
DEFLECTIONS OF BEAMS AND FRAMES

INTRODUCTION : When a structure is loaded, its stressed elements deform.  In a 
truss, bars in tension elongate and bars in compression shorten. Beams bend. As 
this deformation occur, the structure changes shape and points on the structure 
displace.  Although these deflections are normally small, as a part of the total 
design the engineer must verify that these deflections are within the limits 
specified by the governing design code to ensure that the structure is 
serviceable.  Large deflections cause cracking of non structural elements such as 
plaster ceiling, tile walls or brittle pipes. Since the magnitude of deflections is 
also a measure of a member’s stiffness, limiting deflections also ensures that 
excessive vibrations of building floors.  

In this chapter we consider several methods of computing deflections and slopes at 
points along the axis of beams and frames.  These methods are based on the 
differential equation of the elastic curve of a beam.  This equation relates 
curvature at a point along beam’s longitudinal axis to the bending moment at that 
point and the properties of the cross section and the material. If the elastic 
curve seems difficult to establish, it is suggested that the moment diagram for 
the beam or frame be drawn first.  A positive moment tends to bend a beam 
concave upward.  Likewise a negative moment bend the beam concave downward.  



Therefore if the moment diagram is known, it will be easy to construct the elastic curve.  In particular, there must be 
an inflection point at the point where the curve changes from concave down to concave up, since this is a zero moment.
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DOUBLE INTEGRATION METHOD

The double integration method is a procedure to establish the equations for slope and deflection at points along 
the elastic curve of a loaded beam.  The equations are derived by integrating the  differential equation of the 
elastic curve twice.  The method assumes that all deformations are produced by moment.  
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Relationship between bending moment and curvature for 
pure bending remains valid for general transverse loadings.
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Example : For the cantilever beam in figure establish the equations for slope and deflection by the double integration 
method.  Also determine the magnitude of the slope ΘB and deflection ∆B at the tip of the cantilever. EI is constant.
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Example : Use the double integration method, establish the equations for slope and deflection for the uniformly loaded 
beam in figure. Evaluate the deflection at mid-span and the slope at support A.  EI is constant.  
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MOMENT-AREA METHOD
There are two moment-area theorems.  These theorems were developed by Otto Mohr and later stated formally 
by Charles E. Greene in 1872.  These theorems provide a semi-graphical technique for determining the slope of 
the elastic curve and its deflection due to bending.  They are particularly advantageous when used to solve 
problems involving beams especially those subjected to serious of concentrated loadings or having segments with 
different moments of inertia.  The first theorem is used to calculate a change in slope between two points on 
the elastic curve.  The second theorem is used to compute the vertical distance (called a tangential deviation) 
between a point on the elastic curve and a line tangent to the elastic curve at a second point.  These quantities 
are illustrated in the following figure. 

A
B

BθAθ

ABθ∆tBA

C

Elastic curve

Tangent at A

It states that the change in slope of the tangents on 
either side of the element dx is equal to the area 
under the M/EI diagram.  Integrating from point A on 
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Derivation of the moment-area theorems : The 
relation between slope and moment and bending 
stiffness EI  is 

dx
EI
Md

EI
M

dx
d

=

=

θ

θ

∫=∆
B

A
AB dx

EI
Mθ



The ordinates of the moment curve must be divided by the bending stiffness EI to produce M/EI curve.  The last 
equation forms the basis for the first moment-area theorem.  

The change in slope between any two points on a continuous elastic curve is equal to the area 
under the M/EI curve between these points.
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This result constitutes the second moment-area theorem.

The tangential deviation at a point B on a continuous elastic curve from a tangent drawn to the elastic 
curve at a second point A is equal to the moment about B of the area under the M/EI diagram between 
the two points.

