
Frame4.txt
Option Explicit
Option Base 1
Public KVRange As Range, End_Release As Long
Const Pi As Double = 3.14159265358979
===
Function FEMact(Beams As Variant, Nodes As Variant, DistLoads As Variant, PointLoads As Variant, Moments As Variant) As Variant
 Dim i As Long, Alpha As Double, Beta As Double, NumLoads As Long, FEMA() As Double
 Dim MomInc(1 To 2) As Double, TLoad1 As Double, Tload2 As Double, NumBeams As Long, L As Double, Theta As Double
 Dim LoadInc(1 To 2) As Double, j As Long, k As Long, n As Long, lastk As Long
 Dim NumRows As Long, Node1 As Long, Node2 As Long, DX As Double, DY As Double

 If TypeName(Beams) = "Range" Then Beams = Beams.Value2
 If TypeName(Nodes) = "Range" Then Nodes = Nodes.Value2
 If TypeName(DistLoads) = "Range" Then DistLoads = DistLoads.Value2
 If TypeName(PointLoads) = "Range" Then PointLoads = PointLoads.Value2
 If TypeName(Moments) = "Range" Then Moments = Moments.Value2

 NumBeams = UBound(Beams)
 NumRows = UBound(DistLoads)

 ReDim FEMA(1 To NumBeams, 1 To 6)

 For n = 1 To NumBeams
 Node1 = Beams(n, 3)
 Node2 = Beams(n, 4)
 DX = Nodes(Node2, 2) - Nodes(Node1, 2)
 DY = Nodes(Node2, 3) - Nodes(Node1, 3)
 L = (DX ^ 2 + DY ^ 2) ^ 0.5
 Theta = WorksheetFunction.Atan2(DX, DY)

 lastk = k
 NumLoads = 0
 If k + 1 <= UBound(DistLoads) Then
 Do While DistLoads(k + 1, 1) = n
 NumLoads = NumLoads + 1
 k = k + 1
 If k + 1 > UBound(DistLoads) Then Exit Do
 Loop
 ' Fixed end moments due to distributed loads
 For i = lastk + 1 To lastk + NumLoads
 Alpha = DistLoads(i, 2) / L
 Beta = DistLoads(i, 5) / L
 TLoad1 = DistLoads(i, 3) * L * (1 - Alpha - Beta)

 If DistLoads(i, 3) = DistLoads(i, 4) Then
 MomInc(1) = TLoad1 * L * (1 / 12 + (Alpha ^ 3) / 4 _
 - (Alpha ^ 2) * 5 / 12 + Alpha / 12 - (Alpha ^ 2 * Beta) / 4 _
 + Alpha * Beta / 6 + (Alpha * Beta ^ 2) / 4 + Beta / 12 _
 + (Beta) ^ 2 / 12 - (Beta ^ 3) / 4)
 If Alpha = Beta Then
 MomInc(2) = -MomInc(1)
 Else

 MomInc(2) = -TLoad1 * L * (1 / 12 + (Beta ^ 3) / 4 _
 - (Beta ^ 2) * 5 / 12 + Beta / 12 - (Beta ^ 2 * Alpha) / 4 _
 + Beta * Alpha / 6 + (Beta * Alpha ^ 2) / 4 + Alpha / 12 _
 + (Alpha) ^ 2 / 12 - (Alpha ^ 3) / 4)
 End If
 Else
 TLoad1 = TLoad1 / 2

Page 1

Frame4.txt
 Tload2 = L * (1 - Alpha - Beta) * DistLoads(i, 4) / 2
 MomInc(1) = TLoad1 * L * (1 / 10 + (Alpha ^ 3) * 2 / 5 _
 - (Alpha ^ 2) * 7 / 10 + Alpha / 5 - (Alpha ^ 2 * Beta) * 3 / 10 _
 + Alpha * Beta * 4 / 15 + (Alpha * Beta ^ 2) / 5 _
 + Beta / 30 - (Beta) ^ 2 / 30 - (Beta ^ 3) / 10)
 MomInc(2) = -TLoad1 * L * (1 / 15 - (Alpha ^ 3) * 2 / 5 _
 + (Alpha ^ 2) / 5 + Alpha * 2 / 15 + (Alpha ^ 2 * Beta) * 3 / 10 _
 + Alpha * Beta * 1 / 15 - (Alpha * Beta ^ 2) / 5 - Beta / 30 _
 - (Beta) ^ 2 * 2 / 15 + (Beta ^ 3) / 10)

