 

5.88 kNm 4.0 kNm 

X 

Z 

Global Axes 

D 

A 

node 1
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Element Stiffness Matrices  [k]: 

              [k] =

2 2

2 3 2 3

2 2

2 3 2 3

4 6 2 6

6 12 6 12

  
2 6 4 6

6 12 6 12

EI EI EI EI
L LL L
EI EI EI EI
L L L L
EI EI EI EI
L LL L
EI EI EI EI
L L L L

⎡ ⎤+ − + +⎢ ⎥
⎢ ⎥
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥
⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥⎣ ⎦

 

Element End Forces [F]Total: 

[F]Total = 

1

2

3

4

F
F
F
F

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

1

2

3

4

FEF
FEF
FEF
FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [k][δ] + [FEF] 

 

Consider element AB: 

L
EI4  = 

( )4 2.0
3.0

EI×
= 2.67EI    2

6
L
EI  = 

( )
2

6 2.0
3.0

EI×
 = 1.33EI 

L
EI2  = 

( )2 2.0
3.0

EI×
= 1.33EI      3

12
L
EI  = 

( )
3

12 2.0
3.0

EI×
= 0.89EI  

[k]AB = 

2.67 1.33 1.33 1.33
1.33 0.89 1.33 0.89
1.33 1.33 2.67 1.33
1.33 0.89 1.33 0.89

EI

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦

 

EI, L 
F1 

F2 

F3 

F4 

Structural Deflections 

D 

0.03 rad
EI

 5.15 m
EI

2.27 rad
EI

node 4 

 node 2                        node 3 

X 

Z 

Global Axes 

A 

B                                          C 

node 1 
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Displacement Vector [δ]:         Fixed-End Forces Vector [FEF]: 

 

AB4

3

2

1

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

δ

δ

δ

δ

= 

0

0

0 03

5 15

. / EI

. / EI

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦

           

1

2

3

4 AB

FEF

FEF

FEF

FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

=  

1 88

2 5

1 88

2 5

.

.

.

.

+⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 
Element End Forces [F]AB: 

 

       [F]Total = 

1

2

3

4

F
F
F
F

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

1

2

3

4

FEF
FEF
FEF
FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [k][δ] + [FEF] 

 

       = 

2.67 1.33 1.33 1.33
1.33 0.89 1.33 0.89
1.33 1.33 2.67 1.33
1.33 0.89 1.33 0.89

EI

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦

0
0

0 03
5 15

. / EI

. / EI

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥+⎣ ⎦

 + 

1 88
2 5

1 88
2 5

.
.

.
.

+⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎣ ⎦

 

 
F 1 = [+ (1.33 × 0.03) + (1.33 × 5.15)] + [1.88] = + 8.77 kNm 
F 2 = [− (1.33 × 0.03) − (0.89 × 5.15)] − [2.5] = − 7.12 kN 
F 3 = [+ (2.67 × 0.03) + (1.33 × 5.15)] − [1.88] = + 5.05 kNm 
F 4 = [+ (1.33 × 0.03) + (0.89 × 5.15)] − [2.5] = + 2.12 kN 
 

Consider element BC: 

 

L
EI4  = 4

4.0
EI×  = 1.0EI   2

6
L
EI  = 2

6
4.0

EI×  = 0.38EI 

L
EI2  = 2

4.0
EI×  = 0.5EI   3

12
L
EI  = 3

12
4.0

EI×  = 0.19EI 

 

[k]BC = 

1.0 0.38 0.50 0.38
0.38 0.19 0.38 0.19
0.50 0.38 1.0 0.38
0.38 0.19 0.38 0.19

EI

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦

 

δ 1 δ 2 

δ 3 
δ 4

B

A 

F 1 F 2 

F 3 
F4 

B 

A 
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Displacement Vector [δ]:          Fixed-End Forces Vector [FEF]: 

 

 

1

2

3

4 BC

δ

δ

δ

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 

0 03

0

2 27

0

. / EI

. / EI

+⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                   

1

2

3

4 BC

FEF

FEF

FEF

FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 

4 0

6 0

4 0

6 0

.

.

.

.

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦

 

 

Element End Forces [F]BC: 

 

           [F]Total = 

1

2

3

4

F
F
F
F

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

1

2

3

4

FEF
FEF
FEF
FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [k][δ] + [FEF]  

 

= 

1.0 0.38 0.50 0.38
0.38 0.19 0.38 0.19
0.50 0.38 1.0 0.38
0.38 0.19 0.38 0.19

EI

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦

0 03
0

2 27
0

. / EI

. / EI

+⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 + 

4 0
6 0
4 0
6 0

.

.

.

.

−⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥+
⎢ ⎥+⎣ ⎦

 

 
F1 = [+ (1.0 × 0.03) − (0.5 × 2.27)] − [4.0] = − 5.11 kNm 
F2 = [− (0.38 × 0.03) + (0.38 × 2.27)] + [6.0] = + 6.85 kN 
F3 = [+ (0.50 × 0.03) − (1.0 × 2.27)] + [4.0] = + 1.75 kNm 
F4 = [+ (0.38 × 0.03) − (0.38 × 2.27)] + [6.0] = + 5.15 kN 

 

Consider element DC: 

 

L
EI4  = 4 3.0

5.0
EI×  = 2.4EI    2

6
L
EI  = 2

6 3.0
5.0

EI×  = 0.72EI 

L
EI2  = 2 3.0

5.0
EI× = 1.2EI      3

12
L
EI  = 3

12 3.0
5.0

EI×  = 0.29EI 

 

[k]DC = 

2 40 0 72 1 20 0 72
0 72 0 29 0 72 0 29
1 20 0 72 2 40 0 72
0 72 0 29 0 72 0 29

. . . .

. . . .
EI

. . . .

. . . .

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦

 

δ 4 

δ 3 

δ 2 

δ 1

B C 

F4 

F3 

F2 

F 1 

B C 
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Displacement Vector [δ]:         Fixed-End Forces Vector [FEF]: 

 

 
1

2

3

4 CD

δ

δ

δ

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 

0

0

2 27

5 15

. / EI

. / EI

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦

            

1

2

3

4 CD

FEF

FEF

FEF

FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 

0

0

0

0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
 
 

Element End Forces [F]DC: 

 

      [F]Total = 

1

2

3

4

F
F
F
F

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

1

2

3

4

FEF
FEF
FEF
FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [k][δ] + [FEF] 

       = 

2 40 0 72 1 20 0 72
0 72 0 29 0 72 0 29
1 20 0 72 2 40 0 72
0 72 0 29 0 72 0 29

. . . .

. . . .
EI

. . . .

. . . .

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦

0
0

2 27
5 15
. / EI
. / EI

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥+⎣ ⎦

 + 

0
0
0
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
 
F1 = [− (1.20 × 2.27) + (0.72 × 5.15)] + [0] = + 0.98 kNm 
F2 = [+ (0.72 × 2.27) − (0.29 × 5.15)] + [0] = + 0.14 kN 
F3 = [− (2.40 × 2.27) + (0.72 × 5.15)] + [0] = − 1.74 kNm 
F4 = [− (0.72 × 2.27) + (0.29 × 5.15)] + [0] = − 0.14 kN 
 

Reactions: 

Support A:  

VA = (F2)BC = 6.85 kN      HA = (F2)AB = 7.12 kN 
MA = (F1)AB = + 8.77 kNm 
 

Support D:  

VD = (F4)BC = 5.15 kN      HD = (F2)DC = 0.14 kN 
MD = (F1)DC = + 0.98 kNm 
 
      

D 

δ 1 
δ 2 

δ 3 δ 4
C

D 

F 1 
F2 

F 3 F 4 
C 
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     Figure 7.24 

 

Axial Force Diagram 

Bending Moment Diagram 

 *  (the value given at the nodes is the 

average from the two elements). 

Deflected Shape 

Shear Force Diagram 
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7.10 Problems: Direct Stiffness Method 
A series of indeterminate structures are indicated in Problems 7.1 to 7.6 in which the 

assumed degrees-of-freedom at the nodes and the relative EI values for the members 

are given. In each case for the data indicated: 

 

(i) generate the structural stiffness matrix [K] and the applied load vector [P], 

(ii) determine the structural displacements [Δ], 

(iii) determine the member end forces [F], 

(iv) determine the support reactions, 

(v) sketch the axial load, shear force, and bending moment diagrams and the 

deflected shape for each structure.  

 
Assume all members to be axially rigid. 

 
  

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 

 

 
 
 
 

 

X  

Z  

Global Axes 

Problem 7.1 

Problem 7.3 

  node 1          node 2                                          node 3 

EI          B     2EI  Δ 2

A C 
Δ 1 

3.0 m     3.0 m 

10.0 kN/m 

4.0 m             6.0 m 

40.0 kN 

Problem 7.2 

X  

Z  

Global Axes

  node 4 
X  

Z  

Global Axes 

  node 1                  node 2                 node 3 

Δ 1 Δ 2 Δ 3 

Local 
Co−ordinate 
System 1 3EI, L 

42

3.
0 

m
 

EI                                              1.5EI  

50 kN 

    A                      D 

    B              2EI                       C 

8.0 m 

pin 

    4.0 m       4.0 m 

    6.0 m           4.0 m 

   3.0 m         3.0 m 

 A    EI              B  1.5EI            C 

16.0 kN 

   
3.

0 
m

  
  3

.0
 m

  

2EI  

D 

10.0 kN/m 40.0 kN 

   
6.

0 
m

 

 node 1                           node 4   

node 2                                     node 3 

Δ 3 Δ 2 

 Δ 1  
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.  
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

node 4 

node 1 

node 2                                                   node 3 Δ 3 

Δ 2  Δ 1  

X  

Z  

Global Axes 

Problem 7.4 

8.0 m 

EI  

1.5EI 

12.0 kN/m 

D 

   B                      2EI                            C 

A 

 3
.0

 m
  

 
 

3.
0 

m
 

50 kN 

Problem 7.5 

X  

Z 

Global Axes node 3 

node 2 node 1 
Δ 3 

Δ 1 Δ 2 

4.
0 

m
 

EI  

C 8.0 kN/m 

 A                  2EI            B 

24.0 kN 

6.0 m 

   2.0 m                  4.0 m 

Problem 7.6 

 8.0 m       3.0 m 

  B             2EI            C          1.5EI          D 

12.0 kN/m 

  A  

EI  

  3.0 m         5.0 m 

25 kN 

4.
0 

m
 

X 

Z 

Global Axes 

  node 2                node 3         node 4 

node 1 

Δ 1 Δ 2 Δ 3 
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7.11 Solutions: Direct Stiffness Method 
        
 
 
 

 
 

 
  
 
 
 
 
 
 

Assume axially rigid members 

  
 Δ1 = 1.0   Δ2 = 0 

K11  =
AB

4EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

+ 
BC

4EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

 

   =
( )4 2 04

4 0 6 0
. EIEI

. .
⎡ ⎤⎡ ⎤ + ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

= + 2.33 EI  

K21 =
BC

2EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

=
( )2 2.0

6 0
EI

.
⎡ ⎤
⎢ ⎥
⎣ ⎦

= + 0.67 EI 

   

Δ2 = 1.0   Δ1 = 0        

               K12 =
BC

2EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

=
( )2 2.0

6 0
EI

.
⎡ ⎤
⎢ ⎥
⎣ ⎦

= + 0.67 EI 

K22 =
BC

4EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

=
( )4 2 0

6 0
. EI
.

⎡ ⎤
⎢ ⎥
⎣ ⎦

= + 1.33 EI  

 

Structural stiffness matrix = [K] = 
2 33 0 67
0 67 1 33

. .
EI

. .
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 

The invert of a matrix is given by [K]−1 = 

TCK

K

⎡ ⎤⎣ ⎦  

where: 
 [KC] is the co-factor matrix for [K] 
 |K|  is the determinant of [K]  and 
 [KC]T is the transpose of the co-factor matrix 

Solution 
Topic:  Direct Stiffness Method 

Problem Number: 7.1            Page No. 1 

X  

Z  

Global Axes 

  node 1           node 2                                        node 3 

EI            B                  2EI  Δ 2

A C 
Δ 1 

3.0 m     3.0 m 

10.0 kN/m 

4.0 m            6.0 m 

40.0 kN 

X 

Z 

Global Axes 

 

2 33 0 67
0 67 1 33

. .
EI

. .
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

  +          − 

 −             + 

A                C 

K11 

K21

B 

A                C 

K12 

K22

B 
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Co-factor Matrix: [KC

]  

(Note:  the transpose of a symmetric matrix is the same as the original matrix) 
c
11k  = + 1.33EI 
c
12k  = c

21k  = − 0.67EI 
c
22k  = + 2.33EI  

 

Determinant of [K]: 

Det [K] = EI 2 {+ (2.33 × 1.33) − (0.67 × 0.67)} = + 2.65 EI 2 
 

Inverted stiffness matrix = [K]
−1 = 

0.502 0.2531
0.253 0.879EI

−⎡ ⎤
⎢ ⎥−⎣ ⎦

 

 

Structural Load Vector: [P]: 

 
Fixed−end forces for member AB 
FEF1 = − (10.0 × 4.02)/12.0 
      = − 13.33 kNm 
 
FEF3 = + 13.33 kNm 
 FEF2 = + (10.0 × 4.0)/2.0 = + 20.0 kN 
 FEF4 = + 20.0 kN 
 
  
 Equivalent nodal loads for AB 
 
 
 

 

Fixed−end forces for member BC 
FEF1 = − (40.0 × 6.0)/8.0  
      = − 30.0 kNm 
FEF3 = + 30.0 kNm 
 
FEF2 = + (40.0/2.0)  = + 20.0 kN 
 FEF4 = + 20.0 kN 
 
 Equivalent nodal loads for BC 
 
 

Solution 
Topic:  Direct Stiffness Method 

Problem Number: 7.1            Page No. 2 

B             C 

  PL/8                  PL/8 

6.0 m 

P 

P/2                       P/2 

B             C 

20.0 kN           20.0 kN 

30.0 kNm      30.0 kNm 

A             B 

20.0 kN           20.0 kN 

13.33 kNm        13.33 kNm 

w kN/m 

A             B 

  wL2/12          wL2/12 

4.0 m 

wL/2              wL/2 
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 Nodal load at B = (−13.33 + 30.0)  = + 16.67 kNm 
 Nodal load at C        = − 30.0 kNm 
 
  
 
 
 
 

Structural Load Vector [P]  = 
16.67
30.0

+⎡ ⎤
⎢ ⎥−⎣ ⎦

 

 
 Structural Displacements [Δ]: 

 

 [Δ] = [K]
−1

 [P] =  
0.502 0.2531
0.253 0.879EI

−⎡ ⎤
⎢ ⎥−⎣ ⎦

16.67
30.0

+⎡ ⎤
⎢ ⎥−⎣ ⎦

 

 

Δ1 = ( ) ( )1 0.502 16.67 0.253 30.0
EI

⎡ ⎤× + ×⎣ ⎦  = 15.96
EI

+ radians 

Δ2 = ( ) ( )1 0.253 16.67 0.879 30.0
EI

⎡ ⎤− × − ×⎣ ⎦ = 30.59
EI

− radians 

  
 
 
 
 
 
 

Element Stiffness Matrices  [k]: 

             [k]  =

2 2

2 3 2 3

2 2

2 3 2 3

4 6 2 6

6 12 6 12

  
2 6 4 6

6 12 6 12

EI EI EI EI
L LL L
EI EI EI EI
L L L L
EI EI EI EI
L LL L
EI EI EI EI
L L L L

⎡ ⎤+ − + +⎢ ⎥
⎢ ⎥
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥
⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥⎣ ⎦

 

 

 

Solution 
Topic:  Direct Stiffness Method 

Problem Number: 7.1            Page No. 3 

Equivalent Nodal Loads 

X  

Z 

Global Axes 

   16.67 kNm                                   30.0 kNm 

EI            B                  2EI  
A C 

EI, L 
F1 

F2 

F3 

F4 

Structural Deflections 

  node 1           node 2                                       node 3 

15.96

EI

30.59

EI

A C 
B 
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Element End Forces [F]Total: 

[F]Total = 

1

2

3

4

F
F
F
F

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

1

2

3

4

FEF
FEF
FEF
FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [k][δ] + [FEF] 

 

= 

2 2

2 3 2 3

2 2

2 3 2 3

4 6 2 6

6 12 6 12

2 6 4 6

6 12 6 12

EI EI EI EI
L LL L
EI EI EI EI
L L L L
EI EI EI EI
L LL L
EI EI EI EI
L L L L

⎡ ⎤+ − + +⎢ ⎥
⎢ ⎥
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥
⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥⎣ ⎦

1

2

3

4

δ

δ

δ

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

1

2

3

4

FEF

FEF

FEF

FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
Consider element AB: 

L
EI4  = 4

4.0
EI×  = 1.0EI    2

6
L
EI  = 2

6
4.0

EI×  = 0.38EI 

L
EI2  = 2

4.0
EI×  = 0.50EI     3

12
L
EI  = 3

12
4.0

EI×  = 0.19EI 

 

[k]AB = 

1.00 0.38 0.50 0.38
0.38 0.19 0.38 0.19
0.50 0.38 1.00 0.38
0.38 0.19 0.38 0.19

EI

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦

 

 
Displacement Vector [δ]:        Fixed-End Forces Vector [FEF]: 

AB4

3

2

1

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

δ

δ

δ

δ

= 

0

0

15 96

0

. / EI

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

            

1

2

3

4 AB

FEF

FEF

FEF

FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 

13 33

20 0

13 33

20 0

.

.

.

.

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦
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δ 3 
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δ 1 
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Element End Forces [F]AB: 

          [F]Total = 

1

2

3

4

F
F
F
F

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

1

2

3

4

FEF
FEF
FEF
FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [k][δ] + [FEF] 

= 

1.00 0.38 0.50 0.38
0.38 0.19 0.38 0.19
0.50 0.38 1.00 0.38
0.38 0.19 0.38 0.19

EI

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦

0
0

15 96
0

. / EI

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎣ ⎦

 + 

13 33
20 0
13 33
20 0

.
.
.
.

−⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥+
⎢ ⎥+⎣ ⎦

 

 
F1 = (0.5 × 15.96)] − [13.33] = − 5.35 kNm  
F2 = − (0.38 × 15.96) + [20.00] = + 13.94 kN 
F3 = (1.0 × 15.96) + [13.33] = + 29.29 kNm 
F4 = (0.38 × 15.96) + [20.0] = + 26.06 kN 

 
Consider element BC: 

L
EI4  = 4 2.0

6.0
EI×  = 1.33EI   2

6
L
EI  = 2

6 2.0
6.0

EI×  = 0.33EI  

L
EI2  = 2 2.0

6.0
EI×  = 0.67EI    3

12
L
EI  = 3

12 2.0
6.0

EI×  = 0.11EI 

[k]BC = 

1.33 0.33 0.67 0.33
0.33 0.11 0.33 0.11
0.67 0.33 1.33 0.33
0.33 0.11 0.33 0.11

EI

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦

 

 
Displacement Vector [δ]:         Fixed-End Forces Vector [FEF]: 

AB4

3

2

1

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

δ

δ

δ

δ

= 

15 96

0

30 59

0

. / EI

. / EI

+⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

           

1

2

3

4 BC

FEF

FEF

FEF

FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 

30 0

20 0

30 0

20 0

.

.

.

.

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦
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δ 3 

δ 2 

δ 1 
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δ 4 

δ 3 

δ 2 

δ 1 
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Element End Forces [F]BC: 

           [F]Total = 

1

2

3

4

F
F
F
F

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

1

2

3

4

FEF
FEF
FEF
FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [k][δ] + [FEF]  

= 

1.33 0.33 0.67 0.33
0.33 0.11 0.33 0.11
0.67 0.33 1.33 0.33
0.33 0.11 0.33 0.11

EI

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦

15 96
0

30 59
0

. / EI

. / EI

+⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 + 

30 0
20 0
30 0
20 0

.

.

.

.

−⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥+
⎢ ⎥+⎣ ⎦

 

F1 = [+ (1.33 × 15.96) − (0.67 × 30.59)] − [30.0] = − 29.27 kNm 
F2 = [− (0.33 × 15.96) + (0.33 × 30.59)] +  [20.0] = + 24.83 kN 
F3 = [+ (0.67 × 15.96) − (1.33 × 30.59)] + [30.0] = zero 
F4 = [+ (0.33 × 15.96) − (0.33 × 30.59)] +  [20.0] = + 15.17 kN 

 
Reactions: 

Support A:  

VA = (F2)AB = 13.94 kN 
MA = (F1)AB = − 5.35 kNm 
 

Support B:  

VB = (F4)AB + (F2)BC = (+ 26.06 + 24.83) = 50.89 kN 
 

Support C:  

VC = (F4)BC = 15.17 kN 
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Shear Force Diagram 

F4 

F3 

F2 

F 1 
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    A                C 
B Deflected Shape 

45.36 kNm 

     A                C 
B 

Bending Moment Diagram 

*  (the value given at the node is the 
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4.34 kNm 

5.35 kNm 
 29.28 kNm* 

13.94 kN 

26.06 kN 

24.83 kN 

15.17 kN 

    A                C 
B

1.39 m 
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Assume axially rigid members 

 Δ1 = 1.0   Δ2 = Δ3 = 0 

K11 = 
AB

4EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

 = ⎥⎦
⎤

⎢⎣
⎡

0.3
4EI  = + 1.33EI 

K21 = 
AB

2EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

 = ⎥⎦
⎤

⎢⎣
⎡

03
2

.
EI

 = + 0.67EI 

K31 = 0 

 

 

Δ2 = 1.0   Δ1 = Δ3 = 0        K12 = 
AB

2EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

 = ⎥⎦
⎤

⎢⎣
⎡

03
2

.
EI

 = + 0.67EI 

K22 = 
AB

4EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

+ 
BC

4EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

 

   = 
( )4 2 04

3 0 8 0
. EIEI

. .
⎡ ⎤⎡ ⎤ + ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 = + 2.33EI 

K32 = 
BC

2EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

= 
( )2 2 0

8 0
. EI
.

⎡ ⎤
⎢ ⎥
⎣ ⎦

 = + 0.5EI 

 
Δ3 = 1.0   Δ1 = Δ2 = 0        K13 = 0 

K23 = 
BC

2EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

= 
( )2 2 0

8 0
. EI
.

⎡ ⎤
⎢ ⎥
⎣ ⎦

 = + 0.5EI 

K33 = 
BC

4EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

+ 
CD

4EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

 

  = 
( ) ( )4 2 0 4 1 5

8 0 3 0
. EI . EI
. .

⎡ ⎤ ⎡ ⎤
+⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
= +3.0EI 
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   A                            D 

3.
0 

m
 

EI                                              1.5EI  

50 kN 

   4.0 m            4.0 m 

   B                    2EI                       C 

8.0 m 

X  

Z  

Global Axes 

D 

C B 
K31

K11 

K21 

A 

X 

Z 

Global Axes 

B 

D 

C 

K12 

K22 K32 

A 

X 

Z 

Global Axes 

C B 

D 

K33 

K13 

K23 

A 

X 

Z 

Global Axes 

 node 1                           node 4   

 node 2                                    node 3 

Δ 3 Δ 2 

 Δ 1  
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Structural stiffness matrix = [K] = 
1 33 0 67 0
0 67 2 33 0 50

0 0 50 3 0

. .
EI . . .

. .

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

The invert of a matrix is given by [K]−1 = 

TCK

K

⎡ ⎤⎣ ⎦  

where:  
 [KC] is the co-factor matrix for [K] 
 |K|  is the determinant of [K]  and 
 [KC]T is the transpose of the co-factor matrix 
 

Co-factor Matrix: [KC
]  

(Note:  the transpose of a symmetric matrix is the same as the original matrix) 
c
11k  = + {(2.33 × 3.0) − (0.5 × 0.5)}EI 2 = + 6.74EI 2 
c
12k  = c

21k  = − {(0.67 × 3.0) − (0 × 0.5)}EI 2 = − 2.0EI 2 
c
13k  = c

31k  = + {(0.67 × 0.5) − (0 × 2.33)}EI 2 = + 0.34EI 2 
c
22k  = + {(1.33 × 3.0) − 0}EI 2 = + 4.0EI 2 
c
23k  = c

32k  = − {(1.33 ×  0.5) − (0 × 0.67)}EI 2 = − 0.67EI 2 
c
33k  = + {(1.33 × 2.33) − (0.67 × 0.67)}EI 2 = + 2.65EI 2 

 

Determinant of [K]: 

Det [K] = EI 3 {+ (1.33 × 6.74) − (0.67 × 2.0) + 0} = + 7.62 EI 3 

Inverted stiffness matrix = [K]
−1 = 

0.885 0.264 0.044
1 0.264 0.524 0.087

0.044 0.087 0.348
EI

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

Structural Load Vector: [P]: 

Fixed−end forces for member BC 
FEF1 = − (50.0 × 8.0)/8.0 
      = − 50.0 kNm 
FEF3 = + 50.0 kNm 
 
FEF2 = + (50.0/2.0) = + 25.0 kN 
 FEF4 = + 25.0 kN 

 
  Equivalent nodal loads for BC 
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1 33 0 67 0
0 67 2 33 0 5

0 0 5 3 0

. .
EI . . .

. .

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

  +           −          + 

 −           +           − 

 +           −          + 

B             C 

  PL/8                  PL/8 

8.0 m 

P 

P/2                       P/2 

B             C 

25.0 kN           25.0 kN 

50.0 kNm      50.0 kNm 
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Structural Load Vector [P] = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
+

0.50
0.50

0
 

 
 Structural Displacements [Δ]: 

 

 [Δ] = [K]
−1

 [P]  

1

2

3

Δ
Δ
Δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 = 
0.885 0.264 0.044

1 0.264 0.524 0.087
0.044 0.087 0.348

EI

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥−⎣ ⎦

0
50.0
50.0

⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 

Δ1 = ( ) ( ) ( )1 0.885 0 0.264 50.0 0.044 50.0
EI

⎡ ⎤× − × − ×⎣ ⎦  = 15.40
EI

− radians 

Δ2 = ( ) ( ) ( )1 0.264 0 0.524 50.0 0.087 50.0
EI

⎡ ⎤− × + × + ×⎣ ⎦  = 30.55
EI

+ radians 

Δ3 = ( ) ( ) ( )1 0.044 0 0.087 50.0 0.348 50.0
EI

⎡ ⎤× − × − ×⎣ ⎦  = 21.75
EI

− radians 
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 node 1                            node 4 

node 2                                     node 3 

P 3 P2 

 P 1  

 node 1                           node 4   

node 2                                      node 3 

50.0 kNm 50.0 kNm

 zero  

Equivalent Nodal Loads 

X  

Z 

Global Axes 

30.55
rad

EI
 

  A                                                                                         D 

Structural Deflections 

node 2                                                                                       node 3 

 node 1                                                node 4 

  B                                                                              C 

15.40
rad

EI
 

21.75
rad

EI
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Element Stiffness Matrices  [k]: 

             [k] =

2 2

2 3 2 3

2 2

2 3 2 3

4 6 2 6

6 12 6 12

  
2 6 4 6

6 12 6 12

EI EI EI EI
L LL L
EI EI EI EI
L L L L
EI EI EI EI
L LL L
EI EI EI EI
L L L L

⎡ ⎤+ − + +⎢ ⎥
⎢ ⎥
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥
⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥⎣ ⎦

 

Element End Forces [F]Total: 

[F]Total = 

1

2

3

4

F
F
F
F

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

1

2

3

4

FEF
FEF
FEF
FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [k][δ] + [FEF] 

 

= 

2 2

2 3 2 3

2 2

2 3 2 3

4 6 2 6

6 12 6 12

2 6 4 6

6 12 6 12

EI EI EI EI
L LL L
EI EI EI EI
L L L L
EI EI EI EI
L LL L
EI EI EI EI
L L L L

⎡ ⎤+ − + +⎢ ⎥
⎢ ⎥
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥
⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥⎣ ⎦

1

2

3

4

δ

δ

δ

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 +  

1

2

3

4

FEF

FEF

FEF

FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

Consider element AB: 

L
EI4  = 4

3.0
EI×  = 1.33EI    2

6
L
EI  = 2

6
3.0

EI×  = 0.67EI  

L
EI2  = 2

3.0
EI×  = 0.67EI     3

12
L
EI  = 3

12
3.0

EI×  = 0.44EI  

 

[k]AB = 

1.33 0.67 0.67 0.67
0.67 0.44 0.67 0.44
0.67 0.67 1.33 0.67
0.67 0.44 0.67 0.44

EI

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦
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Displacement Vector [δ]:         Fixed-End Forces Vector [FEF]: 

 

AB4

3

2

1

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

δ

δ

δ

δ

= 

15 40

0

30 55

0

. / EI

. / EI

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

           

1

2

3

4 AB

FEF

FEF

FEF

FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 

0

0

0

0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Element End Forces [F]AB: 

       [F]Total = 

1

2

3

4

F
F
F
F

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

1

2

3

4

FEF
FEF
FEF
FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [k][δ] + [FEF] 

        = 

1.33 0.67 0.67 0.67
0.67 0.44 0.67 0.44
0.67 0.67 1.33 0.67
0.67 0.44 0.67 0.44

EI

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦

15 40
0

30 55
0

. / EI

. / EI

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎣ ⎦

 + 

0
0
0
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
F1 = [− (1.33 × 15.40) + (0.67 × 30.55)] + [0] = zero  
F2 = [+ (0.67 × 15.40) − (0.67 × 30.55)] + [0] = − 10.16 kN 
F3 = [− (0.67 × 15.40) + (1.33 × 30.55)] + [0] = + 30.31 
F4 = [− (0.67 × 15.40) + (0.67 × 30.55)] + [0] = + 10.16 kN 

 
Consider element BC: 

L
EI4  = 4 2.0

8.0
EI×  = 1.0EI   2

6
L
EI  = 2

6 2.0
8.0

I×  = 0.19EI 

L
EI2  = 2 2.0

8.0
EI×  = 0.5EI     3

12
L
EI  = 3

12 2.0
8.0

EI×  = 0.05EI 

[k]BC = 

1.0 0.19 0.50 0.19
0.19 0.05 0.19 0.05
0.50 0.19 1.0 0.19
0.19 0.05 0.19 0.05

EI

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦
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δ 4 
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Displacement Vector [δ]:         Fixed-End Forces Vector [FEF]: 

 

 

1

2

3

4 BC

δ

δ

δ

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 

30 55

0

21 75

0

. / EI

. / EI

+⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                   

1

2

3

4 BC

FEF

FEF

FEF

FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 

50 0

25 0

50 0

25 0

.

.

.

.

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦

 

 

Element End Forces [F]BC: 

           [F]Total = 

1

2

3

4

F
F
F
F

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

1

2

3

4

FEF
FEF
FEF
FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [k][δ] + [FEF]  

= 

1.0 0.19 0.50 0.19
0.19 0.05 0.19 0.05
0.50 0.19 1.0 0.19
0.19 0.05 0.19 0.05

EI

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦

30 55
0

21 75
0

. / EI

. / EI

+⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 + 

50 0
25 0
50 0
25 0

.

.

.

.

−⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥+
⎢ ⎥+⎣ ⎦

 

 
F1 = [+ (1.0 × 30.55) − (0.5 × 21.75)] − [50.0] = − 30.33 kNm 
F2 = [− (0.19 × 30.55) + (0.19 × 21.75)] + [25.0] = + 23.33 kN 
F3 = [+ (0.50 × 30.55) − (1.0 × 21.75)] + [50.0] = + 43.53 kNm 
F4 = [+ (0.19 × 30.55) − (0.19 × 21.75)] + [25.0] = + 26.67 kN 
 

Consider element CD: 

L
EI4  = 

0.3
5.14 EI×  = 2.0EI   2

6
L
EI  = 20.3

5.16 EI×  = 1.0EI 

L
EI2  = 

0.3
5.12 EI×  = 1.0EI     3

12
L
EI  = 30.3

5.112 EI×  = 0.67EI  

[k]CD = 

2 0 1 0 1 0 1 0
1 0 0 67 1 0 0 67
1 0 1 0 2 0 1 0
1 0 0 67 1 0 0 67

. . . .

. . . .
EI

. . . .

. . . .

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦

 

Solution 
Topic:  Direct Stiffness Method 

Problem Number: 7.2            Page No. 6 

δ 4 

δ 3 

δ 2 

δ 1 

B C 

F4 

F3 

F2 

F 1 

B C 



560 Examples in Structural Analysis  
 
 

 

        
 
 
 

 
Displacement Vector [δ]:         Fixed-End Forces Vector [FEF]: 

 
1

2

3

4 CD

δ

δ

δ

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 

21 75

0

0

0

. / EI−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

            

1

2

3

4 CD

FEF

FEF

FEF

FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 

0

0

0

0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Element End Forces [F]CD: 

 

      [F]Total = 

1

2

3

4

F
F
F
F

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

1

2

3

4

FEF
FEF
FEF
FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [k][δ] + [FEF]  

        = 

2 0 1 0 1 0 1 0
1 0 0 67 1 0 0 67
1 0 1 0 2 0 1 0
1 0 0 67 1 0 0 67

. . . .

. . . .
EI

. . . .

. . . .

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦

21 75
0
0
0

. / EI−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

0
0
0
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
F1 = [− (2.0 × 21.75)] + [0] = − 43.5 kNm  
F2 = [+ (1.0 × 21.75)] + [0] = + 21.75 kN 
F3 = [− (1.0 × 21.75)] + [0] = − 21.75 kNm 
F4 = [− (1.0 × 21.75)] + [0] = − 21.75 kN 
 

Reactions: 

Support A:  

VA = (F2)BC  = 23.33 kN     HA = (F2)AB = 10.16 kN 
 
Support B:  

HB = (F4)AB + (F2)BC  = (− 10.16 + 21.75) = 11.59 kN 
 

Support D:  

VD  = (F4)BC = 26.67 kN     HD = (F4)CD  = 21.75 kN 
MD = (F3)CD = − 21.75 kNm 

Solution 
Topic:  Direct Stiffness Method 
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C 

δ 1 
δ 2 

δ 3 δ 4
D

C 

F 1 
F2 

F 3 F 4 
D 
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Axial Force Diagram 

Deflected Shape 

  A                                                           D 

 B                                                                                     C 

A                                                        D 

 B                                                                              C 

23
.3

3 
kN

  
co

m
pr

es
si

on
 

21.75 kN − compression 

26
.6

7 
kN

  
co

m
pr

es
si

on
 

 B                                                                                     C 

A                                                            D 

Shear Force Diagram 

10.16 kN 

23.33 kN 

26.67 kN 

21.75 kN 

Bending Moment Diagram 

*  (the value given at the nodes is the 
average from the two elements). 

A                                                                      D 

 B                                                                               C 

30.32 kNm* 43.52* kNm 

   10.16 kNm 

63.09 kNm 
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Assume axially rigid members 

 Δ1 = 1.0   Δ2 = Δ3 = 0 

K11 = 
AB

4EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

= 4
6 0
EI
.

⎡ ⎤
⎢ ⎥⎣ ⎦

 = + 0.67EI 

K21 = 
AB

2EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

= 
2
6 0
EI
.

⎡ ⎤
⎢ ⎥⎣ ⎦

 = + 0.33EI 

K31 = 0 

 

 

Δ2 = 1.0   Δ1 = Δ3 = 0 K12 = 
AB

2EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

 = 
2
6 0
EI
.

⎡ ⎤
⎢ ⎥⎣ ⎦

 = + 0.33EI 

K22 = 
AB

4EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

+ 
BC

4EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

+
BD

4EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

 

      = 
( ) ( )4 1 5 4 2 04

6 0 4 0 6 0
. EI . EIEI

. . .
⎡ ⎤ ⎡ ⎤⎡ ⎤ + +⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

      = + 3.50EI  

 K32 = 
BC

2EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

= 
( )2 1 5

4 0
. EI
.

⎡ ⎤
⎢ ⎥
⎣ ⎦

 = + 0.75EI 

Δ3 = 1.0   Δ1 = Δ2 = 0 
  K13 = = 0 

K23 = 
BC

2EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

= 
( )2 1 5

4 0
. EI
.

⎡ ⎤
⎢ ⎥
⎣ ⎦

 = + 0.75EI 

K33 = 
BC

4EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

= 
( )4 1 5

4 0
. EI
.

⎡ ⎤
⎢ ⎥
⎣ ⎦

= + 1.50EI 
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X  

Z  

Global Axes     6.0 m            4.0 m 

  3.0 m        3.0 m   node 4 

  node 1                    node 2                 node 3 

Δ 1 Δ 2 Δ 3 
 A    EI              B     1.5EI            C 

16.0 kN 
2EI  

D 

10.0 kN/m 40.0 kN 

 3
.0

 m
  

  3
.0

 m
  

6.
0 

m
 

X 

Z 

Global Axes 

K21 

K31 

K11 

D 

A 

B 
C 

X 

Z 

Global Axes 

K22 K12 

K32 A 

B 

C 

D 

X 

Z 

Global Axes 

K23 
K13 

K33 

C A 
B 

D 
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Structural stiffness matrix = [K] = 
0 67 0 33 0
0 33 3 50 0 75

0 0 75 1 50

. .
EI . . .

. .

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

The invert of a matrix is given by [K]−1 = 

TCK

K

⎡ ⎤⎣ ⎦  

where: 
 [KC] is the co-factor matrix for [K] 
 |K|  is the determinant of [K]  and 
 [KC]T is the transpose of the co-factor matrix 
 

Co-factor Matrix: [KC
]  

(Note:  the transpose of a symmetric matrix is the same as the original matrix) 
c
11k  = + {(3.50 × 1.50) − (0.75 × 0.75)}EI 2 = + 4.69EI 2  
c
12k  = c

21k  = − {(0.33 × 1.50) − (0 × 0.75)}EI 2 = − 0.50EI 2 
c
13k  = c

31k  = + {(0.33 × 0.75) − (0 × 3.50)}EI 2 = + 0.25EI 2 
c
22k  = + {(0.67 × 1.50) − 0}EI 2 = + 1.0EI 2 
c
23k  = c

32k  = − {(0.67 ×  0.75) − (0 × 0.33)}EI 2 = − 0.50EI 2 
c
33k  = + {(0.67 × 3.50) − (0.33 × 0.33)}EI 2 = + 2.24EI 2 

 

Determinant of [K]: 

Det [K] = EI 3 {+ (0.67 × 4.69) − (0.33 × 0.5) + 0} = + 2.98 EI 3 

Inverted stiffness matrix = [K]
−1 = 

1.573 0.168 0.084
1 0.168 0.336 0.168

0.084 0.168 0.752
EI

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

Structural Load Vector: [P]: 

Fixed−end forces for member AB 
 
 
 
 
FEF1 = − (40.0 × 6.0)/8.0 −  (10.0 × 6.02)/12 = − 60.0 kNm 
FEF3 = + 60.0 kNm 

  
 FEF2 = + (40.0/2.0) + (10.0 × 6.0)/2.0 = + 50.0 kN 
 FEF4 = + 50.0 kN 
 

Solution 
Topic:  Direct Stiffness Method 
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 +            −          + 

 

0 67 0 33 0
0 33 3 50 0 75

0 0 75 1 50

. .
EI . . .

. .

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

  +            −          + 

 −            +          − 

 A              B 

 ( PL/8 + wL2/12)                 (PL/8 + wL2/12) 

6.0 m 

P 

(P/2 + wL/2)     (P/2 + wL/2) 

w kN/m 
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 Equivalent nodal loads for AB 
  

 
 
Fixed−end forces for member BC 
 
 
 
 
 
 
FEF1 = − (10.0 × 4.02)/12 = − 13.33 kNm 
FEF3 = + 13.33 kNm 
 

 FEF2 = + (10.0 × 4.0)/2.0 = + 20.0 kN 
 FEF4 = + 20.0 kN 
 
 Equivalent nodal loads for BC 
  
 
 

 
Fixed−end forces for member BD 
 
 

 
 
FEF1 = + (16.0 × 6.0)/8 = + 12.0 kNm 
 
FEF3 = − 12.0 kNm 
FEF2 = + (16.0)/2.0 = + 8.0 kN 
FEF4 = + 8.0 kN 

 
  
 
 
 
 
                Equivalent nodal loads for BD 

Solution 
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 A              B 

(wL2/12)              (wL2/12)

4.0 m 

(wL/2)                         (wL/2) 

 (PL/8) 

 (PL/8) 

P 

(P/2) 
 B 

 D 

(P/2) 

6.
0 

m
 

D 

12.0 kNm 

 12.0 kNm 

8.0 kN

 B

8.0 kN

B             C 

20.0 kN           20.0 kN 

13.33 kNm           13.33 kNm 

50.0 kN           50.0 kN 

60.0 kNm      60.0 kNm 

 A              B 
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P1 = + 60 kNm,   P2 = (− 60.0 + 13.33 − 12.0) = − 58.67,   P3 = − 13.33 kNm 
 

 
 
 
 
 
 
 
 
 
 

Structural Load Vector [P] = 
60 0

58 67
13 33

.
.
.

+⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 

  

Structural Displacements [Δ]: 

 [Δ] = [K]
−1

 [P]  

1

2

3

Δ
Δ
Δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 = 

1.573 0.168 0.084
1 0.168 0.336 0.168

0.084 0.168 0.752
EI

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥−⎣ ⎦

60 0
58 67
13 33

.
.
.

+⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 

Δ1 = ( ) ( ) ( )1 1.573 60.0 0.168 58.67 0.084 13.33
EI

⎡ ⎤× + × − ×⎣ ⎦  = 103.12
EI

+ radians 

Δ2 = ( ) ( ) ( )1 0.168 60.0 0.336 58.67 0.168 13.33
EI

⎡ ⎤− × − × + ×⎣ ⎦  = 27.55
EI

−  radians 

Δ3 = ( ) ( ) ( )1 0.084 60.0 0.168 58.67 0.752 13.33
EI

⎡ ⎤× + × − ×⎣ ⎦  = 4.87
EI

+    radians 
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Structural Deflections 

Equivalent Nodal Loads 

X  

Z  

Global Axes 

node 2 

P1          P2           P3 

node 1             node 3 

node 4 

node 1             node 3 
node 2 

60.0 kNm             58.67 kNm       13.33 kNm 

node 4 

103.12
rad

EI
 

27.55
rad

EI

4.87
rad

EI

node 1             node 3 
node 2 

node 4 
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Element Stiffness Matrices  [k]: 

             [k] =

2 2

2 3 2 3

2 2

2 3 2 3

4 6 2 6

6 12 6 12

  
2 6 4 6

6 12 6 12

EI EI EI EI
L LL L
EI EI EI EI
L L L L
EI EI EI EI
L LL L
EI EI EI EI
L L L L

⎡ ⎤+ − + +⎢ ⎥
⎢ ⎥
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥
⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥⎣ ⎦

 

Element End Forces [F]Total: 

[F]Total = 

1

2

3

4

F
F
F
F

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

1

2

3

4

FEF
FEF
FEF
FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= [k][δ] + [FEF] 

 

= 

2 2

2 3 2 3

2 2

2 3 2 3

4 6 2 6

6 12 6 12

2 6 4 6

6 12 6 12

EI EI EI EI
L LL L
EI EI EI EI
L L L L
EI EI EI EI
L LL L
EI EI EI EI
L L L L

⎡ ⎤+ − + +⎢ ⎥
⎢ ⎥
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥
⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥⎣ ⎦

1

2

3

4

δ

δ

δ

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 +  

1

2

3

4

FEF

FEF

FEF

FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

Consider element AB: 

L
EI4  = 4

6.0
EI×  = 0.67EI    2

6
L
EI  = 2

6
6.0

EI×  = 0.17EI 

L
EI2  = 2

6.0
EI×  = 0.33EI     3

12
L
EI  = 3

12
6.0

EI×  = 0.06EI 

 

[k]AB = 

0.67 0.17 0.33 0.17
0.17 0.06 0.17 0.06
0.33 0.17 0.67 0.17
0.17 0.06 0.17 0.06

EI

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦
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EI, L 
F1 

F2 

F3 

F4 
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Displacement Vector [δ]:         Fixed-End Forces Vector [FEF]: 

1

2

3

4 AB

δ

δ

δ

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 

103 12

0

27 55

0

. / EI

. / EI

+⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                     

1

2

3

4 AB

FEF

FEF

FEF

FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 

60 0

50 0

60 0

50 0

.

.

.

.

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦

 

 

Element End Forces [F]AB: 

   [F]Total = 

1

2

3

4

F
F
F
F

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

1

2

3

4

FEF
FEF
FEF
FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [k][δ] + [FEF]  

= 

0.67 0.17 0.33 0.17
0.17 0.06 0.17 0.06
0.33 0.17 0.67 0.17
0.17 0.06 0.17 0.06

EI

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦

103 12
0

27 55
0

. / EI

. / EI

+⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 + 

60 0
50 0
60 0
50 0

.

