DEFLECTIONS OF BEAMS AND FRAMES

INTRODUCTION : When a structure is loaded, its stressed elements deform. Ina
truss, bars in tension elongate and bars in compression shorten. Beams bend. As
this deformation occur, the structure changes shape and points on the structure
displace. Although these deflections are normally small, as a part of the total
design the engineer must verify that these deflections are within the limits
specified by the governing design code to ensure that the structure is
serviceable. Large deflections cause cracking of non structural elements such as
plaster ceiling, tile walls or brittle pipes. Since the magnitude of deflections is
also a measure of a member's stiffness, limiting deflections also ensures that
excessive vibrations of building floors.

In this chapter we consider several methods of computing deflections and slopes at
points along the axis of beams and frames. These methods are based on the
differential equation of the elastic curve of a beam. This equation relates
curvature at a point along beam's longitudinal axis to the bending moment at that
point and the properties of the cross section and the material. If the elastic
curve seems difficult to establish, it is suggested that the moment diagram for
the beam or frame be drawn first. A positive moment tends to bend a beam
concave upward. Likewise a negative moment bend the beam concave downward.



Therefore if the moment diagram is known, it will be easy to construct the elastic curve. In particular, there must be
an inflection point at the point where the curve changes from concave down to concave up, since this is a zero moment.
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DOUBLE INTEGRATION METHOD

The double integration method is a procedure to establish the equations for slope and deflection at points along
the elastic curve of a loaded beam. The equations are derived by integrating the differential equation of the
elastic curve twice. The method assumes that all deformations are produced by moment.
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Relationship between bending moment and curvature for 1 do d? y M
pure bending remains valid for general transverse loadings. v =—= = =

p dx dx’® EI

Example : For the cantilever beam in figure establish the equations for slope and deflection by the double integration
method. Also determine the magnitude of the slope ©, and deflection Ay at the tip of the cantilever. EI is constant.
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Example : Use the double integration method, establish the equations for slope and deflection for the uniformly loaded
beam in figure. Evaluate the deflection at mid-span and the slope at support A. EI is constant.
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MOMENT-AREA METHOD

There are two moment-area theorems. These theorems were developed by Otto Mohr and later stated formally
by Charles E. Greene in 1872. These theorems provide a semi-graphical tfechnique for determining the slope of
the elastic curve and its deflection due to bending. They are particularly advantageous when used to solve
problems involving beams especially those subjected to serious of concentrated loadings or having segments with
different moments of inertia. The first theorem is used to calculate a change in slope between two points on
the elastic curve. The second theorem is used to compute the vertical distance (called a tfangential deviation)
between a point on the elastic curve and a line tangent to the elastic curve at a second point. These quantities
are illustrated in the following figure.
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Tangent at A

Derivation of the moment-area theorems : The It states that the change in slope of the tangents on
relation between slope and moment and bending either side of the element dx is equal to the area
stiffness EI is under the M/ETI diagram. Integrating from point A on
the elastic curve to point B we have,
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The ordinates of the moment curve must be divided by the bending stiffness EI to produce M/ET curve. The last
equation forms the basis for the first moment-area theorem.

The change in slope between any two points on a continuous elastic curve is equal to the area
under the M/EI curve between these points.

l\/\ The tangential deviation dt can be expressed by
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Remembering that the quantity
Mdx/ET represents an infinitesimal
area under the M/ET diagram and that
x is the distance from the area to point
B, we can interpret the integral as the
moment about point B of the area
under the M/EI diagram between
points A and B
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This result constitutes the second moment-area theorem.

The tangential deviation at a point B on a continuous elastic curve from a tangent drawn to the elastic
curve at a second point A is equal to the moment about B of the area under the M/EI diagram between
the two points.

Example : Compute the slope and deflection at the tip of the cantilever beam. EI is constant.