 MomInc(2) = MomInc(2) - Tload2 * L * (1 / 10 + (Beta ^ 3) * 2 / 5 _
 - (Beta ^ 2) * 7 / 10 + Beta / 5 - (Beta ^ 2 * Alpha) * 3 / 10 _
 + Beta * Alpha * 4 / 15 + (Beta * Alpha ^ 2) / 5 + Alpha / 30 _
 - (Alpha) ^ 2 / 30 - (Alpha ^ 3) / 10)

 MomInc(1) = MomInc(1) + Tload2 * L * (1 / 15 - (Beta ^ 3) * 2 / 5 _
 + (Beta ^ 2) / 5 + Beta * 2 / 15 + (Beta ^ 2 * Alpha) * 3 / 10 _
 + Beta * Alpha * 1 / 15 - (Beta * Alpha ^ 2) / 5 - Alpha / 30 _
 - (Alpha) ^ 2 * 2 / 15 + (Alpha ^ 3) / 10)
 End If

 If UCase(DistLoads(i, 6)) = "Y" Then
 If Theta <> 0 Then
 MomInc(1) = MomInc(1) * Cos(Theta)
 MomInc(2) = MomInc(2) * Cos(Theta)
 End If
 Else
 MomInc(1) = MomInc(1) * -Sin(Theta)
 MomInc(2) = MomInc(2) * -Sin(Theta)
 End If

 FEMA(n, 3) = MomInc(1) + FEMA(n, 3)
 FEMA(n, 6) = MomInc(2) + FEMA(n, 6)
 Next i

 ' Fixed end moments due to point loads

 For i = lastk + 1 To lastk + NumLoads

 Alpha = PointLoads(i, 1) / L
 MomInc(1) = PointLoads(i, 2) * Alpha * (1 - Alpha) ^ 2 * L
 MomInc(2) = -PointLoads(i, 2) * Alpha ^ 2 * (1 - Alpha) * L
 If UCase(PointLoads(i, 3)) = "Y" Then
 FEMA(n, 3) = MomInc(1) * Cos(Theta) + FEMA(n, 3)
 FEMA(n, 6) = MomInc(2) * Cos(Theta) + FEMA(n, 6)
 Else
 FEMA(n, 3) = -MomInc(1) * Sin(Theta) + FEMA(n, 3)
 FEMA(n, 6) = -MomInc(2) * Sin(Theta) + FEMA(n, 6)
 End If
 Next i

 ' Fixed end moments and end reactions due to point moments

 For i = lastk + 1 To lastk + NumLoads
 Alpha = Moments(i, 1) / L
 MomInc(1) = Moments(i, 2) * (3 * Alpha - 1) * (Alpha - 1)
 MomInc(2) = -Moments(i, 2) * (2 - 3 * Alpha) * Alpha

Page 2

Frame4.txt
 FEMA(n, 3) = MomInc(1) + FEMA(n, 3)
 FEMA(n, 6) = MomInc(2) + FEMA(n, 6)
 LoadInc(1) = -Moments(i, 2) / L
 LoadInc(2) = Moments(i, 2) / L
 FEMA(n, 1) = FEMA(n, 1) - LoadInc(1) * Sin(Theta)
 FEMA(n, 4) = FEMA(n, 4) - LoadInc(2) * Sin(Theta)
 FEMA(n, 2) = FEMA(n, 2) + LoadInc(1) * Cos(Theta)
 FEMA(n, 5) = FEMA(n, 5) + LoadInc(2) * Cos(Theta)

