

پارک مجازی علم عمران

سياوش قناعت پيشه

چک کردن اثر P-Delta

. θ تعيين مقدار : θ :

•
$$\theta = 1 - \frac{\Delta_{(no P - \Delta)}}{\Delta_{(P - \Delta)}} = 1 - \frac{12.0}{12.1} = 0.01 = 1\%$$

۳-۶ اثر **۵**-۳

در کلیه سازه ها تأثیر بار محوری در عناصر قائم بر روی تغییر مکان های جانبی آنها، برش ها و لنگرهای خمشی موجود در اعضا و نیز تغییر مکان های جانبی طبقات را افزایش می دهد. این افزایش به اثر ثانویه و یا اثر Δ- P معروف است. این اثر در مواردی که شاخص پایداری، θ، در رابطه (۳–۱۱)، کمتر از ده درصد باشد ناچیز بوده و می تواند نادیده گرفته شود. ولی اگر، θ بیشتر از ده درصد باشد، این اثر باید در محاسبات منظور گردد.

157

 $\theta_{i} = \left[\frac{P_{u}\Delta_{eu}}{V_{u}h}\right]_{i}$

(17-7)

۴۸ / مرکز تحقیقات راه، مسکن و شهرسازی

در این رابطه:

P_{ui} =P_u مجموع بارهای مرده و زنده موجود در طبقه i تا n، طبقه آخر، در حد مقاومت Δ_{cw} = تغییر مکان جانبی نسبی اولیه در طبقه i حاصل از تحلیل خطی V_{ui} = مجموع نیروی برشی وارد در طبقه i -h_i = ارتفاع طبقه i

شاخص پایداری $heta_i$ در سازهها نباید از $heta_{\max}$ در رابطه (۳–۱۲) بیشتر باشد. در این موارد احتمال ناپایداری سازه موجود است و باید در طراحی آن تجدید نظر شود.

 $\theta_{max} = \frac{0.65}{C_d} \le 0.25 \tag{(17-7)}$

سياوش قناعت پيشه

(1) T	9	4.5	(m)	9	5	.2 (r	n)	0		5.5 (m	1)	Ø	į	5.2 (n	n)	G)	5.8	5 (m	}	(N)	5.2 (m	Ģ	D 4	.5 (m)	0
	/ 4.15 (m) ^{>}				1.	140	/Þ		pckin	IPE14	0.1991.0	0 84	5 Pết	40 #	T 443 FT	un IPi	E140	84	5 (Pt	E140 B	PE140	E200	- 40	IPE140	6100		
2) (m) 8.6				IPE200	If	E3	10	IDE140		FE36	0	IPE140	I	FE36	0		IPE140	IF	E36)	IPE140	PE36)	IPE200		
3	4.5 (m)	IPE270	IPE	270	IPE200	15	E3	10	IDE300		FE27	0	IPE200	I	FE36	0		IPE200	IF	E27)	IPE200	IFE270)	IPE270	E270	IPE270
4	4.5 (m)		IPE	2	IPE200	16	E2	0	IPE200		FE27	0	IPE200	1	FE36	0		IPE200	IF	E36)	IPE200	IFE36)	IPE200	E270	
5	4.5 (m)	IPE270	IPE	360	IPE200	16	E3	50	IDE 200		FE27	0	IPE200	1	PE36	0		IPE200	IF	E27)	IPE200	IFE360)	IPE270	₹360	IPE270
0	2 (m)		IPE	270	IPE270	IF	E3	50		1	FE36	0	IPE360	1	PE27	0	_	IPE360	IFI	E36)	IPE200	IFE360)	IPE270	PE360	
0	200	ł				I	PE3	30		1	PE36	10	-						IP	E27()	-	IPE360)	4		

مقاطع تيرها

انجمن Csi Software

158

سياوش قناعت پيشه

اطلاعات تیر های اصلی

- قسمت strength لنگر و برش وارده و مجاز را نشان می دهد.
- قسمت deflection تغییر مکان و خیز تیر را نشان می دهد.
 - 🗖 از سمت چپ به ترتیب :
 - 1. تركيب بار طراحي
 - 2. فاصله بحراني ترين تنش تا ابتداي عضو
- نسبت تلاش به ظرفیت که جمع محوری و خمش می باشد.

