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Assessment of Babolsar Concrete Pedestrian Bridge Failure for @Cmm 6135, 40 Coumlabouc
1964 Flood Event and Retrofitting Practice : -

Abolfazl Eslami **, Sara Heidarie Golafzani®, Reza Jamshidi Chenari®

a Amirkabir University of Technology (AUT), Tehran, Iran g;;*'o" o )& 9) )J O.oa‘ gs"‘ ).‘a °

b Dept. of Civil Eng., Univ. of Guilan, Guilan, Iran

ARTICLE INFO ABSTRACT ‘Q?f‘?"y'i‘“&QB.

Article history: The settled (bent) concrete bridge is considered as the oldest pedestrian pass over in Babolsar
Received 27 February 2016 city of Iran along Caspian Sea shoreline. The Babolrud River bed is formed of soft deltaic de- , ‘ e
Received in revised form 15 May 2016 posits because of sedimentation resulting from erosion and general scour from upstream. Con- e 6.5'.’ )':"

Accepted 19 May 2016

sequently there are geotechnical problems such as low bearing capacity, excessive settlement
Available online 24 May 2016 q y g P § capacity

and instabilities. Due to the river flooding in 1964 and local scour around the foundations of
the piers, the non-uniform settlement occurred beneath three piers of the middle spans of )‘O‘\JLM Jl’ QPs O
Keywords: ) the bridge. Because of their settlements and rotation of the piers, the decks were locally bent *
Seme_d (bemJ_ bridge in the support locations. Two different failure analyses were done in order to check the stability
Deltaic deposits of the bridge before, during and after flooding. The results of failure analyses including deter-

Flood event . . .
Bearing capacity ministic method and Monte Carlo simulation, have been compared to each other. Also, a cross

w1 pwoedylg b ©

Failure analysis correlation coefficient was considered between soil shear strength parameters (i.e. ¢ and @).
Retrofitting The effect of this coefficient and resistance factor was investigated on ultimate bearing capacity, .
factor of safety and probability of failure. Also, the rehabilitation of the bridge damaged during ‘_5.3 W OO 9.) wb.ob @)

1964 flooding is reviewed. The rehabilitation includes: strengthening the sub-construction,
balancing and lining up the bridge deck and deck reparations. The monitoring and surveillances
after three years of rehabilitation and utilization, have proved the applicability of the practices
in rehabilitation of the Babolsar Pedestrian Bridge.
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Probabilistic Assessment of Model Uncertainty for Predictive Methods

GEORISK Taylor & Francis
https://doi.org/10.1080/17499518.2019.1628281 Taylor & Francis Group

I M) Check for updates

Reliability based assessment of axial pile bearing capacity: static analysis, SPT and
CPT-based methods

Sara Heidarie Golafzani®, Reza Jamshidi Chenari ©2 and Abolfazl Eslami®

aDepartment of Civil Engineering, University of Guilan, Guilan, Iran; Department of Civil and Environmental Engineering, Amirkabir University
of Technology (AUT), Tehran, Iran

ABSTRACT ARTICLE HISTORY

Since piles are one of the major geotechnical foundation systems, estimation of their axial bearing Received 11 November 2018

capacity is of great importance. Employing different design methods, resulting in a wide range of =~ Accepted 2 June 2019

bearing capacity estimations, complicates the selection of an appropriate design scheme and

confirms the existence of model error along with the inherent soil variability in bearing capacity ::.YWQRDS . .
.. . . . . A . ial pile bearing capacity;

prediction. This paper tends to evaluate different predictive methods in Reliability-Based Design CPT; LRFD; pile foundation;

(RBD) framework. In this regard, different static analyses, SPT and CPT-based methods are reliability based design

considered to evaluate which approaches collectively and which method individually, have more

reliable predictions for compiled data bank. In order to assess reliability indices and resistance

factors, two approaches have been considered, i.e. First Order Second Moment method (FOSM)

and First Order Reliability Method (FORM). To investigate the reliability indices for different

methods in both RBD approaches, various safety factors and loading ratios have been

considered. Also, the Load and Resistance Factor Design (LRFD) resistance factors are calibrated

for different target reliability indices and loading ratios. Results show that CPT-based methods

are more reliable among other methods. Furthermore, the estimated efficiency ratio, i.e. the ratio

of resistance factor to resistance bias factor, confirms this agreement.
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Probabilistic Assessment of Model Uncertainty for Predictive Methods

Probabilistic assessment of Model Uncertainty for Prediction of Pile Foundation Bearing
Capacity; Static Analysis, SPT and CPT-based Methods

Sara Heidarie Golafzani', Reza Jamshidi Chenari®”, Abolfazl Eslami *

ABSTRACT

Geotechnical designs like other engineering disciplines are always accompanied by uncertainties. Cone
penetration test (CPT). by supplying continuous and reliable records and reducing uncertainty associated
with measurement errors, enhances the geotechnical designs to a more reliable level. Deep foundation
design, as a major challenge of foundation engineering, is also involved with different sources of
uncertainty. Moreover, the presence of various design methods. relying on different assumptions and
requirements, introduce further complications to the selection of an appropriate method which leads to the
wide spectrum of the predictions. Hence, a database, including 60 driven pile load test results and CPT
records in vicinity of them was compiled in order to investigate the model uncertainties embedded in various
predictive approaches. Investigated approaches comprising the static analyses, SPT and CPT-based
methods were elucidated by means of statistical and probabilistic criteria encompassing Load and
Resistance Factor Design (LRFD)-based design criteria i.e. efficiency ratio, actual factor of safety.
confidence interval criterion, and five further criteria presented in radar charts. The less the occupied area
of radar charts, the better the performance of the method would be. Besides, the resistance reduction factor,
applied in this study, was calibrated by four different prevailing methods and results confirmed that First
Order and Second Moment (FOSM) calibration method provides less accurate results in comparison to
other approaches. Eventually. among common available predictive methods, CPT-based methods perform
better than others and result in cost-effective and optimized trends.

Keywords: Uncertainty; Bearing Capacity; CPT; LEFD; Eeliability; Driven piles; SPT; Static analysis.
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