 Next i

 ' End reactions due to distributed loads

 For i = lastk + 1 To lastk + NumLoads
 Alpha = DistLoads(i, 2) / L
 Beta = DistLoads(i, 5) / L

 TLoad1 = DistLoads(i, 3) * L * (1 - Alpha - Beta)

 If DistLoads(i, 3) = DistLoads(i, 4) Then
 LoadInc(1) = TLoad1 * (1 - Alpha + Beta) / 2
 LoadInc(2) = TLoad1 - LoadInc(1)
 Else
 TLoad1 = TLoad1 / 2
 Tload2 = L * (1 - Alpha - Beta) * DistLoads(i, 4) / 2
 LoadInc(1) = TLoad1 * (2 - 2 * Alpha + Beta) / 3

 LoadInc(1) = LoadInc(1) + Tload2 * (1 + 2 * Beta - Alpha) / 3
 LoadInc(2) = (TLoad1 + Tload2) - LoadInc(1)
 End If
 If UCase(DistLoads(i, 6)) = "X" Then j = 1 Else j = 2
 FEMA(n, j) = LoadInc(1) + FEMA(n, j)
 FEMA(n, j + 3) = LoadInc(2) + FEMA(n, j + 3)
 Next i

 ' End reactions due to point loads

 For i = lastk + 1 To lastk + NumLoads
 Alpha = PointLoads(i, 1) / L
 If UCase(PointLoads(i, 3)) = "X" Then j = 1 Else j = 2

 LoadInc(1) = PointLoads(i, 2) * (1 - Alpha)
 LoadInc(2) = PointLoads(i, 2) - LoadInc(1)
 FEMA(n, j) = LoadInc(1) + FEMA(n, j)
 FEMA(n, j + 3) = LoadInc(2) + FEMA(n, j + 3)

 Next i

 ' Correct end reactions for resultant end moments
 If Sin(Theta) <> 0 Then
 FEMA(n, 1) = FEMA(n, 1) - (FEMA(n, 3) + FEMA(n, 6)) * Sin(Theta) / L
 FEMA(n, 4) = FEMA(n, 4) + (FEMA(n, 3) + FEMA(n, 6)) * Sin(Theta) / L
 End If
 If Cos(Theta) <> 0 Then
 FEMA(n, 2) = FEMA(n, 2) + (FEMA(n, 3) + FEMA(n, 6)) * Cos(Theta) / L
 FEMA(n, 5) = FEMA(n, 5) - (FEMA(n, 3) + FEMA(n, 6)) * Cos(Theta) / L
 End If

Page 3

Frame4.txt
 End If
 lastk = k
 Next n
 FEMact = FEMA
End Function

===

Sub FormKg()
 Dim BeamA() As Double, KParamA(1 To 7) As Double, PHI As Double, Nodes As Variant, DistLoads As Variant
 Dim PointLoads As Variant, Moments As Variant, NumLoads As Long, iErr As Long
 Dim BeamProps As Variant, BeamCon As Variant, NRest As Variant, NCoord As Variant
 Dim NumBeams As Long, NumFree As Long, TNumFree As Long, KGA() As Double, KGI As Variant
 Dim KBCA() As Double, KGCA() As Double, L As Long, Start As Long, m As Long
 Dim FreeA(1 To 1, 1 To 6) As Long, GFreeA() As Double, i As Long, j As Long, k As Long, gj As Long, gk As Long
 Dim FEMA As Variant, FA() As Double, F_aA() As Double, GNumFree As Long
 Dim DefaA As Variant, DefacA() As Double, NFreeA() As Long, NumNodes As Long, TNumNodes As Long, DNode As Long
 Dim NumFix As Long, NumFixnodes As Long, NumFixA(1 To 3) As Long, NumProps As Long, DefA As Variant, NFG As Variant, React() As
Double
 Dim BeamER As Variant, NumER As Long, NumERBeams As Long, ERBeam As Long
 Dim ER As Long, EREnd As Long, RNode As Long, GBFreea() As Long, LastFree As Long
 Dim Node1 As Long, Node2 As Long, BA As Double, BI As Double, BE As Double, BL As Double
 Dim BSA As Double, BG As Double
 Dim NLabels() As String, BLabels() As String
 Dim DX As Double, DY As Double, PropNum As Long, Theta As Double
 Dim KBAA() As Double, BAA() As Double, RowNum As Long
 Const StifFact As Double = 100000000#
 ' Resize ranges