Story	pry بام			on IPE18)			
Beam	B90		Design Section	n IPE18)			
COMBO	STATION /	MOMEN	IT INTERACTI	ION CHECK	//-	-MAJ-SHR	-MIN-SHR-/	
ID	LOC	RATIO =	AXL +	B-MAJ +	B-MIN	RATIO	RATIO	
JDSt1S20	1.0400	0.483(C) =	0.000 +	0.483 +	0.000	0.070	0.000	
JDSt1S20	1.3000	0.552(C) =	0.000 +	0.552 +	0.000	0.069	0.000	
JDSt1S20	1.5600	0.621(C) =	0.000 +	0.621 +	0.000	0.069	0.000	
JDSt1S20	1.5600	0.621(C) =	0.000 +	0.621 +	0.000	0.052	0.000	
JDSt1S20	1.8200	0.673(C) =	0.000 +	0.673 +	0.000	0.052	0.000	
JDSt1S20	2.0800	0.724(C) =	0.000 +	0.724 +	0.000	0.051	0.000	
JDSt1S20	2.0800	0.724(C) =	0.000 +	0.724 +	0.000	0.009	0.000	
UDSt1S20	2.3400	0.733(C) =	0.000 +	0.733 +	0.000	0.009	0.000	
JDSt1S20	2.6000	0.742(C) =	0.000 +	0.742 +	0.000	0.008	0.000	
JDSt1S20	2.6000	0.742(C) =	0.000 +	0.742 +	0.000	0.008	0.000	ſ
JDSt1S20	2.8600	0.733(C) =	0.000 +	0.733 +	0.000	0.009	0.000	
JDSt1S20	3.1200	0.724(C) =	0.000 +	0.724 +	0.000	0.009	0.000	
UDSt1S20	3.1200	0.724(C) =	0.000 +	0.724 +	0.000	0.051	0.000	
UDSt1S20	3.3800	0.673(C) =	0.000 +	0.673 +	0.000	0.052	0.000	
UDSt1S20	3.6400	0.621(C) =	0.000 +	0.621 +	0.000	0.052	0.000	

Overwrites Details
 Overwrites Details
 OK Cancel

159

سياوش قناعت پيشه

انجمن Csi Software

ETABS 2015 Steel Frame Design

AISC 360-10 Steel Section Check (Deflection Details)

Element Details

Level	Element Location (mm)		Combo	Element Type	Section
بام	B90	2600	UDStID2	Intermediate Moment Frame	IPE180

LLRF and Demand/Capacity Ratio

L (mm)	LLRF	Stress Ratio Limit
5200.0	1	1

DEFLECTION DESIGN (Combo UDStID2)

Туре	Consider	Deflection mm	Limit mm	Ratio	Status
Dead Load	Yes	15.9	43.3	0.367	ОК
Super DL + Live Load	Yes	6.3	43.3	0.146	ОК
Live Load	Yes	0	14.4	0	ок
Total Load	Yes	15.9	21.7	0.735	ок
Total - Camber	Yes	15.9	21.7	0.735	ОК

سياوش قناعت پي

ابتدا اطلاعات کلی نمایش داده می شود، در ادامه بار زنده
 کاهش یافته و در اخر خیز تیر تحت بارگذاری های مختلف و
 مقدار مجاز آن

	Item	Value	*
01	Current Design Section	IPE360	
02	Framing Type	IMF	
03	Omega0	3	
04	BRB Beta Factor	1.3	=
05	BRB Beta*Omega Factor	1.6	
06	Consider Deflection?	Yes	
07	Deflection Check Type	Ratio	
08	DL Limit, L /	120	
09	Super DL+LL Limit, L /	120	
10	Live Load Limit, L /	360	
11	Total Limit, L/	240	
12	TotalCamber Limit, L/	240	
13	DL Limit, abs, mm	43.3	
14	Super DL+LL Limit, abs, mm	43.3	
15	Live Load Limit, abs, mm	14.4	
16	Total Limit, abs, mm	21.7	
17	TotalCamber Limit, abs, mm	21.7	
10	Constant Combas and	0	Ŧ
et To De	efault Values Reset To	Previous Values	

All Items

Selected Items

- در این قسمت میتوان قسمت های آیین نامه ای را چک کرد و مطمئن شد تمام پارامتر ها درست است.
 - مثلا نشان داده شده تیر ها با سیستم قاب خمشی متوسط طراحی شده اند.