Y p Tangent at A is always horizontal.
A C B HB — QA +A9AB — AQAB
X
= 1 (-PL\ -PL — PI*
lgs = Vg AO,,=—L = =0,=—
2 EI 2EI 2EI
L ) The slope at mid-point :
~< " 1(-PL —-PL\L -3PL
AG,. =— + i
2\ EI 2El )2 SEI
_E{J[L ° - 2 0 -3PL
=—1 c=
- > “C 8EI

1 -PL2L -PI
M/ET DIAGRAM tp,=Vp=—L =
2 EI 3 3EI

Minus sign indicates that the tangent lies above elastic 7
curve




Example : Determine the deflection at points B and C of the beam shown below. Values for the moment of inertia of
each segment are I,;= 8.10° mm*, and Iy.= 4.10° mm*. Take E= 200 GPaq,

500 N.m , , , ,
By inspection the moment diagram for the beam is a rectangle. If we

A
B construct the M/ET diagram relative to I;.. The couple causes the beam
QZEI= EI C to deflect concave up. We are required to find the vertical
displacements at B and C. These displacements can be related directly to
the deviations between the tangents.
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Since both answers are positive, they indicate that points B
and C lie above the tangent at A.



Example : Determine the slope at point C of the beam. EI is constant.
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Location of maximum deflection occurs at the point where the
slope of the beam is zero. So, the change in slope must be O,
between the support and the point of the max. deflection. let the
base of the triangle be x
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Example : Determine the deflection at point C of the beam. E= 200 GPa, I=250 10¢ m*
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CONJUGATE BEAM METHOD

The method was first presented by Otto Mohr in 1860. This method relies only the principles of statics and
hence its application will be more familiar. The basis for the method comes from the similarity between both

dQ dM d*M
E:_q E:_Q or........ 1 =q
which relate a beam's internal shear and moment to its applied loading, and
9 _M dy_M
dx  EI dx*  EI

which relate the slope and deflection of its elastic curve to the internal moment divided by EI. Or integrating

These equations indicate that the shear in a beam
Q= J. (_ Q)dx M = _J. _[ (_ Q)dx can be obtained by integrating the load once and the
moment by integrating the load twice. Since the
M M curvature of a beam is proportional fo the bending
0 = j — |dx y= jj — |dx moment, slope and deflection of the beam can be
EI El obtained by successively integrating the moment.

We want to replace the integration indicated in the equations by drawing the shear and bending moment diagrams. To
do this we will consider a beam having the same length as the real beam, bot referred to here as the conjugate beam.
It is loaded with the M/EI diagram of the real beam. Shear and moment diagrams of the conjugate beam represent
one and two integrations, respectively of the M/ETI diagram of the real beam. We thus conclude that shear and
moment diagrams of the conjugate beam represent the slope and deflection of the real beam. Now we can therefore
state two theorems related to conjugate beam, namely



Theorem 1: The slope at a point in the real beam is equal to the shear at the corresponding point in the conjugate
beam.

Theorem 2: The displacement at a point in the real beam is equal to the moment at the corresponding point in the
conjugate beam.

Since each of the previous equations requires integration it is important that the proper boundary conditions be used
when they are applied.
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REAL BEAM CONJUGATE BEAM

o e & o

— - If we freat positive values
= = of the M/EI diagram
applied to the beam as a
distributed load acting
I~ upward and negative values
/< ﬁ /< O = of M/EI as a downward

load, positive shear denotes
a negative slope and a
negative shear a positive
slope. Further negative

— " values of moment indicate a
= ™ EE ﬁ E ﬁ downward deflection and
positive values of moment
an upward deflection.
bz

——n

As a rule, neglecting axial force, statically determinate real beams have statically indeterminate conjugate beams;
and statically indeterminate real beams, as in the last figure above become unstable conjugate beams. Although this
occurs, the M/EI loading will provide the necessary “equilibrium” fo hold the conjugate beam stable.