 NumBeams = Range("numbeams").Value2
 ' Range("beamnum").value = NumBeams
 NumFixnodes = Range("numrest").Value2
 NumLoads = Range("numloads").Value2
 NumProps = Range("numprops").Value2
 NumER = Range("numer").Value2
 NumERBeams = Range("numerbeams").Value2
 NumNodes = Range("numcoords").Value2
 TNumNodes = NumNodes + NumERBeams ' dummy node for each beam with an end release

 Range("beamcon").Resize(NumBeams, 4).Name = "beamcon"
 If NumERBeams > 0 Then
 Range("beamer").Resize(NumERBeams, 7).Name = "beamer"
 End If
 Range("restraints").Resize(NumFixnodes, 4).Name = "restraints"
 Range("coords").Resize(TNumNodes, 3).Name = "coords"
 Range("beamprop").Resize(NumProps, 6).Name = "beamprop"
 Range("distloads").Resize(NumLoads, 6).Name = "distloads"
 Range("pointloads").Resize(NumLoads, 3).Name = "pointloads"
 Range("moments").Resize(NumLoads, 2).Name = "moments"

 BeamProps = Range("beamprop").Value2
 BeamCon = Range("beamcon").Value2
 NCoord = Range("coords").Value2
 BeamER = Range("BeamER").Value2
 DistLoads = Range("distloads").Value2
 PointLoads = Range("pointloads").Value2
 Moments = Range("moments").Value2

 ReDim BeamA(1 To NumBeams, 1 To 2)
 ReDim KBAA(1 To NumBeams * 6, 1 To 7)

Page 4

Frame4.txt

 ' Create BeamA, beam properties
 For i = 1 To NumBeams
 DX = NCoord(BeamCon(i, 4), 2) - NCoord(BeamCon(i, 3), 2)
 DY = NCoord(BeamCon(i, 4), 3) - NCoord(BeamCon(i, 3), 3)
 BeamA(i, 1) = (DX ^ 2 + DY ^ 2) ^ 0.5
 BeamA(i, 2) = ATn2(DX, DY)
 Next i

 ' Count fixed freedoms
 NRest = Range("restraints").Value2

 GNumFree = (NumNodes) * 3 + NumER
 For i = 1 To NumFixnodes
 For j = 2 To 4
 If (NRest(i, j) = "F") Then
 NumFix = NumFix + 1
 NumFixA(j - 1) = NumFixA(j - 1) + 1
 End If
 Next j
 Next i
 If NumFixA(1) = 0 Or NumFixA(2) = 0 Then
 iErr = MsgBox("There must be at least one node with restraint in X and Y directions", vbCritical)
 Exit Sub
 End If
 TNumFree = GNumFree - NumFix

 ReDim KGCA(1 To GNumFree, 1 To GNumFree)
 ReDim KGA(1 To TNumFree, 1 To TNumFree)
 ReDim React(1 To GNumFree, 1 To 1)
 ReDim GFreeA(1 To GNumFree, 1 To 2)
 ReDim FA(1 To GNumFree, 1 To 1)
 ReDim F_aA(1 To TNumFree, 1 To 1)
 ReDim DefacA(1 To GNumFree, 1 To 1)
 ReDim NFreeA(1 To GNumFree)
 ReDim GBFreea(1 To NumBeams, 1 To 6)

 ' Create dummy nodes for each released beam end

 If NumERBeams > 0 Then
 For i = 1 To NumERBeams
 DNode = NumNodes + i
 ERBeam = BeamER(i, 1)
 For j = 2 To 4
 ER = ER + BeamER(i, j)
 Next j
 If ER > 0 Then EREnd = 1 Else EREnd = 2