سياوش قناعت پيشه

Selected Items

All Items

161

Steel Frame Design Overwrites for AISC 360-10

اطلاعات طراحي تير

 در این قسمت میتوان طول مهار شده و ضریب طول موثر را مشاهده کرد،

X

همانطور که می بینید به دلیل اینکه تعریف شده بود بال فشاری تیر در بتن مدفون است مقدار Unbraced Length Ratio (minor) عدد بسیار کوچکی شده است.

162

The Steel Frame Design Overwrites for AISC 360-10

سياوش قناعت پيشه

Item Description Deflection limitation for superimposed Item Value dead plus live load. Inputting 120 16 Total Limit, abs, mm 21.7 means that the limit is L/120. Inputting zero is special, since it means no 17 Total--Camber Limit, abs, mm 21.7 check has to be made for this item. 0 18 Specified Camber, mm 19 Net Area to Total Area Ratio 1 20 Live Load Reduction Factor 1 0.955769 21 Unbraced Length Ratio (Major) 22 Unbraced Length Ratio (Minor) 7.284E-09 23 Unbraced Length Ratio (LTB) 1 24 Effective Length Factor (K1 Major) 1 25 Effective Length Factor (K1 Minor) 1 26 Effective Length Factor (K2 Major) 1 27 Effective Length Factor (K2 Minor) 1 28 Effective Length Factor (K LTB) 1 29 Moment Coefficient (Cm Maior) 1 30 Moment Coefficient (Cm Minor) 1 Bending Coefficient (Cb) 2.661723 31 Explanation of Color Coding for Values 32 NonSway Moment Factor (B1 Major) 1 Blue: All selected items are program . . . determined Black: Some selected items are user Set To Default Values Reset To Previous Values defined Red: Value that has changed during Selected Items All Items All Items Selected Items the current session OK Cancel

اطلاعات طراحي تير

Steel Frame Design Overwrites for AISC 360-10

	Item	Value	
30	Moment Coefficient (Cm Minor)	1	
31	Bending Coefficient (Cb)	2.661723	
32	NonSway Moment Factor (B1 Major)	1	
33	NonSway Moment Factor (B1 Minor)	1	
34	Sway Moment Factor (B2 Major)	1	
35	Sway Moment Factor (B2 Minor)	1	
36	Reduce HSS Thickness?	No	
37	HSS Welding Type	SAW	
38	Yield stress, Fy, MPa	235	
39	Expected to specified Fy ratio, Ry	1.2	
40	Compressive Capacity, Pnc, kN	1106.6139	
41	Tensile Capacity, Pnt, kN	1537.605	
42	Major Bending Capacity, Mn3, kN-m	215.5185	
43	Minor Bending Capacity, Mn2, kN-m	40.3965	=
44	Major Shear Capacity, Vn2, kN	406.08	
45	Minor Shear Capacity, Vn3, kN	547.9542	
46	Demand/Capacity Ratio Limit	1	

در این قسمت آخر مقدار Cb ، ضریب Ry و مقاومت فشاری و خمشی و برشی تیر را مشاهده می کنید.

163

ETABS 2015 Steel Frame Design

AISC 360-10 Steel Section Check (Strength Summary)

Element Details

Level	Element Location (mm)		Combo	Element Type	Section	Classification	
Story6	B98	5070	UDStIS25	Intermediate Moment Frame	IPE360	Seismic HD	

LLRF and Demand/Capacity Ratio

L (mm)	LLRF	Stress Ratio Limit
5200.0	1	1

Analysis and Design Parameters

Provision	Analysis	2nd Order	Reduction		
LRFD	Direct Analysis	General 2nd Order	Tau-b Variable		

Stiffness Reduction Factors

αΡ ,/ Ρ _y	αP,/P.	τ _b	EA factor	El factor
0	0	1	0.8	0.8

Seismic Parameters

Ignore Seismic Code?	Ignore Special EQ Load?	Plug Welded?	SDC	I	Rho	S _{DS}	R	Ω₀	C _d
No	No	Yes	D	1	1.2	1.05	6	3	5

Design Code Parameters

سياوش قناعت

Φ.	Φ	Φ _{ТΥ}	Ф тғ	Φ.	Φ _{V-RI}	Φ ντ
0.9	0.9	0.9	0.75	0.9	1	1

در این قسمت نیز اطلاعات تعریف شده در آیین نامه آورده شده است که میتوان چک کرد و صحت سنجی نیرو های طراحي را انجام داد.