Example : Determine the slope and deflection of point B of the steel beam shown in figure. The reactions are given in

the figure. Take E=200 GPa, I=333 10® mm*

22 kN iZZ kN
Real
Beam
A B
}‘ 46 m * 46 m »‘
101.2 kNm
I= Conjugate
101.2 = Beam
EI
¢ 7.667 m > MB
tT
O
232.76
EI

M/ETI diagram is negative, so the distributed load acts
downward

232.76
o +0p =0
23276 232.76
Os = EI  200.10°*333.10°°
0, =0.00349

6, =—0.00349ad

232.76

M, + *7.667 =0
- 1784 .5 —-1784 .5
MB = AB = = 5 = =
EI 200.10° *333 .10

A, =—0.0268 m

Positive shear indicates negative slope, and the negative moment of the beam indicates downward displacement.



Example : Determine the maximum deflection of the steel beam shown below. Reactions are given. I= 60.106 mm*

8kNl

The distributed load acts upward, since

Real M/ET diagram is positive. External
A B Beam reactions are shown on the free body
diagram. Maximum deflection of the real
beam occurs at the point where the slope
9m 3m of the beam is zero. This corresponds to
2 kN >‘< the same point in the conjugate beam
6 kN where the shear is zero. Assumong this
18 point acts within the region 0<x<9 m. from
Bl A, we can isolate the section below,
/m B Conjugate 18 ( x 2x
A Beam — | — | =—
A O EI\9) EI
81 M
— 27 45 10
EI 7 X
El —V
» El Internal reactions
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— External reactions — D F, =0
El El —45 1 [ 2x j
i x=0
EI 2\ EI
ZM:O x=6.7lm > 0< x<9m
B w671 - L(ﬂ* 6.71 j* ST Ly =0
EI 2 El 3
A =M :—201 .2: —301 2 = 0.0168 m
El 200 .10 ®* * 60 .10



Example: Determine the displacement of the pin at B and the slope of the each beam segment connected to the pin
for the beam shown in the figure. E=200 6Pa I=135.10® mm*

Real
Beam

A 35 kNl M= 120 kNm
— ,\ c
= =

»‘ 3.60 >‘ 360 + 4.60 ,‘

187.33 Conjugate Beam
EI ) C
126 / >
EI 120

676.17 EI

226.8 767.

EI EI

M/ET diagram has been drawn in parts using the
principle of superposition. Notice that negative
regions of this diagram develop a downward
distributed load and the positive regions have a
distributed load that acts upward.

To determine Op" the conjugate beam is
sectioned just to the right of B and shear force
is computed

593.74
EI

El
D> F, =0
276 593 .74
- Q05— + =0
Os EI EIl
. 317.74 317 .74
QB: =

EI  200.10°%*135.10 ¢
O =0.011768

0, =-0.011768 rad



The internal moment at B yields the displacement of the pin 593.74

M
ol T EI
> M =0 ’ H
276 593 .74 B
M, F 3.076 — ——*4.60 =0 276
AB:M3:1884 .8: 18684 .8 = 0.070 m El
EI 200 .10 ° *135 .10

The slope Op' can be found from a section of beam just to the left of B thus

2. F,=0
593.74
Y, _Qé_767.11_276+593.7420
QI. EI EI EI EI
v L 449 .37 449 37
QB = 93 == == 6 ~6
EI 200.10° *135 .10
767.11 276 Q5 =-0.01667
El 0! =0.01667 rad
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D




EXTERNAL WORK AND STRAIN ENERGY

Most energy methods are based on the conservation of the energy which states that work done by all the
external forces acting on a structure, W, is transformed into internal work or strain energy U, which is
developed when the structure deforms. If the material's elastic limit is not exceeded, the elastic strain energy
will return the structure to its undeformed state when the loads are removed.

w=U
External work done by a force : When a force F undergoes a —
displacement dx in the same direction as the force, the work done is, dW Fdx
If the total displacement is x, the work becomes W = I F .dx
0
P
al ..—> ) o oA
A
«> W:J.F.dx:—J.x.dx:—
F P 0 A 2
F=—x
A
‘ Represents the triangular
area
X




'
Suppose that P is already applied to the bar and that : : P F
another force F' is now applied, so the bar deflects a | >
further by an amount A', the work done by P (not F’) when PRI

the bar undergoes the further deflection A’ is then

—>
W= PA — /)/ The work of F j
F =
P

P does not change its magnitude.
Work is simply the force magnitude
(P) times the displacement (A")

X
AN

External work done by a moment: The work of a moment is defined by the product

of the magnitude of the moment and the angle dO© through which it rotates. dW =M .do
0

If the total angle of rotation is © radians, the work becomes

. . o W=|\M.do
As in the case of force, if the moment is applied to a structure gradually,
from zero to M, the work is then 0

W = 1—M 0
2

However if the moment is already applied to the structure and other loadings further distort the structure by an
amount @', then the M rotates ©', and the work is

W'=M.J.