Example : Compute the slope and deflection at the tip of the cantilever beam.  EI is constant. 
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Example :  Determine the deflection at points B and C of the beam shown below.  Values for the moment of inertia of 
each segment are  IAB= 8.106 mm4 , and  IBC= 4.106 mm4 . Take E= 200 GPa, 
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Example : Determine  the slope at point C of the  beam.  EI is constant. 
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Example : Determine the deflection at point C of the beam.  E= 200 GPa,  I=250 10-6  m4
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CONJUGATE BEAM METHOD
The method was first presented by Otto Mohr in 1860.  This method relies only the principles of statics and 
hence its application will be more familiar. The basis for the method comes from the similarity between both
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These equations indicate that the shear in a beam 
can be obtained by integrating the load once and the 
moment by integrating the load twice.  Since the 
curvature of a beam is proportional to the bending 
moment,  slope and deflection of the beam can be 
obtained by successively integrating the moment.  
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We want to replace the integration indicated in the equations by drawing the shear and bending moment diagrams.  To 
do this we will consider a beam having the same length as the real beam, bot referred to here as the conjugate beam.  
It is loaded with the M/EI diagram of the real beam.  Shear and moment diagrams of the conjugate beam represent 
one and two integrations, respectively of the M/EI diagram of the real beam.  We thus conclude that shear and 
moment diagrams of the conjugate beam represent the slope and deflection of the real beam.  Now we can therefore 
state two theorems related to conjugate beam, namely



Theorem 1:  The slope at a point in the real beam is equal to the shear at the corresponding point in the conjugate 
beam.

Theorem 2: The displacement at a point in the real beam is equal to the moment at the corresponding point in the 
conjugate beam.  

Since each of the previous equations requires integration it is important that the proper boundary conditions be used 
when they are applied.
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REAL BEAM                                            CONJUGATE BEAM

If we treat positive values 
of the M/EI diagram 
applied to the beam as a 
distributed load acting 
upward and negative values 
of M/EI as a downward 
load, positive shear denotes 
a negative slope and a 
negative shear a positive 
slope.  Further negative 
values of moment indicate a 
downward deflection and 
positive values of moment 
an upward deflection.

As a rule, neglecting axial force, statically determinate real beams have statically indeterminate conjugate beams; 
and statically indeterminate real beams, as in the last figure above become unstable conjugate beams.  Although this 
occurs, the M/EI loading will provide the necessary “equilibrium” to hold the conjugate beam stable.



Example : Determine the slope and deflection of point B of the steel beam shown in figure.  The reactions are given in 
the figure.  Take E=200 GPa,  I=333 106 mm4
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Example : Determine the maximum deflection of the steel beam shown below. Reactions are given. I= 60.106 mm4 

8 kN The distributed load acts upward, since 
M/EI diagram is positive. External 
reactions are shown on the free body 
diagram.  Maximum deflection of the real 
beam occurs at the point where the slope 
of the beam is zero.  This corresponds to 
the same point in the conjugate beam 
where the shear is zero.  Assumong this 
point acts within the region 0<x<9 m. from 
A, we can isolate the section below,
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Example: Determine the displacement of the pin at B and the slope of the each beam segment connected to the pin 
for the beam shown in the figure.  E=200 GPa I=135.106 mm4
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The internal moment at B yields the displacement of the pin 
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EXTERNAL WORK AND STRAIN ENERGY
Most energy methods are based on the conservation of the energy which states that work done by all the 
external forces acting on a structure, W, is transformed into internal work or strain energy U, which is 
developed when the structure deforms.  If the material’s elastic limit is not exceeded, the elastic strain energy 
will return the structure to its undeformed state when the loads are removed.  
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P F ′Suppose that P is already applied to the bar and that 
another force F’ is now applied, so the bar deflects 
further by an amount ∆’, the work done by P (not F’) when 
the bar undergoes the further deflection ∆’ is then 

∆′=′ .PW The work of F’

P does not change its magnitude.  
Work is simply the force magnitude 
(P) times the displacement (∆’)

External work done by a moment: The work of a moment is defined by the product 
of the magnitude of the moment and the angle dΘ through which it rotates.
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amount Θ’ , then the M rotates Θ’ , and the work is 



Strain Energy due to an axial force
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Principle of work and energy

Application of this method is limited to only a few select problems.  It will be noted that only one load may be applied 
to the structure and only the displacement under the load can be obtained.  

