PILED FOUNDATION DESIGN & CONSTRUCTION

By Ir. Dr. Gue See Sew http://www.gnpgeo.com.my

Contents

- Overview
- Preliminary Study
- Site Visit & SI Planning
- Pile Design
- Pile Installation Methods
- Types of Piles

Contents (Cont'd)

- Piling Supervision
- Pile Damage
- Piling Problems
- Typical Design and Construction Issues
- Myths in Piling
- Case Histories
- Conclusions

Overview

What is a Pile Foundation It is a foundation system that transfers loads to a deeper and competent soil layer.

When To Use Pile Foundations

- Inadequate Bearing Capacity of Shallow Foundations
 To Prevent Uplift Forces
- To Reduce Excessive Settlement

PIROUETTE : The giant liner beginning a turn yesterday to give all apartment owners their share of the view of Sydney Opera House. The harbour came to a standstill as ferries and other passenger craft were forced to sit and wait for it to finish. — Reuterspic

First floating condo turns for millionaires

SYDNEY: The world's first floating condominium, *The World*, brought Sydney Harbour to a standstill yesterday as it performed a graceful pirouette to ensure all its millionaire apartment owners had their fair share of the view.

The super-rich pay between

A\$2mil (RM4.7mil) and A\$7mil (RM16.4mil) for an apartment aboard the white-hulled 44,500-tonne giant liner. Yet for the past two days half of them have been staring out at the bleak facade of the 1980sbuilt Overseas Passenger Terminal in Sydney Cove where

it is moored.

The rest have been enjoying what is probably the finest view of the famous harbour and the Sydney Opera House.

But tugs and police boats turned the tables yesterday, gingerly shepherding the huge ship out into the harbour, turning it 180 degrees and edging it back to its moorings, in a 30minute operation which was the first of its kind in Sydney.

Extra charges for an apartment on *The World* range from A\$100,000 (RM233,000) to A\$340,000 (RM795,000) a year. - Reuters

PILE CLASSIFICATION

• Friction Pile

Load Bearing Resistance derived mainly from skin friction

• End Bearing Pile

Load Bearing Resistance derived mainly from base

Preliminary Study

Preliminary Study

- Type & Requirements of Superstructure
- Proposed Platform Level (ie CUT or FILL)
- Geology of Area
- Previous Data or Case Histories
- Subsurface Investigation Planning
- Selection of Types & Size of Piles

Previous Data & Case Histories

Challenge The Norm Thru Innovation To Excel

SELECTION OF PILES

Factors Influencing Pile Selection

- Types of Piles Available in Market (see Fig. 1)
- Installation Method
- Contractual Requirements
- Ground Conditions (eg Limestone, etc)
- Site Conditions & Constraints (eg Accessibility)
- Type and Magnitude of Loading
- Development Program & Cost