Strain Energy due to an axial force

o =F.c¢
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Strain Energy due to the moment Tangent to

right end

/
| X d _O
< pdx < L >
M
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El
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P
L
U = dx The strain energy for the beam is
VE] determined by integrating this result Tangent fo
0 over the beams entire length left end




Principle of work and energy

Application of this method is limited to only a few select problems. It will be noted that only one load may be applied
to the structure and only the displacement under the load can be obtained.

Example: Using principle of work and energy, determine the deflection at the tip of the cantilever beam.

P M(x)=P(x—-1L)
i w=U
1 M2
EIL A P !T _2E]-[(x LY s
P(L L
PL‘ ] A:EI£3—22+LJ
_pL
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If we take a deformable structure, and apply a series of loads to it, it will cause internal loads and internal displacements

v N,, dL, Internal forces
And
Internal displacements

External Forces < Equilibrium Equations < Internal Forces
External Displacements | <—> Compatibility Equations <{——> | internal Displacements

P q External and internal

l forces \ o
L ~_ 2

A \ External and internal / d@

deflections




Principle of work and energy states ZPi'Ai _ Z Nj .ALj
> PA=[Mdo

Work of external forces Work of internal forces

Virtual work method (Unit Load Method)

Virtual work is a procedure for computing a single component of deflection at any point on a structure. The method
permits the designer to include in deflection computations the influence of support settlements, temperature change,
and fabrication errors. To compute a component of deflection by the method of virtual work, the designer applies a
unit force to the structure at the point and in the direction of the desired displacement. This force is often called a
aummy load, the displacement it will undergo is produced by other effects. These other effects include the real loads,
temperature change, support settlement and so forth. In other words, the deflected shape due to the real forces is
assumed to be the virtual deflected shape of the dummy structure, and the principle of work and energy is applied.

Application of unit force method to frusses

Real
displacements

N.L

AL = — Due to real loads

EA
AL = a.AT.L Due to temperature change

1.A=> N, AL,

Virtual
forces

Given fabrication error



Example: Determine the horizontal and vertical
displacement at point C. All members have a
cross-sectional area of 25.10% m? and a modulus
of elasticity of 200 GPa.

1.kN

MEMBER | L(m) [N &N) [Ny Nh N.Nv.L N.Nh.L
AB 6 37,5 -0,5 -0,375 -112,5 -84,375
BC 5 62,5 | 0,834 0,625 -260,625 -195313
CA 5 -187,5 | -0,834 0,625 781,875 -585,938
CD 5 2250 0 0 0 0
DA 8 200 0 0 0 0
SUM 408,75 -865,625
N.Nv.L 408.75

V

A= Z = 500.10° *0.0025 =0.0008175m The negative sign indicates
' ' that the horizontal

A~ N. Nh L -865.625 0.00173 displacement is to the left,

c Z 200.106 *0.0025 e m not to the right as assumed




Example: The truss shown below is distorted during fabrication because member BC is 12.7 mm short. What
vertical deflection is infroduced at point E because of this misfit.

B —127mm C

—0.625 : 0.625 1.A", = Z N, AL, =
—0.75*(-12.7mm) = 9.525 mm

LN 0375 | 0375



Example: Determine the vertical displacement that occurs at point B as a result temperature change of +30° C in
members AD and DC. The coefficient of thermal expansion is 11.7*10-¢ 1/°C.