.

.

.

−⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥+
⎢ ⎥+⎣ ⎦

 

 
F1 = [+ (0.67 × 103.12) − (0.33 × 27.55)] − [60.0] = zero 
F2 = [− (0.17 × 103.12) + (0.17 × 27.55)] + [50.0] = + 37.15 kN 
F3 = [+ (0.33 × 103.12) − (0.67 × 27.55)] + [60.0] = + 75.57 kNm 
F4 = [+ (0.17 × 103.12) − (0.17 × 27.55)] + [50.0] = + 62.85 kN 
 
Consider element BC: 

L
EI4  = 4 1.5

4.0
EI×  = 1.5EI   2

6
L
EI  = 2

6 1.5
4.0

I×  = 0.56EI 

L
EI2  = 2 1.5

4.0
EI×  = 0.75EI    3

12
L
EI  = 3

12 1.5
4.0

EI×  = 0.28EI  

[k]BC = 

1.50 0.56 0.75 0.56
0.56 0.28 0.56 0.28
0.75 0.56 1.50 0.56
0.56 0.28 0.56 0.28

EI

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦
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δ 4 

δ 3 

δ 2 

δ 1 

A B 

F4 

F3 

F2 

F 1 

A B 
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Displacement Vector [δ]:         Fixed-End Forces Vector [FEF]: 

1

2

3

4 BC

δ

δ

δ

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 

27 55

0

4 87

0

. / EI

. / EI

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                     

1

2

3

4 BC

FEF

FEF

FEF

FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 

13 33

20 0

13 33

20 0

.

.

.

.

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦

 

 

Element End Forces [F]BC: 

   [F]Total = 

1

2

3

4

F
F
F
F

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

1

2

3

4

FEF
FEF
FEF
FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [k][δ] + [FEF]  

= 

1.50 0.56 0.75 0.56
0.56 0.28 0.56 0.28
0.75 0.56 1.50 0.56
0.56 0.28 0.56 0.28

EI

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦

27 55
0

4 87
0

. / EI

. / EI

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎣ ⎦

 + 

13 33
20 0
13 33
20 0

.
.
.
.

−⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥+
⎢ ⎥+⎣ ⎦

 

 
F1 = [− (1.5 × 27.55) + (0.75 × 4.87)] − [13.33] = − 51.0 kNm 
F2 = [+ (0.56 × 27.55) − (0.56 × 4.87)] + [20.0] = + 32.70 kN 
F3 = [− (0.75 × 27.55) + (1.5 × 4.87)] + [13.33] = zero 
F4 = [− (0.56 × 27.55) + (0.56 × 4.87)] + [20.0] = + 7.30 kN 
 

Consider element BD: 

L
EI4  = 4 2.0

6.0
EI×  = 1.33EI   2

6
L
EI  = 2

6 2.0
6.0

EI×  = 0.33EI 

L
EI2  = 2 2.0

6.0
EI×  = 0.67EI    3

12
L
EI = 3

12 2.0
6.0

EI×  = 0.11EI  

[k]BD = 

1 33 0 33 0 67 0 33
0 33 0 11 0 33 0 11
0 67 0 33 1 33 0 33
0 33 0 11 0 33 0 11

. . . .

. . . .
EI

. . . .

. . . .

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦
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F4 

F3 

F2 

F 1 

B C 

δ 4 

δ 3 

δ 2 

δ 1 

B C 
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Displacement Vector [δ]:         Fixed-End Forces Vector [FEF]: 

 
1

2

3

4 BD

δ

δ

δ

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 

27 55

0

0

0

. / EI−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

            

1

2

3

4 BD

FEF

FEF

FEF

FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 

12 0

8 0

12 0

8 0

.

.

.

.

+⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 

Element End Forces [F]BD: 

      [F]Total = 

1

2

3

4

F
F
F
F

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

1

2

3

4

FEF
FEF
FEF
FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [k][δ] + [FEF] 

      = 

1 33 0 33 0 67 0 33
0 33 0 11 0 33 0 11
0 67 0 33 1 33 0 33
0 33 0 11 0 33 0 11

. . . .

. . . .
EI

. . . .

. . . .

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦

27 55
0
0
0

. / EI−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

12 0
8 0

12 0
8 0

.
.
.
.

+⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎣ ⎦

 

 
F1 = [− (1.33 × 27.55)] + [12.0] = − 24.64 kNm  
F2 = [+ (0.33 × 27.55)] − [8.0] = + 1.09 kN 
F3 = [− (0.67 × 27.55)] − [12.0] = − 30.46 kNm 
F4 = [− (0.33 × 27.55)] − [8.0] = − 17.09 kN 
 

Reactions: 

Support A:  

VA = (F2)AB = 37.15 kN 
 

Support C:  

VC = (F4)BC = + 7.30 kN 
 

Support D:  

VD = (F4)AB + (F2)BC = (62.85 + 32.70)  = 95.55 kN 
HD = (F4)BD = 17.09 kN 
MD = (F3)BD = − 30.46 kNm 
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Axial Force Diagram 

Shear Force Diagram 

Deflected Shape 

Bending Moment Diagram 
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D 

 A                           B                      C 

axial load A to C − minimal 

 A                          B                      C 

D 

B 

32.85 kN 7.30 kN 

37.15 kN 

D

 A                                                         C 

7.15 kN 

62.85 kN 

17.09 kN 

1.09 kN 

17.09 kN 

32.70 kN 0.73 m 

51.0 kNm 
75.57 kNm 

  A                          B                          C 

D 

67.22 kNm 

24.64 kNm   

21.09 kNm 

30.46 kNm 

2.66 kNm 
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Assume axially rigid members 

  
Δ1 = 1.0   Δ2 = Δ3 = 0 

K11 = 
AB

4EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

+ 
BC

4EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

 

    = 
( )4 2 04

3 0 8 0
. EIEI

. .
⎡ ⎤⎡ ⎤ + ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 = + 2.33EI 

K21 = 
BC

2EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

= 2(2.0 )
8 0

EI
.

⎡ ⎤
⎢ ⎥⎣ ⎦

 = + 0.50EI 

K31 = 2
AB

6EI
L

⎡ ⎤− ⎢ ⎥⎣ ⎦
= 2

6
3 0

EI
.

⎡ ⎤− ⎢ ⎥⎣ ⎦
 = − 0.67EI 

 

 

Δ2 = 1.0   Δ1 = Δ3 = 0       K12 = 
BC

2EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

 = 
( )2 2.0

8 0
EI

.
⎡ ⎤
⎢ ⎥
⎣ ⎦

 = + 0.50EI 

K22 = 
BC

4EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

+ 
CD

4EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

 

  = 
( ) ( )4 2 0 4 1 5

8 0 3 0
. EI . EI
. .

⎡ ⎤ ⎡ ⎤
+⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
= + 3.0EI  

K32 = 2
CD

6EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

= 
( )

2

6 1.5
3 0

EI
.

⎡ ⎤
⎢ ⎥
⎣ ⎦

 = + 1.0EI 
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Δ3 = 1.0   Δ1 = Δ2 = 0 

  K13 = 2
AB

6EI
L

⎡ ⎤− ⎢ ⎥⎣ ⎦
= 2

6
3 0

EI
.

⎡ ⎤− ⎢ ⎥⎣ ⎦
 = − 0.67EI  

 K23 = 2
CD

6EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

= 
( )

2

6 1.5
3 0

EI
.

⎡ ⎤
⎢ ⎥
⎣ ⎦

= + 1.0EI 

 K33 = 3
AB

12EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

+ 3
CD

12EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

 

     = 
( )

3 3

12 1 512
3 0 3 0

. EIEI
. .

⎡ ⎤⎡ ⎤ + ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
 = + 1.11 EI 

 
 

Structural stiffness matrix = [K] = 
2 33 0 50 0 67
0 50 3 0 1 0
0 67 1 0 1 11

. . .
EI . . .

. . .

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

The invert of a matrix is given by [K]−1 = 

TCK

K

⎡ ⎤⎣ ⎦  

where:  
 [KC] is the co-factor matrix for [K] 
 |K|  is the determinant of [K]  and 
 [KC]T is the transpose of the co-factor matrix 
 

Co-factor Matrix: [KC
]  

(Note:  the transpose of a symmetric matrix is the same as the original matrix) 
c
11k  = + {(3.0 × 1.11) − (1.0 × 1.0)}EI 2 = + 2.33EI 2 
c
12k  = c

21k  = − {(0.5 × 1.11) − (− 0.67 × 1.0)}EI 2 = − 1.23EI 2 
c
13k  = c

31k  = + {(0.5 × 1.0) − (− 0.67 × 3.0)}EI 2 = + 2.5EI 2 
c
22k  = + {(2.33 × 1.11) − (− 0.67 × − 0.67)}EI 2 = + 2.14EI 2 
c
23k  = c

32k  = − {(2.33 × 1.0) − (− 0.67 × 0.5)}EI 2  = − 2.67EI 2 
c
33k  = + {(2.33 × 3.0) − (0.5 × 0.5)}EI 2 = + 6.74EI 2 

 

Determinant of [K]: 

Det [K] = EI 3 {+ (2.33 × 2.33) − (0.5 × − 1.23) + (−0.67 × 2.5)} = + 3.14 EI 3 
 

Solution 
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2 33 0 50 0 67
0 50 3 0 1 0
0 67 1 0 1 11

. . .
EI . . .

. . .

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

  +          −              + 

 −             +            − 

 +             −            + 

  B                                            C 

X 

Z 

Global Axes 

D 

A 

K13 K23 K33 
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Inverted stiffness matrix = [K]
−1 = 

0.742 0.392 0.796
1 0.392 0.682 0.850

0.796 0.850 2.146
EI

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 

Structural Load Vector: [P]: 

Fixed−end forces for member BC 
FEF1 = − (12.0 × 8.02)/12.0 = − 64.0 kNm 
FEF3 = + 64.0 kNm 
 
 FEF2 = + (12.0 × 8.0)/2.0 = + 48.0 kN 
 FEF4 = + 48.0 kN 

 
  
 Equivalent nodal loads for BC 
  
  
 Applied nodal load at B = 50.0 kN 

 
 
 
 
 
 
 
 
 
 
 
 

 

Structural Load Vector [P] = 
64.0
64.0
50.0

+⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥+⎣ ⎦

 

 Structural Displacements [Δ]: 

 [Δ] = [K]
−1

 [P]  

1

2

3

Δ
Δ
Δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 = 

0.742 0.392 0.796
1 0.392 0.682 0.850

0.796 0.850 2.146
EI

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥−⎣ ⎦

64.0
64.0
50.0

+⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥+⎣ ⎦
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Δ1 = ( ) ( ) ( )1 0.742 64.0 0.392 64.0 0.796 50.0
EI

⎡ ⎤× + × + ×⎣ ⎦  = 112.38
EI

+  radians 

Δ2 = ( ) ( ) ( )1 0.392 64.0 0.682 64.0 0.850 50.0
EI

⎡ ⎤− × − × − ×⎣ ⎦  = 111.24
EI

−  radians 

Δ3 = ( ) ( ) ( )1 0.796 64.0 0.850 64.0 2.146 50.0
EI

⎡ ⎤× + × + ×⎣ ⎦  = 212.64
EI

+  m 

 
 
 
 
 
 
 
 
 
 

 
 
 
Element Stiffness Matrices  [k]: 

 

             [k] =

2 2

2 3 2 3

2 2

2 3 2 3

4 6 2 6

6 12 6 12

  
2 6 4 6

6 12 6 12

EI EI EI EI
L LL L
EI EI EI EI
L L L L
EI EI EI EI
L LL L
EI EI EI EI
L L L L

⎡ ⎤+ − + +⎢ ⎥
⎢ ⎥
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥
⎢ ⎥+ − + +⎢ ⎥
⎢ ⎥
⎢ ⎥+ − + +⎢ ⎥⎣ ⎦

 

Element End Forces [F]Total: 

 

[F]Total = 

1

2

3

4

F
F
F
F

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

1

2

3

4

FEF
FEF
FEF
FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [k][δ] + [FEF] 
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EI, L 
F1 

F2 

F3 

F4 

Structural Deflections 

112.38
rad

EI
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rad
EI
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m
EI

node 4 
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[k][δ] + [FEF]  = 

2 2

2 3 2 3

2 2

2 3 2 3

4 6 2 6

6 12 6 12

2 6 4 6

6 12 6 12

EI EI EI EI
L LL L
EI EI EI EI
L L L L
EI EI EI EI
L LL L
EI EI EI EI
L L L L

⎡ ⎤+ − + +⎢ ⎥
⎢ ⎥
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥
⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥⎣ ⎦

1

2

3

4

δ

δ

δ

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

1

2

3

4

FEF

FEF

FEF

FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

Consider element AB: 

 

L
EI4  = 4

3.0
EI×  = 1.33EI    2

6
L
EI  = 2

6
3.0

EI×  = 0.67EI 

L
EI2  = 2

3.0
EI×  = 0.67EI     3

12
L
EI  = 3

12
3.0

EI×  = 0.44EI 

 

[k]AB = 

1.33 0.67 0.67 0.67
0.67 0.44 0.67 0.44
0.67 0.67 1.33 0.67
0.67 0.44 0.67 0.44

EI

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦

 

 

Displacement Vector [δ]:         Fixed-End Forces Vector [FEF]: 

 

 

AB4

3

2

1

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

δ

δ

δ

δ

= 

0

0

112 38

212 64

. / EI

. / EI

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

         

1

2

3

4 AB

FEF

FEF

FEF

FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 

0

0

0

0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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Element End Forces [F]AB: 

       [F]Total = 

1

2

3

4

F
F
F
F

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

1

2

3

4

FEF
FEF
FEF
FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [k][δ] + [FEF] 

        = 

1.33 0.67 0.67 0.67
0.67 0.44 0.67 0.44
0.67 0.67 1.33 0.67
0.67 0.44 0.67 0.44

EI

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦

0
0

112 38
212 64

. / EI

. / EI

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥−⎣ ⎦

+ 

0
0
0
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
F1 = [+ (0.67 × 112.38) − (0.67 × 212.64)] + [0] = − 67.17 kNm 
F2 = [− (0.67 × 112.38) + (0.44 × 212.64)] + [0] = + 18.27 kN 
F3 = [+ (1.33 × 112.38) − (0.67 × 212.64)] + [0] = + 7.0 kNm 
F4 = [+ (0.67 × 112.38) − (0.44 × 212.64)] + [0] = − 18.27 kN 

 
Consider element BC: 

L
EI4  = 4 2.0

8.0
EI×  = 1.0EI   2

6
L
EI  = 2

6 2.0
8.0

I×  = 0.19EI 

L
EI2  = 2 2.0

8.0
EI×  = 0.5EI     3

12
L
EI  = 3

12 2.0
8.0

EI×  = 0.05EI 

[k]BC = 

1.0 0.19 0.50 0.19
0.19 0.05 0.19 0.05
0.50 0.19 1.0 0.19
0.19 0.05 0.19 0.05

EI

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦

 

 

Displacement Vector [δ]:         Fixed-End Forces Vector [FEF]: 

 

 

1

2

3

4 BC

δ

δ

δ

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 

112 38

0

111 24

0

. / EI

. / EI

+⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                

1

2

3

4 BC

FEF

FEF

FEF

FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 

64 0

48 0

64 0

48 0

.

.

.

.

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦
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Element End Forces [F]BC: 

            [F]Total = 

1

2

3

4

F
F
F
F

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

1

2

3

4

FEF
FEF
FEF
FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [k][δ] + [FEF] 

= 

1.0 0.19 0.50 0.19
0.19 0.05 0.19 0.05
0.50 0.19 1.0 0.19
0.19 0.05 0.19 0.05

EI

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦

112 38
0

111 24
0

. / EI

. / EI

+⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 + 

64 0
48 0
64 0
48 0

.

.

.

.

−⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥+
⎢ ⎥+⎣ ⎦

 

 
F1 = [+ (1.0 × 112.38) − (0.5 × 111.24)] − [64.0] = − 7.24 kNm 
F2 = [− (0.19 × 112.38) + (0.19 × 111.24)]+ [48.0] = + 47.78 kN 
F3 = [+ (0.50 × 112.38) − (1.0 × 111.24)] + [64.0] = + 8.95 kNm 
F4 = [+ (0.19 × 112.38) − (0.19 × 111.24)]+ [48.0] = + 48.22 kN 
 

Consider element CD: 

L
EI4  = 

0.3
5.14 EI×  = 2.0EI   2

6
L
EI  = 20.3

5.16 EI×  = 1.0EI 

L
EI2  = 

0.3
5.12 EI×  = 1.0EI     3

12
L
EI  = 30.3

5.112 EI×  = 0.67EI 

[k]CD = 

2 0 1 0 1 0 1 0
1 0 0 67 1 0 0 67
1 0 1 0 2 0 1 0
1 0 0 67 1 0 0 67

. . . .

. . . .
EI

. . . .

. . . .

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦

 

 

Displacement Vector [δ]:         Fixed-End Forces Vector [FEF]: 

 
1

2

3

4 CD

δ

δ

δ

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 

111 24

212 64

0

0

. / EI

. / EI

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

           

1

2

3

4 CD

FEF

FEF

FEF

FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 

0

0

0

0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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F 1 
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δ 4 
δ 3 

δ 2 
δ 1

C
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Element End Forces [F]CD: 

 

      [F]Total = 

1

2

3

4

F
F
F
F

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

1

2

3

4

FEF
FEF
FEF
FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [k][δ] + [FEF] 

 

       = 

2 0 1 0 1 0 1 0
1 0 0 67 1 0 0 67
1 0 1 0 2 0 1 0
1 0 0 67 1 0 0 67

. . . .

. . . .
EI

. . . .

. . . .

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦

111 24
212 64

0
0

. / EI

. / EI
−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

0
0
0
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
F1 = [− (2.0 × 111.24) + (1.0 × 212.64)] + [0] = − 9.84 kNm  
F2 = [+ (1.0 × 111.24) − (0.67 × 212.64)] + [0] = − 31.23 kN 
F3 = [− (1.0 × 111.24) + (1.0 × 212.64)] + [0] = + 101.4 kNm 
F4 = [− (1.0 × 111.24) + (0.67 × 212.64)] + [0] = + 31.23kN 
 

Reactions: 

Support A: 

VA = (F2)BC   = 47.48 kN     HA = (F2)AB = 18.27 kN 
MA = (F1)AB  = 67.17 kNm 
 
Support D:  

VD  = (F4)BC  = 48.22 kN     HD = (F4)CD = 31.23 kN 
MD = (F3)CD = 101.4 kNm 
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C

Axial Force Diagram 

Deflected Shape 
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 B                                                               C 

A 

D 

 B                                                              C 

Shear Force Diagram 

31.23 kN 

18.27 kN 

47.78 kN 

18.27 kN 

A 

D

48.22 kN 

31.23 kN 

3.98 m 

67.17 kNm 

Bending Moment Diagram 

*  (the value given at the nodes is the 
average from the two elements). 

7.12 kNm* 9.40 kNm*

A 

 B                                                           C 

87.96 kNm

D

101.4 kNm 
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              Assume axially rigid members 

 

  
Δ1 = 1.0   Δ2 = Δ3 = 0 
       

K11 =
AB

4EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

= 4(2.0 )
6 0

EI
.

⎡ ⎤
⎢ ⎥⎣ ⎦

 = + 1.33EI 

K21 = 
AB

2EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

=
( )2 2 0

6 0
. EI
.

⎡ ⎤
⎢ ⎥
⎣ ⎦

 = + 0.67EI 

K31 = 0  
  
 

 
 
Δ2 = 1.0   Δ1 = Δ3 = 0 

              K12 = 
AB

2EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

 = 
( )2 2.0

6 0
EI

.
⎡ ⎤
⎢ ⎥
⎣ ⎦

 = + 0.67EI 

K22 = 
AB

4EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

+ 
BC

4EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

 

    = 
( )4 2 0 4

6 0 4 0
. EI EI
. .

⎡ ⎤ ⎡ ⎤+⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
 = + 2.33EI 

K32 = − 2
BC

6EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

 = 2
6
4 0

EI
.

⎡ ⎤
⎢ ⎥⎣ ⎦

 = − 0.38EI 
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X  
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EI  
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 A           2EI                   B 

24.0 kN 
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   2.0 m                  4.0 m 
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Δ3 = 1.0   Δ1 = Δ2 = 0 

K13 = 0 

K23 = 2
BC

6EI
L

⎡ ⎤− ⎢ ⎥⎣ ⎦
= 2

6
4 0

EI
.

⎡ ⎤− ⎢ ⎥⎣ ⎦
 = − 0.38EI 

K33 = 3
BC

12EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

 = 3
12
4 0

EI
.

⎡ ⎤
⎢ ⎥⎣ ⎦

 = + 0.19EI 

 
 
 
 
 

Structural stiffness matrix = [K] = 
1 33 0 67 0
0 67 2 33 0 38

0 0 38 0 19

. .
EI . . .

. .

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 

The invert of a matrix is given by [K]−1 = 

TCK

K

⎡ ⎤⎣ ⎦  

 
where: 
 [KC] is the co-factor matrix for [K] 
 |K|  is the determinant of [K]  and 
 [KC]T is the transpose of the co-factor matrix 
 

Co-factor Matrix: [KC
]  

(Note:  the transpose of a symmetric matrix is the same as the original matrix) 
c
11k  = + {(2.33 × 0.19) − (0.38 × 0.38)}EI 2 = + 0.30EI 2 
c
12k  = c

21k  = − {(0.67 × 0.19) − (−0.38 × 0)}EI 2 = − 0.13EI 2 
c
13k  = c

31k  = + {(0.67 × −0.38) − (0 × 2.33)}EI 2 = − 0.25EI 2 
c
22k  = + {(1.33 × 0.19) − (0)}EI 2 = + 0.25EI 2 
c
23k  = c

32k  = − {(1.33 × −0.38) − (0 × 0.67)}EI 2 = + 0.50EI 2 
c
33k  = + {(1.33 × 2.33) − (0.67 × 0.67)}EI 2 = + 2.65EI 2 

 

Determinant of [K]: 

Det [K] = EI 3 {+ (1.33 × 0.3) − (0.67 × 0.13) + 0)} = + 0.31 EI 3 

Solution 
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1 33 0 67 0
0 67 2 33 0 38

0 0 38 0 19

. .
EI . . .

. .

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 

  +          −                 + 

 −             +                − 

 +             −                + 

X 

Z 

Global Axes 

K33 

A 

K23 K13 

B 

C 
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Inverted stiffness matrix = [K]
−1 = 

0.968 0.419 0.806
1 0.419 0.806 1.613

0.806 1.613 8.548
EI

− −⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 

Structural Load Vector: [P]: 

 
Fixed−end forces for member AB 
FEF1 = − (24.0 × 2.0 × 4.02)/6.02 
      = − 21.33 kNm 
FEF3 = + (24.0 × 2.02 × 4.0)/6.02 
      = + 10.67 kNm 

  
 FEF2 = [− (24.0 × 4.0) − 21.33 + 10.67]/6.0 = + 17.78 kN 

 FEF4 = (24.0 − 17.78) = + 6.22 kN 
 
 
  
  
 Equivalent nodal loads for AB 
  
  

Fixed−end forces for member BC 
 
 

 
 
FEF1 = + (8.0 × 4.02)/12 = + 10.67 kNm 
FEF3 = − (8.0 × 4.0)/2.0 = − 16.0 kN 
 
FEF2 = − (8.0 × 4.02)/12 = − 10.67 kNm 
FEF4 = − (8.0 × 4.0)/2.0 = − 16.0 kN 

 
 
 
 
  
 
                Equivalent nodal loads for BC 
  
 Note: Total equivalent nodal (P2) load at B = (−10.67 − 10.67) = − 21.34 kNm 

Solution 
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A             B 

17.78 kN           6.22 kN 

21.33 kNm          10.67 kNm 

   VA                                   VB 

A             B 

  Pab2/L2         Pa2b/L2 

L 

P 

a     b

C 

10.67 kNm 

 10.67 kNm 

16.0 kN 

 B

16.0 kN

 (wL2/12) 

w kN/m 

(wL/2) 
 B 

 C 

(WL/2)

L 

 (wL2/12) 
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Structural Load Vector [P] = 
21.33
21.34
16.0

+⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥+⎣ ⎦

 

  

Structural Displacements [Δ]: 

 [Δ] = [K]
−1

 [P]  

1

2

3

Δ
Δ
Δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 = 

0.968 0.419 0.806
1 0.419 0.806 1.613

0.806 1.613 8.548
EI

− −⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

21.33
21.34
16.0

+⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥+⎣ ⎦

 

 

Δ1 = ( ) ( ) ( )1 0.968 21.33 0.419 21.34 0.806 16.0
EI

⎡ ⎤× + × − ×⎣ ⎦  = 16.69
EI

+ radians 

Δ2 = ( ) ( ) ( )1 0.419 21.33 0.806 21.34 1.613 16.0
EI

⎡ ⎤− × − × + ×⎣ ⎦  = 0.33
EI

−  radians 

Δ3 = ( ) ( ) ( )1 0.806 21.33 1.613 21.34 8.548 16.0
EI

⎡ ⎤− × − × + ×⎣ ⎦  = 85.15
EI

+  m 
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X  
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16.0 kN 
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EI

85.15
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Element Stiffness Matrices  [k]: 

             [k] =

2 2

2 3 2 3

2 2

2 3 2 3

4 6 2 6

6 12 6 12

  
2 6 4 6

6 12 6 12

EI EI EI EI
L LL L
EI EI EI EI
L L L L
EI EI EI EI
L LL L
EI EI EI EI
L L L L

⎡ ⎤+ − + +⎢ ⎥
⎢ ⎥
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥
⎢ ⎥+ − + +⎢ ⎥
⎢ ⎥
⎢ ⎥+ − + +⎢ ⎥⎣ ⎦

 

Element End Forces [F]Total: 

[F]Total = 

1

2

3

4

F
F
F
F

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

1

2

3

4

FEF
FEF
FEF
FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [k][δ] + [FEF] 

[k][δ] + [FEF] = 

2 2

2 3 2 3

2 2

2 3 2 3

4 6 2 6

6 12 6 12

2 6 4 6

6 12 6 12

EI EI EI EI
L LL L
EI EI EI EI
L L L L
EI EI EI EI
L LL L
EI EI EI EI
L L L L

⎡ ⎤+ − + +⎢ ⎥
⎢ ⎥
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥
⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥⎣ ⎦

1

2

3

4

δ

δ

δ

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

1

2

3

4

FEF

FEF

FEF

FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

Consider element AB: 

 

L
EI4  = 

( )4 2.0
6.0

EI×
 = 1.33EI   2

6
L
EI  = 

( )
2

6 2.0
6.0

EI×
 = 0.33EI 

L
EI2  = 

( )2 2.0
6.0

EI×
 = 0.67EI     3

12
L
EI  = 

( )
3

12 2.0
6.0

EI×
 = 0.11EI 

[k]AB = 

1.33 0.33 0.67 0.33
0.33 0.11 0.33 0.11
0.67 0.33 1.33 0.33
0.33 0.11 0.33 0.11

EI

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦
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Displacement Vector [δ]:        Fixed-End Forces Vector [FEF]: 

 

1

2

3

4 AB

δ

δ

δ

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 

16 69

0

0 33

0

. / EI

. / EI

+⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                 

1

2

3

4 AB

FEF

FEF

FEF

FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 

21 33

17 78

10 67

6 22

.

.

.

.

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦

 

Element End Forces [F]AB: 

[F]Total = 

1

2

3

4

F
F
F
F

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

1

2

3

4

FEF
FEF
FEF
FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [k][δ] + [FEF] 

= 

1.33 0.33 0.67 0.33
0.33 0.11 0.33 0.11
0.67 0.33 1.33 0.33
0.33 0.11 0.33 0.11

EI

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦

16 69
0

0 33
0

. / EI

. / EI

+⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 + 

21 33
17 78
10 67
6 22

.

.

.
.

−⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥+
⎢ ⎥+⎣ ⎦

 

 
F1 = [+ (1.33 × 16.69) − (0.67 × 0.33)] − [21.33] = zero 
F2 = [− (0.33 × 16.69) + (0.33 × 0.33)] + [17.78] = + 12.38 kN 
F3 = [+ (0.67 × 16.69) − (1.33 × 0.33)] + [10.67] = + 21.41 kNm 
F4 = [+ (0.33 × 16.69) − (0.33 × 0.33)] + [6.22] = + 11.62 kN 
 

Consider element BC: 

L
EI4  = 4

4.0
EI×  = 1.0EI    2

6
L
EI  = 2

6
4.0

EI×  = 0.38EI 

L
EI2  = 2

4.0
EI×  = 0.5EI      3

12
L
EI  = 3

12
4.0

EI×  = 0.19EI 

 

[k]BC = 

1.0 0.38 0.50 0.38
0.38 0.19 0.38 0.19
0.50 0.38 1.0 0.38
0.38 0.19 0.38 0.19

EI

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦
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Displacement Vector [δ]:         Fixed-End Forces Vector [FEF]: 

 

 

1

2

3

4 BC

δ

δ

δ

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 

0 33

85 15

0

0

. / EI

. / EI

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

               

1

2

3

4 BC

FEF

FEF

FEF

FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 

10 67

16 0

10 67

16 0

.

.

.

.

+⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 

Element End Forces [F]BC: 

       [F]Total = 

1

2

3

4

F
F
F
F

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

1

2

3

4

FEF
FEF
FEF
FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [k][δ] + [FEF] 

       

       = 

1.0 0.38 0.50 0.38
0.38 0.19 0.38 0.19
0.50 0.38 1.0 0.38
0.38 0.19 0.38 0.19

EI

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦

0 33
85 15

0
0

. / EI
. / EI

−⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

10 67
16 0

10 67
16 0

.
.

.
.

+⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎣ ⎦

 

 
F1 = [− (1.0 × 0.33) − (0.38 × 85.15)] + [10.67] = − 22.01 kNm 
F2 = [+ (0.38 × 0.33) + (0.19 × 85.15)] − [16.0] = zero 
F3 = [− (0.5 × 0.33) − (0.38 × 85.15)] − [10.67] = − 43.19 kNm 
F4 = [− (0.38 × 0.33) − (0.19 × 85.15)] − [16.0] = − 32.0 kN 
 

Reactions: 

Support A:  

VA = (F2)AB = 12.38 kN     HA = (F2)BC = zero 
 
Support C:  

VC = (F4)AB = 11.62 kN     HC = (F4)BC = 32.0 kN 
MC = (F3)BC = 43.19 kNm 
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2 
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co
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 A                                             B

Shear Force Diagram 

32.0 kN C 

12.38 kN 

11.62 kN 

12.38 kN 

 A                                                B 

21.71 kNm* 
 A                                           B 

24.76 kNm 

Bending Moment Diagram 

*  (the value given at the nodes is the 
average from the two elements). 

43.19 kNm C 

Deflected Shape 

 A                                           B 

C 
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 Assume axially rigid members 

 
Δ1 = 1.0   Δ2 = Δ3 = 0 
       

K11 = 
AB

4EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

+ 
BC

4EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

 

    = 
( )4 2 04

4 0 8 0
. EIEI

. .
⎡ ⎤⎡ ⎤ + ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 = + 2.0EI 

K21 = 
BC

2EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

=
( )2 2 0

8 0
. EI
.

⎡ ⎤
⎢ ⎥
⎣ ⎦

 = + 0.5EI 

K31  = 0 
  
 

 
Δ2 = 1.0   Δ1 = Δ3 = 0 

              K12 = 
BC

2EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

= 
( )2 2.0

8 0
EI

.
⎡ ⎤
⎢ ⎥
⎣ ⎦

 = + 0.5EI 

K22 = 
BC

4EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

+ 
CD

4EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

 

    = 
( ) ( )4 2 0 4 1 5

8 0 3 0
. EI . EI
. .

⎡ ⎤ ⎡ ⎤
+⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
= + 3.0EI 

K32 = 
CD

2EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

= 
( )2 1.5

3 0
EI

.
⎡ ⎤
⎢ ⎥
⎣ ⎦

 = + 1.0EI 

 

X 

Z 

Global Axes 

  node 2                 node 3        node 4 

node 1 

Δ 1 Δ 2 Δ 3 

Solution 
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K31 K21 

K11 

X 

Z 

Global Axes 

A 

B C    D 

K32 K22 

K12 

X 

Z 

Global Axes 

A 

B C    D 

  B                                   C                        D

 8.0 m       3.0 m 

12.0 kN/m 

  A  

EI  

  3.0 m         5.0 m 

25 kN 

4.
0 

m
 

2EI                               1.5 EI      
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Δ3 = 1.0   Δ1 = Δ2 = 0 

 
K13 = 0 

K23 =
CD

2EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

= 
( )2 1.5

3 0
EI

.
⎡ ⎤
⎢ ⎥
⎣ ⎦

 = + 1.0EI 

K33 =  
CD

4EI
L

⎡ ⎤
⎢ ⎥⎣ ⎦

= 
( )4 1 5

3 0
. EI
.

⎡ ⎤
⎢ ⎥
⎣ ⎦

 = + 2.0EI 

 
 
 

Structural stiffness matrix = [K] = 
2 0 0 50 0

0 50 3 0 1 0
0 1 0 2 0

. .
EI . . .

. .

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

The invert of a matrix is given by [K]−1 = 

TCK

K

⎡ ⎤⎣ ⎦  

 
where: 
 [KC] is the co-factor matrix for [K] 
 |K|  is the determinant of [K]  and 
 [KC]T is the transpose of the co-factor matrix 
 

Co-factor Matrix: [KC
]  

(Note:  the transpose of a symmetric matrix is the same as the original matrix) 
c
11k  = + {(3.0 × 2.0) − (1.0 × 1.0)}EI 2 = + 5.0EI 2  
c
12k  = c

21k  = − {(0.5 × 2.0) − (0 ×1.0)}EI 2 = − 1.0EI 2 
c
13k  = c

31k  = + {(0.5 × 1.0) − (0 × 3.0)}EI 2 = + 0.50EI 2 
c
22k  = + {(2.0 × 2.0) − (0)}EI 2 = + 4.0EI 2 
c
23k  = c

32k  = − {(2.0 × 1.0) − (0 × 0.5)}EI 2 = − 2.0EI 2 
c
33k  = + {(2.0 × 3.0) − (0.5 × 0.5)}EI 2 = + 5.75EI 2 

 

Determinant of [K]: 

Det [K] = EI 3 {+ (2.0 × 5.0) − (0.5 × 1.0) + 0)} = + 9.5 EI 3 
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2 0 0 50 0
0 50 3 0 1 0

0 1 0 2 0

. .
EI . . .

. .

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

  +          −            + 

 −             +          − 

 +             −          + 

K33 K23 

K13 

X 

Z 

Global Axes 

A 

B C    D 
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Inverted stiffness matrix = [K]
−1 = 

0.526 0.105 0.053
1 0.105 0.421 0.211

0.053 0.211 0.605
EI

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 

Structural Load Vector: [P]: 

 
Fixed−end forces for member AB 
FEF1 = − (25.0 × 3.0 × 5.02)/8.02 
      = − 29.30 kNm 
FEF3 = + (25.0 × 3.02 × 5.0)/8.02 
      = + 17.58 kNm 

  
 FEF2 = [− (25.0 × 5.0) − 29.30 + 17.58]/8.0 = + 17.09 kN 
 FEF4 = (25.0 − 17.09) = + 7.91 kN 
 
 
 
 
 Equivalent nodal loads for AB 
  
  
 

Fixed−end forces for member CD 
FEF1 = − (12.0 × 3.02)/12.0 
      = − 9.0 kNm 
FEF3 = + (12.0 × 3.02)/12.0 
      = + 9.0 kNm 

  
 FEF2 = + (12.0 × 3.0)/2.0 = + 18.0 kN 
 FEF4 = + (12.0 × 3.0)/2.0 = + 18.0 kN 
 
 
  
  
 Equivalent nodal loads for CD 
  
  
  
 Note: Total equivalent nodal (P2) load at C = (−17.58 + 9.0) = − 8.58 kNm 
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A             B 

17.09 kN           7.91 kN 

29.30 kNm          17.58 kNm 

   VA                                   VB 

A             B 

  Pab2/L2         Pa2b/L2 

L 

P 

a     b

C             D 

18.0 kN           18.0 kN 

9.0 kNm            9.0 kNm 

 wL/2                                       wL/2 

w kN/m 

C             D 

  wL2/12         wL2/12 

L 
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Structural Load Vector [P] = 
29.30
8.58
9.0

+⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 

  

Structural Displacements [Δ]: 

 [Δ] = [K]
−1

 [P]  

1

2

3

Δ
Δ
Δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 = 

0.526 0.105 0.053
1 0.105 0.421 0.211

0.053 0.211 0.605
EI

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥−⎣ ⎦

29.30
8.58
9.0

+⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 

Δ1 = ( ) ( ) ( )1 0.526 29.30 0.105 8.58 0.053 9.0
EI

⎡ ⎤× + × − ×⎣ ⎦  = 15.84
EI

+ radians 

Δ2 = ( ) ( ) ( )1 0.105 29.30 0.421 8.58 0.211 9.0
EI

⎡ ⎤− × − × + ×⎣ ⎦  = 4.79
EI

−   radians 

Δ3 = ( ) ( ) ( )1 0.053 29.30 0.211 8.58 0.605 9.0
EI

⎡ ⎤+ × + × − ×⎣ ⎦  = 2.08
EI

−  radians 
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Equivalent Nodal Loads 

9.0 kNm 29.30 kNm 8.58 kNm 

X 

Z 

Global Axes 

Structural Deflections X  

Z  

Global Axes 

15.84
rad

EI

4.79
rad

EI

2.08
rad

EI

node 1 

  node 2                                        node 3                 node 4 

node 1 

  node 2                node 3        node 4 

P1 P2 P3 
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Element Stiffness Matrices  [k]: 

             [k] =

2 2

2 3 2 3

2 2

2 3 2 3

4 6 2 6

6 12 6 12

  
2 6 4 6

6 12 6 12

EI EI EI EI
L LL L
EI EI EI EI
L L L L
EI EI EI EI
L LL L
EI EI EI EI
L L L L

⎡ ⎤+ − + +⎢ ⎥
⎢ ⎥
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥
⎢ ⎥+ − + +⎢ ⎥
⎢ ⎥
⎢ ⎥+ − + +⎢ ⎥⎣ ⎦

 

Element End Forces [F]Total: 

[F]Total = 

1

2

3

4

F
F
F
F

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

1

2

3

4

FEF
FEF
FEF
FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [k][δ] + [FEF] 

[k][δ] + [FEF] = 

2 2

2 3 2 3

2 2

2 3 2 3

4 6 2 6

6 12 6 12

2 6 4 6

6 12 6 12

EI EI EI EI
L LL L
EI EI EI EI
L L L L
EI EI EI EI
L LL L
EI EI EI EI
L L L L

⎡ ⎤+ − + +⎢ ⎥
⎢ ⎥
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥
⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥⎣ ⎦

1

2

3

4

δ

δ

δ

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 +  

1

2

3

4

FEF

FEF

FEF

FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

Consider element AB: 

L
EI4  = 

( )4
4.0

EI×
 = 1.0EI   2

6
L
EI  = 2

6
4.0

EI×  = 0.38EI 

L
EI2  = 2

4.0
EI×  = 0.50EI     3

12
L
EI  = 3

12
4.0

EI×  = 0.19EI 

 

[k]AB = 

1.0 0.38 0.50 0.38
0.38 0.19 0.38 0.19
0.50 0.38 1.0 0.38
0.38 0.19 0.38 0.19

EI

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦
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Displacement Vector [δ]:         Fixed-End Forces Vector [FEF]: 

 

1

2

3

4 AB

δ

δ

δ

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 

0

0

15 84

0

. / EI

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                

1

2

3

4 AB

FEF

FEF

FEF

FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 

0

0

0

0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

Element End Forces [F]AB: 

          [F]Total = 

1

2

3

4

F
F
F
F

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

1

2

3

4

FEF
FEF
FEF
FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [k][δ] + [FEF] 

        = 

1.0 0.38 0.50 0.38
0.38 0.19 0.38 0.19
0.50 0.38 1.0 0.38
0.38 0.19 0.38 0.19

EI

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦

0
0

15 84
0

. / EI

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎣ ⎦

 + 

0
0
0
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
F1 = + (0.5 × 15.84) − [0] = + 7.92 kNm 
F2 = − (0.38 × 15.84) + [0] = − 6.02 kN 
F3 = + (1.0 × 15.84) + [0] = + 15.84 kNm 
F4 = + (0.38 × 15.84) + [0] = + 6.02 kN 
 

Consider element BC: 

L
EI4  = 

( )4 2.0
8.0

EI×
 = 1.0EI   2

6
L
EI  = 

( )
2

6 2.0
8.0

EI×
 = 0.19EI 

L
EI2  = 

( )2 2.0
8.0

EI×
 = 0.5EI     3

12
L
EI  = 

( )
3

12 2.0
8.0

EI×
 = 0.05EI 

[k]BC = 

1.0 0.19 0.50 0.19
0.19 0.05 0.19 0.05
0.50 0.19 1.0 0.19
0.19 0.05 0.19 0.05

EI

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦
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F 1 F 2 

F 3 
F 4 
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Displacement Vector [δ]:         Fixed-End Forces Vector [FEF]: 

 

 

1

2

3

4 BC

δ

δ

δ

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 

15 84

0

4 79

0

. / EI

. / EI

+⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                 

1

2

3

4 BC

FEF

FEF

FEF

FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 

29 30

17 09

17 58

7 91

.

.

.

.

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦

 

 

Element End Forces [F]BC: 

          [F]Total = 

1

2

3

4

F
F
F
F

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

1

2

3

4

FEF
FEF
FEF
FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [k][δ] + [FEF] 

= 

1.0 0.19 0.50 0.19
0.19 0.05 0.19 0.05
0.50 0.19 1.0 0.19
0.19 0.05 0.19 0.05

EI

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦

15 84
0

4 79
0

. / EI

. / EI

+⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 + 

29 30
17 09
17 58
7 91

.

.

.
.

−⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥+
⎢ ⎥+⎣ ⎦

 

 
F1 = [+ (1.0 × 15.84) − (0.5 × 4.79)] − [29.30] = − 15.86 kNm 
F2 = [− (0.19 × 15.84) + (0.19 × 4.79)] + [17.09] = + 15.0 kN 
F3 = [+ (0.5 × 15.84) − (1.0 × 4.79)] + [17.58] = + 20.71 kNm 
F4 = [+ (0.19 × 15.84) − (0.19 × 4.79)] + [7.91] = + 10.0 kN 
 

Consider element CD: 

L
EI4  = 

( )4 1.5
3.0

EI×
 = 2.0EI   2

6
L
EI  = 

( )
2

6 1.5
3.0

EI×
 = 1.0EI   

L
EI2  = 

( )2 1.5
3.0

EI×
 = 1.0EI    3

12
L
EI = 

( )
3

12 1.5
3.0

EI×
 = 0.67EI  

[k]CD = 

2.0 1.0 1.0 1.0
1.0 0.67 1.0 0.67
1.0 1.0 2.0 1.0
1.0 0.67 1.0 0.67

EI

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦
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δ 1 

δ 2 

δ 3 

δ 4

CB 

F 1 

F 2 

F 3 

F 4 
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Displacement Vector [δ]:         Fixed-End Forces Vector [FEF]: 

 

 

1

2

3

4 CD

δ

δ

δ

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 

4 79

0

2 08

0

. / EI

. / EI

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                

1

2

3

4 CD

FEF

FEF

FEF

FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= 

9 0

18 0

9 0

18 0

.

.

.

.

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦

 

 

Element End Forces [F]CD: 

          [F]Total = 

1

2

3

4

F
F
F
F

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 + 

1

2

3

4

FEF
FEF
FEF
FEF

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [k][δ] + [FEF] 

= 

2.0 1.0 1.0 1.0
1.0 0.67 1.0 0.67
1.0 1.0 2.0 1.0
1.0 0.67 1.0 0.67

EI

+ − + +⎡ ⎤
⎢ ⎥− + − −⎢ ⎥
⎢ ⎥+ − + +
⎢ ⎥+ − + +⎣ ⎦

4 79
0

2 08
0

. / EI

. / EI

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 + 

9 0
18 0
9 0

18 0

.
.
.
.

−⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥+
⎢ ⎥+⎣ ⎦

 

 
F1 = [− (2.0 × 4.79) − (1.0 × 2.08)] − [9.0] = − 20.66 kNm 
F2 = [+(1.0 × 4.79) + (1.0× 2.08)] + [18.0] = + 24.87 kN 
F3 = [− (1.0 × 4.79) − (2.0 × 2.08)] + [9.0] = zero 
F4 = [− (1.0 × 4.79) − (1.0 × 2.08)] + [18.0] = + 11.13 kN 
 

Reactions: 

Support A:  

VA = (F2)BC = 15.0 kN      HA = (F2)AB = 6.02 kN  
MA = (F1)AB = 7.92 kNm 
 
Support C:  

VC = (F4)BC + (Fs)CD = (10.0 + 24.87) = 34.87 kN 
 

Support D:  

VD = (F4)CD = 11.13 kN     HD = (F4)AB = 6.02 kN 
 

Solution 
Topic:  Direct Stiffness Method 

Problem Number: 7.6            Page No. 8 

F 1 
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Solution 
Topic:  Direct Stiffness Method 

Problem Number: 7.6            Page No. 9 
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 B                                C               D6.02 kN compression 

Bending Moment Diagram 

*  (the value given at the nodes is the 
average from the two elements).  

20.69 kNm* 

24.76 kNm 

15.85* kNm 
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 B                                     C                          D 
5.18 kNm 

Shear Force Diagram 

6.02 kN 

15.0 kN 
15.0 kN 

10.0 kN 
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 B                                         C                           D 

10.0 kN 

24.87 kN 

11.13 kN 

0.93 m 

Deflected Shape 
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 B                                     C                        D 



 

8. Plastic Analysis 

8.1 Introduction 
The Plastic Moment of Resistance (Mpl) of individual member sections can be derived as 

indicated in Section 2.3 of Chapter 2. The value of Mpl is the maximum value of moment 

which can be applied to a crosssection before a plastic hinge develops. Consider 

structural collapse in which either individual members may fail or the entire structure may 

fail as a whole due to the development of plastic hinges. 

According to the theory of plasticity, a structure is deemed to have reached the limit of its 

load carrying capacity when it forms sufficient hinges to convert it into a mechanism with 

consequent collapse. This is normally one hinge more than the number of 

degreesofindeterminacy (ID) in the structure as indicated in Figure 8.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1 

Ignoring horizontal forces: 

Number of degrees-of-indeterminacy  

ID = [(2m + r)  2n] = 0 

Minimum number of hinges required 

(ID + 1) = 1 

Ignoring horizontal forces: 

Number of degrees-of-indeterminacy  

ID = [(2m + r)  2n] = 1 

Minimum number of hinges required 

(ID + 1) = 2 

Ignoring horizontal forces: 

Number of degrees-of-indeterminacy  

ID = [(2m + r)  2n] = 2 

Minimum number of hinges required 

(ID + 1) = 3 

Number of degrees-of-indeterminacy  

ID = [(3m + r)  3n] = 2 

Minimum number of hinges required 

(ID + 1) = 3 
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8.1.1 Partial Collapse 
It is possible for part of a structure to collapse whilst the rest remains stable. In this 

instance full collapse does not occur and the number of hinges required to cause partial 

collapse is less than the (ID + 1.0). This is illustrated in the multi-span beam shown in 

Figure 8.2. Ignoring horizontal forces ID = [(2m + r)  2n] = [(2  4) + 5  (2  5)] = 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.2 

 

For any given design load applied to a redundant structure, more than one collapse 

mechanism may be possible. The correct mechanism is the one which requires the least 

amount of ‘work done’ for its’ inception. 

8.1.2 Conditions for Full Collapse 
There are three conditions which must be satisfied to ensure full collapse of a structure and 

the identification of the true collapse load, they are: 

 

(i) the mechanism condition in which there must be sufficient plastic hinges to 

develop a mechanism, (i.e. the number of plastic hinges  [ID + 1]), 

 

(ii) the equilibrium condition in which the bending moments for any collapse 

mechanism must be in equilibrium with the applied collapse loads, 

 

(iii) the yield condition in which the magnitude of the bending moment anywhere 

on the structure cannot exceed the plastic moment of resistance of the member 

in which it occurs. 

Provided that these three conditions can be satisfied then the true collapse load can be 

identified. 
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If only the mechanism and equilibrium conditions are satisfied then an upperbound 

(unsafe) solution is obtained in which the collapse load determined is either greater than 

or equal to the true value.  

If only the yield and equilibrium conditions are satisfied then a lowerbound (safe) 

solution is obtained in which the collapse load determined is either less than or equal to 

the true value.  

Since the bending moment cannot exceed the Mpl value for a given crosssection it is 

evident that when hinges develop they will occur at the positions of maximum bending 

moment, i.e. at fixed supports, rigidjoints, under point loads and within the regions of  

distributed loads. 

The analysis of beams and frames involves determining: 

 

(i) the collapse loads, 

(ii) the number of hinges required to induce collapse, 

(iii) the possible hinge positions, 

(iv)  the independent collapse mechanisms and their associated Mpl values, 

(v)  the possible combinations of independent mechanisms to obtain the highest 

required Mpl value,  

(vi)  checking the validity of the calculated value with respect to mechanism, 

equilibrium and yield conditions. 

 

There are two methods of analysis which are frequently used to determine the values of 

plastic moment of resistance for sections required for a structure to collapse at specified 

factored loads; they are the Static Method and the Kinematic Method. These are illustrated 

with respect to continuous beams in Sections 8.2 to 8.4. and with respect to frames in 

Sections 8.5 to 8.12. 

8.2 Static Method for Continuous Beams 
In the static method of analysis the ‘Free Bending Moment’ diagrams for the structure are 

drawn and the ‘Fixed Bending Moment’ diagrams are then added algebraically. The 

magnitude and ‘sense’ +ve or ve of the moments must be such that sufficient plastic 

hinges occur to cause the collapse of the whole or a part of the structure. 

In addition, for collapse to occur, adjacent plastic hinges must be alternatively ‘opening’ 

and ‘closing’. For uniform beams the plastic moment of resistance of each hinge will be 

the same i.e. Mpl. 

8.2.1 Example 8.1: Encastré Beam 
An encastré beam is 8.0 m long and supports an unfactored load of 40 kN/m as shown in 

Figure 8.3. Assuming that the yield stress  fy = 460 N/mm2 and a load factor  = 1.7, 

determine the required plastic moment of resistance and plastic section modulus. 

 

 

 

 

 

                      Figure 8.3 

A                   B 

40.0 kN/m 

8.0 m 

MA               MB 

VA                 VB 
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Solution: 

The collapse load = (40.0 1.7) = 68.0 kN/m 

The number of hinges required to induce collapse = (ID + 1) = 3   (see Figure 8.1) 

The possible hinge positions are at the supports A and B and within the region of the 

distributed load since these are the positions where the maximum bending moments occur. 

Superimpose the fixed and free bending moment diagrams as shown in Figure 8.4: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Final Bending Moment Diagram 

 

Figure 8.4 

 

The beam has two redundancies (ignoring horizontal components of reaction) therefore a 

minimum of three hinges must develop to create a mechanism.  Since the beam is uniform, 

at failure all values of the bending moment at the hinge positions must be equal to the 

plastic moment of resistance and cannot be exceeded anywhere: 

M1 = M2 = M3 = Mpl        and        (M1 + M2) = (M3 + M2) = 2Mpl = 
2 

8

wL
 

The required plastic moment of resistance  Mpl = 
2 

16

wL
 = 

268.0 8

16

  
 = 272.0 kNm 

The plastic section modulus  Wyy = Mpl/fy = (272.0  106)/460 = 591.3  103 mm3 

 

It is evident from the above that all three conditions in Section 8.1.2 are satisfied and 

consequently the Mpl value calculated for the required collapse load is true to achieve a 

load factor of 1.7  

8.2.2 Example 8.2: Propped Cantilever 1 
A propped cantilever is 6.0 m long and supports a collapse load of 24 kN as shown in 

Figure 8.5. Determine the required plastic moment of resistance Mpl. 

 

 

 

                      Figure 8.5  

A                     C 

VA                  VC 4.0 m       2.0 m 

24.0 kN 
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  M1                       M3   
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  A                                                                B 
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Fixed Bending Moment Diagram                                   Free Bending Moment Diagram 

M1                                                      M3 

Mp 
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A           B 
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Solution: 

The collapse load = 24.0 kN 

The number of hinges required to induce collapse = (ID + 1) = 2   (see Figure 8.1) 

The possible hinge positions are at the support A and under the point load since these are 

the positions where the maximum bending moments occur. 

The support reactions for the free bending diagram are: VA = 8.0 kN  and VC = 16.0 kN 

The maximum free bending moment at   Mfree,C = (8.0  4.0) = 32.0 kNm 

The bending moment at  B  due to the fixed moment = [M1(2.0  6.0)] =  0.333M1 kNm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Final Bending Moment Diagram 

 

Figure 8.6 

 

The beam has one redundancy (ignoring horizontal components of reaction) therefore a 

minimum of two hinges must develop to create a mechanism.  Since the beam is uniform, 

at failure all values of the bending moment at the hinge positions must be equal to the 

plastic moment of resistance and cannot be exceeded anywhere: 

 

M1 = M2 = Mpl        and            (M2 + 0.333M1) = (Mpl + 0.333Mpl) = 1.333Mpl = 32.0 

The required plastic moment of resistance Mpl = (32.0/1.333) = 24.0 kNm 

 

As in Example 8.1 all three conditions in Section 8.1.2 are satisfied and consequently the 

true value of Mpl has been calculated for the given collapse load. 

8.2.3 Example 8.3: Propped Cantilever 2 
A propped cantilever is L m long and supports a collapse load of w kN/m as shown in 

Figure 8.7. Determine the position of the plastic hinges and the required plastic moment of 

resistance Mpl. 

 

 

 

                      Figure 8.7  

 

A                     B 

L VA                  VB 
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0.333M1 

A              C 
B 

ve 

+ve 32.0 kNm 

+ 

hinge position 

24 kN 

8.0 kN        16.0 kN 

A           C 
B 

A           C B 

+ve 



602 Examples in Structural Analysis  

 

Solution: 

The collapse load = w kN/m 

The number of hinges required to induce collapse = (ID + 1) = 2   (see Figure 8.1) 

 

The possible hinge positions are at the support A and within the region of the distributed 

load since these are the positions where the maximum bending moments occur. In this 

case the maximum moment under the distributed load does not occur at midspan since the 

bending moment diagram is not symmetrical. Consider the final bending moment diagram: 

 

 

 

 

                      Figure 8.8 

 

The maximum bending moment (i.e. Mpl) occurs at a distance ‘x’ from the roller support 

and can be determined as follows; 

Since the moment is a maximum at position ‘x’ the shear force at ‘x’ is equal to zero. 

 

 

 

 

 

 

 

  +ve  MA = 0            +ve  MB = 0  

   Mpl + w(L  x)2/2  Mpl = 0       Mpl  wx2/2 = 0 

   0.5wL2  wLx + 0.5wx2  2Mpl = 0     Mpl = 0.5wx2  

  Mpl = 0.25wL2  0.5wLx + 0.25wx2 

 

Equate the Mpl values to determine x: 

0.5wx2 = 0.25wL2  0.5wLx + 0.25wx2    0.25x2 + 0.5Lx  0.25L2 = 0 

 

x = 
a

acbb

2

42 
 = 

   
 

2 20.5 0.5 4 0.25 0.25

2 0.25

L L L    


 = + 0.414L m 

Mpl = 0.5wx2 = [0.5 × w  (0.4142L)2 ]     Mpl = 0.0858wL2 

 

This is a standard value, i.e. for a propped cantilever the plastic hinge in the span occurs at 

a distance x = 0.414L from the simply supported end and the value of the plastic moment 

Mpl = 0.0858wL2 

8.3 Kinematic Method for Continuous Beams 
In this method, a displacement is imposed upon each possible collapse mechanism and an 

equation between external work done and internal work absorbed in forming the hinges is 

developed. The collapse mechanism involving the greatest plastic moment, Mpl, is the 

critical one. 

x VB 

   w kN/m 

B 

Mpl 

Mpl 

Mpl 

x 

A                                                                B 

(L  x) 
Mpl 

VA 

   w kN/m Mpl 

A 
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Consider the previous Example 8.1 of an encastré beam with a uniformly distributed load. 

The hinge positions were identified as occurring at A, B and the midspan point (since the 

beam and loading are symmetrical). Assuming rigid links between the hinges, the collapse 

mechanism of the beam when the hinges develop can be drawn as shown in  Figure 8.9(c). 

The deformed shape is drawn grossly magnified to enable the relationship between the 

rotations at the hinges and the displacements of the loads to be easily identified. 

A virtual work equation can be developed by equating the external work done by the 

applied loads to the internal work done by the formation of the hinges where: 

 

Internal work done during the formation of a hinge = (moment   rotation) 

External work done by a load during displacement = (load  displacement) 

(In the case of distributed loads the average displacement is used). 

 

The sign convention adopted is: 

Tension on the Bottom of the beam induces a ‘positive’ rotation   (i.e. +ve bending) 

Tension on the Top of the beam induces a ‘negative’ rotation   (i.e. ve bending) 

 

Note: the development of both ve and +ve hinges involves +ve internal work 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.9 

 

From the deformed shape in Figure 8.9: 

For small values of   and    =  
2

L
  =  

2

L
     =  

The load deflects zero at the supports and   at the centre 

 

Average displacement of the load = 
1

2
  = 

4

L
  

 

(a) 

8.0 m 

  A                   B 

     (w) = 68.0 kN/m 

VA VB 

(b) 
  A                   B 

VA VB 

(c)  A                      B 

 

+ ( + ) 

 Mp                                  Mp  

L /2             L /2 

+Mpl 

    
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The Internal Work Done in developing the hinges is found from the product of the 

moment induced (i.e. Mpl) and the amount of rotation (e.g. ) for each hinge. 

 

Internal Work Done = Moment  Rotation for each hinge position 

         = Mpl + Mpl( + ) + Mpl = 4Mpl 

 

The External Work Done by the applied load system is found from the product of the load 

and the displacement for each load. 

External Work Done = (load  ave. displacement) =  
8.0

68.0 8.0
4


 
  

 
 = 1088.0  

Internal Work Done  = External Work Done 

4Mpl = 1088.0 

Mpl = 272.0 kNm (as before) 

 

Consider the previous Example 8.2 of propped cantilever with a single point load. 

The hinge positions were identified as occurring at support A, and under the point load    

at B. Assuming rigid links between the hinges, the collapse mechanism of the beam when 

the hinges develop can be drawn as shown in Figure 8.10(c).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.10 

 

From the deformed shape in Figure 8.10: 

For small values of   and    = 4.0 = 2.0     = 2.0 

Displacement of the load =  = 4.0 

 

Internal Work Done = External Work Done 

Mpl + Mpl( + ) = (24.0  ) 

4Mpl = 96.0 

Mpl = 24.0 kNm (as before) 

A                         C 
(b) 

VA VC 

(a) 

4.0 m       2.0 m 

A                    C 

    (w) = 24.0 kN 

VA VC 

B 

B 

B 
(c) A                     C 

 

+ ( + ) 

 Mpl 

4.0 m      2.0 m 

+Mpl 

    
Note: no internal work is 

done at support C since 

there is no plastic hinge 

required, i.e. the beam is 

free to rotate. 
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Consider the previous Example 8.3 of a propped cantilever with a uniformly distributed 

load. The hinge positions were identified as occurring at support A, and at a point load 

0.4142L from the simple support. Assuming rigid links between the hinges, the deformed 

shape of the beam when the hinges develop can be drawn as shown in Figure 8.11(c).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         Figure 8.11 

 

From the deformed shape in Figure 8.11: 

For small values of   and    = 0.586L = 0.414L     = 1.415 

The load deflects zero at the supports and   at a distance 0.414L from support B. 

Average displacement of the load = 
1

2
  = 

0.586

2

L
  = 0.293L 

Internal Work Done = External Work Done 

Mpl + Mpl( + ) = (w  L)  0.293L 

3.415Mpl = 0.293wL 

Mpl = 0.0858wL2 (as before) 

8.3.1 Example 8.4: Continuous Beam 
A nonuniform, threespan beam is fixed at support A, simply supported on rollers at D, F 

and G and carries unfactored loads as shown in Figure 8.12. Determine the minimum Mpl 

value required to ensure a minimum load factor equal to 1.7 for any span. 

 

 

 

 

 

 

                       

 

Figure 8.12 

A                    B 

VA VB 

(b) 

(c) 

(a) 
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A                    B 

  w kN/m 

VA VB 

2.0 m      2.0 m       1.0 m    3.0 m  1.0 m      6.0 m 

A                             G 

12 kN/m MA  

VA               VD         VF            VG 

B    C         D                  E       F  

50 kN      25 kN     40 kN 

2Mpl           Mpl               1.5Mpl 

+Mpl 

0.586L m                     0.414L m 

A                     B 

 

+ ( + ) 

 Mpl 

    
Note: no internal work is 

done at support B since 

there is no plastic hinge 

required, i.e. the beam is 

free to rotate. 
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There are a number of possible elementary beam mechanisms and it is necessary to ensure 

all possibilities have been considered. It is convenient in multispan beams to consider 

each span separately and identify the collapse mechanism involving the greatest plastic 

moment Mpl; this is the critical one and results in partial collapse. 

The number of elementary independent mechanisms can be determined from evaluating 

(the number of possible hinge positions  the degreeofindeterminacy). 

 

Ignoring horizontal forces: 

Number of degrees-of-indeterminacy:  ID = [(2m + r)  2n] 

                 = [(2  3) + 5  (2  4)] = 3 

Number of possible hinge positions     = 7 (at A, B, C, D, E, F and between F and G) 

 

Number of independent mechanisms = (7  3) = 4 

(Note: In framed structures combinations of independent mechanisms must also be 

considered see Section 8.5). 

 = 1.7 

Factored loads:   (1.7  50) = 85.0 kN     (1.7  25) = 42.5 kN    (1.7  40) = 68.0 kN 

       (1.7  12) = 20.4 kN 

 

Consider span ABCD: 

In this span there are four possible hinge positions, however only three are required to 

induce collapse in the beam. There are two independent collapse mechanisms to consider, 

they are:  

(i)  hinges developing at A (moment = 2Mpl), B (moment = 2Mpl) and D (moment = Mpl) 

(ii) hinges developing at A (moment = 2Mpl), C (moment = 2Mpl) and D (moment = Mpl) 

 

Static Method: 

The free bending moment at B = 119.0 kNm 

The free bending moment at C = 68.0 kNm. 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

Case (i) 2.0Mpl + 1.6Mpl = 119.0             Case(ii) 2.0Mpl + 1.2Mpl = 68.0 

   Mpl = 33.06 kNm                   Mpl = 21.25 kNm 

2.0Mpl 

Mpl 

1.6Mpl 

2.0Mpl 

119.0 kNm 

2.0Mpl 

Mpl 

1.2Mpl 

2.0Mpl 

68.0 kNm 

2Mpl            Mpl 

2.0 m          2.0 m       1.0 m 

A 

MA 

VA                 VD 

 B     C           D  

85 kN      42.5 kN  

MD MD 

The hinge at D develops 

in the weaker member, 

i.e. the moment = MP1 

2Mpl        Mpl 

2.0 m           2.0 m      1.0 m 

A 

MA 

VA               VD 

  B     C           D  

85 kN      42.5 kN 
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In this span the critical value of Mpl = 33.06 kNm with hinges developing at A, B and D. 

Kinematic Method: 

 

 

For small values of   and  

 1 = 2.0 = 3.0    = 0.67 

 2 = 1.0 = 0.67 

 

 

 

Internal Work Done = External Work Done 

2.0Mpl + 2.0Mpl( + ) + Mpl = (85.0  1) + (42.5  2) 

2.0Mpl + 3.34Mpl  + 0.67Mpl = (85.0  2.0) + (42.5  0.67) 

6.0Mpl = 198.36       Mpl = 33.06 kNm (as before) 

 

 

 

 

For small values of   and  

 1 = 2.0   

 2 = 4.0 = 1.0    = 4.0 

 

 

Internal Work Done = External Work Done 

2.0Mpl + 2.0Mpl( + ) + Mpl = (85.0  1) + (42.5  2) 

2.0Mpl + 10.0Mpl + 4.0Mpl = (85.0  2.0) + (42.5  4.0) 

16.0Mpl = 340.0       Mpl = 21.25 kNm (as before) 

The critical value for this span is Mpl = 33.06 as before. 

 

Consider span DEF: 

In this span only three hinges are required to induce collapse in the beam. 

Hinges develop at D (moment = Mpl),  E (moment = Mpl)  and  F (moment = Mpl) 

 

Static Method:           Kinematic Method: 

 

 

    

 

 

 

 

 

 

For small values of   and  

 1 = 3.0 = 1.0    = 3.0 
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2 
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2.0 m            2.0m      1.0 m 

2Mpl 
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 B     C          D  

+ ( + ) 

1 

 2Mpl 

    
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 Mpl 

+ ( + ) 

68.0 kN 

3.0m                 1.0 m 

Mpl 
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 E              F 

1 

 Mpl 

    

 Mpl 

3.0 m                 1.0 m 

Mpl         1.5Mpl 
D 

MD        MF 

VD                 VF 

 E       F  

68.0 kN 

Mpl          Mpl    Mpl 

Mp 

51.0 kNm 
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Static method:       Kinematic Method: 

Mpl + Mpl = 51.0      Internal Work Done = External Work Done 

Mpl = 25.5 kNm       Mpl + Mpl( + ) + Mpl = (68.0  1) 

        8.0Mpl = 204 

        Mpl = 25.5 kNm 

Consider span FG: 

In this span only two hinges are required to induce collapse in the beam. 

Hinges develop at F (moment = Mpl), and between F and G (moment = 1.5Mpl) 

 

 

 

 

 

 

 

Span FG is effectively a propped cantilever and consequently the position of the hinge 

under the uniformly distributed load must be calculated. (Note: it is different from 

Example 8.3 since the plastic moment at each hinge position is not the same). 

 

 

 

 

 

 

 

+ve  MF = 0              +ve  MG = 0 

Mpl + 20.4(6.0  x)2/2  1.5Mpl = 0       1.5Mpl  20.4x2/2 = 0 

367.2  122.4x + 10.2x2  2.5Mpl = 0      Mpl = 6.8x2 

Mpl = 146.88  48.96x + 4.08x2 

 

Equate the Mpl values to determine x: 

6.8x2 = 146.88  48.96x + 4.08x2    2.72x2 + 48.96x  146.88 = 0 

 

x = 
a

acbb

2

42 
 = 

   

 

2
48.96 48.96 4 2.72 146.88

2 2.72

    


 = + 2.619 m 

Mpl = 6.8x2 = (6.8  2.6192) = 46.64 kNm        Span FG is the critical span 

 

The reader should confirm the value of Mpl  using the Kinematic Method. 

 

Span:             ABCD         DEF      FG 

Minimum required value of Mpl    33.06 kNm       25.5 kNm         46.64 kNm 

for a load factor of 1.7 

Actual load factor if an Mpl       (1.7  46.64)/33.06    (1.7  46.64)/25.5 

value of 46.64 kNm is used     2.4         3.1            1.7 

Actual Mpl  provided       93.28 kNm      46.64 kNm     69.96 kNm 

x VG 

20.4 kN/m 

G 

1.5Mpl 

6.0 m 

G 

20.4 kN/m 

VF                   VG 

F 

Mpl              

1.5Mpl 

(6.0  x) 

1.5Mpl 

VF 

20.4 kN/m Mpl 
F 
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8.4 Problems: Plastic Analysis  Continuous Beams 
A series of continuous beams are indicated in which the relative Mpl values and the applied 

collapse loadings are given in Problems 8.1 to 8.5. Determine the required value of Mpl to 

ensure a minimum load factor  = 1.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problem 8.2 

A                  B                            C                         D                    E 

4.0 m                      4.0 m 

 2.0 m                  2.0 m                 2.0 m                2.0 m 

   20 kN            15 kN 

Mpl         Mpl 

Problem 8.1 

4.0 m                      4.0 m 

A                B                           C                        D                E 

 2.0 m                  2.0 m                2.0 m                2.0 m 

   20 kN            15 kN 

Mpl         Mpl 

Problem 8.3 

A                              B          C     D            E             F                  G             

         10 kN/m          30 kN        15 kN             20 kN 

2.0 m           2.0 m           2.0 m          2.0 m     2.0 m 

6.0 m                            6.0 m                  4.0 m 

2Mpl              1.5Mpl                  Mpl 

Problem 8.5 

 A                        B          C           D                                E                        F             

6.0 m     2.0 m           2.0 m                        4.0 m                 

8.0 m                               6.0 m       2.0 m 

2Mpl                                           1.5Mpl     1.5 Mpl 

      20 kN              30 kN           30 kN            15 kN 

Problem 8.4 

   20 kN                           10 kN/m                 30 kN      15 kN                20 kN/m 

A              B                            C              D                  E                        F                       G 

 2.0 m       4.0 m           2.0 m            2.0 m           2.0 m         

6.0 m                           6.0 m         4.0 m 

               1.5Mpl                      2.0Mpl                          Mpl 
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8.5 Solutions: Plastic Analysis  Continuous Beams 
        

 

 

 

 

 

 

         

 

 

 

 = 1.7 

Factored loads: Beam ABC = (1.7  20) = 34 kN,   Beam CDE = (1.7  15) = 25.5 kN 

 

Kinematic Method: 

Span ABC 

 

 

 

 
 
 
 

 

 = 2 = 2    =  

Internal Work = External Work 

Mpl() + Mpl( +) + Mpl() = (34  2) 

 4Mpl = 68 

                       Mpl = 17.0 kNm 
 

Span CDE 

 

 

 

 

 

 

 

 

                    = 2 = 2    =  

Internal Work = External Work 

Mpl() + Mpl( +) + Mpl() = (25.5  2) 

 4Mpl = 51.0 

                       Mpl = 12.75 kNm 
Critical value of Mpl = 17.0 kNm 

   4.0 m                          4.0 m 

A                B                           C                        D                E 

  2.0 m                 2.0 m                  2.0 m                2.0 m 

   20 kN              15 kN 

Mpl          Mpl 

Solution 
Topic:  Plastic Analysis – Continuous Beams   

Problem Number: 8.1  Kinematic Method     Page No. 1 

 A               B                            C  

34.0 kN 

4.0 m 

2.0 m              2.0 m 

 C                    D                       E  

25.5 kN 

4.0 m 

2.0 m              2.0 m 

 

C                      D                        E    Mpl 
 Mpl 

25.5 kN 

  

+ Mpl + ( +  ) 

2.0 m              2.0 m 

 

A                     B                        C    Mpl 
 Mpl 

34.0 kN 

  

+ Mpl + ( +  ) 

2.0 m              2.0 m 
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Static Method: 

 

Span ABC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Mpl + Mpl) = 2Mpl = 34.0 kNm 

                     Mpl = 17.0 kNm 
 

Span CDE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Mpl + Mpl) = 2Mpl = 25.5 kNm 

                     Mpl = 12.75 kNm 

As before the critical value of Mpl = 17.0 kNm 

 

Solution 
Topic:  Plastic Analysis – Continuous Beams   

Problem Number: 8.1  Static Method       Page No. 2 

 A               B                         C  

34 kN 

4.0 m 

2.0 m              2.0 m 

    C                D                      E  

25.5 kN 

4.0 m 

2.0 m              2.0 m 

17.0 kN           17.0 kN 

(17.0  2.0) = 34.0 kNm 

Free Bending Moment Diagram 

Mpl 

Fixed Bending Moment Diagram 

Mpl 

Mpl             Mpl 

Mpl 

34.0 kNm 

Combined Bending Moment Diagram 

Mpl             Mpl 

Mpl 

25.5 kNm 

Combined Bending Moment Diagram 

12.75 kN             12.75 kN 

(12.75  2.0) = 25.5 kNm 

Free Bending Moment Diagram 

Fixed Bending Moment Diagram 

Mp 
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 = 1.7 

Factored loads: Beam ABC = (1.7  20) = 34 kN,   Beam CDE = (1.7  15) = 25.5 kN  

 

Kinematic Method: 

Span ABC 

 

 

 

 
 

 
 

 

 = 2 = 2    =  

Internal Work = External Work 

Mpl( +) + Mpl() = (34  2) 

 3Mpl = 68 

                      Mpl = 22.67 kNm 
 

Span CDE 

 

 

 

 

 

 

 

 

                    = 2 = 2    =  

Internal Work = External Work 

Mpl() + Mpl( +) = (25.5  2) 

 3Mpl = 51.0 

                       Mpl = 17.0 kNm 
Critical value of Mpl = 22.67 kNm 

Solution 
Topic:  Plastic Analysis – Continuous Beams   

Problem Number: 8.2  Kinematic Method     Page No. 1 

  4.0 m                          4.0 m 

A                  B                            C                          D                  E 

 2.0 m                  2.0 m                  2.0 m                  2.0 m 

   20 kN                   15 kN 

Mpl          Mpl 

34 kN 

 A               B                            C  

4.0 m 

2.0 m              2.0 m 
 

A                 B                          C    Mpl 

34 kN 

  

+ Mpl + ( +  ) 

2.0 m              2.0 m 

C        D      E 

 

 Mpl 

25.5 kN 

  

+ Mpl + ( +  ) 

2.0 m              2.0 m 

25.5 kN 

 C                   D                         E  

4.0 m 

2.0 m              2.0 m 
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Static Method: 

 

Span ABC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Mpl + 0.5Mpl) = 1.5Mpl = 34.0 kNm          Mpl = 22.67 kNm 

 

Span CDE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (Mpl + 0.5Mpl) = 1.5Mpl = 25.5 

                     Mpl = 17.0 kNm 
 

As before the critical value of Mpl = 22.67 kNm 
 

Solution 
Topic:  Plastic Analysis – Continuous Beams   

Problem Number: 8.2  Static Method       Page No. 2 

 A               B                          C  

34 kN 

4.0 m 

2.0 m              2.0 m 
Free Bending Moment Diagram 

17.0 kN                                            17.0 kN 

 (17.0  2.0) = 34.0 kNm 

Fixed Bending Moment Diagram 

Mpl 0.5Mpl 

0.5Mp 

34.0 kNm 

Mpl 

Mpl 

Combined  Bending Moment Diagram 

Free Bending Moment Diagram 

12.75 kN                                              12.75 kN 

 (12.75  2.0) = 25.5 kNm 

Mpl 
0.5Mpl 

Mpl 

25.5 kNm 

Combined Bending Moment Diagram Fixed Bending Moment Diagram 

Mpl 
0.5Mpl 

    C                D                        E  

25.5 kN 

4.0 m 

2.0 m              2.0 m 
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 = 1.7 

Factored loads = (1.7  10) = 17.0 kN/m   (1.7  15) = 25.5 kN 

      = (1.7  20) = 34.0 kN   (1.7  30) = 51.0 kN 

 

Kinematic Method: 

Span AB 

Note: Span AB is effectively a propped cantilever and the bending moment diagram 

is asymmetric. The hinge between A and B does not develop at the mid-span point 

and should be evaluated in a manner similar to that indicated in Section 8.2.3. The 

reader should carry out this calculation to show that the hinge develops at a position 

equal to 2.582 m from the free support at A as shown below, (see page 3 of this 

solution). 

 

 

 

 

 

 

 

 

 

  
 

 

     

 

 

 = 3.418 = 2.582      = 0.755  

 

Internal Work = External Work 

[2.0Mpl ( + ) + (1.5Mpl)] = [(17  6.0)  (0.5 )] = (102  0.5 × 2.582) 

4.643Mpl = 131.682 

                        Mpl = 28.36 kNm 

Solution 
Topic:  Plastic Analysis – Continuous Beams   

Problem Number: 8.3  Kinematic Method     Page No. 1 

A                         B            C     D            E             F                    G             

        10 kN/m           30 kN  15 kN                 20 kN 

2.0 m            2.0 m          2.0 m           2.0 m     2.0 m 

        6.0 m                          6.0 m                      4.0 m 

2Mpl               1.5Mpl                   Mpl 

2.582 m    3.418 m 

 A                                                   B  
17.0 kN/m 

6.0 m 

2.582 m 

 A                                                B  
w kN/m 

6.0 m 

1.5Mpl at B 

2.0Mpl 

17.0 kN/m 

 

A                                                   B 
  1.5 Mpl 

 

+2.0 Mpl + ( +  ) 

2.582 m          3.418 m 

 

No internal 

work done 

here. 
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Span BCDE 

 

 

 

 

 

 

 

 

  

               1 = 4 = 2   = 0.5  2 = 2 =   

  

Internal Work 

 1.5Mpl () + 1.5Mpl ( +) + Mpl () = 4.25Mpl 

  

External Work 

 (51.0  1) + (25.5  2) = (51.0  2) + (25.5  2) = 127.5 

 4.25Mpl = 127.5 

                       Mpl = 30.0 kNm 
 

 

 

 

 

 

 

      

 

 

  

                 1 = 2   2 = 2 = 4   = 2  

  

Internal Work 

 1.5Mpl () + 1.5Mpl ( +) + Mpl () = 8.0Mpl 

 

 External Work 

 (51.0  1) + (25.5  2) = (51.0  2) + (25.5  4) = 204.0 

 8.0Mpl = 204 

                       Mpl = 25.5 kNm 
 

 

Solution 
Topic:  Plastic Analysis – Continuous Beams   

Problem Number: 8.3  Kinematic Method     Page No. 2 

 B          C                       D          E 

51.0 kN      25.5 kN 

6.0 m 

2.0 m       2.0 m       2.0 m 

 B           C                       D          E 

51.0 kN      25.5 kN 

6.0 m 

2.0 m       2.0 m       2.0 m 

 B         C                       D        E  

51.0 kN      25.5 kN 

1 

 Mpl  1.5Mpl 

+1.5Mpl + ( +  ) 

  

2.0 m       2.0 m       2.0 m 

2 

 B         C                       D        E  

51.0 kN      25.5 kN 

1 

 Mpl  1.5Mpl 

+1.5Mpl 
+ ( +  ) 

 
 

2.0 m       2.0 m       2.0 m 

2 
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 Span EFG 

 

 

 

 

 

 

 

 

 = 2 = 2    =  

Internal Work = External Work 

Mpl() + Mpl( +) = (34  2) 

 3Mpl = 68                  Mpl = 22.67 kNm 

  The critical value of Mpl = 30.0 kNm 

Static Method: 

Span AB 

 

 

 

 

 

 

 

 

 

  

 

 

 

 +ve  MA = 0           +ve  MB = 0 

 (17.0x2)/2  2Mpl = 0        2Mpl + 1.5Mpl  17.0(6.0  x)2/2 = 0 

 8.5x2  2Mpl = 0   Mpl = 4.25x2   Mpl = 2.429(6.0  x)2 = 0 

  

Equate the Mpl values to determine x: 

4.25x2 = 2.429(36.0  12x + x2)   1.821x2 + 29.148x  87.44 = 0 

 

x = 
a

acbb

2

42 
 = 

 

 

229.148 29.148 4 1.821 87.44

2 1.821

    


 = + 2.582 m 

Mpl = 4.25x2 = (4.25 × 2.5822) 

                     Mpl = 28.33 kNm 

Solution 
Topic:  Plastic Analysis – Continuous Beams   

Problem Number: 8.3  Static Method       Page No. 3 

34 kN 

 E                 F                         G  

4.0 m 

2.0 m              2.0 m 

   x m       (6.0  x) m 

 A                                                   B  
17.0 kN/m 

6.0 m 

1.5Mpl 

2Mpl x m 

 A  

x m  VA  

17.0 kN/m 

2Mpl 

1.5Mp 

(6.0  x) VB 

17.0 kN/m 

2Mpl 
 B  

 

E                  F                          G  Mpl 

34 kN 

  

+ Mpl + ( + ) 

2.0 m              2.0 m 

No internal 

work done 

here 
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Span BCDE 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

(1.5Mpl + 1.33Mpl) = 85.0 kNm 

2.83Mpl = 85.0 kNm 

                     Mpl = 30.0 kNm 
 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

(1.5Mpl + 1.17Mpl) = 68.0 kNm 

2.67Mpl = 68.0 kNm                

                     Mpl = 25.5 kNm 
 

Solution 
Topic:  Plastic Analysis – Continuous Beams   

Problem Number: 8.3  Static Method       Page No. 4 

   B        C                D              E 

51.0 kN      25.5 kN 

6.0 m 

2.0 m       2.0 m       2.0 m 

Fixed Bending Moment Diagram 

1.5Mpl 

Mpl 

1.33Mpl 

1.5Mpl 

Mpl 
1.33Mpl 

1.5Mpl 

85.0 kNm 

 B          C               D                E  

51.0 kN      25.5 kN 

6.0 m 

2.0 m       2.0 m       2.0 m 

Free Bending Moment Diagram 

(34.0  2.0) = 68.0 kNm 

42.5 kN                                                   34.0 kN 

Combined Bending Moment Diagram 

1.5Mpl 

Mpl 

1.17Mpl 

Fixed Bending Moment Diagram 

1.5Mpl 

Mpl 

1.17Mpl 

1.5Mpl 

68.0 kNm 

Combined Bending Moment Diagram 

42.5 kN           34.0 kN 

(42.5  2.0) = 85.0 kNm 

Free Bending Moment Diagram 
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Span EFG 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Mpl + 0.5Mpl) = 25.5      Mpl = 22.67 kNm 

 

                                                         As before the critical value of Mpl = 30.0 kNm 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution 
Topic:  Plastic Analysis – Continuous Beams   

Problem Number: 8.3  Static Method       Page No. 5 

 E                    F                       G  

34.0 kN 

4.0 m 

2.0 m              2.0 m 

0.5Mpl 

Fixed Bending Moment Diagram 

 Mpl 

Free Bending Moment Diagram 

17.0 kN                                            17.0 kN 

 (17.0  2.0) = 34.0 kNm 

Mpl 
0.5Mpl 

Mpl 

34.0 kNm 

Combined Bending Moment Diagram 
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 = 1.7 

 Factored loads: (1.7  10) = 17.0 kN  (1.7  20) = 34.0 kN 

       (1.7  15) = 25.5 kN  (1.7  30) = 51.0 kN 

 

Kinematic Method: 

Span ABC 

 Note: The bending moment diagram on span ABC is asymmetric and in this case the 

hinge between A and C does not necessarily develop under the point load. 

The position should be evaluated in a manner similar to that indicated in         

Section 8.2.3. The reader should carry out this calculation to show that the hinge 

develops at a position equal to 2.333 m from the support at A as shown below, (see 

page 3 of this solution). 

 

 

 

 

 

 

 

 

 

  
 

 

     

 

 

            1 = 3.667 = 2.333     = 0.635     2 = 2.0 

 

Internal Work = [1.5Mpl () + 1.5Mpl ( + ) + (1.5Mpl)] = 4.91Mpl 

External Work = [(34  2)] + [(17  6.0)  (0.5 1)] 

       = [(34  2)] + [(102.0)  (0.5 2.333)] = 186.98 

 4.91Mpl = 186.98               

                         Mpl = 38.08 kNm  

Solution 
Topic:  Plastic Analysis – Continuous Beams   

Problem Number: 8.4  Kinematic Method     Page No. 1 

   20 kN                            10 kN/m                 30 kN      15 kN                20 kN/m 

A              B                             C                     D                  E           F                                     G 

 2.0 m       4.0 m            2.0 m           2.0 m            2.0 m         

6.0 m                           6.0 m         4.0 m 

                1.5Mpl                      2.0Mpl                Mpl 

34.0 kN 

2.333 m    3.667 m 

 A        B        C 
17.0 kN/m 

6.0 m 

1.5Mpl at A 

x m 

 A        B       C 
17.0 kN/m 

6.0 m 

1.5Mpl at C 

1.5Mpl 

34.0 kN 

34.0 kN 

 A         B        C 
17.0 kN/m 

1 

  1.5 Mpl 

 

+1.5 Mpl + ( +  ) 

2.333 m          3.667 m 

 

  1.5 Mpl 

2 
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Span CDEF 

 

 

 

 

 

 

 

 

  

               1 = 4 = 2   = 0.5  2 = 2 =  

 Internal Work 

 1.5Mpl () + 2.0Mpl ( +) + Mpl () = [1.5Mpl () + 2.0Mpl (1.5) + Mpl (0.5)] 

                         = 5.0Mpl 

 External Work 

 (51.0  1) + (25.5  2) = [(51.0  2) + (25.5  2)] = [(102) + (25.5)] 

                         = 127.5 

 5.0Mpl = 127.5                

                        Mpl = 25.5 kNm 
 

 

 

 

 

 

 

 

 

  

                1 = 2  2 = 2 = 4     = 2 

  

Internal Work 

 1.5Mpl () + 2.0Mpl ( +) + Mpl () = [1.5Mpl () + 2.0Mpl (3.0) + Mpl (2.0)] 

                           = 9.5Mpl 

 External Work 

 (51.0  1) + (25.5  2) = [(51.0  2) + (25.5  4)] = [(102) + (102)] 

                           = 204.0 

 9.5Mpl = 204.0                

                          Mpl = 21.47 kNm 
 

 

Solution 
Topic:  Plastic Analysis – Continuous Beams   

Problem Number: 8.4  Kinematic Method     Page No. 2 

 C          D                E              F  

51.0 kN      25.5 kN 

6.0 m 

2.0 m       2.0 m       2.0 m 

 C         D                E                F  

51.0 kN      25.5 kN 

1 

 Mpl  1.5Mpl 

+2.0Mpl + ( +  ) 

  

2.0 m       2.0 m       2.0 m 

2 

 C          D                E               F 

51.0 kN      25.5 kN 

6.0 m 

2.0 m       2.0 m       2.0 m 

 C         D                E                F  

51.0 kN      25.5 kN 

1 

 Mpl  1.5Mpl 

+2.0Mpl + ( +  ) 
 

 

2.0 m       2.0 m       2.0 m 

2 
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Span FG 

 Note: Span FG is effectively a propped cantilever and the bending moment diagram 

is asymmetric. The hinge between F and G develops at a position 0.4142L from the 

simply supported end as indicated in Section 8.2.3. 

 

 

 

 

 

 

 

 

  

 

 

  

 

 

                = 1.657 = 2.343     = 1.414  

Internal Work = External Work 

[Mpl () + Mpl ( + )] = [(34.0  4.0)  (0.5 )]  

 [Mpl () + Mpl (2.414)] = (136  0.5 × 2.343) 

 3.414Mpl = 159.32 

                         Mpl = 46.67 kNm 
 

Static Method: 

Span ABC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution 
Topic:  Plastic Analysis – Continuous Beams   

Problem Number: 8.4  Kinematic Method     Page No. 3 

2.343 m       1.657 m 

 F                                                   G 
34.0 kN/m 

4.0 m 

0.4142L 

w kN/m 

L  

Mpl at F 

Mp 

 F                                               G  

34.0 kN/m 

 

F                                                   G 
 Mpl 

 

Mpl 
+ ( +  ) 

2.343 m            1.657 m 

 

1.5Mpl 1.5Mpl 

1.5Mpl x m x m   (6.0  x) m 

 A        B       C   
17.0 kN/m 

6.0 m 

34.0 kN 

1.5Mpl 

(6.0  x) 
VB 

17.0 kN/m 

1.5Mpl 
 C 

 A  

x m 
 VA  

17.0 kN/m 

1.5Mpl 

34.0 kN 

1.5Mpl 

2.0 m 
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+ve  MA = 0 

 1.5Mpl + (34 × 2.0) + (17.0x2)/2 1.5Mpl = 0 

 68.0 + 8.5x2  3.0Mpl = 0       Mpl = 22.667 + 2.833x2 

 

+ve  MC = 0 

 1.5Mpl   17.0(6.0  x)2/2 + 1.5Mpl = 0    Mpl = 2.833(6.0  x) 2 

  

Equate the Mpl values to determine x: 

22.667 + 2.833x2 = 2.833(36.0  12x + x2)    33.996x  79.321 = 0 

                       x = 2.333 m 

 

Mpl = 2.833(6.0  x) 2 = 2.833(6.0  2.333) 2 

                     Mpl = 38.09 kNm 
 

 

Span CDEF 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

(2.0Mpl + 1.33Mpl) = 85.0 kNm 

3.33Mpl = 85.0 kNm                

                     Mpl = 25.5 kNm 
 

 

Solution 
Topic:  Plastic Analysis – Continuous Beams   

Problem Number: 8.4  Static  Method       Page No. 4 

   C        D                E               F 

51.0 kN      25.5 kN 

6.0 m 

2.0 m       2.0 m       2.0 m 

1.5Mpl 

Mpl 

1.33Mpl 

Fixed Bending Moment Diagram 

1.5Mpl 

Mpl 

1.33Mpl 

2.0Mpl 

85.0 kNm 

Combined Bending Moment Diagram 

42.5 kN                34.0 kN 

(42.5  2.0) = 85.0 kNm 

Free Bending Moment Diagram 
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(2.0Mpl + 1.17Mpl) = 68.0 kNm 

3.17Mpl = 68.0 kNm 

                     Mpl = 21.47 kNm 
 

Span FG 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 +ve  MF = 0            +ve  MG = 0 

 (34.0x2)/2  Mpl  Mpl = 0        Mpl  34.0(4.0  x)2 /2 = 0 

 17.0x2  2.0 Mpl = 0  Mpl = 17.0(4.0  x)2  

 Mpl = 8.5x2 

Solution 
Topic:  Plastic Analysis – Continuous Beams   

Problem Number: 8.4  Static Method       Page No. 5 

 C         D                E                F  

51.0 kN      25.5 kN 

6.0 m 

2.0 m       2.0 m       2.0 m 

Mpl 

Mpl x m 

 G  

 VG  

34.0 kN/m 

Mpl 

(4.0  x) 

       x m       (4.0  x) 

m 

 F                                                   G 
34.0 kN/m 

4.0 m 

Mpl  F  

x m 

Mpl 

VF 

34.0 kN/m 

(34.0  2.0) = 68.0 kNm 

42.5 kN                                                               34.0 kN 

Free Bending Moment Diagram 

1.5Mpl 

Mpl 

1.17Mpl 

Fixed Bending Moment Diagram 

Combined Bending Moment Diagram 

2.0Mpl 

1.5Mpl 

Mpl 

1.17Mpl 

68.0 kNm 
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Equate the Mpl values to determine x: 

8.5x2 = 17.0(16.0  8x + x2)     8.5x2  136x + 272 = 0 

 

x = 
a

acbb

2

42 
 = 

 
 5.82

2725.84136136 2




 = + 2.343 m 

Mpl = 8.5x2 = (8.5 × 2.343)2 

                       Mpl = 46.67 kNm 
 

As before the critical value of Mpl = 46.67 kNm 

 

Note: Span FG is the same as the standard propped cantilever in Example 8.3 in 

which the hinge develops at a point 0.414L from the simply supported end 

and the Mpl value equals 0.0858wL2, i.e. 