خلاصه طراحي نيرويي تيرها

Csi Software نجمن

Stress Check forces and Moments Location (mm) Pu (kN) Muss (kN-m) Mus2 (kN-m) Vus (kN) Vus (kN) Tu (kN-m) 5070 0 -148.2291 0 88.9099 0 0.0006

Axial Force & Biaxial Moment Design Factors (H1-1b)

	L Factor	K1	K2	B1	B ₂	Cm
Major Bending	0.956	1	1	1	1	1
Minor Bending	0	1	1	1	1	1

Parameters for Lateral Torsion Buckling

<u>μ</u> μ.	Kuth	C.
1	1	2.662

Demand/Capacity (D/C) Ratio_Egn (H1-1b)

D/C Ratio =	$(\frac{P_{r}}{2P_{o}}) + (M_{rss}/M_{oss}) + (M_{r22}/M_{o22})$
0.688 =	0 + 0.688 + 0

Axial Force and Capacities				
Pu Force (kN)	@Ppp Capacity (kN) @Pnt Capacity (kN)			
0	1106.6139	1537.605		

Moments and Capacities						
	M _u Moment (kN-m)	<u>ወለ</u> ດ Capacity (kN-m)	დ MoLted (kN-m)			
Major Bending	148.2291	215.5185	215.5185			
Minor Bending	Ö	40.3965				

Shear Design

	V _u Force (kN)	<u>φV</u> _R Capacity (kN)	Stress Ratio
Major Shear	88.9099	406.08	0.219
Minor Shear	0	547.9542	0

End Reaction Major Shear Forces					
Left End Reaction (kN) Load Combo Right End Reaction (kN) Load Combo					
-120.7881	UDStIS49	139.5769	UDStIS49		

در این قسمت ابتدا نیرو های محوری، خمشی، برشی و پیچشی وارد بر تیر
 را مشاهده می کنید. دستی میتوانید این ممان را با Zfy مقطع چک کنید
 و مقطع مناسبی انتخاب کنید.

- در قسمت بعدی طول مهار نشده نشان داده شده است.
- در قسمت های بعدی به ترتیب پارامتر های کمانش پیچشی-جانبی، نسبت تقاضا به ظرفیت، تنش های وارده و مقاومت های مقطع آمده است.

سياوش قناعت پيش

E (MPa)	fy(MPa)	Ry	α
200000	235	1.2	NA

(ASCE 12.4.3.2(5): (1.2+0.2*Sds)*D + 1.0*L + Omega0*Qe)

167

Stress Check forces and Moments

Location (mm)	P _u (kN)	M _{u33} (kN-m)	M _{u22} (kN-m)	V _{u2} (kN)	V م3 (kN)	T u (kN-m)
0	-6330.0578	0	0	0	0	0

Axial Force & Biaxial Moment Design Factors (H1-1a)

	L Factor	Κ1	K ₂	B ₁	B ₂	C m
Major Bending	0.903	1	1	1	1	1
Minor Bending	0.903	1	1	1	1	1

Parameters for Lateral Torsion Buckling

Litto	K tto	C b
0.903	1	2.166

Demand/Capacity (D/C) Ratio Eqn.(H1-1a)

D/C Ratio =	(P , /P _c) + (8/9)(M _{r33} /M _{c33}) + (8/9)(M _{r22} /M _{c22})
0.963 =	0.963 + 0 + 0

Axial Force and Capacities

P "Force (kN)	φP _{nc} Capacity (kN)	φP _{⊓t} Capacity (kN)
6330.0578	6574.6572	7614

Moments and Capacities

	Mu Moment (kN-m)	фМ " Capacity (kN-m)	φM n No L TBD (kN-m)
Major Bending	0	1770.255	1770.255
Minor Bending	0	307.6056	

سياوش قناعت

ستون با اثر ۱۰۰-۳۰

برای این ستون ها بار محوری بحرانی بوده و نرم افزار به صورت اتوماتیک آنها را برای این بار طراحی می کند.