AL, =AL,. =11.7%107°*30%6.25
=2.194*10m = 2.194mm

MEMBER dL Nv Nv.dL
AD 2,194 -0,625 -1,371
DC 2,194 -0,625 -1,371
DB 0 1 0
AB 0 0,375 0
BC 0 0,375 0
3 1A =Y N, AL, =-2.74mm




Example: Determine the change in member length for member BD of the truss so that, when combined with the
prescribed loading, will produce a net vertical displacement of zero at point D. E= 200 GPa.

— 20.kN—y,
2.m
v
—
l.m
1.m
v
Member L(m) N Nv EA N.Nv.L/EA
AB 5 10 -1,25 200000 -0,0003124
AD 4,125 -8,25 1,031 160000 -0,0002193
BC 5,657 -16,97 -1,414 200000 0,0006787
BD 2 6 1,75 100000 0,00021
DC 4,472 -8,944 1,118 160000 -0,0002795
sum= 7,744E-05




Z N.Nv.L We want to shorten the member so that upward

vo_ _
LA, = =0.00007744m deflection at point D be 0.07744 mm.

0.07744mm
1.A = Z N, AL,

1*0.07744 = (—-1.75)* AL
AL =—-0.0443 mm

Application of unit force method to beams and frames

Virtual ~ Red L
displacements A = j M q.M pdx
¥ ¥ o EI

1A= |M, do
0

Integral of the product of moment
M d functions is needed. Prepare an

paXx . integral table to simplify the calculations
df = ——— Due to real loading

EA



A = {f(x)F(x)%

f(x):i... const

F(x):k..const .—> A = L.ik
EI

I
T— X li
f(x) I X inear

F(X)I%x.... linear — A = g;]k

f(x):l—l—x
F(x);ix ....... S5 A = L.ik
L 6 EI
f(x)'l—x
L
F(x):izxz ..... A = L.i.k
L 4 EI



Example: Determine the rotation at A and B to an applied moment M on the beam as shown.

A
4 B
g & o5 2
L > Mq M
: N q ‘
M \M 1
& M M
16, = #dx:é/'k:é[M'l:%
M, .M dx o
A==+ oty = [MoMy g L Ly ML
0 S EI 3EI ~ 3EI 3EI

Example: What is the vertical deflection of the free end of the cantilever beam.

ac B y A a l
M, o M,

LM ,.M 3
A, = [T = L i.(2k1+k2):L_/2£(2L+Lj_iPL
0

El 6 El 6El 2 2 ) 48 EI

-PL/2




Example: Determine both the vertical and the horizontal deflection at A for the frame shown. E=200 GPa I=200 10® mm*

50 kN

1
' | !
YA B < <~ ||100 . 4
4
5m 100
M M M
p q q
- Orrr m 5 T
2m | 2m
LM M -
A = [ =2ty = L0+ L
) EI 6 EI EI
1 2333 .33

3100*(2+8)+5*100*4j:—:0.058m
EI\6 EI

M M
prTaq L i.k:LE.lo()j:@:0.0ﬁm
El 2F] El 2 El




Deflection of structures consisting of flexural members and axially loaded members

Example: Find the horizontal displacement at €. E=200 GPa I=150.10° mm* A=50 mm?

Cable 4 m r|>

20 kN/m
I IREEEERERERER,
B c
3m
AA
6 m
< >

EI =200.10°*150.10°° = 30000 .ANm *
EA =200.10°*50.10"° =10000 .AN

40

40

0.5

The internal work for the given structure consists of two parts : the work due to bending of the frame and the
work due to axial deformation of the cable.