 NCoord(DNode, 1) = DNode
 RNode = BeamCon(ERBeam, 2 + EREnd)
 NCoord(DNode, 2) = NCoord(RNode, 2)
 NCoord(DNode, 3) = NCoord(RNode, 3)
 Next i
 End If
 FEMA = FEMact(BeamCon, NCoord, DistLoads, PointLoads, Moments)

 ' Create array of freedoms for each beam, GBFreeA

 For i = 1 To NumBeams
 Node1 = BeamCon(i, 3)

Page 5

Frame4.txt
 Node2 = BeamCon(i, 4)
 For j = 1 To 3
 GBFreea(i, j) = (Node1 - 1) * 3 + j
 Next j
 If GBFreea(i, 3) > LastFree Then LastFree = GBFreea(i, 3)
 For j = 4 To 6
 GBFreea(i, j) = (Node2 - 1) * 3 + (j - 3)
 Next j
 If GBFreea(i, 6) > LastFree Then LastFree = GBFreea(i, 6)
 Next i

 For i = 1 To NumERBeams
 ERBeam = BeamER(i, 1)
 For j = 2 To 7
 ER = BeamER(i, j)
 If ER > 0 Then
 LastFree = LastFree + 1
 GBFreea(ERBeam, j - 1) = LastFree
 End If
 Next j
 Next i

 ' Create global array of active freedoms, GFreeA,
 ' and array of number of freedoms at each node, NFreeA

 k = 1
 For i = 1 To NumNodes ' + 1
 If NRest(k, 1) = i Then
 For j = 1 To 3
 If NRest(k, j + 1) = Empty Or NRest(k, j + 1) <> "F" Then
 L = L + 1
 m = m + 1
 GFreeA(L, 1) = j + (i - 1) * 3
 If NRest(k, j + 1) <> 0 Then GFreeA(L, 2) = NRest(k, j + 1)
 End If
 Next j
 If k < NumFixnodes Then k = k + 1
 Else
 For j = 1 To 3
 L = L + 1
 m = m + 1
 GFreeA(L, 1) = j + (i - 1) * 3
 Next j
 End If
 NFreeA(i) = m
 m = 0
 Next i
 k = NumNodes * 3
 For i = 1 To NumERBeams

 For j = 1 To 6

 If BeamER(i, j + 1) = 1 Then
 k = k + 1
 L = L + 1
 m = m + 1
 GFreeA(L, 1) = k

Page 6

Frame4.txt
 End If
 Next j

 NFreeA(i + NumNodes) = m
 m = 0
 Next i

 ' Create complete global stiffness matrix

 For i = 1 To NumBeams

 For j = 1 To 6
 FreeA(1, j) = GBFreea(i, j)
 Next j

 PropNum = BeamCon(i, 2)
 BA = BeamProps(PropNum, 2)
 BI = BeamProps(PropNum, 3)
 BE = BeamProps(PropNum, 4)
 BSA = BeamProps(PropNum, 5)
 BG = BeamProps(PropNum, 6)
 BL = BeamA(i, 1)
 Theta = BeamA(i, 2)
 KParamA(1) = BE * BA / BL
 KParamA(2) = 12 * BE * BI / (BL ^ 3)
 KParamA(3) = BE * BI / BL
 KParamA(4) = 6 * BE * BI / (BL ^ 2)
 KParamA(5) = Cos(Theta)
 KParamA(6) = Sin(Theta)
 KParamA(7) = KParamA(3)

 If BSA <> 0 And BG <> 0 Then
 PHI = 12 * BE * BI / (BG * BSA * BL ^ 2)
 KParamA(2) = KParamA(2) / (1 + PHI)
 KParamA(3) = KParamA(3) * (1 + PHI / 4) / (1 + PHI)
 KParamA(4) = KParamA(4) / (1 + PHI)
 KParamA(7) = KParamA(7) * (1 - PHI / 2) / (1 + PHI)
 End If

 iErr = FormKL(KParamA, KBCA)