– etc

FIG 1: CLASSIFICATION OF PILES

				PREFORMED PILES											
TYPE OF PILE DESIGN CONSIDERATIONS					AKAU PILES	IMPER PILES	IC PILES	SC PILES	PUN PILES	LEEL H PILES	LEEL PIPE PILES	ACKED PILES	ORED PILES	AICROPILES	UGERED PILES
					<u> </u>	-	<u></u>	2	ი ი	თ ?	თ ?	۲ ۲	×	2	<
SCALE OF LOAD (STRUCTURAL)			< 100 KN	*	*	* 	?	?	•		*	x		¥	
		COMPRESSIVE LOAD PER COLUMN 1100-2000			· ?	· ·	•			•	•	•	~	·	· ·
					x	?	~	~	•	~	~	?	~	~	?
					x	?	~	~	~	~	~	?	~	~	?
		2000-5000		x	x	~	~	<	~	~	?	~	~	?	
				x	x	>	~	~	~	~	x	~	~	x	
				>10000	x	x	?	~	~	~	~	x	~	?	x
		MAINLY END -BEARING (D=Anticipated depth of bearing)		<5m	?	?	?	?	?	?	?	х	~	~	?
	ш			5-10m	<	>	>	~	<	>	>	?	~	~	~
	ТҮР			10-20m	?	?	>	~	<	>	>	~	~	~	~
	BEARING .			20-30m	x	x	~	~	~	~	~	~	~	~	~
				30-60m	x	х	~	~	~	~	~	~	~	?	~
		MAINLY FRICTION			~	>	>	~	<	?	>	>	~	?	~
		PARTLY FRICTION + PARTLY END BEARING			٢	*	*	~	٢	>	>	>	~	?	>
	TYPE OF BEARING LAYER	LIMESTON FORMATION			?	?	?	?	?	>	>	>	?	~	~
		WEATHERED ROCK / SOFT ROCK			х	x	>	~	~	*	>	?	~	~	?
		ROCK (RQD > 70%)			x	х	?	?	?	>	>	?	~	~	?
AL		DENSE / VERY DENSE SAND			x	?	>	>	>	>	>	>	~	>	*
NIC		SOFT SPT -		< 4	٢	<	٢	>	٢	>	۲	>	>	?	~
Ц	TYPE OF INTERMEDIATE LAYER	COHESIVE SOIL	M. STIFF SPT = 4 - 15		>	>	>	>	>	>	>	>	>	>	>
FO			V. STIFF SPT = 15 - 32		?	~	>	~	~	>	>	>	~	~	~
В			HARD SPT > 32		x	?	~	~	~	~	~	~	~	~	~
		COHESIVELESS SOIL	LOOSE SPT < 10		~	~	~	~	~	~	~	~	~	~	~
			M. DENSE SPT = 10 - 30		?	>	•	~	•	>	>	>	~	~	~
			DENSE SPT = 30 - 50		x	?	~	~	~	~	~	>	~	~	~
			V. DENSE	SPT > 50	x	x	~	~	~	~	~	?	~	~	?
		SOIL WITH SOME BOULDERS / COBBLES (S=SIZE) S < 100 mm 100-1000mm 100-3000mm >3000mm >3000mm		S < 100 mm	x	?	~	~	~	~	~	~	~	~	?
				100-1000mm	x	x	?	?	?	~	~	?	~	~	x
				1000-3000mm	x	x	?	?	?	?	?	?	?	~	x
				x	x	?	?	?	?	?	?	?	~	x	
					~	~	~	~	~	~	~	~	~	~	~
	WAIER	BELOW PILE CAP			x	~	~	~	~	~	~	~	~	~	~
ENVIRONME NT		NOISE + VIBRATION; COUNTER MEASURES REQUIRED			~	~	?	?	?	?	?	~	~	~	~
		PREVENTION OF EFFECTS ON ADJOINING STRUCTURES			?	?	?	?	?	?	?	~	?	~	~
UNIT COST (SUPPLY & INSTALL) RM/TON/M			0.5-	0.5-2.5 0.3-2.0		1.0-3.5		1-2	0.5-2	1.5-3	1-2.5				

LEGEND :					
	•	INDICATES THAT THE PILE TYPE IS SUITABLE			
	x	INDICATES THAT THE PILE TYPE IS NOT SUITABLE			
	?	INDICATES THAT THE USE OF PILE TYPE IS DOUBTFUL OR NOT COST EFFECTIVE UNLESS ADDITIONAL			
		MEASURES TAKEN			

FIG 2 : PILE SELECTION CHART

Pile Selection Based on Cost

Details:	250mm Spun Piles	300mm Spun Piles	Micropile		
Total Points	83	70	70		
Average Length	9m	9m	9m		
Average Rock Socket Length			2.5m		
			All search and the		
Indicative Rates :					
Mob & Demob	RM 50,000.00	RM 50,000.00	RM 20,000.00		
Supply	RM 33.00 / m	RM 42.00 / m			
Drive	RM 30.00 / m	RM 32.00 / m			
Cut Excess, Dispose + Starter Bars	RM 200.00 / Nos	RM 200.00 / Nos	and the second second		
Movement			RM 200.00 / Nos		
Drilling in Soil		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	RM 110.00 / m		
Drilling in Rock	and the state of the	Constant - States	RM 240.00 / m		
API Pipe		ingen state i s erver affekter	RM 120.00 / m		
Grouting			RM 85.00 / m		
Pile Head		and the - with and	RM 150.00 / Nos		
	Shell and the		All all and many		
Est. Ave. Cost Per Point	RM 967.00 / Nos	RM 1,066.00 / Nos	RM 4,297.50 / Nos		
Est. Foundation Cost	RM 190,261.00	RM 184,620.00	RM 380,825.00		
		\checkmark			

Site Visit and SI Planning

Site Visit

Things To Look For ...