Material Properties

E (MPa)	f _y (MPa)	Ry	α
200000	235	1.2	NA

Stress Check forces and Moments

Location (mm)	P u (kN)	M _{u33} (kN-m)	M _{u22} (kN-m)	V _{u2} (kN)	V _{u3} (kN)	T u (kN-m)
3530	-960.1378	21.8575	-0.3071	0	0	-0.0011

Axial Force & Biaxial Moment Design Factors (H1-1a)

	L Factor	K 1	K ₂	B ₁	B ₂	C m
Major Bending	0.929	1	1	1	1	1
Minor Bending	0.929	1	1	1	1	1

Parameters for Lateral Torsion Buckling

L	K _{Itb}	C _b
0.929	1	1.914

Demand/Capacity (D/C) Ratio Eqn.(H1-1a)

D/C Ratio =	(P_r/P_c) + (8/9)(M _{r33} /M _{c33}) + (8/9)(M _{r22} /M _{c22})
0.888 =	0.74 + 0.143 + 0.004

سياوش قناعت ييش

این ستون ها برای ترکیب بار محوری و لنگر خمشی طراحی می شوند.

مهاربند ها

169

Stress Check forces and Moments

Location (mm)	P _u (kN)	M _{u33} (kN-m)	M _{u22} (kN-m)	V _{u2} (kN)	V _{u3} (kN)	T u (kN-m)
2944.9	-343.1959	-1.0263	-0.1947	-0.8468	-0.0661	0.2147

Axial Force & Biaxial Moment Design Factors (H1-1a)

	L Factor	Κ1	K ₂	B ₁	B ₂	C m
Major Bending	0.5	1	1	1	1	1
Minor Bending	0.67	1	1	1	1	1

Parameters for Lateral Torsion Buckling

Lııb	K Itb	С ь
1	1	1.363

Demand/Capacity (D/C) Ratio Eqn.(H1-1a)

D/C Ratio =	$(P_r/P_c) + (8/9)(M_{r33}/M_{c33}) + (8/9)(M_{r22}/M_{c22})$
0.61 =	0.584 + 0.021 + 0.005

Axial Force and Capacities

P _u Force (kN)	φΡ _{nc} Capacity (kN)	φP _{nt} Capacity (kN)
343.1959	587.9058	862.92

مهاربند ها نکته خاصی ندارد فقط اینکه برای نیروی فشاری طراحی می شوند که حالت بحرانی آن کمانش می باشد که مقطع برای آن محاسبه می شود.