Example: Using principle of work and energy, determine the deflection at the tip of the cantilever beam.
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If we take a deformable structure, and apply a series of loads to it, it will cause internal loads and internal displacements
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Principle of work and energy states
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Virtual work method (Unit Load Method)
Virtual work is a procedure for computing a single component of deflection at any point on a structure.  The method 
permits the designer to include in deflection computations the influence of support settlements, temperature change, 
and fabrication errors.  To compute a component of deflection by the method of virtual work, the designer applies a 
unit force to the structure at the point and in the direction of the desired displacement.  This force is often called a 
dummy load, the displacement it will undergo is produced by other effects. These other effects include the real loads, 
temperature change, support settlement and so forth.  In other words, the deflected shape due to the real forces is 
assumed to be the virtual deflected shape of the dummy structure, and the principle of work and energy is applied. 

Application of unit force method to trusses
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Example: Determine the horizontal and vertical 
displacement at point C.  All members have a 
cross-sectional area of 25.10-4 m2 and a modulus 
of elasticity of 200 GPa.  
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Example: The truss shown below is distorted during fabrication because member BC is 12.7 mm short.  What 
vertical deflection is introduced at point E because of this misfit.  
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LN jj
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Example: Determine the vertical displacement that occurs at point B as a result temperature change of +300 C in 
members AD and DC.  The coefficient of thermal expansion is 11.7*10-6 1/0C.  

m75.3

m5

m75.3

194.2
194.2

0
0 0

D

B
A C

mmm

LL DCAD
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3

6

==

=∆=∆
−

−

D

625.0− 625.0−

375.0 375.0

1

A C
B
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010DB
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mmLN jj
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Example:  Determine the change in member length for member BD of the truss so that, when combined with the 
prescribed loading, will produce a net vertical displacement of zero at point D. E= 200 GPa. 

B

A
C

D

m.4m.4

m.2

m.1

m.1

kN.20

kN.12

).1000( 2mm
).1000( 2mm

)800( 2mm
)800( 2mm
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kN.12
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6

4 20
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kN.1

414.1−
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0,000211000001,7562BD

0,0006787200000-1,414-16,975,657BC

-0,00021931600001,031-8,254,125AD

-0,0003124200000-1,25105AB

N.Nv.L/EAEANvNL ( m )Member
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m
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kN1

75.1− L∆

We want to shorten the member so that upward 
deflection at point D be 0.07744 mm. 
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Application of unit force method to beams and frames
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q ..1
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displacements
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L

pq

EI
dxMM

0

.Virtual 
forces

Integral of the product of moment 
functions is needed.  Prepare  an 
integral table to simplify the calculations 
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dxM

d p .=θ Due to real loading
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Example: Determine the rotation at A and B to an applied moment M on the beam as shown.  

A
qM qM

1 1

1

1

B

EI
MLM

EI
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EI
MML qp
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M

BEI
L

A
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L

pq

EI
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0
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Example: What is the vertical deflection of the free end of the cantilever beam.
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P 1

A

L/2L/2

qMpM -L-PL/2

EI
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Example: Determine both the vertical and the horizontal deflection at A for the frame shown. E=200 GPa I=200 106 mm4

50 kN

5 m

A B C

D
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-

1
1

qM
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-
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-

-
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EIEI
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Deflection of structures consisting of flexural members and axially loaded members

Example:  Find the horizontal displacement at C.  E=200 GPa   I=150.106 mm4  A=50 mm2

Cable 4 m

A

B C

80 kN
480

360

120 +

-+

pM40

0.5

1 qM

+

+

20 kN/m

40 kN

3 m

3

6 m
1

40

kNEA
kNmEI

.1000010.50*10.200
.3000010.150*10.200

66

266

==

==
−

−

0.5

The internal work for the given structure consists of two parts : the work due to bending of the frame and the 
work due to axial deformation of the cable.

mmm

EAEIEA
LNN
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EI
MM qpqph

c

70070.0
10000

160
30000
1620

4*5.0*803*360*
4
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3
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3
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10 kN/m

What are the relative rotation and the vertical 
displacement at C

B C
A D

1 m 3 m4 m

60 kN

DCA
What are the rotation and vertical displacement at DB

2 m2 m 4 m
60 kN

tCA tDA

DCA

B
2 m2 m 4 m

80/EI



MAXWELL’S RECIPROCAL THEOREM
Let us consider the beam in the figure.  Because of the load F1 the beam deflects an amount δ11F1 at point 1 
and an amount δ21F1 at point 2.