‘ ET

1

N,N,.L 1

620 160

= +
30000 10000

EA EI

i*120*3+§>*=480*3—Z=*<360 *3

&

=0.070m = 70 mm

6 6

j 80 *0.5%4
+—
EA



60 kN
C D
A A 4
AN B ,
2m m
}4 >« 4m >

What are the relative rotation and the vertical
displacement at C

What are the rotation and vertical displacement at D

60 kN
A v C D
JAN B %
2m 4m 2m
}4 > < »‘
80/EI
=
AN = =



MAXWELL'S RECIPROCAL THEOREM

Let us consider the beam in the figure. Because of the load F; the beam deflects an amount §,,F; at point 1
and an amount 821F1 at point 2.
Where 3;; and §,; are the deflections at points

F 1 and 2 due to a unit load at point 1

11 2

A\ \ | p— ——'Q Sij deflection at point i due to a unit load at

T i place of deflection
5111:1 521F1 J place of unit load
Now we w'll formulate an expression for the
work due to F; and F,
1 Fal 2

Apply the forces F; and F, simultaneously the

AN | //"% resulting work can be written

~—— -

0,1, Ot W =L1(FA +FA,)
Fol I W =L(F(6,F, +6,F, )+ F,(6,,F, +5,,F,))
A PETAN W =L(5,F +(5,, + 5, )F,F, + 5,,F)
A, A,

A, =0,,F +0,F, A, =0, F +0,,F,



If we apply F, first the amount of work performed is Fl i 1 2

AN —— ——
a =5 F.0,F :%51152 ok ﬁ

Next we apply F, to the beam on which F; is already
acting. The additional work resulting from the

application of F, Fl i , FZ i :
W = (05, )+ 3 B0 F) Ar[é
512F s 522F 2

3 factor is absent on the first term because F,

remains constant at its full value during the entire [/ — % (51 1E2 + 522F22 )_|_ 512F’1F2

displacement. The total work due to F; and F, .

In a linear system, the work performed by two forces is independent of the order in which the forces
are applied. Hence the two works must be equal.

%(511}712 + (512 + 521)FlF2 + 522F22)
%(512 +0,, ) =0,
(512 + 521): 20, 01, =0y

This relationship is known as Maxwell' s reciprocal theorem

%(allﬂz T 522F22 )+ 512EF2



‘921 — 912

Consider two different loading on a linear elastic structure. The virtual work done by the forces of the first system
acting through the displacements of the second system is equal to the virtual work done by the forces of the second
system acting through the corresponding displacements of the first system. .



CASTIGLIANO'S FIRST THEOREM

I::1 F The work done by the forces on the
1 2l 2 deflections of the beam is
A {Q} 1 2 2)
T T W = 2 (511F1 T 2512FlF2 T é‘22Fz
A, =0, F +0,F, A, =0, F +0,F,
ow
Taking the derivative of work with respect to F;, one obtain P - 511 Fl + 512 Fz = A 1

1

Since the strain energy U stored in a deformed structure is equal o the work performed by the external loads

oU The partial derivative of the strain energy in a structure with respect to one of the
—=A ; external loads acting on the structure is equal to the displacement at that force in
5Pl. the direction of the force. This relation is known as Castigliano's theorem

F. i le U _ oU _
aRl aRz

Rl T This theorem can be used to analyze the
RZ redundant structures



oU
VAN A a—R_O
R

This method is called as the method of least work. Redundant must have a value that will make the strain

energy in the structure a minimum. The known values of the displacements at certain points can be used for
additional equations to the equations of equilibrium.

The strain energy for an axially loaded member The strain energy for a truss
N’L N’L
2 AE 2 AE

To find a joint displacement of a truss Castigliano’s theorem can be used

ouU ON L
5,:—: N
- op, Z [ j

OP, ) AE

8; ¢ joint displacement in the direction of the external force P

To take the partial derivative, force
N : axial force in member

P, must be replaced by a variable
E : Modulus of elasticity  A: Cross sectional area force



Example: Determine the vertical displacement of joint C of the truss shown in the figure. The cross
sectional area of each member is A= 400 mm?2 and E= 200 GPa

C
4 kN —a—

A B-Y-

4 m

> 0,667P+2

0.5P+1.5

3m

A vertical force P is applied to do truss at joint C, since this
is where the vertical displacement is to be determined.

Since P does not actually exist as a real load on the truss. We
require p=0 in the table.