سياوش قناعت

	17	9	P	4.	5 (r	n)	9)	5.	.2 (n	n)	0	2	5.	5 (n	1)	9	2	5.	2 (n	1)	(2	5.	5 (m	1)	(2	5.	2 (n	n)	(9	4.5	5 (m	n)	9
	4.15 (m)												_			_																					
	3.8 (m)							PE140 (4)	PE140 (4)	PE140 (4)	PE140 (4)	/	PE140 (4)	PE140 (4)	PE140 (4)	PE140 (4)		PE140 (4)	PE140 (4)	PE140 (4)	PE140 (4)	+	PE140 (4)	PE140 (4)	PE140 (4)	PE140 (4)		PE140 (4)	PE140 (4)	PE140 (4)	PE140 (4)		•				_
	4.5 (m)		PE140 (5)	PE140 (5)	PE140 (5)	PE140 (5)		PE140 (5) IF	PE140 (5) IF	PE140 (5) IF	PE140 (5) IF	- 1	PE140 (5) F	PE140 (5) IF	PE140 (5) IF	PE140 (5) IF		PE140 (5) IF	PE140 (5) IF	PE140 (5) IF	PE140 (5) IF		PE140 (5) IF	PE140 (5) IF	PE140 (5) IF	PE140 (5) IF		PE140 (5) IF	PE140 (5) IF	PE140 (5) IF	PE140 (5) IF		PE140 (5)	PE140 (5)	PE140 (5)	PE140 (5)	1
/	4.5 (m)		-	-	-	= PE140 PE140 PE140 PE140) (2)) (3) (3)) (2)	PE140 (5) II	PE140 (5) II	PE140 (5) II	PE140 (5) II		PE140 (5) 1	PE140 (5) 1	PE140 (5) II	PE140 (5) II		PE140 (5) II	PE140 (5) II	PE140 (5) II	PE140 (5) 1		PE140 (5) 1	PE140 (5) II	PE140 (5) I	PE140 (5) I		PE140 (5)	PE140 (5) II	PE140 (5) 1	PE140 (5) II		IPE1	40 (2) 40 (3) 40 (3) 40 (2)		-	
	4.5 (m)		IPE140 (5)	IPE140 (5)	IPE140 (5)	PE140 (5)	_	PE140 (5)	PE140 (5) II	PE140 (5) II	PE140 (5) II		IPE140 (5) II	PE140 (5) II	PE140 (5) II	PE140 (5) II		IPE140 (2)	IPE140 (2)	IPE140 (2)	IPE140 (2)		IPE140 (5) II	PE140 (5) II	IPE140 (5) II	PE140 (5) II		IPE140 (5) II	PE140 (5) II	PE140 (5) II	PE140 (5) II		IPE140 (5)	IPE140 (5)	IPE140 (5)	IPE140 (5)	-
	0 2 (m)							PE200 (6)	PE200 (6)	PE200 (6)	PE200 (6)	E200 (157)	PE200 (6)	PE200 (6)	PE200 (6)	PE200 (6)						-	PE200 (6)	PE200 (6)	PE200 (6)	PE200 (6)		PE200 (6)	PE200 (6)	PE200 (6)	PE200 (6)						-
	Ð							=	=	=	=	⊒	=	-	=	=							=	=	-	=		-	=	-	=	_,	•				_

تیر های کامپوزیت

انجمن Csi Software

پارک مجازی علم عمران

سياوش قناعت پيشه

- نجمن Csi Software
- 💻 در اینجا تمام اطلاعات تیر های كامپوزيت آمده است.
- strength check در قسمت strength و لنگر خمشی وارده و طراحی را نشان می دهد.
- 💻 قسمت percent comp مخفف عملکرد کامپوزیتی می باشد که ما از ۲۵ تا ۱۰۰ درصد ارائه دادیم.
- 💻 قسمت servicibility مربوط به خیز تیر می باشد که تقاضا و ظرفیت هركدام آورده شده است.

				Results for	7	Leat Anabusia	
Section	Shear Studs	Camber	Ratio	Beam B177 at Story Stor	y7	Last Analysis	s IP
IPE140	5	0	0.961	Percent Comp. 56 Strength Checks			
				Uniform Shear Studs	Factored	Design	F
				Camber 0.00 Shear at Ends (kN)	19.4123	81.8103	0
				Construction Bending (k	l 8.2017	9.8267	0
				Reset the Above Full Comp. Bending (kN-m)	25.0571	45.7009	0
				Partial Comp. Bending (kN-m	25.0571	36.6643	0
				Shear Studs Distribution	5	37	0
				Shear Studs Distribution	5	37	0
				Pre-composite Defl. (mm)	8.5	No Limit	
				Post-composite Defl. (mm)	9.5	NO LIMIT	
				Total Defl. (mm)	0.4	12.0	0
				Walking Acceleration an/a	0.002642	0.005	0
							_
Auto Select List	NONE -	Specify S	ection	Show Group Results Temporary	how Details		
Group	NONE -	Overw	rites	Show All Alternates Combos	Diagrams	Rep	ort

Composite Deck Properties

	Slab	Cover (mm)	w。 (kN/m³)	f'。 (MPa)	b _{ett} (mm)	E ₀ (S) (MPa)	E _с (D) (MPa)	E ₀ (V) (MPa)	Q _ (kN)
Left, Right	composite	70	23	25	N/A	550	23400	23400	31590