 

Distance of hinge from support F = [4.0  0.414L] = [4.0  (0.414  4.0)] = 2.344 m 

             Mpl = (0.0858  34.0  4.02) = 46.67 kNm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution 
Topic:  Plastic Analysis – Continuous Beams   

Problem Number: 8.4  Static Method       Page No. 6 
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 = 1.7 

 Factored loads: (1.7  15) = 25.5 kN  (1.7  20) = 34.0 kN 

       (1.7  30) = 51.0 kN 

 

Kinematic Method: 

Span ABC 

 Note: The bending moment diagram on span ABC is asymmetric and in this case the 

hinge between A and C does not necessarily develop under the point load and its 

position should be evaluated in a manner similar to that indicated in Section 8.2.3. 

The reader should carry out this calculation to show that the hinge develops at a 

position equal to 3.725 m from the support at A as shown below, (see page 2 of this 

solution). 

 

 

 

 

 

 

 

 

 

  

 

 

  

 

 

            1 = 4.275 = 3.725     = 0.871 ;    2 = 2.0 

 

Internal Work = [ 2.0Mpl ( + ) + (1.5Mpl)] = 5.05Mpl 

External Work = [(51  2)] + [(34  8.0)  (0.5  1)] 

       = [(51  1.742)] + [(34.0  8.0)  (0.5  3.725)] = 595.44 

       5.05Mpl = 595.44        

                        Mpl = 117.91 kNm 

Solution 
Topic:  Plastic Analysis – Continuous Beams   

Problem Number: 8.5  Kinematic Method     Page No. 1 

 A                    B          C           D                               E                        F             

       6.0 m    2.0 m             2.0 m                     4.0 m   

8.0 m                                  6.0 m         2.0 m 

 2Mpl                                     1.5Mpl    1.5 Mpl 

      20 kN              30 kN            30 kN            15 kN 

51.0 kN 

3.725 m    4.275 m 

 A                                   B           C

      

34.0 kN/m 

8.0 m 

3.725 m 

 A                                 B          C 
34.0 kN/m 

8.0 m 

1.5Mpl at C 

2.0Mpl 

51.0 kN 

51.0 kN 

2 

 A                                   B           C 
34.0 kN/m 

1 

  1.5 Mpl 

 

+2.0 Mpl + ( +  ) 

3.725 m          4.275 m 

 
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Span CDE 

 

 

 

 

 

 

 

  

                  1 = 4 = 2   = 0.5 

  

Internal Work = External Work 

 1.5Mpl () + 1.5Mpl ( +) + 1.5Mpl () = (51.0  1) = (51.0  2) 

 4.5Mpl = 102 

                       Mpl = 22.67 kNm 

 Span EF 

 

 

                  1 = 2 

 

 

  

 

Internal Work = External Work 

 1.5Mpl () = (25.5  1) = (25.5  2) = 51.0 

                       Mpl = 34.0 kNm 

                The critical value of Mpl = 117.91 kNm 

Static Method: 

Span ABC 

 

 

 

 

 

 

 

 

 

 

 

 

Solution 
Topic:  Plastic Analysis – Continuous Beams   

Problem Number: 8.5  Kinematic Method     Page No. 2 

 C                  D                            E 

51.0 kN 

6.0 m 

2.0 m             4.0 m 

 C                 D                                 E  

51.0 kN 

1 

1.5 Mpl  1.5Mpl 

+1.5Mpl + ( +  ) 

  

2.0 m             4.0 m 

E                   F 

25.5 kN 

2.0 m 

 E                 F 

25.5 kN 

1 

 1.5Mpl 

 

2.0 m 

1.5Mpl 

(8.0  x) VC 

34.0 kN/m 

2Mpl 

 C  2.0 m 

51.0 kN 

1.5Mpl 

2Mpl x m x m         (6.0  x) m 

 A                                  B              C  
34.0 kN/m 

8.0 m 

51.0 kN 

 A  

x m  VA  

34.0 kN/m 

2Mpl 
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+ve  MA = 0       +ve  MC = 0 

 (34.0x2)/2  2Mpl = 0    2Mpl  34.0(8.0  x)2/2  (51.0 × 2.0) + 1.5Mpl = 0 

 17.0x2  2Mpl = 0     Mpl = 4.857(8.0  x)2 + 29.143 

 Mpl = 8.5x2 

 

Equate the Mpl values to determine x: 

8.5x2 = 4.857(64.0  16x + x2) + 29.143    3.643x2 + 77.712x  339.991 = 0 

x = 
a

acbb

2

42 
 = 

 

 

277.712 77.712 4 3.643 339.991

2 3.643

    


 = + 3.725 m 

Mpl = 8.5x2 = (8.5 × 3.7252) 

                     Mpl = 117.94 kNm  
 

Span CDE 

 

 

 

 

 

            

 

 

 

 

 

 

 

 

 

(1.5Mpl + 1.5Mpl) = 68.0 kNm  

                       Mpl = 22.67 kNm 

 

Span EF 

 

   

 

 

 

1.5Mpl = PL = (25.5  2.0) = 51.0 kNm  

                       Mpl = 34.0 kNm 

                 Critical value of Mpl = 117.94 kNm 

Solution 
Topic:  Plastic Analysis – Continuous Beams   

Problem Number: 8.5  Static Method       Page No. 3 

 C                  D                           E 

51.0 kN 

6.0 m 

2.0 m             4.0 m 

E                   F 

25.5 kN 

2.0 m 

1.5Mpl          1.5Mpl 

Fixed Bending Moment Diagram 
Combined Bending Moment Diagram 

1.5Mpl        1.5Mpl  

1.5Mpl 

68.0 kNm 

34.0 kN                17.0 kN 

(34.0  2.0) = 68.0 kNm 

Free Bending Moment Diagram 

1.5Mpl 

PL 
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8.6 Rigid-Jointed Frames  
In the case of beams, identification of the critical spans (i.e. in terms of Mpl or ) can 

usually be solved quite readily by using either the static or the kinematic method and 

considering simple beam mechanisms. In the case of frames other types of mechanisms, 

such as sway, joint and gable mechanisms are also considered. Whilst both techniques can 

be used, the static method often proves laborious when applied to rigid frames, particularly 

for complex load conditions. It can be easier than the kinematic method in the case of 

determinate or singly redundant frames. Both methods are illustrated in this section and in 

the solutions to the given problems.   

As mentioned previously the kinematic solution gives a lower bound to the true solution 

whilst the static solution gives an upper bound. 

 

i.e.    Mpl kinematic  Mpl true  Mpl static 

    Mpl kinematic = Mpl static for the true solution. 

 

Two basic types of independent mechanism are shown in Figure 8.13: 

 

(i) beam mechanisms 

 

(ii) sway mechanism                

               

     Figure 8.13 

 

Each of these collapse mechanisms can occur independently of each other. It is also 

possible for a critical collapse mechanism to develop which is a combination of the 

independent ones such as indicated in Figure 8.14. 

 

 

 

                        

 

Figure 8.14 

 

It is necessary to consider all possible combinations to identify the critical collapse mode. 

The Mpl value is determined for each independent mechanism and then combined 

mechanisms are evaluated to establish a maximum value of Mpl (i.e. minimum ). The 

purpose of combining mechanisms is to eliminate sufficient hinges which exist in the 

independent mechanisms, leaving only the minimum number required in the resulting 

combination to induce collapse. 

It is necessary when carrying out a kinematic solution, to draw the bending moment 

diagram to ensure that at no point the Mpl value determined, is exceeded. 

8.6.1 Example 8.5: Frame 1 
An asymmetric uniform frame is pinned at supports A and G and is subjected to a system 

of factored loads as shown in Figure 8.15. Assuming the vertical.load = 1.7 and             

horizontal loads = 1.4 determine the required plastic moment of resistance Mpl  of the section. 

beam 

mechanism 

sway 

mechanism 

beam 

mechanism 

sway 

mechanism 

+ 
combined 

mechanism 
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                      Figure 8.15 

 

 vertical loads = 1.7,   horizontal loads = 1.4 

Factored loads: (1.4  15) = 21.0 kN  (1.7  20) = 34.0 kN  

 

Number of degrees-of-indeterminacy   ID = [(3m + r)  3n] = [(3  3) + 4)  (3  4)] = 1 

Number of possible hinge positions   p = 5 (B, C, D, E and F) 

Number of independent mechanisms      = (p  ID) = (5  1) = 4 

(i.e. 3 beam mechanisms and 1 sway mechanism) 

 

Kinematic Method: 

Consider each independent mechanism separately. 

Mechanism (i): Beam ABC 

 Note:  
Internal work is done at all hinge positions. 

No internal work is done at support A. 

The signs of the rotations indicate tension inside or 

outside the frame. 

 = 1.5 

Internal Work Done = External Work Done  

Mpl (2 + ) = (21.0  1.5) 

 3Mp = 31.5 

 Mpl = 10.5 kNm 

Mechanism (ii):   Beam CDE  

 

 

 = 4.0 

 

Internal Work Done = External Work Done 

Mpl ( + 2 + ) = (34.0  4)  

 4Mpl = 136.0 

Mpl = 34.0 kNm 

 

15 kN 

4.0 m                       4.0 m 

15 kN 

A 

20 kN 

C     D                       E 

HA  

VA  

VG  

HG  

3
.0

 m
  

  
  

  
  
3

.0
 m

 

G 

B 

F 

1
.5

 m
  

 1
.5

m
 

Indicates positive bending 

i.e. where tension occurs 

inside the frame 

 

C 

21 kN 

 

+2 

34 kN 

21 kN 
 

A 

B 

21 kN 

                      

+2 

34 kN 

21 kN 

 C D E 
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Mechanism (iii)  Beam EFG 

  = 3.0 

 Note: no internal work is done at support G. 

 

Internal Work Done = External Work Done 

Mpl ( + 2) = (21.0  3) 

 3Mpl = 63.0 

Mpl = 21.0 kNm 

 

 

Mechanism (iv): Sway 

  = 3.0 = 6.0    = 0.5 

1 = 1.5  and 2 = 3.0 = 1.5 

Note: no internal work is done at supports A and G. 

 

Internal Work Done = External Work Done 

Mpl ( + 0.5) = (21.0  1.5) + (21.0  1.5) 

 1.5Mpl = 63.0 

Mpl = 42.0 kNm 

 

 

Combinations: 

Consider the independent mechanisms, their associated work equations and Mpl values as 

shown in Figure 8.16: 

 

 

 

 

 

 

 

             (i)      (ii)        (iii)         (iv) 

 

 

Internal Work Done = External Work Done 

(i) 3Mpl = 31.5   Mpl = 10.5 kNm 

(ii)  4Mpl = 136.0  Mpl = 34.0 kNm 

(iii) 3Mpl = 63.0   Mpl = 21.0 kNm 

(iv) 1.5Mpl = 63.0  Mpl = 42.0 kNm 

 

Figure 8.16 

 

It is evident from inspection of the collapse mechanisms that the hinges located at C and E 

can be eliminated since in some cases the rotation is negative whilst in others it is positive. 

The minimum number of hinges to induce total collapse is one more than the number of 

redundancies, i.e. (ID + 1) = 2 and therefore the independent mechanisms should be 

 

2 

 

 

 

 

 

        

+2 

 

+ 2 
 

A 

21 kN 

34 kN 

21 kN 

B 

C                 D                        E 

F 

G 

21 kN 
 

34 kN 

21 kN  1  

 

 

 2  

  

C E 

21 kN 

21 kN 
 

2 

34 kN 

 

 

F 

E 

G 
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combined to try and achieve this and at the same time maximize the associated Mpl value. 

It is unlikely that mechanism (i) will be included in the failure mechanism since its 

associated Mpl value is relatively small compared to the others. It is necessary to 

investigate several possibilities and confirm the resulting solution by checking that the 

bending moments do not exceed the plastic moment of resistance at any section. 

 

Combination 1: Mechanism (v) = [(ii) + (iv)] 

When combining these mechanisms the hinge at C will be eliminated and the resulting Mpl 

value can be determined by adding the work equations. It is necessary to allow for the 

removal of the hinge at C in the internal work done since in each equation an (Mpl) term 

has been included, but the hinge no longer exists. A total of 2Mpl must therefore be 

subtracted from the resulting internal work,  i.e. 

 

Internal Work Done = External Work Done 

Mechanism (ii)       4Mpl = 136.0  

Mechanism (iv)           1.5Mpl  = 63.0  

less 2.0Mpl for eliminated hinge   2.0Mpl 

           3.5Mpl = 199.0    Mpl = 56.86 kNm 

  

It is possible that this is the true collapse mechanism, 

however this should be confirmed as indicated above by 

satisfying conditions (ii) and (iii) in Section 8.1.2.  

An alternative solution is also possible where the hinges 

at C and E are eliminated, this can be a achieved if 

mechanism (v) is combined with mechanism (iii). 

 

In mechanism (v)  = 0.5  (see the sway calculation above) and hence the total rotation at 

joint E =  ( + ) =  1.5.  If this hinge is to be eliminated then the combinations of  

mechanisms (iii) and (v) must be in the proportions of 1.5:1.0. (Note: when developing 

mechanism (v) the proportions were 1:1).  

The total value of the internal work for the eliminated hinge = (2  1.5Mpl) = 3.0Mpl, i.e. 

 

Internal Work Done = External Work Done 

Mechanism 1.5  (iii)          4.5Mpl = 94.5  

Mechanism (v)           3.5Mpl = 199.0 

less 3.0Mpl for eliminated hinge   3.0Mpl 

           5.0Mpl = 293.5    Mpl = 58.70 kNm 

 

The +ve rotation indicates tension inside the frame 

at point D and the ve rotation indicates tension 

outside the frame at point F. 

This is marginally higher than the previous value 

and since there does not appear to be any other 

obvious collapse mechanism, this result should be 

checked as follows: 

 

D 
 

+2 

 

Mechanism (v) 

E C 

B 

A F 

G 

+2 

3 

Mechanism (vi) 

 

Collapse Mechanism 

A 

B 

C 
D 

E 

F 

G 
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       Figure 8.17 

 

Consider the equilibrium of the frame between F and G: 

+ve  MF = 0   58.7  (HG  3.0) = 0        HG =  19.57 kN 

Consider the equilibrium of the frame on the righthand side at D: 

+ve  MF = 0  + 58.7  (21.0  3.0) + (19.57  6.0)  (VG  4.0) = 0 

                     VG = + 28.28 kN 

Consider the complete structure: 

+ve  Fz = 0  VA  34.0 + 28.28 = 0                 VA = + 5.72 kN 

+ve     Fx = 0  HA + 21.0 + 21.0  19.57 = 0      HA =  22.43 kN 

 

Bending moment at B  MB = + (22.43 × 1.5) = + 33.65 kNm  Mpl 

Bending moment at C  MC = + (22.43 × 3.0)  (21.0  1.5) = + 35.79 kNm  Mpl 

Bending moment at E  ME =  (19.57 × 6.0) + (21.0  3.0) =  54.42 kNm  Mpl 

  

 

 

 

 

 

 

 

 

 

 

 

        Figure 8.18 

 

The three conditions indicated in Section 8.1.2 have been satisfied: i.e. 

Mechanism condition:  minimum number of hinges required = (ID + 1) = 2 hinges, 

Equilibrium condition: the internal moments are in equilibrium with the collapse loads, 

Yield condition:   the bending moment does not exceed Mpl anywhere in the frame. 

Mpl kinematic = Mpl static = Mpl true 

Collapse Bending Moment Diagram 

C        D           E 

58.7 kNm 

(= Mpl) 

35.79 kNm 
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F 

35.79 kNm 

G 

   54.42 kNm 

58.7 kNm 

(= Mpl) 

33.65 kNm 
B 

  54.42 kNm 

hinge 
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34 kN 

 C           D                                         E 

21 kN 

4.0 m                          4.0 m 
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VG  

HG  
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1
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 1
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58.7 kNm 

58.7 kNm 

58.7 kNm 
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It is often convenient to carryout the calculation of combinations using a table as shown 

in Table 8.1;  eliminated hinges are indicated by EH in the Table. 

 

Independent and Combined Mechanisms for Example 8.5 

Hinge Position (i) (ii) (iii) (iv) (v) = (ii)+(iv)  (vi) = (v)+1.5(iii) 

B (Mpl) + 2.0     - 

C (Mpl)      +  EH (2.0Mpl) EH (2.0Mpl) 

D (Mpl)  + 2.0   + 2.0 + 2.0 

E (Mpl)      0.5  1.5  EH (3.0Mpl) 

F (Mpl)    2.0    3.0 

External Work 31.5 136.0 63.0 63.0 199.0 293.5 

Internal Work 3.0Mpl 4.0Mpl 3.0Mpl 1.5Mpl 5.5Mpl 10.0Mpl 

Eliminated hinges     2.0Mpl 5.0Mpl 

Combined  Mpl     3.5Mpl 5.0Mpl 

Mpl (kNm) 10.5 34.0 21.0 42.0 56.86 58.70 

Table 8.1 

Static Method: 

This frame can also be analysed readily using the static method since it only has one 

degreeofindeterminacy. When using this method the frame can be considered as the 

superposition of two frames; one statically determinate and one involving only the 

assumed redundant reaction as shown in Figure 8.19. Applying the three equations of 

equilibrium to the two force systems results in the support reactions indicated. 

 

 

 

 

 

 

 

 

 

 

     Frame (i)             Frame (ii) 

Figure 8.19 

 

The final value of the reactions and bending moments = [Frame (i) + Frame (ii)]; e.g. 

HA =  42.0 + HG   VA = 13.06  0.375HG   VG = 20.94 + 0.375HG 

HG =  0 + HG       MB = [MB frame (i) + MB frame (ii)]   etc. 
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Equations can be developed for each of the five possible hinge positions in terms of the 

two frames as follows: 

 

MB = + (42.0  1.5)  (1.5HG) = + 63.0  1.5HG         Equation (1) 

MC = + (42.0  3.0)  (21.0  1.5)  (3.0HG) = + 94.5  3.0HG    Equation (2) 

MD = + (42.0  3.0) + (13.06  4.0)  (21.0  1.5)  (3.0  HG)  (4.0  0.375HG) 

   = + 146.74  4.5HG                 Equation (3) 

ME = + (21.0  3.0)  (6.0HG) = + 63.0  6.0HG         Equation (4) 

MF =  3.0HG                   Equation (5) 

 

As indicated previously, only two hinges are required to induce total collapse. A collapse 

mechanism involving two hinge positions can be assumed and the associated equations 

will each have two unknown values, i.e. HG and Mpl and can be solved simultaneously.  

The value of the bending moment at all other hinge positions can then be checked to 

ensure that they do not exceed the calculated Mpl value. If any one does exceed the value 

then the assumed mechanism was incorrect and others can be checked until the true one is 

identified. 

 

Assume a mechanism inducing hinges at D and E as in (v) above. 

 

 

 

+ 146.74  4.5HG = + Mpl   Equation (6) 

+ 63.0  6.0HG =  Mpl    Equation (7) 

 

Add equations (6) and (7): 

 

+ 209.74  10.5HG = 0   HG = 19.98 kN 

 

        and    Mpl = 56.83 kNm 

Check the value of the moments at all other possible hinge positions. 

 

MB = + 63.0  1.5HG = + 63.0  (1.5  19.98) = + 33.03 kNm  Mpl 

MC = + 94.5  3.0HG = + 94.5  (3.0  19.98) = + 34.56 kNm  Mpl 

MF =  3.0HG =  (3.0  19.98) =  59.94 kNm > Mpl 

 

Since the bending moment at F is greater than Mpl this mechanism does not satisfy the 

‘yield condition’ and produces an unsafe solution. 

 

The reader should repeat the above calculation assuming hinges develop at positions D 

and F and confirm that the true solution is when Mpl = 58.7 kNm as determined previously 

using the kinematic method. 

 

 

+Mpl 
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C D E 

B 

F 

G 

Mpl 

tension inside   +ve 

tension outside ve 
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8.7 Problems: Plastic Analysis  Rigid-Jointed Frames 1 
A series of rigid-jointed frames are indicated in Problems 8.6 to 8.9 in which the relative 

Mpl values and the applied collapse loads are given. In each case determine the required 

Mpl value, the value of the support reactions and sketch the bending moment diagram.  
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8.8 Solutions: Plastic Analysis  Rigid-Jointed Frames 1 
        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of degrees-of-indeterminacy   ID = [(3m + r)  3n] = 1 

Number of possible hinge positions   p = 2 

Number of independent mechanisms      = (p  ID) = (2  1) = 1 

(i.e. 1 beam mechanism) 

 

 

 

 

 

 

 

 

 

 

Mechanism I: Beam BCD 

 

  

 = 2.5 = 2.5    =  

 

 Internal Work Done = External Work Done 

 [Mpl () + Mpl ( + )] = (60 × ) 

 Mpl( + 2) = (60 × 2.5) 

 3Mpl = 150 

            Mpl = 50.0 kNm 

 

(Note: no internal work is required at support D since it is pinned and the beam is 

free to rotate at this point.) 

At internal joint B 

Under the point load at C 

A 

B            C                      D 

possible hinge positions 

Solution 
Topic:  Plastic Analysis – Rigid Jointed Frames 1   

Problem Number: 8.6  Kinematic Method     Page No. 1 
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The value of Mpl obtained (50.0 kNm) should be checked by ensuring that the 

bending moment in the frame does not exceed this value at any location. 

 

The rotation at B induces tension on the 

outside of the frame and hence a –ve 

bending moment.  

 

Under the point load at C there is tension 

inside the frame and consequently the 

bending moment is +ve at this point. 

 

 

 

Consider the equilibrium of the right-hand side of the frame at a section under the 

point load at C. 

 +ve  MC = 0   50.0  (2.5 × VD) = 0 

            VD = + 20.0 kN 
Consider the complete structure: 

+ve Fz = 0  VA  60 + 20.0 = 0 

            VA = + 40.0 kN 
 

 

Consider the equilibrium of the left-hand side of the frame at B. 

 

 

+ve MB = 0    50.0 + (2.0 × 40.0)  (4.0 × HA) = 0 

            HA = + 32.5 kN 

 

Consider the complete structure: 

+ve   Fx = 0    + 32.5 + HD = 0 

            HD =  32.5 kN 
 

 

 

 

 

 

 

 

 

 

Solution 
Topic:  Plastic Analysis – Rigid Jointed Frames 1 

Problem Number: 8.6  Kinematic Method     Page No. 2 
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Assume the horizontal component of reaction at support D to be the redundant 

reaction. 

 

 

 

 

 

 

 

 

     (I) Statically determinate force system      (II) Force system due to redundant reaction 

 

Consider system (I) 

Apply the three equations of static equilibrium to the force system: 

+ve Fz = 0  V'A  60 + V'D =  0   V'A + V'D = 60 kN 

+ve   Fx = 0                     H'A = 0 

+ve  MA = 0  (60  4.5)  (VD  7.0) = 0       V'D = + 38.57 kN 

                 hence    V'A = + 21.43 kN 

Consider system (II) 

Apply the three equations of static equilibrium to the force system: 

+ve Fz = 0  V''A + V''D = 0     V''A =  V’'D 

+ve    Fx = 0  H''A + HD  = 0    H''A =  HD 

+ve  MA = 0  (HD  4.0)  (V''D  7.0) = 0       V''D = + 0.571 HD 

                 hence    V''A =  0.571 HD 

 

 

 

 

 

 

 

 

MB = (21.43 × 2.0) + (HD × 4.0)  (0.571HD × 2.0) = 42.86 + 2.86HD 

MC = (21.43 × 4.5) + (HD × 4.0)  (0.571HD × 4.5) = 96.44 + 1.43HD 

 

Assume the collapse mechanism as indicated previously, i.e. plastic hinges 

developing at B  ( Mpl) and under the point load at C (+ Mpl). 

MB :  Mpl = 42.86 + 2.86HD    Equation (1) 

MC: + Mpl = 96.44 + 1.43HD    Equation (2) 

Adding equations (1) and (2) gives: 

 0 = 139.3 + 4.29HD       HD =  32.47 kN  and Mpl = 50.0 kNm as before 

Solution 
Topic:  Plastic Analysis – Rigid Jointed Frames 1   

Problem Number: 8.6   Static Method      Page No. 3 
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Number of degrees-of-indeterminacy   ID = [(3m + r)  3n] = 1 

Number of possible hinge positions   p = 3 

Number of independent mechanisms   = (p  ID) = (3  1) = 2 

(i.e. 1 beam mechanism and 1 sway mechanism) 

 

 

 

 

 

 

 

 

 

 

Mechanism I: Beam BCD 

 

  

  = 4 = 4    =  

 

 Internal Work Done = External Work Done 

 [Mpl () + Mpl ( + )] = (40 × ) 

 Mpl( + 2) = (40 × 4) 

 3Mpl = 160 

            Mpl = 53.33 kNm 

 

(Note: no internal work is required at support D since it is a roller and the beam is 

free to rotate at this point. No external work is done by the 10 kN force since there is 

no horizontal displacement of joint B) 

Solution 
Topic:  Plastic Analysis – Rigid Jointed Frames 1   

Problem Number: 8.7  Kinematic Method     Page No. 1 
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Mechanism II: Sway 

 

  = 5  

 

 Internal Work Done = External Work Done 

 [Mpl () + Mpl ()] = (10 × ) 

 Mpl(2) = (10 × 5) 

 2Mpl = 50 

 Mpl = 25.0 kNm 

 

(Note: no external work is done by the 40 kN force since there is no vertical 

displacement at C). 

 

Mechanism III: Combined Beam & Sway 

 

In this mechanism the two independent mechanisms I and II occur simultaneously to 

produce a collapse mechanism in which plastic hinges develop at A, and at C under 

the point load on beam BCD. The hinge at B is eliminated; note the ve rotation in 

Mechanism I and the +ve rotation in Mechanism II at B which cancel each other out. 

 

 1 = 5 

2 = 4 = 4    =  

 

 Internal Work Done = External Work Done 

 [Mpl () + Mpl ( + )] = [(10 × 1) + (40 × 2)] 

 Mpl(3) = [(10 × 5) + (40 × 4)] 

 3Mpl = 210 

 Mpl = 70.0 kNm 

 

The same result could have been achieved by adding, directly, the work equations 

for mechanisms I and II and subtracting for the internal work which no longer occurs 

at joint B; i.e. Mpl  in each equation. 

 

Adding equations for Mechanisms (I + II) 

  3Mpl = 160 

 2Mpl = 50 

  2Mpl          (allowing for the hinge eliminated at joint B) 

3Mpl = 210 

                      Mpl = 70.0 kNm 

 

Solution 
Topic:  Plastic Analysis – Rigid Jointed Frames 1   

Problem Number: 8.7  Kinematic Method     Page No. 2 
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Mechanism I:  Beam BCD      Mpl = 53.33 kNm 

Mechanism II:  Sway         Mpl = 25.0 kNm 

Mechanism III:  I  & II Combined  Mpl = 70.0 kNm 

 

The maximum value of Mpl obtained (70.0 kNm) should be checked by ensuring that 

the bending moment in the frame does not exceed this value at any location. 

 

 

The rotation at A induces tension on the 

outside of the frame and hence a –ve 

bending moment.  

 

Under the point load at C there is tension 

inside the frame and consequently the 

bending moment is +ve at this point. 

 

 

 

Consider the right-hand side of the frame at a section under the point load at C. 

 

 +ve  MC = 0  70.0  (4.0 × VD) = 0 

            VD = 17.5 kN 
 

Consider the complete structure: 

+ve Fz = 0  VA  40 + 17.5 = 0 

            VA = 22.5 kN 

+ve    Fx = 0   HA + 10.0 = 0 

            HA = 10.0 kN 
 

Bending moment at B  MB =  70 + (5.0 × 10.0) =  20.0 kNm  Mpl 

 

 

 

 

 

 

 

 

 

 

 

Solution 
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Assume the vertical component of reaction at support D to be the redundant reaction. 

 

 

 

 

 

 

 

 

 

     (I) Statically determinate force system      (II) Force system due to redundant reaction 

 

Consider system (I) 

Apply the three equations of static equilibrium to the force system: 

+ve Fz = 0  V'A  40 = 0            V'A = + 40 kN 

+ve    Fx = 0  H'A + 10 = 0           H'A =  10 kN 

+ve  MA = 0   M 'A + (10  5.0) + (40  4.0) = 0    M'A = + 210 kN 

  

Consider system (II) 

Apply the three equations of static equilibrium to the force system: 

+ve Fz = 0  V''A + VD = 0           V''A =  VD 

+ve    Fx = 0                H''A = 0 

+ve  MA = 0   M ''A  (VD  8.0) = 0        M''A = 8VD 

                  

 

 

 

 

 

 

 

 

MA =  210 + 8VD =  210 + 8VD 

MB = (10 × 5.0)  210 + 8VD =  160 + 8VD 

MC = 0 + (VD × 4.0) = + 4VD 

Assume the collapse mechanism as indicated previously, i.e. plastic hinges 

developing at A ( Mpl) and under the point load at C (+ Mpl). 

MA:  Mpl =  210 + 8VD   Equation (1) 

MC: + Mpl = + 4VD     Equation (2) 

Adding equations (1) and (2) gives: 

0 =  210 + 12VD       VD = + 17.5 kN   and Mpl = 70.0 kNm as before 

Solution 
Topic:  Plastic Analysis – Rigid Jointed Frames 1   
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Number of degrees-of-indeterminacy   ID = [(3m + r)  3n] = 2 

Number of possible hinge positions   p = 5 

Number of independent mechanisms  = (p  ID) = (5  2) = 3 

(i.e. 2 beam mechanisms and 1 sway mechanism) 

 

 

 

 

 

 

 

 

 

 

Mechanism I: Beam AB 

  

  

 

  

 = 2 = 2    =  

[Note: the total UDL undergoes an 

average displacement equal to (0.5 × )] 

 

 

Internal Work Done = External Work Done 

[Mpl () + Mpl ( + ) + Mpl()] = [(12 × 4) × (0.5 × )] 

 Mpl( + 2 + ) = (48 × ) 

 4Mpl = 48 

                       Mpl = 12 kNm 

Solution 
Topic:  Plastic Analysis – Rigid Jointed Frames 1   
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Mechanism II: Beam CDE 

  

  

 

  

 

 

      = 2 = 2    =  

 

 

 

 Internal Work Done = External Work Done 

 [Mpl () + Mpl ( + )] = (36 × ) 

 Mpl ( + 2) = (72 × ) 

 3Mpl = 72 

                       Mpl = 24 kNm 

Mechanism III: Sway 

 

  

  

  1 = 4 = 4    =  

    

  2 = 2 = 2  

 

 

 

 

 Internal Work Done = External Work Done 

 [Mpl () + Mpl () + Mpl()] = [(12 × 4) × (0.5 × 1)] + (36 × 2) 

 Mpl( +  + ) = (96 + 72)  

 3Mpl = 168 

                       Mpl = 56 kNm 

Mechanism IV: Combined Beam CD and Sway 

 

Mechanisms II and III can be combined 

to eliminate a hinge at C.  

 

This results in a collapse mechanism with 

hinges at joints A and B and under the 

point load at D on member CDE as 

shown. 

Solution 
Topic:  Plastic Analysis – Rigid Jointed Frames 1   
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Adding work equations for Mechanisms (II + III) 

  3Mpl = 72 

 3Mpl = 168 

  2Mpl          (allowing for the hinge eliminated at joint C) 

4Mpl = 240 

                    Mpl = 60.0 kNm 
 

Mechanism I:  Beam AB       Mpl = 12.0 kNm 

Mechanism II:  Beam CDE    Mpl = 24.0 kNm 

Mechanism III:  Sway         Mpl = 56.0 kNm 

Mechanism IV:  II  & III Combined  Mpl = 60.0 kNm 

 

The maximum value of Mpl obtained (60.0 kNm) should be checked by ensuring that 

the bending moment in the frame does not exceed this value at any location. 

 

The rotation at A induces tension on 

the outside of the frame and hence a  

–ve bending moment.  

 

The rotation at B induces tension on 

the inside of the frame and hence a   

+ve bending moment.  

 

Under the point load there is tension 

on the underside of beam CDE and 

consequently the bending moment is 

+ve at this point. 

 

Consider the right-hand side of the frame at a section under the point load at D.  

 

 +ve  MD = 0   60.0  (2.0 × VE) = 0 

             VE = 30.0 kN 

 

Consider the complete structure: 

+ve Fz = 0  VA  (12 × 4)  36 + 30.0 = 0 

             VA = 54.0 kN 
 

 

Bending moment at C  MC = [ (36 × 2.0) + (30 × 4.0)] = + 48.0 kNm  Mpl 

 

Solution 
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Consider the right-hand side of the frame at a section at joint B. 

 

 

+ve    MB = 0 

+ 60.0 + (36 × 2.0)  (30.0 × 4.0)  (4.0 × HE) = 0 

           HE = + 3.0 kN 

 

Consider the complete structure: 

+ve      Fx = 0 

HA + 3.0 = 0       HA =  3.0 kN 

 

 

 

 

Check bending moment at A: 

MA = [ (12 × 4.0 × 2.0)  (36 × 6.0) + (30 × 8.0) + (3.0 × 4.0)] =  60.0 kNm 

      = Mpl  as indicated in the collapse mechanism. 
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Number of degrees-of-indeterminacy: 

ID = [(3m + r)  3n] = 1 

 

Number of possible hinge positions: 

p = 4 

 

Number of independent mechanisms: 

= (p  ID) = (4  1) = 3 

 

(i.e. 2 beams and 1 sway mechanism) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mechanism I: Beam BCD 

 

 = 2 = 2     =  

[Note: the plastic hinges develop in the weakest member 

at a joint,  i.e. at B the moment equals Mpl and at D  the 

moment equals 1.5 Mpl] 

 

Internal Work Done = External Work Done 

[Mpl () + 1.5Mpl ( + ) + 1.5Mpl ()] = (10 × ) 

Mpl ( + 3 + 1.5) = (10 × 2) 

5.5Mpl = 20 

              Mpl = 3.64 kNm 

Solution 
Topic:  Plastic Analysis – Rigid Jointed Frames 1   

Problem Number: 8.9  Kinematic Method     Page No. 1 
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Mechanism II: Beam DEF 

 

 

   = 2 = 2    =  

 

  Internal Work Done = External Work Done 

 [1.5Mpl () + 2Mpl ( + )] = (20 × ) 

 Mpl (1.5 + 4) = (20 × 2) 

 5.5Mpl = 40 

                Mpl = 7.27 kNm 
 

 

 

Mechanism III: Sway 

           1 = 4 = 4    =  

 

 2 = 2 = 2   

 

Internal Work Done = External Work Done 

[Mpl () + 1.5Mpl()] = (20 × 2) 

 Mpl ( + 1.5 ) = (20 × 2) 

 2.5Mpl = 40 

            Mpl = 16.0 kNm 
 

 

 

Mechanism IV: Combined Beam DEF and Sway  

Mechanisms II and III can be combined to eliminate 

a hinge at D.  

This results in a collapse mechanism with hinges at 

joint B and at E on member DEF as shown. 

 

 1 = 4 = 2    =2  

 2 = 1 = 4  

 

Internal Work Done = External Work Done 

[Mpl() + 2.0Mpl()] = (20 × 2) 

 Mpl( + 4) = (20 × 4) 

 5Mpl = 80 

            Mpl = 16.0 kNm 
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Adding work equations for Mechanisms (II + III) 

 5.5Mpl = 40 

2.5Mpl = 40 

 3Mpl         [allowing for the hinge eliminated at joint D i.e. (2 × 1.5Mpl)] 

 5Mpl = 80 

                      Mpl = 16.0 kNm 
 

Mechanism I:  Beam BCD      Mpl = 3.64 kNm 

Mechanism II:  Beam DEF    Mpl = 7.27 kNm 

Mechanism III:  Sway         Mpl = 16.0 kNm 

Mechanism IV:  II  & III Combined  Mpl = 16.0 kNm 

 

The maximum value of Mpl obtained (16.0 kNm) and should be checked by ensuring 

that the bending moment in the frame does not exceed this value at any location. 

Assume the combined mechanism is the failure mode. 

 

 

 

 

The rotation at B induces tension on the      

left-hand side of column AB and on the top of 

beam BCD and hence a +ve bending moment. 

 

At E there is tension on the left-hand side of 

the frame and hence a +ve bending moment. 

 

 

 

 

 

 

Consider the left-hand side of the frame at a section at joint B. 

 

+ve  MB = 0 + 16.0  (4.0 × HA) = 0 

            HA = 4.0 kN 

 

Consider the complete structure: 

+ve   Fx = 0  HF  20 + 4.0 = 0 

             HF = 16.0 kN 
 

 

Solution 
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Consider the complete structure: 

+ve  MA = 0  + (10 × 2.0)  (20 × 6.0) + (16 × 8.0)  (4.0 × VF) = 0 

                     VF = + 7.0 kN 

+ve Fz = 0  VA  10.0 + 7.0 = 0            VA = + 3.0 kN 

 

Consider the right-hand side of the frame at a section at joint D. 

 

Bending moment at D MD = + (HF × 4.0)  (20 × 2.0) = 0 

             MD = [(16.0 × 4.0)  40.0] 

          = + 24.0 kNm = 1.5Mpl 

 

[Note: the bending moment at D is compared to the 

minimum Mpl value at the joint, i.e. 1.5Mpl. In this case since 

MD = 1.5Mpl there is also a plastic hinge at joint D.] 

 

Consider the left-hand side of the frame at a section under the point load at C on 

member BCD. 

 

 

Bending moment at C: 

MC = [+ (4.0 × 4.0)  (3.0 × 2.0)] 

             = + 16.0  6.0 

            = + 10.0 kNm  1.5Mpl 
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Assume the horizontal component of reaction at support F to be the redundant 

reaction. 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

  (I) Statically determinate force system      (II) Force system due to redundant reaction 

 

Consider system (I) 

Apply the three equations of static equilibrium to the force system: 

 

+ve Fz = 0  V'A  10 + V 'F = 0 

                     V 'A + V'F = + 10 kN 

+ve    Fx = 0  H'A  20 = 0 

                      H'A = + 20 kN 

+ve  MA = 0  + (10  2.0)  (20  6.0)  (V 'F × 4.0) = 0 

                       V'F =  25 kN 

                           V'A = + 35 kN 

Consider system (II) 

Apply the three equations of static equilibrium to the force system: 

 

+ve Fz = 0  V''A + V''F = 0 

                     V''A =  V''F 

+ve    Fx = 0  H''A + HF  = 0 

                     H''A =  HF 

+ve  MA = 0   (4.0 × V ''F) + (8.0 × HF) = 0 

                     V''F = + 2HF 

                         V''A =  2HF 
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MB = + (20 × 4.0)  (4.0 × HF) = + 80  4HF 

MC = + (20 × 4.0)  (35 × 2.0)  (HF  × 4.0) + (2HF  × 2.0) = + 10 

MD =  (20 × 2.0) + (HF  × 4.0) =  40 + 4HF 

ME = 0 + (HF  × 2.0) = + 2HF 

 

Assume the collapse mechanism as indicated previously, i.e. plastic hinges 

developing at B (+ Mpl) and under the 20 kN point load at E (+ 2Mpl). 

 

MB : + Mpl = + 80  4HF     Equation (1) 

ME : + 2Mpl = + 2HF      Equation (2) 

 

Subtracting equation (2) from [2 ×  equation (1)] gives: 

 

 0 = + 160  10HF       HF = + 16.0 kN  and  Mpl = 16.0 kNm as before 

 

Check bending moment at C: 

MC = + 10  Mpl     as before. 

 

Check bending moment at D: 

MD =  40 + 4HF = [ 40 + (4.0 × 16.0)] = + 24.0 kNm = 1.5Mpl     as before. 

 

 

* Note: the plastic hinge which develops under the 20 kN point load at E on member 

DEF corresponds with a value of 2Mpl for that member. 
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8.9 Example 8.6: Joint Mechanism  
In framed structures where there are more than two members meeting at a joint there is the 

possibility of a joint mechanism developing within a collapse mechanism. Consider the 

frame shown in Figure 8.20 with the collapse loads indicated. At joint C individual hinges 

can develop in members CBA, CDE and CFG giving three possible hinge positions at the 

joint in addition to positions B, D, F and G. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 Figure 8.20 

 

Factored loads: as given   

 

Number of degrees-of-indeterminacy   ID = [(3m + r)  3n] = [(3  3) + 5)  (3  4)] = 2 

Number of possible hinge positions   p = 7   (B, C1, C2, C3, D, F and G) 

Number of independent mechanisms    = (p  ID) = (7  2) = 5 

(i.e. 3 beam mechanisms, 1 sway mechanism and 1 joint mechanism). 

 

Kinematic Method: 

Consider each independent mechanism separately. 

 

Mechanism (i): Beam ABC 

  

 

  = 2.0 

 Note: no internal work is done at support A 

 

 Internal Work Done = External Work Done 

 Mpl (2 + ) = (30.0  2.0) 

 3Mpl = 60.0 

 Mpl = 20.0 kNm 

 

 

The hinge at joint C is assumed to develop in member ABC at C1. 
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Mechanism (ii): Beam CDE 

  

  = 1.0 

 

 Note: no internal work is done at support E 

 Internal Work Done = External Work Done 

Mpl (2 + ) = (20.0  1.0) 

 3Mpl = 20.0 

 Mpl = 6.67 kNm 

The hinge at joint C is assumed to develop in 

member CDE at C2. 

 

Mechanism (iii): Beam CFG 

  

 

  = 1.5 

  

 Internal Work Done = External Work Done 

Mpl ( + 2 + ) = (15.0  1.5) 

 4Mpl = 22.5 

 Mpl = 5.63 kNm 

The hinge at joint C is assumed to develop in 

member CFG at C3. 

 

Mechanism (iv): Sway 

  

 

  = 1.5 

  

 Internal Work Done = External Work Done  

Mpl ( + ) = (15.0  1.5) 

 2Mpl = 22.5 

 Mpl = 11.25 kNm 

The hinge at joint C is assumed to develop in 

member CFG at C3. 

 

Mechanism (v): Joint 

The joint at C can rotate either in a clockwise direction or an anticlockwise direction. 

 

 

 

 

 

(a) (b) 

 

Internal Work Done = Mpl ( +  + ) = 3Mpl   External Work Done = zero 

C 

2 

3 

 

+ 

+ 

1 

C 

2 

3 

 

 

+ 

1 

 1  2 

15 kN 

30 kN      20 kN 

3 

      

+2  
C 

D 

E 

 1  2 

15 kN 

30 kN      20 kN 

3  

+2 
 

 

C 

F 

G 

 1  2 

15 kN 

30 kN      20 kN 

3 
 

 

 

C 

F 

G 



 Plastic Analysis 655 

The independent mechanisms can be entered into a table as before and the possible 

combinations investigated. 

In this example ID = 2 and consequently a minimum of three hinges is required to induce 

total collapse. 