- Accessibility & Constraints of Site
- Adjacent Structures/Slopes, Rivers, Boulders, etc
- Adjacent Activities (eg excavation)
- Confirm Topography & Site Conditions
- Any Other Observations that may affect Design and Construction of Foundation

Subsurface Investigation (SI) Planning

- Provide <u>Sufficient Boreholes</u> to get Subsoil Profile
- Collect Rock Samples for Strength Tests (eg UCT)
- In-Situ Tests to get consistency of ground (eg SPT)
- Classification Tests to Determine Soil Type Profile
- Soil Strength Tests (eg CIU)
- Chemical Tests (eg Chlorine, Sulphate, etc)

Typical Cross-Section at Hill Site

Placing Boreholes in Limestone Areas

• Stage 1 : Preliminary S.I.

- Carry out geophysical survey (for large areas)

• Stage 2: Detailed S.I.

- Boreholes at Critical Areas Interpreted from Stage 1

• Stage 3: During Construction

- Rock Probing at Selected Columns to supplement Stage 2

PILE DESIGN

Allowable Pile Capacity is the minimum of :

1) Allowable Structural Capacity

2) Allowable Geotechnical Capacity
a. Negative Skin Friction
b. Settlement Control

PILE DESIGN

Structural consideration

- Not overstressed during handling, installation & in service for pile body, pile head, joint & shoe.
 - Dimension & alignment tolerances (common defects?)
 - Compute the allowable load in soft soil (<10kPa) over hard stratum
 - Durability assessment

Pile Capacity Design Structural Capacity

• Concrete Pile $Q_{all} = 0.25 \times f_{cu} \times A_{c}$

• Steel Pile $Q_{all} = 0.3 \times f_y \times A_s$ Q_{all} = Allowable pile capacity f_{cu} = characteristic strength of concrete f_{s} = yield strength of steel A_{c} = cross sectional area of concrete A_{s} = cross sectional area of steel

Prestressed Concrete Pile Q_{all} = 0.25 (f_{cu} – Prestress after loss) x A_c

Collection of SI Data

<section-header> Display Contention Display Contention Display Contention Depth VS SPT-N Blow Count Depth VS SPT-N Blow Count Depth VS SPT-N Blow Count

Piles installed in a group may fail:
Individually
As a block

Piles fail individually

When installed at large spacing

- Piles fail as a block
 - When installed at close spacing

Pile Capacity Design Single Pile Capacity Pile Capacity Design Factor of Safety (FOS)

Factor of Safety (FOS) is required for

Natural variations in soil strength & compressibility

Pile Capacity Design Factor of Safety (FOS)

Factor of Safety is (**FOS**) required for

 Different degree of mobilisation for shaft & for tip

Partial factors of safety for shaft & base capacities respectively

• For shaft, use 1.5 (typical)

For base, use 3.0 (typical)

 $\mathbf{Q}_{all} = \frac{\Sigma \mathbf{Q}_{su}}{1.5} + \frac{\mathbf{Q}_{bu}}{3.0}$

Global factor of safety for total ultimate capacity

Use 2.0 (typical)

$$\mathbf{Q}_{all} = \frac{\Sigma \mathbf{Q}_{su} + \mathbf{Q}_{bu}}{2.0}$$

Calculate using BOTH approaches (Partial & Global)

Choose the lower of the Q_{all} values

Pile Capacity Design Single Pile Capacity

Pile Capacity Design Single Pile Capacity : In Cohesive Soil

 Q_u = Ultimate bearing capacity of the pile

- a = adhesion factor (see next slide)
- s_{us} = average undrained shear strength for shaft