Member

AB

AC

BC

:ZN

N ON/oP N (P=0) L (m) N.ON/OP.L
0.667P+2 0.677 2 8 10.67
-0.833P+2.5 -0.833 2.5 5 -10.41
-0.833P-2.5 -0.833 -2.5 5 10.41

10.67 kN.m
ON L 10.67 10.67

OP AE  AE  400*10°°*200*10°

0.000133m = 0.133mm



Example: Determine the vertical displacement of joint C of the truss shown in the figure. Assume that A=325mm? ,

E=200 GPa .

F

E

}<3m

Member
AB
BC
CD
DE
EF
FA
BF
BE
CE

N
13.333+0.333P
6.667+0.667P
6.667+0.667P
-9.429-0.943P
-13.333-0.333P
-18.856-0.471P
13.333+0.333P
9.429-0.471P
P

ON/oP
0.333
0.667
0.667
-0.943
-0.333
-0.471
0.333
-0.471

13.333+0.333P

The 20 kN force at C is replaced with a variable force P at
Joint C

F-(13.333+0.333P)

-

Sy
o

039
q .

<

(13.333+0.333P) v
20

N (P=20)
20

20

20
-28.289
-20
-28.276
20

20

N.ON/oP.L
19.98
40.02
40.02
113.11
19.98
56.47
19.98

0

60

Sum 369.56

> < C
6.667+0.667P

. |

P (6.667+0.667P)

5V:ZN5N L _369.56 _
oP AE  AE

369.56 B
325%107° *200*10°

0.005685m =5.685mm



find the horizontal displacement of point D

Membe
T

AB
BC
CDh
DE
EF
FA
BF
BE
CE

20+P
20+P
20+P
-28.28

-28.28
20

20

20
P
T 20+P B 204p
v
20 20
N N.ON/oP.
ON/GP  (P=20) L L
1 20 3 60
1 20 3 60 ON L 180
1 20 3 60 c
0 -28.28 4.24 0 aP AE AE
0 -20 3 0
0 -28.28 4.24 0 1 80
0 20 3 0 =
0 0 44 0 325*107°*200%*10°
0 20 3 0
Sum 180 0.002769m =2.7Tmm



CASTIGLIANO'S THEOREM FOR BEAMS AND FRAMES

The strain energy for beam or frame member is given by U J' dx
2EI
Substituting this equation into the Castigliano’s first theorem l
ou, o0 ¢ M* oM | dx
p= O M (|2
oP oPY2EI {3 | oP

A = External displacement

P= External force applied to the beam or frame in the direction of the desired displacement

M= Internal moment in the beam or frame, expressed as function of x and caused by both the force P and the real loads.
E= Modulus of elasticity

I= Moment of inertia of cross sectional area computed about the neutral axis.

If the slope O at a point is o be determined, the partial derivative of the internal moment M with respect to an
external couple moment M' acting at the point must be computed.

g I (aij dx

The above equations are similar to those used for the method of virtual work except the partial derivatives replace
moments due to unit loads like the case of trusses, slightly more calculations is generally required to determine the
partial derivatives and apply Castigliano's theorem rather than use the method of virtual force method.




Example : determine the displacement of point B of the beam shown in figure. E=200 GPa I=-500*10® mm*

12 kN/m A vertical force P is placed on the beam at B

B
;IH Py v ", . ‘p

F 0m | 3 ¥ ¥ 3 ¥y,

—

, , Ra 10 m
The moment at an arbitrary point on the beam
and its derivative

M =—6x +(P+120)x—(10P+600) 2 M, =0
o _ M, =10P+600
op < R,=P+120

Setting P=0 yields Castigliano's theorem

M =—6x>+120x—600

10
M _ 1o 5B=jMaﬂdx [ (- 6x* +120x - 600)x ~10)= dx
=X oP EI E[
oP 0
1] 6 15000
=—|——x*+60x*-900x* + 6000x]| =——
EI| 4 .
15000 =0.15m =150mm

T 500%10°° *200*10°



Example : determine the vertical displacement of point C of the beam. Take E=200 GPa I=150*10% mm?