Since mechanisms (i) and (iv) have a significantly higher associated Mpl value these have 

been selected to combine with the joint mechanism to produce a possible combination: 

 

Mechanism (vi): the addition of mechanisms (i) + (iv) + (v)(a) 

 

Independent and Combined Mechanisms for Example 8.6 

Hinge Position (i) (ii) (iii) (iv) (v)   (vi) = (i)+(iv)+(v)(a) 

B (Mpl) + 2.0    (a) (b) + 2.0 

C1 (Mpl)      +    EH (2.0Mpl) 

C2 (Mpl)        +    

C3 (Mpl)     +    +  EH (2.0Mpl) 

D (Mpl)  + 2.0     

F (Mpl)         

G (Mpl)          

External Work 60.0 20.0 22.5 22.5  82.5 

Internal Work 3.0Mpl 3.0Mpl 4.0Mpl 2.0Mpl 3.0Mpl 8.0Mpl 

Eliminated hinges      4.0Mpl 

Combined  Mpl      4.0Mpl 

Mpl (kNm) 20.0 6.67 5.63 11.25  20.63 

 

Table 8.2 
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Consider the equilibrium of the frame on the lefthand side at B: 

+ve MB = 0    20.63 + (VA  2.0) = 0        VA = + 10.32 kN 

 

Consider the equilibrium of the frame on the righthand side at C2: 

+ve MC2 = 0    20.63 + (20.0  1.0)  (VE  2.0) = 0    VE =  0.32 kN 

 

Consider the complete structure: 

+ve Fz = 0   + 10.32  30.0  20.0  0.32 + VG = 0    VG = + 40.0 kN 

 

+ve       Fx = 0  HG  15.0 = 0           HG = + 15.0 kN 

 

Bending moment at C1 MC1 = + (10.32 × 4.0)  (30.0  2.0) =  18.72 kNm  Mpl 

 

Bending moment at C3 MC3 = + (15.0 × 3.0)  (15.0  1.5)  20.63 = + 1.87 kNm  Mpl 

 

Bending moment at D  MD =  (0.32 × 1.0) =  0.32 kNm  Mpl 

 

Bending moment at F  MF = + (15.0 × 1.5)  20.63 = + 1.87 kNm  Mpl 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

      Figure 8.22 

 

The three conditions indicated in Section 8.1.2 have been satisfied: i.e.  

 

Mechanism condition:  minimum number of hinges required = (ID + 1) = 3 hinges, 

 

Equilibrium condition: the internal moments are in equilibrium with the collapse loads, 

 

Yield condition:    the bending moment does not exceed Mpl anywhere in the frame. 

 
Mpl kinematic = Mpl static = Mpl true 
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8.10 Problems: Plastic Analysis  Rigid-Jointed Frames 2 
A series of rigid-jointed frames are indicated in Problems 8.10 to 8.15 in which the 

relative Mpl values and the applied collapse loads are given. In each case determine the 

required Mpl value, the value of the support reactions and sketch the bending moment 

diagram.  
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8.11 Solutions: Plastic Analysis  Rigid-Jointed Frames 2 
        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of degrees-of-indeterminacy   ID = [(3m + r)  3n] = 3 

Number of possible hinge positions   p = 6 

Number of independent mechanisms  = (p  ID) = (6  3) = 3 

(i.e. 2 beam mechanisms and 1 joint mechanism) 

 

 

 

 

 

 

 

 

 

 

 

Mechanism I: Column BCD 

 

 

 = 2.0 = 2.0    =  

     

Internal Work Done = External Work Done 

[Mpl () + Mpl ( + )] = (15 × ) 

 Mpl( + 2) = (15 × 2.0) 

 3Mpl = 30 

           Mpl = 10.0 kNm 

Solution 
Topic:  Plastic Analysis – Rigid Jointed Frames 2   
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Mechanism II: Beam BEF 

 

 

 

   = 2.0 = 2.0   =  

  

  

Internal Work Done = External Work Done 

[Mpl () + Mpl ( + ) + Mpl ()] = (20 × ) 

Mpl( + 2 +) = (20 × 2.0) 

4Mpl = 40 

                      Mpl = 10.0 kNm 

 

Mechanism III: Joint rotation at B 

 

 

 

 

 

 

     (a)            (b) 

 

Internal Work Done = Mpl ( +  + ) = 3Mpl 

 External Work Done = zero 

 

Combined Mechanism: 

The independent mechanisms are combined to determine the maximum Mpl value 

required to induce collapse with the minimum number of hinges, (i.e. ID + 1). 

In this case the following combination has been evaluated 

Mechanism IV = Mechanism I + Mechanism II + Mechanism III(a) eliminating 

hinges at B2 and B3, (see Table for the combinations). 

 

Adding equations for Mechanisms [I + II + III(a)]  

3Mpl = 30 

 4Mpl = 40 

3Mpl = 0 

 2Mpl         (allowing for the hinge eliminated at joint B2) 

 2Mpl         (allowing for the hinge eliminated at joint B3) 

6Mpl = 70                  Mpl = 11.67 kNm  
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Hinge Position 
Independent Mechanisms Combined Mechanism 

I II III IV 

   (a) (b)  

B1, (Mpl)     +    

B2, (Mpl) +     +  EH (2Mpl) 

B3, (Mpl)    +    EH (2Mpl) 

C, (Mpl)  2    2 

E, (Mpl)  +2  + 2 

F, (Mpl)       

H, (Mpl)     

External work done 30.0 40.0  70.0 

Internal work done 3Mpl 4Mpl 3Mpl 10Mpl 

Eliminated hinges    4Mpl 

Combined internal work done    6Mpl 

Mpl (kNm) 10.0  10.0  11.67   

 

Check collapse mechanism IV with hinges at B1, C, E and F, (i.e. 4 hinges) 

 

The value of Mpl obtained (11.67 kNm) should be checked by ensuring that the 

bending moment in the frame does not exceed the relevant Mpl value at any location. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Collapse Mechanism 
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Consider the equilibrium of the column BCD and at C. 

 

 

 

 

+ve  MC = 0  

 + 11.67 + (2.0 × HD) = 0 

        HD =  5.84 kN 
 

 

 

Consider the equilibrium of the beam AB at a section at B1. 

 

 

+ve  MB1 = 0 

 + 11.67 + (4.0 × VA) = 0 

        VA =  2.92 kN 
 

 

Consider the equilibrium of the beam BEF at E. 

 

 

+ve  ME = 0 

   + 11.67 + 11.67  (2.0 × VF) = 0 

        VF = + 11.67 kN 
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 Consider the vertical and horizontal equilibrium of the complete structure. 

 

+ve Fz = 0   VA + VD + VF  20 = 0 

       2.92 + VD + 11.67  20 = 0      VD = + 11.25 kN 

 

+ve    Fx = 0  HD + HF + 15 = 0 

       5.84 + HF + 15 = 0         HF =  9.16 kN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Check the value of the bending moment at all other possible hinge positions. 

MB2 = + (15 × 2.0)  (5.84 × 4.0) = + 6.64 kNm  Mpl 

MB3 =  (20 × 2.0)  11.67 + (11.67 × 4.0) =  5.0 kNm  Mpl 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Collapse Bending Moment Diagram 
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Number of degrees-of-indeterminacy   ID = [(3m + r)  3n] = 6 

Number of possible hinge positions   p = 10 

Number of independent mechanisms  = (p  ID) = (10  6) = 4 

(i.e. 2 beam mechanisms, 1 sway mechanism and 1 joint mechanism) 

 

 

 

 

 

 

 

 

 

 

 

Mechanism I: Beam BCD 

 

 

 

 

  

 = 2.0 = 2.0    =  

     

Internal Work Done = External Work Done 

[Mpl () + Mpl ( + ) + Mpl()] = (40 × ) 

Mpl( + 2 +) = (40 × 2.0) 

 4Mpl = 80 

                     Mpl = 20.0 kNm 
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Mechanism II: Beam DFG 

 

 

 

 = 2.0 = 2.0    =  

  

 Internal Work Done = External Work Done 

[Mpl () + Mpl ( + ) + Mpl ()] = (50 × ) 

Mpl( + 2 +) = (50 × 2.0) 

4Mpl = 100       Mpl = 25.0 kNm 

 

Mechanism III: Sway 

 

 

 

 

 

 

 

 

 

 

 

 

 = 4.0 = 4.0 = 4.0    =  =  

 Internal Work Done = External Work Done 

[Mpl ( +  +  +  +  + )] = (35 × ) 

Mpl(6) = (35 × 4.0) 

6Mpl = 140       Mpl = 23.3 kNm 

 

Mechanism IV: Joint rotation at D 

 

 

 

 

 

      (a)          (b) 

  

Internal Work Done = Mpl ( +  + ) = 3Mpl 

External Work Done = zero 

Solution 
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Combined Mechanisms: 

The independent mechanisms are combined to determine the maximum Mpl value 

required to induce collapse with the minimum number of hinges, (i.e. ID + 1). 

In this case the following combinations have been evaluated: 

 

Mechanism V = Mechanism II + Mechanism IV(a) 

Mechanism VI = Mechanism V + Mechanism III 

Mechanism VII = Mechanism VI + Mechanism I 

 

Hinge 

Position 

Independent Mechanisms Combined Mechanisms 

I II III IV V VI  VII 

A, (Mpl)           

B, (Mpl)    +   + EH (2Mpl) 

C, (Mpl) +2   (a) (b)   + 2 

D1, (Mpl)       +       2 

D2, (Mpl)     +    EH (2Mpl) EH (2Mpl) EH (2Mpl) 

D3, (Mpl)   +   +    EH (2Mpl) EH (2Mpl) 

E, (Mpl)           

F, (Mpl)  +2   +2 + 2 + 2 

G, (Mpl)         2  2 

H, (Mpl)   +   + + 

External 

work done 
80 100 140  100 240 320 

Internal 

work done 
4Mpl 4Mpl 6Mpl 3Mpl 7Mpl 13Mpl 17Mpl 

Eliminated 

hinges 
    2Mpl 4Mpl 6Mpl 

Combined 

internal 

work done 

    5Mpl 

 

9Mpl 

 

11Mpl 

Mpl (kNm) 20.0  25.0 23.3  20.0 26.7 29.1 

 

Check collapse mechanism VII with hinges at A, C, D1, E, F, G and H  (i.e. 7 hinges) 

The value of Mpl obtained (29.1 kNm) should be checked by ensuring that the 

bending moment in the frame does not exceed the relevant Mpl value at any location. 

 

 

 

 

 
Collapse Mechanism 
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Consider the equilibrium of the left-hand side of the frame at C and at joint D1. 

 

 

  

 

  

 

 

 

 

 

 

+ve  MC = 0   29.1  29.1  (4.0 × HA) + (2 × VA) = 0    VA = 2HA + 29.1 

 

+ve  MD = 0  + 29.1  29.1  (40 × 2.0)  (4.0 × HA) + (4 × VA) = 0 

                      VA = HA + 20.0 

 2HA + 29.1 = HA + 20.0       HA =  9.1 kN   and    VA = + 10.9 kN 

 

Consider the equilibrium of the right-hand side of the frame at section under the 

point load at F. 

 

  

 +ve MF = 0  

  + 29.1  29.1  (4.0 × HH)  (2 × VH) = 0 

  VH =  2HH 
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 Consider the equilibrium of the right-hand side of the frame at section at joint G. 

 

+ve   MG = 0 

   

 29.1  29.1  (4.0 × HH) = 0 

          HH =  14.55 kN 

 

VH =  2HH       VH = + 29.1 kN 

 

 

 Consider the vertical and horizontal equilibrium of the complete structure. 

+ve Fz = 0   VA + VE + VH  40  50 = 0 

      10.9 + VE + 29.1         VE = + 50.0 kN 

+ve    Fx = 0  HA + HE + HH + 35 = 0 

       9.1 + HE  14.55 + 35 = 0      HE =  11.35 kN 

 

 

 

 

 

 

 

 

 

 

 

Check the value of the bending moment at all other possible hinge positions. 

MB =  29.1 + (9.1 × 4.0) = + 7.3 kNm  Mpl 

MD3 =  29.1 + (11.35 × 4.0) = + 16.4 kNm  Mpl 

MD2 =  (50 × 2.0) + 29.1 + (29.1 × 4.0)  (14.55 × 4.0) =  12.7 kNm  Mpl 

 

 

 

 

 

 
 

 

 

 

 
Collapse Bending Moment Diagram 

Solution 
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Number of degrees-of-indeterminacy   ID = [(3m + r)  3n] = 5 

Number of possible hinge positions   p = 11 

Number of independent mechanisms  = (p  ID) = (11  5) = 6 

(i.e. 4 beam mechanisms, 1 sway mechanism and 1 joint mechanism) 

 

 

 

 

 

 

 

 

 

 

 

Mechanism I: Beam ABC 

 

 

 

 = 1.5 = 1.5     =  

 

Internal Work Done = External Work Done 

[Mpl () + Mpl ( + ) + Mpl()] = (10 × ) 

Mpl( + 2 +) = (10 × 1.5) 

4Mpl = 15 

           Mpl = 3.75 kNm 
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Mechanism II: Beam CDE 

 

 

 

 

 = 2.0 = 2.0    =  

 

Internal Work Done = External Work Done 

[Mpl () + Mpl ( + ) + Mpl ()] = (20 × ) 

Mpl( + 2 +) = (20 × 2.0) 

4Mpl = 40 

         Mpl = 10.0 kNm 

 

 

Mechanism III: Beam EGH 

 

 

 

 = 1.0 = 3.0    = 0.33 

  

 Internal Work Done = External Work Done 

[Mpl () + Mpl ( + ) + Mpl ()] = (25 × ) 

Mpl( + 1.33 + 0.33) = (25 × 1.0) 

2.67Mpl = 25 

        Mpl = 9.37 kNm 

 

 

 

Mechanism IV: Beam HJK 

 

 

 = 1.0 = 3.0    = 0.33 

  

Internal Work Done = External Work Done 

[2Mpl () + 2Mpl ( + ) + Mpl ()] = (10 × ) 

Mpl(2 + 2.67 + 0.33) = (10 × 1.0) 

5.0 Mpl = 10 

        Mpl = 2.0 kNm 
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Mechanism V: Sway 

 

 

 

 

 

 

 

 

 

 

 

 

 1 = 3.0 = 3.0 = 4.0     =      and       = 0 .75 

 2 = 1.5  3 = 1.0 = 0.75 

 

Internal Work Done = External Work Done 

[Mpl ( +  +  + ) +2Mpl()] = [(10 ×  2) + (10 ×  1) + (10 ×  3)] 

Mpl(2 +  +  0.75 + 1.5) = [10 × (1.5 + 3.0 + 0.75)] 

5.25Mpl = 52.5                Mpl = 10 kNm 

 

Mechanism VI: Joint rotation at E 

 

 

 

 

 

 

      (a)          (b) 

 

Internal Work Done = Mpl ( +  + ) = 3Mpl 

External Work Done = zero 

 

Combined Mechanisms: 

The independent mechanisms are combined to determine the maximum Mpl value 

required to induce collapse with the minimum number of hinges, (i.e. ID + 1). 

In this case the following combinations have been evaluated: 

Mechanism VII = Mechanism II + Mechanism V + Mechanism VI(a) 

Mechanism VIII = Mechanism VII + Mechanism III 
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Hinge 

Positions 

Independent Mechanisms 
Combined 

Mechanisms 

I II III IV V VI VII VIII 

A, (Mpl)             

B, (Mpl) + 2        

C, (Mpl)       +   EH (2Mpl) EH(2Mpl) 

D, (Mpl)  + 2    (a) (b) + 2 + 2 

E1, (Mpl)        +  2  2 

E2, (Mpl)       +  +  EH(2Mpl) 

E3, (Mpl)     +   + EH (2Mpl) EH(2Mpl) 

G, (Mpl)   + 1.33     +1.33 

H, (Mpl)    0.33 +0.33  0.75   0.75  1.08 

J, (2Mpl)     1.33     

K, (2Mpl)    +  + 0.75  + 0.75 + 0.75 

External 

work done 
15 40 25 10 52.5 0 92.5 117.5 

Internal work 

done 
4Mpl 4Mpl 2.67Mpl 5Mpl 5.25Mpl 3Mpl 12.25Mpl 14.92Mpl 

Eliminated 

hinges 
      4Mpl 6Mpl 

Combined 

internal work 

done 

      8.25Mpl 8.92Mpl 

Mpl (kNm) 3.75 10.0 9.37 2.0 10.0  11.21 13.17 

 

Check collapse mechanism VIII with hinges at A, D, E1, G, H and K  (i.e. 6 hinges) 

The value of Mpl obtained (13.17 kNm) should be checked by ensuring that the 

bending moment in the frame does not exceed the relevant Mpl value at any location. 
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Consider the equilibrium of the left-hand side of the frame at D and at joint E1. 

 

 

  

 

   

 

 

 

 

 

+ve  MD = 0   13.17  13.17  (10 × 1.5)  (3.0 × HA) + (2 × VA) = 0 

                           VA = 1.5HA + 20.67 

+ve  ME = 0  + 13.17  13.17  (20 × 2.0)  (10 × 1.5)  (3.0 × HA) + (4 × VA) = 0 

                        VA = 0.75HA + 13.75 

 1.5HA + 20.67 = 0.75HA + 13.75      HA =  9.23 kN  and  VA = + 6.83 kN 

 

 

Consider the equilibrium of the right-hand 

side of the frame at G. 

 

 

+ve MG = 0  

+ 13.17  26.34  (10 × 3.0)  (4.0 × HK)  (3.0 × VK) = 0 

                

         VK =  1.33HK  14.39 

Solution 
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 Consider the equilibrium of the right-hand side of the frame at section at joint H. 

 

+ve    MH = 0 

 

 13.17  26.34  (10 × 3.0)  (4.0 × HK) = 0 

           HK =  17.38 kN 

VK =  1.33HK  14.39 = [ ( 1.33 × 17.38)  14.39] 

           VK = + 8.73 kN 

 

 Consider the vertical and horizontal equilibrium of the complete structure. 

+ve Fz = 0   VA + VF + VK  20  25 = 0 

      6.83 + VF        VF = + 29.44 kN 

+ve    Fx = 0  HA + HF + HK + 10 + 10 + 10 = 0          

       9.23 + HF  17.38 + 30 = 0      HF =  3.39 kN 

 

 

 

 

 

 

 

 

 

 

Check the value of the bending moment at all other possible hinge positions. 

MB  =  13.17 + (9.23 × 1.5) = + 0.68 kNm  Mpl 

MC  =  13.17  (10 × 1.5) + (9.23 × 3.0) =  0.48 kNm  Mpl 

ME3 = + (3.39 × 3.0) = + 10.17 kNm  Mpl 

ME2 =  (25 × 1.0) + 26.34  (17.38 × 4.0) + (8.73 × 4.0) + (10 × 3.0) 

      =  3.26 kNm  Mpl 

 MJ = + 26.34  (17.38 × 1.0) = + 8.96 kNm  2Mpl 

  

 

 

 

 

 
Collapse Bending Moment Diagram 
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Number of degrees-of-indeterminacy   ID = [(3m + r)  3n] = 2 

Number of possible hinge positions   p = 6 

Number of independent mechanisms  = (p  ID) = (6  2) = 4 

(i.e. 2 beam mechanisms, 1 sway mechanism and 1 joint mechanism) 

 

 

 

 

 

 

 

 

 

 

 

Mechanism I: Beam BCD 

 

 

 

 

 = 3.0 = 3.0    =  

  

Internal Work Done = External Work Done 

[Mpl () + Mpl ( + ) + Mpl ()] = (120 × ) 

Mpl( + 2 + ) = (120 × 3.0) 

4Mpl = 360  

         Mpl = 90.0 kNm 

Solution 
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Mechanism II: Beam DFG 

 

 = 3.0 = 3.0    =  

  

 Internal Work Done = External Work Done 

[Mpl () + Mpl ( + ) ] = (85 × ) 

Mpl( + 2) = (85 × 3) 

3Mpl = 255 

        Mpl = 85.0 kNm 

 

Mechanism III: Sway 

 

 

 

 

 

 

 

 

 

 

 

  = 4.0 = 4.0    =  

 

Internal Work Done = External Work Done 

[Mpl () + Mpl()] = (30 × ) 

Mpl( + ) = (30 × 4.0) 

2Mpl = 120 

        Mpl = 60 kNm 

 

Mechanism IV: Joint rotation at D 

 

 

 

 

 

      (a)          (b) 

  

Internal Work Done = [Mpl () + Mpl () + Mpl ()] = 3Mpl 

External Work Done = zero 

Solution 
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Combined Mechanism: 

The independent mechanisms are combined to determine the maximum Mpl value 

required to induce collapse with the minimum number of hinges, (i.e. ID + 1). 

In this case the following combination has been evaluated: 

Mechanism V = Mechanism I + Mechanism II + Mechanism III + Mechanism IV(a) 

 

Hinge Positions 

Independent Mechanisms 
Combined 

Mechanism 

I II III IV V 

B, (Mpl)    +   EH (2Mpl) 

C, (Mpl) + 2   (a) (b) + 2 

D1, (Mpl)       +   2 

D2, (Mpl)     +    EH (2Mpl) 

D3, (Mpl)   +    +  EH (2Mpl) 

F, (Mpl)  + 2   + 2 

External work done 360 255 120 0 735 

Internal work done 4Mpl 3Mpl 2Mpl 3Mpl 12Mpl 

Eliminated hinges     6Mpl 

Combined internal 

work done 
    6Mpl 

Mpl (kNm) 90.0 85.0 60.0  122.50 

 

Check collapse mechanism V with hinges at C, D1 and F  (i.e. 3 hinges) 

The value of Mpl obtained (122.5 kNm) should be checked by ensuring that the 

bending moment in the frame does not exceed the relevant Mpl value at any location. 
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Consider the equilibrium of the left-hand side of the frame at C and at joint D1. 

 

 

 

  

 

  

 

 

 

 

 

+ve  MC = 0   122.5  (4.0 × HA) + (3 × VA) = 0  

                     VA = 1.33HA + 40.83 

+ve  MD = 0  + 122.5  (120 × 3.0)  (4.0 × HA) + (6 × VA) = 0  

                     VA = 0.67HA + 39.58 

 

 1.33HA + 40.83 = 0.67HA + 39.58   HA =  1.89 kN  and VA = + 38.32 kN 

 

Consider the equilibrium of the right-hand 

side of the frame at F. 

 

 

+ve    MF = 0  

+ 122.5   (3.0 × VG) = 0 

 VG = + 40.83 kN 

Solution 
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 Consider the vertical and horizontal equilibrium of the complete structure. 

+ve Fz = 0   VA + VE + VG  120  85 = 0 

      38.32 + VE      VE = + 125.85 kN 

+ve    Fx = 0  HA + HE + 30 = 0 

       1.89 + HE + 30 = 0         HE =  28.11 kN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Check the value of the bending moment at all other possible hinge positions. 

MB  = + (1.89 × 4.0) = + 7.56 kNm  Mpl 

MD3 = + (28.11 × 4.0) = + 112.44 kNm  Mpl 

MD2 =  (85 × 3.0) + (40.83 × 6.0) =  10.02 kNm  4Mpl 

 

  

 

 

 

 

 

 

 

 

 

 

 
Collapse Bending Moment Diagram 
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Number of degrees-of-indeterminacy   ID = [(3m + r)  3n] = 4 

Number of possible hinge positions   p = 8 

Number of independent mechanisms  = (p  ID) = (8  4) = 4 

(i.e. 2 beam mechanisms, 1 sway mechanism and 1 joint mechanism) 

 

 

 

 

 

 

 

 

 

 

 

Mechanism I: Beam BCD 

 

 

 

 

 = 4.0 = 4.0    =  

     

Internal Work Done = External Work Done 

[Mpl () + 2Mpl ( + ) + 2Mpl ()] = (70 × ) 

Mpl( + 4 +2) = (70 × 4.0) 

7Mpl = 280 

     Mpl = 40.0 kNm 

Solution 
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Mechanism II: Beam DFG 

 

 

 = 2.0 = 4.0    = 0.5 

  

Internal Work Done = External Work Done 

[Mpl () + Mpl ( + ) + Mpl ()] = (50 × ) 

Mpl( + 1.5 + 0.5) = (50 × 2.0)  

 3.0Mpl = 100  

        Mpl = 33.33 kNm 

 

Mechanism III: Sway 

 

 

 

 

 

 

 

 

 

 

 

           = 6.0 = 4.0 = 4.0    = 1.5     = 1.5 

 

Internal Work Done = External Work Done 

[Mpl() + Mpl() + Mpl() + Mpl ()] = (30 × )  

Mpl( +  + 1.5 + 1.5) = (30 × 6.0)  

5.0Mpl = 180.0      

                      Mpl = 36.0 kNm 

 

Mechanism IV: Joint rotation at D 

 

 

 

 

 

     (a)          (b) 

  

Internal Work Done = 2Mpl () + Mpl ( + ) = 4Mpl 

External Work Done = zero 

Solution 
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Combined Mechanisms: 

The independent mechanisms are combined to determine the maximum Mpl value 

required to induce collapse with the minimum number of hinges, (i.e. ID + 1). 

In this case the following combinations have been evaluated: 

Mechanism V = Mechanism I + Mechanism III + Mechanism IV(b) 

Mechanism VI = Mechanism V + Mechanism II 

 

Hinge 

Positions 

Independent Mechanisms Combined Mechanisms 

I II III IV V VI 

A, (Mpl)          

B, (Mpl)    +   EH (2Mpl) EH (2Mpl) 

C, (2Mpl) + 2   (a) (b) + 2 + 2 

D1, (2Mpl)       +  EH (4Mpl) EH (4Mpl) 

D2, (Mpl)     +       2 

D3, (Mpl)   + 1.5   +  + 2.5 + 2.5 

F, (Mpl)  + 1.5     + 1.5  

G, (Mpl)   0.5  1.5   1.5  2 

External 

work done 
280 100 180 0 460 560 

Internal 

work done 
7Mpl 3Mpl 5Mpl 4Mpl 16Mpl 19Mpl 

Eliminated 

hinges 
    6Mpl 6Mpl 

Combined 

internal 

work done 

    10Mpl 13Mpl 

Mpl (kNm) 40.0 33.33 36.0  46.0 43.08 

 

Check collapse mechanism V with hinges at A, C, D2, D3, and G (i.e. 5 hinges). 

The value of Mpl obtained (46.0 kNm) should be checked by ensuring that the 

bending moment in the frame does not exceed the relevant Mpl value at any location. 
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Consider the equilibrium of the right-hand side of the frame at joint G and at D2 

 

 

 

 

 

 

 

 

 

+ve MG = 0   46.0  (4.0 × HH) = 0       HH =  11.5 kN 

 

+ve MD2 = 0   46.0 + (50 × 2.0)  (4.0 × HH)   (6.0 × VH) = 0 

VH = (54.0  4.0HH)/6.0 = [54.0  ( 4.0 × 11.5)]/6.0    VH = + 16.67 kN 

 

Consider the equilibrium of the frame at joint D3. 

  

 

   

+ve   MD3 = 0 

 46.0  (4.0 × HE) = 0 

            HE =  11.5 kN 
 

  

 Consider the horizontal equilibrium of the complete structure. 

+ve    Fx = 0  HA + HE + HH + 30 = 0 

       HA  11.5  11.5 + 30 = 0       HA =  7.0 kN 
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Consider the equilibrium of the left-hand side of the frame at a section under the 

point load at C. 

 

+ve    MC = 0 

   46.0  92.0  (6.0 × HA) + (4.0 × VA) = 0 

  138.0  ( 6.0 × 7.0) + 4VA = 0 

           VA = + 24.0 kN 

 

 

 

 

 Consider the vertical equilibrium of the complete structure. 

+ve Fz = 0   VA + VE + VH  70  50 = 0 

      24.0 + VE        VE = + 79.33 kN 

 

 

 

 

 

 

 

 

 

 

 

 

Check the value of the bending moment at all other possible hinge positions. 

MB =  46.0 + (7.0 × 6.0) =  4.0 kNm  Mpl 

MD1 =  46.0  (70 × 4.0) + (7.0 × 6.0) + (24.0 × 8.0) =  92.0 kNm = 2Mpl 

MF =  (11.5 × 4.0) + (16.67 × 4.0) =  20.68 kNm  Mpl    
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Number of degrees-of-indeterminacy   ID = [(3m + r)  3n] = 4 

Number of possible hinge positions   p = 8 

Number of independent mechanisms  = (p  ID) = (8  4) = 4 

(i.e. 1 beam mechanism, 2 sway mechanisms and 1 joint mechanism) 

 

 

 

 

 

 

 

 

 

 

Mechanism I: Beam BCD 

 

 

 

 

 = 10.0 = 10.0    =  

 

Internal Work Done = External Work Done 

[2Mpl () + 3Mpl ( +) + 2Mpl ()] = (80 × ) 

[2Mpl () + 3Mpl ( +) + 2Mpl ()] = (80 × 10.0) 

10Mpl = 800 

          Mpl = 80.0 kNm 

B                        C                              D      

A 

80 kN 

+( + ) 

 

 

 
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Mechanism II: Sway of Top Storey 

 

 

 

 

 

 

 

 

 

 

 = 10.0 = 4.0    = 2.5 

  

Internal Work Done = External Work Done 

[2Mpl () + 2Mpl () + 2Mpl () + 2Mpl ()] = (40 × ) 

[2Mpl () + 2Mpl () + 2Mpl (2.5) + 2Mpl (2.5)] = (40 × 10.0) 

14.0Mpl = 400                Mpl = 28.57 kNm 

 

Mechanism III: Sway of Bottom Storey 

 

 

 

 

 

 

 

 

 

 = 6.0 = 4.0    = 1.5 

  

Internal Work Done = External Work Done 

[2Mpl () + Mpl () + 2Mpl () + 2Mpl ()] = (30 × ) 

[2Mpl () + Mpl () + 2Mpl (1.5) + 2Mpl (1.5)] = (30 × 6.0) 

9.0Mpl = 180                 Mpl = 20.0 kNm 

  

Mechanism IV: Joint rotation at E 

 

             Internal Work Done 

2Mpl () + Mpl () + 2Mpl () = 5Mpl 

  

External Work Done = zero 
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Combined Mechanisms: 

The independent mechanisms are combined to determine the maximum Mpl value 

required to induce collapse with the minimum number of hinges, (i.e. ID + 1). 

In this case the following combination has been evaluated: 

 

Mechanism V = Mechanisms [I + II + III + IV(b)] 

 

Hinge 

Positions 

Independent Mechanisms 
Combined 

Mechanism 

I II III IV V 

A, (2Mpl)  +    + 

B, (2Mpl)        2 

C, (3Mpl) + 2    + 2 

D, (2Mpl)   + 2.5   1.5 (a) (b) EH (10Mpl) 

E1, (2Mpl)   +  +    EH  (4Mpl) 

E2, (Mpl)    +      

E3, (2Mpl)   2.5  + 1.5   +  EH (10Mpl) 

F, (Mpl)   +   +  

External 

work done 
800 400 180 0 1380 

Internal 

work done 
10Mpl 14Mpl 9Mpl 5Mpl 38Mpl 

Eliminated 

hinges 
    24Mpl 

Combined 

internal 

work done 

    14Mpl 

Mpl (kNm) 80.0 28.57 20.0  98.57 

 

Check collapse mechanism V with hinges at A, B, C, E2 and F (i.e. 5 hinges). 

The value of Mpl obtained (98.57 kNm) should be checked by ensuring that the 

bending moment in the frame does not exceed the relevant Mpl value at any location. 

 

 

 

 

 

 

 
Collapse  Mechanism 
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Consider the equilibrium of the left-hand side of the frame at joint B and at a section 

at the point load at C. 

 

 

 

 

 

 

 

 

 

+ve MB =   0 + 197.14 + 197.14  (10.0 × HA) = 0         HA = + 39.43 kN 

+ve MC =   0  295.71 + 197.14  (10.0 × HA) + (10.0 × VA) = 0 

VA = (98.57 + 10.0HA)/10.0 = [98.57 + (10.0 × 39.43)]/10.0    VA = + 49.29 kN 

 

Consider the equilibrium of the right-hand side of the frame at joints F and E2. 

  

 

 

 

 

 

 

 

+ve MF = 0  + 98.57  (6.0 × HH) = 0         HH = + 16.43 kN 

 

+ve ME2 = 0   98.57  (16.43 × 6.0)  (12.0 × VH) = 0    VH =  16.43 kN 
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Consider the horizontal equilibrium of the complete structure. 

 

+v    Fx = 0  HA + HG + HH  40.0  30.0 = 0 

        39.43 + HG + 16.43  70.0 = 0     HG = + 14.14 kN 

 

Consider the vertical equilibrium of the complete structure. 

 

+ve Fz = 0  VA + VG + VH  80.0 = 0  

      49.29 + VG  16.43  80.0 = 0      VG = + 47.14 kN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Check the value of the bending moment at all other possible hinge positions. 

MD =  (30.0 × 4.0)  (16.43 × 12.0) + (16.43 × 10.0) + (14.14 × 10.0) 

                    =  11.46 kNm  2Mpl 

ME1 = + (14.14 × 6.0)             = + 84.84 kNm  2Mpl 

ME3 = + (49.29 × 20.0) + 197.14  (39.43 × 6.0)  (80.0 × 10.0)  (40.0 × 4.0) 

                    =  13.64 kNm  2Mpl  

 

 

 

 

 

 

 

 

 

 
Collapse Bending Moment Diagram       
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8.12 Gable Mechanism 
Another type of independent mechanism which is characteristic of pitched roof portal 

frames is the Gable Mechanism, as shown in Figure 8.23 with simple beam and sway 

mechanisms.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.23 

 

In the beam and gable mechanisms the rafter of the frame is sloping and it is necessary to 

evaluate the displacement in the direction of the load. i.e. not necessarily perpendicular to 

the member as in previous examples. Consider the typical sloping member ABC shown in         

Figure 8.24 (a) which is subject to a horizontal and a vertical load as indicated.  

 

 

 

 

 

 

 

 

 

  

         (a)              (b) 

Figure 8.24 

 

Assume that during the formation of a mechanism the centreofrotation of the member is 

point A and point C displaces in a perpendicular direction to ABC to point C. For small 

rotations () of member ABC,  C = C-C' = LAC 

The vertical and horizontal displacements of C are given by  C,vertical = C cos = LAD  

and  C,horizontal = C sin = LCD  as shown in Figure 8.24(b), where  is the angle of the 

member ABC to the horizontal. The vertical and horizontal displacements at point B can 

be determined in a similar manner.  

These values can then be used in the calculation of external work for the work equation.  
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8.13 Instantaneous Centre of Rotation  
In more complex frames it is convenient to use the ‘instantaneous centre of rotation 

method’ when developing a collapse mechanism. The technique is explained below in 

relation to a simple rectangular portal frame and subsequently in Example 8.7. 

Consider the asymmetric rectangular frame shown in Figure 8.25 in which there are two 

independent mechanisms, one beam and one sway. The frame requires three hinges to 

cause collapse. Both mechanisms can combine to produce a collapse mechanism with 

hinges developing at A, C and D. In this mechanism there are three rigidlinks, ABC, 

CD and DE as shown. 

 

 

 

 

 

 

 

 

Figure 8.25 

 

The centreofrotation for link ABC is at A and the remote end C moves in a direction 

perpendicular to line AC shown. The centreofrotation for link DE is at E and the remote 

end D moves in a direction perpendicular to line ED shown. 

In the case of link CD, the centreofrotation must be determined by considering the 

direction of movement of each end. C moves in a direction perpendicular to AC and 

consequently the centreofrotation must lie on an extension of this line. Similarly, it must 

also lie on a line perpendicular to the movement of D, i.e. on an extension of ED. This 

construction is shown in Figure 8.26(a).  The position of this centreofrotation is known 

as the instantaneous centreofrotation and occurs at the instant of collapse. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

              (a)         (b) 

Figure 8.26 
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The work equations can be developed and the required Mpl value determined by 

considering the rotation of the hinges and the displacements of the loads. Consider the 

geometry shown in Figure 8.26 (b) and equate the displacements in terms of ,  and  as 

follows: 

 

The horizontal displacement DD  D = 3.0 = 6.0     = 2.0 

The rotation at the hinge at D   ( + ) = 3.0 

 

The vertical displacement CC   C, vertical = 2.0 = 4.0    = 2.0 

The rotation at the hinge at C   ( + ) = 3.0 

 (Note: equating the horizontal displacement of point C will give the same result,  

            i.e.   C, horizontal = 3.0 = 6.0) 

 

The rotation at the hinge at A =  = 2.0 

 

Note: no internal work is done at support E  

Internal Work Done = External Work Done 

Mpl () + 2.0Mpl ( + ) + Mpl ( + ) = (10.0  D) + (40.0   C, vertical) 

Mpl (2.0) + 2.0Mpl ( + 2.0) + Mpl ( + 2.0) = (10.0  6.0) + (40.0  4.0) 

11Mpl = 220.0    Mpl = 20.0 kNm 

 

The reader should confirm that this is the critical value by calculating the reactions and 

checking that the bending moment on the frame does not exceed the appropriate Mpl value 

for any member. (Note: In the case of member BCD this is equal to 2.0Mpl = 40 kNm). 

8.14 Example 8.7: Pitched Roof Frame  
A nonuniform, asymmetric frame is pinned at support A, fixed at support F and is 

required to carry collapse loads as indicated in Figure 8.27. Determine the minimum 

required value of Mpl. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.27 
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Factored loads: as given  

 

Number of degrees-of-indeterminacy   ID = [(3m + r)  3n] = [(3  3) + 5)  (3  4)] = 2 

Number of possible hinge positions   p = 5  (B, C, D, E and F) 

Number of independent mechanisms  = (p  ID) = (5  2) = 3 

(i.e. 2 beam mechanisms, 1 gable mechanism). 

 

Kinematic Method: 

Consider each independent mechanism separately. 

 

Mechanism (i): Beam ABC 

  

 

 

 B,vertical = 3.0 

Note: no internal work is done at support A 

 

Internal Work Done = External Work Done 

Mpl (2 + ) = (20.0  3.0) 

3.0Mpl  = 60.0 

         Mpl = 20.0 kNm 
 

Mechanism (ii): Beam CDE 

  

  

 

 

     D,vertical = 3.0 

 

Internal Work Done = External Work Done 

Mpl ( + 2 + ) = (20.0  3.0) 

4.0Mpl = 60.0 

          Mpl = 15.0 kNm 
 

Mechanism (iii): Gable 

   

 

     The distance OE = 5.0 m 

      E,horizontal = 4.0 = 5.0   = 1.25 

      C,vertical = 6.0 = 6.0    =  

      B,vertical = 3.0 = 3.0 

      D,vertical = 3.0 
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Internal Work Done = Mpl ( + ) + Mpl ( + ) + 2.0Mpl() 

        = Mpl (2.0) + Mpl ( + 1.25) + 2.0Mpl (1.25) = 6.75Mpl  

 

External Work Done = (20.0   B,vertical) + (20.0   C,vertical) + (20.0   D,vertical) 

         + (10.0  E,horizontal) 

         = (20.0  3.0) + (20.0  6.0) + (20.0  3.0) + (10.0  5.0) 

         = 290 

Internal Work = External Work   6.75Mpl  = 290     Mpl = 42.96 kNm 

 

Combined Mechanism (iv): [2  mechanism (i)] + mechanism (iii) which eliminates a 

hinge at C 

 

   

     The distance OE = 5.0 m 

      E,horizontal = 4.0 = 5.0   = 1.25 

      B,vertical = 3.0 = 9.0    = 3.0 

      C,vertical = 6.0 

      D,vertical = 3.0 

 

 

 

 

 

Internal Work Done = Mpl ( + ) + Mpl ( + ) + 2.0Mpl() 

        = Mpl (4.0) + Mpl ( + 1.25) + 2.0Mpl (1.25) = 8.75Mpl  

 

External Work Done = (20.0   B,vertical) + (20.0   C,vertical) + (20.0   D,vertical) 

             + (10.0  E,horizontal) 

         = (20.0  9.0) + (20.0   6.0) + (20.0  3.0) + (10.0  5.0) 

          = 410 

Internal Work = External Work   8.75Mpl = 410     Mpl = 46.86 kNm 

 

The reader should confirm that this is the critical value by calculating the reactions and 

checking that the bending moment on the frame does not exceed the appropriate Mpl value 

for any member. (Note: In the case of support F this is equal to 2.0Mpl = 93.70 kNm). 

 

Alternatively, adding the virtual work equations: 

 

Internal Work Done = External Work Done 

2  Mechanism (i)           6.0Mpl = 120.0  

Mechanism (iii)           6.75Mpl = 290.0 

less 2.0Mpl for eliminated hinge   4.0Mpl              

           8.75Mpl = 410.0      Mpl = 46.86 kNm 
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The combined mechanism can be evaluated in a Table as shown: 

 

Independent and Combined Mechanisms for Example 8.7 

Hinge Position (i) (ii) (iii) (v) = 2(i)+(iii) 

B (Mpl) + 2.0   + 4.0 

C (Mpl)     + 2.0 EH (4.0Mpl) 

D (Mpl)  + 2.0   

E (Mpl)     2.25  2.25  

F (2Mpl)     

External Work 60.0 60.0 290.0 410.0 

Internal Work 3.0Mpl 4.0Mpl 6.75Mpl 12.75Mpl 

Eliminated hinges    4.0Mpl 

Combined  Mpl    8.75Mpl 

Mpl (kNm) 20.0 15.0 42.96 46.86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.28 
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8.15 Problems: Plastic Analysis  Rigid-Jointed Frames 3 
A series of rigid-jointed frames are indicated in Problems 8.16 to 8.21 in which the 

relative Mpl values and the applied collapse loads are given. In each case determine the 

required Mpl value, the value of the support reactions and sketch the bending moment 

diagram.  
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Problem 8.20 
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8.16 Solutions: Plastic Analysis  Rigid-Jointed Frames 3 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of degrees-of-indeterminacy   ID = [(3m + r)  3n] = 3 

Number of possible hinge positions   p = 5 

Number of independent mechanisms  = (p  ID) = (5  3) = 2 

(i.e. 1 beam mechanism and 1 sway mechanism) 

 

 

 

 

 

 

 

 

 

 

 

 

Mechanism I: Beam ABC 

 

 = 2.0 = 2.0     =  

 

Internal Work Done = External Work Done 

[Mpl () + Mpl ( + ) + Mpl ()] = (40 × ) 

Mpl( + 2 + ) = (40 × 2.0) 

4Mpl = 80 

            Mpl = 20.0 kNm 

 

Solution 
Topic:  Plastic Analysis – Rigid Jointed Frames 3   

Problem Number: 8.16  Kinematic Method     Page No. 1 
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Mechanism II: Sway  (Use the instantaneous centre of rotation technique) 

 

 

 

 

 

 

 

    HD = 4 = 3    = 0.75 

    VC = 4 = 3    = 0.75 

    VB = 2 = 1.5 

 

 

 

 

 

Internal Work Done = External Work Done 

[Mpl() + Mpl( + ) + Mpl( + ) + Mpl()] = (40 ×  3) + (10 × 2) 

Mpl(0.75 + 1.75 + 1.75 + 0.75 ) = (40 × 2) + (10 × 4) 

5Mpl = 90                  Mpl = 18.0 kNm 

 

Mechanism III: Combined Beam & Sway 

 

 

  

 

 

 

    VC = 2 = 5    = 2.5 

    HD = 4 = 3    = 0.75 

      

 

 

 

 

 

 

Internal Work Done = External Work Done 

[Mpl() + Mpl( + ) + Mpl( + ) + Mpl()] = (40 ×  VC) + (10 ×  HD) 

Mpl(2.5 + 3.5 + 1.75 + 0.75 ) = (40 × 2) + (10 × 4)  

8.5Mpl = 230                 Mpl = 27.06 kNm 

Solution 
Topic:  Plastic Analysis – Rigid Jointed Frames 3   

Problem Number: 8.16  Kinematic Method     Page No. 2 
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In mechanism I the rotation at joint C =   =   

In mechanism II the rotation at joint C = + ( + ) = +1.75 

Adding equations for Mechanisms [(1.75 × I) + II] 

7Mpl = 140 

5Mpl = 90 

 3.5Mpl        [allowing for the hinge eliminated at joint C: (2  1.75)] 

8.5Mpl = 230              Mpl = 27.06 kNm as before 

 

The value of Mpl obtained (27.06 kNm) should be checked by ensuring that the 

bending moment in the frame does not exceed this value at any location. 

 

 

Under the point load at B and at 

support E there is tension inside the 

frame and consequently the bending 

moment is positive at these points. 

 

The rotations at A and D induce 

tension on the outside of the frame 

and hence negative bending moments.  

 

 

Consider the equilibrium of the right-hand side of the frame at point D and the left –

hand side at B. 