 $A_s = surface area of shaft$

 s_{ub} = undrained shear strength at pile base

- N_c = bearing capacity factor (taken as 9.0)
- $A_b = cross sectional area of pile base$

Pile Capacity Design Single Pile Capacity: In Cohesive Soil Adhesion factor (α) – Shear strength (S_u) (McClelland, 1974)

	Meyerhof	Fukuoka		
SPT N	f _{su} =2.5N (kPa)	s _u = (0.1+0.15N)*50 (kPa)	α	f _{su} =α.s _u (kPa)
0	0	5	1	5
1	2.5	12.5	1	12.5
5	12.5	42.5	0.7	29.75
10	25	80	0.52	41.6
15	37.5	117.5	0.4	47
20	50	155	0.33	51.15
30	75	230	0.3	69
40	100	305	0.3	91.5

Pile Capacity Design Single Pile Capacity: In Cohesive Soil

Correlation Between SPT N and f_{su}

Pile Capacity Design Single Pile Capacity: In Cohesive Soil

• Values of undrained shear strength, s_u can be obtained from the following:

✓ Unconfined compressive test

✓ Field vane shear test

✓ Deduce based on Fukuoka's Plot (minimum s_u)

X Deduce from SPT-N values based on Meyerhof

NOTE: Use only direct field data for shaft friction prediction instead of Meyerhof

Pile Capacity Design Single Pile Capacity: In Cohesive Soil

Modified Meyerhof (1976): Ult. Shaft friction = $Q_{su} \approx 2.5 N$ (kPa) Ult. Toe capacity = $Q_{bu} \cong 250N$ (kPa) or 9 s_{μ} (kPa) (Beware of base cleaning for bored piles – ignore base capacity if doubtful)

Pile Capacity Design Single Pile Capacity: In Cohesionless Soil

Modified Meyerhof (1976): • Ult. Shaft Friction = $Q_{su} \cong 2.0N$ (kPa) • Ult. Toe Capacity= $Q_{bu} \cong 250N - 400N$ (kPa)

Pile Capacity Design

Pile Capacity Design Block Capacity

Pile Capacity Design Block Capacity:In Cohesive Soil

$$Q_u = 2D(B+L) s + 1.3(s_b.N_c.B.L)$$

Where

Q_u= ultimate bearing capacity of pile group

D = depth of pile below pile cap level

- **B** = width of pile group
- L = length of pile group

 \underline{s} = average cohesion of clay around group

 s_b = cohesion of clay beneath group

 N_c = bearing capacity factor = 9.0

(Refer to Text by Tomlinson, 1995)

Pile Capacity Design Block Capacity: In Cohesionless Soil

No risk of group failure if FOS of individual pile is adequate

Pile Capacity Design Block Capacity: On Rock

No risk of block failure if the piles are properly seated in the rock formation

Compressible soil layer consolidates with time due to:
 Surcharge of fill
 Lowering of groundwater table

Pile to length (floating pile) ➢ Pile settles with consolidating soil → NONSF

Pile to set at hard stratum (endbearing pile)

Consolidation causes downdrag forces on piles as soil settles more than the pile

WARNING:

No free fill by the contractor to avoid NSF

Effect of NSF ...

Reduction of Pile Carrying Capacity

NSF Preventive Measures

• Avoid Filling

- Carry Out Surcharging
- Sleeve the Pile Shaft
- Slip Coating
- Reserve Structural Capacity for NSF
- Allow for Larger Settlements

Pile Capacity Design Negative Skin Friction Increased Pile Axial Load

Check: maximum axial load < structural pile

Without Negative Skin Friction:

Allowable working load $\equiv \frac{Q_{ult}}{FOS}$

With Negative Skin Friction:

Allowable working load

$$= \frac{Q_{ult}}{FOS} - (Q_{neg} + etc)$$

Pile Capacity Design Static Pile Load Test (Piles with NSF)

- Specified Working Load (SWL) = Specified foundation load at pile head
- Design Verification Load (DVL) = SWL + $2 Q_{neg}$
- Proof Load: will not normally exceed