Where δ11 and δ21 are the deflections at points 
1 and 2 due to a unit load at point 1

δij  deflection at point i due to a unit load at j

i    place of deflection  
j    place of unit load

Now we w’ll formulate an expression for the 
work due to F1 and F2

Apply the forces F1 and F2 simultaneously the 
resulting work can be written 

F1

111Fδ 121Fδ

21

212Fδ 222Fδ

F21 2

( )22112
1 ∆+∆= FFW

( ) ( )( )222121221211112
1 FFFFFFW δδδδ +++=

F1 F2

1∆ 2∆

1 2
( )( )2

222212112
2

1112
1 FFFFW δδδδ +++=

2221212 FF δδ +=∆
2121111 FF δδ +=∆



F1If we apply F1 first the amount of work performed is 

111Fδ

21

2
1112

1
11112

11 . FFFW δδ ==

Next we apply F2 to the beam on which F1 is already 
acting. The additional work resulting from the 
application of F2 F1 F2

222Fδ
212Fδ

21
( ) ( )22222

1
2121

2 FFFFW δδ +=

( ) 2112
2

222
2

1112
1 FFFFW δδδ ++=

½ factor is absent on the first term because F1
remains constant at its full value during the entire 
displacement. The total work due to F1 and F2 . 

In a linear system, the work performed by two forces is independent of the order in which the forces 
are applied. Hence the two works must be equal.  

( ) 2112
2

222
2

1112
1 FFFF δδδ ++=( )( )2

222212112
2

1112
1 FFFF δδδδ +++

( ) 1221122
1 δδδ =+

( ) 122112 2δδδ =+ 2112 δδ =
This relationship is known as Maxwell’ s reciprocal theorem



1 1

21δ 12δ

1221 δδ =

2 21 1

21θ 12δ

2

1221 δθ =

1 1
21 1

21θ1
12θ 2

1221 θθ =

11
2 1

Consider two different loading on a linear elastic structure. The virtual work done  by the forces of the first system 
acting through the displacements of the second system is equal to the virtual work done by the forces of the second 
system acting through the corresponding displacements of the first system.  .



CASTIGLIANO’S  FIRST THEOREM

F1 F2
The work done by the forces on the 
deflections of the beam is

( )2
2222112

2
1112

1 2 FFFFW δδδ ++=
2121111 FF δδ +=∆

2221212 FF δδ +=∆

1 2

1212111
1

∆=+=
∂
∂ FF
F
W δδTaking the derivative of work with respect to F1, one obtain

Since the strain energy U stored in a deformed structure is equal to the work performed by the external loads

i
iP
U

∆=
∂
∂ The partial derivative of the strain energy in a structure with respect to one of the 

external loads acting on the structure is equal to the displacement at that force in 
the direction of the force.  This relation is known as Castigliano’s theorem

0
1

=
∂
∂
R
UF1 F2 0

2

=
∂
∂
R
U

R1 This theorem can be used to analyze the 
redundant structures R2



F2F1

0=
∂
∂
R
U

R

This method is called as the method of least work.  Redundant must have a value that will make the strain 
energy in the structure a minimum.  The known values of the displacements at certain points can be used for 
additional equations to the equations of equilibrium.  

The strain energy for a trussThe strain energy for an axially loaded member 

AE
LNU

2

2

= ∑=
AE
LNU

2

2

To find a joint displacement of a truss Castigliano’s theorem can be used 

AE
L

P
NN

P
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ii
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∂
∂

=
∂
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=δ

δI : joint displacement in the direction of the external force Pi

N : axial force in member

E : Modulus of elasticity     A: Cross sectional area

To take the partial derivative, force 
Pi must be replaced by a variable 
force 



Example: Determine the vertical displacement of joint C of the truss shown in the figure. The cross 
sectional area of each member is A= 400 mm2 and E= 200 GPa

4 kN

A B

C
A vertical force P is applied to do truss at joint C, since this
is where the vertical displacement is to be determined. 