 

  

 

 

 

 

+ve      MB = 0 

  27.06  27.06 + (2.0 × VA) = 0 

                    VA = + 27.06 kN 

Consider the complete structure: 

+ve    Fz = 0  

 40.0 + 27.06 + VE = 0      VE = + 12.94 kN 

 

+ve  MD = 0    27.06  27.06  (4.0 × HE) = 0        HE =  13.53 kN 

Consider the complete structure: 

+ve    Fx = 0  HA + 10  13.53 = 0             HA = + 3.53 kN 

 

Solution 
Topic:  Plastic Analysis – Rigid Jointed Frames 3   

Problem Number: 8.16  Kinematic Method     Page No. 3 
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Bending moment at C (consider forces to the lefthand side) : 

  

MC =  27.06 + (27.06 × 4.0)  (40.0 × 2.0) = + 1.18 kNm  Mpl 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Collapse Bending Moment Diagram 

 

 

Solution 
Topic:  Plastic Analysis – Rigid Jointed Frames 3   
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Number of degrees-of-indeterminacy   ID = [(3m + r)  3n] = 2 

Number of possible hinge positions   p = 4 

Number of independent mechanisms  = (p  ID) = (4  2) = 2 

(i.e. 1 beam mechanism and 1 sway mechanism) 

 

 

 

 

 

 

 

 

 

 

 

Mechanism I: Beam BCD 

 

  

 

 = 3.0 = 3.0      =  

 

    

 

Internal Work Done = External Work Done 

[Mpl () + 2Mpl ( +) + Mpl ()] = (40 × ) 

[Mpl() + 2Mpl ( +) + Mpl()] = (40 × 3.0) 

6Mpl = 120 

                      Mpl = 20.0 kNm 

Solution 
Topic:  Plastic Analysis – Rigid Jointed Frames 3   

Problem Number: 8.17   Kinematic Method     Page No. 1 
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Mechanism II: Sway  (Use the instantaneous centre of rotation technique) 

 

 

 HD = 4.0 = 6.0     = 1.5 

 HB = 3.0 = 6.0     = 2.0 

 VC = 3.0 

 

Internal Work Done 

[Mpl () + Mpl ( +) + Mpl ( + )] 

[Mpl(2) + Mpl (3) + Mpl(2.5)] 

7.5Mpl   

 

External Work Done 

(10 × HB) + (40 ×  VC) 

(10 × 6) + (40 × 3) 

180 

 

Internal Work = External Work 

7.5Mpl  = 180 

Mpl = 24.0 kNm 
 

 

 

Mechanism III: Combined Beam & Sway 

 

 

 Internal Work Done 

[Mpl () + 2Mpl ( +) + Mpl ( + )] 

[Mpl(0.5) + 2Mpl (1.5) + Mpl(1.375)] 

4.875Mpl 

 

External Work Done 

(10 × HB) + (40 ×  VC) 

(10 × 1.5) + (40 × 3) 

135 

 

Internal Work = External Work 

4.875Mpl = 135.0 

Mpl = 27.69 kNm     HD = 4.0 = 1.5     = 0.375 

           HB = 3.0 = 1.5      = 0.5   VC = 3.0 

Solution 
Topic:  Plastic Analysis – Rigid Jointed Frames 3  

Problem Number: 8.17  Kinematic Method     Page No. 2 
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In mechanism I the rotation at joint B =   

In mechanism II the rotation at joint B = + ( + ) = + 3.0 

Adding equations for Mechanisms [(3.0 × I) + II] 

18.0Mpl = 360 

7.5Mpl = 180 

 6.0Mpl                [allowing for the hinge eliminated at joint B: (2  3)] 

19.5Mpl = 540             Mpl = 27.69 kNm as before 

 

The value of Mpl obtained (27.69 kNm) should be checked by ensuring that the 

bending moment in the frame does not exceed this value at any location. 

 

 

Under the point load at C there is 

tension inside the frame and 

consequently the bending moment is 

positive at this point. 

 

The rotations at A and D induce 

tension on the outside of the frame 

and hence negative bending moments. 

 

Consider the equilibrium of the right-hand side of the frame at joint D and the right–

hand side at C. 

 

 

  

 

 

 

 

 

 

 

+ve  MD = 0    27.69  (4.0 × HE) = 0          HE =  6.92 kN 

+ve  MC = 0   + 55.4  (4.0 × HE VE) = 0 

        + 55.4  [4.0 × ( VE) = 0     VE = + 27.69 kN 

 

Consider the complete structure: 

+ve    Fx = 0    HA + 10  6.92 = 0               HA =  3.08 kN 

+ve Fz = 0     40.0 + 27.69 + VA = 0          VA = + 12.31 kN 

 

Solution 
Topic:  Plastic Analysis – Rigid Jointed Frames 3 

Problem Number: 8.17  Kinematic Method     Page No. 3 
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Consider the equilibrium of the left-hand side of the frame at joint B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MB =  27.69 + (3.0 × 12.31) + (3.0 × 3.08) = + 18.48 kNm  Mpl 
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Number of degrees-of-indeterminacy   ID = [(3m + r)  3n] = 2 

Number of possible hinge positions   p = 5 

Number of independent mechanisms  = (p  ID) = (5  2) = 3 

(i.e. 2 beam mechanisms and 1 sway mechanism) 

 

 

 

 

 

 

 

 

 

 

 

Mechanism I: Beam AB 

 

  

 

 = 4.0 = 4.0    =  

 

 

Internal Work Done = External Work Done 

[Mpl () + Mpl ( +) + Mpl ()] = [(6.0 × 8.0) ×  /2] 

[Mpl() + Mpl ( +) + Mpl()] = (48 × 4.0)/2 

4Mpl = 96 

             Mpl = 24.0 kNm 

 

Solution 
Topic:  Plastic Analysis – Rigid Jointed Frames 3  

Problem Number: 8.18  Kinematic Method     Page No. 1 
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Mechanism II: Beam BCD 

 

 

  

   VC = 8.0 = 8.0    =  

 

    

 

Internal Work Done = External Work Done 

[Mpl () + Mpl ( +) + Mpl ()] = (75 ×  VC) 

[Mpl() + Mpl ( +) + Mpl()] = (75 × 8.0) 

4Mpl = 600 

                      Mpl = 150.0 kNm 

 

Mechanism III: Sway   

 

 

 

 

 

 

 = 12.0 = 8.0 

  = 0.67 

 

 

 

 

Internal Work Done = External Work Done 

[Mpl () + Mpl () + Mpl ()] = [(6 × 8.0) ×  /2] 

[Mpl() + Mpl () + Mpl(0.67)] = (48 × 8.0)/2 

2.67Mpl = 192 

                      Mpl = 71.91 kNm 

Mechanism III: Combined Beam BCD and Sway 

In mechanism II the rotation at joint B =  

In mechanism III the rotation at joint B = + 

Adding equations for Mechanisms [I + II] 

4.0Mpl = 600 

2.67Mpl = 192 

 2.0Mpl          [allowing for the hinge eliminated at joint B: (2  )] 

4.67Mpl = 792                Mpl = 169.59 kNm 

 

Solution 
Topic:  Plastic Analysis – Rigid Jointed Frames 3 
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Using the instantaneous centre of rotation technique. 

 HD = 12.0 = 8.0     = 0 .67 

 VC = 8.0 = 8.0      =  

 H = 4.0   (average displlacement) 

 

Internal Work Done 

[Mpl () + Mpl ( +) + Mpl ( + )] 

[Mpl() + Mpl (2) + Mpl(1.67)] 

4.67Mpl 

  
External Work Done 

[(75 ×  VC) + (6 × 8) ×  H ] 

[(75 × 8) + (48 ×4)] 

792 

 

Internal Work = External Work 

4.67Mpl = 792 

Mpl = 169.59 kNm    as before 

  

 

The value of Mpl obtained (169.59 kNm) should be checked by ensuring that the 

bending moment in the frame does not exceed this value at any location. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Under the point load at C there is tension inside the frame and consequently the 

bending moment is positive at this point. 

The rotations at A and D induce tension on the outside of the frame and hence 

negative bending moments. 

Solution 
Topic:  Plastic Analysis – Rigid Jointed Frames 3   
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Consider the equilibrium of the right-hand side of the frame at joint D and the right–

hand side at C. 

 

 

 

 

 

 

 

 

 

 

 

+ve  MD = 0     169.59  (12.0 × HE) = 0          HE =  14.13 kN 

+ve  MC = 0   + 169.59  (10.0 × HE)  (8.0 × VE) = 0 

       + 169.59  [10.0 × ( 14.13)]  (8.0 × VE) = 0   

              VE = + 38.87 kN 

Consider the complete structure: 

+ve    Fx = 0   HA + (6.0 × 8)  14.13 = 0            HA =  33.87 kN 

+ve Fz = 0    75.0 + 38.87 + VA = 0           VA = + 36.13 kN 

 

 

 

 

 

 

 

 

 

 

MB =  169.59  (6.0 × 8.0 × 4.0) + (8.0 × 33.87) =  90.63 kNm  Mpl 

 

 

 

 

 

 

 

 

 

 

Solution 
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Number of degrees-of-indeterminacy   ID = [(3m + r)  3n]  2 = 2 

(Note 1: the degreeofindeterminacy is reduced by one for each pin in the frame) 

Number of possible hinge positions   p = 5 (Note 2: no hinge at B since MB = zero) 

Number of independent mechanisms  = (p  ID) = (5  3) = 3 

(i.e. 2 beam mechanisms and 1 sway mechanism – no gable mechanism is possible 

because of the tie.) 

 

 

 

 

 

 

 

 

 

 

 

Mechanism I: Beam BCD 

  

 

   VC = 1.5 = 1.5    =  

 

   Internal Work Done = External Work Done 

    [Mpl ( +) + Mpl ()] = (30 ×  VC) 

   [Mpl ( +) + Mpl()] = (30 × 1.5)  

3Mpl = 45 

           Mpl = 15.0 kNm 

 

Solution 
Topic:  Plastic Analysis – Rigid Jointed Frames 3   

Problem Number: 8.19   Kinematic Method     Page No. 1 
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Mechanism II: Beam DEF 

 

  

 

  VE = 1.5 = 1.5    =  

 

   Internal Work Done = External Work Done 

    [Mpl () +Mpl ( +) + Mpl ()] = (30 ×  VE) 

   [Mpl () +Mpl ( +) + Mpl ()] = (30 × 1.5) 

4Mpl = 45 

           Mpl = 11.25 kNm 

 

Mechanism III: Sway 

 

 

 

 

 

 

 

   = 4.0 

 

 

 

Internal Work Done = External Work Done 

[Mpl () + 1.5Mpl ()] = (10 ×  ] 

2.5Mpl = (10 × 4.0) 

2.5Mpl = 40 

                      Mpl = 16.0 kNm 

 

Mechanism III: Combined Beam DEF and Sway   

In mechanism II the rotation at joint F =   

In mechanism III the rotation at joint F = +  

Adding equations for Mechanisms [I + II] 

4.0Mpl = 45 

2.5Mpl = 40 

 2.0Mpl          [allowing for the hinge eliminated at joint B: (2  )] 

4.5Mpl = 85 

                    Mpl = 18.89 kNm 

 

Solution 
Topic:  Plastic Analysis – Rigid Jointed Frames 3   
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Using the instantaneous centre of rotation technique. 

 

 VE = 1.5 = 1.5    =  

1.5 = 1.5      =  

 HF = 4.0 = 4.0 

 

Internal Work Done  

[Mpl () + Mpl ( +) + 1.5Mpl ()] 

[Mpl() + Mpl (2) + 1.5Mpl()] 

4.5Mpl  

  

External Work Done 

[(30 ×  VE) + (10 ×  HF] 

[(30 × 1.5) + (10 ×4)] 

85 

 

Internal Work = External Work 

4.5Mpl  = 85 

Mpl = 18.89 kNm    as before 

  

The value of Mpl obtained (18.89 kNm) should be checked by ensuring that the 

bending moment in the frame does not exceed this value at any location. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Under the point load at E there is tension inside the frame and consequently the 

bending moment is positive at this point. 

The rotations at G and at joint D induce tension on the outside of the frame and 

hence negative bending moments. 

Solution 
Topic:  Plastic Analysis – Rigid Jointed Frames 3   
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Consider the complete structure: 

+ve  MG = 0 

+ 28.34  (10.0 × 4.0)  (30.0 × 1.5)  (30.0 × 3.0)  (30.0 × 4.5) + (6.0 × VA) = 0 

 VA = + 46.94 kN 

+ve Fz = 0    + 46.94  30.0  30.0  30.0 + VG = 0   VG = + 43.06 kN 

+ve    Fx = 0    HG  10.0 = 0            HG = + 10.0 kN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MF =  28.34 + (10.0 × 4.0) = + 11.66 kNm  Mpl 

 

Consider the equilibrium of the right-hand side of the frame at a section at joint E. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ve  ME = 0 

+ 18.89 + (10 × 1.0) + 28.34  (10 × 5.0)  (43.06 × 1.5) + (1.0 × Ft) = 0 

            The tension in the tie bar Ft = + 57.36 kN 

 

Solution 
Topic:  Plastic Analysis – Rigid Jointed Frames 3   
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Consider the bending moment at C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MC =  Mpl 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: the gable mechanism is not possible in this frame since it is prevented from 

developing by the tie between B and F. 

 

 

 

 

Solution 
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Problem Number: 8.19  Kinematic Method     Page No. 5 

57.36 kNm 

1.5 m 

C 

46.94 kN 

B 

30 kN 

4
.0

 m
  
  

 1
.0

 m
 

A 

11.66 kNm 

28.34 kNm 

18.89 kNm 13.05 kNm 

B 

Collapse Bending Moment Diagram 

G 

C                                      E 

A 

D 

F 

18.89 kNm 

Tie force = 57.36 kN 



 Plastic Analysis 715 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of degrees-of-indeterminacy   ID = [(3m + r)  3n] = 1 

Number of possible hinge positions   p = 5 

Number of independent mechanisms  = (p  ID) = (5  1) = 4 

(i.e. 2 beam mechanisms, 1 sway mechanism and 1 gable mechanism) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mechanism I: Beam BCD 

  

 

 VC = 3.0 = 3.0    =  

 

Internal Work Done = External Work Done 

[1.5Mpl () + 2Mpl ( +) + Mpl ()] = (30 ×  VC) 

[1.5Mpl () + 2Mpl (2) + Mpl ()] = (30 × 3.0) 

6.5Mpl = 90 

          Mpl = 13.85 kNm 

10 kN 

 

 

+( + ) 
 VC 

30 kN 

21 kN 

C 
D 

B 
C 

Solution 
Topic:  Plastic Analysis – Rigid Jointed Frames 3  
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Mechanism II: Beam DEF 

 

 VE = 1.0 = 1.0   =  

 

Internal Work Done = External Work Done 

[Mpl () + Mpl ( +) + Mpl ()] = (12 ×  VE) 

[Mpl () + Mpl ( +) + Mpl ()] = (12 × 1.0) 

4Mpl = 12 

          Mpl = 3.0 kNm 

 

Mechanism III: Sway   

 

 = 4.0 

  

 

 

 

 

 

 

 

 

 

Internal Work Done = External Work Done 

[1.5Mpl () + Mpl ()] = [(10 × ) + (10 × )] 

 2.5Mpl = (20 × 4.0) = 80             Mpl = 32.0 kNm 

 

 

Mechanism IV: Gable 

 

 

 HF = 4.0 = 4.0 

  =  

 

 VD = 6.0 = 2.0 

  = 0.33 

 

 VC = 3.0 =   

 

 VE = 1.0  

 

Solution 
Topic:  Plastic Analysis – Rigid Jointed Frames 3   
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Internal Work Done = [1.5Mpl () + Mpl ( +) + Mpl ( +)] 

         = [(0.5Mpl) + (1.33Mpl) + [(2.0Mpl)] = 3.83Mpl 

External Work Done = [(30 ×  VC) + (21 ×  VD) + (12 ×  VE) + (10 ×  HF)] 

           = [(30 × ) + (21 × 2) + (12 × ) + (10 × 4)] = 124 

 

Internal Work Done = External Work Done 

 3.83Mpl = 124                Mpl = 32.38 kNm 

 

Mechanism V: Combined Beam BCD, Gable and Sway   

 

  

 

 HF = 4.0 = 10.67 

  = 2.67 

 

  VC = 3.0 = 5.0 

  = 1.67 

 

 VD = 2.0 

 

 VE =  1.0 

 

 HB = 4.0 

        = 4.0(1.67) 

        = 6.68 

 

 

 

 

 

 

Internal Work Done 

[2Mpl ( +) + Mpl ( +)] = [2Mpl(2.67) + Mpl (3.67)] = 9.0Mpl 

 

External Work Done 

[(10 ×  HB) + (30 ×  VC) + (21 ×  VD) + (12 ×  VE) + (10 ×  HF)] 

[(10 × 6.68) + (30 × 5.0) + (21 × 2.0) + (12 × 1.0) + (10 × 10.67)] = 377.5 

 

Internal Work = External Work 

9.0Mpl = 377.5                 Mpl = 41.9 kNm 

 

Solution 
Topic:  Plastic Analysis – Rigid Jointed Frames 3   
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In mechanism V the hinges at B and D have been eliminated. 

 

 

 

 

 

 

 

 

 

 

Add mechanisms as follows: 

[(1.33 × I) + IV] which eliminates the 

hinge at D and produces rotations equal 

to  (1.67), + (2.66) and  (1.33) at 

B, C and F respectively. 

 

 

The resulting mechanism can be combined with [1.67 × Mechanism III] to eliminate 

the hinge at B. This produces total rotations equal to + (2.67) and  (3) at C and F 

respectively. 

 

 

 

 

 

 

 

 

 

Adding equations for Mechanisms [(1.33 × I) + IV + (1.67 × III)] 

8.65Mpl = 119.7 

3.83Mpl = 124.0 

4.18Mpl = 133.6 

 5.0 Mpl    [allowing for the hinge eliminated at joint B: 2(1.5Mpl × 1.67)] 

 2.67Mpl    [allowing for the hinge eliminated at joint F: 2(Mpl × 1.33)] 

9.0Mpl = 377.3               Mpl = 41.9 kNm as before 

 

The value of Mpl obtained (41.9 kNm) should be checked by ensuring that the 

bending moment in the frame does not exceed this value at any location. 

 

Solution 
Topic:  Plastic Analysis – Rigid Jointed Frames 3   
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Under the point load at C there is tension inside the frame and consequently the 

bending moment is positive at this point. 

The rotation at joint F induces tension on the outside of the frame and hence a 

negative bending moment.  

 

Consider the equilibrium of the right-hand side of the frame at joint F. 

 

 

+ve  MF = 0 

 41.9  (HG × 4.0) = 0 

HG =  10.48 kN 

 

 

 

 

Consider the complete structure: 

 

+ve  MA = 0 

+ [2.0  (10.0 × 4.0)] + (30.0 × 3.0) + (21.0 × 6.0) + (12.0 × 7.0)  (8.0 × VG) = 0 

 VG = + 47.5 kN 

+ve Fz = 0    + 47.5  30.0  21.0  12.0 + VA = 0 

                     VA = + 15.5 kN 

 

+ve    Fx = 0    20.0  10.48 + HA = 0           HA = + 9.52 kN 

 

Solution 
Topic:  Plastic Analysis – Rigid Jointed Frames 3   
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MB = + (9.52 × 4.0) = + 38.08 kNm  1.5Mpl 

 

MD =  (12 × 1.0)  (10.48 × 7.0) + (10 × 3.0) + (47.5 × 2.0) = + 39.64 kNm  Mpl 

 

ME = + (10 × 1.5)  (10.48 × 5.5) + (47.5 × 1.0) = + 4.86 kNm  Mpl 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This frame can also be readily analysed using the static method of analysis as follows: 

Solution 
Topic:  Plastic Analysis – Rigid Jointed Frames 3   
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Assume the horizontal component of reaction at support G to be the redundant 

reaction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

     (I) Statically determinate force system      (II) Force system due to redundant reaction 

 

Consider system (I) 

Apply the three equations of static equilibrium to the force system: 

+ve Fz = 0  V'A  30  21  12 + V'G = 0     V'A + V'G = 63.0 kN 

+ve    Fx = 0  10 + 10 + H'A          H'A =  20.0 kN 

+ve  MA = 0  + 2 × (10.0 × 4.0) + (30.0 × 3.0) + (21.0 × 6.0) + (12.0 × 7.0) 

 (8.0 × V'G) = 0        V'G = + 47.5 kN 

                  hence  V'A = + 15.5 kN 

Consider system (II) 

Apply the three equations of static equilibrium to the force system: 

+ve Fz = 0  V''A + V''G = 0       V''A =  V’'G 

+ve    Fx = 0  H''A   HG = 0      H''A = +HG 

+ve  MA = 0   (V''G  8.0) = 0     V''G = 0  hence  V''A = 0 
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MB = + (20 × 4.0)  (HG × 4.0) = + 80.0  4.0HG 

MC = + (20 × 5.5) + (15.5 × 3.0)  (10.0 × 1.5)  (HG × 5.5) = + 141.5  5.5HG 

MD =  (12 × 1.0) + (10 × 3.0) + (47.5 × 2.0)  (HG × 7.0) = + 113.0  7.0HG 

ME = + (10 × 1.5) + (47.5 × 1.0)  (HG × 5.5) = + 62.5  5.5HG 

MF = 0  (HG × 4.0) = 0  4.0HG 

  

Assume the collapse mechanism as indicated previously, i.e. plastic hinges 

developing under the point load at C (+ 2.0Mpl) at and joint F  ( Mpl). 

 

MC : + 2.0Mpl = + 141.5  5.5HG         Equation (1) 

MF:  Mpl = 0  4.0HG            Equation (2) 

 

Adding equations (1) and [2 × (2)] gives:  

 

0 = 141.5  13.5HG    HG = + 10.48 kN  and Mpl = 41.9 kNm as before 

 

Check the value of the bending moment at other possible hinge positions 

 

MB = + 80.0 + 4.0HG = + 80.0  (4.0 × 10.48) = 38.08 kNm  1.5 Mpl 

MD = + 113.0  7.0HG = + 113.0  (7.0 × 10.48) = 39.64 kNm  Mpl 

ME = + 62.5  5.5HG = + 62.5  (5.5 × 10.48) = 4.86 kNm  Mpl 
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Number of degrees-of-indeterminacy   ID = [(3m + r)  3n]  1 = 1   

(Note: the degreeofindeterminacy is reduced by one for each pin in the frame) 

Number of possible hinge positions   p = 5 

Number of independent mechanisms  = (p  ID) = (5  1) = 4 

(i.e. 2 beam mechanisms, 1 sway mechanism and 1 gable mechanism) 

 

 

 

 

 

 

 

 

 

 

 

Mechanism I: Beam BCD 

 

  

    VC = 3.0 = 3.0    =  

 

Internal Work Done = External Work Done 

[1.5Mpl () + 1.5Mpl ( +) + Mpl ()] = (15 ×  VC) 

[1.5Mpl () + 1.5Mpl (2) + Mpl()] = (15 × 3.0) 

5.5Mpl = 45 

         Mpl = 8.18 kNm 
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Mechanism II: Beam DEF 

 

 VC = 3.0 = 3.0    =  

 

Internal Work Done = External Work Done 

[Mpl () + Mpl ( +)] = (15 ×  VC) 

[Mpl() + Mpl ( +)] = (15 × 3.0) 

3.0Mpl = 45            Mpl = 15.0 kNm 

 

Mechanism III: Sway   

 

 

 

 

 

 

 

 

 

 

           = 3.0    3 = 6.0    = 2 

 

Internal Work Done = External Work Done 

[1.5Mpl () + Mpl ()] = [(10 × ) + (10 × )] 

3.5Mpl = (20 × 6.0) = 120                Mpl = 34.29 kNm 

 

Mechanism IV: Gable 

 

 

 

 

 

 

 

 

              

             HB = 6.0 = 6.0    =  

             VD = 6.0 = 6.0    =  

             VC = 3.0 

             VE = 3.0 = 3.0  
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Internal Work Done = [1.5Mpl ( +) + Mpl ( +)] 

[(3.0Mpl) + (2.0Mpl)]  = 5.0Mpl 

External Work Done = [(15 ×  VC) + (15 ×  VD) + (15 ×  VE) + (10 ×  HB)] 

[(15 × 3) + (15 × 6) + (15 × 3) + (10 × 6)] = 240 

 

Internal Work Done = External Work Done 

 5.0Mpl = 240                 Mpl = 48.0 kNm 

 

Mechanism V: Combined Beam DEF and Gable. 

  

 

 

 

 

 

 

 

 

 

 

 

 

  HB = 6.0 = 6.0    =  

 VE = 3.0 = 9.0    = 3.0 

 VC = 3.0 

 VD = 6.0 

 

Internal Work Done 

[1.5Mpl ( +) + Mpl ( +)] = [1.5Mpl(2.0) + Mpl (4.0)] = 7.0Mpl 

 

External Work Done 

[(10 ×  HB) + (15 ×  VC) + (15 ×  VD) + (15 ×  VE)] 

[(10 × 6.0) + (15 × 3.0) + (15 × 6.0) + (15 × 9.0)] = 330 

 

Internal Work = External Work 

7.0Mpl = 330                 Mpl = 47.14 kNm 

(The reader should confirm this answer by adding the work equations). 

 

This value is less than that obtained for the gable mechanism. Assume the gable 

mechanism (i.e. hinges at B and D) to be the critical mechanism and check the 

bending moments at other possible hinge positions do not exceed the Mpl values. 
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The rotation at joint B induces tension outside the frame and consequently the 

bending moment is negative at this point. 

The rotation at joint D induces tension on the inside of the frame and hence a 

positive bending moment.  

Consider the equilibrium of the left-hand side of the frame at joint B.  

 

+ve  MB = 0 

+ 72.0  (HA × 6.0) = 0   HA = + 12.0 kN 

 

Consider the complete structure: 

+ve    Fx = 0     20.0 + 12.0 + HG = 0 

         HG = + 8.0 kN 
 

 

Consider the equilibrium of the right-hand side of the frame at the pin at joint F. 

 

+ve  MF = 0   (i.e. zero moment at the pin) 

 (3.0 × HG) + MG = 0    (3.0 × 8.0) + MG = 0 

                MG = 24.0 kNm 
Consider the complete structure: 

+ve  MA = 0 

 (10 × 6.0) + (15 × 3.0) + (15 × 6.0) + (15 × 9.0)  (10 × 6.0) +  (8 × 3.0) + 24.0  

 (VG × 12.0) = 0 

                     VG = + 16.5 kN 

+ve Fz = 0     15.0  15.0  15.0 + 16.5 + VA = 0    VA = + 28.5 kN 
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MC = + (28.5 × 3.0)  (12.0 × 7.5) + (10.0 × 1.5) = + 10.5 kNm  1.5Mpl 

 

ME =  (10 × 1.5)  24.0 + (8.0 × 4.5) + (16.5 × 3.0) = + 46.5 kNm  Mpl 

 

MG =  24.0 kNm  Mpl 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This frame can also be readily analysed using the static method of analysis as follows: 
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Assume the horizontal component of reaction at support A to be the redundant 

reaction. 

 

 

 

 

 

 

 

 

 

 

 

     (I) Statically determinate force system      (II) Force system due to redundant reaction 

 

Consider system (I) 

Apply the three equations of static equilibrium to the force system: 

+ve  Fx = 0  10   10 + H'G = 0         H'G = + 20.0 kN 

 +ve Mpin = 0       (H'G × 3.0) + MG = 0   MG = (20.0 ×3.0) = + 60.0 kNm  

+ve  MA = 0   2 × (10.0 × 6.0) + (15.0 × 3.0) + (15.0 × 6.0) + (15.0 × 9.0) 

     + (20.0 × 3.0) + 60.0  (12.0 × V'G) = 0      V'G = + 22.5 kN 

+ve Fz = 0  V'A  15  15  15 + V'G = 0  V'A + V'G = 45.0 kN 

                     hence     V'A = + 22.5 kN 

Consider system (II) 

Apply the three equations of static equilibrium to the force system: 

+ve  Fx = 0 HA − H''G = 0           H''G = + H A 

+ve Mpin = 0  + (H''G × 3.0) + MG = 0        M''G =  3 HA  

+ve  MG = 0  M''G  (HA  3.0) + (V''A  12.0) = 0    V''A = + 0.5 HA 

+ve Fz = 0  V''A + V''G = 0  V''G =  V’'A 

                   hence  V''G =  0.5HA 
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MB =  (HA × 6.0) =  6.0HA 

 

MC = + (22.5 × 3.0) + (10 × 1.5)  (7.5 × HA) + 3(0.5HA) = + 82.5  6.0HA 

 

MD = + (22.5 × 6.0) + (10 × 3.0)  (15 × 3.0)  9HA + (6.0  0.5HA) 

  = + 120.0  6.0HA 

 

ME = + (22.5 × 9.0) + (10 × 1.5)  (15 × 6.0)  (15 × 3.0)  7.5HA   (9.0  0.5HA) 

  = + 82.5  3.0HA 

 

MG =  60.0 + (HA × 3.0) =  60.0 + 3.0HA 

 

Assume the collapse mechanism as indicated previously, i.e. plastic hinges 

developing at joint B ( 1.5Mpl) at joint D  (+ Mpl) and 

 

MB :  1.5Mpl = 0  6.0HA     Equation (1) 

MD: + Mpl = 120  6.0HA     Equation (2) 

 

Subtracting equation (1) from equation (2) gives: 

 

  2.5Mpl =  120       Mpl = 48.0 kNm  as before  and HA = 12.0 kN 

 

Check the value of the bending moment at other possible hinge positions 

 

MC = + 82.5  6.0HA = + 82.5  (6.0 × 12.0) = + 10.5 kNm  1.5Mpl 

ME = + 82.5  3.0HA = + 82.5  (3.0 × 12.0) = + 46.5 kNm  Mpl 

MG =  60.0 + 3.0HA =  60.0  (3.0 × 12.0) =  24.0 kNm  Mpl 
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9. Influence Lines for Beams 

9.1 Introduction 
Many structures are required to support moving loads in addition to static loading, e.g. 

highway/railway bridges or an overhead travelling crane as shown in Figure 9.1. Whilst 

these moving loads are in reality dynamic in nature and their values and/or positions vary 

in time, the variation is slow enough for them to be considered as ‘quasi-static’ loading. In 

such cases the behaviour of the structure at any instant in time can be determined 

assuming the value of the loads and load effects using the rules and principles which 

govern structural behaviour under static loading. 

  

 

 

 

 

 

 

 

 

Figure 9.1 

 

The design of such structures requires that the most critical positions of the loads are 

identified for various functions, e.g. the support reactions, axial loads in trusses, shear 

force or bending moment in beams. Consider a vehicle moving along a simply supported 

span as shown in Figure 9.2: 

 

 

 

 

 

 

 

Figure 9.2 

 

The position of the vehicle required to determine the maximum value of a function/design 

load effect must be identified for design purposes. This can be achieved by the use of 

influence lines. An influence line is a graph of the variation of a function e.g. the support 

reaction, shear force, bending moment etc. in a beam or the axial load in a pin-jointed 

trussed frame, at a given position in a structure as a unit load traverses the structure. It is 

important to recognise that, unlike shear and bending moment diagrams, influence lines 

indicate the variation of a function at a specific point in a structure. 

9.2 Example 9.1: Influence Lines for a Simply Supported Beam 
Consider the simply supported beam shown in Figure 9.3 in which a unit load traverses the 

structure from A to C. Influence lines (graphs) can be drawn which indicate the variation 

w
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of the support reactions, the shear force and the bending moment at some general point B 

on the beam a distance ‘a’ from the support at A. At any instant in time the load is at 

position ‘x’ from support A. 

 

 

 

 

 

 

 

 

 

 

Figure 9.3 

9.2.1 Influence Lines for the Support Reactions 
 

 

 

 

 

 

 

Figure 9.4 

 

Two equations relating to the two support reactions VA and VC can be determined by 

considering the rotational and vertical equilibrium of the beam.  

 Consider the rotational equilibrium of the beam: 

 +ve    ΣMA = 0 

 (1.0 x) − (VC × L) = 0 ∴ VC = x/L Equation (1) 

 Consider the vertical equilibrium of the beam: 

 +ve   ΣFz = 0 

 V
A
 − 1.0 + V

C
 = 0 ∴ V

A
 = (1.0 − x/L )   Equation (2) 

 

Equation (2) is the equation of the graph which defines the variation in VA as the unit load 

traverses the beam, i.e. the equation of the influence line for VA. Similarly, Equation (1) is 

the equation for the influence line for VC. The two influence lines can be plotted by 

considering values of the functions VA and VC when: x = 0 and when x = L respectively. 

 

Influence Line for VA: Equation (2)  VA = (1.0 − x/L) 

   when  x = 0    VA = 1.0   and   when  x = L   VA = 0 

 

Influence Line for VC: Equation (1)  VC = x/L 

   when  x = 0    VC = 0      and    when  x = L    VC = 1.0 
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Figure 9.5: Influence line for the vertical reaction at A 

 

 

 

 

 

 

 

 

 

Figure 9.6: Influence line for the vertical reaction at C 

9.2.2 Influence Line for the Shear Force at Point B 
To develop the influence line for the shear force at a point in a beam it is convenient to 

consider the position of the unit point load acting in two zones as shown in Figure 9.7: 

 

(i)  to the left of the point under consideration    and 

 

(ii) to the right of the point under consideration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.7 
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 Consider  0 ≤  x  ≤  a 

Shear force at B = (VA − 1.0)    or   alternatively,    Shear force at B = − VC  

The influence line between  0 ≤  x  ≤ a is the same as the ‘inverted’ (i.e. negative) 

influence line for VC between these limits as shown in Figure 9.8:  (Note: VC = x/L). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.8 

 

 Consider  a ≤  x  ≤  L 

Shear force at B = VA    or   alternatively    shear force at B = (− VC + 1.0) 

The influence line between  a ≤  x  ≤ L is the same as the influence line for VA between 

these limits as shown in Figure 9.9: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.9 
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The complete influence line for the shear force at B is given by the addition of the two 

zones  for  0 ≤ x ≤ a  and  a ≤ x ≤ L as shown in Figure 9.10. 

 

Influence Line: Shear force at B for 0 ≤  x  ≤  L 
 
 
 
 
 
 

 

 

 

 

 

 

Figure 9.10: Influence line for the shear force Fv,B at position B     

       

9.2.3 Influence Line for the Bending Moment at Point B  
The influence line for the bending moment at a point in a beam can be developed similarly 

to that for the shear force considering two zones, as shown in Figure 9.11: 

 

(i)  to the left of the point under consideration    and 

 

(ii) to the right of the point under consideration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.11 
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 Consider  0 ≤  x  ≤  a 

Bending moment at B  MB =  + [aVA − 1.0(a − x)]    or   alternatively,     

Bending moment at B  MB = + VC × (L − a)  (= VC × constant) 

The influence line for VC between  0 ≤  x  ≤ a is given by VC = x/L. 

∴ MB = VC × (L − a) = x (L − a)/L 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 9.12 

 

 Consider  a ≤  x  ≤  L 

Bending moment at B  MB =  + aVA (= VA × constant)    or   alternatively,     

The influence line for VA between  a ≤  x  ≤ L is given by VA = (1.0 − x/L). 

Bending moment at B  MB = + [VC (L − a) − 1.0(x − a)]   

∴ MB = a × (1.0 − x/L) = a(L − x)/L 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.13 
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The complete influence line for the bending moment at B is given by the addition of the 

two zones  for  0 ≤ x ≤ a  and  a ≤ x ≤ L as shown in Figure 9.14. 

 

Influence Line: Bending moment at B for 0 ≤  x  ≤  L 
 

 

 

 

 

 

 

Figure 9.14: Influence line for the bending moment MB at position B           

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.15 

 

Note: Influence lines are NOT the same as shear force and bending moment 

diagrams.They provide information relating to a single location on the 

structure. 
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9.3 Müller-Breslau Principle for the Influence Lines for Beams 
The influence line for any response function in  a beam can also be determined by the use 

of the Müller-Breslau principle, i.e. 

 

 “The influence line for any function is given by the deflection curve, to some scale, that 

results when the restraint corresponding to that function is removed and a unit 

displacement is induced in its place” 

 

The principle is applicable to any type of elastic structure, i.e. both statically determinate 

and indeterminate structures. 

9.4 Example 9.2: Influence Lines for a Statically Determinate Beam 
Considering the two-span, statically determinate beam ABCDE shown in Figure 9.16, 

determine the influence lines for: 

 

 (i)  the vertical reactions at supports A, C and E, 

 (ii) the shear force at point B, 

 (iii) the bending moment at point B and 

 (iv) the bending moment over support C. 

 

The values are derived considering the articulation of the beam between the support points 

and any pins within the spans, for an imposed unit linear displacement (when considering 

support reactions or shear forces) or a unit rotational displacement (when considering a  

bending moment). Note: the displaced shape of statically determinate beams will be  

linear. 

(i) 

The vertical reaction at support A:  Impose a unit, vertical displacement  at A 

 

 

 

 

 

 

 

 

  

 

 

     Figure 9.16: Influence line for VA 

 

A vertical unit displacement is imposed at A and the beam imagined to articulate between 

the supports at C and E and the pin at D. The value of δD can be determined readily by 

considering the geometry of the displaced shape, i.e. considering the triangles between 

ABC and CDE giving: 
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The vertical reaction at support C: Impose a unit vertical displacement  at C 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 9.17: Influence line for VC 

 

D
D

1.0
     = 1.5

8.0 12.0

δ δ= + ∴ +  

 

The vertical reaction at support E: Impose a unit vertical displacement  at E 

 

 

 

 

 

 

Figure 9.18: Influence line for VE 

 

(ii) 

The shear force at point B: Impose a unit shear displacement  at B 

 

 

 

 

 

 

Figure 9.19: Influence line for FV,B 

 

Considering the triangles between AB and BC: 

 (δB,1 + δB,2) = 1.0  ∴  δB,1 = (1.0 − δB,2)   and  
B,1 B,2

B,1 B,2      = 1.67
5.0 3.0

δ δ
δ δ= − ∴ −  

 (1.0 − δB,2) = 1.67δB,2   ∴   δB,2 = − 0.375  and  δB,1 = 0.625 

  

Considering the triangles between BC and CD: 

D
D
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     = 0.5
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(iii) 

The bending moment at point B: Impose a unit rotation at B 

  

 

 

 

 

 

 

 

 

 

 

 

 

                              Figure 9.20: Influence line for MB 

 

 θ = (α + β) = 1.0   ∴  α = (1.0 − β)   and   δB = 3.0α = 5.0β    ∴  α = 1.67β 

 (1.0 − β) = 1.67β   ∴   β = − 0.375  and  α = 0.625    ∴ δB = (3.0 × α) = 1.875 

 

Considering the triangles between BC and CD: 

D
D

1.875
     = 1.5

5.0 4.0

δ δ= − ∴ −  m 

(iv) 

The bending moment over support C: Impose a unit rotation at C 

 

  

 

 

 

 

Figure 9.21: Influence line for MC 

δD = 4.0θ = (4.0 × 1.0) = 4.0 m 

9.5 Example 9.3: Influence Line for a Statically Indeterminate Beam 
Considering the propped cantilever AB shown in Figure 9.22, which is fixed at support A 

and supported on a roller at B, determine the influence line for the support reaction at B. 

 

 

  

 

 

 

Figure 9.22 

A                                 B 

VA                                VB 

EI

L

MA 

A           B       C           D                 E θ = 1.0

−ve

δ D

A           B         C             D                  E 

Assume a pin at B 

θ = 1.0 

A      B        C        D         E 
pin

3.0 m      5.0 m      4.0 m     4.0 m 

8.0 m            8.0 m 

VA                            VE 

δ D

α β 

+ve

−ve

δ B 



740 Examples in Structural Analysis  

 

 

 

Consider a unit load which moves from A to B when at a general position C a distance ‘x’ 

from B and assume an upward reaction at B as shown in Figure 9.23. 

 

 

 

 

 

 

 

 

 

Figure 9.23 

 

Remove the restraint at B and impose a displacement BδB at B in the assumed direction of 

VB using a force F = 1.0. This also induces a vertical deflection of CδB at point C as shown 

in Figure 9.24. 

 

 

 

 

Figure 9.24 

 

The values of BδB and CδB define the shape of the deflected curve for an applied unit load 

at B and consequently the required influence line ordinates for VB = C B

B B

δ
δ

, i.e. the 

deflected shape due to a unit load displacement applied at B. The values can be determined 

using standard elastic analysis e.g. MaCaulay’s Method, i.e. 

 

 Bending moment at distance x = EI d2z/dx2  

 EI d2z/dx2 = 1.0x Equation (1)  

 EI  dz/dx  = x2/2 + A Equation (2) 

         EIz  = x3/6 + Ax + B Equation (3) 

 

 Apply the boundary conditions:   

 when x = 20.0 m  dz/dx = 0 ∴   A = − 200 

 when x = 20.0            z = 0 ∴   B = − 20.03/6 + (200 × 20.0) = 2666.7 

  

 The deflected shape is given by: z = (x3/6 − 200x + 2666.7)/EI 

 When x = 0  BδB = [0 − (200 × 0) + 2666.7)]/EI = 2666.7/EI 

 An upward displacement is regarded as a positive ordinate. 

  

 The influence line co-ordinates are given by: 

 C B

B B

δ
δ

= 
( ) ( )3 36 200 2666.7 6 200 2666.7

2666.7 2666.7

x x EI x x

EI

− + − +
=  

MA 

1.0 x

δ x 

A                                B 

  VA                                  VB 

EI

F = 1.0 

Bδ B Cδ B 
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The influence line values are determined by substituting appropriate values for x, i.e.  

  

 x = 0  influence ordinate z = 
( )30 6 200 0 2666.7 2666.7

1.0
2666.7 2666.7

− × +
= =  

 x = 4.0 m  influence ordinate z = 
( )34.0 6 200 4.0 2666.7

0.704
2666.7

− × +
=  

 

Similarly for x = 8.0 m, 12.0 m and 16.0 m as indicated in Figure 9.25. 

 

 

 

 

 

 

 

 

Figure 9.25: Influence line for VB 

9.6 The use of Influence Lines 
The influence line for a function can be used to determine the critical value of that 

function for a variety of loading conditions, e.g. concentrated loads, distributed loads, 

travelling loads and trains of loads. 

9.6.1 Concentrated Loads 
The value of a function induced by a given concentrated load at any position on a 

structure, can be determined by multiplying the magnitude of the load by the ordinate at 

the position of the load on the influence line for that function, i.e. 

 

Magnitude of the function = (applied load × ordinate (z) on the influence line) 

 

The maximum positive value of a function can be determined by multiplying the 

magnitude of the load by the maximum positive ordinate ‘z’ on the influence line for that 

function; similarly for the maximum negative value. 

9.6.2 Distributed Loads 
The value of a function for any given distributed load at any position on the beam, can be 

determined by multiplying the magnitude of the load/metre length by the area of the 

influence line lying under the extent of the distributed load for that function. 

 

Magnitude of the function = (applied load × area under the influence line) 

 

The maximum value of the function due to a moving UDL of length smaller than the span, 

can be determined by positioning the moving load such that it maximises the area under 

the extent of the load.  

1.00.704
0.432

0.208 
0.056
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9.6.3 Example 9.4: Evaluation of Functions for a Statically Determinate Beam 1 
A 12.0 m span simply supported beam ABCD, supports a distributed load of 12.0 kN/m 

and a point load of 20.0 kN as shown in Figure 9.26. Draw the influence lines for: 

 

 (i)  the vertical reactions at supports, VA and VD, 

 (ii) the shear force FV,B at point B, and  

 (iii) the bending moment at point C, MC 

 

and determine the value of each of the functions (i), (ii) and (iii) for the loading indicated. 

 

 

 

 

 

 

 

 

 

Figure 9.26 

 

(i) The influence line for and value of VA  (see Figure 9.15). 

 

 

 

 

 

 

 

Figure 9.27: Influence line for VA 

 

 VA = (concentrated load × ordinate) + (distributed load × area)  

      = (20.0 × 0.50) + [12.0 × (0.5 × 6.0 × 0.5)] = 28.0 kN 

 

 

(ii) The influence line for and value of VD  (see Figure 9.15). 

 

 

 

 

 

 

Figure 9.28: Influence line for VD 

 

 VA = (concentrated load × ordinate) + (distributed load × area)  

  

      = (20.0 × 0.50) + 12.0 × [0.5 × (0.5 + 1.0) × 6.0] = 64.0 kN 
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1.0 

0.5

0.5

1.0 

A          B                               C                                                                    D  

A            B                         C                                                            D  

3.0 m       3.0 m                                      6.0 m 

20 kN
12 kN/m

12.0 m

VA                                                                                                          VD  



 

 
 

Influence Lines for Beams 743 

(iii) The influence line for and value of Fv,B  (see Figure 9.15). 