DVL + SWL

Pile Settlement Design

Design for *total* settlement & *differential* settlement for design tolerance
 In certain cases, *total* settlement not an issue
 Differential settlement can cause

damage to structures

Pile Group Settlement in Clay

IMMEDIATE SETTLEMENT

$$p_i = \frac{\mu_1 \mu_0 q_n B}{E_u}$$

by Janbu, Bjerrum and Kjaernsli (1956)

Where

- **p**_i = average immediate settlement
- q_{n=} pressure at base of equivalent raft
- **B** = width of the equivalent raft
- **E**_u= deformation modulus
- $\mu_{1,}\mu_{0}$ = influence factors for pile group width, B at depth D below ground surface

CONSOLIDATION SETTLEMENT

As per footing (references given later)

Pile Settlement Design On Rock

No risk of excessive settlement
Pile Installation Methods

PILE INSTALLATION METHODS

- Diesel / Hydraulic / Drop Hammer
 Driving
- •Jacked-In
- Prebore Then Drive
- Prebore Then Jacked In
- Cast-In-Situ Pile

Diesel Drop Hammer Driving

Hydraulic Hammer Driving

Jacked-In Piling

Jacked-In Piling (Cont'd)

Cast-In-Situ Piles (Micropiles)

THE MICROPILE INSTALLATION PROCESS

- Setting casing and drilling of bore hole over pile position.
- Lowering the Down the Hole hammer for hard material drilling after ensuring hole is truly vertical.
 Installation of the micropile structural member by
- lowering the steel bars into the drilled hole. 4. Checking to ensure drilled hole formed is washed
- and cleaned before grouting. Tremie grouting in progress.
- Four bar micropile system ready to be incorporated
 - into the pile cap.

Types of Piles

TYPES OF PILES

- •Treated Timber Piles
- •Bakau Piles
- •R.C. Square Piles
- Pre-Stressed
 Concrete Spun
 Piles

- •Steel Piles
- •Boredpiles
- •Micropiles
- •Caisson Piles

R.C. Square Piles

• Size : 150mm to 400mm •Lengths : 3m, 6m, 9m and 12m Structural Capacity : 25Ton to 185Ton • Material : Grade 40MPa Concrete Joints: Welded Installation Method : -Drop Hammer -Jack-In

RC Square Piles

Pile Marking

Pile Lifting

Pile Fitting to Piling Machine

Pile Positioning

Considerations in Using RC Square Piles ...

•Pile Quality

•Pile Handling Stresses

•Driving Stresses

•Tensile Stresses

•Lateral Loads

•Jointing

Pre-stressed Concrete Spun Piles

- •Size : 250mm to 1000mm
- •Lengths : 6m, 9m and 12m (Typical)
- •Structural Capacity : 45Ton to 520Ton
- •Material : Grade 60MPa & 80MPa Concrete
- •Joints: Welded
- Installation Method :
 - -Drop Hammer
 - -Jack-In

Spun Piles

Spun Piles vs RC Square Piles

Spun Piles have ...

- •Better Bending Resistance
- •Higher Axial Capacity
- •Better Manufacturing Quality
- •Able to Sustain Higher Driving Stresses
- •Higher Tensile Capacity
- •Easier to Check Integrity of Pile
- •Similar cost as RC Square Piles

Steel H Piles

• Size : 200mm to 400m •Lengths : 6m and 12m Structural Capacity : 40Ton to 1,000Ton • Material : 250N/mm² to 410N/mm² Steel •Joints: Welded Installation Method : -Hydraulic Hammer -Jack-In

Steel H Piles

Steel H Piles (Cont'd)

Steel H Piles Notes...

Corrosion RateFatigueOverDriving

OverDriving of Steel Piles

Large Diameter Cast-In-Situ Piles (Bored Piles)

- Size : 450mm to 2m
- Lengths : Varies
- Structural Capacity : 80Ton to 2,300Tons
- Concrete Grade : 20MPa to 30MPa (Tremie)
- Joints : None
- Installation Method : Drill then Cast-In-Situ

Overburden Soil Layer

Overburden Soil Layer

Overburden Soil Layer

Lower Tremie Chute

Overburden Soil Layer

Bedrock

Borepile Construction

Pour Tremie Concrete

Borepile Construction

Overburden Soil Layer

Completed Borepile

Overburden Soil Layer

Bored Pile Construction

BORED PILING MACHINE

Rock Reamer

Rock Auger

minimum

Cleaning Bucket

Bored Pile Construction

DRILLING EQUIPMENT

Coring bucket

Soil auger

bucket

Cleaning

Bored Pile Construction

BENTONITE PLANT

Drilling

Lower Reinforcement

Place Tremie Concrete

Completed Boredpile

Borepile Cosiderations...