Since P does not actually exist as a real load on the truss. We 
require p=0 in the table.

3 m

10.415-2.5-0.833-0.833P-2.5BC

-10.4152.5-0.833-0.833P+2.5AC

10.67820.6770.667P+2AB

N.∂Ν/∂P.LL (m)N (P=0)∂Ν/∂PNMember

4 m 4 m

P

10.67    kN.m

A B

C

0,8
33

P-2
.5 0,833P+2.5

0,667P+24 kN

0.5P-1.5

4 kN
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AEAE
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P
NNv
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66
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0.5P+1.5



6.667+0.667P

6.667+0.667P13.333+0.333P

-(1
8.
85

6+
0.
47

1P
)

13
.3

33
+0

.3
33

P

-(13.333+0.333P)

P9.4
29

-0
.47

1P
-(9.429+0.943P)

(13.333+0.333P)
(6.667+0.667P)

A
B C D

F E

Example: Determine the vertical displacement of joint C of the truss shown in the figure. Assume that A=325mm2 , 
E=200 GPa .

EF

3 m 3 m

20 kN 20 kN

A
B C

D

3 m

3 m

The 20 kN force at C is replaced with a variable force P at 
joint C

20 P
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find the horizontal displacement of point D
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Sum  180



CASTIGLIANO’S  THEOREM FOR BEAMS AND FRAMES

dx
EI
MU ı ∫= 2

2
The strain energy for beam or frame member is given by

Substituting this equation into the Castigliano’s first theorem

∫ ∫ 
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P
MMdx

EI
M

PP
U
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2

2

∆ = External  displacement

P= External force applied to the beam or frame in the direction of the desired displacement 

M= Internal moment in the beam or frame, expressed as function of x and caused by both the force P and the real loads.

E= Modulus of elasticity

I= Moment of inertia of cross sectional area computed about the neutral axis.

If the slope Θ at a point is to be determined, the partial derivative of the internal moment M with respect to an 
external couple moment M’ acting at the point must be computed.

EI
dx

M
MM

l

∫ 







′∂
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=
0

θ

The above equations are similar to those used for the method of virtual work except the partial derivatives replace 
moments due to unit loads like the case of trusses, slightly more calculations is generally required to determine the 
partial derivatives and apply Castigliano’s theorem rather than use the method of virtual force method.



Example : determine  the displacement of point B of the beam shown in figure. E=200 GPa I=500*106 mm4

A vertical force P is placed on the beam at BA 12 kN/m
B

P

10 m

MA

RA

12 kN/m

B

10 mThe moment at an arbitrary point on the beam 
and its derivative
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Setting P=0 yields Castigliano’s theorem
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Example : determine  the vertical displacement of point C of the beam. Take E=200 GPa I=150*106 mm2

y 20 kN
A vertical force P is applied at point C. Later this 
force will be set equal to a fixed value of 20 kN.

8 kN/m

A B x
yC

4m 4m

P
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C
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Example : determine  the rotation at A and horizontal displacement at point D using Castigliano’s first theorem 

D

8 m

10 kN

A

5m
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5 m20 kN
A variable couple 
C is applied at 
point A
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Example : determine  the reactions for the propped cantilever beam.
A P

B

M P M
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A
B

x
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Reaction at point C is taken as redundant 
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Homework, Take the moment at A as redundant force



24 kN/m Using Castigliano’s theorem determine the horizontal reaction 
at point E, and draw the shear force and bending moment 
diagrams of the given frame.
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Symmetrical structure is subjected to a symmetrical 
loading so the vertical reactions at A and E will be the half 
of the external load
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Free Body diagram of 
left column, Write 
equilibrium equations 
to find M, N, and Q 
at point B

NQ M

B

R

144



LOOK EACH MEMBER FROM THE 
INSIDE OF THE FRAME. 

TAKE THE ORIGIN AT LEFT END OF 
THE MEMBER
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