 For j = 1 To 6
 gj = FreeA(1, j)
 For k = 1 To 6
 gk = FreeA(1, k)
 KGCA(gj, gk) = KGCA(gj, gk) + KBCA(j, k)
 Next k
 Next j
 For j = 1 To 6
 RowNum = (i - 1) * 6 + j
 For k = 1 To 6
 KBAA(RowNum, k) = KBCA(j, k)
 Next k
 KBAA(RowNum, 7) = KParamA(j)
 Next j
 Next i

Page 7

Frame4.txt
 ' Extract active global stiffness matrix, KGA, from KGCA
 For j = 1 To TNumFree
 gj = GFreeA(j, 1)
 For k = 1 To TNumFree
 gk = GFreeA(k, 1)
 KGA(j, k) = KGCA(gj, gk)
 Next k
 If GFreeA(j, 2) <> 0 Then KGA(j, j) = KGA(j, j) * StifFact
 Next j

 ' Create array of applied end actions, FA

 For i = 1 To (NumBeams)
 For j = 1 To 6
 FreeA(1, j) = GBFreea(i, j)
 Next j

 For j = 1 To 6
 FA(FreeA(1, j), 1) = FA(FreeA(1, j), 1) + FEMA(i, j)
 Next j
 Next i

 ' Extract array of actions applied to active freedoms, F_aA, from FA
 For i = 1 To TNumFree
 F_aA(i, 1) = FA(GFreeA(i, 1), 1)
 If GFreeA(i, 2) <> 0 Then F_aA(i, 1) = F_aA(i, 1) + GFreeA(i, 2) * KGA(i, i)
 Next i

 ' Transfer F_aA to range f_a
 With Range("f_a")
 .ClearContents
 .Resize(TNumFree, 1).Name = "f_a"
 End With
 Range("f_a").Value2 = F_aA

 ' Resize range defa, solve system for active freedoms
 With Range("defa")
 .ClearContents
 .Resize(TNumFree, 1).Name = "defa"
 End With
 DefA = GESolve(KGA, F_aA)
 Range("defa").Value = DefA

 ' Create array of all node deflections, DefacA
 DefaA = Range("defa").Value2
 For i = 1 To TNumFree
 DefacA(GFreeA(i, 1), 1) = DefaA(i, 1)
 Next i

 ' Transfer DefacA to range defc
 With Range("defc")
 .ClearContents
 .Resize(GNumFree, 1).Name = "defc"
 End With
 Range("defc").Value2 = DefacA

 ' Create arrays of node and beam labels and transfer to range "nlabels" and "blabels"

Page 8

Frame4.txt
 ReDim NLabels(1 To GNumFree, 1)
 For i = 1 To NumNodes
 j = (i - 1) * 3
 NLabels(j + 1, 1) = "DX" & i
 NLabels(j + 2, 1) = "DY" & i
 NLabels(j + 3, 1) = "RZ" & i
 Next i
 j = 0
 L = 0

 j = NumNodes * 3
 For i = 1 To NumERBeams

 For k = 2 To 7
 If BeamER(i, k) = 1 Then
 j = j + 1
 L = L + 1
 NLabels(j, 1) = "Rel" & BeamER(i, 1) & "-" & k - 1
 End If
 Next k
 Next i
 With Range("nlabels")
 .ClearContents
 .Resize(GNumFree, 1).Name = "nlabels"
 End With
 Range("nlabels").Value = NLabels

 ReDim BLabels(1 To NumBeams * 2, 1)
 For i = 1 To NumBeams
 j = (i - 1) * 2
 BLabels(j + 1, 1) = i & "-" & 1
 BLabels(j + 2, 1) = i & "-" & 2
 Next i

 With Range("blabels")
 .ClearContents
 .Resize(NumBeams * 2, 1).Name = "blabels"
 End With
 Range("blabels").Value = BLabels

 NFG = MMultv(KGCA, DefacA)

 ' Resize range react, and re-apply array formula "=nfg-fg"
 With Range("react")
 .ClearContents
 .Resize(GNumFree, 1).Name = "react"
 End With
 For i = 1 To GNumFree
 React(i, 1) = NFG(i, 1) - FA(i, 1)
 Next i
 Range("react").Value = React