 

 

  

 

 

 

 

 

 

 

 

Figure 9.29: Influence line for FV,B 

 

 FV,B = (concentrated load × ordinate) + (distributed load × area)  

        = (20.0 × 0.50) + [12.0 × (0.5 × 6.0 × 0.5)] = 28.0 kN 

 

(iv) The influence line for and value of MC  (see Figure 9.15). 

 

  

 

 

 

 

 

Figure 9.30: Influence line for MC 

 

 MC = (concentrated load × ordinate) + (distributed load × area)  

        = (20.0 × 3.0) + [12.0 × (0.5 × 6.0 × 3.0)] = 168.0 kNm 

9.6.4 Example 9.5: Evaluation of Functions for a Statically Determinate Beam 2 
An 8.0 m span simply supported beam ABC supports a distributed load of 2.0 m length 

and magnitude 15.0 kN/m and a point load of 25.0 kN, both of which  traverse the beam 

independently as shown in Figure 9.31. Using the influence lines for the shear force and 

the bending moment at point B, determine the maximum values of these functions when 

the loads can travel across the beam independently. 

 

 

 

 

 

 

 

 

 

Figure 9.31 
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(i) The influence line for and value of Fv,B  (see Figure 9.15). 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.32: Influence line for FV,B 

 

 FV,B = (concentrated load × ordinate) + (distributed load × area)  

        = (25.0 × 0.75) + [15.0 × 0.5 × (0.75 + 0.5) × 2.0)] = 37.50 kN 

 

(ii) The influence line for and value of MB  (see Figure 9.15). 

The distributed load must be positioned as shown in Figure 9.33 such that it maximizes the 

value of the area under the bending moment influence line. 

 

 

 

 

 

 

 

 

 

Figure 9.33 

 

1The load to the left of point B The span to the left of point B
= 

The total load The total span

c a

c L
= =  

 

This also leads to the observation that the influence line coefficient ‘z’ at each end of the 

load has the same value. 
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In this example:  a = 2.0 m;    L = 8.0 m;    c = 2.0 m  and the load is positioned such that 

the value of c1 = 0.5, i.e.  1
1

2.0 2.0
   = 0.5 m

8.0

c a ca
c

c L L

×= ∴ = =  

 δB = a(L − a)/L = 2.0 × (8.0 − 2.0)/8.0 = 1.5       

 δBL = 1.5 × (1.50/2.0) = 1.125    and    δBR = 4.5 × (1.50/6.0) = 1.125 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.34: Influence line for MB 

 

  MB = (concentrated load × ordinate) + (distributed load × area)  

        = (25.0 × 1.5) + 15.0 ×{(1.125 × 2.0) + [0.5 × 2.0 × (1.50 − 1.125)]} = 76.88 kNm 

9.7 Example 9.6: Evaluation of Functions for a Statically Indeterminate Beam 
A two span, non-uniform beam ABC is simply supported at A, B and C as shown in 

Figure 9.35. Span AB carries a fixed uniformly distributed load of 40 kN/m and a 

concentrated load of 20 kN traverses the beam from A to C. Develop the influence line for 

the moment MB at support B and using it, determine the magnitude and sense of the MB. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.35 

 

Remove the restraint which induces the moment at B by introducing a pin and impose 

displacements θBL and θBR at B using a moment M = 1.0 as shown in Figure 9.36. The unit 

moment induces a total displacement at B equal to the sum from both spans,                     
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i.e. θB = (θBL + θBR) and general displacements at m and n as indicated. 

Positions ‘m’ and ‘n’ represent any general points along the beams AB and BC. 

 

 

 

 

 

Figure 9.36 

 

Consider each span separately and use MaCaulay’s method to determine the displaced 

shape induced by the unit moment. 

 

Span AB: 

 

  

 

 

                 Figure 9.37 

 Bending moment at distance x = EI d2z/dx2  

 EId2z/dx2 = 0.1x Equation (1)  

 EIdz/dx  = 0.1x2/2 + A Equation (2) 

       EIz  = 0.1x3/6 + Ax + B Equation (3) 

 

 Apply the boundary conditions:   

 when x = 0  z = 0 ∴   B = 0 

 when x = 10.0   z = 0 ∴   A = − (0.1 × 10.03)/(6 × 10.0) = − 1.67 

 The slope at B is given by dz/dx = θBL = (0.1x 2/2 + A)/EI 

 when x = 10.0 θBL = [(0.1 × 10.02/2) − 1.67]/EI = + 3.33/EI 

  

Span BC: 

 

  

 

 

                 Figure 9.38 

 Bending moment at distance x = EI d2z/dx2  

 2EId2z/dx2 = 0.067x Equation (1)  

 2EIdz/dx  = 0.067x2/2 + A Equation (2) 

       2EIz  = 0.067x3/6 + Ax + B Equation (3) 

 

 Apply the boundary conditions:   

 when x = 0  z = 0 ∴   B = 0 

 when x = 15.0   z = 0 ∴   A = − (0.067 × 15.03)/(6 × 15.0) = − 2.51 

 The slope at B is given by dz/dx ∴ θBR = (0.067x 2/2 + A)/2EI 

 When x = 15.0 θBR = [(0.067 × 15.02/2) − 2.51]/2EI = + 2.51/EI 

 ∴ BδB = θB = (θBL + θBR) = (3.33 + 2.51)/EI = + 5.84/EI in the same direction as M 

z
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For span AB the influence line co-ordinates are given by: 

 m B

B B

δ
δ

= 
( )3

3
0.0167 1.67

0.00286  0.286  
5.84

x x EI
x x

EI

−
= − m 

The influence line values are determined by substituting appropriate values for x. 

  

For span BCD the influence line co-ordinates are given by: 

 n B

B B

δ
δ

= 
( )3

3
0.0112 2.51 2

0.00096  0.215  
5.84

x x EI
x x

EI

−
= − m 

The influence line values are determined by substituting appropriate values for x.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.39: Influence line for MB 

 

MB = (concentrated load × ordinate) + (distributed load × area)  

The maximum ordinate in each span occurs where the slope is zero, i.e. dz/dx = 0 

 

Consider span AB:  

EI dz/dx  = 0.1x2/2 − 1.67 = 0  ∴ x = 5.779 m from A 

Influence line ordinate δAB maximum = (0.00286x3 − 0.286x) = − 1.101 m 

 

Area under the influence line diagram is given by:  

 ( ) 10.010.0
3 4 2 2

0 0
0.00286  0.286  = 0.000715 0.143 = 7.15 mx x dx x x⎡ ⎤− − −⎣ ⎦∫  

 

Consider span BC:  

EI dz/dx  = 0.067x2/2 − 2.51 = 0  ∴ x = 8.656 m from C 

Influence line ordinate δBC maximum = (0.00096x3 − 0.215x) = − 1.232 m   

The maximum value for the ordinate is in span BC and the 20 kN load should be placed at 

this position. 

 

The concentrated load should be on span BC to give the worst effect, i.e.  

δBC maximum = − 1.232  ∴ MB = − (40.0 × 7.15) − (20.0 × 1.232) = 310.64 kNm 
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δAB maximum

A               B                                         C 
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20 kN
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9.8 Train of Loads 
Structures such as bridges are frequently subjected to ‘train loads’ i.e. a series of point 

loads which traverse the structure as a unit as shown in Figure 9.40: 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 9.40 

 

The position of the resultant of the train loads relative to e.g. P3 as indicated in Figure 9.40 

can be determined by considering rotational equilibrium of the train loads about P3:  

 

 R = (P1 + P2 + P3 + P4)   and   x  = [P1(a1 + a2) + P2(a2) − P4(a3)]/R 

 

The maximum bending moment in the span will occur under one of the point loads 

adjacent to the resultant load. Consider the arrangement indicated in Figure 9.41 in which 

point load P3 is assumed to be the wheel under which the maximum moment occurs and is 

positioned a distance ‘x’ to the right of the mid-span of the beam.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.41 

 

Consider the rotational equilibrium of the beam and the bending moment at D: 

+ve   ΣMF = 0    ( ) ( )A A2          2
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V L R L x x V L x x
L

× = + − ∴ = + −⎡ ⎤⎣ ⎦  
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The value of x necessary to give the maximum value of the bending moment can be 

determined by equating  dMD/dx = 0, i.e. 

( )( ) ( )( )

( )( ) ( )( )

D 2 1 2 1 0

               2 1 2 1 0

dM R
L x x L x

dx L

L x x L x

= + − + + + − =⎡ ⎤⎣ ⎦

∴ + − + + + − =
 

hence  ( ) ( )2 2       2   and  
2

x
L x x L x x x x+ − = + ∴ = =  

The centre-line of the span must divide the distance between the resultant of all the 

loads in the train of loads and the load under which the maximum bending moment 

occurs, i.e. the load nearest the resultant. 

9.8.1 Example 9.7: Evaluation of Functions for a Train of Loads 
An 8.0 m span, simply supported beam AE, supports a train of point loads at B, C, and D 

which traverse the beam as shown in Figure 9.42. Assume that the train of loads can leave 

the beam. Draw the influence lines for: 

 

 (i)  the vertical reaction VA at support A,  

 (ii) the shear force Fv,1/3 span at the third span point from A, 

 (iii) the bending moment MC under the point load at C to give the maximum moment  

 

and determine the value of each of the functions (i), (ii) and (iii) for the loading indicated. 

 

 

 

 

 

 

 

 

 

Figure 9.42 

 

(i) Vertical reaction at support A: VA 

 

δB = 1.0 

δC = (1.0 × 5.0)/8.0 = 0.625 

δD = (1.0 × 5.5)/8.0 = 0.438 

 

 

 

 

 

Figure 9.43 

 

 VA = (5.0 × 1.0) + (20.0 × 0.625) + (10.0 × 0.438) = 21.88 kN 
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The train of loads traverse the beam 
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(ii) Shear force at the third span point from A: Fv,1/3 span 

The position of the loads for the maximum shear force is dependent on the load system 

and in most cases the maximum positive value occurs when the left-hand load is at the 

point being considered and the remaining loads to the right. The maximum negative value 

usually occurs when the right-hand load is at the point under consideration and the 

remaining loads to the left. It is possible e.g. in situations where the end loads are 

significantly less than the others, the above will not apply and trial and error will be 

necessary. 

 

Case 1: consider the load at point B to be at the third-span point. 

δB = (1.0 × 5.333)/8.0 = 0.667 

δC = (1.0 × 2.333)/8.0 = 0.292 

 δD = (1.0 × 0.833)/8.0 = 0.104 

 

 

 

 

 

 

 

 

 

 

Figure 9.44 

 

 Fv,1/3 span = (5.0 × 0.667) + (20.0 × 0.292) + (10.0 × 0.104) = 10.22 kN 

 

Case 2: consider the load at point C to be at the third-span point. 

δB = zero (i.e. the load at B is not on the span) 

δC = 0.667 

 δD = (1.0 × 3.833)/8.0 = 0.479 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.45 

 

 Fv,1/3 span = (20.0 × 0.667) + (10.0 × 0.479) = 18.13 kN 

∴ The maximum shear at the third-span point = 18.13 kN 

  B                                                  C              D 
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2.667 m 

+ve

−ve

A                                                  E   
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0.333

  B                                                  C              D 
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(iii) Maximum bending moment at pont C: MC 

Assume that the maximum bending moment occurs under the point load at C and 

determine the position of the resultant load relative to C. 

 

 

 

 

 

 

 
 Figure 9.46 

 

 R = (5.0 + 20.0 + 10.0) = 35.0 kN 

 x = [P1(a1) − P3(a2)]/R = [(5.0 × 3.0) − (10.0 × 1.5)]/35.0 = 0.857 m 

 

The load at point C should be positioned such that the mid-span point of the beam bisects 

x , i.e. (0.857 × 0.5) = 0.429 m to the right of the resultant force R as shown in           

Figure 9.47. 

 

 

 

 

 

 

 

 
 Figure 9.47 

 
 The maximum value of the influence line ordinate for the bending moment at C is 

given by a(L − a)/L = 4.429 × (8.0 − 4.429)/8.0 = 1.977 m  (see Figure 9.15). 

 

δB = (1.977 × 1.429)/4.429 = 0.638 m 

δC = 1.977 m 

 δD = (1.977 × 2.071)/3.571 = 1.147 m 

 

 

 

 

 

 

 

 Figure 9.48 

 

 

 MC = (5.0 × 0.638) + (20.0 × 1.977) + (10.0 × 1.147) = 54.20 kNm 
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9.9 Problems: Influence Lines for Beams 
Problem 9.1 A simply-supported beam ABCDE is supported on a roller at B and is 

pinned support at D as shown in Figure 9.49.  

 

(a) Draw the influence lines for: 

(i)  the vertical reaction ‘VB’ at support B, 

(ii) the shear force ‘Fv,C’ at C,  

(iii) the bending moment ‘MB’ at B. 

 

(b) Using the influence lines determine the maximum and minimum values of VB and 

MB and the maximum value of Fv,C when a 10.0 kN/m load of length 4.0 m 

traverses the beam in addition to a static concentrated load as indicated. (Note: the 

10.0 kN/m load may leave the span). 

 

 
 

 

 

 

 

                        

 Figure 9.49 

 

 

Problem 9.2 A simply-supported beam AD, is pinned at support A and supported on a 

roller at D as shown in Figure 9.50. A train of two 12.0 kN loads traverse the beam as 

indicated. 

 

(a) Determine the position ‘x’ of the loads, required to produce the maximum bending 

moment in the beam, assuming that it occurs under wheel C. 

(b) Draw the influence line for the support reaction at A. 

(c) Draw the influence line for the bending moment at position ‘x’. 

(d) Using the influence lines developed above, determine the maximum value of the 

support reaction at A and the bending moment at  position ‘x’ for the train of 

loads. 
 

 

 

 

 

 

 

                        

 

 

       

Figure 9.50 
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Problem 9.3 A cantilever beam ABC, is fixed at support A as shown in Figure 9.51. The 

beam carries two fixed uniformly distributed loads and a point load which traverses the 

cantilever as indicated. 

 

(a) Draw the influence line for the vertical reaction ‘VA’ at support A. 

(b) Draw the influence line for the moment reaction ‘MA’ at support A. 

(c) Using these influence lines determine the maximum values of ‘VA’ and ‘MA’. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 9.51 

 

Problem 9.4 A two span, uniform beam ABCD is fixed at support A and supported on 

rollers at B and D as shown in Figure 9.52. Span BCD has a pin at its’ mid-span point C. 

A fixed uniformly distributed load of 15 kN/m is supported from A to point C and a 

concentrated load of 20 kN traverses the beam from A to D.  

 

(a) Draw the influence line for the moment reaction ‘MA’ at support A. 

(b) Using the influence line determine the maximum value and sense of MA. 

(c) Using the influence line determine the minimum value and sense of MA. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.52 
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9.10 Solutions: Influence Lines for Beams 
        

 

 

 

 

A simply-supported beam ABCDE is supported on a roller at B and is pinned support 

at D as shown in Figure 9.49.  

 

(a) Draw the influence lines for: 

(i)  the vertical reaction ‘VB’ at support B, 

(ii) the shear force ‘Fv,C’ at C,  

(iii) the bending moment ‘MB’ at B. 

 

(b) Using the influence lines determine the maximum and minimum values of VB 

and MB and the maximum value of Fv,C when a 10.0 kN/m load of length 4.0 m 

traverses the beam in addition to a static concentrated load as indicated. (Note: 

the 10.0 kN/m load may leave the span). 

 

  

 

 

 

 

 

 

 

 

(i) 
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Topic:  Influence Lines for Beams 

Problem Number: 9.1            Page No. 1 

VB,maximum = + [10.0 × 4.0 × 0.5 × (1.3 + 0.9)] + (15.0 × 0.7) = 54.5 kN
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(ii) 

 

 

 

 

 

 

 

(iii) 
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Problem Number: 9.1            Page No. 2 

MC,minimum = + 10.0 × [− (0.5 × 3.0 × 2.1) + (0.5 × 1.0 × 0.7)] + (15.0 × 2.1) = + 3.50 kNm 
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A simply-supported beam AD, is pinned at support A and supported on a roller at D as 

shown in Figure 9.50. A train of two 12.0 kN loads traverse the beam as indicated. 

 

(a) Determine the position ‘x’ of the loads, required to produce the maximum 

bending moment in the beam, assuming that it occurs under wheel C. 

(b) Draw the influence line for the support reactions at A. 

(c) Draw the influence line for the bending moment at position ‘x’. 

 

Using the influence lines developed above, determine the maximum value of the 

support reaction at A and the bending moment at  position ‘x’ for the train of loads. 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 R = (12.0 + 12.0) = 24.0 kN 

 x = P1(a1)/R = (12.0 × 4.0)/24.0 = 2.0 m 

 

The load at point C should be positioned such that the mid-span point of the beam 

bisects x , i.e. (2.0 × 0.5) = 1.0 m to the right of the resultant force R as shown.  

 

 

 

 

 

 

 

 
  

Solution 
Topic:  Influence Lines for Beams 

Problem Number: 9.2            Page No. 1 
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(b) 

 

 

 

 

 

 

 

 

 

(c) 

The maximum value of the influence line ordinate for the bending moment at C is 

given by a(L − a)/L = 8.5 × (15.0 − 8.5)/15.0 = 3.68 m  (see Figure 9.15). 

 

δB = (3.68 × 4.5)/8.5 = 1.95 

δC = 1.977 m 

δD = (1.977 × 2.071)/3.571 = 1.147 m 

 

 

 

 

 

 

 

  

 

 

 MC = (12.0 × 1.95) + (12.0 × 3.68) = 67.56 kNm 
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A cantilever beam ABC, is fixed at support A as shown in Figure 9.51. The beam 

carries two fixed uniformly distributed loads and a point load which traverses the 

cantilever as indicated. 

 

(a) Draw the influence line for the vertical reaction ‘VA’ at support A. 

(b) Draw the influence line for the moment reaction ‘MA’ at support A. 

(c) Using these influence lines determine the maximum values of ‘VA’ and ‘MA’. 

 
 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

 

 

Solution 
Topic:  Influence Lines for Beams 

Problem Number: 9.3            Page No. 1 

VA,maximum = + 20.0 × (1.0 × 3.0) + 10.0 × (1.0 × 5.0) + (30.0 × 1.0) = 140.0 kN 

MA  = − 20.0 × (0.5 × 3.0 × 3.0) − 10.0 × [0.5 × (3.0 + 8.0) × 5.0] − (30.0 × 8.0) = 605.0 kN 
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A two span, uniform beam ABCD is fixed at support A and supported on rollers at B 

and D as shown in Figure 9.52. Span BCD has a pin at its’ mid-span point C. A fixed 

uniformly distributed load of 15 kN/m is supported from A to point C and a 

concentrated load of 20 kN traverses the beam from A to D.  

 

(a) Draw the influence line for the moment reaction ‘MA’ at support A. 

(b) Using the influence line determine the maximum value and sense of MA. 

(c) Using the influence line determine the minimum value and sense of MA. 

 

 

 

 

 

 

 

 

 

 (a) 

Remove the restraint which induces the moment at A by introducing a pin and impose 

displacement θA at A using a moment M = 1.0 The unit moment induces general 

displacements at m and n along the beams AB and BCD as indicated. 

 

 

 

 

 

 

 

Consider span AB and use MaCaulay’s method to determine the displaced shape 

induced by the unit moment. 

 

 

 

  

 

 

 Bending moment at distance x = EI d2z/dx2  

 EId2z/dx2 = + 1.0 − 0.2x Equation (1)  

  EIdz/dx  = + 1.0x − 0.2x2/2 + A Equation (2) 

         EIz = + x2/2  − 0.2x3/6 + Ax + B Equation (3) 

 

Solution 
Topic:  Influence Lines for Beams 

Problem Number: 9.4            Page No. 1 
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 Apply the boundary conditions:   

 when x = 0   z = 0 ∴   B = 0 

 when x = 5.0   z = 0 ∴   A = [− 25.0/2 + (0.2 × 5.03)/6]/5.0 = − 1.667 

 

 when x = 0     The slope at A is given by dz/dx  ∴ θA = Aδ A =  + A/EI = − 1.667/EI 

 when x = 5.0 θB = [+ (1.0 × 5.0) − (0.2 × 5.02)/2 − 1.667]/EI = + 0.833/EI 

 

Consider the span BCD: 

 

 

  

 

 

  

Since the bending moment between B and D is zero, the deflected shape between B 

and D comprises two straight sections. 

5.0 < x < 8.0  nδ A = + (x − 5.0)θ B = ( x − 5.0) × 0.833/EI =  (0.833x − 4.165)/EI m 

when x = 8.0   Cδ A = [(0.833 × 8.0) − 4.165]/EI = + 2.50/EI m 

 

8.0 < x < 11.0  

Consider ‘x’ from the right-hand side: 

 

n A 2.50

3.0

EI

x

δ =   ∴ nδA = 0.833x/EI  m 

 

For 0 < x < 5.0  the influence line co-ordinates are given by: 

 m A

A A

δ
δ

= −{(+ x2/2  − 0.2x3/6 − 1.667x)/EI}/(1.667/EI) = (− 0.3x2 + 0.02x3 + 1.0x) m 

 For 5.0 < x < 8.0  the influence line co-ordinates are given by: 

 n A

A A

δ
δ

= − {(0.833x − 4.165)/EI}/(1.667/EI) = (− 0.5x + 2.50) m 

The influence line values are determined by substituting appropriate values for x 

measured from the left-hand side. 

 

For 8.0 < x < 11.0  the influence line co-ordinates are given by: 

 n A

A A

δ
δ

= − (0.833x/EI)/(1.667/EI)  = − 0.5x m 

The influence line values are determined by substituting appropriate values for x 

measured from the right-hand side. 

Solution 
Topic:  Influence Lines for Beams 

Problem Number: 9.4            Page No. 2 
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MA = (concentrated load × ordinate) + (distributed load × area)  

 

 

 

 

 

 

 

 

 

 

 

 

 

Influence line for MA 

 

Consider span AB: 

The maximum ordinate occurs where the slope is zero, i.e. dz/dx = 0 

EI dz/dx  = + 1.0x − 0.2x2/2 − 1.667 = 0  ∴ 0.1x2 − 1.0x + 1.667 = 0 

∴ x = 2.114 m from A 

Influence line ordinate δAB maximum = (− 0.3x2 + 0.02x3 + 1.0x) 

The maximum influence line ordinate at 2.114 m from A = + 0.962 m  

 

Area under the influence line diagram is given by:  

( ) 55.0
2 3 3 4 2 2

0 0
0.3 0.02  1.0  = 0.1 0.005 0.5 = 3.125 mx x x dx x x x⎡ ⎤− + + − + + +⎣ ⎦∫  

 

Consider span BCD: δBCD maximum = (− 0.5x + 2.50) m 

The maximum ordinate occurs at point C, δBCD maximum = − (0.5 × 8.0) + 2.50 = − 1.5 m 

Area under the influence line diagram between B and C is given by:  

− (0.5 × 3.0 × 1.5) = − 2.25 m2 

 

(b) 

The maximum value for MA occurs when the concentrated load is 2.114 m from 

support A, i.e. 

MA,maximum = +(15.0 × 3.125) − (15.0 × 2.25) + (20.0 × 0.962) = + 32.37 kNm 

 

(c) 

The minimum value for MA occurs when the concentrated load is at point C 

MA,minimum = +(15.0 × 3.125) − (15.0 × 2.25) − (20.0 × 1.5) = − 16.88 kNm 

Solution 
Topic:  Influence Lines for Beams 

Problem Number: 9.4            Page No. 2 
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10. Approximate Methods of Analysis  

10.1 Introduction 
The use of computer software is invariably employed by engineers when undertaking 

mathematical modelling in structural analysis and design. The results from such analyses 

are always an approximation to the actual structural behaviour irrespective of the 

complexity and sophistication of the software. All software results are dependent on the 

assumptions made by the developers of that software and the limitations on use of the final 

product. 

It is important when using such methods that design engineers can verify the accuracy of 

the results from the computer analysis and detect any gross errors due to e.g. incorrect 

input data, incorrect modelling being used or inappropriate use being made of the 

software. This can be achieved in many cases by the use of approximate manual 

calculations. 

In addition to confirming the validity of computer output, it is often convenient for an 

engineer to obtain approximate values of design effects induced in members by the design 

loading when it is neither convenient nor suitable to carry-out a full, more accurate 

rigorous analysis, e.g. whilst on site, attending meetings with other related professionals or 

conducting preliminary design for initial feasibility and/or costing of a proposed project. 

Clearly more detailed analysis/design will be required at a later stage of the project. 

Statically determinate structures are relatively straight forward to analyse requiring only 

the use of the three equations of static equilibrium for plane-frames to obtain axial loads, 

shear forces and bending moments. 

Statically indeterminate structures are more complex and require knowledge of the 

relative member stiffness properties and the compatibility characteristics of the structure to 

determine accurate results. Approximate methods of analysis can be used to estimate the 

required member forces in a structure by consideration of the deflected form and in rigid-

jointed frames, the consequent points of contraflexure, i.e. points of zero bending moment 

in the members. Where a point of contra-flexure can be identified and its position 

estimated with reasonable accuracy then this point may be regarded as a ‘pin’ in the 

structure. The existence of a pin provides an additional equation which may be used in 

conjunction with the three standard equations of static equilibrium. In the case of  pin-

jointed frames, tension only systems are sometimes used in which members are slender 

and designed to resist only tension forces; any member with a compression force is 

assumed to buckle and hence be ineffective. This arrangement is very common in the 

provision of cross- bracing to resist lateral wind forces. 

This chapter describes various techniques which may be used to obtain approximate 

member forces for indeterminate, pin-jointed and rigid-jointed structures suitable for 

preliminary analysis or checking computer output as indicated above. 

10.2 Example 10.1 - Statically Indeterminate Pin-jointed Plane Frame 1 
The degree of indeterminacy of the pin-jointed frame shown in Figure 10.1 is given by: 

 

 ID = (m + r)  2n = (16 + 3)  (2  8) =  3    (see Chapter 1: Section 1.5.1) 
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 (a) 

 

  

 

 

 

 

 

 

 

 

 

 (b) 

 

 

Figure 10.1 

 

It is evident from the deflected form that diagonals BH, CG and EG increase in length and 

hence are tension members whilst diagonals AC, HD and DF decrease in length and are 

compression members. 

Since the degree of redundancy is equal to three it is necessary to make three assumptions 

in order to analyse the frame using the equations of equilibrium alone. There are two 

options as follows: 

 

i)  assume a tension bracing system in which the compression diagonals are slender 

and assumed to be ineffective and do not support any load. The frame is therefore 

reduced to a statically determinate frame and the forces determined as indicated in 

Chapter 3 with the forces as shown in Figure 10.2.  

  

 

 

 

 

 

 

 

 

 

Figure 10.2 
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ii)  assume a bracing system in which all of the diagonals are assumed to be non-

slender and have the same cross-sectional area. The shear load in any given panel is 

assumed to be shared equally by the two diagonals in the panel, one in tension and 

the other in compression. Three additional equations can be obtained by considering 

the equilibrium of three sections 1-1, 2-2 and 3-3 indicated in Figure 10.3. 

  Where the cross-sectional areas of the two diagonals are not the same, distributing 

the shear in proportion to their axial stiffness, i.e. EA/L, will give a more accurate 

solution. 

   

 

 

 

 

 

 

 

 

   

  

 

 

Figure 10.3 

 

sin = 3.0/5.0 = 0.6   cos = 4.0/5.0 = 0.8 

Section 1-1  

 

+ 15.0  FBH sin + FAC sin = 0  

(Note: Assume FAC =  FBH) 

 FBH = 15.0/(2  0.6) = + 12.5 kN  (Tie) 

  FAC =  FBH =  12.5 kN  (Strut) 

 

 

+ (FBH cos  3.0) + (FBC  3.0) = 0 

 FBC =  (12.5  0.8 3.0)/3.0 =  10.0 kN (Strut) 

 

 

FBC + (FBH cos) + (FAC cos) + FAH = 0  

 FAH = + 10.0  (12.5  0.8) + (12.5 0.8) = + 10.0 kN (Tie) 

 

Consider the vertical equilibrium at joint A: 

 

 

 

+ 15.0 + FAB  FAC sin = 0  

 FAB =  15.0 + (12.5  0.6) =  7.50 kN  (Strut) 

     

+ve MA = 0 

+ve    Fz = 0 

+ve    Fx = 0 

+ve    Fz = 0 

FAB 

10.0 kN 

15 kN 

zero 
12.5 kN 

 

 

B 

 A 

15 kN 

zero 

FBC 

FBH 

FAH 

FAC 

All diagonals can resist tension or compression. 

   

3 2 1 

 A                      H                   G                   F 

15 kN 

zero 

30 kN 

   

B                 C                 D                          E 

45 kN 
3 2 1 
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Section 2-2 
  

+ 15.0  FCG sin + FHD sin = 0  

(Note: Assume FHD =  FCG) 

 FCG = 15.0/(2  0.6) = + 12.5 kN  (Tie) 

  FHD =  FCG =  12.5 kN  (Strut) 

 

 

 

+ (15.0  4.0) + (FCG cos  3.0) + (FCD  3.0) = 0 

 FCD =  (15.0  4.0)  (12.5  0.8 3.0)/3.0 =  30.0 kN 

 (Strut) 

 

FCD + (FCG cos) + (FHD cos) + FHG = 0  

 FHG = + 30.0  (12.5  0.8) + (12.5 0.8) = + 30.0 kN 

(Tie) 

Consider the vertical equilibrium at joint H: 

 

 

+ (12.5   sin)  (12.5   sin) + FBH = 0  

 FHC = zero   

 

Section 3-3  

+ 30.0  FEG sin + FFD sin = 0  

(Note: Assume FFD =  FEF) 

 FEG = 30.0/(2  0.6) = + 25.0 kN  (Tie) 

 FFD =  FEG =  25.0 kN  (Strut) 

 

 

 (FEG cos  3.0)  (FED  3.0) = 0 

 FED =  (25.0  0.8 3.0)/3.0 =  20.0 kN  (Strut) 

 

 

 FED  (FEG cos)  (FFD cos)  FFG = 0  

 FFG = + 20.0  (25.0  0.8) + (25.0 0.8) = + 20.0 kN (Tie) 

 

Consider the vertical equilibrium at joints G and F: 

 

 

+ (12.5  sin) + (25.0  sin) + FGD = 0  

 FHC =  (12.5  0.6)  (25.0  0.6) =  22.50 kN  (Strut) 

 

 

+ 30.0  (25.00  sin)  + FFE = 0  

 FFE =  30.0 + (25.0  0.6) =  15.0 kN  (Strut) 

+ve MH = 0 

+ve    Fz = 0 

+ve    Fx = 0 

+ve    Fz = 0 

+ve MF = 0 

+ve    Fz = 0 

+ve    Fx = 0 

+ve    Fz = 0 
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30 kN 

B               C 
FCD  

FCG 

 A                      H 
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zero 
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The approximate member forces and the more accurate results using computer analysis are 

shown in Figure 10.4 and Figure 10.5 respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 10.4: Approximate member forces 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.5: More accurate member forces 

10.3 Example 10.2 - Statically Indeterminate Pin-jointed Plane Frame 2 
In some indeterminate trusses the applied load system can be apportioned to two or more 

statically determinate component trusses which can be considered to make up the original 

truss. The number of component trusses making up the original truss is equal to (ID +1). 

The member forces are then determined by superposition of the two force systems. 

Consider the truss shown in Figure 10.6 where ID = (18 + 3)  (2  10) = 1.      

 

 

 

 

 

 

 

 

 

 

 

Figure 10.6 

 

This truss can be decomposed into two statically determinate trusses (i.e. ID + 1) as shown 
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in Figure 10.7 and Figure 10.8 with their respective applied loads. The method-of-sections 

/joint resolution can be used to determine accurately the member forces as indicated. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.7 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.8 

 

The final member forces are found by adding those determined from the individual 

component trusses as shown in Figure 10.9, e.g. consider members AB and JD 

Total force in member AB  =  10.0 + 0 =  10.0 kN  compression 

Total force in member JI = + 20.0 + 25.0 = + 45.0 kN  tension 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.9 
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10.4 Example 10.3 - Statically Indeterminate Single-span Beam 
Consider the statically indeterminate beam shown in Figure 10.10(a) which is fully fixed 

at its end supports and carries a uniformly distributed load of w kN/m length. The 

deflected shape and the bending moment diagram are indicated in Figure 10.10(b) and 

Figure 10.10(c) respectively. 

 

 

 (a) 

 

 

 

 

 (b) 

 

 

 

 

 

 

 (c) 

 

 

 

Figure 10.10 

 

The beam has three degrees-of-indeterminacy. Generally the axial loading can be 

considered to be negligible and ignored and hence two assumptions are required to 

determine the bending moments and support reactions. It is evident from the symmetry of 

the beam and loading that two points of contraflexure exist; these can be regarded as pins, 

i.e. point of zero moment.  

Since the beam in Figure 10.10 is a standard case. The value of the support moments ‘M’ 

is known to equal  wL2/12 and each vertical reaction ‘VA and VB’ is equal to wL/2. 

This information can be used to determine the position of the points of contraflexure for 

the beam, i.e. 

 

 

 

 (a) 

 

 

 

 

 

 (b) 

 

 Figure 10.11 
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Consider the central portion of the beam with span (L  2l1): 

From Figure 10.10 :  Mmaximum = (wL2/8  M) = (wL2/8  wL2/12) = wL2/24  

From Figure 10.11:   Mmaximum = 
2

2

8

w l
  

2 2

2

8 24

w l w L 
  

        2 1hence  3 0.58    and   0.58 2 0.21l L L l L L L      

Similar calculations can be carried out for other standard cases as shown in Figure 10.12. 

In reality it is unlikely that a support will be fully fixed. In most cases there will be some 

flexibility and rotation at the support points depending on the stiffnesses and loads on each 

span. Points of contraflexure can be assumed based on the support and loading conditions 

in each individual case and the values given in Figure 10.12.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.12 
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10.5 Example 10.4 - Multi-span Beam 
A uniform, three-span continuous beam ABCD is fixed at support A and supported on 

rollers at B, C and D as shown in Figure 10.13(a). The deformed shape and shape of the 

bending moment diagram are shown in Figure 10.13(b) and Figure 10.13(c) respectively.  

Span BC supports a uniformly distributed at load of 10 kN/m length. Assuming suitable 

points of contraflexure, determine the approximate value of the support reactions. 

ID = 3  3 pins required 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.13 

 

In span AB there is no loading and MA = MB/2 (i.e. the carry-over moment – see       

Chapter 4: 4.7.2) and consequently the point-of-contraflexure must be one third of the 

span from A, i.e. l1 = 6.0/3 = 2.0 m. In span BC it is reasonable to assume the same values 

for l1 and l3 since both ends have a significant continuity moment and the difference in 

rotation at each support will be small. It is typical in such situations to assume a value of 

0.15L to allow for the rotation of the joint, i.e.  l2 = l3 = (0.15  8.0) = 1.2 m. The beam can 

be considered in four sections as shown in Figure 10.14. 

 

  

 

 

 

 

 

Figure 10.14 
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 (a) – three-span beam 

 (c) – shape of the bending moment diagram 

 (b) – deformed shape of the beam 
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Consider section P2 to P3: 

 

 

  (10.0  5.6) + V2 + V3 = 0     and    V2 = V3  

 V2 = V3 = 56.0/2 = 28.0 kN 

 

 

Consider section P1 to P2: 

 

 

 (V1  4.0) + (10.0  1.22 (28.0  1.2) = 0 

V1 = 10.2 kN 

 

 

VB  10.2  (10.0  1.2)  28.0 = 0   VB = 50.2 kN 

MB =  (10.2  4.0) =  40.8 kNm 

 

Consider section A to P1: 

 

 

 VA + 10.2  = 0   VA = 10.2 kN 

MA = + (10.2  2.0) = + 20.4 kNm 

 

 

Consider section P3 to D: 

 

 

+ (VD  6.0)  (10.0  1.22 (28.0  1.2) = 0 

VD = 6.8 kN 

 

 

VC  28.0  (10.0  1.2)  6.8 = 0     VC = 46.8 kN 

MC =  (6.8  6.0) =  40.8 kNm 

 

Check:   Total applied vertical load = (10.0  8.0) = 80.0 kN 

   Total vertical reaction = ( 10.2 + 50.2 + 46.8  6.8) = 80.0 kN 

 

 

 

 

 

 

 

 

 

Figure10.15 
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The assumed points of contraflexure in continuous beams are given in some design codes, 

e.g. in the Eurocode for the design of structural concrete, EN 1992-1-1:2004: Figure 5.2, 

the value of 0.15L is adopted as indicated in Figure 10.16. where lo is the distance between 

points of zero moment for calculating the effective flange width of T and L beams. 

 

 

 

 

 

 

 

where the length of the cantilever, l3, should be less than half the adjacent span and the 

ratio of adjacent spans should lie between 2/3 and 1.5. 

 

Figure10.16: Extract from EN 1992:1-1:2004  

10.6 Rigid-jointed Frames Subjected to Vertical Loads 
In rigid-jointed frames it is unlikely that the joints will be fully rigid. Generally there will 

be some flexibility at the support points of the beams to the columns. Since the actual 

beam/column joint will be neither free (i.e. zero moment) nor fully fixed it is common 

practice to assume that the points of contraflexure occur between the assumed fixed-ends 

and the positions indicated in Figure 10.12, e.g. at an average value equal to                     

(0 + 0.21)L  0.1L from the column.  

It is also acceptable to ignore the axial load effects in the beams since they are negligible 

and have no significant effect on the deformed shape of the beams. Consider the three-

storey, three-bay rigid-jointed frame indicated in Example 10.5. 

10.6.1 Example 10.5 – Multi-storey Rigid-jointed Frame 1 
A three-bay, three-storey rigid-jointed frame is shown in Figure 10.17. Using the data 

given determine the approximate 

 (i) determine the member forces, 

 (ii) determine the support reactions and 

 (iii) draw the approximate bending moment diagram for the frame. 

 

Note: all members have the 

same EI value. 

 

 

 

 

 

 

 

 Figure 10.17 
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The deformed shape of the frame, neglecting axial deformation, is shown in                

Figure 10.18 with the assumed points of contraflexure of the beams as indicated.          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.18 

 

Consider the force systems indicated in Figure 10.19 in which the points of contraflexure 

are assumed to be pins.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.19 
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Application of the equations of equilibrium as in Example 10.4 yield the member forces 

determined as follows: 

 

Consider the first floor level shown in Figure 10.20. 

 

 

 

 

 

 

 

Figure 10.20 

 

 Beam EF: V1 = (12.0  5.4)/2.0 = 32.4 kN    

     MEF = MFE = (12.0  0.62)/2 + (32.4  0.6) = 21.6 kNm 

 

 Beam FG V2 = (12.0  6.4)/2.0 = 38.4 kN    

     MFG = MGF = (12.0  0.82)/2 + (38.4  0.8) = 34.6 kNm 

 

 Beam GH V1 = (12.0  5.4)/2.0 = 32.4 kN    

     MGH = MHG = (12.0  0.62)/2 + (32.4  0.6) = 21.6 kNm 

 

The out-of-balance moment at joint E = 21.6 kNm is shared by the columns EI and EA in 

proportion to their flexural stiffnesses kEI and kEA, i.e. EI/L values. 

 kEI = I/3.5/( I/3.5 + I/4.5) = 0.56  and kEA = I/4.5/( I/3.5 + I/4.5) = 0.44 

 MEI = (0.56  21.6) = 12.1 kNm  and   MEA = (0.44  21.6) = 9.5 kNm 

 

The moments at the bases of the columns are normally assumed to be the same as the 

values at their top ends. Assume the support moment MAE = 9.5 kNm 

 

The out-of-balance moment at joint F = (34.6  21.6) = 13.0 kNm is shared by the 

columns FJ and FB in proportion to their flexural stiffnesses kFJ and kFB. 

 

 kFJ = 0.56   and   kFB = 0.44 

 MFJ = (0.56  13.0) = 7.3 kNm  and   MFB = (0.44  13.0) = 5.7 kNm 

 Assume the support moment MBF = 5.7 kNm 

 

Since the structure and loading are symmetrical joint G is the same as joint F. 

MGK = 7.3 kNm   and   MGC = 5.7 kNm 

 Assume the support moment MCG = 5.7 kNm 

  

Due to the symmetry joint H is the same as joint E. 

 MHL = 12.1 kNm  and   MHD = = 9.5 kNm 

 Assume the support moment MDH = 9.5 kNm 

 

 

G 
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Consider the second floor level shown in Figure 10.21. 

 

 

 

 

 

 

Figure 10.21 

  

 As for the first floor V1 = 32.4 kN    MIJ = MJI = 21.6 kNm 

        V2 = 38.4 kN    MJK = MKJ = 34.6 kNm 

        V1 = 32.4 kN    MKL = MLK = 21.6 kNm 

 

The out-of-balance moment at joint I = 21.6 kNm is shared by the columns IM and IE in 

proportion to their flexural stiffnesses kIM and kIE. 

 kIM = I/3.5/( I/3.5 + I/3.5) = 0.50  and kIE = I/3.5/( I/3.5 + I/3.5) = 0.50 

 MIM = (0.50  21.6) = 10.8 kNm  and   MIE = (0.50  21.6) = 10.8 kNm 

 

The out-of-balance moment at joint J = 13.0 kNm is shared by the columns JN and JF in 

proportion to their flexural stiffnesses kJN and kJF. 

 

 kJN = 0.50   and   kJF = 0.50 

 MJN = (0.50  13.0) = 6.5 kNm  and   MJF = (0.50  13.0) = 6.5 kNm 

 

Since the structure and loading are symmetrical joint K is the same as joint J. 

 MKO = 6.5 kNm   and   MKG = 6.5 kNm 

  

Due to the symmetry joint L is the same as joint I. 

 MLP = 10.8 kNm   and   MLH = = 10.8 kNm 

 

Consider the roof level shown in Figure 10.22. 

 

 

 

 

 

Figure 10.22 

 

 Beam MN: V1 = (8.0  5.4)/2.0 = 21.6 kN    

     MMN = MNM = (8.0  0.62)/2 + (21.6  0.6) = 14.4 kNm 

 

 Beam NO V2 = (8.0  6.4)/2.0 = 25.6 kN    

     MNO = MON = (8.0  0.82)/2 + (25.6  0.8) = 23.0 kNm 

 

 Beam OP V1 = (8.0  5.4)/2.0 = 21.6 kN    

     MOP = MPO = (8.0  0.62)/2 + (21.6  0.6) = 14.4 kNm 
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The out-of-balance moment at joint M = 14.4 kNm is balanced by the column MI. 

 MMI = 14.4 kNm  

 

The out-of-balance moment at joint N = (23.0  14.4) = 8.6 kNm is balanced by the 

column NJ. 

 MNJ = 8.6 kNm 

 

Since the structure and loading are symmetrical joint O is the same as joint N. 

 MOK = 8.6 kNm 

  

Due to the symmetry joint P is the same as joint M. 

 MHL = 14.4 kNm 

 

The bending moment at the mid-span of beams EF, IJ, GH, and KL is given by: 

 M   (wl2/8 = (12.0kNm 

 

The bending moment at the mid-span of beam MN is given by: 

 M   (wl2/8 = (8.0kNm 

 

The bending moment at the mid-span of beams FG and JK is given by: 

 M   (wl2/8 = (12.0kNm 

 

The bending moment at the mid-span of beams NO is given by: 

 M   (wl2/8 = (8.0kNm 

 

The approximate bending moment diagram is indicated in Figure 10.23. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.23: Approximate Bending Moment Diagram 
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The level of accuracy of the results is dependent on the assumed positions of the points of 

contraflexure, i.e. the assumed value of l. The limiting values range from very flexible 

joints with zero moment (l = 0) to fully-fixed joints with l equal to the values indicated in 

Figure 10.12 (e.g. for a distributed load l = 0.21L where the joint moment is equal to 

wL2/12). The assumption of 0.1L in this Example 10.5 will give results which lie between 

those limits and which are the correct order of magnitude. 

The column axial loads and support reactions are determined readily by summation of the 

roof and floor loads and rotational equilibrium of the bottom level of columns as indicated 

in Figure 10.24. 