•Borepile Base Difficult to Clean

•Bulging / Necking

•Collapse of Sidewall

•Dispute on Level of Weathered Rock

Micropiles

• Size : 100mm to 350mm Diameter •Lengths : Varies •Structural Capacity : 20Ton to 250Ton •Material : Grade 25MPa to 35MPa Grout **N80 API Pipe as Reinforcement** •Joints: None •Installation Method : **–Drill then Cast-In-Situ** -Percussion Then Cast-In-Situ

Cast-In-Situ Piles (Micropiles)

TYPES OF PILE SHOES

•Flat Ended Shoe
•Oslo Point
•Cast-Iron Pointed Tip
•Cross Fin Shoe
•H-Section

Cross Fin Shoe

Oslo Point Shoe

Cast Iron Tip Shoe

H-Section Shoe

Piling Supervision

4. (1) A local authority may if it is of the view that any plan, Return of plan drawing or calculation is beyond the competence of such qualified person submitting the same, built of the same built of the same

5. Where under these By-laws any plan, drawing or calculation in relation to any building is required to be submitted by qualified person, no erection or continued erection of that building shall take place unless that qualified person or any person duly authorised by him undertakes the supervision of the erection and the setting out, where applicable, of that building.

6. (1) All plans submitted shall be signed by the qualified person plans to be and by the owner or his agent and shall bear the full address of the signed.

(2) The local authority may, if satisfied that the owner of the premises has refused to or has failed to execute any work which is required under the Act to be executed by him, direct the owner of the premises in writing to execute such work.

7. (1) The qualified person submitting the plans shall be withdrawal or responsible for the proper execution of the works and shall continue to be so responsible until the completion of the works unless.

PILING SUPERVISION

- •Ensure That Piles Are Stacked Properly
- •Ensure that Piles are <u>Vertical During</u> Driving
- •Keep Proper Piling Records
- •Ensure Correct Pile Types and Sizes are Used
- •Ensure that Pile Joints are Properly Welded with NO GAPS

•Ensure Use of Correct Hammer Weights and Drop Heights

PILING SUPERVISION (Cont'd)

- •Ensure that Proper Types of Pile Shoes are Used.
- •Check Pile Quality
- •Ensure that the Piles are Driven to the Required Lengths
- Monitor Pile Driving

FAILURE OF PILING SUPERVISION

Failing to Provide Proper Supervision WILL Result in

Higher Instances of Pile Damage

& Wastage

Pile Damage

Driven concrete piles are vulnerable to damages by overdriving.

Damage to Timber Pile

Weak Timber Joint

Damage To RC Pile Toe

Damage to RC Pile Head

Damage to RC Piles

Damage to RC Piles – cont'd

Tilted RC Piles

Damage to Steel Piles

Damaged Steel Pipe Piles

Detection of Pile Damage Through Piling Records

Piling Problems

Piling Problems – Soft Ground

Piling Problems – Soft Ground

Ground heave due to essure relief at base & surcharge near excavation

Piling Problems – Soft Ground

Piling in Kuala Lumpur Limestone

Important Points to Note:

- Highly Irregular Bedrock Profile
- Presence of Cavities & Solution Channels
- Very Soft Soil Immediately Above Limestone Bedrock

Results in ...

- High Rates of Pile Damage
- High Bending Stresses

Piling Problems in Typical Limestone Bedrock

Piling Problems – Undetected Problems

Piling Problems – Coastal Alluvium

Seriously damaged pile due to severe driving stress in soft ground (tension) Defect due to poor workmanship of pile casting

Defective pile shoe

Nonchamfered corners

Pile head defect due to hard driving or and poor workmanship

Piling Problem - Micropiles

Sinkholes caused by installation methoddewatering?