 ' Find beam actions
 iErr = BeamActions(KBAA, DefacA, FEMA, GBFreea, BAA)

 With Range("beam_act")
 .ClearContents
 .Resize(NumBeams * 2, 3).Name = "beam_act"
 End With

Page 9

Frame4.txt
 Range("beam_act").Value = BAA

End Sub
==
Function FormKL(k() As Double, ByRef KB() As Double) As Long
 Dim Csq As Double, Ssq As Double, CS As Double
 Dim i As Long, j As Long

 ReDim KB(1 To 6, 1 To 6)

 Csq = k(5) ^ 2
 Ssq = k(6) ^ 2
 CS = k(5) * k(6)

 KB(1, 1) = Csq * k(1) + Ssq * k(2)
 KB(1, 2) = CS * (k(1) - k(2))
 KB(1, 3) = -k(6) * k(4)
 KB(1, 4) = -KB(1, 1)
 KB(1, 5) = -KB(1, 2)
 KB(1, 6) = KB(1, 3)

 KB(2, 2) = Ssq * k(1) + Csq * k(2)
 KB(2, 3) = k(5) * k(4)
 KB(2, 4) = KB(1, 5)
 KB(2, 5) = -KB(2, 2)
 KB(2, 6) = KB(2, 3)

 KB(3, 3) = 4 * k(3)
 KB(3, 4) = -KB(1, 3)
 KB(3, 5) = -KB(2, 6)
 KB(3, 6) = 2 * k(7)

 KB(4, 4) = KB(1, 1)
 KB(4, 5) = KB(1, 2)
 KB(4, 6) = -KB(1, 6)

 KB(5, 5) = KB(2, 2)
 KB(5, 6) = -KB(2, 6)

 KB(6, 6) = KB(3, 3)

 i = 2
 KB(i, 1) = KB(1, i)

 i = 3
 For j = 1 To 2
 KB(i, j) = KB(j, i)
 Next j

 i = 4
 For j = 1 To 3
 KB(i, j) = KB(j, i)
 Next j

 i = 5
 For j = 1 To 4
 KB(i, j) = KB(j, i)
 Next j

Page 10

Frame4.txt
 i = 6
 For j = 1 To 5
 KB(i, j) = KB(j, i)
 Next j

 FormKL = 0

End Function
==
Function BeamActions(KBAA As Variant, DefacA As Variant, FEMA As Variant, GBFreea As Variant, BAA() As Double) As Long
 Dim NumBeams As Long, i As Long, j As Long, k As Long, FreeNum As Long, NF As Double
 Dim KBA(1 To 6, 1 To 6), BeamNum As Long, DefA(1 To 6, 1 To 1) As Double
 Dim BeamAct As Variant, CT As Double, ST As Double, FX As Double, FY As Double

 NumBeams = UBound(GBFreea) - LBound(GBFreea) + 1
 ReDim BAA(1 To NumBeams * 2, 1 To 3)
 For i = 1 To NumBeams
 BeamNum = (i - 1) * 6
 For j = 1 To 6
 For k = 1 To 6
 KBA(j, k) = KBAA(BeamNum + j, k)
 Next k
 FreeNum = GBFreea(i, j)
 DefA(j, 1) = DefacA(FreeNum, 1)
 Next j
 BeamAct = MMultv(KBA, DefA)
 CT = KBAA(BeamNum + 5, 7)
 ST = KBAA(BeamNum + 6, 7)
 FX = BeamAct(1, 1)
 FY = BeamAct(2, 1)

 BAA((i - 1) * 2 + 1, 1) = -((BeamAct(1, 1) - FEMA(i, 1)) * ST - (BeamAct(2, 1) - FEMA(i, 2)) * CT)
 BAA((i - 1) * 2 + 1, 2) = -((BeamAct(2, 1) - FEMA(i, 2)) * ST + (BeamAct(1, 1) - FEMA(i, 1)) * CT)
 BAA((i - 1) * 2 + 1, 3) = -(BeamAct(3, 1) - FEMA(i, 3))