 

 Column Axial Loads: 

 NMI = NPL  (8.0  3.0) = 24.0 kN    

 NIE = NLH  24.0 + (12.0  3.0) = 60.0 kN 

 NEA = NHD  60.0 + (12.0  3.0) = 96.0 kN 

 NNJ = NOK  (8.0  7.0) = 56.0 kN    

 NJF = NKG  56.0 + (12.0  7.0) = 140.0 kN 

 NEA = NHD  140.0 + (12.0  7.0) = 224.0 kN 

 

 Support Reactions: 

 VA = VD  96.0 kN;  VB = VC  224.0 kN 

 HA = HD  (2  9.5) /4.5 = 4.2 kN ;  HB = HC  (2  5.7) /4.5 = 2.5 kN ;  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.24 

 

Note: the side-sway induced by gravity loads is normally very small (or zero where both 

the frame and loading are symmetrical) and consequently ignored in approximate analyses. 
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10.6.2 Approximate Analysis of Multi-storey Rigid-jointed Frames Using Sub-frames 
Many reinforced concrete structures are cast in-situ resulting in a loadbearing frame in 

which the slabs, beam and columns act as a continuum to resist and transfer applied loads 

to the foundations. In braced concrete and steel structures, elements such as the cross-

bracing, shear-walls and or shear-cores are designed to resist the lateral wind loading in 

transverse and longitudinal directions whilst the slabs, beams and columns are designed to 

resist the vertical gravity loading. 

The design of rigid-frames is based on an analysis to determine maximum sagging and 

hogging bending moments, maximum shear forces and/or axial loads in the members. The 

continuity of the structure requires an analysis to be carried out for multi-span beams 

and/or slabs in addition to multi-storey columns. 

As an alternative to the method indicated in Section 10.6.1, the structure can be considered 

as a series of sub-frames. Consider the multi-storey frame indicated in Figure 10.25 in 

which it is assumed that the lateral loading is resisted by separate elements, not indicated, 

such as shear-cores. The slabs, beams and columns are assumed to transfer only vertical 

loads by rigid-frame action. The sub-frames may be analysed using the method of moment 

distribution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         Figure 10.25 

         Figure 10.26 

10.6.2.1 Simplification into Sub-frames 

Each sub-frame may be taken to consist of the beams at one level together with the 

columns above and below. The ends of the columns remote from the beams may generally 

be assumed to be fixed unless the assumption of a pinned end is clearly more reasonable 

(for example, where a foundation detail is considered unable to develop moment restraint). 

This is illustrated in Figure 10.26.  

Sub-frame for analysis of beams and columns 
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10.6.2.2 Alternative Simplification for Individual Beams and Associated Columns 

The moments and forces in each individual beam may be found by considering a 

simplified sub-frame consisting only of that beam, the columns attached to the end of that 

beam and the beams on either side, if any.  

The column and beam ends remote from the beam under consideration may generally be 

assumed to be fixed unless the assumption of a pinned end is clearly more reasonable. The 

stiffness of the beams on either side of the beam considered should be taken as half their 

actual values if they are taken to be fixed at their outer ends.  

The moments in an individual column may also be found from this simplified sub-frame 

provided that the sub-frame has as its central beam the longer of the two spans framing 

into the column under consideration. This is illustrated in Figure 10.27. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.27 

10.6.2.3  ‘Continuous Beam’ Simplification 

The moments and forces in the beams at one level may also be obtained by considering the 

beams as a continuous beam over supports, providing no restraint to rotation. This is 

illustrated in Figure 10.28. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.28 

10.6.2.4 Asymmetrically-loaded columns where a beam has been analysed in accordance 

with the ‘Continuous Beam’ Simplification in Section 10.6.2.3 above. 

The ultimate moments may be calculated by simple moment distribution procedures, on 

the assumption that the column and beam ends remote from the junction under 

consideration are fixed and that the beams possess half their actual stiffness. The 

Sub-frame for analysis of beams at any one level 

Sub-frame for analysis of middle beam or columns 

use 0,5  actual 

beam stiffness 

use 0,5  actual 

beam stiffness 
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arrangement of the design ultimate imposed load should be such as to cause the maximum 

moment in the column. This is illustrated in Figure 10.29. 

A number of critical load patterns must be considered in all of the above sub-frames to 

determine the design values of shear and bending. In the case of columns it is necessary to 

include load patterns which will produce (i) the maximum axial effect combined with its 

coincident bending effect and (ii) the maximum bending effect combined with its 

coincident axial effect. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.29 

10.6.3 Simple Portal Frames with Pinned Bases Subjected to Horizontal Loads  
Simple rectangular portal frames with pinned bases as shown in Figure 10.30 are singly 

redundant and consequently require one assumption in order to determine the member 

forces. The deflected shape indicates a point of contraflexure assumed to be at the mid-

span of the beam. Analysis using this assumption results in the horizontal support 

reactions being equal to P/2. This is consistent with frames in which the columns are 

identical where the lateral load divides in proportion to the flexural stiffness of the 

columns producing equal horizontal reactions at the base.  

 

 

 

 

 (VD  L) + (P  h) = 0 

 VD = Ph/L 

 

 

 (VD  L)/2 + (HD  h) = 0 

 HD = P/2   and   HA = P/2 

 

Figure 10.30 

10.6.3.1 Example 10.6: Simple Rectangular Portal Frame – Pinned Bases 

A rigid-jointed, simple portal frame with pinned bases is subjected to a horizontal load of 

15.0 kN as shown in Figure 10.31. Determine the approximate values of the support 

reactions and sketch the approximate bending moment diagram. 

Alternative sub-frame for analysis of column where beams 

are analysed using the continuous beam simplification. 
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 Figure 10.31 

  

  

 

 + (15.0  4.0)  (VD  10.0) = 0  VD = 6.0 kN 

 

 

 + VA + VD = 0  VA =  6.0 kN 

  

 HA = HD = 15.0/2 = 7.5 kN  

 

 Bending moment at joints B and C: 

 MB = + (7.5  4.0) = 30.0 kNm   (tension inside the frame) 

 MC =  (7.5  4.0)  30.0 kNm  (tension outside the frame)   

 (Note: in this case the results are the exact values with the symmetrical frame and 

points of contraflexure at the supports.) 

 

 

 

 

 

 

 

 

  Figure 10.32           Bending moment diagram 

10.6.4 Simple Portal Frames with Fixed Bases Subjected to Horizontal Loads  
Simple rectangular portal frames with fixed bases as shown in Figure 10.33 have three 

degrees-of-indeterminacy and consequently require three assumptions in order to 

determine the member forces. The deflected shape indicates points of contraflexure 

assumed to be at the mid-span point of the beam and in the columns.  

 

 

 

 

 

 

 Figure 10.33 
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The position of the point of contraflexure in the columns is dependent on the relative 

flexural stiffness between the columns and the beam. This would occur at the mid-height 

position of the column if the beam and the fixed support were infinitely stiff. For a typical 

frame there will be some flexibility in both the beam and the support and the point of 

contraflexure will be slightly higher than mid-height. It is reasonable to assume a position 

equal to 0.6 of the column height from the base. 

If the columns are identical then it can be assumed that the horizontal support reactions 

and the shear forces in the columns are equal to P/2. This, in combination with the 

assumed points of contraflexure at a height of 0.6h, will enable the member forces to be 

determined. (Note: the point of contraflexure in the beam is not required in this case). 

10.6.4.1 Example 10.7: Simple Rectangular Portal Frame – Fixed Bases 

A rigid-jointed, simple portal frame with fixed bases is subjected to a horizontal load of 

15.0 kN as shown in Figure 10.34. Determine the approximate values of the support 

reactions and sketch the approximate bending moment diagram. 

 

 

 

 

 

 

 

 Figure 10.34 

 

 

Consider the equilibrium of the frame above a horizontal section through the points of 

contraflexure in the columns: 

 

 

 

 

  Figure 10.35 

 

 

 Assume that the column shear forces are equal    H = 15.0/2 = 7.5 kN  

 

  

+ (15.0  1.6)  (V2  10.0) = 0  V2  2.4 kN 

 

 

 + V2 + V1 = 0  V1   2.4 kN 

  

 Bending moment at joints B and C: 

 MB  + (7.5  1.6) = + 12.0 kNm   (tension inside the frame) 

 MC   (7.5  4.0) =  12.0 kNm  (tension outside the frame)   
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Consider the equilibrium of the frame below a horizontal section through the points of 

contraflexure in the columns: 

 

 

 

 

 

   

   

  Figure 10.36 

 

 

 Assume that the horizontal support reactions are equal: 

   HA = HD = 15.0/2 = 7.5 kN  

 

  

+ (7.5  2.4)  MA = 0  MA  18.0 kNm 

 

 

 + 2.4  VA = 0  VA   2.4 kN 

  

 Similarly for column CD 

 

 

 

 

 

  

  Figure 10.37           

            Approximate bending moment diagram 

10.7 Multi-storey, Rigid-jointed Frames Subjected to Horizontal Loads  
The behaviour of multi-storey, rigid-frames when subjected to lateral loading is different 

from that under vertical loading. The deformed shape of the structure indicates a single 

point of contraflexure in the beams in addition to the columns as shown in Figure 10.38. 

There are generally two methods of approximate analysis which are used, they are: 

 

 (i) the portal method which is more suitable for low-rise buildings, e.g. where the 

width of the frame is equal to or greater than the height of the frame and 

  

 (ii) the cantilever method which is more suitable for taller, slender buildings. 

10.7.1 Portal Method 
In the case of multi-storey, multi-bay frames an assumption in addition to the points of 

contraflexure must be made, i.e. the horizontal shear force is divided among all the 

columns on the basis that each interior column resists twice as much shear force as the 
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exterior columns. The shear force distributed to columns is approximately in proportion to 

their flexural stiffness (EI/L). In many cases the interior columns support twice as much 

floor area as the exterior columns and consequently tend to be larger. In situations where 

this is not the case, e.g. where the exterior columns support masonry infills/cladding rather 

than glazing units, the distribution of shear may be modified accordingly.  

In general terms for a multi-bay frame where ‘n’ is the number of bays and ‘P’ is the total 

shear above the storey being considered, the number of interior columns is equal to          

(n  2) each of which resist P/n whilst the two exterior columns resist P/2n as shown in 

Figure 10.38. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             

  Number of bays n = 3       Assumed points of contaflexure 

 

Figure 10.38 

 

The method involves consideration of the equilibrium of a series of horizontal sections 

taken through the points of contraflexure at each floor level to determine the shear, axial 

force and bending moments in each member as illustrated in Example 10.8. 

10.7.1.1 Example 10.8: Multi-storey Rigid-jointed Frame 2 

A three-bay, three-storey 

rigid-jointed frame is shown 

in Figure 10.39. 

Using the portal method 

determine the approximate 

values of the member forces 

and sketch the bending 

moment diagram. 

 

 

    Figure 10.39 
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Consider the equilibrium of the frame at a series of  horizontal sections through the points 

of contraflexure in the columns at each floor level assuming axial loading in the columns 

and the shear force distributed as indicated in Figure 10.40: 

 

 

 

 

 

Figure 10.40 

 

   (H + 2H + 2H + H) =  6.0H = 5.0   H = 5.0/6.0 = 0.83 kN 

 

Consider the first bay M-N  

 

  

+ (3.0  V1)  (0.83  1.75) = 0   

 V1  1.45/3.0 = 0.48 kN     (compression) 

                      Figure 10.41 

 Bending moments at joint M: 

 MMI   (0.83  1.75) = 1.45 kNm  (tension outside the frame) 

   MMN = MMI  1.45 kNm 

 

(Note: The shear is constant along member MN and MNM = MMN) 

MNM  1.45 kNm   (tension inside the frame)   

 

Consider the first and second bays M-N-O 

  

 

 

 

 

                    Figure 10.42 

 

 

  

+ (10.0V1) + (4.0V2)  (0.83  1.75)  (1.66  1.75) = 0  

+ (10.0  0.48) + (4.0  V2)  4.36 = 0   V2   0.44/4.0 =  0.11 kN    (tension) 

  

 Bending moment at joint N: 

  MNM  1.45 kNm from above     (tension inside the frame) 

 MNJ   (1.66  1.75) =  2.90 kNm   

                   Figure 10.43 

 Considering rotational equilibrium of joint N: 

 MNO  ( 1.45 + 2.90) =  1.45 kNm      (tension outside the frame)   

 MON = MNO  1.45 kNm    (tension inside the frame) 
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Consider the third bay O-P 

 

  

 (3.0  V4)  (0.83  1.75) = 0   

 V4   1.45/3.0 =  0.48 kN     (tension) 

                  Figure 10.44 
 Bending moments at joint P: 

 MPL   (0.83  1.75) = 1.45 kNm  (tension inside the frame) 

   MPO = MPL  1.45 kNm 

 

(Note: The shear is constant along member OP and MOP = MPO) 

MOP  1.45 kNm   (tension outside the frame)   

 

 Considering rotational equilibrium of joint O: 

 MON  1.46 kNm     

 MOP  1.45 kNm 

 MOK  (1.45 + 1.45) =  2.90 kNm           Figure 10.45  

 

  Considering the vertical equilibrium of the sub-frame shown in Figure 10.40: 

 

  (V1 + V2 + V3 + V4 = 0 )      V3 =  (0.48  0.11  0.48) = + 0.11  (compression)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.46 

 

  MIM = ( 0.83  1.75) = 1.45 kNm 

  MJN = ( 1.663  1.75) = 2.90 kNm 

  MKO = ( 1.66  1.75) = 2.90 kNm 

  MLP = ( 0.83  1.75) = 1.45 kNm 
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Consider the equilibrium of the sub-frame above horizontal sections through the points of 

contraflexure in the columns between the 1st/2nd floor and 2nd floor/roof levels: 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.47 

 

   (H + 2H + 2H + H) =  6.0H = 15.0   H = 15.0/6.0 = 2.50 kN 

 

Consider the first bay I-J  

 

  

+ (3.0  V1)  (3.0  0.48)  (2.50  1.75)  (0.83  1.75) = 0   

 V1  7.27/3.0 = 2.42 kN     (compression) 

                                
 Bending moments at joint I: 

  MIM   1.45 kNm   

MIE  (2.50  1.75) = 4.38 kNm 

 MIJ   (1.45 + 4.38) = 5.83 kNm   

   MJI = MIJ  5.83kNm 

 

 

Consider the first and second bays I-J-K 

 

 

 

  

 

 

 

 

                        

 

 

 

 

Figure 10.49 
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+ 10.0 (2.42  0.48) + 4.0 (V2 + 0.11)  1.75 (0.83 + 2.50 + 1.66 + 5.0) = 0  

 V2   1.92/4.0  0.11 =  0.59 kN    (tension) 

  

 Bending moment at joint J: 

  MJF  (5.0  1.75) =  8.75 kNm 

 MJN  2.90 kNm   

  MJI  5.83 kNm   

  

 Considering rotational equilibrium of joint J:     

 MJK  (+ 2.90 + 8.75  5.83) = 5.82 kNm         

 MKJ = MJK  5.82 kNm     

 

  MFJ = MJF  8.75 kNm 

 

Consider the third bay K-L 

 

 

 

 

 

 

 

 

 

 

  Figure 10.51 

 

 

  

 + 3.0  (V4 + 0.48) + 1.75  (0.83 + 2.50) = 0  

 V4   5.83/3.0  0.48 =  2.42 kN    (tension) 

                   

 Bending moments at joint L: 

 MLH  (2.50  1.75) = 4.38 kNm         (tension inside the frame) 

   

  Considering rotational equilibrium of joint L: 

  MLK  (4.38  1.45) = 5.83 kNm          

      

 MKL = MLK  5.83 kNm               Figure 10.52  

  MKG  (5.0  1.75) = 8.75 kNm 

   

  Considering the vertical equilibrium of the sub-frame shown in Figure 10.47: 

  (V1 + V2 + V3 + V4  0.48 + 0.11  0.11 + 0.48) = 0   

     V3 =  (2.42  0.59  2.42) = + 0.59     (compression)  
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Consider the equilibrium of the frame above horizontal sections through the points of 

contraflexure in the columns between the ground/1st floor and 1st/2nd floor levels: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.53 

 

   (H + 2H + 2H + H) =  6.0H = 25.0   H = 25.0/6.0 = 4.17 kN 

 

Consider the first bay E-F  

 

  

+ (3.0  V1)  (3.0  2.42)  (4.17  2.25)  (2.50  1.75) = 0   

 V1  21.02/3.0 = 7.0 kN     (compression) 

                                 
 Bending moments at joint E: 

  MEI = MIE  4.38 kNm   

MEA  (4.17  2.25) = 9.38 kNm   

   MEF = (MEA + MEI)  (9.38 + 4.38) = 13.76 kNm 

MFE = MEF  13.76 kNm 

 

Consider the first and second bays E-F-G 

 

 

 

  

 

 

 

 

                        

 

 

 

 

 

Figure 10.55 
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+ 10.0 (7.0  2.42) + 4.0 (V2 + 0.59)  1.75 (2.5 + 5.0) + 2.25 (4.17 + 8.34) = 0  

 V2   4.53/4.0  0.59 =  2.69 kN    (tension) 

  

 Bending moment at joint F: 

 MFJ  8.75 kNm   

  MFE   13.76 kNm   

  MFB  (8.34  2.25) = 18.77 kNm              

  

 Considering rotational equilibrium of joint F:     

 MFG  (+ 8.75 + 18.77  13.76) = 13.76 kNm         

 MGF = MFG  13.76 kNm     

 

  MGC  (8.34  2.25) = 18.77 kNm 

 

Consider the third bay G-H 

 

 

 

 

 

 

 

 

 

 

   

  Figure 10.57 

 

 

  

 + 3.0  (V4 + 2.42) + (1.75  2.50) + (4.17  2.25) = 0  

 V4   13.76/3.0  2.42 =  7.0 kN    (tension) 

                   

 Bending moments at joint H: 

 MHD  (4.17  2.25) = 9.38 kNm         (tension inside the frame) 

   

  Considering rotational equilibrium of joint H: 

  MHG  (4.38  9.38) = 13.76 kNm          

 MGH = MHG  13.76 kNm     

                        Figure 10.58  
 

  Considering the vertical equilibrium of the sub-frame shown in Figure 10.53: 

  (V1 + V2 + V3 + V4  2.42 + 0.59  0.59 + 2.42) = 0    

     V3 =  (7.0  2.69  7.0) = + 2.69     (compression)  
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Consider the equilibrium of the frame below a horizontal section through the points of 

contraflexure in the columns between the ground and the 1st floor level: 

 

 

 

 

 

 

 

 

 

 

Figure 10.59 

 

  Vertical reactions: 

 VA = 7.0 kN  VB =  2.69 kN VC = 2.69 kN VD =  7.0 kN 

 

  Horizontal reactions: 

 HA = 4.17 kN  HB =  8.34 kN HC = 8.34 kN HD = 4.17 kN 

 

  Moment reactions: (normally assumed to be the same as the top of the columns) 

 MA = 9.38 kN  MB = 18.77 kN MC = 18.77 kN MD = 9.38 kN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.60: Approximate bending moment diagram 

 

 

The approximate axial forces and shear forces in the members are indicated in              

Figure 10.61 and Figure 10.62. 
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     C - compression     T - tension 

 

Figure 10.61: Approximate member axial force diagrams 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.62: Approximate member shear force diagrams 

10.7.1.2 Approximate Analysis of Vierendeel Trusses using the Portal Method 

Vierendeel trusses are rigid-jointed girders in which there are no diagonal members and 

hence provide clear open spaces between the verticals and the chords as indicated in     

Figure 10.63(a). The chords are normally parallel and transmit shear and bending to the 

vertical members which provide the balancing moment for the sum of the chord moments. 
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This type of truss is usually used to support floors and/or roofs in buildings where large 

openings are required for services. In addition they are sometimes used for enclosed 

footbridges where diagonal web members are either obtrusive or undesirable for aesthetic 

reasons. 

 

 

 

 

 

         (a)                (b) 

Figure 10.63 

 

Vierendeel girders are indeterminate structures and for parallel chord girders an 

approximate analysis may be carried out assuming points of contraflexure at the mid-span 

points of the chords and the vertical of each panel. The vertical shear is assumed to be 

shared equally between the top and bottom chords. The chords and vertical members 

deform in double curvature as shown in Figure 10.63(b). In a symmetrically loaded truss 

with an even number of panels, the mid-span vertical member does not have any moment.  

The overall deflections are significantly larger than is the case for members with either 

solid web plates or trusses with diagonal members. 

10.7.1.3 Example 10.9: Vierendeel Truss 

A Vierendeel truss is pinned at support A, supported by a roller at G and carries three 

point loads at C, D and E as shown in Figure 10.64. Using the portal method, carry out an 

approximate analysis to determine the member forces in the truss. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.64 

 

The structure is symmetrical and can 

be analysed considering the 

equilibrium of sub-frames defined by 

sections ‘1’ to ‘4’ and assuming 

points of contraflexure at the mid-

point positions of each of the 

members as indicated in Figure 10.65. 

                  Figure 10.65 
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Consider the overall equilibrium of the structure: 

  

  

 + (80.0  4.0) + (80.0  8.0) + (80.0  12.0)  16.0VG = 0   VG = 120.0 kN 

 

VA  80.0  80.0  80.0 + 120.0  = 0    VA = 120.0 kN 

 

HA = 0  

          Consider the section 1-1: the shear force = 120.0 kN 

 

 

120.0  2V = 0    V = 60.0 kN 

 

Consider the section above P1:  H1 = H2 = H 

 

 

 1.75H + 2V = 0   H  (2.0  60.0)/1.75 = 68.57 kN 

 

Bending moments at joint B: 

MBC = MCB  2V  kNm  

MBA = MBA  1.75H = (1.75  68.57) = 120.0 kNm     

 

Consider the section below P1 

MAJ = MJA  120.0 kNm 

 

          Consider the section 2-2: the shear force = 40.0 kN 

 

 

40.0  2V = 0  V = + 20.0 kN 

 

Consider the section between 1-1 and 2-2 above P2 

V1 = ( 60.0 + 80.0 + 20.0) = + 40.0 kN 

 

 

1.75  (68.75  H1) + 2.0  (60.0 + V) = 0  

 H1  (2.0  80.0)/1.75 + 68.57 = 160.0 kN 

H2 = (160.0  68.57) = 91.43 kN  

  

Bending moments at joint C: 

MCB = MBC   kNm 

MCD = MDC  2V  kNm  

MCJ  1.75H2 = (1.75  91.43) = 160.0 kNm  

 

Consider the section below P2 

MJC = MCJ  160.0 kNm 

MJI = (MJC  MJA) = (160.0 120.0)   40.0 kNm 
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+ve    Fz = 0 

+ve       Fx = 0 
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Figure 10.66 
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Consider the section between 2-2 and 3-3: 

 

The truss and the loading are symmetrical about the mid-

span and hence: 

 

Axial load in member  DI  V1 = (80.0  40.0) = 40.0 kN  

Shear force in member DI    H2 = zero  

Bending moment in member DI  MDI = zero. 

 

The final approximate member forces are as shown in 

Figures 10.69 to Figure 10.71. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.69: Approximate member bending moment diagram 

 

 

 

 

 

 

 

 

 

Figure 10.70: Approximate member axial force diagrams 

 

 

 

 

 

 

 

 

 

 

Figure 10.71: Approximate member shear force diagrams 
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10.7.2 Cantilever Method 
The cantilever method, which is best suited to tall and slender buildings, is based on the 

same action as a vertical cantilever. The cantilever structure shown in Figure 10.72(a) is a 

continuum which bends in single curvature. The bending stresses can be determined using 

the simple elastic theory of bending assuming a linear variation over the depth of the 

cross-section, i.e.  

 

 Bending stress  =  Mz/Iyy 

 

where: 

M is the applied bending moment, 

z is the distance from the centroid to the point where the stress is being determined, 

Iyy is the second moment of area about the axis of bending for the cross-section. 

 

Rigid-jointed frames have a different structural action in which shear deformation occurs 

as shown in Figure 10.72(b). Despite this different mode of deformation an approximate 

analysis can be carried out for such frames with fixed bases by assuming that the axial 

stresses in the columns have a linear variation from the centroid of the column areas and 

points of contraflexure occur at the mid-span of all beams and the mid-points of all 

columns. Use of the method is illustrated in Example 10.10. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    (a) – continuum          (b) – discrete elements    

             Figure 10.72 
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10.7.2.1 Example 10.10: Multi-storey Rigid-jointed Frame 3 

A four-storey, two-bay asymmetric frame is shown in Figure 10.73 in which a series of 

horizontal loads are applied at B, C, D and E as indicated. Using the cantilever method 

carry out an approximate analysis to determine the member forces in the frame. 

 

 

 

Data: 

Supports A, F and K are fixed. 

 

Relative cross-sectional areas of 

the columns: 

AB, BC, CD and DE = 2.0A  

FG, GH, HI and IJ = A  

KL, LM, MN and NO = A  

 

Assume points of contraflexure at 

the mid-span of all beams and the 

mid-points of all columns. 

 

Assumed points of contraflexure. 

 

 

        Figure 10.73 

 

Consider a typical horizontal cross-section through the frame and determine the position 

‘z’ of the centroid of the column group. (Note: in this case the position is the same at each 

storey level). 

 

 

 

z = (8.0  A) + (14.0  A)/(2.0A + A + A) 

  = 5.5 m from the centre-line of A1  

 

z1 = z = 5.5 m 

z2 = (8.0  5.5) = 2.5 m 

z3 = (14.0  5.5) = 8.5 m 

 

   Figure 10.74 
 

Determine the approximate second moment of area of the column group about the 

centroid. (Neglect the bd3/12 terms for each column). 
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Determine the column axial stresses and member forces using the simple elastic theory of 

bending and consideration of the equilibrium of a sub-frame defined by a horizontal 

section taken through the points of contraflexure for each storey. 

 

 Consider the top storey: 

  

 

 

 

       Figure 10.75 

 

  Applied moment M = (6.0  2.0) = 12.0 kNm 

   

  Stress in column ED    1 = Mz1/Icentroid =  (12.0  5.5)/139.0A = 0.475/A 

  Axial force in column ED  NED = (1  2.0A) = (0.475  2.0) = 0.95 kN  T 

   

  Stress in column JI    2 = Mz2/Icentroid =  (12.0  2.5)/139.0A = 0.216/A 

  Axial force in column JI   NED = (2  A) = (0.216  1.0) = 0.22 kN  C 

   

  Stress in column ON    3 = Mz3/Icentroid =  (12.0  8.5)/139.0A = 0.733/A 

  Axial force in column ON  NED = (3  A) = (0.733  1.0) = 0.73 kN  C 

   

  (Note: the beams are assumed to have infinite axial and flexural stiffness).  

   

  Consider the equilibrium of sub-frame  P1-E-P2 

  

 

   0.95 + V = 0   V = 0.95 kN 

 

 

   + (6.0  2.0)  (H  2.0)  (4.0  0.95) = 0 

    H = (12.0  3.8)/2.0 = 4.10 kN 

                    Figure 10.76 
 

  + 6.0  4.10  H1 = 0   H1 = 1.90 kN 

 

  Bending moments at joint E: 

  MED  (H1 2.0) = (1.90  2.0) = 3.80 kNm 

  MEJ  ((V 4.0) = (0.95  4.0) = 3.80 kNm 

 

 

 

The reader should complete the calculations considering sub-frames P2-J-P3 and P3-O-P4 

and all three sub-frames for each storey to determine the approximate axial forces, shear 

forces and bending moments for all members in the frame. 

+ve MP1 

+ve    Fz = 0 E 
6.0 kN 

4.0 m 
0.95 kN 
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P2 
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H 
2

.0
 m

 

H1 

+ve      Fx = 0 

2
.0

 m
 

E J O 
6.0 kN 

8.0 m    6.0 m 

NED NJI NON 

P1 

P2 P3 

P4 
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Elastic Section Properties of Geometric Figures 

 

 

 

 

A  = Cross-sectional area 

 

z1 or z2  = Distance to centroid 

 

Wyy  = Elastic section modulus about the y− y axis 

 

iyy  = Radius of gyration about the y− y axis 

 

Iyy   = Second moment of area about the y− y axis 
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Rectangle: 
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Equal Rectangles:  
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Beam Reactions, Bending Moments and Deflections 
 

Simply supported beams 

Cantilever beams 

Propped cantilevers 

 

Fixed-End Beams 
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w = Distributed load (kN/m) and W = Total load (kN) 

 

Simply supported beams: 

 

 

VA = wL/2 VB = wL/2 

Maximum bending moment at centre = wL2/8 

Maximum deflection = (5wL4/384EI) 

 

 

 

VA = P/2 VB = P/2 

Maximum bending moment at centre = PL /4 

Maximum deflection = (PL3/48EI) 

 

 

 

VA = Pb/L VB = Pa/L 

Maximum bending moment at centre = Pab /L 

Mid-span deflection = PL3[(3a/L) − (4a3/L3)]/48EI 

(This value will be within 2.5% of the maximum) 

 

 

VA = W(0.5b +  c)/L VB = W(0.5b + a)/L 

Maximum bending moment at x = W(x2− a2)/2b 

where  x = [a + (VA b/W)]  from A 

Maximum deflection ≈ W(8L3 − 4Lb2 + b3)/384EI 

(This is the value at the centre when a = c) 

 

 

 

VA = W/2 VB = W/2 

Maximum bending moment at centre = WL/6 

Maximum deflection = WL3/60EI 

 

 

 

VA = 2W/3 VB = W/3 

Maximum bending moment at x = 0.128WL 

where  x = 0.4226L  from A 

Maximum deflection ≈ 0.01304WL3/384EI 

where  x = 0.4807L  from A 

 

 

 

w kN/m 

L 

A         B 

P 

L/2     L/2 

A         B 

 a      b 

P 

L 

A         B 

W kN 

L 

 a  b          c 
A         B 

W kN

L 

A         B 

W kN 

L 

A         B 
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VA = W(3L − a)/3L VB = Wa/3L  

Maximum bending moment at x: 

= 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−

3

3

27

4
1

3 L

a

L

aWa
 

 where  x = ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

L

a
a

3
1  from A 

 

 

VA = W(3L − 2a)/3L VB = 2Wa/3L  

Maximum bending moment at x: 

 = 
2

3

3

2
1

3

2
⎟
⎠
⎞

⎜
⎝
⎛ −

L

aWa
 

 where  x = 
L

a
a

3

2
1−  from A 

 

 

Cantilever beams: 

Anti-clockwise support moments considered negative. 

 

VA = wL 

Maximum (−ve) bending moment MA = − wL2/2 

Maximum deflection = wL4/8EI 

 

 

VA = W 

Maximum (−ve) bending moment MA = − Wa/2 

Maximum deflection at B = EI
a

b
Wa 8

3

4
13 ⎟

⎠
⎞

⎜
⎝
⎛ +  

 

VA = W 

Maximum (−ve) bending moment MA = −W(a + b/2) 

Maximum deflection at B = (W/24EI) × k 

where k =  

(8a 3 + 18a2b + 12ab2 + 3b3 + 12a2c + 12abc + 4b2c) 

 

 

VA = P 

Maximum (−ve) bending moment MA = − Pa 

Maximum deflection at B = EI
a

b
Pa 3

2

3
13 ⎟

⎠
⎞

⎜
⎝
⎛ +  

W kN 

L 

 a   L − a 
A         B 

W kN 

L 

 a  L − a 
A         B 

w kN/m 

L 

A            B 

A            B 

W kN 

L 
 a          b 

 a      b 

P 

L 

A            B 

W kN 

L 

 a  b          c 
A            B 
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VA = W 

Maximum (−ve) bending moment MA = − Wa/3 

Maximum deflection at B = EI
a

b
Wa 15

4

5
13 ⎟

⎠
⎞

⎜
⎝
⎛ +  

 

 

 

VA = W 

Maximum (−ve) bending moment MA = − 2Wa/3 

Maximum deflection at B = EI
a

b
Wa 60

11

15
111 3 ⎟

⎠
⎞

⎜
⎝
⎛ +  

 

 

 

Propped cantilevers: 

Where the support moment  (MA) is included in an expression for reactions, its value 

should be assumed positive. 

 

VA = 5wL/8 VB = 3wL/8  

Maximum (−ve) bending moment  MA = − wL2/8 

Maximum (+ve) bending moment at x  = + 9wL2/128 

where x = 0.625L from A 

Maximum deflection at y = wL4/185EI 

where y = 0.5785L from A 

 

 

VA = W(0.5b +  c)/L + MA/L  

VB = W(0.5b + a)/L − MA/L 

Maximum (−ve) bending moment MA: 

= − Wb(b + 2c) [2(L2 − c2 − bc) − b2)]/8L2b 

 

 

VA = (P − VB)  

VB = Pa2[(b + 2L)]/2L3 

Maximum (−ve) bending moment MA: 

= − Pb[(L2 − b2)]/2L2 

Maximum (+ve) bending moment at point load: 

= − ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

3

33
2

2 L

b

L

bPb
 

Maximum deflection at point load position: 

= ( )aL
EIL

bPa −4
12 3

23

 

 

W kN 

L 

A            B 
         a      b 

W kN 

L 

A            B 
         a      b 

w kN/m 

L 

A            B 

W kN 

L 

 a  b          c 
A            B 

 a      b 

P 

L 

A            B 
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VA = (W − VB)  

VB = Wa2[(5L − a)]/20L3 

Maximum (−ve) bending moment MA: 

 = − ( )22

2
20153

60
LaLa

L

Wa +−  

Maximum (+ve) bending moment at x: 

 = [VB x − W(x − b)3/ 3a2] 

where  x = 
L

a

L

a
b

5
1

2

2

−+  from B 

 

VA = (W − VB) 

VB = Wa2[(15L − 4a)]/20L3 

Maximum (−ve) bending moment MA: 

 = − ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

3

2

4

3

5 2

2

L

a

L

a
Wa  

 

 

Fixed-end beams: 

 

VA = wL/2   VB = wL/2 

Maximum (−ve) bending moment MA: 

 = − wL2/12 

Maximum (+ve) bending moment at mid-span: 

 = + wL2/24  

Maximum deflection at point load: 

 =   wL4/384EI 

 

 

VA = P/2   VB = P/2 

Support bending moments: 

MA = − PL/8   and MB = + PL/8  

Maximum (+ve) bending moment at mid-span: 

 = + PL/8  

Maximum deflection at mid-span = PL3/192EI 

 

 

VA = W/2   VB = W/2 

Support bending moments: 

MA = − 5WL/48  and MB = + 5WL/48  

Maximum (+ve) bending moment at mid-span: 

= + WL/16  

Maximum deflection at mid-span = 1.4WL3/384EI 

W kN 

L 

A            B 
         a      b 

W kN 

L 

A            B 
         a      b 

w kN/m 

L 

A                 B 

P 

L/2     L/2 

A                 B 

W kN

L 

A                 B 
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VA = Pb2 (1 + 2a/L)/L2  

VB = Pa2 (1 + 2b/L)/L2 

Support bending moments: 

MA = − Pab2/L2   and MB = + Pa2b/L2 

Maximum (+ve) bending moment at point load: 

= + 2Pa2b2/L3  

Maximum deflection at point  x = 
( )2

32

233

2

aLEI

bPa

−
 

where  x = ( )aL

L

23

2

−
 from A 

 

 

VA = 0.7W VB = 0.3W 

Support bending moments: 

MA = − WL/10   and MB = + WL/15 

Maximum (+ve) bending moment at point  x: 

= + WL/23.3  

where  x is 0.45L  from A 

Maximum deflection at point  y = WL3/382EI 

where  y is 0.475L from A 

 

 

 

VA = (W − VB) 

VB = Wa2[(5L − 2a)]/10L3 

Support bending moments: 

MA  = − ( )bLa
L

Wa
103

30

2

2
+  and  

MB  = + ( )aL
L

Wa2

35
30 2

−  

 

 

 

VA = W[(10L3− 15La2 + 8a3)]/10L3  

VB = (W − VA) 

Support bending moments: 

MA  = − ( )22

2
61510

15
a  aLL

L

Wa +−  and 

MB  = + ( )
2

2
5 4

10

Wa
L a

L
−  

 

 a      b 

P 

L 

A                B 

W kN 

L 

A                 B 

W kN 

L 

 a    L − a 
A                 B 

W kN 

L 

 a   L − a 
A                 B 
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VA = W(0.5b + c)/L + (MA − MB )/L 

VB = W(0.5b + a)/L  − (MA − MB )/L 

Support bending moments: 

MA  = − ( ) ( )[ ] ( ){ }cLa LaL 
bL

W
34c3

12

33

2
−−+×−   

 MB  = + ( ) ( )[ ] ( ){ }aLac LcL 
bL

W
343

12

33

2
−−+×−  

Maximum deflection at mid-span when a = c 

 ( )3223 842
384

aLaaLL
EI

W −++  

 

 

VA = − δ
3

1

L

2EI
   VB = + δ

3

1

L

2EI
 

Support bending moments: 

MA  = + δ
2

6

L

EI
    MB  = + δ

2

6

L

EI
 

 

 

 

VA = + δ
3

1

L

2EI
   VB = − δ

3

1

L

2EI
 

Support bending moments: 

MA  = − δ
2

6

L

EI
    MB  = − δ

2

6

L

EI
 

 

 

VA = − A2

6 θ
L

EI
   VB = + A2

6 θ
L

EI
 

Support bending moments: 

MA  = + A

4 θ
L

EI
   MB  = + A

2 θ
L

EI
 

 

 

VA = − A2

6 θ
L

EI
   VB = + A2

6 θ
L

EI
 

Support bending moments: 

MA  = + A

2 θ
L

EI
   MB  = + A

4 θ
L

EI
 

W kN 

L 

 a  b          c 
A                 B 

L 

Aδ  
A                 B 

L 

Aθ  
A                 B 

Bδ  

A                 B 

L 

Bθ  
 A                       B 
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Matrix Algebra 
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Product of a Matrix and a Vector: 

Consider three variables a1, a2 and a3  which are related to three other variables c1, c2 and 

c3 by the  three equations (1), (2) and (3) as indicated: 

 

a1 = b11c1 + b12c2 + b13c3   Equation (1) 

a2 = b21c1 + b22c2 + b23c3   Equation (2) 

a3 = b31c1 + b32c2 + b33c3   Equation (3) 

 

these equations can be represented in matrix form as: 

 i.e.         [A ] = [B] × [C] 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

3

2

1

a

a

a

 = 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
×
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

3

2

1

3,32,31,3

3,22,21,2

3,12,11,1

c

c

c

 

bbb

bbb

bbb

 

where b11, b12, b13  etc. are the coefficients for the square matrix [B]. 

 

Clearly for known values of c1, c2 and c3 the values of a1, a2 and a3 can be determined 

directly. If however, it is required to determine the ‘c’ values for given ‘a’ values then the 

relationship must be re-written as: 

 

[C ] = [B]−1 × [A] 

 

and the INVERT of matrix [B] must be obtained. 

 

The invert of a matrix can be defined as: 

[B]−1 = 
B

B adj
 

where adj B is the adjoint of matrix [B] and is equal to the transpose of the co-factor 

matrix [Bc] of matrix [B], i.e. 

 

adj [B] = [Bc]T 

 

The co-factor matrix is given by replacing each element in the matrix by its’ co-factor, i.e. 

 

[B] =  

bbb

bbb

bbb

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

3,32,31,3

3,22,21,2

3,12,11,1

; 

[Bc] = (−1)i+j  

bbb

bbb

bbb

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

ccc

ccc

ccc

3,32,31,3

3,22,21,2

3,12,11,1

 and [Bc]T =  

bbb

bbb

bbb

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

ccc

ccc

ccc

3,33,23,1

2,32,22,1

1,31,21,1

 

 

+  −     + 

−  +     − 

+  −     + 
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where: [Bc] = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−+

−+−

+−+

2,21,2

2,11,1

3,21,2

3,11,1

3,22,2

3,12,1

2,31,3

2,11,1

3,31,3

3,11,1

3,32,3

3,12,1

2,31,3

2,21,2

3,31,3

3,21,2

3,32,3

3,22,2

bb

bb
  

bb

bb
 

bb

bb

bb

bb
   

bb

bb
 

bb

bb

bb

bb
  

bb

bb
 

bb

bb

 

|B| is the determinant of matrix [B],which can be calculated from: 

|B|  = + 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

×
3,32,3

3,22,2

1,1
bb

bb
b  − 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

×
3,31,3

3,21,2

2,1
bb

bb
b  + 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

×
2,31,3

2,21,2

3,1
bb

bb
b  

|B|  = + b1,1{( b2,2 × b3,3) − (b3,2 × b2,3)} − b1,2{( b2,1 × b3,3) − (b3,1 × b2,3)}  

          + b1,3{( b2,1 × b3,2) − (b3,1 × b2,2)} 

Example A.1 
Determine the values of c1, and c2 given that: 

[A]  = [B]×[C]  where:  [A]  = ⎥
⎦

⎤
⎢
⎣

⎡
0.45

0.40
  and     [B] = ⎥

⎦

⎤
⎢
⎣

⎡
0.40.1

0.30.2
 

 

Solution: 

Determine the co-factor matrix [Bc] = ⎥
⎦

⎤
⎢
⎣

⎡
+−
−+

0.20.3

0.10.4
   [Bc]T = ⎥

⎦

⎤
⎢
⎣

⎡
+−
−+

0.20.1

0.30.4
 

 [C ] = [B]−1 × [A] and [B]−1 = 
B

B adj
  ∴ ⎥

⎦

⎤
⎢
⎣

⎡

2

1

c

c
 = 

B

1
 

bb

bb

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
cc

cc

2,22,1

211,1 ×
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

2

1

a

a
 

 

The determinant of [B]    |B| = {+( b1,1 × b2,2) − (b2,1 × b1,2)} 

           = {+(2.0 × 4.0)  − (1.0 × 3.0)} 

           = + 5.0 

⎥
⎦

⎤
⎢
⎣

⎡

2

1

c

c
 = 

B

1
 

bb

bb

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
cc

cc

2,22,1

211,1 × 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

2

1

a

a
 = 

0.5

1
⎥
⎦

⎤
⎢
⎣

⎡
+−
−+

0.20.1

0.30.4
⎥
⎦

⎤
⎢
⎣

⎡
0.45

0.40
 

⎥
⎦

⎤
⎢
⎣

⎡

2

1

c

c
 = ⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+−
−+

0.45

0.40

4.02.0

6.08.0
   

 

c1 = {+ (0.8 × 40.0) − (0.6 × 45.0)} = + 5.0 

c2 = {− (0.2 × 40.0) + (0.4 × 45.0)} = + 10.0 
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Example A.2 
Determine the values of c1, c2 and c3 given that: 

 

[A] = [B]×[C] where:  [A] = 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0.6

0.4

0.14

and [B]  = 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0.20.10.3

0.30.20.1

0.10.30.2

 

Solution: 

Determine the co-factor matrix: 
c
11k  = + {(2.0 × 2.0) − (1.0 × 3.0)} = + 1.0   c

12k  = − {(1.0 × 2.0) − (3.0 × 3.0)} = + 7.0 

c
13k  = + {(1.0 × 1.0) − (3.0 × 2.0)} = − 5.0  c

21k  = − {(3.0 × 2.0) − (1.0 × 1.0)} = − 5.0 

c
22k  = + {(2.0 × 2.0) − (3.0 × 1.0)} = + 1.0  c

23k  = − {(2.0 × 1.0) − (3.0 × 3.0)} = + 7.0 

c
31k  = + {(3.0 × 3.0) − (2.0 × 1.0)} = + 7.0  c

32k  = − {(2.0 × 3.0) − (1.0 × 1.0)} = − 5.0 

c
33k  = + {(2.0 × 2.0) − (3.0 × 1.0)} = + 1.0 

 

[Bc] = 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−+
++−
−++

0.10.50.7

0.70.10.5

0.50.70.1

   [Bc]T = 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++−
−++
+−+

0.10.70.5

0.50.10.7

0.70.50.1

 

 

Determinant of [B]: 

|B| = + b1,1{( b2,2 × b3,3) − (b3,2 × b2,3)} − b1,2{( b2,1 × b3,3) − (b3,1 × b2,3)} + b1,3{( b2,1 × b3,2) 

        − (b3,1 × b2,2)} 

|B| = {+ (2.0 × 1.0) − (3.0 × −7.0) + (1.0 × −5.0)} = +18.0 

Inverted matrix   [B]
−1 = 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++−
−++
+−+

0.10.70.5

0.50.10.7

0.70.50.1

0.18

1
   

 

[C ] = [B]−1 × [A] and [B] -1 = 
B

B adj

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

3

2

1

c

c

c

 = 
0.18

1
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++−
−++
+−+

0.10.70.5

0.50.10.7

0.70.50.1

×
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0.6

0.4

0.14

  

 

c1 = {+ (1.0 × 14.0) − (5.0 × 4.0) + (7.0 × 6.0}/18.0 = + 2.0 

c2 = {+ (7.0 × 14.0) + (1.0 × 4.0) − (5.0 × 6.0}/18.0 = + 4.0 

c3 = {− (5.0 × 14.0) + (7.0 × 4.0) + (1.0 × 6.0}/18.0 = − 2.0 

 

To check the invert determine the product [B][B]−1 which should equal the identity matrix 

[I] where:[I] = 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0.100

00.10

000.1

 

+      −     + 

−      +     − 

+      −     + 
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