Piling in Fill Ground

Important Points to Note:

- •High Consolidation Settlements If Original Ground is Soft
- •Uneven Settlement Due to Uneven Fill Thickness
- •Collapse Settlement of Fill Layer If Not Compacted Properly

Results in ...

 Negative Skin Friction (NSF) & Crushing of Pile Due to High Compressive Stresses

Uneven Settlements

Typical Design and Construction Issues #1

<u>Issue #1</u>

Pile Toe Slippage Due to Steep Incline Bedrock

Solution #1

Use Oslo Point Shoe To Minimize Pile Damage

Pile Breakage on Inclined Rock Surface

No Proper Pile Shoe

Pile Breakage on Inclined Rock Surface

Use Oslo Point Shoe to Minimize Damage

Design and Construction Issues #2

Presence of Cavity

Solution #2

Detect Cavities through Cavity Probing then perform Compaction Grouting

Design and Construction Issues #3

Issue #3

Differential Settlement

Solution #3

Carry out analyses to check the settlement compatibility if different piling system is adopted

Typical Design and Construction Issues #4

Issue #4

Costly conventional piling design – piled to set to deep layer in soft ground

Solution #4

-Strip footings / Raft

-Floating Piles

"Conventional" Foundation for Low Rise Buildings

Conceptual Design of FOUNDATION SYSTEM

 Low Rise Buildings :-(Double-Storey Houses)
 Strip Footings or Raft or Combination.

Medium Rise Buildings : Floating Piles System.

Advantages of Floating Piles System

1. Cost Effective.

2. No Downdrag problems on the Piles.

3. Insignificant Differential Settlement between Buildings and Platform.

Bandar Botanic at Night

Soft Ground Engineering

Myths in Piling

MYTHS IN PILING #1

Myth: Dynamic Formulae such as Hiley's Formula Tells us the Capacity of the Pile

Truth: Pile Capacity can only be verified by using: (i) Maintained (Static) Load Tests (ii)Pile Dynamic Analyser (PDA) Tests

MYTHS IN PILING #2

Myth: Pile Achieves Capacity When It is Set.

Truth:

Pile May Only "Set" on Intermediate Hard Layer BUT May Still Not Achieve Required Capacity within Allowable Settlement.

CASE HISTORIES

Case 1: Structural distortion & distresses

• Case 2: Distresses at houses

CASE HISTORY 1 Distortion & Distresses on 40 Single/ 70 Double Storey Houses

Max. 20m Bouldery Fill on Undulating Terrain
Platform Settlement
Short Piling Problems
Downdrag on Piles

Distresses on Structures

Prevention Measures

• Design:

- Consider downdrag in foundation design
- Alternative strip system
- Construction:
 - Proper QA/QC
 - Supervision

<u>CASE HISTORY 2</u> Distresses on 12 Double Storey Houses & 42 Townhouses

• Filled ground: platform settlement

 Design problem: non-suspended floor with semi-suspended detailing

Bad earthwork & layout design

Short piling problem

Larger colum settlement

BUILDING PLATFORM PROFILE AFTER SETTLEMENT

^ρS — ACTUAL FILLED PLATFORM SETTLEMENT

Distorted Car Porch Roof

Poor Earthwork Layout

Prevention Measures

• Planning:

- Proper building layout planning to suit terrain (eg. uniform fill thickness)
- Sufficient SI
- Design:
 - Consider filled platform settlement
 - Earthwork layout
- Construction:
 - Supervision on earthwork & piling

SUMMARY

- Importance of Preliminary Study
- Understanding the Site Geology
- Carry out Proper Subsurface Investigation that Suits the Terrain & Subsoil
- Selection of Suitable Pile
- Pile Design Concepts

SUMMARY

- Importance of Piling Supervision
 Typical Piling Problems Encountered
- Present Some Case Histories

CHALLENGING THE NORM

WITH TEANWORK WE SHALL EXCEL TO HIGHER HORIZON

54 PEOPLE TOOK PART IN THIS CONCERTED ACROBATIC JUMP.