 BAA((i - 1) * 2 + 2, 1) = ((BeamAct(4, 1) - FEMA(i, 4)) * ST - (BeamAct(5, 1) - FEMA(i, 5)) * CT)
 BAA((i - 1) * 2 + 2, 2) = ((BeamAct(5, 1) - FEMA(i, 5)) * ST + (BeamAct(4, 1) - FEMA(i, 4)) * CT)
 BAA((i - 1) * 2 + 2, 3) = BeamAct(6, 1) - FEMA(i, 6)

 Next i
End Function
==
Function ATn2(X As Variant, Y As Variant) As Double

' Inverse tangent based on X and Y coordinates

' X and Y both zero produces an error.

 If X = 0 Then

 If Y = 0 Then

 ATn2 = 1 / 0

 ElseIf Y > 0 Then

 ATn2 = Pi / 2

 Else

Page 11

Frame4.txt

 ATn2 = -Pi / 2

 End If

 ElseIf X > 0 Then

 If Y = 0 Then

 ATn2 = 0

 Else

 ATn2 = Atn(Y / X)

 End If

 Else

 If Y = 0 Then

 ATn2 = Pi

 Else

 ATn2 = (Pi - Atn(Abs(Y) / Abs(X))) * Sgn(Y)

 End If

 End If

End Function
===

Public Function GESolve(Mat As Variant, Vect As Variant) As Variant
 Dim NumEq As Long, MBound As Long, i As Long, j As Long, k As Long
 Dim Df As Double, SSum As Double, ResultA() As Double

 NumEq = UBound(Mat) - LBound(Mat) + 1
 If NumEq <= 0 Then Exit Function
 MBound = NumEq
 ReDim ResultA(1 To MBound, 1 To 1)

 For k = 1 To MBound - 1
 For i = k + 1 To MBound
 If Abs(Mat(k, k)) < Abs(Mat(i, k)) Then
 Call swapRowMat(i, k, MBound, Mat)
 Call swapRowMat(i, k, 1, Vect)
 End If
 If Mat(k, k) <> 0 Then
 Df = Mat(i, k) / Mat(k, k)
 For j = k To MBound
 Mat(i, j) = Mat(i, j) - Mat(k, j) * Df
 Next j
 Vect(i, 1) = Vect(i, 1) - Vect(k, 1) * Df
 End If
 Next i
 Next k

Page 12

Frame4.txt

 ResultA(MBound, 1) = Vect(MBound, 1) / Mat(MBound, MBound)
 For i = MBound - 1 To 1 Step -1
 SSum = 0
 For j = i + 1 To MBound
 SSum = SSum + Mat(i, j) * ResultA(j, 1)
 Next j
 If Mat(i, i) <> 0 Then ResultA(i, 1) = (Vect(i, 1) - SSum) / Mat(i, i)
 Next i
 GESolve = ResultA

End Function
===
Private Sub swapRowMat(ByVal r1 As Long, ByVal r2 As Long, MBound As Long, Mat)
 Dim i As Long, mB As Long, dVal As Double

 For i = 1 To MBound
 dVal = Mat(r1, i)
 Mat(r1, i) = Mat(r2, i)
 Mat(r2, i) = dVal
 Next i
End Sub
===
Function MMultv(Mat1 As Variant, Mat2 As Variant) As Variant
 Dim MatRes() As Double, NumRows As Long, NumCols As Long, i As Long, j As Long
 Dim k As Long

 NumRows = UBound(Mat1) - LBound(Mat1) + 1
 NumCols = UBound(Mat2, 2) - LBound(Mat2, 2) + 1

 ReDim MatRes(1 To NumRows, 1 To NumCols)

 For i = 1 To NumCols
 For j = 1 To NumRows
 For k = 1 To NumRows
 MatRes(j, i) = MatRes(j, i) + Mat1(j, k) * Mat2(k, i)

 Next k
 Next j
 Next i

 MMultv = MatRes
End Function

Page 13

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