Loading

	Constr.	Dead	SDL	Live NR	Live Red.	LLRF	Factored
Line Load (kN/m) 0 m→0.45 m	0.000	1.012	0.963→0.962	0.550	1.375	1 %	5.449
Line Load (kN/m) 0.45 m→0.9 m	0.000	1.012→0.000	0.963→0.000	0.550→0.000	1.375→0.000	1 %	5.449→0.000
Line Load (kN/m) 0.9 m→1.35 m	0.000	1.897	1.925	1.100	2.750	1%	10.747
Line Load (kN/m) 1.35 m \rightarrow 1.8 m	0.000	1.897→0.000	1.925→0.000	1.100→0.000	2.750→0.000	1%	10.747→0.000
Line Load (kN/m) 1.8 m→2.25 m	0.000	1.897	1.925	1.100	2.750	1 %	10.747
Line Load (kN/m) 2.25 m→2.7 m	0.000	1.897→0.000	1.925→0.000	1.100→0.000	2.750→0.000	1%	10.747→0.000
Line Load (kN/m) 2.7 m \rightarrow 3.15 m	0.000	1.897	1.925	1.100	2.750	1%	10.747
Line Load (kN/m) 3.15 m \rightarrow 3.6 m	0.000	1.897→0.000	1.925→0.000	1.100→0.000	2.750→0.000	1%	10.747→0.000
Line Load (kN/m) 3.6 m→4.5 m	0.000	1.012	0.962	0.550	1.375	1 %	5.449

End Reactions

	Constr.	Dead	SDL	Live NR	Live Red.	LLRF	Combo	Factored
I end (kN)	0.0000	3.4719	3.4650	1.9800	4.9500	1%	UDCmpS3	19.4123
J end (kN)	0.0000	3.4719	3.4650	1.9800	4.9500	1%	UDCmpS2	19.4123

Strength Checks

	Combo	Factored	Design	Ratio	Pass
Shear at Ends (kN)	UDCmpS2	19.4123	81.8103	0.237	1
Construction Bending (kN-m)	UDCmpC2	8.2017	9.8267	0.835	1
Partial Comp. Bending (kN-m)	UDCmpS2	25.0571	36.6643	0.683	1

Constructability and Serviceability Checks

	Actual	Allowable	Ratio	Pass
Shear Studs Distribution	5	37	0.135	1
Pre-composite Defl. (mm)	8.5	No Limit	N/A	N/A
Post-composite Defl. (mm)	9.5	No Limit	N/A	N/A
Live Load Defl. (mm)	6.4	12.5	0.509	1
Total Defl. (mm)	18	18.8	0.961	1
Walking Acceleration ap/g	0.002642	0.005	0.528	1

در قسمت report شما خلاصه تمام
 اطلاعات را می توانید ببینید که
 قسمت اصلی آن همان عدد ۵ می
 باشد که تعداد برشگیر در طول تیر
 می باشد.

پارک مجازی علم عمران

172

سياوش قناعت پيش

ضابطه ۲۵٪

باید مهاربند های جهت x را حذف کنیم، همچنین
 نیرو های طیفی را نیز تقسیم بر ۴ کنیم و چک کنیم
 که آیا مقاطع جواب می دهند ؟

۱–۸–۴ سیستم دوگانه یا ترکیبی
 نوعی سیستم سازهای است که در آن:
 الف– بارهای قائم عمدتاً توسط قابهای ساختمانی تحمل میشوند.
 ب– مقاومت در برایر بارهای جانبی توسط مجموعهای از دیوارهای برشی یا قابهای
 مهاربندی شده همراه با مجموعهای از قابهای خمشی تأمین میشود. سهم برشگیری هر یک
 از دو مجموعه با توجه به سختی جانبی و اندرکنش آن دو، در تمام طبقات، تعیین میگردد.
 پ– قابهای خمشی باید مستقلاً قادر به تحمل حداقل ۲۵ درصد نیروهای جانبی در
 تراز پایه و دیوارهای برشی یا قابهای مهاربندی شده باید مستقلاً قادر به تحمل حداقل ۲۵ درصد نیروهای جانبی در

پارک مجازی علم عمران

سياوش قناعت

- به دست آوردن دوباره پريود سازه
- تعیین ضریب همپایگی جدید برای بار طیفی
 - چک کردن تغییر مکان جانبی نسبی
 - 4. چک کردن P-Delta
 - 5. طراحی دوباره با نیروی جدید

انجمن Csi Software