Y 20 kN

T 8 kN/m A vertical force P is applied at point C. Later this
force will be set equal to a fixed value of 20 kN.
A s
—>
& ; o 4 "
4m 4m M 8 KkN/m M
le | N <.
| | | e S N
e ¢ >
A X
0<x<4m..M=24+0.5P)x—4x"....... Z—A}{=o.5x ........ M =34x—4x’ 4m | 4m/ i;%
4<x<8m..M :64+4P—(8+0.5P)x...%—]\£:4—0.5x...M =144 -18x 24+0 5P | 8+0.5P
. x dx
5" = [(34x - 4x° T j (144 —18x)(4 0. Sx)—
0
4
1 |34 1 8 426.67
= |—x —x" +—‘576x—72x2+3x3‘ =
2EI| 3 . EI 4 EI
426.67

= i Toregsgayg = 0-0142m =14.2mm



Example : determine the rotation at A and horizontal displacement at point D using Castigliano's first theorem

10 kN
10 kN
5m
20 kKN 5rm 5 m 20 kN o c
B C A yar‘iab!e couple
C is applied at
point A 8 m
8m
€1 ]a D
A b 20 kN
/\ ﬁ 110+C
10 210+ C
10
member.....BC
C 10 kN
0<x<5m........... M=C+160—11x—Ex C+160
M
member...AB oM . -
oM ¥=1—E ........ M[C=0]=160—-11x B
M=C+20x.. M .
oc 5<x <10/ M =C+160—11x = x—10(x - 5) > X
M[C =0]=20x......... M, =C+160 10 v
M __ X M[C=0]=210-21x 110+C
oC 10 10

8 10
jzox—+j(160 —11x)(1——J—+j(210 —21x)(1——jdi=
) 10 ) EI 10

640 +L{160 *5 - 227 *25 + 131*125} 1

EI EI

= {210 * (10 —5)— (100 —25)+ (100 * 125 )}

1235 .83
El



Example : determine the reactions for the propped cantilever beam.

A l p
—
\ Lz | L
Y r|‘

Reaction at point C is taken as redundant

\
jg
N

P-R
M,=PL/2-RL
P
O<x<—..M = (P - R)x——L+RL ......... om L—x
OR
L
— < X< L. M = R(L = X)eeeeeeeer e e, aﬂ:L—x
2 OR
L
IM oM dx B
) OR EI
2 PL dx | dx
P — Rx———I—RL L—x)—+|R(L—x)(L—-x)—=0
!(( ) (L =) [( WL —x)—
5
R=—P Homework, Take the moment at A as redundant force

16



24 kKN/m

v v v v vy

c ]
2%
M

2m
B D |
sin@d=0.3162
5m
ET cos @ =0.9488 EI
R R
= LA E -
A 6m | 6m A
|
144 kN 144 kN

Free Body diagram of
left column, Write

Q m N equilibrium equations
to find M, N, and Q
at point B
B —
M =-5R
EI

=—(45.53+0.9487R)
R A 0=03162R—-136.613

N

0

R =38.4kN

oM d p
s SO VLR z{ij

, dx
EI

Using Castigliano’'s theorem determine the horizontal reaction
at point E, and draw the shear force and bending moment
diagrams of the given frame.

Symmetrical structure is subjected to a symmetrical
loading so the vertical reactions at A and E will be the half
of the external load

-5R
-(45.533+0.9487R) -136.613+0.3162R
member....AB
M=—Re... M » =—5R
OR
member...BC
= (136.613—0.3162R)x—5R—10.8x2
oM =—(0.3162x+5)
1 6.3
— jz[— (0.3162R—136.613)r—SR—10.8x> [~ 0.3162x— 5)dx f =0
1.6EI 3



LOOK EACH MEMBER FROM THE

INSIDE OF THE FRAME.
124 .47 A TAKE THE ORIGIN AT LEFT END OF
- THE MEMBER
+
_w\
/ 12.14
*/ -
} + &
< »~
: 124.47
38.4 o
> SHEAR FORCE DIAGRAM é.g_ 38.4
144 144

MOMENT
DIAGRAM IS
DRAWN ON
TENSION

192\ - ‘V’ g —192

BENDING MOMENT DIAGRAM (KNM)
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